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A B S T R A C T

This study presents a comprehensive multi-objective optimization approach for a dual HESS-based electric
vehicle (EV) powertrain using the interactive adaptive-weight genetic algorithm (i-AWGA) method. The dual
HESS EV concept aims to show the benefits of combining independent traction systems powered by their
respective energy sources. Therefore, the main purpose of this optimization is to simultaneously maximize
driving autonomy and battery lifespan and minimize HESS size, considering design variables from components
such as batteries, electric motors, differential, and ultracapacitors. At the same time, three independent fuzzy
logic controllers – which perform the power management control between the hybrid energy storage systems
– are likewise optimized, tuning their parameters according to the applied constraints. The best trade-off
solution, equipped with a 332.34 kg dual HESS mass, achieved a driving range of 285.56 km and a front
battery life cycle of 36585 h. As compared to a similar EV powered by a single HESS and optimized under the
same driving conditions, the dual HESS EV improved the ratio between the driving range and energy storage
system’s overall mass by 3%, reaching a driving range 19.57% longer, and increasing the battery life by up
to 22.88%.
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1. Introduction

Over the last decades, regulatory policies focused on air quality
management and energy security have extensively been implemented
to tackle environmental, social, and economic issues related to high
gas emission indexes and inefficient use of energy resources [1]. In this
context, many countries have invested in clean and energy-saving tech-
nologies applied to the road transportation sector [2–4] as it contributes
to 23% of the greenhouse gas emissions from fossil fuel combustion
at the global scale [5] and consumes over 80 trillion megajoules of
energy worldwide [6,7]. Further, the international sales of automobiles
are forecast to double by 2050 [8], which emphasizes the need for
the deployment of alternatively-powered vehicles to address climate
change concerns.

Among the potential propulsion systems to substitute fossil fuel-
based vehicles, the pure electric vehicles (EVs) are a promising alter-
native solution due to their carbon-neutral power source, low-noise
operation, and high energy efficiency [9]. The energy storage systems
(ESSs) play a crucial role in electric powertrain design since the devel-
opment of extended-range EVs is still a challenging task to accomplish.
At the same time, the advancement of automotive batteries during
the last decade has enhanced EV reliability in terms of higher energy
efficiency and longer operating time [10,11].

However, the commercially available battery technology’s limita-
tions stem from the difficulty of providing electrified vehicles with high
specific power during driving conditions of peak load demands. Battery
lifetime is reduced, due to substantial heat generation, by meeting
high power requirements of electrically-propelled road vehicles [12].
In this sense, the hybrid energy storage systems (HESSs), consisting
of an ultracapacitor and battery packs typically connected to a power
converter, address this issue by supplying both averages, and peak
power loads [13]. The combination of such distinct systems allows the
EVs to operate during extended driving ranges using a high-energy-
density battery while maintaining good vehicle performance due to
the ultracapacitor that acts as a peak power buffer unit. Moreover,
ultracapacitors (UCs) prevent regenerative braking energy harvesting
from increasing battery degradation and perform energy regeneration
at low-temperature conditions, in which conventional batteries could
not correctly operate for this mode [14]. Hence, HESS configura-
tions outperform battery-only ESSs concerning power density, battery
lifespan, and energy savings [15].

In the literature, scholars have evaluated different HESS topologies
for electric vehicles using an optimization process to maximize energy
efficiency [16] and reduce operation cost [17]. In another approach,
Wang et al. [18] proposed a HESS configuration that can operate
in distinct modes such as hybrid output, regenerative braking, fully
battery, and fully ultracapacitor modes. The multimode HESS enhanced
overall system efficiency and reduced energy consumption for different
driving cycles in their study.

Furthermore, energy management strategy (EMS), which can ef-
ficiently distribute power between the energy sources (batteries and
UCs in this case), is of extreme importance for the HESS performance,
efficiency, reliability, and durability [19–21]. Published works have
implemented EMS for HESS based on several methods such as fuzzy
logic control (FLC) approach [15,22], rule-based control (RBC) [23,24],
model predictive control (MPC) strategy [14,25], filtration based con-
trol (FBC) strategy [26], learning-based strategy [27,28], wavelet-based
strategy [29,30] etc. In the study of Song et al. [31], a comparative
analysis of four distinct energy management control strategies (FLC,
RBC, MPC, and FBC) for HESS of an all-electric bus showed that fuzzy-
logic and rule-based controllers performed the best results, reducing
over 50% of battery capacity loss when compared to the battery-only
ESS configuration.

Optimization-based methods have also been extensively applied to
power management for HESS in EVs. Researchers have formulated
nonlinear optimization problems to investigate the optimal power split

strategies for electrified vehicle powertrain equipped with HESS in
order to increase driving range [32,33] and minimize system cost [34–
36], energy consumption [26,37–39], battery degradation [38,40–42]
and ultracapacitor losses [43]. Moreover, in order to optimize HESS
components sizing, academics have used particle swarm optimiza-
tion [44,45], Pontryagin’s minimum principle [37], non-dominated
sorting genetic algorithm type 2 (NSGA-II) [10], dynamic program-
ming (DP) [35] among others. Zhang et al. [46] investigated the
influence of HESS dimensioning on battery capacity fade using the
NSGA-II approach to search for the best solutions concerning battery
life, system weight, and cost. In the work of Yu et al. [15], HESS
sizing and EV power split strategy based on fuzzy logic control are
simultaneously optimized by an evolutionary algorithm. Such concur-
rent optimization of EMS and EV design parameters is also reported
by the study of Li et al. [36], in which an adaptive random forests-
based power-split control strategy is developed by obtaining the rules
from the DP algorithm, and a HESS component sizing optimization is
performed using multi-objective gray wolf optimizer.

Once the battery is still a bottleneck and significant component
of EVs, scholars have studied the influence of battery lifespan on
vehicle operating costs. To address this issue, battery life cycle model
predictions have increasingly been carried out in the literature [47–50].
In the work of Hu et al. [51], a fractional-order model was developed to
simultaneously estimate the battery state of charge and aging process
under different driving conditions, achieving high accuracy compared
to experimental results. In this way, aging-aware power management
control strategies have proved crucial to preventing excessive battery
stress and, reducing the life cycle costs of pure electric vehicles. Over
the last years, aging-aware EMSs have been presented by several differ-
ent studies [52–54]. In the study by Anselma et al. [55], a battery life
sensitive off-line power-split control was implemented for a hybrid elec-
tric vehicle (HEV), resulting in a potential battery downsizing by 35%
with no negative impact on the system lifespan. De Pascali et al. [56]
designed a battery state-of-health conscious EMS for a parallel HEV
powertrain architecture. The battery degradation could be reduced
(up to 18%), while increasing fuel efficiency. In a different approach,
Yuksel et al. [57] investigated the influence of driving profiles, thermal
management strategies, and weather on the battery life cycle for a
plug-in hybrid electric vehicle application. Additionally, researchers
have used a battery charging capacity diagnostic framework to detect
potential failures so that the safety of EV operation can be ensured [58].

Several works as [33,59] show the advantages of EVs, which com-
bine EMs with different characteristics or assembly forms. Following
this principle, EVs with a four-wheel-drive concept become a viable
solution once the powertrain system is simplified [60,61]. These inde-
pendent wheel traction EMs allow the power split control to determine
the most efficient distribution according to the driving condition. The
Independence Axiom proposed by Suh [62] indicates that components
with multiple functional requirements should satisfy each one of these
requirements without affecting the other ones. Therefore, EVs with
independent traction systems should also present independent power
sources once the discharges of each traction system directly interfere
with the others in case a single power source is considered. This princi-
ple can be applied in the HESS system, which splits the current demand
between the batteries’ primary power source and ultracapacitors (high
current peaks), improving the system efficiency. Still following the
Independence Axiom principle, dividing the HESS among the available
propelling systems can lead to optimized energy storage systems for
their respective EM/drivetrain. Those independent HESS can be smaller
and more efficient once they do not need to be robust to fulfill the
current peaks of all EV motors compared to EVs powered by a single
HESS.

In previous work, Eckert et al. [32] present the concept of a dual
HESS electric vehicle, which applies to the same principle of the inde-
pendence of the traction system for the energy storage. The proposed
EV presented two independent HESSs, one for the frontal in-wheel
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EMs and another that powers the EM/differential system applied to
the rear wheels. The mentioned propelling system configuration was
also successfully applied in previous works [33,61], which showed the
advantages of this EV powertrain architecture that combines different
EMs characteristics, allowing such system to reach high efficiency in
different driving conditions such as urban, highway traffic or even at
high power demand conditions. The dual HESS-based EV concept, also
studied in this paper, is presented in Fig. 1.

The proposed dual HESS electric vehicle increased the driving range
to 145.15 km with a HESS 23.93% lighter than the results presented
in [63] for a similar EV powered by a single HESS. Despite these
gains, none of those previous EV optimization works considers the
maximization of the battery lifespan as an optimization criterion. Bat-
tery degradation is an essential factor to be considered, since pure
electric powertrain architectures cause more battery stress than hybrid
electric ones [64]. Once the battery is one of the critical EV powertrain
components and responsible for a significant parcel of the total cost
of ownership [20,65,66], the use of battery-ultracapacitor HESS in EVs
will only be economically advantageous if the implemented EMS results
in extended battery life cycle expectation [39]. In addition, premature
replacement of batteries, which is directly associated with high depth
of discharge and current fluctuations [67–70], causes adverse environ-
mental effects. This is because the automotive batteries-making process
depends upon polluting manufacturing plants [71], while battery dis-
posal is still a major concern as reported by different studies in the
literature [72–74]. Recharging time can also be considered a drawback
for plug-in electric vehicles concerning sustainable aspects. First, large-
scale electric vehicle charging demand may become a significant issue
for cities lacking robust electricity supply infrastructure [75–78]. Sec-
ond, the long EV charging process is associated with higher operational
costs [79–82]. Lastly, the need for great electric power generation
to supply public and residential EV recharging stations makes EVs
responsible for greenhouse gas emissions in case such electricity comes
from polluting energy sources [83,84].

Based on the presented state of the art, there are no studies about
optimizing a dual HESS EV regarding the benefits of this configuration
in the battery lifespan and EV operational costs compared to the
traditional single HESS EV. In this context, the novelty of this work
remains from the fact that multi-objective optimization design of dual
HESS-based EV powertrain considering energy efficiency simultane-
ously, driving range, recharging time, and battery aging effects has not
been comprehensively carried out in the literature to date. Given this
fact, the current work aims to fulfill this research gap, showing the
advantages of using this proposed EV powertrain topology rather than
the conventional single HESS-equipped one.

Therefore, this study presents a multi-objective optimization of a
dual HESS EV, in which the drivetrain (EMs and differential), HESS
sizing (battery and ultracapacitors), and the fuzzy controllers respon-
sible for the traction power distribution between the EMs and also
the discharge split between battery and ultracapacitors for both HESSs
are optimized. This EV configuration is optimized to maximize the
EV driving range, minimize the overall dual HESS mass and, improve
the battery’s state of health based on an estimated life cycle. In order
to provide a fair comparison, the same EV powered only by a single
HESS is also optimized, considering the same applied criteria. Finally,
both optimization problems are solved by employing the interactive
adaptive-weight genetic algorithm (i-AWGA) to find the best trade-off
among the optimization criteria.

The optimization will be conducted under the FTP-75, HWFET and
US06 driving cycles, which are the same applied in previous works [32,
63], intending to provide an EV configuration that is robust to different
driving scenarios. This robustness of the optimized dual HESS EVs is
also evaluated under the WLTC standard cycle and four real-world
driving cycles, which correspond to driving conditions different from
the ones in which the EVs were optimized. In this context, the changes
of battery lifetime caused by different driving conditions are also
analyzed. Moreover, a comparative costs analysis is carried out between
the dual-HESS optimum solutions and other EVs architectures. Finally,
the main contribution of this study are:
• Dual HESS EV architecture aiming improvement in the EV drive range
and batteries’ life cycle
• Multi-objective optimization procedure of the overall EV powertrain
and fuzzy logic control, aiming to improve driving range, energy
storage mass, and battery life cycle
• Comparison with a similar EV powered by a single HESS, optimized
under the same conditions applied to the dual HESS EV
• Powertrain cost benchmark among the optimized dual and single
HESS EVs configurations
• Evaluation of the optimum dual HESS EV under four real-world
driving cycles

2. Simulation model

The vehicle simulation model is based on the longitudinal dynamics
presented by Gillespie [85] and adapted to the EV drivetrain config-
uration in a previous work [32]. The first step is to define the EV
power demand, represented by the required traction torque 𝑇𝑟𝑒𝑞 [Nm]
at the vehicle wheels. As expressed by Eq. (1), such variable 𝑇𝑟𝑒𝑞 is
calculated as a function of the movement resistance forces such as the

Fig. 1. Dual HESS EV concept.
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aerodynamic drag 𝐷𝐴 [N] (Eq. (2)) and tires rolling resistance 𝑅𝑥 [N]
(Eq. (3)).

𝑇𝑟𝑒𝑞 =
(
𝑅𝑥 +𝐷𝐴 +𝑀𝑎𝑟𝑒𝑞

)
𝑟 (1)

𝐷𝐴 =
1

2
𝜌𝑉 2𝐶𝐷 𝐴 (2)

𝑅𝑥 = 0.01
(
1 +

2.24 𝑉

100

)
𝑀𝑔 (3)

where 𝑀 [kg] and 𝑉 [m/s] represent the vehicle mass and speed
respectively, 𝑔 [m/s2] is the gravitational acceleration, 𝑟 [m] is the tire’s
radius, 𝜌 [kg/m3] corresponds to the air density, and the vehicle shape
is represented by the frontal area 𝐴 [m2] and the drag coefficient 𝐶𝐷.

The required acceleration 𝑎𝑟𝑒𝑞 [m/s
2] is defined by comparing the

current vehicle speed 𝑉 (𝑡) with the driving cycle target speed 𝑉𝑐 at
time step 𝛥𝑡 [s] ahead of the current simulation time 𝑡 [s] as shown
in Eq. (4) [86].

𝑎𝑟𝑒𝑞(𝑡) =
𝑉𝑐 (𝑡 + 𝛥𝑡) − 𝑉 (𝑡)

𝛥𝑡
(4)

As mentioned before, in this paper, the simulation will be based
on three driving cycles with different speed profiles: FTP-75 (urban
driving), HWFET (highway driving), and the US06 (high speed and
required acceleration). The selected driving cycle speed profiles are
presented in Fig. 2.

Considered the EV required torque to reach the cycle target speed,
the fuzzy power split control, which will be discussed in details in
Section 3, outputs the 0 ≤ 𝑃𝑆 ≤ 1 value that distributes the traction
torque demand between the frontal 𝑇𝑟𝑒𝑞𝐹 [Nm] and rear 𝑇𝑟𝑒𝑞𝑅 [Nm]
propelling systems as presented in Eqs. (5) and (6).

𝑇𝑟𝑒𝑞𝐹 = 𝑃𝑆𝑇𝑟𝑒𝑞 (5)

𝑇𝑟𝑒𝑞𝑅 = (1 − 𝑃𝑆 )𝑇𝑟𝑒𝑞 (6)

Fig. 2. Simulated driving cycles [87,88].

Each torque demand is then converted to correspond to the load ap-
plied to the respective EMs of each drive system. For the frontal system,
the 𝑇𝑟𝑒𝑞𝐹 values are divided between two in-wheel EMs according to
Eq. (7) considering the inertia of the frontal wheels and EMs assembled
into them 𝐼𝑤𝑓 [kgm

2].

𝑇𝐸𝑀𝐹 =
𝑇𝑟𝑒𝑞𝐹 + 𝐼𝑤𝑓

𝑎𝑟𝑒𝑞

𝑟

2
(7)

In the case of the rear system, a single EM is coupled to a differential
transmission, with gear ratio 𝑁𝑑 , mechanical efficiency 𝜂𝑑 and inertia
𝐼𝑑 [kgm

2], which is added to the rear wheels’ inertia 𝐼𝑤𝑟 [kgm
2] as

expressed by Eq. (8).

𝑇𝐸𝑀𝑅 =
𝑇𝑟𝑒𝑞𝑅 +

(
𝐼𝑑𝑁

2
𝑑
+ 𝐼𝑤𝑟

) 𝑎𝑟𝑒𝑞

𝑟

𝑁𝑑𝜂𝑑
(8)

The required torque value for each EM (𝑇𝐸𝑀𝐹 and 𝑇𝐸𝑀𝑅) are
then compared to the available torque through their respective torque
curves (see Fig. 3a). If the available maximum torque 𝑇𝐴(𝐹 ,𝑅) [Nm]
is lower than the requested value, the vehicle acceleration will be
limited. Another key parameter to be analyzed regarding traction of the
EMs is the transmissible torque in the tire-ground contact, which can
significantly decrease the vehicle acceleration performance [89,90].
The maximum transmissible torque is defined by Eqs. (9) and (10)
proposed by Jazar [91] as a function of the tire-ground friction peak
coefficient 𝜇, vehicle gravity center height ℎ [m] and wheelbase 𝐿 [m]
and the longitudinal distances between the gravity center and the rear
𝑐 [m] and frontal 𝑏 [m] axles, respectively. For the initial condition,
the vehicle acceleration 𝑎𝑥 [m/s

2] is considered equal to the required
acceleration (𝑎𝑥 = 𝑎𝑟𝑒𝑞).

𝑇𝐹 (𝑚𝑎𝑥) = 𝜇

(
𝑀𝑔 𝑐

2𝐿
−
𝑀ℎ 𝑎𝑥

2𝐿

)
𝑟 (9)

𝑇𝑅(𝑚𝑎𝑥) = 𝜇

(
𝑀𝑔 𝑏

2𝐿
+
𝑀ℎ 𝑎𝑥

2𝐿

)
𝑟 (10)

The traction torques that are effectively applied by the frontal
𝑇𝐹 [Nm] and rear 𝑇𝑅 [Nm] propelling systems are defined by Eqs. (11)
and (12).

𝑇𝐹 = min

⎧⎪⎪⎨⎪⎪⎩

2𝑇𝐸𝑀𝐹 − 𝐼𝑤𝑓
𝑎𝑥

𝑟

2𝑇𝐴𝐹 − 𝐼𝑤𝑓
𝑎𝑥

𝑟

𝑇𝐹 (𝑚𝑎𝑥)

(11)

𝑇𝑅 = min

⎧⎪⎪⎨⎪⎪⎩

𝑇𝐸𝑀𝑅𝑁𝑑𝜂𝑑 −
(
𝐼𝑑𝑁

2
𝑑
+ 𝐼𝑤𝑟

) 𝑎𝑥

𝑟

𝑇𝐴𝑅𝑁𝑑𝜂𝑑 −
(
𝐼𝑑𝑁

2
𝑑
+ 𝐼𝑤𝑟

) 𝑎𝑥

𝑟

𝑇𝑅(𝑚𝑎𝑥)

(12)

Finally, the EV acceleration is determined by Eq. (13). However,
several values regarding the calculation of 𝑇𝐹 and 𝑇𝑅 torques are
directly dependent on 𝑎𝑥 parameter. Therefore, an iterative process
among Eqs. (9) to (13) is performed until convergence.

𝑎𝑥 =
𝑇𝐹 + 𝑇𝑅 −

(
𝐷𝐴 + 𝑅𝑥

)
𝑟

𝑀𝑟
(13)

After convergence, the effective torque values for the frontal 𝑇𝐹𝑒𝑓
[Nm] and rear 𝑇𝑅𝑒𝑓 [Nm] are calculated by Eqs. (14) and (15).

𝑇𝐹𝑒𝑓 =
𝑇𝐹 + 𝐼𝑤𝑓

𝑎𝑥

𝑟

2
(14)

𝑇𝑅𝑒𝑓 =
𝑇𝑅 +

(
𝐼𝑑𝑁

2
𝑑
+ 𝐼𝑤𝑟

) 𝑎𝑥

𝑟

𝑁𝑑𝜂𝑑
(15)

Table 1 presents the EV parameters applied in the simulations.
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Fig. 3. Electric motors, inverter and DC–DC converter efficiency maps.

Table 1
Vehicle parameters [32,61].

Vehicle mass without HESS 800 kg
Tires 175/70 R13 radius (𝑟) 0.2876 m
Wheels + tires inertia (𝐼𝑤) 2 kgm2

Tire peak friction coefficient (𝜇) 0.9
Vehicle frontal area (𝐴) 1.8 m2

Drag coefficient (𝐶𝐷) 0.33
Differential efficiency (𝜂𝑡𝑑 ) 0.9
Wheelbase (𝐿) 2.443 m
Gravity center height (ℎ) 0.53 m
Front axle to gravity center (𝑏) 0.983 m
Rear axle to gravity center (𝑐) 1.460 m

2.1. Electric motors model

The design of the front in-wheel and rear EMs is an essential factor
for potential improvements in EV performance and energy efficiency. In
this manuscript, a generic EM torque curve is presented, being defined
according to reference operating points of motor speed 𝜔𝑇 𝑐 [rad/s]
at constant (maximum) torque phase as well as constant-power-phase
torque 𝑇𝑃𝑐 [Nm] (which represents 30% of maximum motor torque
𝑇𝑚𝑎𝑥 [Nm], as expressed by Eq. (16)) and speed 𝜔𝑃𝑐 [rad/s] (Eq. (17)).
This method was developed in previous work [61], based on available
EM data and literature information [92], complemented by experiments
performed in an instrumented flywheel bench presented in the work of
Yamashita et al. [93].

𝑇𝑃𝑐 = 0.3𝑇𝑚𝑎𝑥 (16)

𝜔𝑃𝑐 =
𝑇𝑚𝑎𝑥𝜔𝑇 𝑐

𝑇𝑃𝑐
(17)

In addition, the maximum motor speed 𝜔𝑚𝑎𝑥 [rad/s] (when EM
torque is null) is defined by linear progression based on the afore-
mentioned torque curve points, that is, (𝑇𝑚𝑎𝑥, 𝜔𝑇 𝑐) and (𝑇𝑃𝑐 , 𝜔𝑃𝑐).
In this sense, the i-AWGA method optimizes these design variables
that define EMs’ torque curves, as previously presented by published
studies [32,94,95]. The inverter efficiency map is based on the work
of Rotering et al. [96], adapted to be used in optimization [61]. The
generic efficiency maps of the electric motors and inverters are depicted
in Fig. 3ab. Based on the operating region, it is possible to determine
the EMs’ efficiencies for front 𝜂𝐸𝑀𝐹 and rear 𝜂𝐸𝑀𝑅 propulsion sys-
tems. The inverters’ (𝜂𝐸𝑀(𝐹∕𝑅)) and DC bus (𝜂𝐷𝐶(𝐹∕𝑅)) efficiencies are
defined analogously. Hence, the electrical current profile delivered to
frontal 𝐼𝐹 [A] and rear 𝐼𝑅 [A] can then be calculated by Eqs. (18) and
(19), respectively, as a function of the current HESS voltage for each
drive system 𝑉𝐻(𝐹∕𝑅) [V].

𝐼𝐹 =
2𝑇𝐹𝑒𝑓𝑉

𝑟 𝑉𝐻𝐹 𝜂𝐸𝑀𝐹 𝜂𝑖𝑛𝑣𝐹 𝜂𝐷𝐶𝐹
(18)

𝐼𝑅 =
𝑇𝑅𝑒𝑓𝑉 𝑁𝑑

𝑟 𝑉𝐻𝑅 𝜂𝐸𝑀𝑅 𝜂𝑖𝑛𝑣𝑅 𝜂𝐷𝐶𝑅
(19)

The EMs can operate as generators during braking conditions, per-
forming energy regeneration to recharge the ultracapacitors. In this
study, the motors can harvest braking energy until 10% of their avail-
able torque capacities. Additionally, a low vehicle speed threshold
of 15 km/h is established for the EM ability to operate in regener-
ative braking energy mode since low-speed condition causes limited
electromotive force generation [97,98].

2.2. Battery-ultracapacitor HESS model

A DC–DC converter is employed to connect the ultracapacitor and
battery pack power sources to the drive system [99]. Power con-
verters used for a HESS require bidirectional power flow, securing
high-efficiency charging, and discharging of the system [100]. For that
reason, the HESS applied in this study was assembled using the parallel
DC–DC converters topology (Fig. 4).

This topology presents high precision power demand distribution to
the sources. Also, it offers high stability and flexibility in its operations,
with a smooth current flow (a better solution for voltage variation), but
has control complexity and increased semiconductor switches [101].

Utilizing a system with parallel converters, it is possible to enter a
negative power flow exclusively in the ultracapacitor, which is char-
acterized as having high charge and discharge capacity. Hence, it is
necessary for a buck-boost converter in an ultracapacitor to act as
a boost when discharging and as a buck when undercharging [102].
The battery converter is a boost, simply taking part in the discharge
process [103].

Fig. 4. HESS topology.
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Fig. 3c presents the DC–DC converter efficiency map (that is based
on the data presented in the literature [104]), in which the voltage gain
𝛥𝑉 (y-axis) represents the ratio between the output voltage delivered
by the DC–DC converter and the input voltage supplied by the energy
storage system. By Fig. 3c, it is possible to observe that the DC–DC
converter efficiency 𝜂𝐷𝐶 has a significant influence on such voltage
amplification and the electric power supplied by the system. A higher
voltage gain for the same provided electric power results in lower
DC–DC converter efficiency.

2.2.1. Ultracapacitor model

In this study, a generic ultracapacitor model is implemented ac-
cording to the database of 16 ultracapacitor configurations 𝐶𝑎𝑝(𝑛)
available in the market, as described in Table 2. The optimization
procedure (Section 4) is responsible for defining the UCs arrangement,
which can be associated in series or parallel configuration or even
combined in a pack with UCs in series and parallel at the same time.
The evolutionary algorithm also tuned the number of ultracapacitors in
series 𝑁𝑠 per branch and the number of branches in parallel 𝑁𝑝. The
overall mass of the associated ultracapacitors 𝑀𝑐𝑎𝑝 [kg] (Eq. (20)) can
then be calculated as a function of the mass 𝑀𝑢𝑐(𝑛) [kg] of the selected
ultracapacitor 𝐶𝑎𝑝(𝑛).

𝑀𝑐𝑎𝑝(𝐹∕𝑅) = 𝑁𝑠(𝐹∕𝑅) 𝑁𝑝(𝐹∕𝑅) 𝑀𝑢𝑐(𝑛𝐹∕𝑅)
(20)

Furthermore, the equivalent voltage 𝑉𝐶𝑒𝑞 [V], capacitance 𝐶𝑒𝑞 [F]
and resistance 𝑅𝐶𝑒𝑞 [Ω] of the association of ultracapacitors can be
defined by Eqs. (21)–(23), respectively.

𝑉𝐶𝑒𝑞 =

𝑁𝑠∑
𝑖=1

𝑉𝐶𝑖 (21)

𝐶𝑒𝑞 =

𝑁𝑝∑
𝑘=1

⎛⎜⎜⎝
1∑𝑁𝑠

𝑖=1

1

𝐶𝑖

⎞
⎟⎟⎠
𝑘

(22)

𝑅𝐶𝑒𝑞 =

⎛
⎜⎜⎝

𝑁𝑝∑
𝑘=1

⎛
⎜⎜⎝

1∑𝑁𝑠
𝑖=1

𝑅𝑖

⎞
⎟⎟⎠𝑘

⎞
⎟⎟⎠

−1

(23)

The ultracapacitor state of charge 𝑆𝑜𝐶𝐶 [%], on the other hand,
is determined according to the initial electric charge 𝑄𝑖𝑛𝑖 [C], the
electrical current 𝐼𝑐𝑎𝑝 [A], and the actual electric charge 𝑄𝑇 [C], as
expressed by Eq. (24).

𝑆𝑜𝐶𝐶 (𝑡) =

(
𝑄𝑖𝑛𝑖 − ∫ 𝑡

0
𝐼𝑐𝑎𝑝(𝜏)𝑑𝜏

𝑄𝑇

)
× 100 (24)

Table 2
Ultracapacitor parameters [32].

𝐶𝑎𝑝(𝑛) 𝑉𝑢𝑐(𝑛) [V] 𝐶𝑢𝑐(𝑛) [F] 𝑅𝑢𝑐(𝑛) [Ω] 𝑀𝑢𝑐(𝑛) [kg]

𝐶𝑎𝑝(1)

16

108 3.6E−03 3.0
𝐶𝑎𝑝(2) 108 4.3E−03 3.7
𝐶𝑎𝑝(3) 200 3.5E−03 4.1
𝐶𝑎𝑝(4) 266 3.0E−03 4.6
𝐶𝑎𝑝(5) 333 2.4E−03 5.1
𝐶𝑎𝑝(6) 500 1.9E−03 6.0

𝐶𝑎𝑝(7)

48

36 13E−03 9.5
𝐶𝑎𝑝(8) 66 10.4E−03 11.5
𝐶𝑎𝑝(9) 88 8.9E−03 12.5
𝐶𝑎𝑝(10) 111 7.1E−03 13.5
𝐶𝑎𝑝(11) 166 5.6E−03 16.0

𝐶𝑎𝑝(12)
64

83 9.5E−03 17.0
𝐶𝑎𝑝(13) 125 7.5E−03 20.0

𝐶𝑎𝑝(14)
86

62 12.7E−03 21.0
𝐶𝑎𝑝(15) 93 10E−03 26.0

𝐶𝑎𝑝(16) 125 62 15E−03 67.0

2.2.2. Battery model
The battery state of charge 𝑆𝑜𝐶𝐵 [%] is considered a key pa-

rameter in the investigation of the energy storage system behavior
under different operational conditions [105] since it indicates the avail-
able battery capacity. In the simulation, the defined electrical current
𝐼𝑏𝑎𝑡𝑡(𝐹∕𝑅) is delivered to the lithium-ion battery model, which is based
on Simulink™ battery block database. 𝑆𝑜𝐶𝐵 can then be estimated by
Eq. (25), as a function of the current profile 𝐼 [A], initial state of
charge 𝑆𝑜𝐶𝐵(𝑡0) [%] and battery capacity 𝑄 [Ah]. Since the actual
state of charge is defined, the depth of discharge 𝐷𝑜𝐷 [%] can also
be calculated, as expressed by Eq. (26).

𝑆𝑜𝐶𝐵(𝑡) = 𝑆𝑜𝐶𝐵(𝑡0) −

(
1

𝑄(3600) ∫
𝑡

0

𝐼𝑏𝑎𝑡𝑡(𝜏)𝑑𝜏

)
× 100 (25)

𝐷𝑜𝐷(𝑡) = 100 − 𝑆𝑜𝐶𝐵(𝑡) (26)

As described in Section 3, the state of charge is introduced as one
of the input parameters of the fuzzy logic energy management control.
It is also worth pointing out that the 𝑆𝑜𝐶𝐵 range is limited to 40% to
avoid excessive discharge, which results in the shortening of the battery
life cycle. Regarding the battery mass𝑀𝑏𝑎𝑡 [kg] for front and rear drive
systems, this parameter is given by Eq. (27), as a function of the typical
lithium-ion battery specific energy (𝑆𝐸 = 150 [Wh/kg] [106,107]),
nominal voltage 𝑉𝑛𝑜𝑚 [V] and nominal capacity 𝑄𝑛𝑜𝑚 [Ah].

𝑀𝑏𝑎𝑡(𝐹∕𝑅) =
𝑉𝑛𝑜𝑚(𝐹∕𝑅)𝑄𝑛𝑜𝑚(𝐹∕𝑅)

𝑆𝐸
(27)

Furthermore, the battery voltage dynamics is defined according
to the Shepherd model [108–110]. The actual voltage 𝑉𝑏𝑎𝑡𝑡 [V] is
determined by Eqs. (28) and (29) for the charge and discharge modes,
respectively. The calculation of 𝑉𝑏𝑎𝑡𝑡 is given as function of the battery
current 𝐼𝑏𝑎𝑡𝑡 [A], constant voltage of battery equivalent circuit 𝐸0 [V],
polarization constant 𝐾 [V(Ah)−1], battery internal resistance 𝑅 [Ω],
exponential zone time constant inverse 𝐵 [(Ah)−1], exponential zone
amplitude 𝐴 [V] and filtered current 𝐼∗ [A], which can assume negative
(charging) or positive (discharging) values.

𝑉
(𝐼∗<0)

𝑏𝑎𝑡𝑡
= 𝐸0 − 𝑅𝐼𝑏𝑎𝑡𝑡 −𝐾

(
𝑄

𝐼𝑏𝑎𝑡𝑡𝑡 − 0.1𝑄

)
𝐼∗

−𝐾

(
𝑄

𝑄 − 𝐼𝑏𝑎𝑡𝑡𝑡

)
𝐼𝑏𝑎𝑡𝑡𝑡 + 𝐴𝑒

−𝐵𝐼𝑏𝑎𝑡𝑡𝑡

(28)

𝑉
(𝐼∗>0)

𝑏𝑎𝑡𝑡
= 𝐸0 − 𝑅𝐼𝑏𝑎𝑡𝑡 −𝐾

(
𝑄

𝑄 − 𝐼𝑏𝑎𝑡𝑡𝑡

)
𝐼∗

−𝐾

(
𝑄

𝑄 − 𝐼𝑏𝑎𝑡𝑡𝑡

)
𝐼𝑏𝑎𝑡𝑡𝑡 + 𝐴𝑒

−𝐵𝐼𝑏𝑎𝑡𝑡𝑡

(29)

After the vehicle model has been subjected to the combined driving
cycle (Fig. 2), the battery recharging process is simulated, considering
the final 𝑆𝑜𝐶𝐵 (at the end of travel) as the initial charging condi-
tion. In the literature, the non-linearity of battery charging behavior
has comprehensively been investigated by researchers [111,112]. In
this paper, charging electrical current 𝐼𝑐 [A] is defined as constant
to reduce the computational cost of the multi-objective optimization
model. The constant 𝐼𝑐 value is determined according to the maximum
voltage 𝑉𝑐 [V]. The battery can reach [94,113] so that such allowable
voltage should be not exceeded until the complete charge condition
(𝑆𝑜𝐶𝐵 = 100%). In this sense, the required energy to recharge the
battery 𝐽𝑐 [Ws] is calculated by Eq. (30), where 𝐶𝑡 [s] and 𝜂𝑐 are the
recharging time and efficiency factor associated with heat and AC–DC
conversion power losses, respectively.

𝐽𝑐 = ∫
𝐶𝑡

0

𝜂𝑐𝐼𝑐𝑉𝑐𝑑𝑡 (30)

As mentioned previously, the battery capacity fade is introduced as
a design parameter in the multi-objective optimization, so earlier sub-
stitution of this key EV powertrain component can be prevented. The
implemented aging model is a generic approach used for different types
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of lithium-ion batteries, as proposed by Motapon et al. [114]. It does
not require costly and time-consuming procedures to obtain a large
amount of data for each analyzed battery configuration, thereby con-
sisting of a suitable approach for optimization methods due to decrease
of computational burden. Additionally, such capacity fade model has
been reported to be accurate when compared to experimental results.
In this study, the battery degradation model sets a standard value for
the ambient temperature (𝑇𝑎𝑚𝑏 = 293.15 K), disregarding temperature
effects on individual battery cells. Moreover, since the ultracapacitor
lifetime is much greater than that of the EV itself, its aging can be
neglected [52,115].

The actual capacity 𝑄 [Ah] for the presented lithium-ion battery
aging model can be expressed by Eq. (31), where 𝑄𝐵𝑂𝐿 and 𝑄𝐸𝑂𝐿
correspond to the battery capacity at the beginning-of-life (BOL) and
end-of-life (EOL) conditions, respectively. The aging factor 𝜖 varies
along the 𝑛th half cycle, in which a full cycle is characterized by
the combined process of discharging and recharging. In addition, the
maximum number of cycle 𝐶𝑙 is determined as a function of the cycle
number constant 𝐻 , nominal ambient temperature 𝑇𝑟𝑒𝑓 [K], Arrhenius
rate constant 𝜓 , average current for the half-cycle in charge 𝐼𝑐 [A] and
discharge 𝐼𝑑 [A] modes, and exponent factors for depth of discharge 𝜉,
discharge current 𝛾𝑑 and charge current 𝛾𝑐 .

𝑄(𝑛) = 𝑄𝐵𝑂𝐿 − 𝜖(𝑛)(𝑄𝐵𝑂𝐿 −𝑄𝐸𝑂𝐿) (31)

𝜖(𝑛) = 𝜖(𝑛 − 1) +
1

2𝐶𝑙(𝑛 − 1)

(
2 −

𝐷𝑜𝐷(𝑛 − 2) +𝐷𝑜𝐷(𝑛)

𝐷𝑜𝐷(𝑛 − 1)

)
(32)

𝐶𝑙(𝑛) = 𝐻

(
𝐷𝑜𝐷(𝑛)

100

)−𝜉

×

𝑒𝑥𝑝

(
−𝜓

(
1

𝑇𝑟𝑒𝑓
−

1

𝑇𝑎𝑚𝑏(𝑛)

))
(𝐼𝑎
𝑑
(𝑛))−𝛾𝑑 (𝐼𝑎

𝑐
(𝑛))−𝛾𝑐

(33)

The battery state of health 𝑆𝑜𝐻 depicts the current working condi-
tion of the system when compared to the lithium-ion battery capacity
at the beginning of life, that is, 𝑆𝑜𝐻 = 1. In this sense, the 𝑆𝑜𝐻

value, which its decrease is directly associated with battery durability
issues [116], can be estimated by Eq. (34) [117]. Furthermore, the ISO
standard 12 405 [118] defines that the battery should reach its EOL
capacity (𝑄𝐸𝑂𝐿) when the actual capacity is reduced to 80% of the
capacity at the beginning of life (𝑄𝐸𝑂𝐿), that is, 𝜖 = 0. Finally, to
further evaluate the battery life cycle for each configuration obtained
by the optimization method, the simulation model is subjected to a
3000-h cycling test.

𝑆𝑜𝐻(𝑛) =
𝑄(𝑛)

𝑄𝐵𝑂𝐿
(34)

3. Fuzzy logic control

Fuzzy inference control systems have extensively been used for
several engineering applications such as power management control
of hybrid electric [119], plug-in hybrid electric [94,120,121], fuel
cell electric [122] and pure electric vehicles [22,32], as well as gear
shifting control [90,95,123], vehicle handling [124–126], photovoltaic
systems [127,128], wind energy conversion systems [129], hybrid
renewable energy systems [130], thermal control systems [131,132]
etc. Hence, the fuzzy logic approach, which is reported to present
robustness and anti-disturbance capacity, is adopted in this work for
the development of an optimal energy management control strategy
that aims to efficiently split requested power between the front and
rear propulsion systems as further described in the following Sec-
tion 3.1. Moreover, as the second stage of power management control
(PMC), independent fuzzy-logic controllers are likewise introduced to
distribute energy between the ultracapacitor and battery of each HESS
(Section 3.2).

It is also important to highlight that the formulation of fuzzy logic
controller’s parameters (membership functions, rules, and weights) is
often defined based on acquired experience from experts, which makes
the optimization of fuzzy logic control a complex task to achieve [133].
Hence, this work addresses this issue by tuning the design parameters
of fuzzy logic energy management and HESS power split controllers
using the i-AWGA method. The optimization procedure could prevent
the fuzzy logic controllers from any biased formulation.

Finally, since Mamdani fuzzy control has successfully been applied
to electrified vehicle powertrain architectures [32,63,134], this infer-
ence method is used for the proposed controllers, which are established
according to the Matlab™ fuzzy logic toolbox.

3.1. Energy management control

The fuzzy-logic power management control features linear member-
ship functions since they guarantee advantages of lower computational
cost and less complexity, thereby extensively being used as an effective
alternative in the literature [95,135]. The trapezoidal function type is
selected as it presents a broader range of combinations to form the
membership function of any level when compared to triangular ones.

For such energy distribution between front and rear propulsion
systems, the fuzzy control is composed of three inputs, which are
defined by the overall efficiency of the rear 𝜂𝑅 and front 𝜂𝐹 system, as
well as the required torque 𝑇𝑟𝑒𝑞 . The fuzzy output, on the other hand, is
given by the parameter 𝑃𝑆 , which corresponds to a unitary-range value

Fig. 5. Electric motors power split control.
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that determines the suitable parcel of torque delivered to each electric
drive system (see Eqs. (5) and (6)). Concerning the degrees, the fuzzy
membership functions are divided into three generic categories: low 𝐿𝑑 ,
medium 𝑀𝑑 , and high 𝐻𝑑 , in which 10 points characterize each group
of input/output membership functions, as depicted by Fig. 5.

Hence, the vector 𝐌𝐅𝐏𝐒 that represents all membership functions
can be defined by Eq. (35), where [𝑇𝑟𝑖 𝐸𝐹 𝑖 𝐸𝑅𝑖] and 𝑃𝑆𝑖 are associated
to the fuzzy inputs and output, respectively. Moreover, the input’s
combination of the three fuzzy degrees is performed using the ‘‘AND’’
connection, resulting in 27 possible output rules 𝑅𝑝𝑖 and their respec-
tive weights𝑊𝑝𝑖 (Table 3), which vary in the interval from 0 through 1.
Eq. (36) presents the vector 𝐑𝐖𝐏𝐒 that comprises the fuzzy controller’s
rules and weights. The defuzzification method 𝐷𝑧1, (energy distribution
between the rear and front), on the other hand, was set as the centroid
to prevent abrupt changes in the fuzzy output value, which would be
hard to accomplish in realistic driving conditions [95].

[
𝐌𝐅𝐏𝐒

]
1×32

=
[
𝑇𝑟2 𝑇𝑟3 … 𝑇𝑟8 𝑇𝑟9 𝐸𝐹2 𝐸𝐹3 …

𝐸𝐹8 𝐸𝐹9 𝐸𝑅2 𝐸𝑅3 …𝐸𝑅8 𝐸𝑅9 𝑃𝑆2 𝑃𝑆3 …𝑃𝑆8 𝑃𝑆9
] (35)

[
𝐑𝐖𝐏𝐒

]
1×54

=
[
𝑅𝑝1 𝑅𝑝2 … 𝑅𝑝27 𝑊𝑝1 𝑊𝑝2 …𝑊𝑝27

]
(36)

It should also be underlined that the fuzzy logic control must satisfy
the constraints 𝐶𝑓𝑢𝑧𝑧𝑦 (Eq. (37)), which indicates the limitations re-
garding possible combinations of membership functions’ characteristic
points 𝐹𝑀𝑖 as well as output rules 𝑅𝑗𝑘 (an integer number from 1 to 3,
representing low, medium and high degrees, respectively) and weights
𝑊𝑗𝑘.

𝐶𝑓𝑢𝑧𝑧𝑦 =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝐹𝑀1 < 𝐹𝑀2 < 𝐹𝑀3

𝐹𝑀4 < 𝐹𝑀5 < 𝐹𝑀6 < 𝐹𝑀7

𝐹𝑀8 < 𝐹𝑀9 < 𝐹𝑀10

𝐹𝑀1 < 𝐹𝑀3 < 𝐹𝑀8 < 𝐹𝑀10

𝐹𝑀1 < 𝐹𝑀4 < 𝐹𝑀3

𝐹𝑀8 < 𝐹𝑀7 < 𝐹𝑀10

𝐹𝑀2 < 𝐹𝑀5 < 𝐹𝑀6 < 𝐹𝑀9

1 ≤ 𝑅𝑗𝑘 ≤ 3

0 ≤ 𝑊𝑗𝑘 ≤ 1

(37)

3.2. Battery-ultracapacitor HESS control

Analogously to the power distribution control between the front
and rear propulsion systems, the battery-ultracapacitor HESS power

Table 3
Power distribution control rules.

Traction torque split

𝜂𝑅 𝜂𝐹 𝑇𝑟𝑒𝑞

𝐿𝑑 𝑀𝑑 𝐻𝑑

𝐿𝑑

𝐿𝑑 𝑅𝑝1 𝑊𝑝1 𝑅𝑝2 𝑊𝑝2 𝑅𝑝3 𝑊𝑝3

𝑀𝑑 𝑅𝑝4 𝑊𝑝4 𝑅𝑝5 𝑊𝑝5 𝑅𝑝6 𝑊𝑝6

𝐻𝑑 𝑅𝑝7 𝑊𝑝7 𝑅𝑝8 𝑊𝑝8 𝑅𝑝9 𝑊𝑝9

𝑀𝑑

𝐿𝑑 𝑅𝑝10 𝑊𝑝10 𝑅𝑝11 𝑊𝑝11 𝑅𝑝12 𝑊𝑝12

𝑀𝑑 𝑅𝑝13 𝑊𝑝13 𝑅𝑝14 𝑊𝑝14 𝑅𝑝15 𝑊𝑝15

𝐻𝑑 𝑅𝑝16 𝑊𝑝16 𝑅𝑝17 𝑊𝑝17 𝑅𝑝18 𝑊𝑝18

𝐻𝑑

𝐿𝑑 𝑅𝑝19 𝑊𝑝19 𝑅𝑝20 𝑊𝑝20 𝑅𝑝21 𝑊𝑝21

𝑀𝑑 𝑅𝑝22 𝑊𝑝22 𝑅𝑝23 𝑊𝑝23 𝑅𝑝24 𝑊𝑝24

𝐻𝑑 𝑅𝑝25 𝑊𝑝25 𝑅𝑝26 𝑊𝑝26 𝑅𝑝27 𝑊𝑝27

split is performed by a fuzzy-logic controller, featuring trapezoidal in-
put/output membership functions, as illustrated by Fig. 6. Three inputs
characterize this fuzzy control: the front/rear requested power 𝑃𝐹∕𝑅,
the front/rear battery state of charge 𝑆𝑜𝐶𝐵(𝐹∕𝑅) and the front/rear
ultracapacitor state of charge 𝑆𝑜𝐶𝐶(𝐹∕𝑅). In this sense, the vector
𝐌𝐅𝐇𝐒(𝐅∕𝐑) (Eq. (38) for the front system and Eq. (39) for the rear
one) corresponds to the input/output membership functions’ parame-
ters, in which [𝑃𝑟𝑖 𝑆𝐵𝑖 𝑆𝐶𝑖] and 𝐻𝑆𝑖 represent the inputs and output,
respectively. Regarding the fuzzy rules 𝑅ℎ𝑖 and weights𝑊ℎ𝑖, the vectors
𝐑𝐖𝐇𝐒(𝐅) and 𝐑𝐖𝐇𝐒(𝐑) (Table 4) store these design variables of the HESS
controllers from the front and rear propulsion systems, respectively,
as expressed by Eqs. (40) and (41). Additionally, the defuzzification
methods (𝐷𝑧2 and 𝐷𝑧3) for the HESS fuzzy logic controllers are added
to the 𝐑𝐖𝐇𝐒(𝐅∕𝐑) vectors as parameters to be tuned by the genetic
algorithm. The 𝐷𝑧2 and 𝐷𝑧3 can assume value of 1 (centroid), 2 (bisec-
tor), 3 (middle of maximum), 4 (largest of maximum) or 5 (smallest of
maximum). Besides, the HESS fuzzy controllers are likewise subjected
to the constraints mentioned earlier shown in Eq. (37).

[
𝐌𝐅𝐇𝐒(𝐅)

]
1×32

=
[
𝑃𝑟2 𝑃𝑟3 …𝑃𝑟8 𝑃𝑟9 𝑆𝐵2 𝑆𝐵3 …

𝑆𝐵8 𝑆𝐵9 …𝑆𝐶2 𝑆𝐶3 …𝑆𝐶8 𝑆𝐶9 𝐻𝑆2 𝐻𝑆3 …𝐻𝑆8 𝐻𝑆9

] (38)

[
𝐌𝐅𝐇𝐒(𝐑)

]
1×32

=
[
𝑃𝑟12 𝑃𝑟13 …𝑃𝑟18 𝑃𝑟19 𝑆𝐵12 𝑆𝐵13 …

𝑆𝐵18 𝑆𝐵19 𝑆𝐶12 𝑆𝐶13 …𝑆𝐶18 𝑆𝐶19 𝐻𝑆12 𝐻𝑆13 …𝐻𝑆18 𝐻𝑆19

] (39)

[
𝐑𝐖𝐇𝐒(𝐅)

]
1×55

=
[
𝑅ℎ1 𝑅ℎ2 … 𝑅ℎ27 𝑊ℎ1 𝑊ℎ2 … 𝑊ℎ26 𝑊ℎ27 𝐷𝑧2

]
(40)

[
𝐑𝐖𝐇𝐒(𝐑)

]
1×55

=
[
𝑅ℎ28 𝑅ℎ29 … 𝑅ℎ54 𝑊ℎ28 𝑊ℎ29 …

𝑊ℎ53 𝑊ℎ54 𝐷𝑧3

] (41)

Fig. 6. HESS power split controls.
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Table 4
HESS control rules.

Front HESS control Rear HESS control

𝑆𝑜𝐶𝐵(𝐹 ) 𝑆𝑜𝐶𝐶(𝐹 ) 𝑃𝐹 𝑆𝑜𝐶𝐵(𝑅) 𝑆𝑜𝐶𝐶(𝑅) 𝑃𝑅

𝐿𝑑 𝑀𝑑 𝐻𝑑 𝐿𝑑 𝑀𝑑 𝐻𝑑

𝐿𝑑

𝐿𝑑 𝑅ℎ1 𝑊ℎ1 𝑅ℎ2 𝑊ℎ2 𝑅ℎ3 𝑊ℎ3

𝐿𝑑

𝐿𝑑 𝑅ℎ28 𝑊ℎ28 𝑅ℎ29 𝑊ℎ29 𝑅ℎ30 𝑊ℎ30

𝑀𝑑 𝑅ℎ4 𝑊ℎ4 𝑅ℎ5 𝑊ℎ5 𝑅ℎ6 𝑊ℎ6 𝑀𝑑 𝑅ℎ31 𝑊ℎ31 𝑅ℎ32 𝑊ℎ32 𝑅ℎ33 𝑊ℎ33

𝐻𝑑 𝑅ℎ7 𝑊ℎ7 𝑅ℎ8 𝑊ℎ8 𝑅ℎ9 𝑊ℎ9 𝐻𝑑 𝑅ℎ34 𝑊ℎ34 𝑅ℎ35 𝑊ℎ35 𝑅ℎ36 𝑊ℎ36

𝑀𝑑

𝐿𝑑 𝑅ℎ10 𝑊ℎ10 𝑅ℎ11 𝑊ℎ11 𝑅ℎ12 𝑊ℎ12

𝑀𝑑

𝐿𝑑 𝑅ℎ37 𝑊ℎ37 𝑅ℎ38 𝑊ℎ38 𝑅ℎ39 𝑊ℎ39

𝑀𝑑 𝑅ℎ13 𝑊ℎ13 𝑅ℎ14 𝑊ℎ14 𝑅ℎ15 𝑊ℎ15 𝑀𝑑 𝑅ℎ40 𝑊ℎ40 𝑅ℎ41 𝑊ℎ41 𝑅ℎ42 𝑊ℎ42

𝐻𝑑 𝑅ℎ16 𝑊ℎ16 𝑅ℎ17 𝑊ℎ17 𝑅ℎ18 𝑊ℎ18 𝐻𝑑 𝑅ℎ43 𝑊ℎ43 𝑅ℎ44 𝑊ℎ44 𝑅ℎ45 𝑊ℎ45

𝐻𝑑

𝐿𝑑 𝑅ℎ19 𝑊ℎ19 𝑅ℎ20 𝑊ℎ20 𝑅ℎ21 𝑊ℎ21

𝐻𝑑

𝐿𝑑 𝑅ℎ46 𝑊ℎ46 𝑅ℎ47 𝑊ℎ47 𝑅ℎ48 𝑊ℎ48

𝑀𝑑 𝑅ℎ22 𝑊ℎ22 𝑅ℎ23 𝑊ℎ23 𝑅ℎ24 𝑊ℎ24 𝑀𝑑 𝑅ℎ49 𝑊ℎ49 𝑅ℎ50 𝑊ℎ50 𝑅ℎ51 𝑊ℎ51

𝐻𝑑 𝑅ℎ25 𝑊ℎ25 𝑅ℎ26 𝑊ℎ26 𝑅ℎ27 𝑊ℎ27 𝐻𝑑 𝑅ℎ52 𝑊ℎ52 𝑅ℎ53 𝑊ℎ53 𝑅ℎ54 𝑊ℎ54

Additionally, the output value 𝐻𝑆 determines the fraction of re-
quested power performed by the battery and ultracapacitor. Thus, the
battery power 𝑃𝑏𝑎𝑡𝑡 [W] and ultracapacitor power 𝑃𝑐𝑎𝑝 [W] are defined
by Eqs. (42) and (43), respectively, where 𝑆𝑟𝑒𝑔 represents the decision-
making process that determines whether the ultracapacitor is able to
operate in discharging mode or not. Such state variable 𝑆𝑟𝑒𝑔 (Eq. (44))
was introduced to avoid ultracapacitor over-discharge (after the system
has reached any 𝑆𝑜𝐶𝐶 value lower than 25%) or to prevent discharge
in case of the system after discharging until the low 𝑆𝑜𝐶𝐶 limit of
25%, has not regenerated enough energy yet to reach a minimum state
of charge 𝑆𝑜𝐶𝑟𝑒𝑔 , which varies from 35% to 95% according to the
optimization method (Section 4).

𝑃𝑏𝑎𝑡𝑡 =

⎧⎪⎨⎪⎩

𝑃𝐹∕𝑅𝐻𝑆 , if 𝑆𝑟𝑒𝑔 = 0 and 𝑃𝐹∕𝑅 > 0

𝑃𝐹∕𝑅, if 𝑆𝑟𝑒𝑔 = 1 and 𝑃𝐹∕𝑅 > 0

0, if 𝑃𝐹∕𝑅 ≤ 0

(42)

𝑃𝑐𝑎𝑝 =

⎧⎪⎨⎪⎩

𝑃𝐹∕𝑅(1 −𝐻𝑆(𝐹∕𝑅)), if 𝑆𝑟𝑒𝑔 = 0 and 𝑃𝐹∕𝑅 > 0

0, if 𝑆𝑟𝑒𝑔 = 1 and 𝑃𝐹∕𝑅 > 0

𝑃𝐹∕𝑅, if 𝑃𝐹∕𝑅 ≤ 0

(43)

𝑆𝑟𝑒𝑔(𝑡) =

⎧⎪⎪⎨⎪⎪⎩

1, if

{
𝑆𝑜𝐶𝐶 (𝑡) < 25%, or:

𝑆𝑟𝑒𝑔(𝑡 − 𝛥𝑡) = 1 and 𝑆𝑜𝐶𝐶 (𝑡) < 𝑆𝑜𝐶𝑟𝑒𝑔

0, if

{
𝑆𝑜𝐶𝐶 (𝑡) ≥ 𝑆𝑜𝐶𝑟𝑒𝑔 , or:

𝑆𝑟𝑒𝑔(𝑡 − 𝛥𝑡) = 0 and 𝑆𝑜𝐶𝐶 (𝑡) ≥ 25%

(44)

4. Optimization procedure

This section introduces the multi-objective optimization problem’s
formulation, highlighting each of the optimization criteria considered
in this study. Moreover, the evolutionary algorithm procedure is de-
scribed and applied to reach optimal powertrain design variables and
fuzzy logic controller parameters.

4.1. Optimization problem formulation

The formulation of the optimization problem is based on an evo-
lutionary algorithm procedure. All the powertrain design and con-
trol parameters considered in this study are stored as genes of the
chromosome vector 𝐗, as presented in Eq. (45).

[𝐗]1×279 =
[
𝑄𝑛𝑜𝑚𝐹 𝑉𝑛𝑜𝑚𝐹 𝑇𝑚𝑎𝑥𝐹 𝜔𝑇 𝑐𝐹 𝑄𝑛𝑜𝑚𝑅 𝑉𝑛𝑜𝑚𝑅 𝑇𝑚𝑎𝑥𝑅 𝜔𝑇 𝑐𝑅…

𝐶𝑎𝑝𝐹 𝐶𝑎𝑝𝑅 𝑁𝑠𝐹 𝑁𝑠𝑅 𝑁𝑝𝐹 𝑁𝑝𝑅 𝑁𝑑 𝛥𝑉𝐹 𝛥𝑉𝑅 𝑆𝑜𝐶𝑟𝑒𝑔𝐹 𝑆𝑜𝐶𝑟𝑒𝑔𝑅…

𝐌𝐅𝐏𝐒 𝐑𝐖𝐏𝐒 …𝐌𝐅𝐇𝐒(𝐅) 𝐌𝐅𝐇𝐒(𝐑) 𝐑𝐖𝐇𝐒(𝐅) 𝐑𝐖𝐇𝐒(𝐑)

] (45)

As mentioned previously, vehicle autonomy is still one of the major
challenges regarding EV market expansion. Hence, the maximization of
driving range 𝐷𝑅 [km] is considered as the first optimization criterion
𝑓1, as expressed by Eq. (46).

𝑓1(𝐗) = max
(
𝐷𝑅(𝐗)

)
(46)

Another essential drawback associated with electrified powertrain
architectures is that extended-range EVs cause a significant increase
in the vehicle’s overall mass due to the use of large onboard energy
storage systems. To address such a trade-off problem, the second opti-
mization criterion 𝑓2 is focused on the minimization of the HESS size,
as shown in Eq. (47).

𝑓2(𝐗) = min
(
𝑀𝑏𝑎𝑡(𝐹 )(𝐗) +𝑀𝑏𝑎𝑡(𝑅)(𝐗) +𝑀𝑐𝑎𝑝(𝐹 )(𝐗) +𝑀𝑐𝑎𝑝(𝑅)(𝐗)

)
(47)

The last optimization criterion 𝑓3 maximizes the battery state of
health 𝑆𝑜𝐻 . In this case, both rear and front battery packs are subjected
to a 3000-h cycling process, in which the lowest 𝑆𝑜𝐻(𝐹∕𝑅) is considered
to be maximized by the genetic algorithm.

𝑓3(𝐗) = max
(
min

(
𝑆𝑜𝐻𝐹 (𝐗), 𝑆𝑜𝐻𝑅(𝐗)

))
(48)

Finally, the optimization procedure is subjected to the fuzzy con-
straints 𝐶𝑓𝑢𝑧𝑧𝑦 (see Eq. (37)) and the design constraints expressed by
Eq. (49). A minimum correlation coefficient 𝐶𝑂𝑅𝑚𝑖𝑛(𝐗) is established
as one of the optimization constraints to avoid EV configurations
with poor acceleration performance. Such parameter is determined by
Eq. (50) according to the comparison between the target speed 𝑉𝑐 and
actual vehicle speed 𝑉 .

𝐶(𝐗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

20 Ah ≤ 𝑄𝑛𝑜𝑚(𝐹∕𝑅) ≤ 150 Ah
100 V ≤ 𝑉𝑛𝑜𝑚(𝐹∕𝑅) ≤ 400 V
1 ≤ 𝑁𝑠(𝐹∕𝑅) ≤ 25

1 ≤ 𝑁𝑝(𝐹∕𝑅) ≤ 5

50 Nm ≤ 𝑇𝑚𝑎𝑥𝐹 ≤ 300 Nm
26 rad/s ≤ 𝜔𝑇 𝑐𝐹 ≤ 314 rad/s
26 rad/s ≤ 𝜔𝑇 𝑐𝑅 ≤ 209 rad/s
3.5 ≤ 𝑁𝑑 ≤ 7

35% ≤ 𝑆𝑜𝐶𝑟𝑒𝑔(𝐹∕𝑅) ≤ 95%

𝑉𝐶𝑒𝑞(𝐹∕𝑅) ≤ 𝑉𝑛𝑜𝑚(𝐹∕𝑅)
𝐶𝑂𝑅𝑚𝑖𝑛(𝐗) ≥ 0.99

𝐷𝑅 ≥ 94 km

(49)

𝐶𝑂𝑅 =

√√√√√
(∑(

𝑉𝑐 − 𝑉𝑐
) (
𝑉 − 𝑉

))2
∑(

𝑉𝑐 − 𝑉𝑐
)2 ∑(

𝑉 − 𝑉
)2 (50)

4.2. Interactive adaptive-weight genetic algorithm (i-AWGA)

In this work, the i-AWGA technique proposed by Gen et al. [136]
solves the optimization problem. This genetic algorithm procedure
was used since it has been successfully employed in previous works
with regard to the multi-objective optimization of different complex
systems such as plug-in hybrid electric vehicle powertrain [94,95],
hydraulic hybrid vehicle powertrain [137–139], pure electric vehicle
powertrain [32,63], multi-speed gearbox design [89,140] and gear
shifting control [86,90]. Furthermore, the i-AWGA approach exten-
sively searches for the most compromised solution, which is not limited
to local optimal points. Moreover, this method was compared with
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results reached by the particle swarm optimization (PSO) in previous
works [125], and the results reached were similar.

The population members are classified according to the i-AWGA
fitness function 𝐹 𝑡 presented in Eq. (51), which takes in account the
maximum 𝑓𝑚𝑖𝑛

𝑘
and minimum 𝑓𝑚𝑎𝑥

𝑘
results for each optimization crite-

rion. In addition, a penalty factor 𝑃𝑝 is added to the fitness calculation,
in which 𝑃𝑝 = 1 for the first ranked members and 𝑃𝑝 = 0 otherwise.

𝐹 𝑡(𝐗) =
𝑓1(𝐗) − 𝑓

𝑚𝑖𝑛
1

𝑓𝑚𝑎𝑥
1

− 𝑓𝑚𝑖𝑛
1

+
𝑓𝑚𝑎𝑥
2

− 𝑓2(𝐗)

𝑓𝑚𝑎𝑥
2

− 𝑓𝑚𝑖𝑛
2

+
𝑓3(𝐗) − 𝑓

𝑚𝑖𝑛
3

𝑓𝑚𝑎𝑥
3

− 𝑓𝑚𝑖𝑛
3

+ 𝑃𝑝(𝐗) (51)

In this sense, this technique weighs the importance of each opti-
mization criterion and increases the chance of crossover/mutation of
the best candidates, narrowing the evolutive process. The candidate
that presents the highest fitness will also have the most significant
selection probability 𝑆𝑃 (Eq. (52)), which is determined based on the
roulette wheel technique as a function of the population size 𝑃𝑠𝑖𝑧𝑒.

𝑆𝑃 (𝐗) =
𝐹 𝑡(𝐗)

∑𝑃𝑠𝑖𝑧𝑒
𝑋=1

𝐹 𝑡(𝐗)
(52)

During each generation, 20 pairs of chromosomes (𝐗1 and 𝐗2) are
selected to be randomly combined by the crossover process, thereby
resulting in a new chromosome 𝐗𝑐𝑟. The combined member 𝐗𝑐𝑟 is
afterward simulated and added to the current population, provided that
this configuration meets the optimization constraints. In this case, there
is an equal probability of selecting the design variables from both 𝐗1

and 𝐗2.

Moreover, to guarantee diversity of the population, a mutation
operator is introduced, following the rules presented in Table 5. The
design parameters of the chromosomes 𝐗1, 𝐗2 and 𝐗𝑐𝑟 are randomly
mutated (with the probability of 50% [90,94]), which results in the
new members 𝐗𝑀1, 𝐗𝑀2 and 𝐗𝑀𝑐𝑟, respectively. Those chromosomes
are then simulated, evaluated based on the established constraints, and
introduced into the population if the minimum performance factors
were achieved.

Finally, the population size is limited by a maximum number of
members (𝑃𝑙𝑖𝑚𝑖𝑡 = 200). The highest Pareto ranked solutions are dis-
carded once the population exceeds such limit [141]. In case the Pareto
frontier (that is, first ranked solutions) presents higher size than 𝑃𝑙𝑖𝑚𝑖𝑡,
the population size is reset by the condition of 𝑃𝑙𝑖𝑚𝑖𝑡 = 𝑃𝑙𝑖𝑚𝑖𝑡+100, so that
the elimination of the whole population can be avoided. The stagnation
of the Pareto frontier for over 10 generations [142] represents the
convergence of the evolutive process.

4.3. Solver procedure and computational cost

The flowchart presented in Fig. 7 shows the logic applied to solve
the optimization process. As presented in Eq. (45), each potential
solution comprises 279 design variables, representing the electric driv-
etrain, batteries, and ultracapacitors parameters and the fuzzy con-
trollers’ membership functions and rules.

In order to evaluate all results analyzed by the optimization criteria
presented in Eqs. (46)–(48), the overall procedure is divided into three

Table 5
Mutation operator.

Design Initial Mutation operator Mutated
variable chromosome 0 ≥𝑀𝑡(𝑗) ≥ 1 chromosome

𝑗 [𝐗]𝑇 𝑀𝑇 (𝑗) < 0.5 𝑀𝑇 (𝑗) ≥ 0.5 [𝐗𝑀𝑇 ]
𝑇

𝑗 = 1 𝑄𝑛𝑜𝑚𝐹 𝑄𝑚𝑢𝑡𝐹 = 0 −15 ≤ 𝑄𝑚𝑢𝑡𝐹 ≤ 15 𝑄𝑛𝑜𝑚𝐹 +𝑄𝑚𝑢𝑡𝐹

𝑗 = 2 𝑉𝑛𝑜𝑚𝐹 𝑉𝑚𝑢𝑡𝐹 = 0 −60 ≤ 𝑉𝑚𝑢𝑡𝐹 ≤ 60 𝑉𝑛𝑜𝑚𝐹 + 𝑉𝑚𝑢𝑡𝐹
𝑗 = 3 𝑇𝑚𝑎𝑥𝐹 𝑇𝑚𝑢𝑡𝐹 = 0 −50 ≤ 𝑇𝑚𝑢𝑡𝐹 ≤ 50 𝑇𝑚𝑎𝑥𝐹 + 𝑇𝑚𝑢𝑡𝐹
𝑗 = 4 𝜔𝑇 𝑐𝐹 𝜔𝑚𝑢𝑡𝐹 = 0 −500 ≤ 𝜔𝑚𝑢𝑡𝐹 ≤ 500 𝜔𝑇 𝑐𝐹 + 𝜔𝑚𝑢𝑡𝐹
𝑗 = 5 𝑄𝑛𝑜𝑚𝑅 𝑄𝑚𝑢𝑡𝑅 = 0 −15 ≤ 𝑄𝑚𝑢𝑡𝑅 ≤ 15 𝑄𝑛𝑜𝑚𝑅 +𝑄𝑚𝑢𝑡𝑅

𝑗 = 6 𝑉𝑛𝑜𝑚𝑅 𝑉𝑚𝑢𝑡𝑅 = 0 −60 ≤ 𝑉𝑚𝑢𝑡𝑅 ≤ 60 𝑉𝑛𝑜𝑚𝑅 + 𝑉𝑚𝑢𝑡𝑅
𝑗 = 7 𝑇𝑚𝑎𝑥𝑅 𝑇𝑚𝑢𝑡𝑅 = 0 −15 ≤ 𝑇𝑚𝑢𝑡𝑅 ≤ 15 𝑇𝑚𝑎𝑥𝑅 + 𝑇𝑚𝑢𝑡𝑅
𝑗 = 8 𝜔𝑇 𝑐𝑅 𝜔𝑚𝑢𝑡𝑅 = 0 −300 ≤ 𝜔𝑚𝑢𝑡𝑅 ≤ 300 𝜔𝑇 𝑐𝑅 + 𝜔𝑚𝑢𝑡𝑅
𝑗 = 9 𝐶𝑎𝑝𝐹 𝐶𝑎𝑝𝑚𝑢𝑡𝐹 = 𝐶𝑎𝑝𝐹 integer [1 ≤ 𝐶𝑎𝑝𝑚𝑢𝑡𝐹 ≤ 16] 𝐶𝑎𝑝𝑚𝑢𝑡𝐹

𝑗 = 10 𝐶𝑎𝑝𝑅 𝐶𝑎𝑝𝑚𝑢𝑡𝑅 = 𝐶𝑎𝑝𝑅 integer [1 ≤ 𝐶𝑎𝑝𝑚𝑢𝑡𝑅 ≤ 16] 𝐶𝑎𝑝𝑚𝑢𝑡𝑅

𝑗 = 11 𝑁𝑠𝐹 𝑁𝑠𝐹𝑚𝑢𝑡 = 𝑁𝑠𝐹 integer [1 ≤ 𝑁𝑠𝐹𝑚𝑢𝑡 ≤ 25] 𝑁𝑠𝐹𝑚𝑢𝑡

𝑗 = 12 𝑁𝑠𝑅 𝑁𝑠𝑅𝑚𝑢𝑡 = 𝑁𝑠𝑅 integer [1 ≤ 𝑁𝑠𝑅𝑚𝑢𝑡 ≤ 25] 𝑁𝑠𝑅𝑚𝑢𝑡

𝑗 = 13 𝑁𝑝𝐹 𝑁𝑝𝐹𝑚𝑢𝑡 = 𝑁𝑝𝐹 integer [1 ≤ 𝑁𝑝𝐹𝑚𝑢𝑡 ≤ 5] 𝑁𝑝𝐹𝑚𝑢𝑡

𝑗 = 14 𝑁𝑝𝑅 𝑁𝑝𝑅𝑚𝑢𝑡 = 𝑁𝑝𝑅 integer [1 ≤ 𝑁𝑝𝑅𝑚𝑢𝑡 ≤ 5] 𝑁𝑝𝑅𝑚𝑢𝑡

𝑗 = 15 𝑁𝑑 𝑁𝑑𝑚𝑢𝑡 = 0 −0.5 ≤ 𝑁𝑑𝑚𝑢𝑡 ≤ 0.5 𝑁𝑑 +𝑁𝑑𝑚𝑢𝑡

𝑗 = 16 𝑆𝑜𝐶𝑟𝑒𝑔𝐹 𝑆𝑜𝐶𝑟𝑒𝑔𝐹𝑚𝑢𝑡 = 0 −0.15 ≤ 𝑆𝑜𝐶𝑟𝑒𝑔𝐹𝑚𝑢𝑡 ≤ 0.15 𝑆𝑜𝐶𝑟𝑒𝑔𝐹 + 𝑆𝑜𝐶𝑟𝑒𝑔𝐹𝑚𝑢𝑡
𝑗 = 17 𝑆𝑜𝐶𝑟𝑒𝑔𝑅 𝑆𝑜𝐶𝑟𝑒𝑔𝑅𝑚𝑢𝑡 = 0 −0.15 ≤ 𝑆𝑜𝐶𝑟𝑒𝑔𝑅𝑚𝑢𝑡 ≤ 0.15 𝑆𝑜𝐶𝑟𝑒𝑔𝑅 + 𝑆𝑜𝐶𝑟𝑒𝑔𝑅𝑚𝑢𝑡
𝑗 = 18 𝛥𝑉𝐹 𝛥𝑉𝐹𝑚𝑢𝑡 = 0 −0.15 ≤ 𝛥𝑉𝐹𝑚𝑢𝑡 ≤ 0.15 𝛥𝑉𝐹 + 𝛥𝑉𝐹𝑚𝑢𝑡
𝑗 = 19 𝛥𝑉𝑅 𝛥𝑉𝑅𝑚𝑢𝑡 = 0 −0.15 ≤ 𝛥𝑉𝑅𝑚𝑢𝑡 ≤ 0.15 𝛥𝑉𝑅 + 𝛥𝑉𝑅𝑚𝑢𝑡

20 ≤ 𝑗 ≤ 27 𝐌𝐅
𝐏𝐒(𝑗−19)

𝐌𝐅
𝐏𝐒𝑚𝑢𝑡(𝑗−19)

= 𝐌𝐅
𝐏𝐒(𝑗−19)

−150 ≤ 𝐌𝐅
𝐏𝐒𝑚𝑢𝑡(𝑗−19)

≤ 150 𝐌𝐅
𝐏𝐒(𝑗−19)

+𝐌𝐅
𝐏𝐒𝑚𝑢𝑡(𝑗−19)

28 ≤ 𝑗 ≤ 35 𝐌𝐅
𝐏𝐒(𝑗−27)

𝐌𝐅
𝐏𝐒𝑚𝑢𝑡(𝑗−27)

= 𝐌𝐅
𝐏𝐒(𝑗−27)

−0.1 ≤ 𝐌𝐅
𝐏𝐒𝑚𝑢𝑡(𝑗−27)

≤ 0.1 𝐌𝐅
𝐏𝐒(𝑗−27)

+𝐌𝐅
𝐏𝐒𝑚𝑢𝑡(𝑗−27)

36 ≤ 𝑗 ≤ 43 𝐌𝐅
𝐏𝐒(𝑗−35)

𝐌𝐅
𝐏𝐒𝑚𝑢𝑡(𝑗−35)

= 𝐌𝐅
𝐏𝐒(𝑗−35)

−0.1 ≤ 𝐌𝐅
𝐏𝐒𝑚𝑢𝑡(𝑗−35)

≤ 0.1 𝐌𝐅
𝐏𝐒(𝑗−35)

+𝐌𝐅
𝐏𝐒𝑚𝑢𝑡(𝑗−35)

44 ≤ 𝑗 ≤ 51 𝐌𝐅
𝐏𝐒(𝑗−43)

𝐌𝐅
𝐏𝐒𝑚𝑢𝑡(𝑗−43)

= 𝐌𝐅
𝐏𝐒(𝑗−43)

−0.1 ≤ 𝐌𝐅
𝐏𝐒𝑚𝑢𝑡(𝑗−43)

≤ 0.1 𝐌𝐅
𝐏𝐒(𝑗−43)

+𝐌𝐅
𝐏𝐒𝑚𝑢𝑡(𝑗−43)

52 ≤ 𝑗 ≤ 78 𝐑𝐖
𝐏𝐒(𝑗−51)

𝐑𝐖
𝐏𝐒𝑚𝑢𝑡(𝑗−51)

= 𝐑𝐖
𝐏𝐒(𝑗−51)

integer [1 ≤ 𝐑𝐖
𝐏𝐒𝑚𝑢𝑡(𝑗−51)

≤ 3] 𝐑𝐖
𝐏𝐒𝑚𝑢𝑡(𝑗−51)

79 ≤ 𝑗 ≤ 105 𝐑𝐖
𝐏𝐒(𝑗−78)

𝐑𝐖
𝐏𝐒𝑚𝑢𝑡(𝑗−78)

= 𝐑𝐖
𝐏𝐒(𝑗−78)

0 ≤ 𝐑𝐖
𝐏𝐒𝑚𝑢𝑡(𝑗−78)

≤ 1 𝐑𝐖
𝐏𝐒𝑚𝑢𝑡(𝑗−78)

106 ≤ 𝑗 ≤ 113 𝐌𝐅
𝐇𝐒(𝐅)(𝑗−105)

𝐌𝐅
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−105)

= 𝐌𝐅
𝐇𝐒(𝐅)(𝑗−105)

−250 ≤ 𝐌𝐅
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−105)

≤ 250 𝐌𝐅
𝐇𝐒(𝐅)(𝑗−105)

+𝐌𝐅
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−105)

114 ≤ 𝑗 ≤ 121 𝐌𝐅
𝐇𝐒(𝐅)(𝑗−113)

𝐌𝐅
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−113)

= 𝐌𝐅
𝐇𝐒(𝐅)(𝑗−113)

−0.1 ≤ 𝐌𝐅
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−113)

≤ 0.1 𝐌𝐅
𝐇𝐒(𝐅)(𝑗−113)

+𝐌𝐅
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−113)

122 ≤ 𝑗 ≤ 129 𝐌𝐅
𝐇𝐒(𝐅)(𝑗−121)

𝐌𝐅
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−121)

= 𝐌𝐅
𝐇𝐒(𝐅)(𝑗−121)

−0.1 ≤ 𝐌𝐅
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−121)

≤ 0.1 𝐌𝐅
𝐇𝐒(𝐅)(𝑗−121)

+𝐌𝐅
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−121)

130 ≤ 𝑗 ≤ 137 𝐌𝐅
𝐇𝐒(𝐅)(𝑗−129)

𝐌𝐅
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−129)

= 𝐌𝐅
𝐇𝐒(𝐅)(𝑗−129)

−0.1 ≤ 𝐌𝐅
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−129)

≤ 0.1 𝐌𝐅
𝐇𝐒(𝐅)(𝑗−129)

+𝐌𝐅
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−129)

138 ≤ 𝑗 ≤ 145 𝐌𝐅
𝐇𝐒(𝐑)(𝑗−137)

𝐌𝐅
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−137)

= 𝐌𝐅
𝐇𝐒(𝐑)(𝑗−137)

−250 ≤ 𝐌𝐅
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−137)

≤ 250 𝐌𝐅
𝐇𝐒(𝐑)(𝑗−137)

+𝐌𝐅
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−137)

146 ≤ 𝑗 ≤ 153 𝐌𝐅
𝐇𝐒(𝐑)(𝑗−145)

𝐌𝐅
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−145)

= 𝐌𝐅
𝐇𝐒(𝐑)(𝑗−145)

−0.1 ≤ 𝐌𝐅
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−145)

≤ 0.1 𝐌𝐅
𝐇𝐒(𝐑)(𝑗−145)

+𝐌𝐅
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−145)

154 ≤ 𝑗 ≤ 161 𝐌𝐅
𝐇𝐒(𝐑)(𝑗−153)

𝐌𝐅
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−153)

= 𝐌𝐅
𝐇𝐒(𝐑)(𝑗−153)

−0.1 ≤ 𝐌𝐅
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−153)

≤ 0.1 𝐌𝐅
𝐇𝐒(𝐑)(𝑗−153)

+𝐌𝐅
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−153)

162 ≤ 𝑗 ≤ 169 𝐌𝐅
𝐇𝐒(𝐑)(𝑗−161)

𝐌𝐅
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−161)

= 𝐌𝐅
𝐇𝐒(𝐑)(𝑗−161)

−0.1 ≤ 𝐌𝐅
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−161)

≤ 0.1 𝐌𝐅
𝐇𝐒(𝐑)(𝑗−161)

+𝐌𝐅
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−161)

170 ≤ 𝑗 ≤ 196 𝐑𝐖
𝐇𝐒(𝐅)(𝑗−169)

𝐑𝐖
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−169)

= 𝐑𝐖
𝐇𝐒(𝐅)(𝑗−169)

integer [1 ≤ 𝐑𝐖
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−169)

≤ 3] 𝐑𝐖
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−169)

197 ≤ 𝑗 ≤ 223 𝐑𝐖
𝐇𝐒(𝐅)(𝑗−196)

𝐑𝐖
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−196)

= 𝐑𝐖
𝐇𝐒(𝐅)(𝑗−196)

0 ≤ 𝐑𝐖
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−196)

≤ 1 𝐑𝐖
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−196)

𝑗 = 224 𝐑𝐖
𝐇𝐒(𝐅)(𝑗−223)

𝐑𝐖
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−223)

= 𝐑𝐖
𝐇𝐒(𝐅)(𝑗−223)

integer [1 ≤ 𝐑𝐖
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−223)

≤ 5] 𝐑𝐖
𝐇𝐒(𝐅)𝑚𝑢𝑡(𝑗−223)

225 ≤ 𝑗 ≤ 251 𝐑𝐖
𝐇𝐒(𝐑)(𝑗−224)

𝐑𝐖
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−224)

= 𝐑𝐖
𝐇𝐒(𝐑)(𝑗−224)

integer [1 ≤ 𝐑𝐖
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−224)

≤ 3] 𝐑𝐖
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−224)

252 ≤ 𝑗 ≤ 278 𝐑𝐖
𝐇𝐒(𝐑)(𝑗−251)

𝐑𝐖
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−251)

= 𝐑𝐖
𝐇𝐒(𝐑)(𝑗−251)

0 ≤ 𝐑𝐖
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−251)

≤ 1 𝐑𝐖
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−251)

𝑗 = 279 𝐑𝐖
𝐇𝐒(𝐑)(𝑗−278)

𝐑𝐖
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−278)

= 𝐑𝐖
𝐇𝐒(𝐑)(𝑗−278)

integer [1 ≤ 𝐑𝐖
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−278)

≤ 5] 𝐑𝐖
𝐇𝐒(𝐑)𝑚𝑢𝑡(𝑗−278)
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main simulation stages. The first one is the vehicle longitudinal dynam-
ics model, in which the EV performance and batteries 𝑆𝑜𝐶𝐵 regime
are defined. In this stage, the component masses required to define the
𝑓2 optimization criteria are calculated according to the chromosome
parameters. Moreover, the vehicle drive range (𝑓1) is defined as the
traveled distance of the EV simulation, repeating the driving cycles
(Fig. 2) until one of the batteries reaches 𝑆𝑜𝐶𝐵 = 40%. Two more
simulation stages were required to define the batteries’𝑆𝑜𝐻 , the third
optimization criterion (𝑓3). Based on the battery parameters and final
𝑆𝑜𝐶𝐵 retrieved from the longitudinal dynamics simulation, the batter-
ies’ plug-in charging is performed to define the current profile applied
in the charging procedure. Unlike the first simulation stage in which
the overall EV is simulated, the battery recharging needs to be per-
formed in individual simulations, mainly due to each battery’s different
characteristics and different charging times. Finally, the discharging
current profile from the first stage is combined with the second sim-
ulation stage’s recharging profile. The batteries were evaluated consid-
ering a 3000-h cycle replicating the charging regime. In the same way
as the recharging simulation, the battery 𝑆𝑜𝐻 evaluation also needs to
be performed in individual simulations for each battery.

With the simulated results of each valid chromosome, the i-AWGA
method is applied. First, the population 𝐹 𝑡 values are updated, and the

crossover and mutation operators are applied. The valid chromosomes
which attempt the constraints are then added to the population to be
simulated in the next generation. Finally, this process is repeated until
the algorithm reaches its convergence criterion.

Once the simulation time varies according to the EV characteristics
and reaches the driving range, the processing time also changes. Table 6
shows the processing time of some case analyses in the current paper,
considering the minimum and maximum processing time for each simu-
lation stage. Moreover, the computational cost of the battery end of life
(𝑆𝑜𝐻 = 0.8) is also presented. However, due to its long processing time,
it is only performed for some selected solutions in the results analyses
section.

The simulations were performed on a computer equipped with
an Intel i7 processor (3.20 GHz) with 16 Gb RAM. Considering the
overall optimization procedure, running five simultaneous simulations
in parallel was possible. Three similar computers were used to process
the GA optimization, totalizing 15 parallel simulations. The algorithm
runs for 458 generations, considering 80 novel solutions per generation.
The final processing time was about 278.19 h, which is reasonable con-
sidering the high number of design variables and the high complexity
of the simulated models.

Fig. 7. Optimization procedure flowchart.



Applied Energy 324 (2022) 119723

12

S.F. da Silva et al.

Table 6
Simulation time for each optimization step.

Stage Simulated parameters Simulated time Processing time

Minimum Maximum Minimum Maximum

1 Longitudinal dynamics 1.98 h (𝐷𝑅 ≈ 98 km) 7.19 h (𝐷𝑅 ≈ 369 km) 163.43 s 577.36 s

2 Battery recharging
2.15 h 2.47 h

1.35 s 1.70 s
𝑄𝑛𝑜𝑚 ≈ 135 Ah, 𝑉𝑛𝑜𝑚 ≈ 300 V 𝑄𝑛𝑜𝑚 ≈ 34 Ah, 𝑉𝑛𝑜𝑚 ≈ 126 V

3 Battery cycling (𝑆𝑜𝐻) 3000 h 38.07 s

- - -
Battery end of life 10 012 h 65562 h

200.19 s 788.58 s
(𝑆𝑜𝐻 = 0.8) 𝑆𝑜𝐻 (3000 h) = 0.9708 𝑆𝑜𝐻 (3000 h) = 0.9930

5. Optimization results and discussion

After convergence, the Pareto frontier of non-dominated solutions
is defined as optimum Dual-HESS EV configurations. Among these,
the best configurations regarding each optimization criteria, maximum
driving range (max 𝑓1), minimum HESS mass (min 𝑓2), and maximum
battery state of health 𝑆𝑜𝐻 (max 𝑓3), were selected to be analyzed.
Moreover, the solution that presents the best trade-off among the op-
timization criteria, characterized by the highest fitness function value
(max𝐹 𝑡), is also included in the analyses of the results. Fig. 8 shows the
Pareto frontier, and Table 7 presents the results of the selected solutions
and the critical design variables of their chromosomes.

The max 𝑓1 solution reaches a driving range of over 369 km with two
heavy HESSs, adding up to 566 kg to the vehicle. This configuration

relies on two high capacity batteries −134.71 Ah, 300.25 V at the
front and 110.1 Ah, 328.28 V at the rear, HESS - both with 16 V
capacitors assembled only in series with their respective batteries. Once
these batteries are large, they are robust to deep discharges, ensuring a
lifespan of 44 412 h and 43 450 h for the frontal and rear batteries,
respectively. Regarding the drivetrain, the max 𝑓1 EV configuration
presents a rear EM with higher torque as compared to the other selected
solutions (see Table 7) to ensure acceptable performance, especially at
the EV startup, even considering it higher total mass. Besides the listed
advantages, the max 𝑓1 solution represents a high overall powertrain
cost, which will be discussed in detail in Section 5.2.

On the other hand, the min 𝑓2 solution presents the small HESS
pack combination, with an overall 132.77 kg energy storage mass.
This EV configuration presents a smaller driving range of 98.34 km,

Table 7
Dual HESS EV optimized result.

Results Dual HESS EV solutions

Max. driving range Min. HESS mass Max. battery life Best trade-off
max (𝑓1) min (𝑓2) max (𝑓3) max (𝐹 𝑡)

Driving range [km] 369.16 98.34 223.98 285.56
Performance 𝐶𝑂𝑅(𝑋) 0.9937 0.9922 0.9912 0.9903

𝑀𝑏𝑎𝑡(𝐹 ) [kg] 269.63 62.24 254.29 214.76
𝑀𝑏𝑎𝑡(𝑅) [kg] 240.95 28.54 83.78 75.58
𝑀𝑐𝑎𝑝(𝐹 ) [kg] 27 21 28.7 21
𝑀𝑐𝑎𝑝(𝑅) [kg] 28.7 21 107.1 21

𝑆𝑜𝐻𝐹 0.9917 0.9708 0.9927 0.9881
Front battery life [h] 44 412 10012 54133 36585

Front battery life [cycles] 6174 5054 12224 6359
𝑆𝑜𝐻𝑅 0.9913 0.9734 0.9930 0.9884

Rear battery life [h] 43 450 10203 65562 38201
Rear battery life [cycles] 6040 5150 14805 6641
Final 𝑆𝑜𝐶𝐵(𝐹 ) (front) [%] 45.69 40 40 40
Final 𝑆𝑜𝐶𝐵(𝑅) (rear) [%] 40 43.88 69.36 50.13
Final 𝑆𝑜𝐶𝐶(𝐹 ) (front) [%] 67.45 77.29 36.81 38.61
Final 𝑆𝑜𝐶𝐶(𝑅) (rear) [%] 35.73 37.81 42.67 32.86

Recharging time (front) 𝐶𝑡𝐹 [h] 2.15 2.47 2.44 2.41
Recharging time (rear) 𝐶𝑡𝑅 [h] 2.36 2.38 1.24 2.07

Driving Range

Energy storage mass
[km/kg] 0.6519 0.7406 0.4727 0.8592

Chromosomes

𝑄𝑛𝑜𝑚𝐹 [Ah] 134.71 53.47 105.69 132.75
𝑉𝑛𝑜𝑚𝐹 [V] 300.25 174.59 360.9 242.67
𝑇𝑚𝑎𝑥𝐹 [Nm] 178.77 179.61 195.86 197.17
𝜔𝑇 𝑐𝐹 [rpm] 293.1 294.42 327.04 294.09
𝑄𝑛𝑜𝑚𝑅 [Ah] 110.1 33.99 52.71 70.51
𝑉𝑛𝑜𝑚𝑅 [V] 328.28 125.91 238.44 160.79
𝑇𝑚𝑎𝑥𝑅 [Nm] 82.26 30.62 41.26 28.67
𝜔𝑇 𝑐𝑅 [rpm] 1062.91 1062.91 1018.28 1062.91

𝐶𝑎𝑝𝐹 1 1 3 1
𝐶𝑎𝑝𝑅 3 1 5 1
𝑁𝑠𝐹 9 7 7 7
𝑁𝑠𝑅 7 7 7 7
𝑁𝑝𝐹 1 1 1 1
𝑁𝑝𝑅 1 1 3 1
𝑁𝑑 3.84 3.86 5.27 4.17

𝑆𝑜𝐶𝑟𝑒𝑔𝐹 [%] 82.31 82.31 46.08 57.36
𝑆𝑜𝐶𝑟𝑒𝑔𝑅 [%] 39.69 40.68 44.68 37.86

𝛥𝑉𝐹 1.89 1.75 1.99 1.96
𝛥𝑉𝑅 1.90 1.98 1.85 1.94
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Fig. 8. Optimized solutions.

close to the minimum allowed 2 loops in the analyzed driving cycle.
The lower power of the min 𝑓2 solution (53.47 Ah 174.59 V at the
front and 33.62 Ah 125.91 V at the rear HESS) associated in the both
HESS with the smaller 16 V ultracapacitors assembled only in the
series configuration. Therefore, these HESSs are cheaper, but, at the
same time, they are stressed with deeper discharges, resulting in a life
cycle of only 10 012 h and 10 203 h for the frontal and rear systems,
respectively.

Considering the battery life cycle, the max 𝑓3 Dual HESS EV presents
the most extended cycle with 54 133 h and 65 562 h for the frontal
and rear HESSs. This EV reaches 223.98 km range with a higher
voltage HESS than the other analyzed solutions. Another significant
difference is the use of greater ultracapacitors (but keeping the 16 V
models) and the use of a 3 parallel capacitor assembled in the rear
HESS, which saves the rear battery 𝑆𝑜𝐶, avoiding deep discharges even
considering its lower capacity (52.71 Ah) as compared to the frontal
HESS (105.69 Ah). Fig. 9 shows the analyzed Dual HESS EV batteries
𝑆𝑜𝐶 during the simulated driving cycles, in which it is possible to
observe that the max 𝑓3 configuration keeps the large 𝑆𝑜𝐶 gap between
the frontal and rear HESS, even considering that the final 𝑆𝑜𝐻 values
are almost similar −0.9927 and 0.9930, respectively. However, due to
its extra protection for batteries discharges, the max 𝑓3 configuration

presented the worst driving range per energy storage mass ratio as
shown in Table 7.

Finally, the best trade-off solution (max𝐹 𝑡) was able to reach a
285.56 km driving range with a 332.34 kg overall energy storage
system, which represents the best range by mass ratio among the ana-
lyzed solutions (see Table 7). The max𝐹 𝑡 solution combines two HESS
with different characteristics, (similar to the max 𝑓3 architecture). The
frontal HESS presents a high capacity battery (242.67 V, 132.75 Ah)
combined with only series 16 V ultracapacitors arrangement. On the
other hand, the rear HESS comprises a 160.79 V, 70.51 Ah battery con-
nected in series with the smallest available 16 V ultracapacitors. Due
to this gap between the frontal and rear batteries size, the power man-
agement control also does not discharge the rear battery to 𝑆𝑜𝐶 = 40%
(see Fig. 9) to keep its 𝑆𝑜𝐻 close to that of the frontal battery, resulting
in 36 585 h life cycle for the frontal battery and 38 201 h for the rear
one. The relation among battery mass, 𝑆𝑜𝐶, and 𝑆𝑜𝐻 of the selected
Dual HESS EV configuration is presented in Fig. 10.

Even considering that the best trade-off solution presents a battery
life lower than the max 𝑓1 and the max 𝑓3 solutions (see Table 7),
the max𝐹 𝑡 Dual HESS EV configuration powertrain is cheaper than
the other ones. The following section provides the cost analysis of
the selected configuration and a benchmark comparison with other
solutions presented in the literature.
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Fig. 9. Battery 𝑆𝑜𝐶𝐵 of the optimum Dual HESS EV solutions.

Fig. 10. Optimized solutions.
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5.1. Single HESS comparison

In order to highlight the gains of the Dual-HESS EV topology,
this section compares a similar EV powered by a single HESS. The
single HESS EV presents the same propelling system architecture and
fuzzy control scheme applied in the dual HESS. The only difference is
that the single HESS EV frontal and rear drive systems are powered
by the same HESS as shown in the diagram illustrated in Fig. 11.
This single HESS EV is based on the exact vehicle used in the dual
HESS. It is optimized under the same circumstances, considering only a
single battery associated with an ultracapacitors pack. The overall EV
drivetrain and respective power split and HESS current split controllers
are also fully optimized to better fit the single HESS EV characteristics.

The single HESS EV design variables are listed in the
[
𝐗𝑠

]
chromo-

some (Eq. (53)).
[
𝐗𝑠

]
1×185

=
[
𝑄𝑛𝑜𝑚 𝑉𝑛𝑜𝑚 𝑇𝑚𝑎𝑥𝐹 𝜔𝑇 𝑐𝐹 𝑇𝑚𝑎𝑥𝑅 𝜔𝑇 𝑐𝑅…

𝐶𝑎𝑝 𝑁𝑠 𝑁𝑝 𝑁𝑑 𝛥𝑉 𝑆𝑜𝐶𝑟𝑒𝑔 𝐌𝐅𝐏𝐒 𝐑𝐖𝐏𝐒 𝐌𝐅𝐇𝐒 𝐑𝐖𝐇𝐒

] (53)

The optimization procedure of the single HESS EV is based on
the problem formulated in Section 4.1. However, the optimization
criteria are updated to fit the Ev configuration with only one HESS.

Fig. 11. Single HESS EV concept.

The constraints shown in Eq. (49) and the i-AWGA method pre-
sented in Section 4.2 are also applied for the single HESS optimization
procedure.

𝑓1(𝐗𝑠) = max
(
𝐷𝑅(𝐗𝑠)

)
(54)

𝑓2(𝐗𝑠) = min
(
𝑀𝑏𝑎𝑡(𝐗𝑠) +𝑀𝑐𝑎𝑝(𝐗𝑠)

)
(55)

𝑓3(𝐗𝑠) = max
(
𝑆𝑜𝐻(𝐗𝑠)

)
(56)

Among the Pareto frontier reached by the optimizing of the single
HESS EV, four solutions were selected to be compared to the dual
HESS results, following the same criteria applied in the results shown
in Table 7. The results and chromosomes reached by these single HESS
solutions are presented in Table 8.

Fig. 12abc compares between the final Pareto frontier of non-
dominated solutions reached by the dual and single HESS optimiza-
tions. It is possible to observe a break-even region for the analyzed
EV configurations’ drive range/energy storage mass ratio. The single
HESS EV presents advantages for lower driving autonomy per energy
storage mass ratios (94 km to 203 km Fig. 12a). In addition, the min 𝑓2
solution of the single HESS presents a driving range per HESS mass
ratio of 0.8442 against the 0.7406 of the dual HESS. Moreover, the
𝑆𝑜𝐻 value of the min 𝑓2 single HESS (0.9855) is far better than the
reached values of the dual HESS (0.9708 - 0.9734).

Considering longer driving ranges, the dual HESS EV stands out. For
the max 𝑓1 EV solutions, the dual HESS EV reached up to 369.16 km
range against the 270.34 km reached by the single HESS. Regarding the
best trade-off solutions, the dual HESS EV presents a better ratio be-
tween drive range and HESS mass (285.56 km/332.34 kg = 0.8592) as
compared to the values achieved by the max𝐹 𝑡 single HESS
(238.82 km/286.32 kg = 0.8341), with similar values of battery 𝑆𝑜𝐻 .
However, considering the whole battery life cycle, max𝐹 𝑡 dual HESS
frontal and rear batteries increased their lifetime by 17.68% (5497 h)
and 22.88% (7113 h), respectively, compared to the max𝐹 𝑡 single HESS
EV. Moreover, it is noteworthy to mention that the best trade-off dual
HESS EV outperforms the driving range reached by the max 𝑓1 single
HESS EV by 15 km.

Table 8
Single HESS EV optimized results.

Results Single HESS EV solutions

Max. driving range Min. HESS mass Max. battery life Best trade-off
max (𝑓1) min (𝑓2) max (𝑓3) max (𝐹 𝑡)

Driving range [km] 270.34 98.25 256.46 238.82
Performance 𝐶𝑂𝑅(𝑋) 0.9942 0.9931 0.9912 0.9910

𝑀𝑏𝑎𝑡 [kg] 364.43 95.38 369.28 265.31
𝑀𝑐𝑎𝑝 [kg] 21 21 21 21
𝑆𝑜𝐻 0.9908 0.9855 0.9924 0.9880

Battery life [h] 38 383 11420 43781 31088
Battery life [cycles] 7221 5764 8489 6467
Final 𝑆𝑜𝐶𝐵 [%] 40 40 40 40
Final 𝑆𝑜𝐶𝐶 [%] 22.86 60.32 22.87 83.23

Recharging time 𝐶𝑡𝐹 [h] 2.40 2.46 2.40 2.41
Driving Range

Energy storage mass
[km/kg] 0.7014 0.8442 0.6571 0.8341

Chromosomes

𝑄𝑛𝑜𝑚 [Ah] 143.97 86.21 144.05 148.77
𝑉𝑛𝑜𝑚 [V] 379.67 165.96 384.54 267.50

𝑇𝑚𝑎𝑥𝐹 [Nm] 234.78 217.70 231.30 220.87
𝜔𝑇 𝑐𝐹 [rpm] 304.75 293.09 297.53 294.09
𝑇𝑚𝑎𝑥𝑅 [Nm] 70.22 33.69 28.13 22.24
𝜔𝑇 𝑐𝑅 [rpm] 584.61 539.51 584.61 776.20

𝐶𝑎𝑝 1 1 1 1
𝑁𝑠 7 7 7 7
𝑁𝑝 1 1 1 1
𝑁𝑑 5.67 5.44 5.23 4.86

𝑆𝑜𝐶𝑟𝑒𝑔 [%] 45.50 65.12 47.54 93.76
𝛥𝑉 1.93 1.80 1.99 1.96
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Fig. 12. Comparison among single HESS and dual HESS EV Optimized solutions.
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The advantages of the dual HESS EV configuration are more evident
when both populations (single and dual HESS) are combined and the
Pareto frontier and fitness values (Eq. (51)) recalculated. The combined
population Pareto frontier is presented in Fig. 12def. As mentioned
before, the single HESS EV is better for lower driving ranges, up to
203 km, while between 203 km and ≈ 260 km, both EV topologies
show advantages. Additionally, the dual HESS configurations present a
better drive range by HESS mass ratio and the single HESS EVs show
higher values of battery 𝑆𝑜𝐻 , except the max 𝑓3 dual HESS EV that still
presents the higher 𝑆𝑜𝐻 values mainly due to its large batteries and
unfavorable range per mass ratio (223.98 km/473.83 kg = 0.4727).
For driving above 275 km, the population is composed only of dual
HESS configurations, because these EVs hold bigger batteries, the 𝑆𝑜𝐻
values increase at the same levels reached by the single HESS EVs.

Considering the unified population, it is possible to observe that
the max 𝑓1, max 𝑓3 and max𝐹 𝑡 still match the optimized dual HESS-
based EV configurations previously analyzed. On the other hand, the
min 𝑓2 single HESS EV completely dominates the min 𝑓2 dual HESS,
eliminating it from the population. Finally, it is worth pointing out
that the best trade-off single HESS solution was not eliminated in the
unification process. However, it is only classified as the 76th out of
587 solutions. Therefore, based on the presented information, it is
possible to conclude that the dual HESS EV configuration presents
advantages as compared to the single HESS EV, under the analyzed
scenarios. However, it is important to highlight that the gains presented
in the current work are only possible due to the synergy reached by
the optimization of the overall vehicle powertrain and control. Simply
splitting the energy storage system in order to achieve a dual HESS
EV, without optimizing the other vehicle components, will not generate
significant improvements for the EV drive range, energy storage mass,
or battery life.

5.2. Cost analysis

This section presents a comparative cost–benefit analysis between
the optimal single and dual HESS-based EV configurations reached by
the current work, and other optimized powertrain topologies achieved
in previous works. Table 9 shows the financial results for each elec-
trified propulsion technology. The results indicate that, despite the
increase in the total cost of ownership for dual HESS EV configurations,
the best trade-off solution for the proposed powertrain architecture out-
performed both EHHV and single HESS EV cases for the range-to-cost
ratio.

The overall costs of the propulsion systems for the best solutions
were estimated and compared with a single HESS-based EV [63] and
an EHHV (electric–hydraulic hybrid vehicle) [137] powertrain architec-
tures. All the analyzed electric vehicles were optimized under the same
driving cycle combination and the same optimization criteria applied
in the current study. The only significant change is regarding the 3rd
optimization criteria of the single HESS EV [63] that is related to EV
acceleration performance instead of battery 𝑆𝑜𝐻 .

For such evaluation, it was considered the lithium-ion battery price
ratio of US$ 165/kWh, as reported by [143,144]. Concerning the
electric motor, the costs were estimated based on the market database
developed in an earlier study [94]. Lastly, the ultracapacitor costs
can be evaluated by the ratio of US$ 66640/kWh (stored energy), as
reported by [145].

Based on the provided results, it is possible to conclude that the
best trade-off (max𝐹 𝑡) Dual HESS EV presents a cost-to-autonomy ratio
enhancement of 44.42% and 49.97%, compared to the single HESS EV
and EHHV configurations from previous studies, respectively. Although
the optimal dual HESS-based EV configuration indeed presents a more
expensive total cost of ownership when compared to the single HESS
from this study, the extended driving autonomy of the dual HESS EV
along with its benefits regarding long-term operating costs (an increase
of battery lifetime) make such configuration more attractive than the

Table 9
Cost comparison between optimum Dual HESS EV, single HESS EV and EHHV.

Parameters Dual HESS EV (current work)

max (𝑓1) min (𝑓2) max (𝑓3) max (𝐹 𝑡)

Driving range [km] 369.16 98.34 223.98 285.56
Frontal battery cost US$ 6673 US$ 1540 US$ 6294 US$ 5315

Frontal ultracapacitors cost US$ 2339 US$ 1819 US$ 1819 US$ 1819
Frontal EMs cost US$ 958 US$ 965 US$ 1124 US$ 1037
Rear battery cost US$ 5964 US$ 706 US$ 2074 US$ 1871

Rear ultracapacitors cost US$ 3358 US$ 1819 US$ 16933 US$ 1819
Rear EMs cost US$ 728 US$ 320 US$ 399 US$ 303

Powertrain overall cost US$ 20020 US$ 7169 US$ 28643 US$ 12164
Overall Cost
Driving Range

[US$/km] 54.23 72.90 127.88 42.60

Single HESS EV (current work)

max (𝑓1) min (𝑓2) max (𝑓3) max (𝐹 𝑡)

Driving range [km] 270.34 98.25 256.46 238.82
Battery cost US$ 9019 US$ 2361 US$ 9140 US$ 6566

Ultracapacitor cost US$ 1819 US$ 1819 US$ 1819 US$ 1819
Frontal EMs cost US$ 1230 US$ 1120 US$ 1191 US$ 1136
Rear EMs cost US$ 391 US$ 201 US$ 187 US$ 194

Powertrain overall cost US$ 12459 US$ 5501 US$ 12337 US$ 9715
Overall Cost
Driving Range

[US$/km] 46.09 55.99 48.10 40.68

Single HESS EV [63]

max (𝑓1) min (𝑓2) max (𝑓3) max (𝐹 𝑡)

Driving range [km] 177.67 66.38 93.68 117.04
Battery cost US$ 7629 US$ 2725 US$ 3735 US$ 4535

Ultracapacitor cost US$ 5198 US$ 3145 US$ 12835 US$ 3145
Frontal EMs cost US$ 536 US$ 885 US$ 855 US$ 848
Rear EMs cost US$ 385 US$ 530 US$ 625 US$ 444

Powertrain overall cost US$ 13748 US$ 7285 US$ 18050 US$ 8972
Overall Cost
Driving Range

[US$/km] 77.38 109.75 192.67 76.66

EHHV [137]

max (𝑓1) min (𝑓2) max (𝑓3) max (𝐹 𝑡)

Driving range [km] 199.73 104.04 148.51 167.95
Battery cost US$ 9508 US$ 4828 US$ 7012 US$ 7925
EM cost US$ 4279 US$ 4273 US$ 4287 US$ 4300

Hydraulic drivetrain cost US$ 2076 US$ 2076 US$ 2076 US$ 2076
Powertrain overall cost US$ 15863 US$ 11177 US$ 13375 US$ 14301
Overall Cost
Driving Range

[US$/km] 79.42 107.43 90.06 85.15

single HESS-based one. The advantages of the dual HESS-equipped EV
pay off the slight increase of the cost-to-range ratio (42.60 against
40.68) throughout vehicle operation. Therefore, the Dual HESS EV con-
cept appears as a viable solution to popularize EVs in the automotive
market

5.3. Simulation under alternative driving cycles

In addition to the advantages mentioned above of the optimized
solutions for Dual HESS-based EVs, it is also important to evaluate
those configurations under driving profiles that are different from those
in which the optimization method was conducted. In this sense, the
optimum solutions were subjected to real-world urban driving cycles
(Campinas [94], Ouro Branco [86] and Santa Maria [146,147] cycles),
a real-world highway cycle (Campinas-to-São Paulo [125]) as well as
the standard WLTC cycle.

As presented in Table 10, it is possible to infer that the optimized
configurations achieved extended driving ranges, which were greater
than 94 km (the minimum allowable autonomy set by the optimization
constraints Eq. (49)), except to min 𝑓2 solution under Campinas-to-
São Paulo cycle. This is because the mentioned real-world driving
cycle features a highway profile, which demands more power from the
HESSs when compared to urban scenarios from Ouro Branco and Santa
Maria cycles. Additionally, the EV configurations regenerate less in
highway driving cycles, in which a limited number of stops and abrupt
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Table 10
Optimized results under alternative driving cycles.

Results Dual HESS EV solutions

Maximum Minimum Longest Best
driving range HESS mass life cycle trade-off

max (𝑓1) min (𝑓2) max (𝑓3) max (𝐹 𝑡)

Campinas driving cycle [94]

Driving range [km] 280.05 111.78 239.72 279.69
𝑆𝑜𝐻𝐹 0.9978 0.9913 0.9977 0.9964
𝑆𝑜𝐻𝑅 0.9973 0.9883 0.9941 0.9943

Front battery cycles (𝑆𝑜𝐻 = 0.8) 9868 9608 11179 9667
Rear battery cycles (𝑆𝑜𝐻 = 0.8) 9692 6573 6196 5933

Ouro Branco driving cycle [86]

Driving range [km] 460.05 112.72 243.94 312.09
𝑆𝑜𝐻𝐹 0.9935 0.9807 0.9946 0.9915
𝑆𝑜𝐻𝑅 0.9918 0.9729 0.9835 0.9857

Front battery cycles (𝑆𝑜𝐻 = 0.8) 5951 7525 13854 6737
Rear battery cycles (𝑆𝑜𝐻 = 0.8) 4445 4423 4556 3932

Santa Maria driving cycle [146,147]

Driving range [km] 361.37 124.72 242.84 305.43
𝑆𝑜𝐻𝐹 0.997 0.9894 0.9975 0.9965
𝑆𝑜𝐻𝑅 0.9957 0.9857 0.9928 0.9928

Front battery cycles (𝑆𝑜𝐻 = 0.8) 9757 8945 14608 11446
Rear battery cycles (𝑆𝑜𝐻 = 0.8) 9112 5997 6510 5285

Campinas to São Paulo driving cycle [125]

Driving range [km] 350.93 57.66 168.59 239.04
𝑆𝑜𝐻𝐹 0.9873 0.9811 0.9861 0.9852
𝑆𝑜𝐻𝑅 0.9893 0.9761 0.9976 0.9879

Front battery cycles (𝑆𝑜𝐻 = 0.8) 5929 8411 9511 5211
Rear battery cycles (𝑆𝑜𝐻 = 0.8) 6783 15182 10639 9753

WLTC driving cycle

Driving range [km] 389.19 103.23 239.54 292.27
𝑆𝑜𝐻𝐹 0.9927 0.9742 0.9918 0.9899
𝑆𝑜𝐻𝑅 0.9925 0.978 0.9926 0.9897

Front battery cycles (𝑆𝑜𝐻 = 0.8) 6425 4586 8169 5260
Rear battery cycles (𝑆𝑜𝐻 = 0.8) 6065 6296 11955 6508

decelerations occur, thereby affecting the energy harvesting through
regenerative braking.

In the WLTC cycle that combines low and high-speed routes, the
optimal solutions presented a good performance for the batterie’s life
cycles. The same characteristic could be observed in the remaining driv-
ing conditions, in which the Campinas-to-São Paulo cycle showed the
most reduced battery life expectation. As previously highlighted, this
can be explained by its highway driving profile, which can eventually
require higher power demand from the batteries.

6. Conclusion

In this work, a multi-objective optimization design of a dual HESS-
based EV powertrain topology was developed to search for the best
design variables concerning the maximum driving range and battery
lifespan, and minimum system size. Moreover, the formulation of the
optimization problem also considered the parameters of the fuzzy logic
controllers that define the power management control for the proposed
EV.

The proposed configuration aims to minimize battery discharge
peaks by splitting the vehicle traction power demand between two
independent traction systems, each one powered by its respective HESS
system, allowing the use of alternative traction systems configuration
and different arrangements of the batteries and ultracapacitors in each
HESS. The results of this paper justify the importance of using hy-
brid energy storage systems in conjunction with the employment of
a battery-aging-aware EMS, so that earlier battery end of life can be
avoided by preventing such systems from being overloaded in high
C-rate operational conditions (peak power demand).

The optimized dual HESS EV configuration reached a driving range
up to 369.16 km, with a 566 kg energy storage system. On the other
hand, the minimum mass solution got a 948.34 km driving range with
a small energy storage pack of only 133 kg. Regarding the battery
life cycle, the most promising solution reached up to 54 133 h and
65 562 h for the frontal and rear batteries, respectively. However, all
these mentioned solutions only focused on providing the best result
in a single optimization criterion, presenting drawbacks in the other
ones. Therefore, the best dual HESS EV configuration was the one that
showed the best trade-off among the three analyzed criteria, being able
to reach a 285.56-km range with a 332-kg energy storage system, which
endures for 36 585 h (frontal battery) and 38 201 h (rear battery).

The main contribution of this paper is to highlight the potential
advantages of the proposed EV architecture when compared to the
single HESS EV optimized under the same driving conditions. In this
comparative analysis, the dual HESS presents a driving range per cost
ratio 4.72% higher than the best single HESS EV solution. On the other
hand, the dual HESS presents an approximate improvement of 3% in
driving range per mass ratio and increases the batteries’ lifetime by
17.68% (frontal) and 22.88% (rear), as compared to the single HESS
EV, which makes the dual HESS powertrain more attractive considering
a long-term operation.

Finally, the optimized dual HESS EV configurations were also eval-
uated under different driving cycles (some of the real-world driving
cycles) to ensure that they are robust to driving conditions different
from those applied in the optimization procedure. In all situations, the
dual HESS EV proves to present satisfactory results.

It is essential to highlight that the optimization methods applied in
this paper focus on the early concept of the dual HESS EV. The optimum
values for the design variables of critical components such as electric
motors, inverters, transmission systems, batteries, ultracapacitors, and
buck-boost converters must be fitted to available market components.
Furthermore, both energy storage systems need to be arranged correctly
in an EV platform to reach a feasible EV to be experimentally evaluated.

Although the optimized dual HESS EV has shown promising results,
some extra analyses such as the dynamic effects of HESS weight distri-
bution in the EV driveability and handling control should be evaluated
in future work. Moreover, training an artificial neural network to con-
trol the power management can also bring potential improvements to
the vehicle. Finally, the combination of a hydrogen fuel cell stack with
the HESS would be worthy of investigation due to its high potentiality
with regard to driving autonomy, energy efficiency and energy storage
systems’ lifetime.
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