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ABSTRACT 

Hamstring strain injuries (HSIs) remain a prevalent concern among professional football 

players, often leading to long-term implications for sport performance and health. The 

neuromuscular adaptations following HSIs, particularly within the central nervous system, are 

still poorly understood. This study investigates the functional brain connectivity changes in 

previously injured footballers during motor tasks using electroencephalography (EEG). We 

analyzed the EEG data from 89 male professional football players, 30 of whom had a history 

of HSIs, acquired during a maximum-speed knee flexion-extension task. A functional 

connectivity (FC) analysis focusing mainly on the alpha frequency band using weighted phase-

lag index (wPLI) was conducted to explore the potential impact of HSIs on brain function 

during rigorous motor activity. Our findings revealed a significant decrease in global FC in the 

alpha frequency band during the motor task compared to rest for all participants, indicating a 

widespread reduction in alpha connectivity associated with motor activity. Notably, players 

with a history of HSI exhibited a more pronounced decrease in global alpha connectivity during 

the task, particularly in the frontal and temporal networks. Furthermore, a significant negative 

correlation was observed between an injury severity index and alpha FC reduction, mainly in 

the frontal and parietal networks, implying that more severe and more recent injuries lead to 

greater cortical adaptations. The observed alterations in brain connectivity suggest that 

footballers with a history of HSI may need to recruit additional cortical resources to maintain 

motor performance, potentially influencing their overall injury risk and rehabilitation process. 

This study provides new insights into the possible impact of HSIs on the FC profile during 

motor activity and it might represent a first step towards using EEG-based connectivity analysis 

as a tool for developing targeted rehabilitation protocols and injury prevention strategies 

tailored to the cognitive profile of each athlete.  



RESUMO 

Lesões por distensão dos isquiotibiais (HSIs) continuam sendo uma preocupação prevalente 

entre jogadores profissional de futebol, frequentemente levando a implicações de longo prazo 

para a saúde e desempenho esportivo. As adaptações neuromusculares após HSIs, 

particularmente dentro do sistema nervoso central, ainda são pouco compreendidas. Este estudo 

investiga as mudanças na conectividade funcional do cérebro em jogadores de futebol 

previamente lesionados durante a execução de tarefas motoras, utilizando eletroencefalografia 

(EEG). Os dados de EEG de 89 jogadores de futebol profissionais do sexo masculino foram 

analisados, dos quais 30 tinham histórico de HSIs, adquiridos durante uma tarefa de flexão-

extensão de joelho em velocidade máxima. Foi conduzida uma análise de conectividade 

funcional (FC), focando principalmente na banda de frequência alfa usando o índice de 

defasagem ponderado (wPLI) para explorar o impacto potencial das HSIs na função cerebral 

durante uma atividade motora rigorosa. Nossos resultados revelaram uma diminuição 

significativa na conectividade global na banda de frequência alfa durante a execução da tarefa 

em comparação ao repouso para todos os participantes, indicando uma redução generalizada 

na conectividade alfa associada à atividade motora. Notavelmente, jogadores com histórico de 

HSI apresentaram uma diminuição mais acentuada na conectividade global alfa durante a 

tarefa, particularmente nas redes frontal e temporal. Além disso, foi observada uma correlação 

negativa significativa entre um índice de gravidade da lesão e a redução da FC alfa, 

principalmente nas redes frontal e parietal, sugerindo que lesões mais graves e mais recentes 

levam a maiores adaptações corticais. As alterações observadas na conectividade cerebral 

sugerem que jogadores de futebol com histórico de HSI podem precisar recrutar recursos 

corticais adicionais para manter o desempenho motor, potencialmente influenciando seu risco 

geral de lesão e processo de reabilitação. Este estudo fornece novos insights sobre o possível 

impacto das HSIs no perfil de FC durante a atividade motora e pode representar um primeiro 

passo para o uso da análise de conectividade baseada em EEG como uma ferramenta para 

desenvolver protocolos de reabilitação direcionados e estratégias de prevenção de lesões 

adaptadas ao perfil cognitivo de cada atleta. 
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1. INTRODUCTION

1.1. Motivation

A collaboration was established between the Neuromuscular Research Lab, Faculty of Human 

Kinetics, University of Lisboa and the Neurophysics group at the Gleb Wataghin Institute of 

Physics at the Universidade Estadual de Campinas (UNICAMP) to investigate possible 

changes in neural activity of previously injured professional football players during the 

execution of a rigorous motor task. Our role in this project was to thoroughly analyze the 

provided electroencephalograph (EEG) data using tools from whole brain connectivity 

analysis.  

Although research efforts have increased in recent years, the incidence of hamstring strain 

injuries (HSIs) continues to grow among professional football players (Ekstrand et al., 2023). 

This injury is known to negatively impact player and team performance (Drew et al., 2017; 

Eirale et al., 2013; Hägglund et al., 2013) and to have a high financial cost (Nieto Torrejón et 

al., 2024). These injuries are defined as a sudden onset of posterior thigh pain during activity 

which is reproduced with hamstring stretching and/or activation (Martin et al., 2022) which led 

to training or match time loss (Fuller et al., 2006); and often occur during actions involving 

fast muscle actions (Jokela et al., 2023).  

HSIs also show a high recurrence rate (Ekstrand et al., 2023). However, parameters such as 

injury severity on physical examination or imaging and strength measurements have shown a 

poor or uncertain association with recurrence (Heiderscheit et al., 2010). Conversely, persistent 

neuromuscular inhibition has been strongly suggested to contribute to recurrence (Fyfe et al., 

2013; Opar et al., 2012). This inhibition is thought to serve as a protective mechanism to reduce 

pain and tissue load after injury (Fyfe et al., 2013); however, muscle pain may cause chronic 

supraspinal adaptations (Graven-Nielsen & Arendt-Nielsen, 2010), affecting the voluntary 

recruitment ability in the long term (Fyfe et al., 2013). Moreover, Di Trani suggested that HSIs 

damage mechanoreceptors, leading to post-deafferentation cortical remodeling (Andrea Di 

Trani, 2017). These cortical changes can significantly impact the integration of 

proprioceptive/sensory input, which is crucial for muscle control and coordination, especially 

during actions such as sprinting, which require rapid and accurate adjustments (Roussiez & 

Van Cant, 2019). This notion is supported by studies indicating that proprioceptive, tactile, and 

spatial deficits in response to hamstring pain are associated with cortical reorganization in 
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regions processing lower limb sensory information (Cavaleri et al., 2023; Moukhaiber et al., 

2023; Summers et al., 2021); moreover, Australian football athletes with previous HSI have 

shown impaired joint position sense and leg swing movement discrimination (Cameron et al., 

2003). Despite these findings suggestive of post-HSI cortical adaptations across multiple 

regions, research on the relationship between HSIs and changes in brain activity is scarce.  

Accordingly, the recent London consensus has highlighted the need for further research on 

central nervous system (CNS) changes associated with HSIs (Paton et al., 2023). Existing 

research on EEG adaptations after musculoskeletal injuries does, however, provide 

encouraging evidence of how these adaptations may also be present in HSIs. Zhang et al. (2022) 

investigated cortical activity changes in soccer players with chronic ankle instability and found 

differences in frontal theta but not in alpha power during drop-jump landing compared to 

healthy controls, suggesting that lower limb joint instability induces band-specific adaptations. 

Similarly, Baumeister et al. (2008, 2011) studied altered EEG activity after anterior cruciate 

ligament (ACL) reconstruction during force control and joint position sense tasks and found 

higher frontal theta power in both tasks and lower parietal alpha power during force 

reproduction tasks in the affected knee of injured individuals (Baumeister et al., 2008, 2011). 

These studies highlight the task dependency of cortical activation changes following lower 

limb injuries, emphasizing the role of theta and alpha oscillations in compensatory neural 

mechanisms. However, it is important to note that these studies primarily used power analysis 

and did not specifically examine functional connectivity (FC). 

To the best of our knowledge, studies examining brain connectivity in athletes with previous 

HSI are nonexistent, and those involving other injuries do not assess FC during movement and 

are based on functional magnetic resonance imaging (fMRI) (Diekfuss et al., 2019, 2020). 

Brain FC can be assessed with the use of electroencephalography (EEG) through similarities 

between the neural activity from multiple brain regions, providing information about their 

synchronization. Applying graph theory to FC allows extraction of essential parameters that 

depict the underlying brain network characteristics (Bastos & Schoffelen, 2016).  

Given the lack of studies relating brain FC to lower limb injuries (including HSIs), the primary 

objective of this work was to determine whether footballers with and without HSI history show 

differences in functional brain connectivity during a maximum-speed knee flexion-extension 

task. We hypothesized that differences in FC metrics would be found between players with and 

without HSI history, reflecting potential long-term impacts of this injury on brain function. In 

addition, we explored whether any potential changes would be associated with injury severity 
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(i.e. time loss due to injury) and the time difference between testing and injury date, considering 

that the magnitude of the injury and the time between events may influence brain adaptive 

responses. By addressing these hypotheses, we aim to enhance the understanding of how 

musculoskeletal injuries can affect brain function and to identify potential biomarkers for 

injury assessment and rehabilitation. 

1.2. Project Overview 

As is illustrated in the schematic below (Fig. 1), the project pipeline began with subject 

selection, clinical data collection and EEG data acquisition, all of which was conducted by our 

collaborators at the University of Lisbon. Following data collection, EEG signals were 

preprocessed using standardized techniques, ensuring clean data for analysis. From the 

processed data, we extracted individual FC matrices, which were then used to construct 

undirected weighted graphs representing the FC network of each participant. From these 

graphs, we calculated graph-theoretical metrics, such as degree. These metrics were initially 

used to perform group comparisons between injured and non-injured players, identifying key 

connectivity differences across the two groups. Subsequently, we examined correlations 

between the graph metrics and clinical variables, providing insights into how specific 

connectivity patterns might be associated with injury severity and recovery. 

This thesis is organized into five chapters. Chapter 2 provides a comprehensive overview of 

the theoretical foundations that support this study. Chapter 3 details the materials and methods, 

describing the study design, participant recruitment, experimental protocol, and data processing 

steps. Chapter 4 presents the results obtained from the EEG analysis, highlighting key findings 

on brain functional connectivity among injured and non-injured footballers. In Chapter 5, these 

findings are discussed in the context of existing literature, addressing the implications and 

limitations of the study. Finally, Chapter 6 summarizes the main conclusions and suggests 

directions for future research. 
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Figure 1. Overview of the entire project pipeline. Workflow schematic illustrating the 
several steps concluded in order to achieve the results presented in this thesis. 
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2. THEORETICAL FOUNDATIONS 

2.1. The human nervous system  

The human nervous system is made up of two parts: The CNS, which consists of two main 

structures, the brain and the spinal cord; and the peripheral nervous system (PNS), which 

consists of a large network of nerves that branch out from the spinal cord connecting it to 

muscles, joints, skin, etc. These connections allow for voluntary motor control, proprioception, 

as well as the perception of the basic senses via the transmission of efferent motor and afferent 

sensory signals and stimuli (Haines & Terrell, 2018). 

The brain makes up the largest portion of the CNS and is responsible for the perception and 

processing of incoming sensory stimuli from the PNS, executing voluntary motor responses by 

transmitting neural signals to nerves in the PNS, and for regulation of homeostatic mechanisms. 

The brain is separated into three main regions: brainstem, cerebellum and cerebrum (Fig. 2 

Left). The brainstem connects the forebrain with the spinal cord and has critical roles in 

regulating heart and respiratory function, modulating the CNS and the body's sleep cycle 

(Joynt, 2024). The cerebellum plays an important role in motor control by receiving inputs 

from sensory systems and from other parts of the brain and integrates these inputs to fine-tune 

motor activity (Fine et al., 2002).  

Figure 2. Illustration of the main anatomical brain regions. (Taken from Widmaier et al., 
2004) 

 

Lastly, the cerebrum is the largest part of the brain and is divided into two hemispheres. Each 

hemisphere is further divided into four lobes: frontal, parietal, temporal, and occipital (Fig. 2 

Right). The cerebrum is responsible for higher brain functions, including cognition, emotion, 
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memory, and sensory processing. The frontal lobe is associated with reasoning, planning, parts 

of speech, movement, and problem-solving. The parietal lobe processes sensory information 

related to touch, pressure, temperature, and pain. The temporal lobe is involved in perception 

and recognition of auditory stimuli, memory, and speech, while the occipital lobe is primarily 

responsible for visual processing. Together, these regions of the cerebrum enable complex 

behaviors and the ability to interact with and interpret the world around us (Kolb & Whishaw, 

2015).  

The frontal lobe is further separated into four main areas: the prefrontal, the premotor and the 

motor cortex, and Broca's area. The prefrontal cortex is involved in complex cognitive 

behavior, decision-making, personality expression, and moderating social behavior, playing a 

crucial role in executive functions such as planning, problem-solving, and impulse control 

(Fuster, 2014). The premotor cortex is responsible for the planning and coordination of 

movement, preparing the body's muscles for the exact movements that will be carried out by 

the motor cortex (Wong et al., 2015). The motor cortex, located just anterior to the central 

sulcus, is directly involved in the execution of voluntary movements by sending signals to the 

muscles, allowing for precise and coordinated physical actions. Broca's area, typically located 

in the left hemisphere, is essential for speech production and language processing, enabling the 

articulation of thoughts into spoken words (Kandel et al., 2013). 

The CNS is composed of two main cell types: neurons and glial cells. Neurons are the primary 

cells responsible for transmitting and storing information within the brain, communicating 

through electrical impulses. These impulses are crucial for all brain functions and can be 

measured using techniques such as EEG, which will be explored in detail in the next section. 

The CNS contains approximately 86 billion neurons, with the majority (~69 billion) located in 

the cerebellum and about 16 billion in the cerebral cortex(Azevedo et al., 2009). Each neuron 

forms synaptic connections with roughly 10,000 others, creating a vast network that underlies 

the complex processing abilities of the brain. 

2.2. Electroencephalography  

2.2.1. Biophysics of neural signals 

To understand the biophysics behind the measured electrical signal, we can decompose neural 

activity into three spatial scales: the microscopic single neuron scale (nm-um), populations of 
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neurons at the mesoscopic scale (um-mm) and major brain regions at the macroscopic scale 

(mm-cm) (Fig. 3).  

At the smallest scale, we have what is considered the unit of the CNS, the neuron. Despite 

having different morphologies and electrophysiological properties, typical neurons consist of 

four principal components: the cell body or soma, one axon, dendrites and presynaptic 

terminals. The dendrites receive incoming electrical signals from other neurons and pass them 

along to the soma, which houses the nucleus and organelles. If the sum of these signals 

surpasses a given threshold, the neuron fires, i.e., a signal is transmitted through the axon onto 

other neurons via the presynaptic terminals (Bigbee, 2023).  

Figure 3. The different scales of neuronal electrical signaling. Schematic of the three 
different scales of the biophysics of neural signals.  

At this level, the electrical signal carried through a single neuron is called an action potential 

(also referred to as spike), and it occurs through the quick rise and fall of the membrane 

potential along the neuronal cell (Hodgkin & Huxley, 1952). These changes are generated by 

voltage-gated ion channels at the cell membrane and are most commonly initiated by excitatory 

postsynaptic potentials from a presynaptic neuron. These channels consist of proteins whose 

configuration switches as a function of the voltage between the interior and exterior of the cell, 

i.e., the membrane potential. This electric potential is caused by an electrochemical ion gradient 

actively maintained by ion pumps at the membrane. In turn, this ion gradient results from a 

high extracellular concentration of sodium (Na+) and chloride (Cl-) ions and a high 
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intracellular concentration of potassium (K+) ions, generating a negative resting membrane 

potential (around -70mV). The voltage-gated ion channels remain closed at the resting 

membrane potential, and rapidly open whenever the membrane potential reaches a certain 

threshold (around -55mV), causing a sudden influx of sodium ions, producing an even greater 

rise in the membrane potential (see Fig. 3). At around 40mV, membrane repolarization occurs 

from rapid sodium channel inactivation as well as activation of potassium channels, causing an 

efflux of potassium ions, setting the membrane potential back to resting state after a brief 

hyperpolarization period. This event causes neighboring voltage-gated channels to open, 

producing an ionic current that changes the extracellular potential in a domino-like 

propagation, carrying the signal along the neuron and onto other neuronal cells (Hammond, 

2015). A single-unit recording using a microelectrode system provides a method of measuring 

a single spike. This system usually consists of a glass micropipette with a metallic 

microelectrode placed close to the cell membrane, allowing the ability to record the 

extracellular field (Humphrey & Schmidt, n.d.). 

At the mesoscopic scale, electrical activity of individual cells within a larger population of 

neurons (~104 neurons) generates what is called a local field potential (LFP) in that tissue. The 

LFP represents the summation of the extracellular electrical fields generated by single spikes 

and is recorded using intracranial microelectrodes placed sufficiently far from individual 

neurons to avoid any single cell dominating the measurement. A low-pass filter (~300Hz) is 

then applied to remove any spike component of the signal, resulting in the lower frequency 

LFP signal (Buzsáki et al., 2012). 

Finally, at the macroscopic level, several populations of neurons generate an electric signal that 

reflects the averaged summation of the synchronous activity of hundreds of millions of neurons 

with a similar spatial orientation, creating voltage field gradients that can be detected at the 

surface of the cortex (electrocorticography) or even from outside of the skull at the scalp (EEG) 

(Buzsáki et al., 2012). Action potentials are too short to sufficiently sum up to be recorded 

extracellularly by electrodes on the scalp. However, postsynaptic potentials of cortical 

pyramidal cells can last up to 10ms and are able to produce sufficient potential changes to be 

measured by EEG. Postsynaptic potentials are caused by presynaptic potentials releasing 

neurotransmitters into the synaptic cleft and binding to postsynaptic receptors. Most of these 

receptors consist of ion channels that change conformation as they bind to a neurotransmitter, 

causing an influx/efflux of ions and changing the membrane potential. At excitatory synapses, 

the ion channels allow sodium into the cell, generating a depolarizing current that causes an 
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increase in membrane potential, known as an excitatory postsynaptic potential (EPSP). This 

increased potential at the postsynaptic membrane is measured as a negative voltage in the 

extracellular space due to the preponderance of negatively charged ions.  In contrast, at 

inhibitory synapses, ion channels allow for a potassium outward current, hyperpolarizing the 

cell and producing a stronger negative membrane potential, known as an inhibitory 

postsynaptic potential (IPSP). Analogous to the EPSP, the IPSP is measured extracellularly as 

a positive voltage due to the preponderance of positively charged ions (Kirschstein & Köhling, 

2009). 

Given their unique anatomical structure with a long apical dendrite perpendicular to the cortical 

surface (i.e., neurons located in the gyri), cortical pyramidal neurons work as excellent dipoles 

for electrical signal generation (Fig. 4). Pyramidal cells are highly polarized and the main 

excitatory neurons in the cerebral cortex responsible for generating the EEG signal. The 

direction of the dipole and the deflection in the measured signal is determined by the superficial 

or deep location and polarity of the synaptic input. By convention, a positive scalp potential is 

recorded as a downward deflection in the EEG signal. Thus, superficial excitatory inputs and 

deep inhibitory inputs are measured as upward deflections, whereas deep excitatory and 

superficial inhibitory inputs are registered as downward deflections (Kirschstein & Köhling, 

2009; Nunez & Srinivasan, 2009). 

 

Figure 4. Pyramidal cell as an electric dipole. Negative polarity in the extracellular space is 
caused by an influx of positive charge carriers, an excitatory synaptic input (EPSP). These 
positive charges then spread along the apical dendrite, and through capacitive efflux, they 
generate an extracellular positive potential at a distance from the synapse, such as at the soma. 
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This produces a dipole with sufficient strength to be measured by the electrode on the scalp 
(Adapted from Kirschstein & Köhling, 2009; Neuman, 1998). 

2.2.2. Frequency Bands  

To yield a visible EEG signal, a sufficiently large number of simultaneous and in the same 

direction EPSPs and IPSPs are needed. The amplitude and frequency of the recorded EEG 

wave is determined by the firing rate and synchronicity of postsynaptic potentials evoked by a 

population of pyramidal cells. The more synchronous a population of neurons fires at a given 

rate, larger the amplitude of the summed EEG gets at that given frequency (Kirschstein & 

Köhling, 2009). As the neurons desynchronize, the amplitude decreases and the frequency 

increases (Fig. 5). If all neurons in a population were active synchronously, the frequency of 

the measured EEG wave would be identical to their firing rate. The extent to which neurons 

synchronize at specific frequency bands depends on the current level of vigilance. The highest 

levels of synchronization occur during deep sleep, resulting in measured theta (4-7 Hz) and 

delta (0.5-4 Hz) waves (Ferrillo et al., 2000; Moroni et al., 2012). During awake resting, when 

sensory inputs are reduced, we obtain moderately synchronized EEG alpha waves (8-13 Hz) 

(Darracq et al., 2018; Foxe & Snyder, 2011). When actively engaged in a cognitive or motor 

task, with open eyes and at the presence of sensory inputs, the neuronal activity desynchronizes, 

producing non-synchronous EEG beta waves (13-30 Hz) (Avanzini et al., 2012). It is important 

to note that there are slight variations in the literature regarding the exact ranges of these 

frequency bands, but we have chosen to use the most widely accepted ranges for consistency. 

All the frequency bands, their usual location and main functions are detailed in Table 1. 
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Table 1. EEG frequency bands details. 

Frequency 

Band (Hz) 

Location Function Visualization 

 

Delta 

(<4) 

Frontal 
(adults) 
Posterior 
(children) 

Slow-wave sleep 

 

 

Theta 

(4-7) 

Found in 
location 
unrelated to 
task at hand 

Associated with 
inhibition of elicited 
response. (Kirmizi-
Alsan et al., 2006) 

 

 

Alpha  

(8-13) 

Central & 
Occipital at 
rest. 
Lower in 
locations 
related to 
task. 

Relaxed/at rest 
Associated with 
inhibitory control. 

 

 

Beta  

(13-30) 

Most 
evident 
frontally. 

Active thinking, 
focused, high 
alertness. 

 

 

Gamma 

(>32) 

Somatosens
ory cortex. 

Cross modal sensory 
processing. (Kisley 
& Cornwell, 2006) 
Short-term memory 
matching  
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Figure 5. Synchronization and desynchronization are illustrated for three pyramidal 
neurons, each receiving a superficial excitatory input (EPSP) at a rate of 3Hz. In the 
synchronized EEG (A), all three inputs fire simultaneously, allowing the EPSPs to sum and 
produce a 3 Hz EEG wave at the scalp. In contrast, a desynchronized EEG (B) with lower 
amplitude and higher frequency occurs when the three inputs fire alternately. In this case, the 
EEG amplitude does not sum, but its frequency increases to 9 Hz. (Adapted from Kirschstein 
& Köhling, 2009) 
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2.2.3. EEG Equipment  

EEG Electrodes 

EEG electrodes are one of the very basic elements in the process of measuring electrical activity 

in the brain. They are the real contact medium between a subject's scalp and an EEG system 

and detect the electrical potential produced by populations of neurons. This is a non-invasive 

process, during which the electrodes can pick up minute signals with low amplitude, prone to 

attenuation. Therefore, the precision of signal acquisition and the quality of data obtained are 

heavily influenced by the choice of electrodes (Angrisani et al., 2017; Yuan et al., 2021). 

There are different shapes of EEG electrodes: disc, needle, and cup shape; and dry or gel-based 

can be another classification. A direct contact exists between the electrode and the scalp with 

dry electrodes (Yang et al., 2022), whereas a conductive gel is used with gel-based electrodes 

to better conduct the signals, in an attempt to reduce impedance at the electrode-skin interface. 

Commonly, electrodes are made from a conductive metal that supports the exchange of ions 

and electrons at the surface that has direct contact with electrolytes (in the case of gel systems). 

This interaction is critical for the detection of signals, but it can introduce complexities such as 

the half-cell potential, which arises from the differing rates of ion and electron layer formation 

(Usakli, 2010) This potential can affect signal quality, making it essential to consider electrode 

material when setting up an EEG system. 

A major distinction in the operation of electrodes is whether they are polarizable or 

nonpolarizable. Nonpolarizable, or reversible electrodes, such as Ag-AgCl electrodes (Fig. 

6A), allow a free exchange of charge across the electrode-electrolyte interface, minimizing 

impedance and reducing artifacts caused by motion. These electrodes, consequently, are widely 

used because they can adequately record slow potential changes with minimal signal 

interference (Beltramini, 2014; Picton et al., 2000). Polarizable (nonreversible) electrodes have 

a restricted charge exchange across their double layer, effectively acting as capacitors. While 

these electrodes can filter out high frequencies and DC voltages, they are less commonly used 

in standard EEG setups due to their potential to distort the recorded signal (Usakli, 2010) 
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Figure 6. Illustration showing different components from the EEG equipment. (a) 
standard Ag/AgCl wet electrodes; (b) variety of dry electrodes; (c) EEG monitoring system. 
(Adapted from O’Sullivan et al., 2019) 

The impedance at the electrode-tissue interface is of great importance in EEG recordings and 

determines the quality of the signal and the signal-to-noise ratio. High impedance can lead to 

poor signal quality, and several factors can contribute to it, such as lack of skin preparation, 

hair presence, and electrolyte conditions. The skin should be prepared by cleaning the skin of 

oils and dirt, and if gel electrodes are used, the gel must fill the space between the electrode 

and the scalp. Poor contact, or inadequate gel, introduces noise and artifacts into the data 

(Fortune et al., 2021). 

The choice between dry and gel electrodes depends on the specifics of the application at hand 

and experimental requirements. Gel electrodes are known for providing more consistency, 

which refers most importantly to those setups where low impedance and high signal quality are 

important (Vojkan Mihahlovic & Garcia-Molina Gary, 2012). However, dry electrodes are 

easier to manipulate and can be used in a series of applications for which expedient setups and 

ease of use are the most important (Lopez-Gordo et al., 2014). 

 

 

Amplifier 

EEG amplifiers are essential in the recording process as they amplify the low amplitude 

electrical signals generated by brain activity. These signals are typically in the microvolt range, 
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making them prone to interference from environmental noise. The EEG amplifier is a 

differential amplifier, designed to amplify the difference between two input signals while 

suppressing any voltage that is common to both (Laplante, 2005). This is particularly beneficial 

in EEG recordings, as it helps eliminate environmental noise, such as electromagnetic 

interference, which can be much stronger than the brain signals themselves. 

The signals processed by the amplifier depend on two key points: the ground electrode and the 

reference electrode. The ground electrode is the one designated to be at zero potential, serving 

as the electrical baseline. The reference electrode is ideally placed on an electrically neutral 

part of the body, although this is hardly ever achievable. In practice, the EEG signal recorded 

at each electrode is relative to the potential at the reference electrode (Beltramini, 2014). 

Common sites for placing reference electrodes include the mastoids, ear lobes, or nose 

(Kulaichev, 2016). Additionally, in larger EEG setups, it is possible to use the average signal 

from all electrodes as a reference, which can provide more balanced and accurate readings 

across the scalp (Rosenfeld, 2000). 

One of the amplifier's most critical features is its common mode rejection (CMR) capability, 

which refers to the ability of the amplifier to reject common signals between the two inputs 

(Kappenman & Luck, 2010). The higher the CMR, the better the signal-to-noise ratio (SNR), 

meaning that more brain signal and less noise will be recorded. For effective CMR, the 

impedance of the electrodes relative to the amplifier’s input must be optimized. Poor electrode 

impedance can result in a decreased CMR, leading to a lower SNR. 

The impedance of the electrodes is largely influenced by skin properties, and higher electrode 

impedance can reduce the effectiveness of CMR. In high-impedance systems, more trials may 

be necessary to average out noise and improve SNR, which can make the recording process 

longer and more complex. This is why low-impedance electrodes are often preferred, as they 

typically result in cleaner recordings with better statistical significance (Habibzadeh 

Tonekabony Shad et al., 2020).  

To minimize impedance, abrasive creams are often used to remove the outer layers of the skin 

and improve contact between the electrode and the scalp. However, this process can be time-

consuming and uncomfortable for the subject, and in some cases, skin abrasion can cause 

bleeding, which requires additional electrode cleaning and disinfection (Khoa et al., 2013). 

An alternative to using low-impedance electrodes is to use high input impedance amplifiers, 

which can work effectively with high-impedance electrode systems (Kappenman & Luck, 
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2010). These amplifiers can handle the reduced SNR that comes with high-impedance 

electrodes, although they do not solve all issues. One persistent problem with high-impedance 

systems is the presence of skin potential artifacts, which arise from differences in the 

conductance of the skin beneath the electrodes. These artifacts can introduce unwanted 

electrical potentials, which fluctuate over time. To minimize skin potential artifacts, it is 

important to maintain a cool and dry recording environment to reduce sweating, as changes in 

sweat levels can affect the skin’s electrical properties (Kappenman and Luck 2010). 

Electrodes Positioning System 

The electrode positioning systems of 10-20 and 10-10 represent two standardized approaches 

in EEG recordings to get accurate and consistent placement of electrodes on the scalp. Both 

were developed as guidelines that offered a more uniform system so that results obtained 

between different studies and participants could be compared with validity (Jurcak et al., 2007). 

The numbers "10" and "20" refer to the percentage distances between adjacent electrodes - 

taken from the total circumference of the head. In the 10-20 system, electrodes are placed at an 

interval of either 10% or 20% from this distance, providing balanced coverage of the scalp with 

a reasonable number of electrodes (Fig. 7 Left). This system is widely used for clinical EEG 

recordings with 21 electrodes. The 10-10 system is an extension of the 10-20 system because 

it inserts electrodes at 10% intervals, resulting in a much higher electrode density amounting 

to 64 or more electrodes (Fig. 7 Right) (Oostenveld & Praamstra, 2001). This is considered to 

be especially useful for research studies where finer spatial resolution is required. In both 

systems, electrode positions are named using a combination of letters and numbers. 

Letters identify the scalp region underneath which the electrode is positioned: F for frontal, T 

for temporal, P for parietal, O for occipital, C for central. Numbers refer to the relative position: 

odd numbers are on the left hemisphere, even numbers are on the right hemisphere, "z" 

indicates electrodes along the midline. This standardized system allows for the precise and 

repeatable positioning of electrodes, which is very important in ensuring recordings of brain 

activity come from the same regions in subsequent sessions or different subjects. Although the 

10-10 system is more appropriate for research where detailed spatial mapping of brain activity 

is a critical factor, the 10-20 system can normally suffice in routine clinical use (Jurcak et al., 

2007). 

https://paperpile.com/c/u0lO4d/q5Bh
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Figure 7. EEG Positioning Systems. Left: 10-20 positioning system. Right: 10-10 positioning 
system with colors representing the different major brain regions. 

2.2.4. Signal Artifacts 

EEG is known to produce a relatively noisy signal due to the distance between the sensors and 

the brain's signal source and the various contaminants that can affect its quality. Artifacts—

any measured signals that do not originate from the brain—are common in EEG recordings. 

These artifacts can be physiological, such as those caused by eye blinks, cardiac activity, or 

muscle movements; they can also stem from instrumentation issues like faulty electrodes, line 

noise, or high electrode impedance; or they can be environmental, such as head or limb 

movements. These artifacts can introduce bias into analyses or compromise the overall quality 

of the signal, making their identification and removal crucial for accurate EEG interpretation 

(Jiang et al., 2019). 

Physiological artifacts 

Eye movements and blinks can propagate across the scalp and be detected as part of the EEG 

signal, causing ocular artifacts, which represent a significant source of interference in EEG 

recordings (Wallstrom et al., 2004). Specifically, eye movement artifacts are generated by 

changes in the orientation of the retina and cornea dipole, while blink artifacts result from 

variations in ocular conductance due to the cornea's contact with the eyelid. Due to the volume 

conduction effect, both ocular artifacts and EEG activity spread to the surface of the head and 

are recorded by the electrodes. These ocular signals can be measured using electrooculography 

(EOG), which typically has a much greater amplitude than EEG signals and shares a similar 

frequency range (Fig. 8) (Wallstrom et al., 2004). It is important to note that EEG data can be 
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contaminated by EOG signals, and conversely, EOG signals can also be affected by EEG 

activity.  

Muscle artifacts, also known as electromyography (EMG) artifacts (Fig. 8), are a significant 

challenge in EEG data analysis due to their origin from various muscle groups and their wide 

frequency distribution (Goncharova et al., 2003). These artifacts are caused by muscle activity 

near the EEG recording sites, such as when a subject talks, swallows, or moves, making them 

particularly problematic in uncontrolled environments (Urigüen & Garcia-Zapirain, 2015). 

Unlike ocular artifacts, EMG contamination is more difficult to eliminate because it arises from 

the electrical activity generated by contracting muscles across the head, face, and neck, leading 

to a broad spectral distribution that can overlap with all classic EEG frequency bands. For 

instance, EMG activity often overlaps with the beta (15–30 Hz) and alpha (8–13 Hz) bands, 

but can also be as low as 2 Hz, making EEG signals especially vulnerable to interference 

(Urigüen & Garcia-Zapirain, 2015). 

The amplitude and waveform of EMG artifacts vary depending on the degree of muscle 

contraction and the type of muscle involved, making these artifacts difficult to characterize and 

stereotype. Additionally, EMG signals can be detected across the entire scalp due to volume 

conduction, and they exhibit substantial statistical independence from EEG activity both 

temporally and spatially. This independence suggests that techniques like Independent 

Component Analysis (ICA) may be suitable for removing EMG contamination (Chen et al., 

2016). However, EMG artifacts are particularly challenging to correct because they are 

temporally mixed with various experimental conditions, such as cognitive load and 

vocalization, and lack the repetitive patterns seen in other biological artifacts. This complexity 

underscores the difficulty in effectively isolating and removing EMG artifacts from EEG 

recordings. 
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Cardiac artifacts in EEG recordings arise primarily from the electrical activity of the heart, 

measured by the electrocardiogram (ECG) (Fig. 8), and from pulse artifacts when an electrode 

is placed over or near a blood vessel. ECG artifacts typically have a low amplitude on the scalp, 

but this can vary depending on electrode placement and individual body types. The ECG has a 

distinct, repetitive pattern, which can sometimes be mistaken for epileptiform activity, 

especially when it is faintly visible in the EEG. Despite this, ECG artifacts are relatively easy 

to correct since they are routinely recorded alongside cerebral activity, providing a reference 

waveform for artifact removal (Lee et al., 2015). 

Figure 8. Physiological artifacts on EEG signal. (Taken Jiang et al., 2019) 

In contrast, pulse artifacts are more challenging to address. These occur when an EEG electrode 

is positioned over a pulsating vessel, such as a scalp artery, leading to slow periodic waves that 

can resemble actual EEG signals (Hamal & Rehman, 2013). The frequency of pulse artifacts is 

typically around 1.2 Hz, making them difficult to differentiate from EEG activity due to their 

similar waveform. However, pulse artifacts generally affect only one electrode and can be 

minimized by careful sensor positioning. A direct relationship exists between ECG and pulse 

activity, with pulse waves occurring at regular intervals preceding the ECG. While ECG 

artifacts can be mitigated using a reference waveform, pulse artifacts are more stubborn due to 

their similarity in time and frequency to the underlying EEG signal (Hamal & Rehman, 2013). 

Non-physiological artifacts 

The measured EEG signal is also contaminated by various non-physiological artifacts, caused 

by external environmental factors unrelated to the body's physiological processes. A common 
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cause of these artifacts is movement in electrodes, whereby even the slightest of movements 

may cause spurious signal spiking. Likewise, an imbalance in electrode impedance — often 

due to insufficient contact between electrodes and the scalp — can introduce errors into 

recordings by boosting noise or attenuating actual EEG signals. Another common non-

physiological artifact is caused by powerline interference, often around 50 or 60 Hz due to 

electromagnetic fields from other electrical devices in the environment. Furthermore, any 

movement in the head body or limbs while recording EEG can lead to an artifact as this may 

shift electrodes or induce muscle noise that would interfere with signals obtained. Of all the 

types of artifacts, non-physiological artifacts are particularly difficult to control as they 

frequently share a frequency range with actual EEG activity which can only be minimized 

through attention toward electrode placement, impedance balancing and minimization of 

environmental noise (Kaya, 2022). 

2.2.5. Preprocessing 

An EEG data preprocessing pipeline specifies a step-by-step procedure of remodeling the raw 

EEG data into a cleaner signal by removing unwanted artifacts and noise, thereby converting 

the measured signal into a more suitable format for analysis and interpretation (Fig. 9). Several 

preprocessing techniques have been developed and described within the published literature; 

for this work, we chose the Harvard Automated Processing Pipeline for 

Electroencephalography (HAPPE), a state-of-the-art standardized and automated 

preprocessing software  (Lopez et al., 2022). We specifically used HAPPE in Low Electrode 

EEG (HAPPILEE) for lower density recordings (<32 channels). The main steps in the pipeline 

are described in detail below and can be seen in the schematics (Fig. 9).  

 

Line noise processing 

HAPPILEE successfully mitigates electrical noise at 60 or 50 Hz by multiple tapers regression 

that is based on the CleanLineNoise program (Tim Mullen, 2012). This technique is capable of 

detecting and removing common sinusoidal signals at particular frequencies (e.g., electrical 

noise), without overly affecting or corrupting the source EEG signal within those and nearby 

frequency bands—a phenomenon commonly observed with traditional notch filtering 

techniques for line-noise processing. The multi-taper regression (CleanLineNoise) searches for 

line-noise signals around the user-specified frequency ± 2Hz, using a combination of 
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approaches. This control method is capable of narrowing in with a high degree of precision on 

the electrical noise frequency (setpoints are selectable at 60 Hz and 50 Hz). For similar 

cleaning, users may also define harmonic frequencies (e.g., 30 Hz & 15 Hz) or close 

frequencies using a nearby frequency pair (e.g., use both pairs: 59 Hz and 61 Hz for a specific 

location like a 60 Hz signal). HAPPILEE calculates the quality control metrics for regular 

sinusoidal signal removal at these frequencies and automates their output as a quality 

assessment report. 

Band-pass filtering 

Filtering of the EEG signal is necessary in order to isolate relevant frequencies and improve 

the signal-to-noise ratio (i.e., for ERP analyses or isolating frequencies generated by different 

sources), but it can also help filter unwanted frequencies. However, if not undertaken carefully, 

setting the filtering options can distort your data in a harmful way (see Tanner et al., 2015; 

Widmann et al., 2015) for why some EEG filters are problematic) both by themselves and in 

combination with other processing steps. 

HAPPILEE uses the pop_eegfiltnew function in EEGLab, which applies a zero-phase 

Hamming-windowed sinc FIR filter, for preliminary filtering before channel rejection (if 

selected by the user) and applying artifact correction methods across all files. During 

preprocessing of resting-state EEG or task-based data for time-frequency analyses, this entails 

applying a band-pass filter ranging from 1 to 100 Hz. The higher cutoff for the low-pass filter 

at 100 Hz allows better detection of bad channels, and improves artifact correction, especially 

for EMG and other high-frequency artifacts that can contaminate the data. 

Bad channel detection 

HAPPILEE also provides a way to detect channels that contain no usable brain data (e.g., due 

to high impedance, broken electrodes/connections, poor scalp contact, excessive movement, or 

muscle-related artifacts like EMG noise). Users can choose to initiate the bad channel detection 

or skip it; however, it does run through the subsequent processing steps with all channels. In 

the chosen automated pipeline, different steps were employed to detect and remove bad 

channels, but some common techniques should be modified because they were designed for 

high-density EEG (especially those based on standard deviations), so these methods may not 

work well in low-density EEG. 

Artifact correction  
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The raw EEG data quality usually suffers from various artifacts (e.g., motion, electromyogenic 

activity, or eye movement/blink) that need to be tackled during preprocessing steps. 

Historically, artifact-laden timestamps were generally recognized by visual inspection of the 

data and executing a removal of epochs for affected electrodes, an approach referred to as 

artifact rejection. HAPPILEE instead uses wavelet thresholding methods for artifact correction, 

without the removal of any timepoints. This artifact correction is performed on every electrode 

individually, and is therefore applicable for any channel density, from single-electrode 

recordings upwards. Since the performance of wavelet thresholding does not depend on 

channel density, it can always be expected to work reasonably well (i.e., to capture meaningful 

patterning) irrespective of whether high- or low-density setups are used. This property also 

pushes wavelet-thresholding to an optimal selection for many low-density EEG setups.  

Wavelet-thresholding consists of three main steps (Lopez et al., 2022): 

Step 1: Apply the wavelet transform. The EEG data is subjected to the wavelet transform, which 

consists of fitting a wavelet function to represent signals over time and dividing them into 

various frequency regions (similarly to bandwidths). Wavelet functions provide a class of 

orthogonal bases, which are compressed in various forms (families) and applied to different 

signal compression, denoising, or representation tasks. These wavelet functions resemble the 

oscillatory shape of EEG data. Not only that, but the temporal resolution of these wavelet 

functions is also very good, which means that they can represent information in time and 

frequency accurately. The process carries the selected wavelet function over all time points, 

producing a set of coefficients describing how well this signal fits at every point in the 

timeseries. It is important because good fitting for EEG signals depends on the function 

selection, affecting artifact-correction integrity. The transform also decomposes the EEG signal 

into several frequency bands, and coefficients quantify variations of the signal within each 

frequency band separately. As a result, the wavelet transform works similarly to a frequency 

filter, which is subsequently reversed and does not leave any footprint in the remaining EEG 

data. Each wavelet function comes with a resolution level, or level of decomposition, that 

dictates the number of these frequency bands into which the EEG signal will be separated 

(higher levels parse out lower frequencies into finer and finer bins). When the resolution level 

is not determined appropriately, useful low-frequency information can be lost during 

thresholding. 



   34 

Step 2: Threshold the data to isolate artifact signals. Wavelet transform coefficients that 

describe the EEG within each frequency bin are then thresholded to remove artifact signals 

from neural signals. This is precisely the aspect that allows for artifact detection at specific 

frequency bands relative to neural data within those same frequencies—a foundational property 

of the wavelet-thresholding's success with EEG signals. Since the artifact signal is of a greater 

magnitude than the neural signal at similar frequencies and occurs less predictably among the 

fluctuations in this frequency range due to brain-related activity, wavelet coefficients 

displaying these features are identified as being from an artifact-signal component, which will 

then be subtracted directly from the data through thresholding. However, if the resolution level 

of a wavelet is set too low, band-passed neural data—specifically with lower frequency and 

presumably higher electrical amplitude than other frequencies in EEG signals—is erroneously 

classified as an artifact.  

The threshold can be determined and applied to all frequency ranges (level-independent 

threshold) or adapted independently per frequency band based on the signal characteristics at 

that specific range (frequency-dependent thresholds). This level-dependent threshold is utilized 

by HAPPILEE to fit the properties of artifacts unique to each frequency spectrum. After 

applying the threshold to identify which wavelet coefficients (representing pieces of the EEG 

signal) are above the threshold, they can be subtracted as artifact-related signals. Additionally, 

the treatment of these thresholded coefficients can be resolved in multiple ways known as 

"threshold rules." HAPPILEE employs a hard threshold (i.e., the sub-threshold coefficient is 

entirely removed from the data) to uniquely separate artifact-related signals. Other rules, such 

as the soft threshold, instead downweight these sub-threshold coefficients closest to the optimal 

value in the data. If these steps collectively are not optimized for EEG signals, this can lead to 

either incomplete artifact correction or attrition of the neural signal altogether. After 

successfully separating the artifact signal from the neural signal, this information can be 

removed by performing an inverse wavelet transform and subtraction without influencing the 

timepoints where dominant underlying neural signals are present. 

Step 3: Inverse wavelet transform and subtraction of thresholded (artifact) signal. Finally, 

artifact-related coefficients can be transformed back to the signal time series using the inverse 

function of the wavelet transforms. The HAPPILEE wavelet function set accomplishes this 

without damaging data in any space: phase, amplitude, or frequency. This inverse transform 

produces an artifact time series, which is then subtracted from the electrode's original time 

series, resulting in the artifact-corrected signal. Since waveleting is a method that is time- and 
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frequency-specific, the artifact time series will be mostly zeros where no artifactual pattern 

appears in a temporal region of data, ensuring that this subtraction doesn't disturb any brain 

signal not contaminated by the artifact. This aspect distinguishes wavelet-thresholding from 

other methods like ICA, which do not consistently maintain such constraints and may introduce 

distortions in signals outside the artifact period. The wavelet-thresholded artifact-corrected 

signal may then proceed to further pre-processing steps like re-referencing. 

Re-Referencing  

Although there is no perfect reference for EEG, re-referencing using various pragmatic though 

imperfect options can cancel out artifact signals shared across electrodes (e.g., residual line-

noise) while recovering signals from online reference channels of interest. If re-referencing, 

the user can either average-reference across channels, reference to one or multiple other 

electrodes' subset of channels or use the reference electrode standardization technique (REST) 

at infinity (for more on REST, see Yao, 2001). This highlights the importance of a reflective 

decision between re-referencing methods per dataset, particularly when using a low-density 

montage (e.g., Junghöfer et al., 1999). Users may re-process data with different options to 

assess how a re-referencing scheme affects their results. 

One major concern with low-density layouts is inter-electrode distance. Since the number of 

channels is limited, re-referencing to one or a subset of channels may lead to biases if the 

electrodes are far apart on the scalp If the reference electrode is close to some electrodes but 

far from others, it may only reflect an artifact of electrical activity obtained at a macro level 

(Lei and Liao 2017). If the user decides to re-reference to a channel subset, they must ensure 

that these channels' amplitudes are comparable in magnitude with signals from other electrode 

sites and that they are not involved in task-induced activity (Kim, 2018). 

 

https://paperpile.com/c/u0lO4d/KKPl
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Figure 9. Schematic diagram of the HAPPILEE pipeline's pre-processing steps. (Taken 
from Lopez et al., 2022) 
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2.3. Method of Analysis 

In order to extract meaningful information about the underlying brain dynamics from EEG 

data, several quantitative methods of analysis have been developed throughout the years. In 

this work, we performed a connectivity analysis, which calculates statistical dependence and 

information flow between cortical regions (i.e. EEG channels). This technique was 

implemented via the use of several Python libraries (MNE) and MATLAB based software such 

as EEGLab (Delorme, 2004) and Brainstorm (Tadel et al., 2011) and are further detailed below. 

2.3.1. Connectivity Analysis 

There has been a growing interest in studying brain function not only by identifying variations 

in activation of brain areas but also by mapping the interactions among the neural assemblies 

distributed across brain regions. This concept is addressed in neuroscience as the functional 

integration principle, i.e. the coordinated activation of neural populations distributed across 

different cortical areas that constitute brain-wide distributed functional networks. Integration 

of cerebral areas can be measured by estimating brain connectivity in two different ways: 

structural or functional connectivity.  

Structural connectivity is defined as the degree to which regions are anatomically connected 

by fiber pathways that track over extended regions of the brain (Park & Friston, 2013). 

Anatomical connectivity is usually estimated using a combination of imaging modalities such 

as magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) and mathematical 

modeling to map the white matter fiber tracts that connect distant brain structures (Gong et al., 

2009). Neuroanatomical connectivity was not an object of study in this work, but it represents 

an important component of several other connectivity analyses as it establishes the anatomical 

structure underlying most functional networks. 

Functional connectivity is defined as the temporal correlation of neurophysiological events 

occurring in anatomically separated brain regions (Fingelkurts et al., 2005). A variety of 

neurophysiological signals can be studied through the lens of functional connectivity, including 

signals originated from LFP measurements, EEG, magnetoencephalography (MEG), positron 

emission tomography (PET), fMRI and functional near infrared spectroscopy (fNRIS). Various 

mathematical methods exist to estimate the temporal correlation between pairs of signals, with 

each method being more appropriate for specific signal types and the particular objectives of 
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the analysis. In this work, we chose phase lag synchronization as the main technique to estimate 

functional connectivity. 

Phase Synchronization  

The concept of phase synchronization comes from the description of chaotic oscillators in the 

synchronous regime where the phases are locked or simply bounded by a constant value 

(Rosenblum et al., 1996). Defining 𝜙1 and 𝜙2 as the phases of two time series 𝑥1 and 𝑥2, and 

𝛥𝜙 the phase difference between them (Fig. 10), the phase synchronization holds as long as:  

       𝛥𝜙 = 𝜙2 − 𝜙1 < 𝑐𝑜𝑛𝑠𝑡      (1) 

Figure 10. Illustration of the phase difference 𝜟𝝓 of two simulated signals 𝒙𝟏(𝒕), 𝒙𝟐(𝒕). 

In order to calculate the instantaneous phase of the signals, we use the Hilbert transform to 

obtain the analytical signal 𝑧(𝑡) which is complex valued with 𝑥(𝑡) a real time series and 

�̂�(𝑡) its corresponding Hilbert transform, 

      𝑧(𝑡) =  𝑥(𝑡)  +  𝑖�̂�(𝑡)  =  𝐴(𝑡)𝑒𝑖𝜙(𝑡)    (2) 

where the imaginary component is obtained via the following integration: 

            �̂�(𝑡)  =  
1

𝜋
𝑃 ∫

𝑥(𝜏)

𝑡−𝜏
𝑑𝜏

∞

−∞
      (3) 

where P refers to the Cauchy principal value. From Eq. 2, we can determine the signals both 

instantaneous amplitude A(t) and phase 𝜙(𝑡) by: 
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     𝐴(𝑡)  =  √[𝑥(𝑡)]2 + [�̂�(𝑡)]2  and 𝜙(𝑡)  =  𝑎𝑟𝑐𝑡𝑎𝑛 (
�̂�(𝑡)

𝑥(𝑡)
) (4) 

The phase lag index (PLI) was an idea introduced as a way of estimating phase synchronization 

that remained unaffected in the presence of common sources such as volume conduction and 

active reference electrodes (Stam et al., 2007). A way to achieve this is by defining an 

asymmetry index for the distribution of all phase differences at a given time interval. If the 

phases are not coupled in any way, this distribution is expected to be flat and centered around 

zero. Any deviation from this flat distribution indicates some degree of phase synchronization. 

Lack of symmetry of the 𝛥𝜙 distribution around zero implies that the likelihood that the phase 

difference will be in the interval −𝜋 < 𝛥𝜙 < 0 is different than the likelihood of it being in 

the interval 0 < 𝛥𝜙 < 𝜋. This asymmetry represents a nonrandom nonzero phase difference 

between the two signals in that time interval, one that cannot be explained as a consequence of 

volume conduction from a single source, since these influences affect both signals 

simultaneously. In the case of no signal coupling, the distribution is expected to be flat, or the 

median phase difference is expected to be equal to or centered around a value of 0 mod 𝜋. It is 

the latter case in which standard measures of phase synchronization provide large values, while 

the proposed index provides small ones. For a time series of phase differences, an index of the 

asymmetry of the distribution can be calculated as follows: 

 

  

 (6) 

 

The PLI value ranges between 0, indicating either no phase coupling or coupling with a phase 

difference centered around 0 mod 𝜋, and 1, indicating perfect phase locking at a value centered 

around 𝛥𝜙 different from 0 mod 𝜋. When estimating the PLI, small signal perturbations can 

sometimes turn phase lags into leads and vice versa, this hinders the PLI's sensitivity to noise 

and volume conduction, a problem that becomes more serious for synchronization effects of 

smaller magnitude. To better detect changes in phase synchronization, Vinck and colleagues 

(Vinck et al., 2011) proposed an improved index, called the weighted phase-lag index (wPLI), 

defined as: 

       

       (7) 
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PLI is especially susceptible to alterations due to noise when the noise source is symmetrically 

distributed, this is because PLI simply detects whether the phase lag is consistent in one 

direction, ignoring the magnitude of the phase difference. wPLI, on the other hand, addresses 

this problem by providing more weight to phase differences that are far from 0 mod 𝜋, meaning 

it puts a larger emphasis on phase differences that are stronger and less likely to be related to 

noise, reducing false detections of synchronization caused by artifacts. wPLI also improves the 

handling of volume conduction by further reducing the impact of zero-lag interactions, i.e., 

more effectively dealing with zero-lag phase relationships caused by volume conduction than 

PLI alone.  

Having chosen wPLI as our preferred method of estimating functional connectivity, for each 

subject, connectivity matrices were derived for each epoch and frequency band of interest, 

where each matrix element represented the wPLI value between a pair of EEG channels (Fig. 

11). For subsequent statistical analyses, these matrices served as the basis for generating 

undirected weighted graphs that were utilized for studying and comparing connectivity patterns 

utilizing metrics defined by graph theory, described in detail in the following section.  
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Figure 11. Example of a connectivity matrix derived from applying pairwise wPLI 
measurements to all electrodes. 

2.3.2. Graph Theory 

As the field of neuroscience moved away from modeling the brain as a collection of localized 

functions and towards a more integrative understanding of function emerging from networks 

formed through the complex interplay and communication of several regions, mathematical 

tools have emerged to study and quantify these networks properties. One such tool is graph 

theory. 

In discrete mathematics, graph theory is used to represent and model pairwise relations between 

objects through the study of graphs, which are mathematical structures made up of vertices 

(also called nodes) which are connected by edges. Formally, a graph G is defined as an ordered 

pair G = (V, E) where V is the set of vertices and E represents the edges between them. These 

edges may be either directed or undirected, depending on whether the relationship between 

vertices is mutual (undirected) (Fig. 12B) or directional (directed) (Fig. 12A). 
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Figure 12. Examples of different graph types and their respective matrices. 

Different properties and characteristics give rise to various types of graphs. In undirected 

graphs, the edges link two vertices in a non-oriented way (e. g., they do not have any direction), 

whereas directed graphs use an attribute for each edge that specifies the directionality of each 

vertex. Non-weighted graphs have only binary edges, i.e. they contain only zero or one values, 

whereas the connections in weighted graphs have weights or values that usually represent the 

edge's strength and capacity. Graph theory facilitates the investigation of crucial structural 

properties via graph metrics, e.g., degree, centrality, clustering and path-length, each one 

yielding different information on how networks are organized (topology) on a global and/or 

local scale.  
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2.3.3. Common Graph Metrics 

Degree. A graph's total number of edges determines its size, and its total number of nodes 

indicates its order (Bessa A. D., 2010). The number of links that surround every node is 

equivalent to the degree attribute. The degree of node i (di) in an undirected binary graph is 

determined by:  

       𝑑𝑖 = ∑ 𝑎𝑖𝑗
𝑁
𝑖=1       (8) 

where N is the total number of nodes and 𝑎𝑖𝑗 = 1 if a link exists between i and j and 𝑎𝑖𝑗 = 0 if 

not. One can apply the degree to weighted graphs by simply substituting 𝑎𝑖𝑗 for 𝑤𝑖𝑗 , where 𝑤𝑖𝑗  

is the weight value for that link. 

A graph's mean degree (also called global degree) is just the arithmetic mean of all nodal 

degrees. In the case of an undirected graph, this implies:  

       〈𝑑〉 =
1

𝑁
∑ 𝑑𝑖

𝑁
𝑖=1      (9) 

The "degree distribution" is a crucial feature when studying a graph's degree. It displays the 

likelihood P(di) that a that node i has degree d and can be best visualized in the form of a 

histogram (Fig. 13). 

Figure 13. Example of a histogram of a graph's degree distribution. 

 

Characteristic Path-length (efficiency). To understand how efficiently information flows 

through a graph, one can study the "distance" of a path between two nodes. In an unweighted 

network, the distance between two vertices is equal to the number of edges in the shortest path 

that connects them. In a weighted graph, the distance is defined as the sum of the inverse 

weights along the edges in the shortest path between two vertices, where lower weights imply 
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larger distances, thus, making nodes with lower weighted connections between them, further 

apart. The average of all the distances between all pairs of vertices in a network is the typical 

path length, also known as the average path length. The average of all the reciprocals of the 

non-zero distances in a network is its global efficiency (Latora & Marchiori, 2001). 

Based on this concept, it becomes possible to construct a graph distance matrix (L): a square 

matrix where each element 𝑙𝑖𝑗 represents the defined distance between nodes i and j. 

For each node i, one can define the average shortest path length by averaging the distance from 

i to every other reachable node in the graph.  

        〈𝑙𝑖〉 =  
1

𝑁
∑ 𝑙𝑖𝑗

𝑁
𝑗=1                       (10) 

And the mean value of every 𝑙𝑖 represents the network's average shortes path. 

       〈𝑙〉 =
1

𝑁
∑ 𝑙𝑖

𝑁
𝑗=1                 (11) 

From these definitions, it is also useful to define the global efficiency of a network as the 

average of the inverse of the shortest path lengths between all pairs of nodes in the network: 

       𝐸𝐺𝑙𝑜𝑏𝑎𝑙 =
1

𝑁(𝑁−1)
∑

1

𝑙𝑖

𝑁
𝑖=1                          (12) 

Clustering Coefficient (CC). The CC measures the tendency of nodes to cluster together, i.e. 

the degree to which nodes in a graph tend to form tightly knit groups characterized by a high 

density of edges. In an unweighted graph, it provides the probability that the adjacent nodes of 

a node are connected and can be defined as (Wasserman & Faust, 1994): 

              𝐶 =
# 𝑜𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑖

# 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
              (13) 

Where the numerator counts all instances where three nodes form a closed triangle (closed 

triplets) and the denominator counts all instances of connected triplets, both open and closed 

(connected triplets). This ratio provides the probability that the two neighbors of a node are 

themselves connected, offering a global insight into the network's clustering tendency 

(Wasserman & Faust, 1994). 

In weighted graphs, where edges carry a weigh 𝑤𝑖𝑗  representing the strength of the connection 

between nodes i and j, the clustering coefficient can be extended to incorporate these weights. 

(Barrat et al., 2004) proposed a weighted clustering coefficient defined as: 
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     𝐶𝑖
𝑤 =  

1

𝑠𝑖(𝑑𝑖−1)
∑

(𝑤𝑖𝑗+𝑤𝑖ℎ)

2
𝑎𝑖𝑗𝑎𝑗ℎ𝑎ℎ𝑖𝑗,ℎ                          (14) 

where si is the strength of node i, representing the sum of the weights of all edges connected 

to it, di is the node degree, 𝑎𝑖𝑗 is the element of the adjacency matrix, equal to 1 if nodes i and  

j are connected, and 0 otherwise. 

2.3.4. EEG-based Functional Networks 

EEG records the brain's electrical signals through electrodes in the scalp. Each electrode 

captures signals from different brain regions and therefore reflects some of the dynamic 

interactions between those regions. These interactions can best be modeled using a graph-

theoretical approach, where each brain region represents a vertex and the edges represent the 

interactions among these regions, derived from the similarity between their respective EEG 

signals. Typically, these connections are evaluated using some similarity measure, such as 

phase–phase synchronization with mutual information or cross-correlation, to assess the 

functional couplings among different brain areas. 

In this context, functional connectivity can be represented as an undirected weighted graph, 

where how much two brain regions are functionally connected determines the weight of the 

edge connecting the vertices. A higher phase-synchronization between two EEG signals 

implies a stronger FC, and therefore, a more heavily weighted edge in the graph. 

The graph-theoretical measures defined above may be used in the analysis of EEG data. Brain 

regions with high degree may be considered as important hubs, which are likely critical for 

integrating information across different parts of the brain. Another key determinant is the 

clustering coefficient, which denotes nodes from one group being densely concentrated. High 

clustering coefficients in EEG-based graphs, for example, are indicative of more localized and 

synchronous typical work-load level activity emanating from functional brain networks 

specialized to a certain aspect in cognitive processing (Ismail & Karwowski, 2020). The 

average path length (efficiency), which is a measure of the mean distance between nodes in the 

network, is indicative of how efficiently information is transferred through the brain (Thilaga 

et al., 2018) 

Notably, EEG networks often display properties of small-world complex systems characterized 

by high clustering coefficient and short path length. These small-world properties have been 

suggested to facilitate locally and globally distributed information processing in the brain 

supporting successful cognitive function (Liao et al., 2017). Graph metrics extracted from such 
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graph-based EEG analysis can reveal important information about the abnormalities in brain 

connectivity that underlies diseases like epilepsy, Alzheimer's disease and schizophrenia. 

Research of these disruptions and how they impact the communication between different brain 

areas help shed light on what is happening in those disorders. For example, in epilepsy the 

graph measures might show that information cannot flow as efficiently or network hubs are 

reduced (Royer et al., 2022). Similarly, in Alzheimer's disease, the loss of small-world 

characteristics in the brain's network is often linked to the progressive decline in cognitive 

abilities (Liu et al., 2012). 
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3. MATERIALS & METHODS 

3.1. Study design and participants recruitment 

A cross-sectional and quasi-experimental study design was employed by our collaborators 

(José Pedro Correia and Sandro Freitas) at the University of Lisbon at the start of the 2021/2022 

football season to accomplish the study objectives. The study was advertised among local 

football male teams. Players with at least five years of football practice, training three times 

sessions plus a match per week, and with no active injury limiting performance were invited to 

participate in this study. Players who reported to be goalkeeper, with a history of knee, thigh, 

hip, or CNS structural injury or surgery, who practiced other sports or structured physical 

activity twice per week or more in the last 2 years, or who had any condition preventing the 

player from completing the study protocol were excluded to participate in the study. A total of 

124 players (24.3 ± 4.2 years old) were included in the study, 39 (31.4%) of which had a history 

of HSI in the previous two seasons. All participants provided a consent form before the tests, 

and this study was approved by the Ethics Committees of both Portugal (#15/2021) and Brazil 

(CEP nᵒ 0168/2024). 

3.2. Protocol 

Upon arrival, individuals completed anthropometric and clinical screening and performed a 5-

minute warm-up on a stationary bicycle (Ergomedic 828E, Monark) at approximately 70 

revolutions per minute. Following the warm-up, individuals were familiarized with the 

maximum knee flexion/extension movement rate task in a prone position, which has been 

described previously (Correia et al., 2024). Individuals were given the necessary time to 

familiarize themselves with the correct range of movement and to demonstrate being able to 

perform the required range at full speed for a few seconds. Participants were instructed to 

perform alternating repeated flexion/extension movements with both legs as fast as they could 

between 45° and 90° of knee flexion (Fig. 14A). The task consisted of eight 10-second blocks 

of fast bilateral alternating knee flexion/extension movements with a 5-second rest between 

blocks. The 10-s duration was chosen since this period has been found to show the greatest 

decrease in movement rate (Bächinger et al., 2019). Verbal encouragement was provided 

during the task in order to ensure a maximum effort. 



   48 

3.3. Clinical anamnesis 

A sports physiotherapist with more than 10 years of professional practice enquired all 

participants regarding their demographic, injury, and football-related data. Regarding the 

hamstring injuries specifically, information on the date of injury occurrence, context, 

mechanism, time loss (until return to play), time since injury, and injured limb were obtained. 

A retrospective period of two seasons has previously been used in studies of football-related 

HSIs (Røksund et al., 2017; Schuermans et al., 2014). Additionally, the accuracy of hamstring 

injury self-reporting has been previously confirmed (Gabbe et al., 2003). Nevertheless, when 

possible, the club's clinical department was asked to validate the information.  

3.4. Brain electrical activity 

EEG data were collected during the whole task using a Vertex SC823 device (Meditron 

Eletromedicina Ltda, São Paulo, Brazil) (Fig. 14C). Cz alignment was performed using the 

midpoints of the inion and nasion in the sagittal plane and the two preauricular points in the 

coronal plane as reference, with the remaining electrodes placed according to the international 

10–20 system. A total of 24 channels were used. Online referencing to two mastoid electrodes 

was performed and the sampling rate was 250 Hz. A circuit impedance of 10 kΩ was ensured 

in all electrodes prior to starting data collection and a 0.1-70 Hz analog band-pass filter was 

applied by the amplifier. 

3.5. Data analysis 

Injury severity and time since injury 

Demographic and football-related data were obtained from players, including height, weight, 

playing position, HSI history in the previous two seasons, time loss due to HSIs, and time since 

injury. We defined an injury severity index as the injury severity score minus the number of 

days since the injury times an arbitrary constant (C).  

   𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 =  𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 −  𝐶 ∗ 𝐷𝑎𝑦𝑠 𝑠𝑖𝑛𝑐𝑒 𝐼𝑛𝑗𝑢𝑟𝑦             (15) 

Where the injury severity score is defined using the number of days lost due to injury 

(i.e., without being able to train/play) as: 1: minimal, 1-3 days; 2: mild, 4-7 days; 3: 

moderate, 8-28 days; 4: severe, >28 days (Fuller et al., 2006). 

EEG 
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The EEG signal underwent preprocessing using the HAPPILEE pipeline, a standardized 

software for low density EEG data processing (Lopez et al., 2022). 50-Hz line noise reduction 

was performed using the CleanLine method. Subsequently, data were filtered with a 1-100 Hz 

bandpass filter using EEGLAB's FIR filter, ensuring the removal of slow drifts and fast noise 

components. Bad channel detection was enabled and executed, also with EEGLAB, prior to 

wavelet thresholding to identify and eliminate channels that might introduce noise. The 

pipeline also incorporated wavelet thresholding with default settings to denoise the EEG 

signals in the time-frequency domain. The MuscIL feature of HAPPE (Gabard-Durnam et al., 

2018) was utilized to specifically address and remove muscle artifacts that frequently 

contaminate EEG recordings. Finally, the EEG data were re-referenced to the average of all 

electrodes, a standard procedure that offers a neutral reference and improves the clarity of the 

EEG signal. 

Functional Connectivity (FC). Pairwise connectivity metrics were calculated for all electrodes 

for each epoch in the following frequency bands: theta (4-7 Hz), alpha (8-13 Hz) and beta (13-

30 Hz). In this analysis, we employed the wPLI to estimate the FC between the neural activity 

of each brain region. Connectivity matrices were derived for each individual and epoch, where 

each matrix element represented the wPLI value between a pair of EEG channels. For 

subsequent statistical analyses, these matrices served as the basis for generating undirected 

weighted graphs that were utilized for comparing connectivity patterns both within and 

between the control and injured groups. 

Graph Analysis. Initially, we analyzed three graph metrics—efficiency, degree, and clustering 

coefficient. However, we found that for a fully connected weighted graph, efficiency and 

degree were highly correlated, effectively representing the same metric. Additionally, in the 

context of our research, the clustering coefficient proved challenging to interpret and yielded 

convoluted results. Consequently, we chose to focus solely on the degree metric for its 

simplicity and ease of interpretability. The degree can be assessed both globally (average 

degree across all nodes in the network) and locally (single node degree or average degree across 

a subselection of nodes), providing a comprehensive perspective of the graph's topology. We 

calculated the rest and activity degrees for each node by averaging the degree values across 

corresponding epochs. The degree difference was determined by calculating the average 

percent change in degree for each transition from a rest to an activity epoch. For our subnetwork 

analysis, we grouped individual nodes into predefined networks, as illustrated in Fig. 14B. 
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Figure 14. Experimental setup and electrodes layout. (A) Photo of the experimental setup 
utilized in the motor task protocol employed in the study. (B) Illustration of the electrode layout 
showing the electrode grouping into different networks used for statistical analysis. (C) 
Detailed view of the EEG cap utilized in the experiment. 

Statistical Analysis 

All statistical analyses were conducted using Python libraries such as SciPy and Statsmodels. 

A two-way mixed ANOVA [2 (HSI, No HSI) x 2 (activity, rest)] was conducted to compare 

the global degree between injured athletes and the control group for each frequency band of 

interest (theta, alpha, beta). To identify spatial characteristics and differences between groups, 

a two-way mixed ANOVA [2 (HSI, Control) x 6 subnetworks] was conducted to compare local 

degree changes across six subnetworks (frontal, prefrontal, parietal, central, occipital, 

temporal) and between the injured and control groups. A partial correlation analysis was 

conducted to examine the relationship between four injury parameters (severity score, time 

since injury, time loss due to injury and severity index) and global degree change, as well as 

degree changes across all subnetworks in the alpha band, while controlling for task 

performance (TP) and reported fatigue (RF) among injured individuals. Bonferroni correction 

was applied for multiple comparisons, with significance set at p < 0.05. Effect sizes were 

calculated using partial eta squared (ηp2) values and classified as small (0.01-0.06), medium 

(0.06-0.14), or large (>0.14) (Richardson, 2011). 
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4. RESULTS 

A total of 124 subjects participated in the study, of which 21 goalkeepers were excluded and 4 

did not complete the experimental task. After preprocessing the data, 10 subjects did not meet 

a satisfactory signal to noise ratio and were excluded due to excessive noise in the EEG 

recordings. The following analysis was conducted with the remaining 89 subjects (24.1 ± 4.0 

years old, 30 injured, 59 control). 

4.1. Task-Related Functional Connectivity Changes  

Performing the knee flexion-extension task was generally associated with a significant decrease 

in global degree at the alpha band during activity compared to rest for both groups (HSI: 

p<0.0001, ηp2 = 0.38, control: p = 0.0003, ηp2 = 0.11; Fig. 15A). This decrease was consistent 

across regions, with no significant differences observed between them (p > 0.05), and it did not 

correlate with task performance or reported fatigue. We found no significant differences in the 

theta and beta frequency bands (Fig. A3 & Fig. A4). 

4.2. Group Differences: HSI vs. Control  

When comparing the injured and control groups, there was a significant difference in the 

percentage change in global degree from rest to activity, with the injured group showing a 

greater decrease in connectivity (p = 0.0006, ηp2 = 0.13; Fig. 15B). For the rest epochs, there 

were no significant differences between groups (p = 0.2, ηp2 = 0.02; Fig. 15A), whereas for the 

activity epochs, the injured group presented a significantly lower connectivity (p = 0.006, ηp2 

= 0.07; Fig. 15A). When comparing the sub-networks, we found that the injured group 

presented a significantly greater decrease in connectivity in the frontal (p = 0.0004, ηp2  = 0.17; 

Fig. 15C) and temporal (p = 0.03, ηp2 = 0.08; Fig. 15C) regions when compared to the control 

group. 
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Figure 15. Group comparisons of brain FC at alpha. (A) Boxplot comparing the global 
degree between activity and rest epochs for both injured (blue) and control (red) groups. (B) 
Boxplot comparing the percent change in global degree when transitioning from rest to activity 
for both groups. (C) Boxplot comparing the percent change in local degree for each of the 6 
networks for both groups. (Asterisks indicate statistical significance: ***p < 0.001, **p < 0.01, 
*p < 0.05) 
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4.3. Injury Parameters Correlations  

A partial correlation analysis was conducted to examine the relationship between the graphs' 

global and local degree in the alpha band and 4 injury parameters: days away due to injury, 

days since injury, severity score, and the injury severity index, while controlling for task 

performance, reported fatigue and age among the injured group. No significant correlation was 

found between global degree change and days away due to injury (p=1, r=-0.14, Fig. 16A) and 

days since injury (p=1, r=0.16, Fig. 16B). However, significant negative correlations were 

observed between global degree change and the severity score (p=0.023, r=-0.49, Fig. 16C) 

and the injury severity index (p=0.003, r=-0.58, Fig. 16D). The most significant correlations 

were found in the prefrontal (severity score: p=0.045, r=-0.54; severity index: p=0.077, r=-

0.52), frontal (severity score: p=0.14, r=-0.49; severity index: p<0.001, r=-0.72) and parietal 

regions (severity score: p=0.011, r=-0.60; severity index: p=0.015, r=-0.59). All the results are 

summarized in Table 2. 

Table 2. Results from the partial correlation analysis of injury parameters and network 
degree changes at alpha. Each cell represents the correlation results in the format: [r-value, 
CI95%, p-value]. Bold cells contain significant p-values (p<0.05). 

 Days away due to 
injury 

Days since injury Severity Score Severity Index 

Global [-0.14, (-0.48, 
0.23), 1] 

[0.16, (-0.21, 0.49), 
1] 

[-0.49, (-0.72, -
0.16), 0.023*] 

[-0.58, (-0.78,-
0.28), 0.003**] 

Prefrontal [-0.15, (-0.48, 
0.22), 1] 

[0.08, (-0.29, 0.43), 
1] 

[-0.54, (-0.76, -
0.23), 0.045*] 

[-0.52, (-0.74, -0.2), 
0.077] 

Frontal [-0.12, (-0.46, 
0.25), 1] 

[0.33, (-0.04, 0.61), 
1] 

[-0.49, (-0.72, -
0.16), 0.139] 

[-0.72, (-0.86, -
0.49), 0.00016***] 

Parietal [-0.4, (-0.67, -
0.05), 0.66] 

[-0.01, (-0.37, 
0.35), 1] 

[-0.6, (-0.79, -0.3), 
0.011*] 

[-0.59, (-0.78, -
0.29), 0.015*] 

Central [-0.19, (-0.51, 
0.18), 1] 

[0.09, (-0.28, 0.44), 
1] 

[-0.36, (-0.64, 
0.0), 1] 

[-0.37, (-0.65, -
0.02), 1.00] 

Temporal [0.11, (-0.26, 
0.45), 1] 

[0.14, (-0.23, 0.47), 
1] 

[-0.15, (-0.49, 
0.22), 1] 

[-0.27, (-0.58, 0.1), 
1] 

Occipital [-0.03, (-0.39, 
0.33), 1] 

[0.26, (-0.11, 0.57), 
1] 

[-0.27, (-0.58, 
0.1), 1] 

[-0.41, (-0.67, -
0.06), 0.55] 
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Figure 16. Linear fit between global FC change at alpha and regressed residuals of clinical 
parameters. Graphs of the linear fits between percent global degree change at alpha and the 
regressed residuals of (A) days away due to injury, (B) days since injury, (C) injury severity 
score and (D) injury severity index. 

 



   55 

Figure 17. Linear fit between the regressed residuals of the injury severity index and 
network FC change at alpha. Graphs of the linear fits between the regressed residuals of the 
injury severity index and the (A) frontal, (B) prefrontal, (C) temporal and (D) parietal percent 
degree change at alpha. 
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5. DISCUSSION 

The present study analyzed EEG-based FC variations between injured and control athletes 

during fast bilateral alternating knee flexion/extension movements, focusing on global and 

local degree metrics in the alpha band across activity and rest epochs. To the best of our 

knowledge, this is the first time that this type of analysis has been made within this population. 

While our study primarily focused on the alpha band due to its established role in motor tasks 

and its significant findings related to HSIs, we also analyzed other frequency bands. Despite 

previous findings relating motor function and injury to theta and beta oscillations using power 

analysis (Baumeister et al., 2008; Zhang et al., 2022), we did not encounter any significant 

changes in these frequency bands in our analysis. This absence of significant findings in the 

theta and beta bands suggests that alpha oscillations may play a more prominent role in the FC 

changes associated with HSIs during high-speed knee movement.  

5.1. Alpha Connectivity Reduction During Motor Activity 

The main FC trend observed in our study was a significant decrease in global degree during 

activity compared to rest for both groups in the alpha frequency band (Fig. 15A), indicating a 

widespread reduction in alpha connectivity associated with motor activity. Studies commonly 

refer to a reduction in alpha power during motor tasks as "alpha desynchronization", a 

phenomenon indicative of cortical activation (Neuper & Pfurtscheller, 2001). This 

desynchronization occurs during motor actions, such as imagining or executing movements, 

and is thought to reflect the engagement and activation of sensorimotor areas necessary for the 

planning and execution of motor activities (Di Nota et al., 2017; Fink et al., 2018; Ulanov & 

Shtyrov, 2022). 

Research has consistently demonstrated that alpha desynchronization is a reliable marker of 

motor preparation and execution. For instance, Di Nota et al. (2017) highlighted the role of 

alpha desynchronization in the modulation of sensorimotor rhythms during action observation 

and motor imagery. Similarly, Ulanov and Shtyrov (2022) found that alpha power reductions 

are closely associated with motor task performance, underscoring the link between alpha 

desynchronization and motor activity. These studies use "alpha desynchronization" to reference 

a reduction in alpha power. While this does not mean the same thing as an alpha connectivity 

reduction, the two events are likely very much related. 
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Our study's findings of reduced alpha connectivity therefore likely reflect similar neural 

mechanisms as those observed in the studies on alpha desynchronization. The observed 

reduction in global degree during the execution of knee flexion/extension movements suggests 

the activation of motor-related brain regions. Although alpha desynchronization is expected to 

be more pronounced in the prefrontal and central regions, where the motor cortex is located, 

we did not find significant spatial characteristics in our study. This lack of spatial specificity 

might be attributed to the low spatial resolution of the EEG recordings used, which may not 

adequately capture the finer details of localized brain activity during motor tasks. 

These findings provide a broader understanding of how alpha connectivity reduction during 

motor activities might relate to previously documented phenomenon of alpha 

desynchronization, further linking functional connectivity changes to cortical activation in the 

context of motor tasks. They also contribute to our understanding of how injuries impact brain 

function during motor activities and underscore the importance of considering both global and 

regional changes in connectivity.  

5.2. Differences in Connectivity Between HSI and Control Groups 

The injured group exhibited a significantly greater decrease in global alpha connectivity 

compared to the control group. When examining the global degree during rest and activity, 

there was a significant difference only during the activity phase, indicating that the observed 

differences were predominantly due to FC variations during the execution of the motor task.  

In the subnetworks analysis, the most significant group differences were in the prefrontal and 

temporal regions. The prefrontal cortex is crucial for motor planning and movement 

sequencing, decision-making, and cognitive control, while the temporal cortex includes part of 

the sensorimotor region, which is involved in processing sensory information and integrating 

it with motor commands (Edwards et al., 2019; Pape & Siegel, 2016). Decreased alpha power 

and FC has been associated with increased perceived mental workload and task 

demands/complexity (Raufi & Longo, 2022; Shaw et al., 2019) The reported mechanisms 

behind this decreased connectivity include a top-down reduced cortical disinhibition as a 

response to the need to allocate additional resources to task performance (e.g., attentional, 

visuospatial, and sensorimotor coordination resources) (Shaw et al., 2019). In this sense, our 

findings of decreased alpha FC in footballers with HSI history may mean that these players 

need to use more cortical resources to cope with the demands of this maximal task.  
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Two mechanisms may be behind these differences; either players with HSI history show a 

lower neural efficiency (whether pre- or post-injury), and therefore allocate more cortical 

processing resources to a given task, or the injury led to the need to dedicate more attention to 

spatiotemporal joint parameters during task execution due to the greater reliance on top-down 

(internal motor programs) rather than on bottom-up (peripheral proprioceptive afferences). 

Existing evidence suggests that alpha cortical communication is decreased in less proficient 

motor performance (Babiloni et al., 2011; Del Percio et al., 2011). However, previously injured 

players actually showed greater performance, so this association between alpha FC and task 

performance is unlikely to explain our findings, also considering the lack of correlation 

between task performance and alpha global degree decrease. It therefore seems more likely that 

the increased workload shown by these players is due to the need to allocate more resources 

(perhaps for sensorimotor integration and monitoring of joint parameters) to cope with task 

demands. This is supported by the fact that differences were only seen during activity and were 

most evident in regions associated with motor planning and control. In any case, this greater 

resource use inevitably leads to a lower motor-cognitive reserve, thus decreasing the ability to 

cope with additional and/or unexpected demands during athletic performance (Kamijo et al., 

2007), which potentially increases the injury risk.  

5.3. Alpha Connectivity and Injury Parameters Correlations  

Given our hypothesis that the injury severity and the time since the injury event until the data 

acquisition would have an impact on the measured FC differences, we proposed a model to 

encompass both these effects in a single measure: the injury severity index (Section 2.4). This 

hypothesis was based on the assumption that more severe injuries would result in greater 

alterations in FC, while a longer time since the injury would diminish these effects. Our 

analysis revealed that the injury severity index demonstrated stronger correlations with the 

percent global degree change compared to any single metric alone (Fig. 16), suggesting that 

this combined measure serves as a more accurate predictor of the injury’s impact on alpha 

connectivity. Interestingly, while the correlation between global degree change and days since 

injury alone was not significant (p > 0.05), it was the only metric to show a positive correlation, 

indicating that more time since the injury indeed correlates with a lesser effect on FC (Fig. 

16B). 

If, as suggested by Di Trani (2017), HSIs damage mechanoreceptors and lead to cortical 

adaptations, then more severe and/or recent injuries would induce more damage and cause 
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greater sensorimotor integration difficulty (Roussiez & Van Cant, 2019). This increased 

difficulty would, in turn, require a greater allocation of cortical resources to monitor task 

performance, as reflected by the more pronounced decrease in alpha FC. 

This proposed model of increased cortical resource allocation following HSIs is supported by 

our finding that this correlation was most significant in the frontal and parietal networks (Fig. 

17A & 17D). The frontal network corresponds primarily to the premotor cortex, a region 

responsible for not only the selection, planning and execution of movement (Caminiti et al., 

1991) but also for cognitive functions such as spatial attention and working memory (Simon et 

al., 2002). The parietal network is mainly comprised of the superior parietal lobe, a region 

thought to be essential for sensorimotor integration and for maintaining internal representations 

of the body's current state (Wolpert et al., 1998). Studies have shown that sensory and motor 

deficits can emerge from lesions in this area, underscoring its role in integrating sensory and 

motor signals (Freund, 2001; Wolpert et al., 1998). Overall, the key functions of the main 

affected regions strongly support the hypothesis that the greater alpha FC reduction seen in the 

HSI group reflects an increased cognitive effort requirement for motor planning and 

sensorimotor integration during the execution of the motor task due to injury. 

Alternatively, it is possible that individuals with naturally higher working memory demands 

during motor activity are more susceptible to injuries. This hypothesis aligns with research 

suggesting that variations in neural activity and connectivity can influence an individual’s 

susceptibility to injury, as neural mechanisms play a crucial role in maintaining motor 

coordination and stability (Criss et al., 2020; Diekfuss et al., 2019, 2020). Further research is 

needed to explore this potential bidirectional relationship and to determine whether alpha 

connectivity reduction during motor activity can be used as a predictive marker for injury risk. 

 

5.4. Study Limitations 

While our study provides valuable insights into the impact of HSIs on brain FC in professional 

soccer players, several limitations must be acknowledged. Firstly, the cross-sectional design of 

the study limits our ability to draw causal inferences about the relationship between HSIs and 

changes in FC. Longitudinal studies are needed to establish temporal relationships and track 

changes over time. Secondly, the relatively small sample size may limit the generalizability of 

our findings to the broader population of athletes. Future studies with larger cohorts are 
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necessary to validate and extend our results. Thirdly, the use of EEG, while providing high 

temporal resolution, brings limited spatial resolution compared to other neuroimaging 

techniques such as fMRI. This limitation may affect the precision of localization of cortical 

changes. Lastly, self-reported injury history may be subject to recall bias, which could impact 

the accuracy of the injury severity data. Addressing these limitations in future research will be 

crucial for deepening our understanding of the neural consequences of HSIs and enhancing 

injury management strategies. 
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6. CONCLUSION 

For the first time, we have measured electrical cortical activation patterns during the execution 

of a motor task and were able to detect the influence of an HSI on brain-wide and network 

specific FC parameters. In addition to impairing physical ability, HSIs, known for their high 

recurrence rates and debilitating effects on performance, can also induce proprioceptive deficits 

and modifications in the corticomotor organization. Based on our findings, we suggested that 

the globally reduced alpha connectivity in injured athletes during motor tasks reflects an 

increase in the cognitive effort required to perform the task due to the injury. Considering this 

model of HSI, subsequent studies should include sensory inputs and decision-making 

components to the motor task, designed to manipulate the working memory load and validate 

or refute the proposed model. 

Moreover, we proposed an injury severity index, which significantly correlated with FC 

changes, outperforming any other metric alone, underlining how both the severity and recency 

of the HSI play an important role at determining the magnitude of the disruption of normal 

cortical functions. These correlations were most significant in the frontal and parietal networks, 

suggesting that HSIs might mainly affect functions such as motor planning and sensorimotor 

processing. This underlines the importance for rehabilitation protocols to address both the 

physiological and neurological aspects of recovery. As we deepen our understanding of the 

multifaceted relationship between musculoskeletal injuries and brain activity, we can develop 

better interventions to improve recovery and prevent re-injury. 

Future research should incorporate longitudinal study design, as it would be invaluable to 

determine the directionality of the observed relationship between HSI and increased cognitive 

effort, determining whether HSIs cause an increase in the required cognitive load, or whether 

athletes who naturally exhibit a higher cognitive demand are more susceptible to these injuries. 

Resolving these questions would represent one step further in the direction of using EEG-based 

connectivity analysis as a tool for developing targeted rehabilitation protocols and injury 

prevention strategies tailored to the cognitive profile of each athlete.  
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APPENDIX 

A.1. Some other results from the alpha frequency band.  

Figure A1. Group comparison of alpha FC percent change for all nodes in the network. 
Boxplots comparing the percent degree change from individual nodes from each respective 
network (Blue = injured, Red = control). (A) Prefrontal, (B) frontal, (C) temporal, (D) central, 
(E) parietal and (F) occipital.  

Figure A2. Histogram of node degree change (%). Mann-Whitney U test for comparing 

distributions results: effect size r=0.26 (small), p-value < 0.0001 
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A.2. Results from theta and beta frequency bands. 

 

Figure A3. Group comparisons of brain FC at theta. (A) Boxplot comparing the global 
degree between activity and rest epochs for both injured (blue) and control (red) groups. (B) 
Boxplot comparing the percent change in global degree when transitioning from rest to activity 
for both groups. (C) Boxplot comparing the percent change in local degree for each of the 6 
networks for both groups. 
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Figure A4. Group comparisons of brain FC at beta. (A) Boxplot comparing the global 
degree between activity and rest epochs for both injured (blue) and control (red) groups. (B) 
Boxplot comparing the percent change in global degree when transitioning from rest to activity 
for both groups. (C) Boxplot comparing the percent change in local degree for each of the 6 
networks for both groups. 
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Table A1. Results from the partial correlation analysis of injury parameters and network 
degree changes at theta band. Each cell represents the correlation results in the format: [r-
value, CI95%, p-value]. Bold cells contain significant p-values (p<0.05). 

 

 

 

 

 

 

 

 

 

 

 Days away due to 
injury 

Days since injury Severity Score Severity Index 

Global [-0.25, (-0.56, 
0.12), 0.71] 

[-0.13, (-0.47, 
0.24), 1] 

[-0.45, (-0.69, -
0.1), 0.054] 

[-0.15, (-0.48, 
0.22), 1] 

Prefrontal [-0.27, (-0.57, 0.1), 
1] 

[-0.16, (-0.49, 
0.21), 1] 

[-0.47, (-0.71, -
0.14), 0.197] 

[-0.14, (-0.48, 
0.23), 1] 

Frontal [-0.12, (-0.46, 
0.25), 1] 

[-0.07, (-0.42, 
0.29), 1] 

[-0.32, (-0.61, 
0.05), 1] 

[-0.1, (-0.44, 0.27), 
1] 

Parietal [-0.33, (-0.62, 
0.03), 1] 

[0.04, (-0.33, 0.39), 
1] 

[-0.44, (-0.69, -
0.09), 0.36] 

[-0.19, (-0.51, 
0.18), 1] 

Central [-0.08, (-0.43, 
0.29), 1] 

[-0.1, (-0.44, 0.27), 
1] 

[-0.31, (-0.6, 
0.06), 1] 

[-0.17, (-0.5, 0.2), 
1] 

Temporal [-0.24, (-0.55, 
0.13), 1] 

[-0.16, (-0.49, 
0.21), 1] 

[-0.38, (-0.65, -
0.03), 0.89] 

[-0.05, (-0.41, 
0.31), 1] 

Occipital [-0.23, (-0.55, 
0.14), 1] 

[-0.15, (-0.49, 
0.22), 1] 

[-0.41, (-0.67, -
0.06), 0.59] 

[-0.12, (-0.46, 
0.25), 1] 
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Table A2. Results from the partial correlation analysis of injury parameters and network 
degree changes at beta band. Each cell represents the correlation results in the format: [r-
value, CI95%, p-value]. Bold cells contain significant p-values (p<0.05). 

 

 

 

 

 

 

 

 

 

 Days away due to 
injury 

Days since injury Severity Score Severity Index 

Global [0.12, (-0.25, 
0.46), 1] 

[-0.02, (-0.38, 
0.34), 1] 

[-0.1, (-0.45, 
0.27), 1] 

[-0.17, (-0.5, 0.2), 
1] 

Prefrontal [0.19, (-0.18, 
0.51), 1] 

[0.03, (-0.34, 0.38), 
1] 

[0.04, (-0.32, 0.4), 
1] 

[-0.04, (-0.4, 0.32), 
1] 

Frontal [0.01, (-0.36, 
0.37), 1] 

[0.07, (-0.3, 0.42), 
1] 

[-0.22, (-0.54, 
0.15), 1] 

[-0.24, (-0.55, 
0.13), 1] 

Parietal [-0.01, (-0.37, 
0.35), 1] 

[-0.12, (-0.46, 
0.25), 1] 

[-0.11, (-0.45, 
0.26), 1] 

[-0.24, (-0.55, 
0.13), 1] 

Central [0.08, (-0.28, 
0.43), 1] 

[-0.05, (-0.4, 0.32), 
1] 

[-0.24, (-0.55, 
0.13), 1] 

[-0.16, (-0.49, 
0.21), 1] 

Temporal [0.14, (-0.23, 
0.48), 1] 

[-0.16, (-0.49, 
0.22), 1] 

[-0.1, (-0.44, 
0.27), 1] 

[-0.09, (-0.43, 
0.28), 1] 

Occipital [0.09, (-0.28, 
0.43), 1] 

[0.08, (-0.29, 0.43), 
1] 

[-0.07, (-0.42, 
0.3), 1] 

[-0.2, (-0.52, 0.17), 
1] 
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