N
54

UNICAMP

UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Engenharia Mecanica

DOUGLAS DANIEL DE CARVALHO

Motion of intruders in granular media

Movimento de intrusos em meios granulares

Campinas

2024



DOUGLAS DANIEL DE CARVALHO

Motion of intruders in granular media

Movimento de intrusos em meios granulares

Doctoral Thesis presented to the Faculdade
de Engenharia Mecanica of the Universidade
Estadual de Campinas as part of the require-
ments for obtaining the title of Doctor of
Philosophy in Mechanical Engineering, in the
Area Thermal and Fluids.

Tese de Doutorado apresentada a Facul-
dade de Engenharia Mecanica da Universidade
Estadual de Campinas como parte dos requisi-
tos exigidos para a obtencdo do titulo de Doutor
em Engenharia Mecanica, na Area de Térmica
e Fluidos.

Orientador: Prof. Dr. Erick de Moraes Franklin

ESTE TRABALHO CORRESPONDE A VER-
SAO FINAL DA TESE DE DOUTORADO
DEFENDIDA PELO ALUNO DOUGLAS
DANIEL DE CARVALHO, E ORIENTADA
PELO PROF. DR. ERICK DE MORAES
FRANKLIN.

Campinas

2024



Ficha catalogréafica
Universidade Estadual de Campinas (UNICAMP)
Biblioteca da Area de Engenharia e Arquitetura
Rose Meire da Silva - CRB 8/5974

Carvalho, Douglas Daniel de, 1991-
C253m  Motion of intruders in granular media / Douglas Daniel de Carvalho. -
Campinas, SP : [s.n.], 2024.

Orientador(es): Erick de Moraes Franklin.
Tese (doutorado) — Universidade Estadual de Campinas (UNICAMP),
Faculdade de Engenharia Mecanica.

1. Materiais granulados. 2. Materiais granulados - Microestrutura. 3.
Materiais granulados - Propriedades mecanicas. 4. Fluxo granular. 5. Matéria
mole e granular, fluidos complexos e microfluidica. 6. Crateras de impacto.
7. Método dos elementos discretos. I. Franklin, Erick de Moraes, 1974-. I1.
Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia
Mecanica. III. Titulo.

Informacoes complementares

Titulo em outro idioma: Movimento de intrusos em meios granulares
Palavras-chave em inglés:

Granular materials

Granular materials - Microstructure

Granular materials - Mechanical properties

Granular flow

Soft and granular matter, complex fluids and microfluidics
Impact craters

Discrete element method

Area de concentracio: Térmica e Fluidos

Titulacdo: Doutor em Engenharia Mecanica

Banca examinadora:

Erick de Moraes Franklin [Orientador]

Antoine Seguin

Baptiste Darbois Texier

Yuri Dumaresq Sobral

Rafael Gabler Gontijo

Data de defesa: 18-12-2024

Programa de Pés-Graduacao: Engenharia Mecanica

Identificacdo e informacoes académicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0003-2426-8928
- Curriculo Lattes do autor: http://lattes.cnpq.br/6073161093351917



UNIVERSIDADE ESTADUAL DE CAMPINAS
FACULDADE DE ENGENHARIA MECANICA

TESE DE DOUTORADO ACADEMICO

Motion of intruders in granular media

Movimento de intrusos em meios granulares

Autor: Douglas Daniel de Carvalho
Orientador: Prof. Dr. Erick de Moraes Franklin

A Banca Examinadora composta pelos membros abaixo aprovou esta Tese de Doutorado:

Prof. Dr. Erick de Moraes Franklin, Presidente
Universidade Estadual de Campinas (UNICAMP)

Prof. Dr. Antoine Seguin
Université Paris-Saclay - FAST (Fluides, Automatique et Systemes Thermiques)

Dr. Baptiste Darbois Texier
Université Paris-Saclay - FAST (Fluides, Automatique et Systemes Thermiques)

Prof. Dr. Yuri Dumaresq Sobral
Universidade de Brasilia (UnB)

Prof. Dr. Rafael Gabler Gontijo
Universidade de Brasilia (UnB)

A Ata de Defesa com as respectivas assinaturas dos membros encontra-se no SIGA/Sistema de
Fluxo de Dissertacao/Tese e na Secretaria do Programa da Unidade.

Campinas, 18 de dezembro de 2024



DEDICATION

To my beloved family, the main strings of my life, whose unwavering support has
provided harmony throughout this long journey. Like the finely tuned strings of an instrument,
each of you resonates in a unique way — some firm and steady, others loose and soft — but
together, you create the melody that keeps me balanced and functioning. José, Wilma, Maycon,
Jhonie, and Alice, without your love, encouragement, and belief in me, this work would have
been impossible. You are the foundation that has sustained me through the many ups and downs,
through all the challenges and triumphs. Thank you so much, I love you!

To R. F. M., for being a part of this journey. Our time together has shaped many
moments of growth, and I am grateful for the lessons learned, all the moments spent together,
and the experiences and love we have shared along the way. You will always be remembered!

To the artists whose creations have helped me endure the long hours. Your art has
been a refuge, an escape, and a source of inspiration when I needed it most. You have shown
me that creativity, in all its forms, is vital to sustaining the human spirit.

And finally, to all who dedicate their time to the pursuit of science and art, for it is
through your tireless work that the world becomes a little brighter, a little more bearable, and a
little more understandable every single day. Your contributions, no matter how great or small,
are the threads that weave the fabric of progress and beauty in our world. This work is as much

yours as it is mine.



ACKNOWLEDGEMENTS

I would like to thank my friends, whose laughter, advice, and companionship were
the melody that filled the quiet spaces, offering solace when the road seemed long and winding
(sorry Sir Paul McCartney, but I had to use those verses somewhere). Old friends who have
always been a constant presence (Mineiros, Candangos, and Cariocas) and new friends I have
made along the way (Brazilians, Ecuadorians, French, and Chileans), thank you for reminding
me that life outside of work is just as (if not more) important, and for walking alongside me on
this adventure.

To my colleagues and collaborators, thank you for your collaboration, insight, and
the shared moments of struggle and joy that have helped me refine my work. Whether in the lab,
in the office, or in conversation, your ideas and efforts have enriched this project in countless
ways. Also thanks to the technical team, for your tireless efforts to ensure that the tools of my
research were always in perfect harmony. Your work behind the scenes has allowed science to
flow smoothly (at least most of the time), and for that I am deeply grateful.

Thanks to my professors, for sharing your vast knowledge and instilling in me the
curiosity to ask bigger, more complex questions. Your lessons have been the foundation on
which this Thesis stands. Special thanks to my M.Sc. advisor, Rafael Gontijo, for all the
inspiration given throughout the years. Many thanks to my supervisors, for their patience,
guidance, and unwavering belief in me: Antoine Seguin, Baptiste Texier, and Yann Bertho,
thank you so much, you have pushed me beyond what I thought I was capable of and helped me
navigate the many complexities of this field. I will always be grateful for your teachings. And
finally, I would like to express my deepest gratitude to my advisor, Erick Franklin, for being a
constant source of support and guidance throughout my research journey. The lessons you have
taught me as a student have been invaluable. Your presence at the many conferences we attended
together was always a reassuring constant, and I deeply appreciate how you encouraged my
growth in the scientific community. From long discussions in the lab to sharing moments outside
of work, your companionship has made this journey all the more meaningful. Thank you for
not only being a mentor, but also a friend who was always there when I needed it.

This study was financed in part by the Sdo Paulo Research Foundation (FAPESP),
grants No. 2020/04151-7 and No. 2022/12511-9.



RESUMO

Esta Tese explora a dinAmica de materiais granulares na presenca de objetos sélidos (intrusos).
A interacdo entre intrusos e materiais granulares ocorre frequentemente na natureza € na in-
dustria, desde a preparacdo do solo para praticas agricolas até a formacao de crateras devido a
impactos de meteoros. A pesquisa apresentada aqui emprega uma combinacao de simulacdes
numéricas, investigacdes experimentais e modelagem matemadtica para fornecer novos insights
sobre essas interacdes complexas.

Na primeira parte do estudo, investigamos o movimento de intrusos se movendo em baixas
velocidades, em um regime quase estatico. Comecamos estudando numericamente o compor-
tamento de um sistema granular (pequenos discos) deslocado por um intruso em movimento
(disco maior). Analisamos as for¢as resultantes no intruso e a rede de forcas de contato instan-
taneas na escala dos graos. Nossas descobertas revelam uma rede de sustentacdo distinta que
transmite grandes for¢cas do intruso em dire¢do as paredes, causando bloqueio localizado e altas
forgas de arrasto, e uma rede dissipativa que carrega for¢cas menores. Além disso, desvendamos
o mecanismo de colapso das redes de sustentacdo. O comportamento de multiplos intrusos
se movendo juntos em tal meio também € investigado. Ao simular grupos de intrusos com
configuracdes iniciais variadas, descobrimos que eles exibem um comportamento cooperativo,
com uma distancia 6tima entre eles para a qual o arrasto € minimo, o que tem implicacdes
praticas para projetar dispositivos que interagem com superficies granulares, como mdaquinas
de aracdo. Também identificamos padroes de comportamento de intrusos associados ao seu ar-
ranjo inicial no espaco. Experimentalmente, investigamos como as forcas de arrasto em pares
de intrusos esféricos variam com sua separacao transversal e profundidade dentro de um leito
granular. Nossos resultados indicam um efeito cooperativo que reduz o arrasto médio em cada
intruso quando eles estdo préximos, e que essa reducdo relativa de arrasto aumenta com a pro-
fundidade. Propomos um modelo fenomenolégico baseado na quebra de redes de contato para
modelar essas observagoes.

Na segunda parte desta Tese, exploramos o movimento de intrusos se movendo em velocidades
mais altas, no chamado regime colisional. Comecamos explorando numericamente a formacgao
de crateras por projéteis esféricos (intrusos) impactando um leito granular, focando nos efeitos
da fracdo de empacotamento, atrito entre os graos e rotacdo do projétil. Descobrimos que,
embora o didmetro da cratera permaneca inalterado pela fracdo de empacotamento, a profun-

didade de penetragdo € significativamente influenciada por ela, levando a proposi¢do de uma



lei de escala ad hoc para unificar as correlagdes existentes para a profundidade de penetragdo.
Em seguida, exploramos numericamente o impacto de projéteis granulares rotativos (agrega-
dos), focando nos efeitos das tensdes de ligagcdo e rotagdes iniciais. Descobrimos que, a medida
que as tensdes de ligacdo diminuem e a rotacdo inicial aumenta, os graos do projétil se espal-
ham para mais longe do ponto de impacto, levando a crateras mais planas com picos distintos
na borda e no centro, fornecendo insights sobre os formatos de crateras geralmente observa-
dos na natureza. Finalmente, o impacto de projéteis rotativos € examinado experimentalmente,
mostrando que a velocidade rotacional aumenta a profundidade de penetragdo. Um modelo atu-
alizado incorporando efeitos rotacionais fornece uma lei de escala refinada para a profundidade
de penetracdo, com aplicacdes potenciais em engenharia geotécnica e exploracao planetaria.

Desta forma, esta Tese contribui para uma compreensao mais profunda da dindmica da interacao
entre materiais granulares e intrusos, oferecendo insights valiosos para aplicacdes tedricas e

préticas.

Palavras—chave: Materiais granulares, Intrusos sélidos, Regime quase estético, For¢as de con-
tato, Reducdo de arrasto, Comportamento cooperativo, Regime colisional, Formacao de crat-

eras, Projéteis rotativos, Profundidade de penetracao.



ABSTRACT

This Thesis explores the dynamics of granular materials in the presence of solid objects (in-
truders). Interaction between intruders and granular materials occurs frequently in nature and
industry, from soil preparation for agricultural practices to crater formation due to meteor im-
pacts. The research presented here employs a combination of numerical simulations, experi-
mental investigations, and mathematical modeling to provide new insights into these complex
interactions.

In the first part of the study, we investigate the motion of intruders moving at low velocities, in a
quasi-static regime. We begin by numerically studying the behavior of a granular system (small
disks) displaced by a moving intruder (larger disk). We analyze the resulting forces on the in-
truder and the network of instantaneous contact forces at the grain scale. Our findings reveal
a distinct load-bearing network that transmits large forces from the intruder toward the walls,
causing localized jamming and high drag forces, and a dissipative network that carries smaller
forces. Furthermore, we uncover the mechanism of the collapse of bearing chains. The behavior
of multiple intruders moving together in such a media is also investigated. By simulating groups
of intruders with varying initial configurations, we find that they exhibit a cooperative behavior,
with an optimal distance between them for which the drag is minimum, which has practical im-
plications for designing devices that interact with granular surfaces, such as plowing machines.
We also identify patterns of intruder behavior associated with their initial arrangement in space.
Experimentally, we investigate how the drag forces on pairs of spherical intruders vary with
their transverse separation and depth within a granular bed. Our results indicate a cooperative
effect that reduces the average drag on each intruder when they are close together, and that this
relative drag reduction increases with depth. We propose a phenomenological model based on
the breaking of contact chains to model these observations.

In the second part of this Thesis, we explore the motion of intruders moving at higher veloc-
ities, in the so-called collisional regime. We start by numerically exploring the formation of
craters by spherical projectiles (intruders) impacting a granular bed, focusing on the effects of
packing fraction, grain friction, and projectile spin. We find that while the crater diameter re-
mains unaffected by the packing fraction, the penetration depth is significantly influenced by it,
leading to the proposition of an ad hoc scaling law to unify existing correlations for penetration
depth. We then explore numerically the impact of projectiles consisting of aggregated particles,

focusing on the effects of bond stresses and initial spins. We find that as bond stresses decrease



and initial spin increases, projectile grains spread further away from the impact point, leading to
flatter craters with distinct peaks at the rim and center, providing insights into crater shapes usu-
ally observed in nature. Finally, the impact of rotating projectiles is examined experimentally,
showing that rotational velocity increases penetration depth. An updated model incorporating
rotational effects provides a refined scaling law for penetration depth, with potential applica-
tions in geotechnical engineering and planetary exploration.

In this way, this Thesis contributes to a deeper understanding of the dynamics of the interaction
between granular materials and intruders, offering valuable insights for theoretical and practical

applications.

Keywords: Granular materials, Solid intruders, Quasi-static regime, Contact forces, Drag re-
duction, Cooperative behavior, Collisional regime, Crater formation, Spinning projectile, Pene-

tration depth.
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In this figure, blue lines correspond to dissipative and red lines to bearing
chains. (d) Magnitude of the resultant force on the intruder F5 as a function
of time ¢ when the basal friction is 0.1% of the base value. In Fig. (a) er-
ror bars correspond to standard deviations and in Fig. (b) to standard errors.
Images taken from (Carvalho et al.,2022). . . . . . ... ... ... .... 129
Figure 4.13—Cavity for different basal frictions. Figures (a) to (d) correspond to 100, 25,
10 and 0.1% of the base value [Tab. (4.5)]. Images taken from (Carvalho et
al.,2022). . . L e 131



Figure 4.14-Top-view images of the numerical setup for duos (d) aligned and (b) off-
centered in the transverse direction, and trios with one intruder (a) in front
and (c) behind two intruders initially aligned in the transverse direction. Fig-
ures (a) to (d) correspond to types I, III, IT and IV, respectively. Az and Ay
are the initial separations in the longitudinal and transverse directions, re-
spectively, and the area delimited by dashed-green lines in figure (d) is a
static region of interest (ROI) used for some computations. Images taken
from (Carvalho; Franklin, 2022b). . . . . . . . . . . .. ... ... ....

Figure 4.15—(a) Snapshot showing the intruders and grains (top-view image), and a mov-
ing ROI around the intruders (delimited by dashed-red lines). (b) Magni-
tude of the mean resultant force on each intruder (Fp), ..~ as a function
of their initial separation Ay normalized by the intruder diameter d;,;. (c)
Mean number of contacts per particle averaged over time (Z) and (d) time-
averaged anisotropy (p) as functions of (Ay —d;,)/dine. In figures (b) to (d)
triangles correspond to averages computed by considering the entire domain
and squares by considering only particles in the moving ROI shown in figure
(a), and bars correspond to the standard errors. In figure (b), the dashed-red
line corresponds to the time-average drag force found for a single intruder
in Ref. (Carvalho et al., 2022), and the marked points indicate the condi-
tions for which the networks of contact forces are shown in Fig. (4.18). All
graphics are for V' = 2.7 mm/s and ¢ = 0.76. Images taken from (Carvalho;
Franklin, 2022b). . . . . . . . . . . ...

Figure 4.16-Magnitudes of the resultant force on each intruder Fp as functions of time
t. (a) Duos with (Ay — dint)/dine = 1.5 moving at V' =2.7 mm/s. (b) Trios
moving at constant thrusting force (type I reaching D,;,). Images taken from
(Carvalho; Franklin, 2022b). . . . . . . . . . . . . .

Figure 4.17-Magnitude of the mean resultant force on each intruder (Fp), - as a func-
tion of their initial separation Ay normalized by the intruder diameter d;,,,
for duos moving at constant speed. (a) Different size of disks: ds =5 mm

and d; = 6 mm. (b) Different velocity of intruders: V' = 7.5 mm/s. Images
taken from (Carvalho; Franklin, 2022b). . . . . . . . ... . ... .. ...



Figure 4.18-From left to right, snapshots at t = 0, 35.532, 59.220 and 94.752 s of duos

moving within grains at V' = 2.7 mm/s for (a) (Ay — dint)/dine = 0.5; (b)

(Ay — dint)/diny = 1.5; and (¢) (Ay — dint)/dine = 4.0. The figures show

the load-bearing (clear lines) and dissipative (dark lines) chains for the cases

highlighted in Fig. (4.15)b, and ¢ = 0.76. Images taken from (Carvalho;

Franklin, 2022b). . . . . . . . . . e 140
Figure 4.19—Time evolution of the mean number of contacts per particle Z for duos with

(@) (Ay —dint)/diny = 0.5 and (b) (Ay — dipt) /dingy = 1.5. The time-averaged

value is shown in the figure, ¢ = 0.76 and 1, = 2.7 mm/s. Images taken from

(Carvalho; Franklin, 2022b). . . . . . . . . . . . . . .. 142
Figure 4.20-Time evolution of the number of non-rattler particles N for duos with (a)

(Ay — dint)/dine = 0.5 and (b) (Ay — dipnt) /dins = 1.5. $=0.76 and V = 2.7

mm/s. Images taken from (Carvalho; Franklin, 2022b). . . .. .. ... .. 143
Figure 4.21-Time evolution of the anisotropy level p for duos with (a) (Ay — dine)/dine =

0.5 and (b) (Ay — dins)/dine = 1.5. The time-averaged value is shown in the

figure, ¢ = 0.76 and 1}, = 2.7 mm/s. Images taken from (Carvalho; Franklin,

2022b). . .. e e e 143
Figure 4.22—Snapshots showing the intruders and grains (top-view images) for a pair of

intruders: (a) and (b) off-centered (type III); and (c) and (d) aligned (type

IV) in transverse direction. The initial condition is on the top and the final

configuration on the bottom of each subfigure, and ¢ = 0.76. Images taken

from (Carvalho; Franklin, 2022b). . . . . . . . . . . .. ... ... .... 144
Figure 4.23-Time evolution of the distance Ay in Fig. (4.22). The red-dashed line corre-

sponds to the distance D,;;. Image adapted from (Carvalho; Franklin, 2022b). 145
Figure 4.24—Snapshots showing the intruders and grains (top-view images), for (a), (b)

and (c) one intruder in front of two intruders initially aligned in the trans-

verse direction (type I) and (d) and (e) one intruder behind two intruders

initially aligned in the transverse direction (type II). The initial condition is

on the top and the final configuration on the bottom of each subfigure, and ¢

=0.76. Images taken from (Carvalho; Franklin, 2022b). . . . . . . ... .. 146



Figure 4.25—Chart for collaborative patterns: final separations Ayys;nq as functions of
initial separations Ay. The symbols are listed in the key and the dashed-red
line corresponds to (Ayfina — dint)/dine = 1. Image taken from (Carvalho;
Franklin, 2022b). . . . . . . . . ..o

Figure 4.26—Snapshots showing the velocity fields of disks as the intruders move, for
(a), (b) and (c) one intruder in front of two intruders initially aligned in the
transverse direction (type I) and (d) and (e) one intruder behind two intruders
initially aligned in the transverse direction (type II). 7 is the total time of the
intrudes’ motion, being 2064, 2796, 2928, 2964 and 2652 s for figures (a)
to (e), respectively. The cases are in the same order of Fig. (4.24) (¢ =
0.76), and the scale of the colorbar is in m/s. Images taken from (Carvalho;
Franklin, 2022b). . . . . . . . . . . . ...

Figure 4.27-Mean drag on each intruder as functions of initial separations Az and Ay
for (a) and (b) type I and (c) and (d) type II. Images taken from (Carvalho;
Franklin, 2022b). . . . . . . . . . . ...

Figure 4.28-Mean drag on each intruder as functions of initial separations Az and Ay
for (a) and (b) type III and (c) and (d) type IV. Images taken from (Carvalho;
Franklin, 2022b). . . . . . . . . . . . ..

Figure 4.29-Time to reach the final configuration, ¢, as a function of the initial separation
between intruders, r = \/m , normalized by d;,,;. Configuration of
type I. Image taken from (Carvalho; Franklin, 2022b). . . . . . .. ... ..

Figure 4.30-From left to right, snapshots at (a) ¢ =0s, (b) t =710.64 s, (¢) t = 1492.80
s and (d) t = 2074.56 s for trios organized in type I being pushed at 0.8
N [each intruder, same of Fig. (4.24)a]. The figures show the load-bearing
(clear lines) and dissipative (dark lines) chains, and ¢ = 0.76. Images taken
from (Carvalho; Franklin, 2022b). . . . . . . . . . . . . ... ... ....

Figure 4.31-Snapshots of final positions for simulations of type I with (a) ¢ =0.72, (b) ¢
=0.73, (c) ¢ =0.76, and (d) ¢ =0.78 [same initial configuration of intruders
as in Fig. (4.24)a]. Images taken from (Carvalho; Franklin, 2022b). . . . . .



Figure 4.32—(a) Sketch of the experimental setup for the displacement along the z-axis

of two spherical intruders of diameter d, immersed in grains at the depth h.

(b) Picture of an experiment for two immersed intruders A = 30 mm apart,

at depth A = 14 mm and moving at the velocity V, = 2.7 mm s~! during the

forward journey. The image is used for visualization purposes to show the

surface deformation that occurs at the shallowest depth. Images taken from

(Carvalho et al., 2024b). Same images as in Fig. (3.2) and shown here for

the sake of completeness. . . . . . . . . ... .. Lo 157
Figure 4.33—(a) Mean drag force on a single intruder Fq as a function of its horizontal

velocity Vj at adepth A = 14 mm. Solid symbols correspond to forward mo-

tion and open symbols to backward motion. Inset: Instantaneous drag force

on a single intruder fj as a function of the position x at two different depths

(h = 14 mm and h = 49 mm), and a travel velocity of Vj; = 2.7 mm s~!
for (—) forward and (—) backward motions, respectively. The shaded area
corresponds to the region of interest where the measurements are carried
out. (b) Mean drag force on a single intruder F{ as it moves horizontally

at Vp = 2.7 mm s™!

, as a function of immersion depth h. Solid sym-
bols correspond to forward motion and open symbols to backward motion.
The curves are the best fits of the data, of the form F, = Ay h + By h?,
where the solid line corresponds to Ap ~ 2.9 1072 £ 0.1 1072 N mm™!
and By ~ 4.1 107* £ 0.3 107* N mm~*, and the dashed line to Ay ~
2810724+ 0.1 102 Nmm ' and By ~ 3.1 107 £ 0.2 107* N mm~2
Images taken from (Carvalho et al.,2024b). . . . . . ... ... ... ... 159

Figure 4.34—Mean drag force F' for both intruders as a function of the space between
them A — d, for a displacement at V; = 2.7 mm ~! at the depth » = 49 mm.
Solid symbols correspond to forward motion and open symbols to backward
motion, and error bars represent the standard deviation in five realizations.
The horizontal lines and shaded areas correspond, respectively, to force val-

ues [ and their typical fluctuations, obtained with a single intruder under

similar conditions. Image taken from (Carvalho et al., 2024b). . . . . . .. 161



Figure 4.35-Normalized drag force F = F/Fy as a function of the normalized distance

between the intruders & = (A —d)/d for (a) a forward motion and (b) a back-

ward motion at V) = 2.7 mm s~!, and different depths (e,0) h = 14 mm, (M,

() A =19mm, (A, A) A =29 mm, (», ) h = 39 mm, (¢, ) h = 49 mm.

Solid lines correspond to the best fits of the data with Eq. (4.5). Parameters

(¢c) A and (d) 58 resulting from the fitting of the data with Eq. (4.5) as a func-

tion of the normalized depth h. Dashed lines correspond to (¢c) A = 0.1h

and (d) 0, = 1.2. In the panels, error bars represent the standard deviation

in five realizations. Images taken from (Carvalho et al., 2024b). . . . . . . . 163
Figure 4.36-Rescaled drag force (1 — F) /A as a function of the rescaled separation dis-

tance o / 53. For each set of data, we use the values of A and 58 resulting from

the best fits obtained in Fig. (4.35). All the data collapse on the solid line

which corresponds to Eq. (4.5). Image taken from (Carvalho et al., 2024b). . 164
Figure 4.37-Mean side force [’ for both intruders as a function of the space between

them A — d, for a displacement at V; = 2.7 mm s~ ! at depths (A, /) h =

29 mm and (¢, O) h = 49 mm. Solid symbols correspond to (a) forward

motion and open symbols to (b) backward motion, and error bars represent

the standard deviation in five realizations. The horizontal lines and shaded

areas correspond, respectively, to force values and their typical fluctuations,

obtained with a single intruder under similar conditions. . . . . . . .. . .. 165



Figure 4.38—(a) Top view sketches illustrating the model developed to rationalize the

interaction between the two intruders: (top left) notations of the problem;

(bottom left) area in front of one intruder where the color scale from blue

to red encodes increasing values of the interaction term (a|vy - vo|/V{Z) in

Eq. (4.11); (right) velocity field (blue arrows) of the neighboring intruder at

the bottom disturbs the force field (red arrows) induced by the movement

of the intruder at the top (and vice-versa, not shown here for visibility pur-

poses). (b) Normalized drag force F as a function of the normalized separa-

tion distance 9. Symbols correspond to experimental data at different depths

and solid lines represent the best fit with the model. (c¢) Parameter )\, divided

by d resulting from the best fit of the data as a function of the normalized

depth h. The dashed line indicates Xo/d ~ 0.48. (d) Coefficient « resulting

from the best fit of the data as a function of of the normalized depth h. The

dashed line corresponds to o ~ (0.55 h. Images taken from (Carvalho et al.,

2024b). . .. 169
Figure 5.1 — Layout of the numerical setup. The origin of the coordinate system is on the

bed surface, in the center of the domain; however, it is shown on the bottom

right for better visualization. Image taken from (Carvalho et al., 2023b). . . 174
Figure 5.2 — Angle of repose obtained by settling particles with p, = 0.52 and p, g =

0.3. Image taken from (Carvalho et al., 2023b). . . . . ... ... .. ... 175
Figure 5.3 — Morphological aspects: (a) Crater diameter D, as a function of the total drop

distance H; (b) depth ¢ reached by the projectile as a function of H; and (c)

0 as a function of the projectile velocity at the impact V,,. (d) Top view of

a crater, showing a circle fitted over the corona. The crater diameter D, is

defined as the diameter of this circle. In Figs. (a) and (b), the correspond-

ing correlations proposed by Uehara ef al. (2003) (Uehara et al., 2003b),

Katsuragi et al. (2013) (Katsuragi; Durian, 2013) and Seguin et al. (2008)

(Seguin et al., 2008) are also plotted, and Figs. (a) to (c) are parameterized

by the initial packing fraction. Images (a) to (c) taken from (Carvalho et al.,

2023b) and image (d) taken from (Carvalho et al., 2023a). . . . . . . . . .. 176



Figure 5.4 — Depth reached by the projectile multiplied by a power of the packing frac-

tion, 6¢°/2, as a function of (a) the drop distance H, and (b) DZ/ SH/B,

parameterized by ¢. Images taken from (Carvalho et al., 2023b). . . . . .. 179
Figure 5.5 — (a) Penetration depth ¢ as a function of the projectile diameter D,. The

blue-dashed line corresponds to a functional dependence on Df/ % (as in the

correlation of Uehara ef al. (2003) (Uehara et al., 2003b)), and the red-

continuous line to a fitting of our data. In this figure, ~ = 0.1 m and p, =

7865 kg/m?. (b) Penetration depth § as a function of the projectile density

pp- The blue-dashed line corresponds to a functional dependence on pll,/ 2 (as

in the correlation of Uehara er al. (2003) (Uehara et al., 2003b)), and the

red-continuous line to a fitting of our data. In this figure, h = 0.1 m and D,

= 15 mm. Images taken from (Carvalho et al., 2023b). . . . . . .. ... .. 180
Figure 5.6 — Projectile dynamics. (a) Time evolution of the vertical component of the

deceleration a, for different initial heights /. (b) Maximum values of the

deceleration a, peqr as a function of V2, for different packing fractions ¢. (c)

Inertial component of the vertical deceleration, ay jnertial» @s @ function of V2

for different values of h. The dashed line corresponds to the model proposed

by Katsuragi et al. (2007) (Katsuragi; Durian, 2007) (with x = 37.6287 and

dy = 0.0189). In Figures (a) and (c), the packing fraction was fixed to ¢ =

0.554. Images taken from (Carvalho et al., 2023b). . . . . . . ... ... .. 181
Figure 5.7 — Time evolution of the vertical component of the projectile velocity V, for

different values of h for (a) the entire simulation and (b) zoomed in the

region corresponding to the projectile rebound and final stop. The packing

fraction was fixed to ¢ = 0.554. Images taken from (Carvalho et al., 2023b). 182
Figure 5.8 — Time evolution of (a) vertical position y of the projectile; (b) vertical velocity

V,, of the projectile; (c) vertical deceleration a,, of the projectile, normalized

by ¢; and (d) space-averaged granular temperature  considering all grains.

In this figure, ¢ = 0.554 and A = 1 m. Images taken from (Carvalho et al.,

2023b). . .. e 183
Figure 5.9 — The same graphics of Fig. (5.8) zoomed at the rebound interval. Images

taken from (Carvalho et al., 2023b). . . . . . . . . . .. ... . ... ... 184



Figure 5.10-Time evolution of the normalized deceleration in the vertical direction a, /g,

and snapshots of the granular temperature ¢ at the instants indicated in the

a, /g graphic. The colorbar indicates the values of # in m?/s?, and the figure

corresponds to ¢ = 0.554 and h = 1 m. Images taken from (Carvalho et al.,

2023b). . . . e 184
Figure 5.11—(a) Vertical position y of the projectile as a function of time for the final

phase of the penetration (¢ > 0.025 s), for the case depicted in Fig. (5.10).

(b) The vertical displacement during the rebound Ay, ¢pound, Normalized by

D, for different values of /. Images taken from (Carvalho et al., 2023b). . 186
Figure 5.12—(a) Crater diameter D, as a function of the drop distance H for simulations in

the absence of friction (case 1 = 0). ¢ = 0.554 and the red line corresponds

to a fitting with H'/%. (b) Depth § reached by the projectile as a function

of the initial height A for simulations with all friction coefficients as listed

in Tab. (5.3) (case p # 0), without any friction (case . = 0), with only the

grain-projectile friction (case p,4, # 0), and with only the grain-grain equal

to zero (case ftg, 7 0 and ji4,, 7 0). (c) For the same cases of figure (b), D,

as a function of h. (d) Time evolution of the normalized deceleration in the

vertical direction a,, /g for the cases with (black line) and without (red line)

friction. In figure (d), ¢ = 0.554 when p # 0, and /. = 0.075 m. Images taken

from (Carvalho er al., 2023b). . . . . . . . . . . .. ..o 187
Figure 5.13-Time evolution of the space-averaged granular temperature § considering all

grains. The red line corresponds to frictionless objects (1 = 0) and the black

line to grains with friction (1 # 0). ¢ = 0.554 and h = 1 m. Image taken

from (Carvalho et al., 2023b). . . . . . . . . . . .. o 188
Figure 5.14-Time evolution of (a) vertical position y of the projectile; (b) vertical velocity

V,, of the projectile; (c) vertical deceleration a,, of the projectile, normalized

by ¢; and (d) space-averaged granular temperature  considering all grains.

The red line corresponds to frictionless objects (1 = 0) and the black line to

grains with friction (1 # 0). ¢ = 0.554 and h = 1 m. Images taken from

(Carvalhoeral.,2023b). . . . . . . . . . 189



Figure 5.15—(a) Crater diameter D, as a function of the ratio of rotational to linear kinetic
energies, K,/ K, in percentage, by considering only w,. (b) Penetration
depth § as a function of K, /K, by considering only w,, and (c) for either
Wy, Wy OF w, 7# 0. (d) Total revolution angle (in degrees), v, that the pro-
jectile effectuate after colliding with the bed as a function of K, /K, (by
considering only w,). In figures (a) to (d), ¢ =0.554 and h = 0.1 m. In figure
(b), the line corresponds to § = 0.014 + (K, /K,)*%7. Images taken from
(Carvalho et al.,2023b). . . . . . . . . e

Figure 5.16—(a) Time evolution of the space-averaged granular temperature § considering
all grains. The red line corresponds to a rotating projectile (K, /K, = 0.5)
and the black line to a non-rotating projectile. ¢ = 0.554 and h = 1 m. (b)
Penetration depth ¢ as a function of K,,/K, by considering only w,, for
frictionless grains. In the figure, squares correspond to simulations where
all friction coefficients are zero (u = 0), and circles to those where only the
grain-projectile friction is nonzero (f,, # 0). Images taken from (Carvalho
etal,2023b). . . ...

Figure 5.17-Top views of final forms of craters resulting from projectiles with angular
velocities in the y,  and z directions (—w,, w, and —w,, respectively). The
colors correspond to hy.q —y (the bed height measured from the bottom) and
the values in the colorbar are in m. In this figure, K,/ K, = 1, ¢ = 0.554 and
h = 0.1 m. Image taken from (Carvalho et al., 2023b). . . . . . .. ... ..

Figure 5.18—(a) Vertical displacement during the rebound Ay,.cpound> Normalized by D,
as a function of the ratio of rotational to linear kinetic energies, K, /K,, in
percentage. (b) Time evolution of the vertical component of the projectile
velocity V,, for different values of K,/ K, and the entire simulation, and (c)
zoomed in the region corresponding to the projectile rebound and final stop.
In figures (a) to (c), we consider only w,, and ¢ = 0.554 and A = 0.1 m.
Images taken from (Carvalho et al.,2023b). . . . . .. ... ... .. ...



Figure 5.19—Time evolution of (a) vertical position y of the projectile; (b) vertical velocity
V,, of the projectile; (c) vertical deceleration a,, of the projectile, normalized
by ¢; and (d) space-averaged granular temperature  considering all grains.
The red line corresponds to a rotating projectile (K, /K, = 0.5) and the black
line to a non-rotating projectile. ¢ = 0.554 and h = 1 m. Images taken from
(Carvalho et al.,2023b). . . . . . . . . . . e

Figure 5.20—(a) Layout of the numerical setup (the y coordinate points downwards, and,
although shown on the bottom, the origin of the coordinate system is on the
bed surface centered horizontally in the domain); (b) Detail of the granular
projectile (aggregate); (c) Topography (elevation) of a crater formed by a
spinning projectile consisting of bonded grains (we notice at least one inter-
nal peak close to the rim). In this figure, the bonding stresses are 107 N/m?,
the ratio between linear and angular kinetic energies is 1, and the color-
bar shows the elevation from the undisturbed surface (pointing downwards).
Images taken from (Carvalho et al., 2023a). . . . . . ... ... ... ...

Figure 5.21-Top view of final positions of grains, showing the final morphology of craters
for non-rotating and rotating projectiles with different bonding stresses. For
spinning projectiles, h = 0.1 m. The colorbar on the right shows the elevation
of each grain from the undisturbed surface (coordinate pointing downwards).
The same figure in gray scale is shown in Fig. (C.1), in Annex C. Images
taken from (Carvalho et al., 2023a). . . . . . . . . . . .. .. . ... . ...

Figure 5.22—Snapshots of the final positions of grains originally in the projectile, for the
non-rotating cases. The colorbar on the right of each graphic shows the
corresponding depth measured from the initial bed surface in m. Images
taken from (Carvalho et al., 2023a). . . . . . . . . . . .. ... ... . ...

Figure 5.23—Snapshots of the final positions of grains originally in the projectile, for the
rotating cases. The colorbar on the right of each graphic shows the corre-
sponding depth measured from the initial bed surface in m, and A = 0.1 m

for all figures. Images taken from (Carvalho et al., 2023a). . . . . ... ..



Figure 5.24-Topography (elevation) of the final craters for non-rotating projectiles with
different bonding stresses. The colorbar on the right of each panel shows the
elevation from the undisturbed surface in m. The same figure in gray scale is
shown in Fig. (C.2), in Annex C. Images taken from (Carvalho et al., 2023a). 203

Figure 5.25-Topography (elevation) of the final craters for rotating projectiles with dif-
ferent bonding stresses. The colorbar on the right of each panel shows the
elevation from the undisturbed surface in m, and & = 0.1 m for all panels.

The same figure in gray scale is shown in Fig. (C.3), in Annex C. Images
taken from (Carvalho et al.,2023a). . . . . . . . . . . . . ... ... .... 203

Figure 5.26—Profiles of the elevations of final craters for both non-rotating and rotating
projectiles, with different bonding stresses. The heights and rotational ener-
gies are shown in the figure key, and 4 = 0.1 m for non-rotating projectiles.

All profiles were plot in a vertical plane of symmetry (therefore, include the
crater center). These profiles include the projectile’s grains. Figure (5.27)
presents profiles excluding the projectile’s grains. Images taken from (Car-
valho et al.,2023a). . . . . . . .. 204

Figure 5.27-Same as Fig. (5.26), however these profiles do not include the projectile’s
grains. Images taken from (Carvalho et al., 2023a). . . . .. ... .. ... 205

Figure 5.28—(a) Crater diameter D, (b) penetration depth 9, and (c) the percentage of
broken bonds as functions of the initial height & for a non-rotating projec-
tile; panels (d), (e) and (f) show D., ¢ and the percentage of broken bonds
as functions K, /K, for spinning projectiles falling from h = 0.1 m, respec-
tively. The graphics are parameterized by the bonding stresses (shown in the
key of panel (a)), and the results for the solid projectile reported in Carvalho
et al. (2023) (Carvalho et al., 2023b) and showed in Sec. 5.1.1 are shown
for reference. Images adapted from (Carvalho et al., 2023a). . . . .. . .. 206



Figure 5.29-Final positions the projectile’s grains after the impact has taken place, for o),
=1 x 107 N/m? and different values of K, /K,. From top to bottom: (a)
Frequencies of occurrence of the projectile’s grains in the r—f plane (radius—
angle plane, independent of the depth); (b) frequencies of occurrence of final
positions in terms of the angle (all depths); (c) frequencies of occurrence of
final positions in terms of radius (all depths); (d) frequencies of occurrence
of final positions in the y coordinate (depths for all angles and radii). Images
taken from (Carvalho et al.,2023a). . . . . . . . . . . .. .. ... .....

Figure 5.30-Sketch of the experimental setup and notations introduced. Image taken
from (Carvalho et al., 2024a). Same image as in Fig. (3.14)a and shown
here for the sake of completeness. . . . . . . ... ... ... ........

Figure 5.31-Penetration depth d as a function of the total distance Hy = h + J; traveled
by the projectile for ((J) d = 20 mm, p ~ 14920 kg m~3, and 55 < h <
412 mm; (A) d = 25 mm, p ~ 8160 kg m~3, and 54.5 < h < 400 mm;
and (¢) d = 30 mm, p ~ 7710 kg m3, and 2 < h < 391 mm. Inset:
do as a function of Hy for (¢) d = 80 mm, p ~ 1150 kg m™3, and 3 <
h < 2170 mm. Solid lines are the best fits of experimental data following
dp x H§', with a = 0.35, 0.40, 0.39, and 0.35 for increasing projectile sizes.
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1 INTRODUCTION

1.1 General introduction to granular materials

Granular materials, consisting of discrete, macroscopic particles, are ubiquitous in
our daily lives and play a crucial role in a wide array of natural and industrial processes. From
the grains of sand in the desert, which cover more than 10% of the land surface on Earth (Du-
ran, 1997), to the particles in pharmaceutical manufacturing or the everyday coffee, granular
media are encountered across various scales and applications. Such diverse materials, with
an enormous variety of sizes, shapes, mechanical and chemical properties, find extensive use
in nature and industry. The processing of both granular media and its aggregates consumes ap-
proximately 10% of all the energy produced on the planet, in different industries such as mining,
cosmetic, pharmaceutical and food (Duran, 1997). The current use of these materials dates back
to ancient civilizations, being used in activities essential to human evolution, such as agriculture
(grain cultivation and soil work), buildings (housing construction), timekeeping (hourglass), to
name just a few examples. Even though the physics of granular materials is not a relatively new
subject, having already been studied by illustrious scientists like Coulomb (Coulomb, 1773) and
Reynolds (Reynolds, 1885), its mechanics remains poorly understood, and some important yet
seemingly trivial questions still lack clear answers, as what is the nature of the contact force be-
tween two solid particles (Duran, 1997; Andreotti ef al., 2011). The Amontons-Coulomb’s laws
of friction themselves, traditionally used in modeling this effect and first observed by Leonardo
Da Vinci, are still an open problem in physics (Andreotti ef al., 2011). Therefore, the study of
these materials is crucial not only for understanding fundamental physical principles but also
for addressing practical challenges in engineering, physics, geophysics, and planetary science,
to cite but a few. Figure (1.1) gives some examples of granular materials found in natural and
industrial contexts.

In geophysical applications, the study of these materials, especially how they move,
is used to prevent and mitigate natural risks, such as landslides, avalanches, or to better under-
stand the transport of sediments in rivers (Ren et al., 2008; Ferdowsi et al., 2017; Texier et al.,
2023; Gonzalez et al., 2023); in civil construction, these materials find applications from the de-
sign of foundations to maintaining the stability of slopes and excavations (Jiang; Zhang, 2015);

in industry, granular materials are involved, for example, in the production of food [Figs. (1.1)b
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Figure 1.1 — Examples of the variety of granular materials. (a) Mesquite dunes in Death Valley
National Park, United States. Credits: Brocken Inaglory (Inaglory, ). (b) Coffee
beans. Credits: Popo le Chien (Chien, ). (c) Pharmaceutical pills. Credits: Takkk
(Takkk, ). (d) Piles of soil with various compositions. Credits: Alvesgaspar (Alves-
gaspar, ). () Hourglass. Credits: Marie-Lan Nguyen (Nguyen, ). (f) Photo of Sat-
urn taken by the Cassini spacecraft. Credits: NASA/JPL/Space Science Institute.
(g) Iron-nickel meteorite photographed by the Curiosity rover on Mars. Credits:
NASA/JPL-Caltech/MSSS. (h) Corn grains. Credits: Andrey Butko (Butko, ).

and (1.1)h], pharmaceuticals [Fig. (1.1)c], and construction materials [Fig. (1.1)d], especially in
the processes of storage, mixing, grinding, and transporting (Duran, 1997); in this context, the
design of efficient hoppers and conveyors requires knowledge of how granular materials flow
under different conditions (To et al., 2001; Janda et al., 2009; Tang; Behringer, 2011; Hilton;
Cleary, 2011). In astrophysics, the formation of planets, moons, and other celestial bodies is be-
lieved to involve processes that are governed by the physics of granular materials (Blum, 2018;
Hestroffer et al., 2019). For instance, planetary rings, as the ones in planet Saturn [Fig. (1.1)f],
are composed of countless granular particles orbiting in space (Andreotti et al., 2011). In addi-
tion, in recent years, global warming is leading to the expansion of desert areas on our planet
[Fig. (1.1)a], so that the delivery and transportation of goods in these areas is a challenge for the
near future. Not to mention planetary exploration. A problem of this nature has been faced by
the Mars rover Spirit, which became stuck in 2010 in the sandy Martian soil. Despite months of
efforts to free the rover from a sand trap on Mars, the NASA probe now remains firmly lodged
in the floor of a small crater on the red planet. Mission managers have announced that since
Spirit cannot free itself, it will remain in its current position, spending its remaining operational

days conducting science experiments from inside the crater, where its wheels can only move a
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few centimeters (Jaggard, 2010). To this end, the development of robots designed to operate
in granular environments [Fig. (1.1)g], such as sand, gravel or regolith (Wei et al., 2021) (as
on Mars, where loose regolith represents a significant challenge for exploration missions, from
rover mobility to drilling operations (Arvidson et al., 2010; Jaggard, 2010)), is quite important
and depends on a better understanding of the physics of granular materials for proper operation
(like a detailed understanding of the forces that arise as these devices move and interact with
these materials, for example). These robots, often inspired by the locomotion of animals such
as snakes, lizards, or insects (Maladen et al., 2009), must navigate complex terrains where tra-
ditional vehicles would have difficulty locomoting (Zhang et al., 2013; Li et al., 2013a). For
instance, it has been shown that bioinspired designs, such as snake-like robots, can achieve
more efficient locomotion in granular environments by mimicking the wave-like movement of
real snakes (Marvi et al., 2014).

Regarding the composition of granular materials, they are made up of particles large
enough for thermal fluctuations to be insignificant or ignored. This differentiates them, for
example, from colloids, where Brownian motion is present, and from powders (Andreotti et al.,
2011). The size of granular particles covers a wide range, ranging from particles with a diameter
greater than 100 micrometers (Andreotti et al., 2011), to others with millimeters (grains of
sand) to meters (boulders), and they can be composed of various materials, including metals
(e.g. steel), minerals (e.g. quartz sand), organic matter (e.g. grains), and synthetic substances
(e.g. plastic pellets). Furthermore, particles can have different shapes, such as spherical (e.g.,
ball bearings), angular (e.g., gravel), rod-shaped or irregular (e.g., natural sand) (Duran, 1997,
Andreotti et al., 2011).

Since these materials are of a discrete nature, each particle interacts with its neigh-
bors primarily through contact forces (Duran, 1997; Andreotti et al., 2011). The contact force
between two dry grains is usually decomposed into a normal and tangential reaction, which
for particles large enough are dominated by the elastic repulsion (Hertz contact) and solid fric-
tion (Amontons-Coulomb’s law), respectively (Andreotti ef al., 2011). These contact forces are
applicable to permanent contacts, as those that exist in a granular pile, for instance; however,
when flowing, these materials are also subjected to inelastic collisions between the particles. A
brief description of these interactions is given in Appendix A and a thorough description can
be found in Andreotti ef al. (2011) (Andreotti et al., 2011). Finally, although not important as

the interactions already mentioned, others may arise under different scenarios. For example,
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particles may be subjected to electrostatic forces if they are charged; in the presence of an inter-
stitial fluid in the contact region, a capillary cohesion between particles may be developed; and,
for particles small enough, intermolecular forces of the van der Waals type can introduce a non
negligible attraction. These interactions may become more complex if we consider wet granular
materials (i.e. granular materials in the presence of an interstitial liquid). In one part, the fluid
might be flowing in regard to the grains (as in the transport of sediments); on the other, the
fluid may be carried away with the grains (as is the case of sub-aquatic avalanches) (Andreotti
et al., 2011). In both cases, the interstitial fluid influences or controls the dissipative processes
within these flows and new interactions arise, such as hydrodynamic drag forces, Archimedes
buoyancy, added mass force, Basset force, Magnus force, and lubrication forces (Andreotti et
al., 2011).

These mechanical interactions create complex stress networks within these materi-
als, known as force chains [Fig. (1.2)], such that stress is not distributed uniformly throughout
all particles, but rather transmitted through the contacts in these history-dependent networks
(force chains) (Majmudar; Behringer, 2005). The force chains are elongated structures that
carry most of the stress in a granular assembly, while particles outside these chains bear little
or no load (Radjai et al., 1996; Radjai et al., 1998). The heterogeneous distribution of stress
within granular materials leads to complex and often unpredictable behavior, since force chains
are directly related to these materials’ mechanical stability (Majmudar; Behringer, 2005). When
external forces cause a redistribution of stress, the integrity of the force chains can be compro-
mised, leading to localized failure or even catastrophic collapse. For example, in a sand pile,
the stability of the pile depends on the network of force chains. If a force chain is broken,
it can lead to the collapse of the pile. This is also one of the causes behind landslides and
other natural events (Majmudar; Behringer, 2005; Tordesillas, 2007). These structures are not
static, constantly evolving in response to external disturbances in these materials (Seguin et al.,
2016; Carvalho; Franklin, 2022b; Carvalho et al., 2022). The distribution of forces within these
chains tends to be highly anisotropic, which means that, as already mentioned, the stress is not
distributed uniformly within these materials, but concentrated along specific directions (Maj-
mudar; Behringer, 2005), sometimes leading to the formation of shear bands (regions where
the material experiences large stresses while the surrounding material remains approximately
undeformed) (Jiang; Zhang, 2015) and localized failures (Tordesillas, 2007). These dynamic

structures can rearrange or collapse under stress, leading to an extremely important phenomenon
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in the physics of granular materials known as jamming, where the material transitions from a
fluid-like to a rigid, solid-like state (Cates et al., 1998; Bi et al., 2011). One way to observe the
distribution of contact forces is to use appropriate techniques, usually making use of photoelas-
tic grains, together with illumination schemes and light polarizers (Majmudar; Behringer, 2005;
Daniels et al., 2017). This creates a visual pattern of alternating light and dark heterogeneous
lines within the material, associated with the local internal stress [Fig. (1.2)b]. More on this
technique to be presented in Sec. 3.2.2. Contact networks can also be visualized and quantified
through numerical simulations [Fig. (1.2)a] (Herman, 2016; Carvalho et al., 2022; Carvalho;
Franklin, 2022b).

Figure 1.2 — Examples of force chains observed in granular materials. (a) Obtained numerically.
Image adapted from (Carvalho et al., 2022). (b) Obtained experimentally.

These materials also exhibit diverse mechanical behaviors that differentiate them
from the traditional solid, liquid, and gaseous states of matter. Their behavior is highly depen-
dent on factors related to the discrete nature of their composition, such as particle size, shape,
density, and, most importantly, interparticle interaction forces (Duran, 1997; Andreotti et al.,
2011). Unlike the classical phases of matter (solid, liquid, and gas), granular materials do not
fit perfectly into any of these categories individually; instead, they exhibit characteristics of
all three, depending on the flow conditions (Jaeger et al., 1996; Duran, 1997; Andreotti et al.,
2011). For example, when subjected to low stress, they can behave like solids, supporting their
own weight and resisting deformation. However, when the stress exceeds a certain limit, they
can flow like a fluid (Duran, 1997; Andreotti ef al., 2011). This defines some flow regimes (two
of which will be explored in this Thesis) depending on factors such as applied stress, velocity,
and concentration. The main flow regimes being: 1) quasi-static regime: occurs at low shear
rates, where the material behaves more like a solid and deformation is slow. Here, the flow is
dominated by frictional forces between particles; ii) intermediate (dense) regime: at moderate

shear rates, the material flows more readily, and both frictional and collisional forces are sig-
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nificant; ii1) inertial (dilute) regime: at high shear rates, the material behaves more like a gas,
with particles colliding frequently and moving independently of each other (Andreotti et al.,
2011; fr/MIDI/, 2004). Since granular flows are very important for the understanding of natural
and artificial processes, some previous works have focused on understanding these flows. In
particular, we can mention gravity-driven flows, found in events such as avalanches (which oc-
cur when the material on a slope exceeds a critical angle), landslides and grain discharge from
hoppers (Pouliquen, 1999; Pouliquen; Forterre, 2002); well-controlled Couette flows, which
have been used primarily to investigate the rheological properties of granular materials, partic-
ularly how they behave under shear (Pouliquen; Forterre, 2009; Pouliquen et al., 2006); and
finally, studies where objects move within these materials (Kolb ef al., 2013; Seguin et al.,
2016; Carvalho et al., 2022; Carvalho; Franklin, 2022b; Carvalho et al., 2023b; Carvalho et
al., 2023a; Carvalho et al., 2024a; Carvalho et al., 2024b), a topic to be covered in this Thesis.
Some of these studies have led to the proposal of some continuum models to describe these
materials, treating them approximately as continuous media, in order to propose constitutive
relations that describe how stress and strain are related (Pouliquen et al., 2006). Although there
has been some advancement in recent years, the rheological properties of granular materials are
very complex and usually exhibit nonlinear and sometimes unforeserable behavior, making it a
challenge to predict their behavior in many scenarios (Andreotti et al., 2011).

Another interesting aspect of granular materials is related to a property known as
dilatancy, first observed by Osborne Reynolds in the 19th century (Reynolds, 1885). In short,
we can define it as the tendency of granular materials to expand in volume when subjected to
shear deformation. As a granular material is sheared, the particles must move past each other,
usually leading to an increase in voids and, consequently, an increase in volume (Duran, 1997;
Andreotti et al., 2011). These volume changes are associated with the materials’ packing, or
how the particles are organized internally within a volume. The packing fraction refers to the
proportion of space occupied by the particles within a given volume (Andreotti et al., 2011).
In granular materials, this can vary from loose packings, where the particles occupy a small
fraction of the volume, to dense packings, where the particles are compacted together. Random
close packing (RCP) is a state in which the particles are packed as densely as possible without
any long-range order, typically reaching a packing density of about 0.64 for spherical particles
(Torquato et al., 2000). Ordered packing, on the other hand, refers to a crystalline arrangement

of particles, such as close-packed face-centered cubic (FCC) structure, which can reach higher
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packing densities, up to about 7/ V18 ~ 0.74 for identical spheres (Torquato et al., 2000).

Finally, one of the most intriguing phenomena behind the physics of granular mate-
rials (and the central theme of this Thesis) are associated to the way they interact with intruders
(solid objects moving through or over them). For instance, slowly moving intruders often ex-
perience resistance due to quasi-static forces, which are dominated by friction and cohesion
between particles (Kolb et al., 2013; Seguin et al., 2016; Carvalho et al., 2022; Carvalho;
Franklin, 2022b; Carvalho et al., 2024b). In contrast, rapidly moving intruders can generate
shock waves and fluid-like responses in the granular medium (Seguin et al., 2008; Seguin et
al., 2009; Carvalho et al., 2023b; Carvalho et al., 2023a; Carvalho et al., 2024a; Bourrier et al.,
2008).

The purpose of this short section has been to give a brief overview of some topics
related to granular materials, providing a shallow description of them. The reader is referred
to the monographs of Duran (1997) (Duran, 1997) and Andreotti et al. (2011) (Andreotti et
al., 2011) for a complete description of the current state of research and understanding of these

materials.

1.2 Relevance of intruder motion in granular materials

Most people have probably tried running on the sand on a beach and realized how
difficult it is to do so, compared to trying to do the same movement on the asphalt of a street, for
example. In the same context, under the pretext of getting rid of or alleviating the intense heat
under the sun on a beach, the use of umbrellas becomes indispensable. However, anyone who
has ever tried to stick an umbrella in the sand must have realized how difficult this task is. These
are simple examples, derived from an observation made at the time this Thesis is being written,
under the intense Brazilian summer sun, which reflect everyday situations in which intruders
interact with granular materials, whether moving on their surface or within them. In a general
perspective, the study of the motion of intruders over or within granular materials is of great
interest in several practical, scientific and engineering contexts. In simple terms, an intruder
can be defined as a solid object, usually distinct in size, shape or density from the surrounding
granular medium. Understanding the dynamics of the motion of these objects in granular media
is fundamental to a better understanding of natural and artificial (man-made) systems, ranging
from biology and agriculture to planetary science and engineering. The interaction between an

intruder and a granular medium is an extremely complex process, being influenced by several



62

factors such as the geometry of the intruders, their velocities and types of motion (e.g. quasi-
static or collisional regimes), as well as the properties of the surrounding granular medium
itself. In this section, we highlight some scenarios where this type of motion can be found.
Figure (1.3) gives some examples of intruders interacting with granular materials in both natural

and industrial contexts.

Figure 1.3 — Examples of the motion of intruders on or within granular materials. (a) The De
Winton’s golden mole (Cryptochloris wintoni). Credits: JP Le Roux (Roux, ).
(b) A tunnel used by the De Winton’s golden mole in Port Nolloth, South Africa.
Credits: Samantha Mynhardt (Mynhardt, ). (c) Roots growing in soil. Credits:
Pixabay (Vogel, ). (d) Roots of a tree. Credits: Pixabay (FelixMittermeier, ). (e)
Sandfish lizard (Scincus scincus). Credits: Wilfried Berns (Berns, ). (f) Saharan
Horned Viper (Cerastes cerastes). Credits: Holger Krisp (Krisp, ). (g) Barringer
Crater, impact crater with 1200 m in diameter in the desert of northern Arizona,
United States. Credits: USGS/D. Roddy, Public Domain. (h) Curiosity rover on
Mars. Credits: NASA/JPL-Caltech/MSSS. (i) Ancient way of plow activity. Cred-
its: Ralf Roletschek (Roletschek, ). (j) Modern plow. Credits: Joevilliers, Public
Domain.

Although it may not seem so obvious, fundamental ecological processes such as
soil penetration by animals [Figs. (1.3)a, (1.3)c, and (1.3)f] are examples of the motion of in-
truders in granular media. For example, burrowing animals such as moles, lizards, clams and

earthworms must navigate the soil (or subsea soils) by moving the grains around them (Maladen



63

et al., 2009). Recently, the De Winton’s golden mole (Cryptochloris wintoni) [Fig. (1.3)a], last
seen in 1937 off the northwest coast of South Africa, was rediscovered in November 2023 af-
ter almost 90 years without being seen. This blind and elusive mole avoids human contact by
“swimming” through sand dunes [Fig. (1.3)b], making it extremely difficult to spot (Mynhardt,
2023). The efficiency of these processes depends on the animal’s ability to generate enough
momentum to overcome the resistance of the granular material, typically associated with the
force chains formed within them. For example, there are several burrowing and excavation
strategies employed by different biological systems (Hosoi; Goldman, 2015), such as the At-
lantic razor clam (Ensis directus), which uses deformations of its body to loosen and repack
the underwater soil around it, leading to a unidirectional motion (Jung et al., 2011). In general,
these locomotion strategies involve a wave-like, snake-like motion (Maladen et al., 2009; Jung,
2010), or a “two-anchor” mechanism (Jung et al., 2011). The sandfish lizard [Fig. (1.3)e], for
example, moves through sand by rhythmically rocking its body from side to side (Maladen et
al., 2009). This is also the case for smaller creatures such as the nematode Caenorhabditis el-
egans, which navigate granular environments effectively using wave-like motion (Jung, 2010).
In contrast, soft-bodied animals in particulate substrates saturated with a pore liquid typically
employ a “two-anchor” method of burrowing (Jung et al., 2011). This involves expanding one
part of the body to create a terminal anchor while another part contracts to minimize drag. As
the contracted segment advances through the burrow, it expands to establish a new anchor, while
the previous anchor contracts and moves forward (Jung et al., 2011).

Another aspect of extreme environmental importance, especially in ecosystem con-
servation, is linked to the dispersal of seeds falling from trees, with subsequent penetration into
the soil, revealing ballistic mechanisms directly associated to the physics of granular materi-
als. A recent study showed how some types of seeds (Erodium and Pelargonium seeds) adopt a
strategy of using their rotation as a way of reducing soil resistance to penetration by causing a
change in the configuration of contact networks due to soil rearrangements (Jung et al., 2017).
This leads to root growth in plants [Figs. (1.3)c and (1.3)d], another area where the interaction
of intruders (in this case roots) with granular materials plays a critical role. As roots penetrate
the soil, they encounter resistance from surrounding grains, which can affect their direction of
growth, since the trajectories are effected by the presence of obstacles in the granular material,
like stones, usually generating tortuous paths (Kolb et al., 2017). In addition, the root’s growth

rate is affected by the granular material properties; for instance, forces exerted on the root cap



64

have been shown to reflect the interparticle’s force networks (Fakih et al., 2019) and the roots
elongation tends to be attenuated the more compact the granular material is (Abdalla et al.,
1969). Thus, a better understanding of the physics of these movements can lead to the devel-
opment of better agricultural soil management techniques in order to improve root penetration
and, consequently, plant growth, with a considerable economic impact. Also in an agricultural
context, the motion of tools and machinery through soil is found in many common activities
such as plowing, planting, and harvesting [Figs. (1.3)i and (1.3)j] (Godwin; O’Dogherty, 2007).

In industry, the design of avalanche protection structures, such as the use of fences,
barriers, or the implementation of reforestation zones, is linked to the understanding of how
intruders (in this case, artificial structures or trees) interact with the layers of granular material
during these critical events. Some works provided insights into the ideal design (disposition) of
these structures to mitigate the risk of avalanches (Texier ef al., 2023); while others have shown,
through experiments of the stability of a granular layer over a rough incline, that the presence
of a nail forest increases the stability of the granular layer due to additional frictional forces
exerted by the pillar forest on the granular layer (Benito ef al., 2012a).

In the field of intruder locomotion in granular media, we can mention the devel-
opment of robots that are capable of moving efficiently on irregular granular terrains, as is the
case in military applications or in search and rescue missions in areas affected by natural dis-
asters (avalanches and landslides). Furthermore, moving away from terrestrial applications, the
movement of intruders in granular media is also found, for example, in the exploration of ex-
traterrestrial surfaces, such as those of Mars and the Moon. Rovers designed to traverse these
surfaces, such as the Spirit and Curiosity rovers [Fig. (1.3)h], that spend many years of activity
on Mars, making great scientific discoveries, must be able to deal with low gravity environ-
ments and the unique mechanical properties of extraterrestrial soils. In this context, there are
several mobility challenges, especially aggravated by the need to avoid entrapment and ensure
stability during movement. A famous example with a huge economic impact is the entrapment
of the Mars rover Spirit in 2010, which became stuck in the sandy Martian soil in the floor of
a small crater (Jaggard, 2010). This lead to the prediction of models to improve rover perfor-
mance based on the interaction between the wheels and the granular substrate (terramechanics),
leading to the optimization of wheel designs and steering strategies (Iagnemma et al., 2004;
Ishigami et al., 2007). Recently, a great effort has been put on the development of bioinspired

robots that mimic the locomotion strategies of animals such as snakes and lizards. These de-
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signs have shown promise in overcoming mobility challenges in loose and changing terrains,
making them ideal for a wide range of applications (Maladen et al., 2011b; Xiao; Murphy,
2018; Chen et al., 2023).

Finally, cratering after projectile impact is also a process where this type of motion
is encountered. Crater formation involves the rapid displacement and deposition of granular
material, leading to the formation of craters of various shapes, as well as complex patterns of
material ejection and, in some cases, wave propagation. Experiments and simulations have pro-
vided insights into the scaling laws that govern crater formation (Melosh; Ivanov, 1999; Uehara
et al., 2003b; Katsuragi; Durian, 2007; Seguin et al., 2008; Carvalho et al., 2023b; Carvalho
et al., 2023a; Carvalho et al., 2024a). Such studies are not only important for understanding
the geological history of planetary bodies (such as the event that caused the extinction of the
dinosaurs on Earth), but also for predicting the effects of future impacts on Earth. Impact prob-
lems are also of utmost importance to understand the distribution of elements (heavy metals)
under or within the surface, brought by the projectile after the impact (Carvalho et al., 2023a).
In the early 20th century, businessman Daniel Barringer spent a fortune searching for an iron
meteorite that he believed was buried under the floor of a meteor crater in Arizona, United
States [Fig. (1.3)g] (Stephens, 2023). Although we have had few opportunities to study large
meteorite impacts, there is now an understanding in the scientific community that Barringer’s
search was probably in vain: the projectile that created that meteor crater vaporized largely
upon impact (Stephens, 2023). However, the specifics of how meteorite debris is dispersed and
how its impact shapes the resulting crater are still not well understood and studies on this topic
are proving to be relevant.

Locomotion in granular materials, taking account the physical interactions between
intruders and the surrounding granular material, and cratering by impact at low energy levels

are the central themes of this Thesis, described in Sec. 1.3.

1.3 Central themes of this Thesis

As seen in Sec. 1.2, the displacement of a solid body (intruder) within a granu-
lar medium is ubiquitous in natural and man-made processes. However, the fundamental un-
derstanding of the interaction between one or more moving objects and a granular substrate
remains a fundamental and practical challenge.

Depending on velocities, lengths, materials and concentrations involved, the granu-



66

lar system is forced to move in different manners. For instance, the motion can be highly iner-
tial, with great part of the kinetic energy being dissipated through friction and collisions within
grains (Bester; Behringer, 2017), or when the velocities involved are relatively small, it can be
in quasi-static regime, being dominated by the formation and destruction of contact networks
and stick-slip motion (Appendix A) (Kolb et al., 2013; Tordesillas et al., 2014; Kozlowski et al.,
2019; Carlevaro et al., 2020; Kozlowski et al., 2022; Kozlowski et al., 2021; Pugnaloni et al.,
2022; Carvalho et al., 2022; Carvalho; Franklin, 2022b; Carvalho et al., 2024b). This regime
can be observed in the thrusting of ploughs in agricultural activities, in avalanche protection de-
vices aimed at slowing down the flow (Benito et al., 2012b; Texier et al., 2023), in root growth
(Kolb et al., 2017; Fakih et al., 2019), or in the motion of animals in the soil (Hosoi; Goldman,
2015). For higher velocities, a dilute regime appears, in which solid-solid collisions dominate
(Andreotti et al., 2011), such as happens in crater formation (Uehara et al., 2003b; Seguin et
al., 2008; Seguin et al., 2009; Carvalho et al., 2023b; Carvalho et al., 2023a; Carvalho et al.,
2024a)).

When intruders are set in motion in granular media, they may experience different
phenomena. Their motion leads to local reorganizations of the granular packing around them
(Houssais et al., 2015; Kolb et al., 2013), causing either breakage or formation of force chains
[Fig. (1.2)]. This generates a strongly oscillating drag force on the intruder (Kolb et al., 2013;
Seguin et al., 2016; Carvalho et al., 2022; Carvalho; Franklin, 2022b; Carvalho et al., 2024b)
which, in some cases, may lead to creeping (Candelier; Dauchot, 2009) or to the formation of
jammed regions, which can bring the intruder to a complete stop (Bi et al., 2011; Zheng et al.,
2014). These forces have been, in some cases, previously measured. However, local variations
of particle fractions, forming compressed fronts and expanded trails (Kolb ef al., 2013; Seguin
et al., 2016; Carvalho; Franklin, 2022b), together with the breaking and reorganization of the
force networks around the intruder, make the prediction of granular motion and drag forces
very complex (Carvalho et al., 2022). On a small scale, some works focused on the motion
of an intruder being pulled at a constant velocity amid smaller grains (Albert et al., 1999;
Albert et al., 2001; Geng; Behringer, 2005; Costantino et al., 2008; Kolb et al., 2013; Seguin
et al., 2016; Kozlowski et al., 2019; Carlevaro et al., 2020; Carvalho et al., 2022; Carvalho;
Franklin, 2022b), while others focused on the motion of intruders being pulled at a constant
force (Candelier; Dauchot, 2009; Reichhardt; Reichhardt, 2010; Candelier; Dauchot, 2010).

Although similar, the case of a group of intruders moving simultaneously through grains has
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been substantially less studied and many questions remain to be answered. This sort of motion
can be found, for instance, in the displacement of animals in the soil (Hosoi; Goldman, 2015)
or in the growth of roots (Kolb ef al., 2017; Fakih et al., 2019). When more than one intruder
move within grains, the motion of each intruder can affect those of others, establishing a sort
of cooperative behavior. Cooperative effects are constantly observed in nature when intruders
move within a fluid. We can cite, for example, the reduction of drag when two spheres move
side-by-side in a viscous flow (Happel; Brenner, 1983) or the flight of migration birds in a
V-shaped formation. In this context, some investigations were carried out. The first type of
study concerned intruders that moved freely in low-density grains (Pacheco-Véazquez; Ruiz-
Sudrez, 2010; Solano-Altamirano et al., 2013; Carvalho; Franklin, 2022b) and the second type
concerned threaded objects placed at a constant separation distance (Cruz; Caballero-Robledo,
2016; Merceron et al., 2019; Dhiman et al., 2020; Caballero-Robledo et al., 2021; Pravin et
al., 2021; Carvalho; Franklin, 2022b; Carvalho et al., 2024b). Some of these studies led to the
prediction of side forces (of both attractive and repulsive natures, depending on the intruders’
separation) between the intruders and the physical mechanisms behind them, while other studies
predicted drag reduction, evincing a cooperative dynamics when intruders move together within
a granular material.

From a different but similar perspective, on relatively larger and faster scales, we
can observe the movement of a projectile (intruder) within grains, following its impact on gran-
ular targets, with the consequent formation of craters and the projectile penetration, which is
often observed in nature at different scales. For instance, we find it in ballistics problems, when
a seed fall from a tree, or in rare events such as the collision of objects with celestial bodies.
Understanding their behavior, especially when subjected to external forces like impacts, is es-
sential not only for scientific curiosity but also for solving practical engineering challenges.
Impact, defined as a sudden application of force or energy, can lead to a cascade of intricate in-
teractions among granular particles. The outcome of these interactions can vary widely, ranging
from simple grain rearrangements to complex phenomena like energy dissipation, wave prop-
agation, and even the onset of granular flows. The interest in impact within granular media
spans across multiple disciplines, including physics, engineering, geology, and material sci-
ence. To this end, small-scale experiments (Uehara et al., 2003b; Walsh et al., 2003; Katsuragi;
Durian, 2007; Goldman; Umbanhowar, 2008; Seguin et al., 2008; Pacheco-Vazquez; Ruiz-

Sudrez, 2010; Pacheco-Vazquez; Ruiz-Suarez, 2011; Carvalho et al., 2024a) and numerical
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simulations (Ciamarra et al., 2004; Seguin et al., 2009; Carvalho et al., 2023b; Carvalho et al.,
2023a) have proven to be extremely useful for understanding crater formation and projectile dy-
namics, leading to scaling laws for the projectile’s penetration depth and crater diameter, models
for the drag force experienced by the projectile during the penetration process, and mechanisms
of energy dissipation. However, most of those studies are limited to the case of pure translation
of the sphere, with no rotational motion.

In summary, the study of granular materials is a multidisciplinary task that unites
diverse topics in physics, engineering, geophysics, planetary science, among others. Under-
standing the complex behaviors of these materials is essential to address natural or industrial
challenges. The continuous studies on these matters lead to innovations that can impact many
fields, from building better harvesting equipment to exploring distant planets. In particular, the
research presented in this Thesis, on the dynamics of intruders moving over or within granular
materials, aims at giving a contribution to further our current scientific understanding of this
topic. This Thesis is concerned with the study of the response of granular materials when in
the presence of a solid intruder, either when the intruder moves at a very low velocity inside
it (quasi-static regime) or when it is impacted by an intruder at higher velocities (collisional
regime). The research presented here employs a combination of numerical simulations, exper-
imental investigations, and mathematical modeling to provide new insights into these complex
interactions.

One part of the work investigates how the movement of a single intruder affects the
granular structure, leading to the perception of drag by the intruder. Using discrete element
method (DEM) simulations, we confirm that force networks within the granular medium play
a crucial role. Specifically, we identify a “bearing network”™ that transmits larger forces from
the intruder toward the walls, leading, sometimes, to localized jamming and high drag forces,
and a “dissipative network™ that carries smaller forces, which percolates over long distances.
We also demonstrate that the extent of these force networks, as well as the formation of void
regions behind the intruder, are significantly influenced by factors such as basal friction and the
granular media compactness (Carvalho et al., 2022).

In addition to studies of individual intruders, this research delves into the coop-
erative dynamics of multiple intruders. By simulating groups of intruders moving through a
granular medium, we found that they exhibit cooperative behavior even when they are rela-

tively far apart. This cooperation, which can result in reduced mean drag, is facilitated by the
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compaction and expansion of the granular material in front of and behind each intruder and
affected by contact chains in the media. This leads to the discovery of an optimal spacing to
minimize drag, which has practical implications for designing devices that interact with granu-
lar surfaces. Our findings also show that the initial arrangement of intruders can lead to specific
collaboration patterns (final arrangement in space) (Carvalho; Franklin, 2022b). Experimen-
tally, we confirmed this tendency of collaborative movement with manifestations leading to a
reduction in mean drag, which proved to be more intense with the depth of the intruders in
the granular medium. These observations led to the proposal of a mathematical model that de-
scribes well the drag reduction due to the collaborative motion of intruders in granular media
(Carvalho et al., 2024b).

This Thesis also extends to the impact of projectiles on granular targets, a phe-
nomenon relevant in natural and industrial contexts. Using DEM simulations, we examined
how several factors, including projectile rotation, bed compaction, and grain friction, affect
crater formation and the forces experienced by the projectile (intruder). We found that a denser
region forms beneath the projectile, contributing to its rebound, and that projectile rotation sig-
nificantly increases penetration depth and crater diameter. These findings led to the proposal
of scaling laws that help explain some characteristics of crater formation observed in differ-
ent environments (Carvalho et al., 2023b). Furthermore, our investigations of rotating gran-
ular projectile impacts highlighted how projectile cohesion (in aggregates) and spin influence
material dispersion and crater shapes, offering insights into natural impact events such as as-
teroid collisions, as well as technological applications such as planetary exploration (Carvalho
et al., 2023a). Experimentally, we validated and extended these numerical findings by show-
ing that rotational motion increases the penetration depth of spherical projectiles in granular
media, leading to the development of a model that accounts for rotational effects. This model
successfully predicts the depth achieved by rotating projectiles, providing valuable predictions
for scenarios ranging from agricultural seed dispersal to space probe landings (Carvalho et al.,
2024a).

Overall, our research provides a contribution to the understanding of the fundamen-
tal mechanics of granular materials and their response to the motion of an intruder within it.
By exploring isolated and cooperative behaviors of intruders and projectiles, this Thesis offers
some insights that are applicable to a wide range of scientific and engineering fields. In Sec. 2,

a brief historical overview of the interaction of intruders with granular materials is given. In
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Sec. 3, the numerical and experimental methodologies employed throughout this Thesis are
explained. In Sec. 4, numerical and experimental results concerning the quasi-static motion of
intruders within a granular material are presented. In Sec. 5, numerical and experimental results
concerning the collisional motion of projectiles impacting a granular material are presented. Fi-
nally, Sec. 6 presents the main conclusions of this Thesis and some topics to be investigated in

the future.
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2 HISTORICAL OVERVIEW OF THE INTERACTION OF INTRUD-
ERS WITH GRANULAR MATERIALS

2.1 Quasi-static regime - Intrusion problems

The motion of a solid intruder in a granular medium is commonly found in nature
and human activities. For example, we find it in the motion of animals and machines over and
within granular matter (snakes, worms, vehicles, etc.), the penetration of solid bodies in sand
(such as ballistic objects), and the impact of objects on sandy surfaces (such as the landing
of space probes on other planets) (Askari; Kamrin, 2016; Zheng et al., 2018). Depending
on velocities, lengths, materials and concentrations involved, the granular system is forced to
move in different manners. For instance, the motion can be highly inertial, with great part of the
kinetic energy being dissipated through friction and collisions within grains (Bester; Behringer,
2017), or when the velocities involved are relatively small, it can be in quasi-static regime, being
dominated by the formation and destruction of contact networks and stick-slip motion (Kolb e?
al., 2013; Tordesillas et al., 2014; Kozlowski et al., 2019; Carlevaro et al., 2020; Kozlowski
et al., 2022; Kozlowski et al., 2021; Pugnaloni et al., 2022; Carvalho et al., 2022; Carvalho;
Franklin, 2022b; Carvalho et al., 2024b). This regime can be observed in the thrusting of
ploughs in agricultural activities, in avalanche protection devices aimed at slowing down the
flow (Benito et al., 2012b; Texier et al., 2023), in root growth (Kolb et al., 2017; Fakih et al.,
2019), or in the motion of animals in the soil (Hosoi; Goldman, 2015). For higher velocities, a
dilute regime appears, in which solid-solid collisions dominate (Andreotti et al., 2011).

Given their importance, many studies were devoted over the last decades to stress
transmission and jamming in granular matter under normal and shear stresses (Radjai et al.,
1998; Cates et al., 1998; Majmudar; Behringer, 2005; Bi ef al., 2011; Seguin, 2020). Radjai
et al. (1998) (Radjai et al., 1998) showed that the stress transmission in a two-dimensional
(2D) packing of rigid spheres under biaxial compression occurs through two complementary
networks: a load-bearing network and a dissipative network. The former is a network of nons-
liding contacts that transmit strong forces (higher than the average), carrying the deviatoric load
and presenting anisotropy induced by shear, while the latter is a network of sliding contacts that
transmit weak forces (smaller than the average), carrying only load contributing to the average

pressure and presenting anisotropy in a direction orthogonal to that of the load-bearing network.
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Later, Seguin (2020) (Seguin, 2020) investigated the force network of a monolayer of disks un-
der vibration compressed above the limit for jamming. The results corroborate the existence
of load-bearing and dissipative networks, and show that the latter is characterized by cycles
consisting of 3 to 8 grains that are linked to the load-bearing chains, relieving part of the load.
Cates et al. (1998) (Cates et al., 1998) investigated fragile states in colloidal suspensions and
granular materials, being defined as those whose internal structure has organized itself to sup-
port loads in certain directions, but not in others. They showed that those states result from the
formation of force chains aligned in preferential directions, and, therefore, fragile matter under-
goes jamming and is able to support loading in such directions, while it undergoes unjamming
and suffers plastic deformation in others. Bi ef al. (2011) (Bi et al., 2011) showed that granular
materials sheared by external stresses present not only the isotropic jamming observed in shear-
free conditions, but also fragile states and shear jamming that appear at particle fractions lower
than those necessary for isotropic jamming. They showed also that the fragile state appears
under small shear stresses and is characterized by force chains that are one-directional, while
the shear jamming results from stronger shear stresses with a force network that percolates in
different directions.

For the case of an intruder moving in granular matter, local variations of particle
fraction, forming compressed fronts and expanded trails (Kolb ez al., 2013; Seguin et al., 2016),
together with the breaking and reorganization of the force networks around the intruder, make
the prediction of granular motion and drag forces complex. Many studies were therefore de-
voted to the drag force on intruders (Albert et al., 1999; Albert et al., 2001; Stone et al., 2004;
Geng; Behringer, 2005; Costantino et al., 2008; Kolb et al., 2013; Seguin et al., 2016; Ko-
zlowski et al., 2019; Carlevaro et al., 2020). In particular, Kolb et al. (2013) (Kolb et al., 2013)
investigated experimentally the drag force on the intruder and the motion of grains around it
as the intruder was driven within a bidimensional granular system consisting of disks. They
showed the formation of a region in front (upstream) of the intruder where grains reach the
jamming packing fraction (compression), and a region behind (downstream) the intruder where
a cavity without grains (expansion) appears. As the intruder moves, grains recirculate intermit-
tently from the compressed front toward the downstream region with the occurrence of chain
breaking and unjamming, making the drag force on the intruder to fluctuate, sometimes very
strongly, around a mean value. They showed also that the cavity tends to disappear and the

drag to increase greatly as the average particle fraction grows because the compressed front is
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confined by lateral walls, leaving no room for local compression/expansion in the limit of the
highest possible packing fraction. Seguin et al. (2016) (Seguin et al., 2016) inquired further
into the motion around an intruder in a granular system similar to that of Ref. (Kolb et al.,
2013), but using simultaneously photoelastic and tessellation techniques to measure the strain
and stress rates at the grain scale. They showed that, although the strain and shear are local-
ized, the macroscopic friction coefficient . (ratio of shear to normal stresses) depends on the
azimuthal direction, indicating that a local rheology is not adequate to describe the motion of
grains around the intruder.

More recently, Kozlowski ef al. (2019) (Kozlowski et al., 2019) and Carlevaro et
al. (2020) (Carlevaro et al., 2020) investigated the effects of the packing fraction and the in-
terparticle and basal frictions (the latter between the bottom wall and the grains, excluding the
intruder) on the motion of an intruder moving within a bidimensional granular system in a Cou-
ette geometry. The experiments (Kozlowski et al., 2019) made use of photoelastic disks moving
over either a glass plate or a layer of water, while the numerical simulations (Carlevaro et al.,
2020) were 2D and varied the friction coefficient (static and dynamic) over broader ranges. In
both, the intruder was driven by the continuous loading of a spring. The experiments showed
that in the presence of basal friction there are two regimes depending on the particle fraction:
at low particle fractions, an intermittent regime where the intruder moves freely between clog-
ging events appears, while at high particle fractions a stick-slip regime takes place, where the
intruder moves through fast slip events alternated with long periods of creep. In the absence of
basal friction (water layer), only the intermittent regime is observed. The numerical simulations
showed that the intermittent to stick-slip transition is highly affected by the dynamic coefficient
of basal friction, with the intermittent regime occurring for values below 0.1 and the stick-slip
for higher values, while it is virtually independent of the static coefficient, which contributes
mainly to the duration of stick events. Later, Pugnaloni et al. (2022) (Pugnaloni et al., 2022)
showed that the stick-slip dynamics depends only on the sizes involved, being independent of
friction coefficients, and proposed a model for the energy released by the spring as a function
of the packing fraction. Tripura et al. (2022) (Tripura et al., 2022) studied numerically how a
two-dimensional granular medium consisting of single and pairs of disks (dumbbells) behaves
when displaced by a larger intruder (single disk). They found that the drag force on the intruder
increases with the proportion of dumbbells in the system, that the additional resistance caused

by dumbbells is negligible when the microscopic friction is set to zero, and that the stress prop-
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agated in front of the intruder increases with its diameter. The problem was inquired further
by Refs. (Kozlowski et al., 2021; Kozlowski et al., 2022), who measured the effects of grain
angularity on the stress propagation and stick-slip dynamics, showing that angular grains resist
to motion under lower packing fractions and have higher shear strengths. Recently, Carvalho
et al. (2022) (Carvalho et al., 2022) investigated numerically the motion of an intruder within
a two-dimensional granular medium using a setup similar to that of Ref. (Seguin et al., 2016).
Among other findings, they showed that the force network can reach regions far downstream of
the intruder, and that grains within the bearing chains creep while the chains break. The latter
result explains how the load chains break and allow the intruder to proceed with its motion.

In the light of the complex constitutive behavior of granular media, partly due to
its non-linearity, history-dependence and non-locality, forces on arbitrarily shaped granular in-
truders have been described by simple and yet empirical “resistive force hypotheses” (RFT),
being more of a hypothesis than a theory due to the lack of physical explanations (Askari;
Kamrin, 2016). The resisting force against the motion of the intruder is represented by a simple
superposition principle (Maladen et al., 2011a), where the intruder’s boundary is divided into
differential elements and the total force equals the sum of the forces on each element as if it
were moving on its own. Despite the lack of physical explanation, Ref. (Askari; Kamrin, 2016)
shows that granular RFT arises due to frictional yield criterion in the absence of other cohesion
forces, both being mechanical features of dry granular media.

Given the problem complexity, most of previous studies were devoted to the mo-
tion of one intruder within a granular medium (Albert ez al., 1999; Albert et al., 2001; Stone
et al., 2004; Geng; Behringer, 2005; Costantino et al., 2008; Kolb et al., 2013; Seguin et al.,
2016; Kozlowski et al., 2019; Carlevaro et al., 2020; Pugnaloni et al., 2022; Carvalho et al.,
2022), in general using two-dimensional systems, and, although using relatively simple setups,
they brought important insights into the problem. One case of particular interest is when sev-
eral intruders move within grains, since the motion of each intruder can affect those of others
(Carvalho; Franklin, 2022b), establishing a cooperative behavior. Some applications can be
envisaged: if one intruder affects the motion of others, the ground can be probed to detect the
presence of solid objects, such as buried rocks or ice. This opens new opportunities for prospect-
ing the soil of planets and moons for the presence of ice and other materials, for instance.

Although there are not many studies concerning groups of intruders moving through

grains, some model experiments were carried out to elucidate this problem (Pacheco-Vazquez;
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Ruiz-Suarez, 2010; Solano-Altamirano et al., 2013; Dhiman et al., 2020; Kawabata et al., 2020;
Pravin et al., 2021; Espinosa et al., 2022). The first type of study concerns intruders that move
freely in low-density grains (densities much lower than those of intruders, also known as light
granular medium). For example, Pacheco-Vazquez and Ruiz-Sudrez (2010) (Pacheco-Vazquez;
Ruiz-Suérez, 2010) showed that a pair of intruders that impact a light granular medium side by
side and are let to sink, first repel themselves (in the horizontal plane, transverse to their mo-
tion) once the impact has taken place and afterward attract each other. They explained these
observations by an increase in the granular pressure between the intruders (initial repulsion)
and a Bernoulli-like mechanism (attraction). For a number of intruders slightly larger (five,
for instance) placed initially side by side, Pacheco-Véazquez and Ruiz-Suérez (2010) (Pacheco-
Vazquez; Ruiz-Sudrez, 2010) showed that they assume upward and downward convex config-
urations in succession, depending on the initial intruder-intruder separation (above a certain
value they fall in parallel). They explained this behavior based on a sequential increase and
decrease of the drag on the central intruders caused by the compaction and expansion of the
bed, respectively. Finally, they showed that the intruders always finish horizontally aligned, ir-
respective of their number, initial configuration (vertical, horizontal or grouped distributions of
intruders), sizes and densities, which they explained by the compaction-expansion mechanism.
Later, Solano-Altamirano et al. (2013) (Solano-Altamirano et al., 2013) studied a similar im-
pact configuration in a quasi 2D geometry, observing attractive and repulsive behaviors between
the intruders. They also invoked a Bernoulli-like effect to explain the attractive behavior, and
justified the repulsive effect as due to a granular jamming in the region between the intruders.
They found that the initial repulsion exists only when the separation between intruders is less
than 6 grain diameters and attraction when the separation is less than 5-6 times the intruder
diameter and sinking velocities higher than 1 m/s. The behaviour of several intruders has also
been investigated numerically in the case of pairs and trios of larger disks (intruders) mov-
ing freely amid smaller disks (quasi two-dimensional granular medium) (Carvalho; Franklin,
2022b). These simulations showed the existence of a cooperative dynamics between the intrud-
ers, even when they were at relatively large distances from each other. They also revealed that
the type of cooperation depends on the initial arrangement of intruders, with the same spatial
configuration eventually reached for some of the arrangements. The cooperative dynamics were
rationalised as the result of compaction and expansion of granular matter in front and behind

each intruder, respectively.
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A second type of study concerns threaded objects placed at a constant separation
distance. Caballero et al. (2021) studied the side force experienced by a pair of cylindrical
intruders placed in a discharging granular silo (Caballero-Robledo et al., 2021). They observed
attractive side forces for intermediate separations and repulsive forces at very small separations.
They correlated these observations with the difference of granular temperature between the left
and right regions of the granular flow around the intruders. Analogous observations were made
by a previous numerical study carried out in a similar configuration (Cruz; Caballero-Robledo,
2016). Other numerical simulations were conducted by Dhiman et al. (2020) to explore the
interaction between a pair of spherical intruders forced to move horizontally within a 3D gran-
ular bed (Dhiman et al., 2020). They found that the side force acting on intruders varies with
separation, from repulsive for small values to attractive for relatively higher values, with an
equilibrium separation in the repulsive-attractive transition for which the transverse force is
zero. However, they showed that the Bernoulli-like effect proposed previously cannot explain
alone the forces acting on intruders. Based on their findings, they proposed that repulsion and
attraction are given, respectively, by the formation and break up of contact chains linking the
intruders, which depend, in their turn, on the intruders’ surfaces and the shear zones close to
them: the intruders’ surfaces tend to stabilize contact chains, while the shear zones tend to
destabilize them. They also found that the drag force acting on each intruder does not vary
significantly with their separation, although it is lower than in the case of a single intruder. Car-
valho and Franklin (2022) (Carvalho; Franklin, 2022b) investigated numerically the motion of
pairs of larger disks (intruders) moving horizontally amid smaller disks (quasi two-dimensional
granular medium) at a constant velocity. They observed a non-monotonic behavior of the drag
force with the separation of the intruders: first the drag increases with the separation between
the intruders’ centroids, then it reaches a maximum, next it decreases until reaching a minimum,
and finally it increases again until reaching the same value found for an individual intruder. Re-
cently, Carvalho et al. (2024) (Carvalho et al., 2024b) conducted an experimental investigation
to examine how the drag forces acting on a pair of transversely aligned intruders vary with their
depth and transverse separation as they move at constant speed through a granular bed. Their
findings revealed that the mean drag experienced by each intruder is lower than that of a sin-
gle intruder when the separations are small. As the separation increases, the drag rises until it
reaches a plateau equivalent to the drag experienced by a single intruder at large separations,

indicating a cooperative dynamic within a specific distance range. Additionally, they observed



Tl

that the drag reduction for small separations increases with depth, and that the mean drag data
varies exponentially with intruder-intruder separation.

Interaction effects between threaded objects were also observed experimentally and
numerically for a pair of rods penetrating vertically into a granular bed (Pravin et al., 2021).
Pravin e al. (2021) investigated how the resisting forces and work acting on a pair of rods varied
with their separation during the penetration. In addition to the transverse separation of intruders
(rods in this case), they varied also the sizes of grains and intruders, and the friction coefficient
of grains, and in all cases they found that the work for penetration varies non-monotonically
with the intruders’ separation. Beginning from touching intruders, the work first increases with
increasing the separation while the gap remains small enough to hinder the passage of grains in
the region between the intruders (i.e., the work increases due to the growth of the effective cross-
sectional area). When the separation becomes enough to allow the flow of grains in the gap, the
work decreases until reaching a plateau at a separation of approximately 11 grain diameters. In
the increasing-decreasing transition, there is a maximum value of work that is approximately
25% higher than that at large separations (plateau), the corresponding separation being of 2-3
grain diameters.. In order to characterize the interaction between two intruders, Merceron et
al. (2018) (Merceron et al., 2018) carried out experiments where they visualized the granular
flow around a pair of intruders placed side by side. They investigated a confined 2D system
where two intruders were forced to move upwards into an assembly of small bidisperse disks
(which density was similar to that of intruders). They showed that there is a separation distance
between the intruders below which the motion of grains in front of one intruder is affected by
the other, and that, in opposition in some way to previous works, this distance is independent of

the intruders’ size.

2.2 Collisional regime - Impact problems

The impact of projectiles onto granular targets, with the resulting crater formation
and projectile penetration, is frequently observed in nature at different scales. We find it in the
collision with the ground of seeds falling from trees, which, when small and light, involves
mass, lengths and velocities of the orders of 10 g, 1 cm and 1 cm/s, respectively, corresponding
to energy levels of the order of 10~7 J (the equivalent of lighting a LED lamp for approximately
0.0000001 s) and forming cm-size craters. We find it also in the collision of km-size asteroids

impacting planets and moons at 103-10* km/h, which corresponds to energies of the orders of
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106 (equivalent to a hydrogen bomb) to 10'8 J, and forms km-size craters. However, the values
involved can be much higher: for instance, the Tycho and Posidonius craters found on Earth’s

moon have diameters of approximately 100 km (85 and 95 km, respectively) (Ruiz-Suérez,

2013; Kriiger et al., 2016), and the Odisseus crater found on Saturn’s moon Tethys (Barlow et
al.,2017) a diameter of 445 km.

Figure 2.1 — (a) Craters on Earth’s moon (in the middle, with a smaller bow-shaped crater in-
side, is Poinsot crater); (b) Craters on Vesta, with a recent 20-km-diameter crater
on the top of image; (c) 445-km-diameter crater on Saturn’s moon Tethys; (d) 76-
mm-diameter crater obtained numerically from the impact of a 25-mm-diameter
steel sphere falling from 50 mm onto a bed of particles (glass spheres with mean
diameter of 1 mm). Images (a), (b) and (c): Courtesy NASA/JPL-Caltech. Image
adapted from (Carvalho et al., 2023a).
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The different scales of impacting objects found in nature imply in huge differences
in collisional processes and resulting craters. For example, under small energies (low masses
and velocities) the impact results only in partial penetration of the projectile and ejection of part
of the grains, while under large energies it involves also melting and evaporation of part of the
material. Concerning the resulting crater, there are different types that depend basically on its
size and gravity acceleration (Melosh; Ivanov, 1999), but strong variations occur and a classi-
fication is not straightforward (Barlow et al., 2017; Arvidson, 1974). In general, small craters
have a bowl shape (also called simple craters), with roughly a parabolic profile [Fig. (2.1)b],
and as the craters become larger, they present a flat floor and a central peak or peak rings.
For even larger craters, they have, in addition to the flat floor and central peak (or peak rings),
external rings that are formed from the partial collapse of steep walls [Fig. (2.1)c]. For refer-
ence, lunar craters with diameters smaller than approximately 10 km are bowl-shaped, those
with diameters of the order of 100 km have the external rings, flat floor and peak rings, and
craters within those values generally vary between bowl-shaped and flat floor with central peak
(Melosh; Ivanov, 1999). Notwithstanding their ubiquitous nature, the mechanisms leading to
different crater shapes are far from being completely understood.

Besides the involved energies, other properties such as the projectile and ground
compositions (Pacheco-Vazquez; Ruiz-Suarez, 2011), confinement (Seguin et al., 2008), pro-
jectile spin (Carvalho et al., 2023b), and microscopic friction (Carvalho et al., 2023b) can
strongly influence the crater shape. The diversity of scales and parameters makes of cratering
an intricate problem. Although the collisional processes of different systems are different, they
bear similarities if we consider the dynamics of the granular material alone, which can be ex-
plored if we assure that some proportions and ratios are within the same ranges (scaling laws).
By using dimensional analysis, Holsapple (1993) (Holsapple, 1993) showed that the dimension-
less volume of the crater is a function of two pressure ratios and the density ratio p,/p, where
pp and p are the densities of the projectile and grains, respectively. One dimensionless pres-
sure ratio, II,, is the material strength (yield stress) o of the target normalized by the dynamic

pressure p,V.?,

.
vap2 ’

where V/, is the velocity of the projectile at the collision. The other one is the projectile weight

I, 2.1)

divided by its surface area and normalized by the dynamic pressure,
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where D), is the projectile diameter and ¢ is the modulus of gravity acceleration g. This pressure
ratio is the equivalent of the inverse of a Froude number F'r~!: gravitational effects compared
to inertia. If we neglect p,/p, since in many cases it is of order one, it is important to assure
that we are considering similar dimensionless pressures when comparing collisions of different
scales: in cases where the target strength is higher than the lithostatic pressure, I, is dominant
(strength regime), and for the inverse, F'r—' dominates (gravity regime) (Holsapple, 1993).
Therefore, for small objects colliding with resistant targets, such as a small seed falling on
Earth, II, dominates, while for km-size projectiles under strong gravity accelerations F'r~?
dominates. In geophysical problems, typical Froude numbers are within 107¢ < Fr—1 <1072,
where the upper end is sometimes considered in the strength regime, but usually acknowledged
as being in the gravity regime (Holsapple, 1993; Ruiz-Sudrez, 2013).

Because impacts of km-scale asteroids are extraordinarily rare events on the human
timescale (every few hundred million years on Earth’s surface, for example), laboratory-scale
experiments and numerical simulations have proven essential in the investigation of crater for-
mation, part of them carried out in the strength regime (given the relatively small velocities).
However, by decreasing D,, and/or increasing V},, some experiments and grain-scale simulations
reached F'r~! < 107%, being in the gravity regime. In addition, as pointed out by Holsapple
(1993) (Holsapple, 1993), the range of Fr~! for the gravity regime is larger when the target
consists of cohesionless grains, so that some experiments and simulations with Fr~! = 1072
can be considered in that regime. This has allowed us to perform extrapolations of laboratory
results to geophysical problems in order to obtain hints about the granular behavior and, perhaps
most important, discard wrong assumptions (Ruiz-Sudrez, 2013).

Bearing in mind the two different regimes, the scales of the crater diameter D,
and depth h. can be obtained from physical arguments (Amato; Williams, 1998; Uehara et al.,
2003b; Uehara et al., 2003a; Walsh et al., 2003). For the gravity regime, it is expected that the
available energy at the impact F is dissipated by excavating the crater, i.e., displacing the crater
volume (~ D?) by a distance proportional to h.. By hypothesizing that i, ~ D, in this regime,
we find D, ~ E'* and, therefore, h, ~ E'/%. For the strength regime, cratering is dominated
by the target strength, i.e., the crater volume is excavated by plastic deformation, giving thus

D, ~ E'Y3. However, more sophisticated computations and/or experiments are necessary to
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better understand the physical mechanisms of cratering.

Because impacts of km-scale asteroids are extraordinarily rare events within the
human timescale (of the order of millions of years on Earth’s surface, for example), laboratory-
scale experiments and numerical simulations have proven essential in the investigation of crater
formation (Uehara et al., 2003b; Walsh et al., 2003; Ciamarra et al., 2004; Katsuragi; Durian,
2007; Vet; Bruyn, 2007; Goldman; Umbanhowar, 2008; Seguin ef al., 2008; Seguin et al., 2009;
Umbanhowar; Goldman, 2010; Katsuragi; Durian, 2013). By assuring Fr=! < 107! in most
cases and using targets consisting of cohesionless grains, those works allowed extrapolations
of laboratory results to geophysical problems, so that hints about the granular behavior were
obtained and wrong assumptions discarded (Ruiz-Sudrez, 2013). The penetration dynamics
of a sphere in a granular medium has been extensively studied both experimentally (Uehara
et al., 2003b; Ambroso et al., 2005; Bruyn; Walsh, 2004; Seguin et al., 2009; Carvalho et al.,
2024a), numerically (Seguin et al., 2009; Carvalho et al., 2023b; Carvalho et al., 2023a), and by
modeling (Goldman; Umbanhowar, 2008; Hinch, 2014; Katsuragi; Durian, 2007; Guo, 2018).

Concerning the experiments and numerical simulations of a solid sphere impacting
a dry granular medium, important aspects were commonly observed for the gravity regime. In
general, it was found that the collision has two distinct phases: In the first phase, the grains
in the impact region are fluidized and the projectile penetrates the target with a predominant
inertial drag, while in the second phase the bed hardens again and the projectile continues
its penetration with a depth-dependent frictional drag (Goldman; Umbanhowar, 2008). The
projectile thus decelerates while penetrating the granular medium because of the opposing drag
and, just before reaching a full stop, suffers a discontinuity in its acceleration: the dynamic
drag is changed to a static force that supports the projectile (Goldman; Umbanhowar, 2008;
Katsuragi; Durian, 2007). The crater diameter D). has been reported (Uehara et al., 2003b;
Uehara et al., 2003a; Walsh et al., 2003; Vet; Bruyn, 2007) to, indeed, scale as D, ~ EY%, but
different scalings were obtained for h.. For the latter, some authors found that h. ~ D, and
then h, ~ E'/* (as expected for the gravity regime) (Walsh ez al., 2003; Vet; Bruyn, 2007), but
others found different scales, such as h, ~ Vp2/ 3 (Uehara et al. (2003) (Uehara et al., 2003b;
Uehara et al., 2003a), where in their case h. was equal to the depth § reached by the projectile)
or h, ~ V,, (proportional thus to the momentum of the projectile at the impact, as shown by de
Bruyn and Walsh (2004) (Bruyn; Walsh, 2004)).

In particular, Ciamarra et al. (2004) (Ciamarra et al., 2004) investigated experi-
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mentally and numerically the impact of a projectile onto a two-dimensional granular medium
(disks), and found that the impact time ¢. (time interval from reaching the target to full stop)
is independent of V), so that the projectile penetration d depends on the impact velocity. They
found a constant deceleration that is proportional to V},, which explains the independence of ¢,
but that is in disagreement with the direct measurements made later by Goldman and Umban-
howar (2008) (Goldman; Umbanhowar, 2008). Uehara et al. (2003) (Uehara et al., 2003b; Ue-
hara et al., 2003a) released spheres of different densities p,, from different initial heights . onto
cohesionless beads and, for partially penetrating spheres (6 = h..), found that D, ~ (ppDﬁH ) 1/
~ E'* (according to predictions), where H is the total drop distance (vertical distance traveled
by the projectile, including the penetration depth ¢, so that H = h + ). However, they found
that h, ~ H'3, h, not scaling with E, so that the crater aspect ratio is not necessarily fixed.
They also found that the friction and restitution coefficients of the projectile and diameter of the
grains do not affect the crater morphology. Besides the scaling laws for the crater h. and pen-
etration o depths, many other aspects remain without a consensus, such as the shape of craters,
the role of force chains and jamming, the effects of the packing fraction and friction, etc.

The first description of the resultant force on a projectile moving within a granular
medium is probably that done by Poncelet (1829) (Poncelet, 1829), as the sum of the projectile
weight, an inertial force, and a friction term. As pointed out by Ruiz-Sudrez (2013) (Ruiz-
Sudrez, 2013), Poncelet did not consider that the friction term should vary with the penetration
depth, which was included later in the model (Tsimring; Volfson, 2005; Katsuragi; Durian,
2007). The mechanical actions involved when an object impacts a granular material are often
related to the drag force. This drag force generates penetration resistance, and, for a sphere
impacting a granular material, it consists of a sum of two terms. The first term is frictional,
linked to the hydrostatic pressure prevailing beneath the sphere during penetration. The second
term is of collisional origin, linked to the dissipation of energy by collisions between grains.
Considering a vertical coordinate y oriented downwards and a force drag ﬁdrag oriented upwards
(with respect to gravity acceleration g), the resultant force F; (oriented upwards) acting on a
solid projectile of mass m,, while it penetrates the granular bed is given by Eq. (2.3),

Iy, = mp% = —1pg + Firag , (2.3)
where F}, and Fy,, are the moduli of F; and ﬁdrag, respectively, V' = dy/dt is the instantaneous

velocity of the projectile, and Fy,., = £V? 4 ky (inertial and friction terms), £ and  being
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parameters that depend on the projectile characteristics (density and shape) (Katsuragi; Durian,
2007; Pacheco-Vazquez; Ruiz-Sudrez, 2010). Umbanhowar and Goldman (2010) (Umban-
howar; Goldman, 2010) proposed that Eq. (2.3) is incomplete to describe projectiles impacting
targets with different packing fractions ¢, being valid only close to a critical packing ¢ps.

Goldman and Umbanhowar (2008) (Goldman; Umbanhowar, 2008) observed fluc-
tuations during the inertial phase, and they conjectured that such fluctuations are due to the
formation and collapse of granular chains. They showed that, at the acceleration discontinuity
that occurs at the end of the motion, the projectile moves upwards before reaching full stop, and
also observed that ¢, is approximately independent of V), above a threshold value. Finally, they
proposed that in Eq. (2.3) the inertial term dominates at high velocity and shallow penetration,
while at low velocities and deep penetrations a viscous-like term linear in V' must be added
and dominates the drag force together with the frictional term. For oblique collisions, Ye et
al. (2021) (Ye et al., 2021) also proposed that a viscous-like force, added to the frictional and
inertial ones, is important for the projectile dynamics.

Another important question is how the available energy is distributed/dissipated
during the impact. Tsimring and Volfson (2005) (Tsimring; Volfson, 2005) proposed that the
impact energy is dissipated through three mechanisms: the lifting of grains, inelastic collisions,
and microscopic solid friction, in proportions of approximately 10, 20 and 70%, respectively.
By carrying out 2D (two-dimensional) DEM (discrete element method), Kondic et al. (2012)
(Kondic et al., 2012) corroborated that solid friction dissipates a significant part of the avail-
able energy, but Seguin et al. (2009) (Seguin et al., 2009) found the contrary: that impact on
frictionless grains causes the same penetration depths and stopping times. Seguin et al. (2009)
(Seguin et al., 2009) argue that inelastic collisions are the main responsible for the energy dissi-
pation. One possible explanation for an independence on the solid friction is that the quasi-static
motion of grains would by turns form and break granular chains, whose compressive stresses
would engender jammed and unjammed states (Ruiz-Sudrez, 2013). Although light was shed
on the dissipation issue, it remains an open question.

Recently, Carvalho et al. (2023) (Carvalho et al., 2023b) carried out 3D (three
dimensional) DEM (discrete element method) simulations and showed that microscopic friction
affects considerably the crater morphology. In addition, they showed that differences in initial
packing fractions can engender the diversity of scaling laws found in the literature (Uehara et

al., 2003b; Uehara et al., 2003a; Walsh et al., 2003; Seguin et al., 2008; Katsuragi; Durian,



84

2013), and proposed an ad hoc scaling that collapsed their data for the penetration length and
can perhaps unify the existing correlations.

However, most of those studies are limited to the case of pure translation of the
sphere, with no rotational motion. Taking this rotational movement into account is important
for many problems of locomotion (Li et al., 2013b; Zhang; Goldman, 2014; Hosoi; Goldman,
2015; Kumar et al., 2019; Seguin et al., 2022), physical biology (Jung et al., 2017), and mili-
tary applications (Robins, 1742). Rotational effects were recently observed to alter significantly
the dynamics of penetration. Carvalho et al. (2023) (Carvalho et al., 2023b) investigated nu-
merically the initial spin of the projectile and showed that both § and D, increase with the
projectile spin, that large asymmetries can appear depending on the spin axis, and that the final
rebound of the projectile is suppressed by the spin. In a more recent study, the authors con-
firmed experimentally that the rotational velocity of a projectile increases its penetration depth
into granular material. However, the influence of rotation on penetration depth was shown to be
less significant than that of impact velocity. The authors incorporated the effect of rotation into
the penetration depth by modifying the conventional scaling law for penetration depth without
rotation. Furthermore, by accounting for rotational effects, they have adapted the dynamics
equation [Eq. (2.3)] governing the penetration of a projectile into granular materials (Carvalho
et al., 2024a). Although substantially less studied in granular materials (Ye et al., 2012; Ye et
al., 2015; Kumar et al., 2019; Carvalho et al., 2023b; Carvalho et al., 2023a; Carvalho et al.,
2024a), the effect of rotation has been widely studied in Newtonian fluids. The Magnus effect
is a well-known phenomenon that finds applications ranging from boat sailing to the physics of
sports. In those situations, the rotation applied perpendicular to the direction of the flow cre-
ates lift forces on the object. The Magnus effect has also been observed for granular materials;
however, the direction of the lifting force was found to be opposite to that normally found in
viscous fluids (Kumar et al., 2019). Considering the flow of a Newtonian fluid around a sphere,
the drag force, i.e., parallel to the flow direction, is not significantly affected by the rotation
of the object. In particular, if the axis of rotation is aligned with the flow direction, then the
drag force remains similar to the case without rotation for both high and low Reynolds numbers
(Gladkov, 2022). Granular media exhibit a different behavior in comparison with a Newtonian
fluid, their ability to modify the pressure under shear being a major feature of those materials.

Although most of experiments on impact cratering were for solid projectiles, many

problems, in particular in geophysics, concern the impact of aggregates. For example, in the
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case of asteroids or meteors impacting the surface of a planet, aggregates can be divided into
smaller parts which, in their turn, penetrate into the target and excavate the crater. This pro-
cess can be responsible for the spreading of materials on Earth, just below the ground surface,
such as nickel, platinum and gold (Ganapathy, 1980; Sawlowicz, 1993; McDonald et al., 2001).
The impact of non-spinning projectiles consisting of aggregated materials was inquired into by
Pacheco-Vazquez and Ruiz-Sudrez, who investigated first the sinking of collections of a few in-
truders in low-density granular medium (Pacheco-Vazquez; Ruiz-Suérez, 2010) and afterwards
the impact of aggregates onto a granular bed (Pacheco-Vazquez; Ruiz-Suarez, 2011). In gen-
eral, they showed that, although the formation of complex craters is affected by the packing
fraction of the projectile, the same scale D, ~ h'/* found for solid projectiles remains valid.
However, D, is larger for granular projectiles (aggregates), with a discontinuity accounting for
the cohesion of grains (energy necessary for fragmentation). They also showed that h, ~ h'/?
is valid only for small energies: h. decreases abruptly above a threshold value and remains con-
stant for higher energies. If the fragments once forming the projectile sink in the granular bed
(which can happen for low-density beds), they move with a cooperative dynamics (Pacheco-
Viézquez; Ruiz-Sudrez, 2010).

Recently, Carvalho et al. (2023) (Carvalho et al., 2023a) numerically investigated
how projectile spin and cohesion influence crater shapes and the spread of projectile material
both on and beneath the surface. The study found that as bonding stresses decrease and initial
spin increases, the projectile’s grains spread farther radially from the impact point, remain closer
to the surface with shallower penetration depths, and disperse over larger horizontal distances.
They also showed that some grains become deeply buried in the granular bed, while others
accumulate above the surface, forming peaks or populating the crater’s corona. As a result,
the crater shape flattens, with peaks appearing around the rim and at the crater’s center. They
also observed that the penetration depth of rotating projectiles depends on angular velocity
and the degree of collapse, measured by the number of detached particles, rather than bonding
stresses themselves. At high spinning velocities, excess breaking energy leads mainly to greater

horizontal spreading and peak formation, without significantly affecting penetration depth.
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3 METHODOLOGY

3.1 Numerical Methodology

All numerical simulations in this Thesis were performed using the Discrete Element
Method (DEM) (Cundall; Strack, 1979). DEM is a numerical technique used to simulate the
behavior of granular materials (discrete media) by modeling the interactions between individ-
ual particles and boundaries. Originally developed by Cundall and Strack (Cundall; Strack,
1979), DEM has become an essential tool in the study of granular materials, providing insights
into their mechanical behavior (Zhu ef al., 2008). DEM solves the dynamics of each individ-
ual particle, which can move both translationally and rotationally, by computing the forces and
torques on each of them (Newton’s laws of motion). It accounts for the forces and torques acting
on each particle due to contact with neighboring particles, the boundaries, and external force
fields. It uses several models to describe how particles interact, typically including models for
normal and tangential forces, damping, and friction. These models have parameters (friction
coefficients, coefficients of restitution, material properties, etc.) that can be adjusted to repre-
sent different types of granular materials (Kloss er al., 2012; Kloss; Goniva, 2010; Berger et
al., 2015). Furthermore, DEM simulations can incorporate various boundary conditions, such
as fixed or periodic walls, to mimic real-world scenarios. A major advantage of this type of
simulation is that, although they are numerically expensive due to the high number of particles
and interactions (Derakhshani et al., 2015), they provide valuable dynamic information, such
as the trajectories and forces acting on each individual particle, which can be very difficult to
obtain through experimental methods (Zhu et al., 2008).

We used the open-source code LIGGGHTS (Kloss et al., 2012; Kloss; Go-
niva, 2010; Berger et al., 2015) to carry out the computations (<http://www.cfdem.com>).
LIGGGHTS is an open-source DEM particle simulation software whose main developer and
author is Christoph Kloss. LIGGGHTS stands for LAMMPS Improved for General Granu-
lar and Granular Heat Transfer Simulations (LIGGGHTS(R)-PUBLIC..., 2016). On its turn,
LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is a classic and widely
used molecular dynamics simulator (<http://lammps.sandia.gov>) that, thanks to physical
and algorithmic analogies, offers basic functionalities for DEM simulations (LIGGGHTS(R)-
PUBLIC.. ., 2016), the main adaptions in LIGGGHTS regarding the addition of mesh geometry
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support and granular models for particle—particle and particle—wall interactions (Berger et al.,
2015). LIGGGHTS is currently used by a variety of research institutions worldwide in di-
verse areas such as chemistry, physics, pharmaceuticals, engineering, food production, mining,
among others. Furthermore, it is capable of modeling a variety of systems at various scales,
from just a few particles to millions of them (LIGGGHTS(R)-PUBLIC..., 2016). In the most
general sense, LIGGGHTS integrates (using Velocity-Verlet time integration (Berger et al.,
2015)) Newton’s equations of motion for collections of atoms, molecules, or macroscopic par-
ticles interacting through short or long-range forces with a variety of initial and/or boundary
conditions (LIGGGHTS(R)-PUBLIC..., 2016; Berger et al., 2015). Additionally, it tracks the
trajectory of each particle, while modeling particle-particle and particle-wall collisions with a
soft-sphere approach. It applies spring-dashpot models to calculate forces caused by particle-
particle interactions and particle-wall interactions, in addition to considering volume forces,
such as gravity, for example. For computational efficiency, it makes use of optimized neighbor
lists (Yao et al., 2004) to track down the closest particles. On parallel machines, the software
uses spatial decomposition techniques to partition the simulation domain into small 3D subdo-
mains, one of which is assigned to each processor, thus performing more rapidly the desired
computations (LIGGGHTS(R)-PUBLIC.. ., 2016).

In this Thesis, two different types of simulations were performed: i) Two-
dimensional simulations (2D) of disks settled over a horizontal wall and confined by vertical
walls (although the solid objects are three-dimensional (3D) disks, we employ the terminology
two-dimensional granular system since they form a monolayer of particles); ii) 3D simulations
of spheres confined in a cylindrical container. The formulation for both kinds of simulations is
very similar, with some slight differences concerning the way some parameters for the particles
interactions are modeled (Secs. 3.1.1.1 and 3.1.2.1 clarify those differences).

In order to perform the numerical simulations with disks (2D), we used an addi-
tional toolbox called “Discrete-Element, bonded-particle Sea Ice — DESIgn” (Herman, 2016).
DESIgn is a toolbox carefully adapted for use with the open-source code LIGGGHTS (Kloss e?
al., 2012; Kloss; Goniva, 2010; Berger et al., 2015). The source files, together with the com-
plete technical documentation, including basic tutorials and validation, can be found in Herman
(2016) (Herman, 2016). Originally, the DESIgn toolbox was developed as a tool to study the
processes that model a wide range of sea ice types. But as Herman (2016) (Herman, 2016)

points out, it can be applied to other 2D materials composed of disk-shaped grains (as is our
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case). The version used in this Thesis (DESIgn 1.3a) is an extension of previous versions de-
scribed in other works by Herman (Herman, 2013b; Herman, 2013a). The model considers the
interactions between neighboring particles in direct contact (based on Hertzian contact mechan-
ics - Appendix A), taking into account repulsive and frictional forces between them (Herman,
2016). The complete set of equations used in this model are shown in Sec. 3.1.1. Since this
is an open library, it is possible to implement new features in the toolbox. In particular, in or-
der to produce disks that have friction with the bottom walls, we implemented this force in the
DESIgn code (please check Sec.3.1.1 for a description of this implementation and (Lima et al.,
2021) for the source code implemented in the toolbox). More details regarding this toolbox can
be found in (Herman, 2016).

In the following, Sec. 3.1.1 presents the numerical methodology for the 2D case

while Sec. 3.1.2 presents the numerical methodology for the 3D case.

3.1.1 2D simulations - Quasi-static regime - Intrusion problems

The methodology presented in this section will later be employed to study numeri-
cally the displacement of intruders (larger disks) amid smaller disks, with the results obtained
being presented in Sec. 4.1.

The dynamics of each particle is computed by the linear and angular momentum

equations, given by Eqgs. (3.1) and (3.2), respectively,

di =
— =F, q; 3.1
me +mg (3.1)
dsd =
17 32
I (3.2)

where ¢ is the acceleration of gravity and, for each particle, m is the mass, w is the velocity, [
is the moment of inertia, &J is the angular velocity, F. is the resultant of contact forces between
solids, and 7. is the resultant of contact torques between solids. The contact forces and torques

are computed by Egs. (3.3) and (3.4), respectively,
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where F;Z-j and ﬁqiw are the contact forces between particles 7 and 7 and between particle 7 and
the wall, respectively, fcw is the torque due to the tangential component of the contact force
between particles ¢ and j, and fmw is the torque due to the tangential component of the contact
force between particle 7 and the vertical wall. N, is the number of particles in contact with
particle ¢, and /V,, the number of particles in contact with the wall. Since the grains are disks
lying on a horizontal wall, ﬁcm includes the friction force between the bottom wall and each
grain, which follows the Coulomb law with static and dynamic values (Andreotti et al., 2011).
For the contact forces between particles (ﬁwj), and between particles and the lateral
walls (included in ﬁqiw), the elastic Hertz-Mindlin contact model (Di Renzo; Di Maio, 2005)
is used. Additional details of the Hertzian model in a more general context can be found in
(Brilliantov et al., 1996; Zhang; Makse, 2005; Schwager, 2007; Zhou, 2011), while a brief
description of Hertz’s contact model is given in Appendix A. This model consists in the com-
bination of two spring-dashpots, the first one including the normal interactions and a Coulomb
friction coefficient, and the second one including the tangential forces, as schemed in Fig. (3.1)a.
Equations for computing the normal and tangential forces based on particle overlaps (modeling

deformations) are shown in Sec. 3.1.1.1.

b)

Frormal Particle B

F, tangential

Particle A

Figure 3.1 — (a) Scheme of the spring-dashpot model (Hertz-Mindlin) used in the numerical
simulations. Image adapted from (Sun et al., 2023). (b) Schematic of a bond con-
necting two particles. Image adapted from (Guo ef al., 2013; Chen et al., 2022b).

Because the DESIgn toolbox (Herman, 2016) originally does not compute the fric-
tion between the grains and the bottom wall (included in ﬁqiw), we implemented that in its
library (the source code for this implementation can be found at (Lima er al., 2021)). The

friction force was modeled in a similar manner as in Carlevaro er al. (2020) (Carlevaro et al.,
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2020): if a grain 7 is moving at a speed v; = |u;| above a threshold value v (v; > v’), then a
dynamic friction force with the bottom wall is considered as being F}iw = — g g | G| /| Uy .
Conversely, if it is moving with a velocity v; smaller than or equal to the threshold value v’
(v; < '), then a static friction force with the bottom wall Flm = — s g |§|U; /| U] is applied
and the particle is stopped by setting v; = 0. This ensures that a grain will only resume its
motion if the forces exerted by the other grains exceed the static friction force (Carlevaro et al.,
2020). In this model, we do not consider rotational friction between the grains and the bottom
wall. We intend to implement other dry friction models (Pennestri et al., 2016; Modesto et al.,
2022) in the future and see how the results obtained with the presented model would compare

with those obtained under different models.

3.1.1.1 Contact model - 2D simulations

This section describes the contact model used in our simulations using the open-
source code LIGGGHTS (Kloss et al., 2012; Kloss; Goniva, 2010; Berger et al., 2015) together
with the DESIgn toolbox (Herman, 2016) for the 2D simulations of this Thesis. The contact

force between particles ¢ and j, F¢;;, is usually decomposed into its normal and tangential

components, whose magnitudes are given, respectively, by:

do

n =k T (3.5)
do

Fc,t = K0 — %d_tt' (3.6)

The two terms in Eq. (3.5) correspond to a repulsive force and a viscoelastic damp-
ing. As for the case of Eq. (3.6), the tangential force is the sum of a shear force and a damping
term. In Egs. (3.5) and (3.6), J,, is the normal displacement and ¢,, > 0 when two grains are in
contact; o, is the tangential displacement, measured in the direction perpendicular to the plane
of contact. In addition, the coefficients x,,, x;, 75, and ~; are functions of the displacements
as well of the shape, size and material properties of the particles in contact. Please check the
scheme in Fig. (3.1)a for a clearer picture. The exact form of such coefficients depend on the
contact model chosen. All damping components depend on the relative velocity between the
interacting particles: dd,,/dt denotes the normal and dd,/dt the tangential component of the

relative velocity of the interacting particles.
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For the case of two interacting particles ¢ and j, characterized by Young moduli
E; and E;, Poisson’s ratios v; and v;, radii r; and r;, and thicknesses h; and h;, with h,, =
min{h;, h;}, one can define an effective radius r., an effective mass m,, an effective contact

modulus £, and an effective shear modulus G, as:

7”1'7”]‘
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In addition, the normal overlap (displacement) ¢§,, between the disks in contact

[please check the scheme in Fig. (3.1)a)] is measured along r;; and is defined as:

O =1 + 15 — X — X (3.11)

The equations presented above are also valid if one of the materials in contact is a

wall. In this case, for a flat wall, r; — oo, d,, is computed using the normal distance of the
grain to the wall, and ¢, is computed as the displacement parallel to the wall of the center of
grains. Some contact models also relate the damping ratio S with the restitution coefficient e of

underdamped systems, leading to:

In(e)

f=—. (3.12)
In*(e) + 72
For the case of two elastic cylinders, the normal displacement is given by (Herman,
2016):
F, 2mh3 E,
Op = —"—|1+1In | —2= ||, 3.13
Wmﬂ;_%n<nﬂm> G

and an approximate expression for the normal contact force can be given by (Herman, 2016):

OnTe
F., =nmEh,o,f <2h72n) ) (3.14)
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In this way, ,, is defined as:

(3.15)

6?1 C 2
mn:chhmf< ’ >; fla) = DL P2t Py

2h2, 22+ @+ g
In the DESIgn toolbox (Herman, 2016), the expression for f, as denoted by the

second expression in the right-hand side of Eq. (3.15), is modeled with coefficients for, x €

[0,0.2], given by: p; = 0.9117, ps = 0.2722, p3 = 0.003324, ¢; = 1.524, and ¢o = 0.03159.

In many viscoelastic contact models, the Hertzian theory is used to compute the
normal repulsive force (i.e., the x,, coefficient), as well as to estimate the shear and damping
terms in Egs. (3.5) and (3.6). In the DESIgn toolbox (Herman, 2016), x,, is computed from
Eq. (3.15) and the remaining coefficients by:

G

Ky = 6E:/<Ln, (3.16)

Yo = —BVBkpme, (3.17)

Y= 28, /5%,%% (3.18)

The reader can find a more complete description of this model in (Herman, 2016),

along with additional information.

3.1.2 3D simulations - Collisional regime - Impact problems

The methodology presented in this section will later be employed to study numer-
ically the impact of spherical projectiles onto a granular bed, with the results obtained being
presented in Sec. 5.

This section describes the contact model used in our simulations using the open-
source code LIGGGHTS (Kloss et al., 2012; Kloss; Goniva, 2010; Berger et al., 2015) for the
3D simulations of this Thesis. The equations presented in this section bear a lot of similarities
with those presented in Sec. 3.1.1.1, the main difference being that in this case we are working
with spherical particles, whereas in the other we were working with cylindrical particles. In the
case of spherical particles, the contact area between them is circular, with a radius increasing as
the normal force is increased; in the case of discs, the contact area is rectangular, with a constant

height equal to A, and the width increasing with the increase in the normal force (Herman,
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2016). Here, the Newton’s law of motion is computed for each individual particle. Basically,
as in the 2D simulations (Sec. 3.1.1) the code computes the linear [Eq. (3.1)] and angular
[Eq. (3.2)] momentum equations at each time step, however here considering rolling resistance.
The contact forces (ﬁcﬂj and ﬁc,iw) are computed using the elastic Hertz-Mindlin contact model
(D1 Renzo; Di Maio, 2005), described in Sec. 3.1.2.1. Please check the scheme presented in
Fig. (3.1)a for a clearer picture. In the contact torques (fc,ij and ﬁ,iw), the rolling resistance
is considered through a coefficient of rolling friction ., also described in Sec. 3.1.2.1. The
torque due to rolling resistance is important if angular grains (sand, for example) are modeled
as spherical particles with the angularity effects embedded in the rolling friction (Derakhshani

et al., 2015). Such effects are negligible for perfect spherical grains.

3.1.2.1 Contact model - 3D simulations

The contact force between particles 7 and j , .ﬁc,ij, or between a particle ¢ and the
wall, ﬁcﬂ-w, is usually decomposed into normal and tangential components, given by Egs. (3.19)

and (3.20), respectively.

doy,

Fon = finn — Yoo 1

cn KnOn Tn dta (3 9)
do.

Foi = k0 — ’Ytd—tt- (3.20)

The two terms in the right hand side of Eq. (3.19) correspond to a repulsive force
and a viscoelastic damping, and d,, > 0 is the normal displacement of two solids in contact.
When two spherical particles are in contact, ¢,, is given by Eq. (3.11).

For the contact between a spherical particle and a wall, d,, is computed as the normal
displacement between the center of the grain and the contact point. The two terms in the right
hand side of Eq. (3.20) correspond to a shear force and a viscoelastic damping, and J; is the
tangential displacement measured in the direction perpendicular to the plane of contact. Please
check the scheme in Fig. (3.1)a for a clearer picture. F¢; is given by Eq. (3.20) until it reaches
F.+ = pF. ., where pi is the microscopic coefficient of friction. From that moment, slip occurs

and the tangential force becomes governed by the Coulomb’s Law,

Foy = phen, (3.21)
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until the contact is finished. Coefficients x,,, K¢, V,, and 7y, are functions of the displacements
and grain properties. They are computed by Egs. (3.22) to (3.25), based on the effective radius
., Mass m,, contact modulus F., and shear modulus G [Egs. (3.7) to (3.10)] of particles ¢ and
J with, respectively, Young moduli E; and E; and Poisson’s ratios v; and v},

4

Kp = gEc R.op; (3.22)

ki = 8GN/ Rebn; (3.23)
o = —2\/25\/2156\/&6”%; (3.24)
b = —2\/25\/805\/&5”% (3.25)

where (3 is a damping coefficient based on the restitution coefficient €, computed as in Eq. (3.12).
For a particle of radius r, contact torques are computed as the sum of the torques
due to F,,; and rolling friction, for all its contacts. For T. representing the torque caused by

rolling friction, contact torques can thus be summarized as in Eq. (3.26):

7= (ch,tﬁ  f+ f) , (3.26)
where 7 and ¢ are unit vectors in the normal and tangential directions, respectively. T. can
be modeled as having spring and damping components, but Derakhshani et al. (2015) (Der-
akhshani et al., 2015) showed that the damping component is negligible for DEM computations.
Therefore,

—

T. = —k.AO,7 X t, (3.27)

where 0, is the incremental rolling at the considered contact and k, is the rolling stiffness, given

by Eq. (3.28).

FCTL
ki = prRepr (3.28)

r

In Eq. (3.28), 6" is the angle for incipient rolling and y,. is the coefficient of rolling

resistance.
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More details regarding this formulation can be found in (LIGGGHTS(R)-
PUBLIC..., 2016; Derakhshani et al., 2015).

3.1.2.2 3D simulations - Cohesive projectile (aggregate)

In this section, we describe the model we used to carry out 3D DEM computa-
tions of spinning granular projectiles (aggregates) impacting onto a granular bed, for different
bonding stresses (between the projectile’s grains), initial spins and initial heights. The results
obtained can be seen in Sec. 5.1.2.

To begin, we need to build the aggregate (shown in Fig. 5.20b) that will later form
the projectile used in our simulations. To do that, firstly a shell of spherical shape and same size
of solid projectiles investigated in Carvalho et al. (Carvalho et al., 2022) is created. Afterward,
1 mm diameter particles are randomly generated inside the shell until filling the entire space.
The particles in contact are then bonded together [please check the scheme in Fig. (3.1)b)],
and their density is slightly altered so that the aggregate reaches a bulk density of 7865 kg/m?,
identical to solid projectiles. Finally, the spherical shell is deleted.

When in the presence of bonds [Fig. (3.1)b)], the relative motion of spheres leads
also to bond deformation. Therefore, additional force ﬁb and moment fb are induced on the
spheres to resist deformation. These additional terms can be decomposed into normal and
tangential components, as shown in Guo et al. (2013) (Guo et al., 2013) and Schramm et al.

(2019) (Schramm et al., 2019):

Fy=Fyp+ Fyy; (3.29)

Ty = T + Ty (3.30)

The material that bonds two or more particles together acts also as a spring and
damper system. Thus, based on the model presented in (Guo et al., 2013), each component of

Egs. (3.29) and (3.30) can be written as:

Fyp = ki AT AL+ 28,00\ /iy (3.31)

Fyp = ky s AT At 4 2B,/ Mk (3.32)
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Thm = ks Ly@n At + 28450/ Tk 1 I; (3.33)
Ths = Ky Lo AL + 28,5/ Thp . (3.34)

The first terms on the right-hand side of Eqgs. (3.31)—(3.34) correspond to the incre-
mental normal force, shear force, torsional moment, and bending moment, respectively. The
terms in these equations are defined as follows: A, is the cross sectional area of the bond ma-
terial; ¥, and v; are the normal and tangential components of the relative velocity between the
two particles, respectively; At is the time step of DEM computations; (3, is the local damping
coefficient of bonds, which in our case is equal to 0.5; m is the mass each particle; [, and I,
are the polar and second moments of inertia, respectively; &, and ¢, are the normal and tangen-
tial components of the relative angular velocities between two particles, respectively; I is the
moment of inertia; and k; ,, and k; ; are the normal and tangential stiffness constants for bonds,
respectively. These two last quantities are given by:

_ b (3.35)

kbn
k, = ————
(1 =)

where £ is the bond Young’s modulus (kept equal to the particle Young’s modulus in our case);

(3.36)

I is the bond equilibrium length, considered here as the particle radius; and v is the Poisson’s
ratio. We note that ky, ,,, k¢, ky I, and ky 5,1, represent the normal, shear, torsional and bending
stiffness of the bond, respectively.

Finally, if the magnitude of forces and moments surpass, at any time, the maximum

normal or tangential bond strength, respectively, the bond is broken.

3.2 Experimental Methodology

3.2.1 Quasi-static regime - Intrusion problems - Cooperative motion

The experiments consist in pulling intruders [polyamide spheres with a diameter
d = 20 mm - Fig. (3.3)a] at a constant velocity V}, inside a granular medium made of slightly
polydisperse glass spheres [diameter d, = 1 & 0.3 mm and density p ~ 2.5 x 10 kg m~*

- Fig. (3.15)a]. The grains are contained in a rectangular box 365 mm long, 270 mm wide,
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filled to a height of 97 mm [Fig. 3.2(a)]. To ensure the randomness of the initial conditions and
the homogenization of the granular bed, the box is vibrated manually along the transverse y-
direction before each experiment takes place, which results in a flattened free surface bed with
an initial packing fraction of ¢ = 0.60 £ 0.02, measured by weighing the contents of the box.

We find that this procedure leads to reproducible measurements.

(@ [T

v, horizontal linear stage

force sensors
intruders

grains

Figure 3.2 — (a) Sketch of the experimental setup for the displacement along the z-axis of two
spherical intruders of diameter d, immersed in grains at the depth h. (b) Picture of
an experiment for two immersed intruders A = 30 mm apart, at depth A = 14 mm
and moving at the velocity V, = 2.7 mm s~! during the forward journey.

The intruders are attached to cylindrical rods of 5 mm in diameter, preventing any
tilting or rotation, as shown in Fig. (3.3)c, and immersed in the bed at depth h (h being the
distance separating the free surface of grains from the center of the intruder). The rods are
connected to force gauges (single point load cell 780 g, ID3132_0, Phidgets Inc.) that measure
(indirectly) the longitudinal time-varying drag force fy(t) at a frequency of 60 Hz. The rods are
attached to the moving device via adapters that were 3D printed. The output voltage signal of
the load cells is acquired through a high-resolution 24-bit analog-to-digital converter four-input
PhidgetBridge circuit [ID 1046_0B, showed in Fig. (3.3)b], with data acquisition controlled by
an in house code.

The force gauges were calibrated by attaching standard masses [Fig. (3.4)d] of a
known weight to them (this process was repeated several times before and after the experi-
ments, in different days). The results of these calibrations are presented in Figs. (3.4)a and
(3.4)b, where one notes a linear relation between the applied mass and the resulting voltage
signal. The little differences given by the results presented in Figs. (3.4)a and (3.4)b are due
to small adjustments in the screws that connect the force gauges to the cylindrical rods. Note
that by rotating the force sensors 90° over their main axis, one is able to measure side forces

(perpendicular to the drag force but in the same plane) between the intruders (Dhiman et al.,
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Figure 3.3 — (a) Polyamide spheres (intruders) with diameter d = 20 mm. (b) Analog-to-digital
converter four-input PhidgetBridge circuit. (c) Assemble of the moving parts,
showing an intruder, a cylindrical attaching rod, a load cell (in white), and a 3D
printed adapter (in black), which is fixed at the moving device.

2020). The calibration curves under these circumstances are shown in Fig. (3.4)c.
By using the linear relations of the form V' = aM + b in the caption of Fig. (3.4),
where a and b are coefficients, forces F' can then be calculated by:
(V —a)g

F:— -7
A (3.37)

where g is the acceleration of gravity.

The whole system is fixed to an x-direction moving plate, controlled by a linear
stepper motor ensuring the displacement of the intruders at a constant velocity V; from 107! to
10 mm s~! [Fig. 3.2(a)].

Two distinct configurations will be considered: (i) the displacement of a single
intruder in the x-direction from one edge of the box to the other, and initially placed at y = 0
and depth z = h ; (ii) the displacement of two side-by-side intruders at the same abscissa x and

same depth z = h, located initially at y = £A /2 and separated by a distance A measured from
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Figure 3.4 — Calibration curves (mass M as a function of voltage V') for measuring drag [(a),
(b)] and side forces [(c)]. (a) Linear fit for the 15! force sensor given by the solid
line (—): V = —0.000966M — 0.000095; linear fit for the 2" force sensor given
by the dashed line (- - -): V' = —0.001008 M — 0.000159. (b) Linear fit for the 15
force sensor given by the solid line (—): V' = —0.001004M — 0.000156; linear
fit for the 2"? force sensor given by the dashed line (- - -): V = —0.000990M —
0.000110. (c) Linear fit for the 1% force sensor given by the solid line (—): V =
—0.001002M — 0.000301; linear fit for the 2"¢ force sensor given by the dashed
line (- - -): V' = 0.000973M + 0.000179. (d) Standard masses of a known weight
used in the calibration process.

their centers, as seen in Fig. 3.2(a) and Fig. 3.5(b), presented here for illustration purposes only.

To prevent any wall effects (Seguin et al., 2008), we ensure to stay far enough from the side

walls during an experiment, with an intruder/wall distance of approximately 3 d, and we restrict

immersion depths to & < 49 mm to maintain a distance greater than 2.5 d between the intruders

and the bottom wall. Finally, note that one experiment consists of moving the intruder forward

(along positive ) in the undisturbed granular medium [Fig. (3.2)b], and then, in a second step,

making the return path (towards negative x) in the wake generated by the forward path and seen

in Fig. (3.5)a.

Finally, in all drag measurements acquired during this experimental study and pre-

sented in Sec. 4.2, the drag force measured during the movement of the rod alone (i.e., without
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Figure 3.5 — (a) Example of a backward motion (intruders moving in their own wake). (b)
Intruders inside the granular bed (illustration purposes only).

the intruder attached to its end) has been subtracted from the force signal for each probed depth
h, so as to retain only the force experienced by the intruder. The drag forces measured Fj
(defined in Sec’. 4.2.2) for each probed length of the cylindrical rod below the surface of the
granular media h,.,q are shown in Fig. (3.6). Note that the power fit coefficients calculated are
close to those found in the literature (Albert ef al., 1999; Wieghardt, 1975).

1.4
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o  Backward journey
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Figure 3.6 — Mean drag force Fj as a function of the cylindrical rod height h,.,4. Power law fit
for the forward journey given by the solid line (—): Fy = (4.5938 x 107°)h262;

rod

power law fit for the backward journey given by the dashed line (- - -): Fy =
(1.6752 x 10~1)h22

rod *

The results obtained with these experiments can be seen in Sec. 4.2.

3.2.2 Visualization of contact forces - Photoelasticity

One way to observe the distribution of contact forces inside a granular material
is to use appropriate photoelastic techniques, making use of photoelastic disks, illumination
schemes, and polarizers (Majmudar; Behringer, 2005; Daniels et al., 2017; Zadeh et al., 2018;

Zadeh et al., 2019). The photoelastic technique for quantifying internal stresses in some types
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of materials is based on the fact that light can be polarized in different ways in birefringent
materials. When a photoelastic material is placed between two polarizers and is subjected to
the application of stresses, each region of the stressed material rotates the polarization of light
according to the amount of local stress. This creates a visual pattern of alternating light and dark
heterogeneous lines within the material, associated with the local internal stress. This pattern
depends on how the polarizers are oriented, the geometric shape and composition of the mate-
rial, and the way it is stressed (Daniels et al., 2017; Zadeh et al., 2019). This optical technique
for visualizing internal forces has allowed a better understanding of the physics of granular ma-
terials, and several works have used the visualization of photoelastic forces to quantify different
physical phenomena (Majmudar; Behringer, 2005; Majmudar et al., 2007; Zhang et al., 2010;
Seguin et al., 2016).

A brief description of the process involved in manufacturing photoelastic particles
and how to observe the contact networks is given in Secs. 3.2.2.1 and 3.2.2.2, respectively.
The interested reader is referred to the works of Daniels et al. (2017) (Daniels et al., 2017)
and Zadeh et al. (2019) (Zadeh et al., 2019) for further explanations on the matter and to the

excellent wiki (Zadeh et al., 2018) for more complete details.

3.2.2.1 Manufacturing photoelastic particles

Cylindrical particles with different diameters were manufactured using a photoe-
lastic material (polyurethane rubber). Briefly, the manufacturing steps for these particles are

presented below:

1. Fabrication of a positive mold (3D printed) for the later fabrication of a silicone mold

(negative) of the samples

A block mold of the particles shape is made by means of 3D printing [Fig. (3.7)a], which
is later used as a model for the creation of a silicone mold [green material in Fig. (3.7)b],
over which the photoelastic material (polyurethane rubber) will be poured for the man-
ufacturing of the particles. We fabricated molds with particles of different diameters,
according to Fig. (3.7)a, namely: d = 4mm, d = 5mm, d = 6mm, d = 8mm and
d = 10mm. The block molds as well as their respective silicone negatives are shown in

Fig. (3.7)b.

2. Fabricating a silicone mold for the samples
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Figure 3.7 — (a) Block molds made by 3D printing. (b) Block molds and their respective silicone
negatives.

In this step, we carefully fabricate (according to the material manufacturer’s instructions)
the silicone negative molds, using a mixture of its both constituents [Fig. (3.8)a]. After
complete curing, the molds are ready to be used as “reservoirs” for manufacturing the

particles. The final molds can be seen in Fig. (3.8)b.

Figure 3.8 — (a) Silicone constituents used to make the molds. (b) Silicone molds after complete
curing.

3. Creating the polyurethane rubber material

Following the manufacturer’s instructions, we mix the polyurethane rubber components
[Fig. (3.9)a] and add a small quantity of pigment to it (blue for the time being). We then
place the resulting mixture in a degasser [vacuum chamber coupled with a vacuum pump
- Fig. (3.9)b)] to eliminate residual gases introduced during the mixing process of the

components. The degassing process can be seen in Fig. (3.10)a.

4. Manufacturing the photoelastic particles

After the polyurethane rubber has completely degassed [Fig. (3.10)a], it is carefully
placed, using syringes, into the prefabricated silicone molds (item 2). After each par-
ticle has been individually filled with the polyurethane rubber, the particles are ready and

must rest until they are completely cured, according to Fig. (3.10)b. The curing process



Figure 3.9 — (a) Polyurethane rubber used to manufacture particles. (b) Degasser used to remove
bubbles from the mixture.

is accelerated by using an oven [in the laboratory, we make use of the one showed in

Fig. (3.10)c].
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Figure 3.10 — (a) Polyurethane rubber degassing process. (b) Final particles removed from sil-
icone molds in the curing process. (c) Oven used in the curing process of the
particles.

After the final curing process, the particles are finally ready and undergo a quality control
process in order to check for any flaws, such as trapped bubbles or a shape different from

the expected one. Figure (3.11) shows some particles already manufactured.

3.2.2.2 Visualizing the force networks

The photoelastic effect relies on the birefringent properties of certain transparent
materials. In birefringent materials, the speed of light, and consequently the refractive index,
varies with the wave’s polarization and the eigenvalues of the local stress tensor. Through
photoelasticity, we can measure internal stresses in a material, with optimal results achieved

using circularly polarized light, which offers isotropic polarization. Circularly polarized light
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Figure 3.11 — Manufactured particles with different diameter after curing process. Note that
particles on the right are covered in talcum powder to avoid sticking and present
different colors according to the amount of pigment added in the polyurethane
mixture before degassing.

is formed by two orthogonal linearly polarized waves with a quarter-wave phase shift (Daniels
et al., 2017; Zadeh et al., 2018; Zadeh et al., 2019).

When a photoelastic material under stress is placed between polarizers, the wave
components, polarized in the principal directions of the local stress tensor, travel at different
velocities. This variation causes phase shifts in the wave components, converting the circularly
polarized light into elliptically polarized light. As a result, part of the altered wave is not
completely blocked by the second polarizer and passes through, allowing it to be captured by
the camera (Daniels et al., 2017; Zadeh et al., 2018; Zadeh et al., 2019).
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Figure 3.12 — Scheme of the photoelastic technique used for visualizing contact networks (po-
lariscope). Image adapted from (Zadeh er al., 2019).

Figure (3.12) depicts of a scheme of the apparatus (polariscope) used for the forces
visualization: polarization is induced by passing unpolarized light through a right-handed cir-

cular polarizer. On the opposite side, a circular polarizer with reverse polarity (left-handed),
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placed in front of the camera, blocks undisturbed light. When the photoelastic material experi-
ences anisotropic stress, the wave components aligned with the principal stress directions travel
at different rates, causing phase shifts. This converts the circularly polarized light into elliptical
polarization. The shifted portion of the wave passes through the second circular polarizer and is
recorded by the camera, allowing for the visualization of the force chains (Daniels et al., 2017,
Zadeh et al., 2018; Zadeh et al., 2019).

By assembling a system similar to the scheme presented in Fig. (3.12), one is able
to observe the contact networks between the particles when these are under an external stress,
as observed in Fig. (3.13), where the figures on the left present states before the application of
an external stress, and those on the right, the particles (and consequent force chains) after stress

is applied.

Figure 3.13 — Photoelastic particles under an axial compression through a polariscope as the
one schemed in Fig. (3.12). Panels (a) and (b) with monodisperse particles before
and after the compression, respectively. Panels (c) and (d) for bidisperse particles
before and after the compression, respectively.

We intend to employ this technique in future works to study experimentally the
dynamics of force chains in granular materials when disturbed by an intruder.
3.2.3 Collisional regime - Impact problems - Impact with spinning

The penetration depth 0 of a spherical projectile of diameter d and density p is

investigated by dropping it onto a fine granular material confined in a cylindrical container of
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Figure 3.14 — (a) Sketch of the experimental setup and notations introduced. Image taken from
(Carvalho et al., 2024a). (b) Photograph of the actual experimental setup.

diameter D and height b, as indicated in the scheme presented in Fig. (3.14)a. The granular
medium consists of slightly polydisperse glass spheres (diameter d, = 1 & 0.3 mm and density
pg =~ 2.5 x 10° kg m~?), as shown in Fig. (3.15)a. To ensure the randomness of the initial
conditions of the granular bed, the cylindrical container is overfilled with grains which are
gently mixed with a thin rod before each experiment, then the free surface is flattened using a
straight edge. We found that this procedure leads to reproducible measurements, with only small
variations and an initial packing fraction of ¢ ~ 0.6 (measured by weighing the container’s
contents).

Different materials and sizes of spherical projectiles were used to highlight the in-
fluence of the sphere density p and diameter d on the penetration depth . For a container of
diameter D = 140 mm and height b = 90 mm [Fig. (3.14)b], three different metallic projectiles
were used, with diameters d = 20, 25, and 30 mm [Fig. (3.15)b] and densities p ~ 14920, 8160,
and 7710 kg m~3, respectively. For a plastic projectile with diameter d = 80 mm and density
p ~ 1150 kg m~3 [Fig. (3.15)c], two different cylindrical containers were used, with diameter
D = 400 mm and heights equal to b = 50 mm and b = 180 mm. This allows us to keep a ratio
D/d z 5, avoiding any confinement effects (Seguin ez al., 2008). Note that for all cases studied
here, the grain size d, remains much smaller than the projectile diameter d, with d, /d < 0.05.

The projectile is initially held by a magnet at a distance h above the granular surface

[Fig. (3.14)b], so that it is released without any initial velocity nor rotational motion (the non-
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Figure 3.15 — (a) Polydisperse glass spheres with diameter d, = 1 4+ 0.3 mm. (b) Different
metallic projectiles with diameters d = 30, 25, and 20 mm (counterclockwise
starting from the top). (c) Plastic projectile with diameter d = 80 mm.

metallic sphere is held by inserting a small magnet inside it). The impact velocity is adjusted by
varying the releasing height / from 2 mm to 2.17 m. Hence, the corresponding speed at impact
v;, given by v; = 1/2gh, where ¢ is the gravitational acceleration, varies from 0.2 to 6.5 m s~ 1.
Note that the projectile is released just above the center of the cylindrical container and falls
along its axis.

Rather than releasing a rotating projectile to impact a nonrotating granular bed (Car-
valho et al., 2023b; Carvalho et al., 2023a), experimentally it is more feasible to release a nonro-
tating projectile onto a rotating granular medium. In the absence of relatively strong centrifugal
effects, these situations are equivalent, since they induce the same relative motion between the
projectile and grains. Hence, the cylindrical container is placed on a rotating platform allowing
its rotation around its main axis at a constant angular velocity w; in the range 0 — 10 rad s~*.
In this way, the relative angular velocity between the projectile and the granular bed reaches
a zero value at the end of each experiment. To be clearer, in both the experiments (Carvalho
et al., 2024a) and the DEM simulations (Carvalho er al., 2023b; Carvalho et al., 2023a), we
impose an initial angular velocity (initial spin) to the projectile with respect to the bed. After
the projectile impacts and penetrates the bed, it is free to decelerate and eventually reach zero
angular velocity. The difference between the present experiments (Carvalho et al., 2024a) and
the DEM simulations (Carvalho et al., 2023b; Carvalho et al., 2023a) is that, with respect to the
“laboratory” (Earth) frame of reference, in the experiments the bed rotates while in the simu-
lations the projectile has an initial spin, but in both cases the projectile eventually reaches the

angular velocity of the bed (non-zero in one case and zero in the other). A video showing one

of these experiments can be seen in (CNRS-Ingénierie, 2024).



108

The cylindrical container is connected to a rotating platform which is in turn at-
tached to an axis connected to a DC motor [Cerclet, Ref 3445 - (Fig. (3.16)b]. The DC motor
rotation is then controlled by a programmable DC power supply [RSPRO, RS-3005P, 0-30V,
0-5A - (Fig. (3.16)c]. The whole system, for illustration purposes only, is shown in Fig. (3.16)a.
By varying the voltage in the power supply, one is able to precisely control the rotation of the

axis attached to the motor and, consequently, that of the rotating cylinder itself.

Figure 3.16 — (a) Assembled components of the experimental setup (empty reservoir) with the
motion device. (b) Details of the DC motor. (c) Details of the power supply.

A calibration of the system was performed in order to produce a relation between
the applied voltage V' in the power supply and the effective rotation rate w; at the cylindrical
container. Voltage V' was varied from 2 to 8.75 V in steps of 0.25 V. Lower voltage values would
not allow for the rotation of the cylinder and higher ones would cause the grains to be ejected
due to centrifugal forces. Beginning from a non-rotating cylinder (w; = 0 rad s~!), the voltage
would slowly be increased (starting from V' = 0 V) in the power supply until the desired value
was reached. Once this happened, the system would be recorded with a high resolution camera
at a high frequency of image acquisition (580 fps). By following a small marker attached to
the cylinder wall, one is able, after carrying out an image analysis, to estimate the rotation
of the cylinder. In order to know if the rotation rate would change after the ejecta of grains
caused by the impact process (some grains eventually leave the cylinder boundaries after the

impact of the projectile takes place), for the container with diameter D = 140 mm, 3 different
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cases were considered, where the cylinder was filled up with grains up to 3 different heights:
i) b = 90 mm (completely full); ii) b = 75 mm; and iii) b = 60 mm. These cases are shown
in Fig. (3.17). A similar calibration process was performed for the cylindrical container with
diameter D = 400 mm and height b = 50 mm. However, in this case, depth variations were not
considered since no grains were ejected away from the cylinder boundaries in all experiments
performed in this container. In addition, voltage V' was varied from 2.25 to 6 V in steps of 0.25

V.

Figure 3.17 — Different cylinders used in the calibration process. (a) D = 140 mm and b = 90
mm. (b) D = 140 mm and b =75 mm. (¢) D = 140 mm and b = 60 mm.

Calibration curves obtained for the 4 different configurations discussed above are
shown in Fig. (3.18). We note a linear relation between voltage V' and angular velocity w; for
all cases [see caption of Fig. (3.18)]. Moreover, no differences in rotation rates were measured
for the cases with different filling height b in the cylinder with D = 140 mm.

We note that the experiments are limited to angular velocities of the order of
10 rad s~! since beyond this value, grains begin to be ejected due to the centrifugal force.
In addition, the experimental rotation rates are small enough to allow neglecting surface defor-
mation. The critical rotation rate is obtained for w. = (6g/D)"/? (Huang et al., 2021; Irie et
al., 2021). In our case, w. = 20.5 rad.s~!, which is greater than the maximum rotation rate

Winaa ~ 10 rad.s™*

in our experiments. Therefore, at the maximum rotation rate of the system,
we do not observe any surface deformation (Huang et al., 2021; Irie et al., 2021).

At the end of a release experiment, the angular velocity of the container is slowly
reduced until it stops completely. The penetration depth ¢ is then measured using a thin probe

[Fig. (3.19)a], pushed vertically to the impact point, that locates the top of the projectile with an
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Figure 3.18 — Calibration curves (rotation rate w; as a function of voltage V') for the different
cases studied. (a) Cylinders with D = 140 mm. Linear fit given by the solid line
(—): V = 1.425w; — 2.406. (b) Cylinder with D = 400 mm. Linear fit given by
the dashed line (- - -): V = 1.442w,; — 2.899.

accuracy higher than 1 mm [Fig. (3.19)b]. Note that we ensure that the sphere has not deviated
significantly from the vertical trajectory after impact, by probing a few points in the vicinity.
Since one knows the original size of the measuring probe, through image analysis (we made use
of the free software ImageJ) one is able, through size comparison with a scale, to determine the
penetration depth of the projectile. A top view of a shallow crater (when the projectile does not

sink completely below the granular medium) formed after impact is shown in Fig. (3.19)c.

Figure 3.19 — (a) Measuring thin probe. (b) The probe locates the top of the projectile for depth
measuring purposes. (¢) Top view of a shallow crater.

The results obtained with these experiments can be seen in Sec. 5.2.
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4 RESULTS AND DISCUSSION - QUASI-STATIC REGIME -
INTRUSION PROBLEMS

4.1 Numerical Investigation

4.1.1 Motion of a single intruder

This section (Sec. 4.1.1) reproduces material from Douglas D. Carvalho, Nicolao
C. Lima, and Erick M. Franklin, “Contacts, motion, and chain breaking in a two-dimensional
granular system displaced by an intruder”, Phys. Rev. E 105, 034903 (2022), with permission
from the American Physical Society (Carvalho ef al., 2022).

When the intruder’s displacement promotes the quasi-static motion of grains, con-
tact chains appear and collapse successively, forming a time-varying contact network that perco-
lates forces within the granular medium. This intermittent network implies history dependence
in the stress distribution, with the occurrence of local anisotropy, local packing variations, and
jamming and unjamming regions as the contact chains persist or fail, respectively (Radjai et al.,
1998; Majmudar; Behringer, 2005; Cates et al., 1998; Bi et al., 2011; Seguin, 2020; Behringer;
Chakraborty, 2018; Featherstone et al., 2021). On the intruder, it causes a strongly oscillating
drag force (Kolb et al., 2013; Seguin et al., 2016; Carvalho et al., 2022). Therefore, the problem
is intricate even in the case of a single intruder. Although already partially studied, the physics
involved in a granular medium displaced by an intruder remains to be fully understood and
important issues need to be investigated further. In this section we present a numerical inves-
tigation of a three-dimensional (3D) cylindrical intruder (disk) driven at constant speed within
an assembly of smaller bidisperse disks (3D cylinders) confined in a rectangular cell, with the
same configuration of the experiments of Seguin et al. (2016) (Seguin et al., 2016) (quasi-static
regime). We performed Discrete Element Method (DEM) computations for an ensemble of
disks with static and dynamic coefficients of friction, in accordance to the methodology pre-
sented in Sec. 3.1.1. We first validate our numerical computations by replicating some of the
experimental results obtained by (Seguin ef al., 2016), and we afterward investigate further the
motion of particles and force transmission. In summary, we find that there is a bearing network
that percolates large forces from the intruder toward the walls, being responsible for jammed re-
gions and high values of the drag force, and a dissipative network that percolates small forces, in

agreement with previous observations for compressed 2D granular systems (Radjai et al., 1998;
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Seguin, 2020). In addition, we find the anisotropy levels of the contact network for different
force magnitudes and regions, that bearing chains occur preferentially in long chains in front
of the intruder (which we associate with local jamming induced by shear), and that the force
network can reach regions far downstream of the intruder by the end of the intruder’s motion.
By varying the coefficients of basal friction, we show that bearing networks transmit stronger
forces within longer distances for higher basal friction, and that the void region (cavity) that
appears downstream of the intruder tends to disappear for lower values of basal friction. In-
terestingly, our results show that grains within the bearing chains creep while the chains break,
revealing the mechanism by which bearing chains collapse, and allowing the intruder to proceed

with its motion.

4.1.1.1  Numerical setup

The computed system consisted basically of an assembly of 3D disks settled over
a horizontal wall and confined by vertical walls, and of a larger 3D solid disk (intruder) that
moved at constant velocity amid the other disks (the top wall was absent). Although the solid
objects are 3D disks, we employ the terminology two-dimensional granular system since they
form a monolayer of particles. The dimensions and properties are roughly the same as in Seguin
et al. (2016) (Seguin et al., 2016), the steel intruder having diameter and height of d;,;, = 16
mm and h;,; = 3.6 mm, respectively, and the granular system consisting of a bidisperse mixture
of polyurethane (PSM-4) disks with small and large diameters of d; = 4 mm and d; = 5 mm,
respectively (in order to prevent crystallization (Speedy, 1999)), and height 7, = 3.2 mm. We
forced the intruder to move within the disks at a constant velocity that varied within 10~! mm/s
< Vi < 10 mm/s. The disks were distributed in a proportion of N;/Ns ~ 0.64, where N, and
N, are the numbers of small and large particles, respectively, in a way that the areas occupied
by the small and large grains were almost the same. The disks were placed over a horizontal
glass plate and were enclosed by vertical glass walls, so that the system dimensions were of
L, x L, =400 mm x 400 mm, where L, and L, are the longitudinal and transverse lengths,
respectively. All simulations were performed with a fixed cell size (total domain), in a way
that the mean packing fraction is kept constant for each computed case, being varied within
0.76 < ¢ < 0.83 by varying the number of disks in each tested case. The number of disks and
the corresponding packing fractions can be seen in Tab. (4.1), and an example of setup of one

simulation can be seen in Fig. (4.1)a.
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Table 4.1 — Mean packing fraction ¢, number of small N, and large [V, grains, and total number
of grains V.

¢ | N, | Ny | N
0.76 | 4832 | 3092 | 7924
0.77 | 4896 | 3133 | 8029
0.78 | 4959 | 3174 | 8133
0.79 | 5023 | 3215 | 8238
0.80 | 5087 | 3256 | 8343
0.81 | 5150 | 3296 | 8446
0.82 | 5214 | 3337 | 8551
0.83 | 5277 | 3377 | 8654

Although the Young’s modulus of the steel is £ = 1.96 x 10! Pa, we used a value
two orders of magnitude smaller in the numerical simulations in order to increase the time
step without considerably affecting the accuracy of the results (Lommen et al., 2014). The
properties of the materials used in the numerical simulations are summarized in Tab. (4.2). We
do not consider any motion in the direction perpendicular to the zy plane, so that there is no
collision between the disks and bottom wall. The intruder is placed initially at the location x; =
-160 mm , y; = 0 mm, in the left side of the simulation cell, and is moved at a constant velocity
Vo from left to right, through the granular medium, toward its final position at z; = 160 mm
, ¥; = 0 mm [Fig. (4.1)a]. Therefore, for all values of 1}, and ¢ used in the simulations, the
intruder traveled a total distance equal to AS = 320 mm. The drag force Fp exerted by the
grains onto the intruder, the forces on each grain, their displacements, and the contact network
are computed at every time step. We defined a region of interest (ROT) of size Agro; = 160 mm
x 160 mm in the center of the domain [green-dashed area in Fig. (4.1)a] for computing time
averages while avoiding intense boundary effect [see Fig. (4.3)c for a figure showing the effect
of considering the entire domain on time averages]. The remaining computations considered

the entire domain.

Table 4.2 — Properties of materials used in the simulations: E is the Young’s modulus, v is the
Poisson ratio, p is the material density, and d is the particle diameter.

Material E (Pa) v | p(kg/m?) d (mm)
Intruder Steel® 1.96 x 10° | 0.29 7800 dine = 16
Grains | Polyurethane™®® | 4.14 x 10% | 0.50 1280 dy=4;d,=5
Walls Glass® 0.64 x 10 | 0.23 2500 L, =400; L, =400

(1) Hashemnia and Spelt (Hashemnia; Spelt, 2014)
(2) Gloss (Gloss, 2000)

Values for the coefficient of restitution were 0.3 for the grain-grain and 0.7 for the
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Figure 4.1 — (a) Numerical setup for ¢ = 0.76. (b) Different sub-regions of the entire domain

analyzed individually. (c) Force chains formed during the motion of the intruder.
Clear networks correspond to bearing (stronger) chains and darker networks to
dissipative (weaker) chains. (d) Cavity formed downstream of the intruder for
different packing fractions. Images taken from (Carvalho ef al., 2022).

grain-wall and grain-intruder interactions (Gondret ef al., 2002; Hashemnia; Spelt, 2014). For

the friction coefficients, we considered only the dynamic coefficient for interactions occurring

on surfaces oriented in the vertical plane (grain-grain, intruder-grain and grain-vertical wall in-

teractions), for which we applied the Hertz-Mindlin contact model. Values for the polyurethane-
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polyurethane and polyurethane-steel found in the literature are relatively high (Hashemnia;
Spelt, 2014; Carlevaro et al., 2020) when compared to the other materials involved. The friction
between both the intruder and disks with the bottom wall was implemented by ourselves, for
which we considered both the static and dynamic coefficients. For that, we defined a threshold
velocity v/ =5 x 10~* m/s for the transition between static and dynamic conditions. Values of
the coefficients of restitution (ratio between the momentum just after and prior collision) and
friction (Coulomb law) and the threshold velocity used in the simulations are listed in Tab. (4.3).
Most of the coefficients were obtained from the literature (Carlevaro et al., 2020; Hashemnia;
Spelt, 2014; Gondret et al., 2002), and sensitivity tests varying the coefficients are shown in
Fig. (4.2).

Table 4.3 — Coefficients and threshold used in the numerical simulations.

Coefficient Symbol Value
Restitution coefficient (grain-grain) €g9 0.3
Restitution coefficient (grain-intruder)® €gi 0.7
Restitution coefficient (grain-wall)®) €qu 0.7
Dynamic friction coefficient (grain-grain)*) g 1.2
Dynamic friction coefficient (grain-intruder)(® Lgi 1.8
Dynamic friction coefficient (intruder-bottom wall) Miw 0.7
Dynamic friction coefficient (grain-walls)(*) Hgw 0.4

Static friction coefficient (grain-bottom wall) s, gw 0.7
Threshold velocity (dynamic/static friction) v v'=5x 107* m/s

(1) Carvelaro et al. (Carlevaro et al., 2020)
(2) Hashemnia er al. (Hashemnia; Spelt, 2014)
(3) Gondret et al. (Gondret et al., 2002)

With the total domain and the particle fraction to be simulated defined, the set of
disks with the desired proportion is generated. First, the particles are randomly distributed over
a square space larger than the computational domain. Afterward, the space occupied initially
by the disks is compressed from the external limits toward its interior until reaching the size of
the computational domain. In this initialization process, the number of generated particles is the

necessary to achieve the desired packing fraction ¢, according to Eq. (4.1) (Kolb et al., 2013).

%(Nsdg + Nlde)
LoL, — =d2

4 “int

o= 4.1

This initialization is necessary because the software is not capable of randomly
inserting disks at high particle fractions in the domain within reasonable times (it takes much

greater times than those of simulations themselves). Finally, the disks are allowed to relax and,
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one symbol in the following. In the graphics, symbols correspond to the measured
values and bars to the standard errors. Images taken from (Carvalho et al., 2022).

afterward, the simulation starts by setting the intruder into motion at a constant speed. All

computations were performed with a time step At = 3.2 x 1079 s, which, in the worst scenario,

is less than 10 % of the Rayleigh time (timescale for Rayleigh waves resulting from collisions),

given by:

7 (d/2) (p/G)'"?
0.1631 + 0.8766’

where G is the shear modulus (Derakhshani et al., 2015).

(4.2)
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4.1.1.2 Drag force on the intruder

For each simulated condition, we computed the resultant force on the intruder at
each time step and associated it with the instantaneous drag force on the intruder Fp. We then
obtained its magnitude Fpp and, for each different condition, the mean (Fp). Figure (4.3)a
presents ['p as a function of time ¢ when the intruder moves with V5 = 2.7 mm/s in a system
with mean packing fraction ¢ = 0.76. We observe an initial transient, when the intruder begins
moving and Fp increases due to an increasing number of contacts [shown next in Fig. (4.4)b],
and that afterward the mean value remains roughly constant, with very high oscillations with
peaks reaching values 3 times the mean value. Those strong oscillations are caused by the
formation and destruction of contact networks that percolate forces within the bed, as shown
next. The same behavior was found experimentally by Seguin et al. (2016) (Seguin et al.,
2016). Figure (4.3)b shows the time-averaged magnitude of the drag force (Fp) as a function
of the intruder velocity 1} for ¢ = 0.76. We obtain values that are roughly independent of 1},
(as in Refs. (Seguin ef al., 2016) and (Seguin et al., 2013)), with a mean value (Fp) ~ 0.21.
For the same case, Seguin ef al. (2016) (Seguin et al., 2016) found experimentally (Fp) ~
0.22. Fig. (4.3)c shows that, by considering all the domain (Global) to calculate the averages
(red circles), although there are some small differences in values, we observe that the behavior is
approximately the same for both regions. Finally, Fig. (4.3)d presents (F)) as a function of ¢ for
Vo = 2.7 mm/s, showing that the mean force remains roughly constant until 0.80 < ¢ < 0.81, and
from ¢ ~ 0.81 on (Fp) increases strongly with ¢, similar to results obtained experimentally by
Kolb et al. (2013) (Kolb et al., 2013). Considering that experimental uncertainties are expected
in Refs. (Kolb et al., 2013; Seguin et al., 2016) and that we obtained the particle properties
(with the exception of the diameter) from other works, the agreement is good.

We observed also the formation of a cavity (void region) downstream the intruder,
whose size decreases with increasing the packing fraction, as shown in Fig. (4.1)d for 0.76 < ¢
< 0.83. We observe that for ¢ = 0.80 the cavity has almost disappeared, and for ¢ = 0.83 it no
longer exists, in accordance with the experimental observations of Kolb et al. (2013) (Kolb et
al., 2013).

Altogether, the resultant drag and cavity agree with experimental observations and
validate part of our numerical results. More information on the numerical simulations (input
and output files, numerical scripts for post-processing the outputs, etc.) are available on a public

repository (Lima et al., 2021).
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Figure 4.3 — (a) Magnitude of the resultant force on the intruder /', when the mean packing
fraction is ¢ = 0.76 and 1V, = 2.7 mm/s as a function of time ¢. (b) Time-averaged
magnitude of the resultant force on the intruder (Fp) as a function of its velocity
for ¢ =0.76. (c) Same as (b) but black triangles correspond to averages considering
only the ROI (as in shown in (b)) and red circles all the domain (Global). (d) (Fp)
as a function of ¢ for V, = 2.7 mm/s. In Figs. (b), (c), and (d), symbols correspond
to the average values and bars to the standard errors. Images taken from (Carvalho
etal., 2022).

4.1.1.3 Network of contact forces

In the following, we analyze the network of contact forces and the behavior of
individual grains within specific contact chains. For that, we fixed the mean particle fraction to
¢ = 0.76 and the intruder velocity to Vj = 2.7 mm/s. From images of the force chains, such as

Fig. (4.1)c, we observe that forces from the intruder propagate through contact networks whose
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anisotropy and size depend on the force level and region within the system. In what follows,
we investigate the anisotropy of the system (i) as a whole, (ii) for different force levels (below
and above an average value), and (iii) for different regions within the domain. For that, we

computed the fabric tensor R (Bietal.,2011),

~ 1 rij rij
R=2Y Tig (4.3)

vy vyl vyl
where N is the number of non-rattler particles (particles with at least two contacts), r;; is the
contact vector from the center of particle ¢ to the contact between particles ¢ and 7, and ®
denotes the vector outer product. With the eigenvalues R, and R» of the tensor R, we computed
the average number of contacts per particle 7 = R; + R, and the anisotropy of the contact
network p = Ry — Ry (Biet al., 2011). More details regarding the fabric tensor R can be seen
in Appendix B.

Figures (4.4)a, (4.4)b, and (4.4)c present the contact anisotropy p, average number
of contacts per particle Z, and number of non-rattler particles IV, respectively, for the entire
domain as functions of time. We observe that Z increases and p decreases during the first 20 s.
The strong initial variations of Z and p are mainly due to adaptations of the initial conditions of
the system as the intruder starts moving, with more grains being put into contact and a general
decrease in anisotropy. After this time interval, mean values present lower variations. At the
stable intervals (¢ > 30 s), time averages computed for the ROI are (p) =0.041 and (Z) =2.903,
showing that, when considered as a whole in terms of regions and force magnitudes, the contact
network has a low degree of anisotropy. However, since the intruder moves in one direction, we
expect load-bearing chains aligned in preferential directions in order to resist to the intruder’s
motion (Cates et al., 1998; Majmudar; Behringer, 2005; Bi et al., 2011). Load-bearing chains
that transmit strong forces have been shown to exist in compressed 2D granular systems (Radjai
et al., 1998; Seguin, 2020), to be more anisotropic than the dissipative chains, and, in addition,
to be related to jamming by shear (Bi et al., 2011). We investigate next if this is also the case

for a 2D system displaced by an intruder, and, in addition, if anisotropy varies in space.

4.1.1.3.1 Force levels

Following the same idea of Radjai et al. (1998) (Radjai et al., 1998), we divided the
network of contact forces into a bearing network, for which transmitted forces are higher than

the average value (ensemble average at each considered instant), and a dissipative network, with
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Figure 4.4 — Time evolution of (a) contact anisotropy p, (b) average number of contacts per
particle Z, and (c) number of non-rattler particles NV for the entire system. Images
taken from (Carvalho et al., 2022).

values lower than the average. Once identified the type of network, we computed R, pand Z for
each network (all chains), which are shown in this subsection. We also followed the evolution
of specific chains and the motion of their grains, which are shown in Sec. 4.1.1.3.3.

Figures (4.5)a, (4.5)b, and (4.5)c present the time evolution of the contact anisotropy
p, average number of contacts per particle Z, and number of non-rattler particles N, re-
spectively, for the bearing (strong) and dissipative (weak) networks for the entire domain.
We observe an increase in Z during the first 20 s for the dissipative network while for the

bearing network the mean value of Z remains roughly constant, with values for the dissi-
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Figure 4.5 — Time evolution of (a) contact anisotropy p, (b) average number of contacts per
particle Z, and (c) number of non-rattler particles N computed for the bearing
(continuous line) and dissipative (dashed-red line) networks. Time average values
are (p) =0.107 and (Z) = 2.592 for the bearing network, and (p) = 0.060 and (Z)
=2.711 for the dissipative network. Images taken from (Carvalho et al., 2022).

pative network being 5 % higher than those for the bearing network. During the first 10-
20 s for both networks, p decreases, with values 80 % higher for the bearing network in
comparison with the dissipative network. These values indicate that anisotropy is main-
tained mostly by the load-bearing chains. From direct observations of figures of the net-
work of contact forces, such as Figs. (4.1)c and (4.11), or from the animation available at
<https://journals.aps.org/pre/supplemental/10.1103/PhysRevE.105.034903>, we observe that

bearing chains percolate in various directions, but mostly in the front (upstream) region of
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the intruder. This characteristic, which is similar to the shear jammed state described by Bi et
al. (2011) (Bi et al., 2011) for the case of a sheared cell, explains the higher anisotropy of the
bearing network. This is also in accordance with the description given by Kolb ef al. (2013)
(Kolb et al., 2013) of a jammed region in front of the intruder, with load-bearing chains being
formed and collapsing as the intruder moves, making the drag force to fluctuate strongly around
a mean value, as shown in Fig. (4.3)a. We investigate the bearing chains in detail (at the grain

scale) in Sec. 4.1.1.3.3.

4.1.1.3.2  Spatial distribution
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Figure 4.6 — Time evolution of the anisotropy of the contact network p for each individual re-
gion of Fig. (4.1)b. Images taken from (Carvalho et al., 2022).
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Figure 4.7 — Time evolution of the average number of contacts per particle Z for each individual
region of Fig. (4.1)b. Images taken from (Carvalho et al., 2022).

In order to investigate if the time evolution of anisotropy varies in space, we divided
the domain in nine different regions as shown in Fig. (4.1)b. Figure (4.6) presents the anisotropy
of the contact network p for each individual region of Fig. (4.1)b as a function of time (the
relative positions of graphics correspond to the spatial distribution in the domain). Interestingly,
p decreases in regions mainly upstream the intruder (regions II, III, V, VI, VIII and IX) as
the latter moves from the left to the right [Fig. (4.1)], while p increases in the regions farther
downstream the intruder (regions I, IV and VII) as it approaches the right boundary of the
domain. In addition, values of p are much higher in the left regions by the end of the intruder’s
motion (values at least three times greater on the left than on the right regions). This behavior
is corroborated by the time evolution of Z, shown in Fig. (4.7) for each region. From this

figure, we observe that the average number of contacts per particle decreases in the left regions
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(regions I, IV, and VII) by the end of motion, compatible with anisotropic behaviors, while the
same does not occur in the other regions.

The explanation for the long-range effects is the size of the contact network that,
by the end of motion of the intruder, reaches regions far downstream of it (check <https://
journals.aps.org/pre/supplemental/10.1103/PhysRevE.105.034903> for an animation showing
the instantaneous contact network). Because chains arriving at the farther regions (I, IV and
VII) by the end of the intruder’s motion follow principal directions, as if irradiating from the
intruder, anisotropy is larger in those regions. These results corroborate the necessity of a non-
local rheology to describe a granular system displaced by an intruder, even if most of grain
displacements occur in the vicinity of the intruder (as shown in Refs. (Kolb et al., 2013; Seguin

etal.,2016) and in Sec. 4.1.1.3.3).

4.1.1.3.3  Grains within bearing chains

The experimental results of Kolb ef al. (2013) (Kolb et al., 2013) and Seguin et
al. (2016) (Seguin et al., 2016) showed strong fluctuations of Fp around a mean value that are
associated with the formation and breaking of bearing chains, and the same behavior appears
in our simulations. However, previous works did not show how grains within a bearing chain
move nor how the chain breaks. We investigate this problem by choosing some bearing chains,
labeling the grains of each chain, and following these grains along time. For the labels, the
corresponding numbers start with the grain in contact with the intruder and increase as grains
are farther from it, as shown in Fig. (4.8)a.

One example of bearing chain is shown in Fig. (4.8), where Fig. (4.8)a shows the
grains just after the chain was formed and Fig. (4.8)b after the chain broke. We observe that
during this period some chains broke while some others formed, and that the motions of the con-
sidered grains are very small. In order to inquire into the motions of these grains, we computed
their fluctuations with respect to the ensemble of grains and their accumulated displacements,
and found that chains break due to creep motion of some grains, with a very small degree of
fluctuations of individual grains. Because the oscillation levels of load-bearing grains are neg-
ligible, we present next only their displacements.

Figure (4.9)a presents the displacements AS of each labeled grain at different in-
stants for the chain shown in Fig. (4.8) (transverse to the intruder’s motion), and Fig. (4.9)c

for a chain parallel to the intruder’s motion. Each symbol corresponds to one instant, and the



Figure 4.8 — Grains within a bearing chain (shown in red) of the network shown in Fig. (4.1)c
(bearing network in white). (a) Grains just after the chain was formed, with labels
from 1 to 23 according to their distance from the intruder. (b) Grains just after the
considered chain broke. Images taken from (Carvalho et al., 2022).

figures represent the strain suffered by the chain. We observe that while the intruder is forced
through the system the grains closer to it yield and move, while those farther [labeled 14 or
more in Fig. (4.9)a and 19 or more in Fig. (4.9)c] do not move. In fact, we can observe from
Fig. (4.8)b that the latter remain in contact with each other, so that the part of the chain that is
not in contact with the intruder persists. The same behavior was observed for all the chains that
we tracked. Figure (4.10) presents an ensemble average computed for 11 chains, for which we
note that, in average, creep during chain breaking is localized around the intruder, decreasing
fast as grains are farther from the intruder and being nonexistent from the 15" grain on. The
average duration of creeping At is of the order of 0.1 s, and normalizing A¢ by the characteristic
time ¢. = d,/Vy, where d, = 4.5 mm is the mean grain diameter, we obtain At/?, of the order of
0.1. Table (4.4) shows the duration of each chain. In terms of drag on the intruder, Figs. (4.9)b
and (4.9)d show the time evolution of F'; as the same bearing chains of Figs. (4.9)a and (4.9)c,
respectively, break. We observe the same behavior shown by Kolb et al. (2013) (Kolb et al.,
2013): an increase in Fp while the bearing chain persists, and a fast decrease when the chain
breaks.

In summary, we observe that the formation and breaking of bearing chains are re-
sponsible for the high oscillation levels of Fp, with Fp increasing during the lifetime of the
bearing chain as the intruder is forced against it and decreasing as the chain breaks. In addition,
we observe that the breaking occurs due to creeping of grains closer to the intruder while those

farther from it do not move, and that, once broken, part of the former chain persists.
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Figure 4.9 — Displacements of each labeled grain for different instants during the breaking of a
bearing chain (a) transverse and (c) parallel to the intruder’s motion, normalized
by the mean grain diameter d, = 4.5 mm. Figure (a) corresponds to the same
chain shown in Fig. (4.8). Magnitude of the drag force on the intruder Fp along
time during the formation and breaking of the (b) transverse and (d) longitudinal
bearing chains. The dashed line indicates the instant when the chain is present for
the last time, i.e., just before its rupture. Images taken from (Carvalho et al., 2022).

4.1.1.4 Basal friction

Depending on the surface on which the disks move, the basal friction can be differ-

ent. For instance, the friction can be much smaller over Teflon or ice than over acrylic, glass or

metal alloys. The diversity of materials found both in nature and industry has thus motivated in-

vestigations of monolayers of particles sliding with different frictions. Kozlowski et al. (2019)
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Table 4.4 — Duration At of creeping of each followed chain, in dimensional form and normal-
ized by the characteristic time ¢. = d,;/Vj.
Chain number At At/t,
... S o ..

1 0.144  0.09

2 0.132  0.08

3 0.192 0.12

4 0276  0.17

5 0.288 0.18

6 0312 0.19

7 0.180 0.11

8 0.204 0.12

9 0.156  0.09

10 0.108  0.06

11 0.156  0.09
Or
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Figure 4.10 — Ensemble average of the displacements of grains AS for different instants during
the breaking of bearing chains transverse to the intruder’s motion, normalized by
the mean grain diameter d,. Image taken from (Carvalho et al., 2022).

Table 4.5 — Coefficients of basal friction: values used in the simulations.

Coefficients Relative reductions
100% | 75% | 50% | 25% | 10% | 1% 0.1%
Liw 0.7 |10.525|0.35|0.175 | 0.07 | 0.007 | 0.0007
Hgw 0.4 0.3 0.2 0.1 | 0.04 | 0.004 | 0.0004
ILs,qw 0.7 10525 0.35|0.175 | 0.07 | 0.007 | 0.0007

(Kozlowski et al., 2019) and Carlevaro et al. (2020) (Carlevaro et al., 2020) investigated the
effects of the basal friction of grains (14, and ji, g,,) on the motion of an intruder with zi;,, = 0

in a Couette geometry. They found that two regimes of motion appear depending on the friction
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Figure 4.11 — Network of contact forces for different values of the coefficients of basal friction:
(a) 100%, (b) 25%, (c) 10% and (d) 0.1% of the base values. Clear networks cor-
respond to bearing (stronger) chains and darker networks to dissipative (weaker)
chains, and all figures correspond to ¢ = 53.54 s. Images taken from (Carvalho et
al., 2022).

coefficients, and that in the case without basal friction chains occur only in front of the intruder
during stick events. Although they advanced valuable information about the general behavior of
the system, knowledge on how the chain dynamics varies with the basal friction is still missing.

In the present section, we inquire further into the effect of the basal friction on the
network of contact forces. For that, we reduced the values of the coefficients of basal friction

for both the intruder and grains by the same proportions, as indicated in Tab. (4.5): values of
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Figure 4.12 — (a) Time-averaged length of chains (L) normalized by d, and (b) time-averaged
drag (Fp) for different values of friction coefficients, in terms of percentages
of the base values [see Tab. (4.5)]. (c) Diagram illustrating how the maximum
distance reached by bearing chains is computed: a line (in yellow) with origin
at the center of the intruder is rotated in the azimuthal direction in order to find
the most distant points pertaining to bearing chains. In this figure, blue lines
correspond to dissipative and red lines to bearing chains. (d) Magnitude of the
resultant force on the intruder F'p as a function of time ¢ when the basal friction
is 0.1% of the base value. In Fig. (a) error bars correspond to standard deviations
and in Fig. (b) to standard errors. Images taken from (Carvalho ef al., 2022).

the static and dynamic coefficients, (4w, ftgw and jis g, Were reduced to 75, 50, 25, 10, 1, and
0.1% of the original values [shown in Tab. (4.3)]. We analyze next how the density of contact

networks, typical lengths of chains, and behavior of the cavity vary with the basal friction.
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Figure (4.11) shows the networks of contact forces for different values of the co-
efficients of basal friction, where Figs. (4.11)a to (4.11)d correspond to values of 100, 25,
10 and 0.1% of the base value [Tab. (4.5)]. The figures show that the extents of both bearing
and dissipative chains decrease with decreasing the basal friction. In order to quantify that,
we computed the typical length L of the bearing chains by measuring, along time, the maxi-
mum distance from the center of the intruder reached by bearing chains. Figure (4.12)c shows
a diagram of how this distance is measured. Figure (4.12)a presents the time-averaged values
of the typical length, (L), normalized by the mean grain diameter d, for different values of
friction coefficients (in terms of percentages of the base values). We observe that the extent of
bearing chains decreases slightly with reducing the basal friction, the typical length decreasing
by roughly 30% when the basal friction is reduced from 0.4 and 0.7 to virtually 0 (0.0004 and
0.0007, respectively). As a result of the lower extent of load-bearing chains, the resultant drag
on the intruder also decreases with decreasing the basal friction, Fig. (4.12)b showing that (Fp)
decreases one order of magnitude when basal frictions are reduced as before. Figure (4.12)d
shows the temporal evolution of F'p for a basal friction of 0.1% of the base value, on which we
observe a much lower level of fluctuations when compared with F', for the base value.

The extent of bearing chains decreases under lower friction because in this case
grains move easier when submitted to lower forces, breaking thus some of the chains. This is
corroborated by the reductions of the downstream cavity as the basal friction decreases. Fig-
ure (4.13) shows the cavity for different basal frictions, Figs. (4.13)a to (4.13)d corresponding
to 100, 25, 10 and 0.1% of the base value [Tab. (4.5)]. We observe a continuous reduction of the
cavity size as the basal friction is reduced, with a very slight cavity (and wake) for the smallest
value [Fig. (4.13)d], whose size is comparable to that for higher packing fractions (¢ > 0.80)
and 100% of the basal friction [Fig. (4.1)d].

In summary, in Sec. 4.1.1 we investigated numerically the forces and structures in a
two-dimensional granular system displaced by an intruder moving continuously. The granular
system and the intruder consisted of 3D disks, all of them settled over a horizontal wall and
confined by vertical walls, and, for the computations, we made use of the open-source DEM
code LIGGGHTS (Kloss; Goniva, 2010; Berger et al., 2015) together with the DESIgn toolbox
(Herman, 2016). By varying the intruder’s velocity and the basal friction, we obtained the resul-
tant force on the intruder and the instantaneous network of contact forces, which we analyzed

at both the cell and grain scales. We first validated our numerical computations by replicating
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Figure 4.13 — Cavity for different basal frictions. Figures (a) to (d) correspond to 100, 25, 10
and 0.1% of the base value [Tab. (4.5)]. Images taken from (Carvalho et al.,
2022).

some of the experimental results obtained by Seguin et al. (2016) (Seguin et al., 2016), and
we afterward investigated the motion of particles and force transmission. We found that there
is a bearing network that percolates large forces from the intruder toward the walls, being re-
sponsible for jammed regions and high values of the drag force, and a dissipative network that
percolates small forces, in agreement with previous experiments on compressed granular sys-
tems. We then showed that anisotropy levels are higher for the bearing chains when compared
with the dissipative ones, exhibiting some resemblance with shear jamming, and that anisotropy
increases more in regions farther downstream of the intruder by the end of its motion, reaching
values three times higher than those in upstream regions. We also found that the extent of the
force network decreases with decreasing the basal friction, and that the void region (cavity) that
appears downstream the intruder tends to disappear for lower values of basal friction. Finally,
our results show that grains within the bearing chains creep while the chains break, revealing
the mechanism by which bearing chains collapse.

In the next section (Sec. 4.1.2), we investigate numerically some aspects of the

dynamics behind the motion of sets of intruders within a granular material.
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4.1.2 Motion of sets of intruders

This section (Sec. 4.1.2) includes material from Douglas D. Carvalho and Erick M.
Franklin, “Collaborative behavior of intruders moving amid grains”, Phys. Fluids 34, (2022), re-
produced with permission from the American Institute of Physics (Carvalho; Franklin, 2022b).

Even though the cooperative behavior of intruders was evinced and its mechanisms
explained in previous works, many aspects remain open, such as the forced motion of intruders
in the horizontal direction, and the roles of friction, mean packing fraction and contact chains
on the overall dynamics. In this section, we investigate numerically how a group of intruders
interact with each other while moving horizontally in a two-dimensional granular system. The
numerical setup consists of two or three larger disks (intruders) driven either at constant speed
or thrusting force within an assembly of smaller disks (grains) confined in a rectangular cell. As
in Sec. 4.1.1, the disks are 3D objects (low height cylinders) sliding over a flat surface with both
static and dynamic coefficients of friction, and we carried out DEM (discrete element method)
computations, in accordance to the methodology presented in Sec. 3.1.1. In summary, we show
that: (i) intruders cooperate even when at relatively large distances from each other; (ii) the
cooperative dynamics is the result of contact chains linking the intruders as well as compaction
and expansion of the granular medium in front and behind, respectively, each intruder; (iii) the
collaborative behavior depends on the initial arrangement of intruders; and (iv) for some initial
arrangements, the same spatial configuration is eventually reached. We propose a chart for the
collaborative patterns, and we show the existence of an optimal distance for minimum drag for
a given set of intruders, which can prove useful for devices stirring the ground or other granular

surfaces.

4.1.2.1 Numerical setup

The numerical setup is similar to that of Sec. 4.1.1, excepting the size of the domain,
the number of intruders, and the type of external forcing. The system consisted of an assembly
of 3D disks (grains) over a horizontal wall, confined by vertical walls, and a set of two (duo)
or three (trio) larger 3D disks (intruders) in different initial configurations. Both the grains and
the intruders had one of their flat surfaces facing the bottom wall, and the intruders moved at
either constant velocity or thrusting force among the grains. The dimensions and properties of
each grain and intruder are the same as in Refs. (Seguin et al., 2016; Carvalho et al., 2022): the

intruders were of steel with diameter d;,,;, = 16 mm and height h;,; = 3.6 mm, and the grains
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were of polyurethane (PSM-4) with height h, = 3.2 mm and two different diameters, d, = 4
mm and d; = 5 mm, in order to prevent crystallization (Speedy, 1999). The areas occupied by
the small and large grains were roughly the same by assuring a ratio IV; /N =~ 0.64 between the
numbers of small (V) and large (/V;) disks.

The total domain varied depending on the simulation, being L, = L, = 0.4 m (for
most simulations with two intruders) or L, = 0.8 and L, = 0.4 m (for all simulations with
three and one with two intruders), where L, and L, are the longitudinal and transverse lengths,
respectively. The domain was fixed for each simulation, so that the mean packing fraction ¢
remained constant in each run, but varied within 0.70 < ¢ < (.79 for different runs by changing
the number of disks in each simulation. The number of disks and the corresponding packing
fractions are available in Tab. (4.6). We imposed the intruders to move at either a constant
velocity of 2.7 mm/s (in cases with two intruders) or a constant external force (thrust) of 0.8
N (in cases with two and three intruders), and the motions were limited to the xy plane, x
being the longitudinal and y the transverse direction. We made use of 2.7 mm/s to allow for
comparisons with the experiments of Seguin et al. (2016) (Seguin et al., 2016) (as done in Ref.
(Carvalho et al., 2022) and presented in Sec. 4.1.1), and 0.8 N to displace the intruders in the
quasi-static regime (values slightly lower or higher would work as well). The 0.8 N thrust was
imposed on each intruder, at each time step, in the = direction. Examples of setups can be seen
in Fig. (4.14).

Table 4.6 — For each duo and trio (Config.): mean packing fraction ¢, number of small N, and
large N, grains, and total number of grains V.

Config. | ¢ N N, N
duo | 0.76 | 4826 | 3089 | 7915
trio | 0.70 | 8896 | 5693 | 14589
trio | 0.71 | 9023 | 5775 | 14798
trio | 0.72 | 9150 | 5856 | 15006
trio | 0.73 | 9277 | 5937 | 15214
trio | 0.74 | 9404 | 6019 | 15423
trio | 0.75 | 9531 | 6100 | 15631
trio | 0.76 | 9658 | 6181 | 15839
trio | 0.77 | 9785 | 6262 | 16047
trio | 0.78 | 9913 | 6344 | 16257
trio | 0.79 | 10040 | 6426 | 16466

The intruders were placed initially in the left region of the domain, by either duos
or trios with initial separations Ax and Ay in the longitudinal and transverse directions, respec-

tively, and were afterward put into motion toward the right region. We varied the initial values
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Figure 4.14 — Top-view images of the numerical setup for duos (d) aligned and (b) off-centered
in the transverse direction, and trios with one intruder (a) in front and (c) behind
two intruders initially aligned in the transverse direction. Figures (a) to (d) corre-
spond to types L, III, Il and IV, respectively. Ax and Ay are the initial separations
in the longitudinal and transverse directions, respectively, and the area delimited
by dashed-green lines in figure (d) is a static region of interest (ROI) used for
some computations. Images taken from (Carvalho; Franklin, 2022b).

of Ax and Ay for different simulations, and, as the intruders were driven amid the grains, Az
and Ay were free to change along time in the cases of imposed thrust. Basically, four config-
urations were used: (i) one intruder in front of two intruders initially aligned in the transverse
direction [Fig. (4.14)a]; (ii) one intruder behind two intruders initially aligned in the transverse
direction [Fig. (4.14)c]; (ii1) two intruders off-centered in the transverse direction [Fig. (4.14)b];
and (iv) two intruders initially aligned in the transverse direction [Fig. (4.14)d]. We call these
configurations fypes I to IV, respectively. The simulations with imposed velocity were carried
out only for type 1V, for different initial Ay, but in these cases, due to the forcing characteristics,
Ay remained constant along the time. Figure (4.14)d also shows a region of interest (ROI) de-
limited by dashed-green lines (fixed in space), measuring 160 mm x 160 mm (corresponding to
approximately 35d, x 35d,, where d, = 4.5 mm is the average diameter of disks) and used for

computing the time-average forces on the intruders and anisotropy within the granular system.
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Values of the coefficients of restitution € and friction p (both static and dynamic),
Young’s modulus F and Poisson ratio v were obtained from the literature (Carlevaro et al.,
2020; Hashemnia; Spelt, 2014; Gondret et al., 2002; Zaikin et al., 2017), and sensitivity tests
varying those coefficients are shown in Fig. (4.2). We note that we used a value of £ for the steel
two orders of magnitude smaller than the real one (£ = 1.96 x 10! Pa) in order to increase
the time step while keeping a reasonable accuracy in the results (Lommen ef al., 2014). We
implemented the basal friction, both static and dynamic, by defining a threshold velocity v" =
5 x 10~* m/s for the transition between static and dynamic conditions. Sensitivity tests for v’
are shown in Fig. (4.2)i, where we verified that the time-averaged drag force does not change
considerably for v’ < 1073 m/s. Table (4.7) summarizes the mechanical properties of objects as

used in the simulations and Tab. (4.8) the values of friction and restitution coefficients.

Table 4.7 — Properties of materials as used in the simulations: E is the Young’s modulus, v is
the Poisson ratio, p is the material density, and d is the particle diameter.

Material E (Pa) v | p(kg/m?) d (mm)
Intruder Steel™ 1.96 x 10° | 0.29 7800 dipg = 16
Grains | Polyurethane™®-( | 4.14 x 10° | 0.50 1280 ds=4,d;=5
Walls Glass® 0.64 x 10'* | 0.23 2500

(1) Hashemnia and Spelt (Hashemnia; Spelt, 2014)
(2) Gloss (Gloss, 2000)

Table 4.8 — Friction and restitution coefficients used in the numerical simulations.

Coefficient Symbol | Value
Restitution coefficient (grain-grain) €gg 0.30
Restitution coefficient (grain-intruder)® €gi 0.70
Restitution coefficient (grain-wall)®) Equ 0.70
Restitution coefficient (intruder-intruder)® €ii 0.56
Dynamic friction coefficient (grain-grain)® Hgg 1.20
Dynamic friction coefficient (grain-intruder)® fgi 1.80
Dynamic friction coefficient (intruder-bottom wall) i 0.70
Dynamic friction coefficient (grain-walls)™ Hgw 0.40
Dynamic friction coefficient (intruder-intruder) o 0.57
Static friction coefficient (grain-bottom wall) s gw 0.70

() Carlevaro et al. (Carlevaro et al., 2020)

(2) Hashemnia ef al. (Hashemnia; Spelt, 2014)
() Gondret et al. (Gondret et al., 2002)

(4) Zaikin et al. (Zaikin et al., 2017)

Prior to each run, the grains were randomly distributed over a space larger than the

computational domain, and then compressed toward the center until filling the desired domain.
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Afterward, the grains were allowed to relax and the simulation started. This assured the desired
packing fraction within reasonable times (computation times for placing random grains directly
under high packing fractions are prohibitive). The simulations were carried out with a time step
At = 3.2 x 107 s, which was less than 10 % of the Rayleigh time [Eq. (4.2)] (Derakhshani et
al., 2015) in all simulated cases, and our numerical computations were validated in Sec. 4.1.1
by replicating some of the experimental results of Seguin ef al. (2016) (Seguin et al., 2016). We

present next the results for groups of two or three intruders moving within the granular system.

4.1.2.2 Results and discussion - Duos moving at constant velocity

We present in this subsection the results for a pair of aligned intruders moving at
constant velocity V' = 2.7 mm/s when ¢ = 0.76. For different computations, we varied the initial
separation Ay of intruders and evaluated their drag force F'p, the mean number of contacts per
particle Z, the number of non-rattler particles /N (particles with at least two contacts), and the
anisotropy level p, Z and p given by the fabric tensor (Bi et al., 2011)):

1 rij rij

R=y2 rij]

N Jr]

4.4)

where r;; is the contact vector from the center of particle ¢ to the contact between particles ¢ and
J, and ® denotes the outer product. We then obtain the mean number of contacts per particle
and the anisotropy level by computing Z = R; + R, and p = Ry — R», respectively, where Ry
and R, are the eigenvalues of the tensor R. More details regarding the fabric tensor R can be
seen in Appendix B.

We computed also time averages of these quantities in the entire domain or by
considering a moving ROI that followed the intruders along their motion Fig. (4.15)a. In the
case of drag forces, we computed a mean value by averaging the values for both intruders.

Those results are summarized in Fig. (4.15).

4.1.2.2.1 Drag force on the intruders

A snapshot showing a top-view image of grains and intruders for a typical simula-
tion is shown in Fig. (4.15)a, where we observe the formation of a cavity (absence of grains)
behind (downstream) each intruder in places previously visited by them (movies showing the

time evolution of the granular system as the intruders move are available on a public repository
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Figure 4.15 — (a) Snapshot showing the intruders and grains (top-view image), and a moving

ROI around the intruders (delimited by dashed-red lines). (b) Magnitude of the
mean resultant force on each intruder (Fp), .. as a function of their initial sepa-
ration Ay normalized by the intruder diameter d;,,;. (c) Mean number of contacts
per particle averaged over time (Z) and (d) time-averaged anisotropy (p) as func-
tions of (Ay — dint)/dins. In figures (b) to (d) triangles correspond to averages
computed by considering the entire domain and squares by considering only par-
ticles in the moving ROI shown in figure (a), and bars correspond to the standard
errors. In figure (b), the dashed-red line corresponds to the time-average drag
force found for a single intruder in Ref. (Carvalho et al., 2022), and the marked
points indicate the conditions for which the networks of contact forces are shown
in Fig. (4.18). All graphics are for V' = 2.7 mm/s and ¢ = 0.76. Images taken from
(Carvalho; Franklin, 2022b).
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(Carvalho; Franklin, 2022a)). The existence of a cavity downstream of a single intruder was
measured experimentally by Kolb et al. (2013) (Kolb et al., 2013) and Seguin et al. (2016)
(Seguin et al., 2016) and numerically by Carvalho et al. (2022) (Carvalho et al., 2022). The
figure also shows the region of interest around the intruders, which moves with them and is used
in some computations presented next. The ROI was a square with side length equal to Ay +
3dint.

As in Sec. 4.1.1, we computed the instantaneous drag force on the intruder Fp, and
then its time-averaged magnitude (Fp). Examples of the time evolution of |F)| are shown in

Fig. (4.16).

0.8F 1

Intruder 1 Intruder 1
0.7k Intruder 2 0.9 Intruder 2
F 0.8 Intruder 3
0.6F
0.5}
Z 04}
o 03k |
— 0'35 \ ‘ \ } ‘ ‘J
0.2 | il ‘ M | [ |
0.1 ‘ ‘H | ’ | U l I
0
_0.1\\\\l\\\\l\\\\l\\\\l\\\\l\\\\ _01 TR S S S N I S R
0 20 40 60 80 100 120 0 1000 2000 3000
t [s] t [s]
(a) (b)

Figure 4.16 — Magnitudes of the resultant force on each intruder /', as functions of time ¢. (a)
Duos with (Ay — djn)/dine = 1.5 moving at V' = 2.7 mm/s. (b) Trios moving
at constant thrusting force (type I reaching D,;;). Images taken from (Carvalho;
Franklin, 2022b).

We afterward computed a mean value for the intruders, (Fp), .., by adding their

time averages and then dividing by two, for each transverse separation Ay. Figure (4.15)b

presents (Fp) as a function of (Ay — d;n;)/dins, 1.€., the separation between the surfaces of

mean
intruders normalized by the intruder diameter. We observe a non-monotonic variation, with a
decrease in the mean drag force for (Ay — d;n:)/dine < 1.5 as the separation between intruders
increases, and an increase for (Ay — d;,;)/dine > 1.5. Therefore, there is an optimal distance
D, for minimum drag when the separation between the surfaces of intruders is 1.5 times their

diameter (D,,; — Ay =2.5d,,;). Interestingly, in this condition the drag acting on each intruder

is approximately 0.18 N, which corresponds to 85% of the value for a single intruder (Ref.
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(Carvalho et al., 2022) found 0.21 N for a single intruder under the same velocity and packing
fraction). In fact, there is a range 1  (Ay — dint)/diny < 3.5 where (Fp), ... is smaller than
the drag for a single intruder, indicating that some type of cooperative dynamics between the
intruders is happening within the granular system. We note that the value of the minimum drag
is repeatable, the value 0.18N being obtained in three simulations with different initialization
in the same domain (confined by solid walls) and another one with periodic conditions, while
a value of approximately 0.19N was obtained for a larger domain (L, multiplied by 2, and
confined by solid walls). Therefore, the results are roughly the same (variations being around
5% for different domains and initial conditions).

We note that we carried out simulations with different grain sizes (5 and 6 mm)
[Fig. (4.17)a], and the results for the time-average drag are similar to previous ones: although
the magnitude of the reduction changes with the size of disks, drag reduction occurs for the same
range of (Ay—d;)/dint, the minimum drag occurring for (Ay—d;,;) /dine =~ 1.5. We thus used
d;ns as a scale for normalization, but further investigation is still necessary. We also carried out
simulations with a different velocity of intruders (7.5 mm/s) [Fig. (4.17)b], and obtained similar
results: the behavior and regions of drag reduction are the same though the values of drag are

different. The results for different sizes of disks and intruder velocity are shown in Fig. (4.17).
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Figure 4.17 — Magnitude of the mean resultant force on each intruder (Fp), .., as a function

of their initial separation Ay normalized by the intruder diameter d;,,;, for duos
moving at constant speed. (a) Different size of disks: ds =5 mm and d; = 6 mm.
(b) Different velocity of intruders: V' = 7.5 mm/s. Images taken from (Carvalho;
Franklin, 2022b).
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4.1.2.2.2 Network of contact forces

Figure 4.18 — From left to right, snapshots at ¢ =0, 35.532, 59.220 and 94.752 s of duos moving
within grains at V' = 2.7 mm/s for (a) (Ay — dint) /dint = 0.5; (b) (Ay — dint) /dins
= 1.5; and (¢) (Ay — dint)/dins = 4.0. The figures show the load-bearing (clear
lines) and dissipative (dark lines) chains for the cases highlighted in Fig. (4.15)b,
and ¢ = 0.76. Images taken from (Carvalho; Franklin, 2022b).

In the case of a cooperative dynamics, we expect that details of the network of
contact forces change with the separation between intruders. Following Radjai et al. (1998)
(Radjai et al., 1998), we identified the contact chains and separated them into load-bearing
chains, transmitting forces higher than the average value (ensemble average at each considered
instant), and dissipative chains, transmitting values lower than that average. The ensemble av-
erage was computed at each time step by adding all the contact forces and dividing the result
by the number of contacts. Those chains are intermittent, forming and collapsing successively.
Figures (4.18)a to (4.18)c present snapshots at four different instants of duos moving at constant

velocity for, respectively, (Ay — dint)/dine = 0.5, 1.5, and 4.0, showing also the load-bearing
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(clear lines) and dissipative (dark lines) chains. The cases (Ay — d;y¢) /dine = 0.5 and 1.5 corre-
spond, respectively, to the maximum and minimum drags found for V' =2.7 mm/s [Fig. (4.15)b].
For (Ay — dint)/dine = 0.5 [Fig. (4.18)a], we observe very sporadic load-bearing chains link-
ing the intruders, indicating a low level of (positive) cooperation between the intruders, while
load-bearing chains percolate over long distances from the intruders and reach the vertical walls
toward the end of their motion. Dissipative chains also reach distances far from the intruders,
and by the end of their motion percolate over almost the entire system. For (Ay — dini)/dins
= 1.5 [Fig. (4.18)b], which corresponds to D,,,;, we notice frequent load-bearing chains linking
the intruders, indicating positive cooperation (resulting from one intruder pushing the other via
load-bearing chains), and that load-bearing chains remain closer to the intruders, reaching the
vertical walls only at the end of motion. Dissipative chains also remain closer to the intrud-
ers, reaching the right wall only by the end of their motion (implying less basal drag). For
(Ay — dint)/dine = 4.0, [Fig.( 4.18)c], which corresponds to an intermediate value of (Fp), ...,
load-bearing chains link the intruders, but they also extend over distances farther from them.
This, together with dissipative chains that percolate also over longer distances and reach the
lateral walls before the end of motion, imply larger basal frictions and thus a higher drag force.
Therefore, from the balance between chains connecting the intruders and those percolating over
long distances, the intruders cooperate the most to move forward when (Ay — d;)/dine = 1.5
(Ay = Doy = 2.5d,,4), pushing each other and being subject to smaller drag.

Because the networks of contact forces are dense and intermittent, it is unfeasible
to find small changes directly from their plots, such as those in Fig. (4.18). We thus investigated
how the mean number of contacts per particle averaged over time (Z) and the time-averaged
anisotropy (p) change with (Ay — d;,;)/dins, which we show in Figs. (4.15)c and (4.15)d,
respectively, computed for both the entire domain and the ROI.

By considering the entire domain, we observe that the profile of (Z) follows roughly

that of (Fp) with (Z) ~ 2.9 in the region 1 < (Ay—d;pnt)/dins < 4, which is approximately

the value for the single intruder (2.903) (Carvalho et al., 2022). The anisotropy (p) considering
the entire domain is roughly constant, with values of the order of 0.05, also close to that for the
single intruder (0.041) (Carvalho et al., 2022). Therefore, the granular system as a whole does
not seem to play a large role on drag reduction, except when the intruders are too close from

each other ((Ay — d;nt)/dine < 1), being in that case almost one single and large intruder. By

considering now only the ROI, the general behaviors of both (Z) and (p) with (Ay — d;nt)/dins
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remain as for the entire region, but the magnitudes are different: (Z) varies around 2.8 (smaller
than that for the single intruder) and (p) remains constant at approximately 0.1 (larger than that
for the single intruder). The network of contact forces is thus different in the neighborhood of
the intruders, with less contacts between grains and higher anisotropy, indicating preferential
directions for percolating loads. These preferential directions are connected with the motion of
disks shown in Sec. 4.1.2.3.2.

Our results show that: (i) there exists a cooperative dynamics between the intruders;
and (i1) in cases of constant velocity, there is an optimal separation between intruders for not
only reaching minimum drag, but also drag reduction (with respect to single intruders). The
latter can be proven useful for designing devices stirring the ground or other granular surfaces.

Additional graphics for the number of contacts per particle Z, number of non-rattler
particles N and anisotropy p for the extreme cases [(a) - maximum drag] and [(b) - minimum

drag] of Fig. (4.15)b are presented in Figs. (4.19), (4.20), and (4.21), respectively.
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Figure 4.19 — Time evolution of the mean number of contacts per particle Z for duos with (a)
(Ay —dint)/ding = 0.5 and (b) (Ay — d;nt) /dine = 1.5. The time-averaged value is
shown in the figure, ¢ = 0.76 and V) = 2.7 mm/s. Images taken from (Carvalho;
Franklin, 2022b).

4.1.2.3  Results and discussion - Constant thrusting force

We investigate now the behavior of the entire system when a constant external force
(thrust) of 0.8 N in the longitudinal direction is imposed on each intruder of either duos or trios

(¢ = 0.76, unless where otherwise mentioned). In these cases, because the drag force oscillates
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Figure 4.20 — Time evolution of the number of non-rattler particles N for duos with (a) (Ay —
dint)/dint = 0.5 and (b) (Ay — djne)/dine = 1.5. ¢ = 0.76 and V) = 2.7 mm/s.
Images taken from (Carvalho; Franklin, 2022b).
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Figure 4.21 — Time evolution of the anisotropy level p for duos with (a) (Ay — dint)/dine = 0.5
and (b) (Ay — dint)/ding = 1.5. The time-averaged value is shown in the figure, ¢
=0.76 and V) = 2.7 mm/s. Images taken from (Carvalho; Franklin, 2022b).

along the motion and the intruders are free to move in the transverse direction, the cooperative
behavior implies intruder velocities that vary along time and depend on the initial configuration,

giving rise to different types of migration.
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Figure 4.22 — Snapshots showing the intruders and grains (top-view images) for a pair of in-
truders: (a) and (b) off-centered (type III); and (c) and (d) aligned (type IV) in
transverse direction. The initial condition is on the top and the final configuration
on the bottom of each subfigure, and ¢ = 0.76. Images taken from (Carvalho;
Franklin, 2022b).

4.1.2.3.1 Patterns: collaborative motion

By varying the initial configuration of duos and trios, both in terms of orientation
and separations, we obtained different migration characteristics that can be classified in pat-
terns. Beginning by duos, Fig. (4.22) shows the investigated cases, which consisted of intruders
aligned [type IV, Figs. (4.22)c and (4.22)d], and off-centered (type 111, Figs.( 4.22)a and (4.22)b,
which are symmetrical) in the transverse direction, with the initial condition on the top and the
final on the bottom of each subfigure. We observe basically three patterns: (i) when the in-
truders are off-centered (type III), the cavity generated by the one that is in front (upstream)
affects the intruder that is behind (downstream), which then moves faster in longitudinal direc-
tion with a component in the transverse direction toward the upstream intruder. Both intruders
migrate with a small transverse component, and by the end of their motion are aligned in the
transverse direction, separated by a characteristic distance D, [Figs. (4.22)a and (4.22)b]. (ii)
For aligned intruders (type IV) with Ay within a certain range, they approach or retreat un-
til reaching Ayyinar = D, and move afterward in aligned configuration, keeping Ay = D,y
[Fig. (4.22)c]. (iii) For aligned intruders (type IV) with Ay above a given threshold, the in-

truders move in aligned configurations maintaining Ay approximately constant [Fig. (4.22)d].
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Figure (4.23) shows the temporal evolution of Ay for the cases shown in Fig. (4.22).
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Figure 4.23 — Time evolution of the distance Ay in Fig. (4.22). The red-dashed line corresponds
to the distance D,;. Image adapted from (Carvalho; Franklin, 2022b).

We note that the evolution toward D,;; depends on the presence of solid boundaries:
we computed one case with periodic boundaries and observed that, although there is still a col-
laborative motion, the grains did not evolve to D, (at least in the simulated domain). However,
we investigate here the confined case, and, therefore, we present next only the cases with solid
boundaries.

For the trios, Fig. (4.24) shows the cases that we investigated, namely one intruder
in front of two intruders initially aligned in the transverse direction [type I, Figs. (4.24)a to
(4.24)c] and one intruder behind two intruders initially aligned in the transverse direction [type
I, Figs. (4.24)d and (4.24)e]. We observe basically three patterns: (i) for type I with small sepa-
rations (small values of Ay), the downstream intruders are exposed to the cavity of the upstream
one, and thus move faster in the longitudinal direction and toward the upstream intruder in the
transverse direction, forming a clump at the end of their motion [Fig. (4.24)a]. At that time, the
drag force is highly increased so that the intruders stop, with indications of jamming (described
in Sec. 4.1.2.3.4). (ii) Within a certain range of Ay in types I and II (for type II it is Ay lower
than a given threshold), the downstream intruder(s) move(s) faster in the longitudinal direction
and end(s) finally aligned with the upstream one(s), while in the transverse direction they move
until reaching Aysina = Day [Figs. (4.24)b and (4.24)d]. (iii) For Ay above a certain value
(large separations) in types I and II, the downstream intruder(s) move(s) faster in the longitudi-

nal direction and end(s) finally aligned with the upstream one without changing the transverse
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Figure 4.24 — Snapshots showing the intruders and grains (top-view images), for (a), (b) and (c)
one intruder in front of two intruders initially aligned in the transverse direction
(type I) and (d) and (e) one intruder behind two intruders initially aligned in the
transverse direction (type II). The initial condition is on the top and the final
configuration on the bottom of each subfigure, and ¢ = 0.76. Images taken from
(Carvalho; Franklin, 2022b).

separation [Ay remains approximately constant, Figs. (4.24)c and (4.24)e].

The different patterns are summarized in Fig. (4.25), which shows the final separa-
tions Ay inq as functions of the initial ones Ay, normalized by the diameter of intruders d;;,;.
In this figure, the dashed-red line corresponds to (Ayfina — dint)/dint = 1, and the symbols
are listed in the figure key. We observe in Fig. (4.25) the behaviors described in previous para-
graphs, but we can now find the respective ranges of initial separations and the value of D,;.
For type I, within 1.5 < (Ay — d;nt)/dine < 2.2 the final distances reach (Ay fina — dint) /dint =
1 (i.e., Dgyt = 2d;p). For smaller values of Ay, the intruders form a clump (Ayfina < Ay) and
for higher values they keep their separation (Ayy e ~ Ay). For type II with (Ay — diy) /ding
< 1 and types III and IV with (Ay — d;nt)/dine < 2, the intruders reach D,y = 2d;,,;, while for
(Ay — dint)/ding > 1 or 2 (for types II or IIT and IV, respectively) the transverse separations

remain constant (Aysna ~ Ay). Therefore, within certain ranges of initial separations a fixed
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Figure 4.25 — Chart for collaborative patterns: final separations Ayy;,q as functions of initial
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responds to (AYfinar — dint)/dine = 1. Image taken from (Carvalho; Franklin,
2022b).

Ay sina is reached (an attractor-like behavior), corresponding to D,y /d;,: = 2 (surface-surface
separations equal to d;,,;). We note that one of the runs for type I within 1.5 < (Ay — djnt) /dine
< 2.2 does not fall exactly on (Ayyfina — dint)/dine =~ 1, but lies close to it. We consider this
deviation rather small, resulting from the presence of one additional disk between two of the

intruders at the final stage.

4.1.2.3.2 Motion of disks

The collaborative behavior can be examined in terms of motion of disks as the
intruders are thrust within them. Figure (4.26) shows snapshots of the velocity fields of disks
for one intruder in front of two intruders initially aligned in the transverse direction [type I,
Figs. (4.26)a to (4.26)c] and one intruder behind two intruders initially aligned in the transverse
direction [type II, Figs. (4.26)d and (4.26)e]. In Fig. (4.26), ¢ = 0.76 [corresponds to the same
cases presented in Fig. (4.24)] and 7 is the total time of the intruders’ motion. With the exception
of Fig. (4.26)a (clump), we observe that even if disks just in front of the intruder have higher
velocities, the motion reaches regions far from the intruders, extending toward the walls by the
end of the intruders’ motion. Throughout the motion, we can also observe grains recirculating
from the intruders’ front toward their rear, and also migrating from the compacted regions

toward the cavities. The migration toward cavities is particularly noticeable in Fig. (4.26)c,
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Figure 4.26 — Snapshots showing the velocity fields of disks as the intruders move, for (a), (b)
and (c) one intruder in front of two intruders initially aligned in the transverse di-
rection (type 1) and (d) and (e) one intruder behind two intruders initially aligned
in the transverse direction (type II). 7 is the total time of the intrudes’ motion,
being 2064, 2796, 2928, 2964 and 2652 s for figures (a) to (e), respectively. The
cases are in the same order of Fig. (4.24) (¢ = 0.76), and the scale of the colorbar
is in m/s. Images taken from (Carvalho; Franklin, 2022b).

where vectors indicate migration to the central cavity and, indeed, Fig. (4.24)c shows that this

cavity is almost suppressed, and in Fig. (4.26)e, where vectors indicate migration to the lateral



149

cavities, also shown in Fig. (4.24)e (where those cavities are partially suppressed).

In the specific case of Fig. (4.26)a (clump), during roughly the first half of motion
(t = 0.067 to t ~ 0.647) part of disks in front the downstream intruders move toward the
upstream intruder and suppress its cavity, as can be seen in Fig. (4.24)a. During this time, disks
recirculate around the downstream intruders, migrating from compacted regions toward their
cavities. Close to the end of motion (f =~ 0.877), we observe that the intruders are close to each
other and the motion of disks is concentrated just in front of them, not reaching regions so far
from the intruders as in the other four cases, indicating a compacted region in front of them. At
the same time, a large cavity forms behind the intruders [shown in Fig. (4.24)a], the degree of
velocities being small in the recirculation region. All that indicates that the intruders are about
to be blocked.

In common, those cases show that part of grains in front of downstream intruders
are pushed toward the cavity in front of them, generated by the upstream intruder. This facili-
tates the motion of downstream intruders, which move faster and reach eventually the upstream
ones, whether to be transversely aligned or to form a clump. This picture is in agreement with
experiments conducted with a single intruder moving in a system of disks with the same size
as in our simulations. For instance, Kolb et al. (2013) (Kolb et al., 2013) and Seguin et al.
(2016) (Seguin et al., 2016) showed that a compacted region forms in front of the intruder, with
disks reaching the packing fraction for jamming, while a decompressed region, usually a cavity,
forms behind the intruder, so that disks recirculate from the compacted front toward the cavity.
The recirculation is intermittent, making the drag force to fluctuate around a mean value (as

showed in Carvalho et al. (2022) (Carvalho et al., 2022) and in Sec. 4.1.2.3.3).

4.1.2.3.3  Drag force on the intruders

We measured the magnitude of the instantaneous drag force on each intruder by

computing Fp = \/ (Fy — Fr)? + FZ, where Fr = 0.8 N is the magnitude of the thrusting force
imposed on each intruder, and £, and £, are the longitudinal and transverse components of the
resultant force (so that the basal friction is included in Fp). We afterward time-averaged Fp
for each intruder, obtaining (') for different initial separations. The results are summarized in
Tab. (4.9), where (Fp),, (Fp), and (Fp), correspond to time-averaged drag forces on intruders
labeled 1, 2 and 3, respectively, as shown in Fig. (4.14). Distances in Tab. (4.9) are normal-

ized by the diameter of intruders, d;,;, and forces by the thrusting force on each intruder, F7.
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Table 4.9 — Mean drag on each intruder for different types and separations: configuration type,
initial separation in the longitudinal direction Az, initial separation in the transverse
direction Ay, and average forces on intruders 1, 2 and 3, (Fp),, (Fp), and (Fp),
respectively. Values are normalized by d;,,; and Fr.

Type | Az/dint | Ay/dint | (FD), /Fr | (Fp)y /Fr | (Fp)s/Fr
1 5.00 1.88 0.54 0.46 0.46
1 3.75 1.25 0.53 0.43 0.44
1 3.75 1.88 0.54 0.44 0.45
)| 5.00 3.13 0.55 0.49 0.49
1 3.75 2.50 0.61 0.58 0.57
1 3.75 3.13 0.51 0.47 0.47
1 5.63 3.13 0.54 0.47 0.47
1 5.63 4.69 0.55 0.49 0.49
1 5.63 6.25 0.56 0.50 0.51
1 3.75 3.75 0.52 0.47 0.47
II 3.75 1.25 0.49 0.53 0.53
I 3.75 1.88 0.47 0.51 0.51
I 6.25 1.25 0.48 0.56 0.56
II 3.75 3.13 0.43 0.48 0.48
II 6.25 2.50 0.40 0.48 0.48
II 6.25 3.75 0.44 0.50 0.51
I 2.50 1.25 0.57 0.61 -
I 2.50 1.25 0.42 0.54 -
1T 2.50 1.25 0.49 0.55 -

v 0 1.88 0.53 0.52 -
v 0 2.50 0.49 0.49 -
v 0 3.00 0.53 0.52 -
1A% 0 3.75 0.49 0.49 -
v 0 5.00 0.54 0.55 -

From Tab. (4.9), we notice basically that the drag forces on the upstream intruders are larger
than those on the downstream ones, being roughly equal for intruders aligned in the transverse
direction. Figures (4.27) and (4.28) present graphics of the mean drag forces as functions of
initial separations Az and Ay, for the configurations of type I and II [Fig. (4.27)] and III and
IV [Fig. (4.28)].

This corroborates the description given in the previous section. We note that the
initial separation in the longitudinal direction (Az) only affects the time for reaching the final
configuration. As an example, the time to reach the final configuration (of type I) as a function

of the initial separation between intruders is presented in Fig. (4.29).
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Figure 4.27 — Mean drag on each intruder as functions of initial separations Ax and Ay for (a)
and (b) type I and (c) and (d) type II. Images taken from (Carvalho; Franklin,
2022b).

4.1.2.3.4 Network of contact forces

We examine now how the network of contact forces is related with drag reduction,
increase, and even jamming in certain cases. For that, we proceeded as in Sec. 4.1.2.2.2 and
computed the load-bearing and dissipative chains. Figure (4.30) shows the load-bearing and dis-
sipative chains superposed with the particle positions at four different instants for the same case
of Fig. (4.24)a (the three intruders form a clump which jams). Although load-bearing chains
exist in the region between the intruders, we notice that they percolate over longer distances
as the intruders come closer to each other. By the end of the intruders’ motion [Fig. (4.30)d],
load-bearing chains are dense and reach three of the vertical walls, blocking the motion of the

intruders (and indicating a possible jamming state.).
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Figure 4.28 — Mean drag on each intruder as functions of initial separations Ax and Ay for (a)
and (b) type III and (c) and (d) type I'V. Images taken from (Carvalho; Franklin,
2022b).

Additional graphics of the evolution of Z, IV, and p for some of the cases presented
in Fig. (4.14) are shown in Annex A, and a movie showing the motion of grains and force

networks within the granular system is available in (Carvalho; Franklin, 2022a).

4.1.2.3.5 Variations with the packing fraction

We investigate in this subsection if some of the patterns shown previously for ¢ =
0.76 change with the packing fraction. For example, Figs. (4.31)a to (4.31)d show snapshots
of final positions for simulations of type I with ¢ = 0.72, 0.73, 0.76 and 0.78, respectively, for
the same initial separations (same initial configuration of intruders as in Fig. (4.24)a, (Ay —

dint)/dins = 0.875). We observe that the increase in packing fraction boosts the cooperative
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Figure 4.29 — Time to reach the final configuration, ¢, as a function of the initial separation

between intruders, r = y/Ax? + Ay?, normalized by d;,,;. Configuration of type
I. Image taken from (Carvalho; Franklin, 2022b).

Figure 4.30 — From left to right, snapshots at (a) t = 0's, (b) t = 710.64 s, (¢) t = 1492.80 s
and (d) £ = 2074.56 s for trios organized in type I being pushed at 0.8 N [each
intruder, same of Fig. (4.24)a]. The figures show the load-bearing (clear lines)
and dissipative (dark lines) chains, and ¢ = 0.76. Images taken from (Carvalho;
Franklin, 2022b).

dynamics between intruders: for the lowest value (¢ = 0.72), the intruders move as single
objects, with virtually no cooperation, while from ¢ = 0.72 to ¢ = 0.78 they tend to form the
clumped structure in a time scale that decreases as ¢ increases. Although we show here that ¢

is an important parameter in determining the different patterns observed, we do not inquire into



Figure 4.31 — Snapshots of final positions for simulations of type I with (a) ¢ = 0.72, (b) ¢ =
0.73, (c¢) ¢ =0.76, and (d) ¢ =0.78 [same initial configuration of intruders as in
Fig. (4.24)a]. Images taken from (Carvalho; Franklin, 2022b).

its effects, which needs to be investigated further.

In summary, in Sec. 4.1.2 we investigated how a group of intruders interact with
each other while moving horizontally in a two-dimensional granular system. Our results show
that: (i) there exists a cooperative dynamics between the intruders; (ii) this cooperative dy-
namics is the result of compaction and expansion of the granular medium in front and behind,
respectively, each intruder, with load-bearing chains connecting the intruders and cavities being
formed in front of the downstream intruders; (iii) for the cases presenting more drag, load-
bearing chains percolate over longer distances, reaching in some cases the vertical walls; (iv)
in cases of constant velocity, there is an optimal separation between intruders for not only
reaching minimum drag, but also drag reduction (with respect to single intruders). This can
be proven useful for designing devices stirring the ground or other granular surfaces; (v) for
constant thrust, different patterns appear depending on the initial configurations and distances
between intruders; (vi) in addition to initial separations, the packing fraction also influences the
observed patterns; (vii) for some initial arrangements, the same spatial configuration is eventu-
ally reached, showing an attractor-like behavior. While a cooperative dynamics was shown in
the case of intruders falling within light grains by Refs. (Pacheco-Vazquez; Ruiz-Suarez, 2010;
Solano-Altamirano et al., 2013; Dhiman et al., 2020; Kawabata et al., 2020; Pravin et al., 2021;

Espinosa et al., 2022), and the compaction and expansion of the granular medium in front and
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behind a single intruder by Refs. (Kolb er al., 2013; Seguin et al., 2016), all the remaining
findings are new. On the whole, our results bring new insights into the cooperative dynamics of
intruders moving amid grains.

In the next section (Sec. 4.2), we investigate experimentally some aspects of the

dynamics behind the cooperative motion of sets of intruders within a granular material.
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4.2 Experimental Investigation

This section (Sec. 4.2) reproduces material from Douglas D. Carvalho, Yann Bertho,
Antoine Seguin, Erick M. Franklin, and Baptiste Darbois Texier, “Drag reduction during the
side-by-side motion of a pair of intruders in a granular medium”, Phys. Rev. Fluids 9, 114303
(2024), with permission from the American Physical Society (Carvalho e al., 2024b).

Despite the progress made in recent years, many questions remain unanswered con-
cerning the forces resulting from the cooperative behaviors observed when more than one in-
truder move together within a granular material. Thus, we have conducted experiments, in
accordance to the methodology presented in Sec. 3.2.1, in which we forced either one or two
spheres to move horizontally at constant velocity at different depths within a granular medium,
while measuring the forces (mainly drag) involved in their motion. In this section, we show that
we probed the spatial extent of the interaction between the spheres by exploring the influence
of the separation distance on the mean drag experienced by each sphere and determining an
associated characteristic length of the interaction. We show that for two intruders moving side
by side at a constant speed, from a certain separation, the average drag felt by each intruder de-
creases significantly and that there is an increase in this relative drag reduction with the depth of
the intruders. Moreover, at the end of this section, we also explore the possibility of developing

a model to predict the measured drag in order to account for the observed cooperative behavior.

4.2.1 Experimental setup

The experiments consist in pulling intruders (polyamide spheres with a diameter
d = 20 mm) at a constant velocity V{ inside a granular medium made of slightly polydisperse
glass spheres (diameter d, = 1 & 0.3 mm and density p ~ 2.5 x 10° kg m~?). The grains
are contained in a rectangular box 365 mm long, 270 mm wide, filled to a height of 97 mm
[Fig. (4.32)a]. The intruders are attached to cylindrical rods of 5 mm in diameter, preventing
any tilting or rotation, and immersed in the bed at depth h (h being the distance separating the
free surface of grains from the center of the intruder). The rods are connected to force gauges
that measure the longitudinal time-varying drag force fy(¢). The whole system is fixed to an
x-direction moving plate, controlled by a linear stepper motor ensuring the displacement of
the intruders at a velocity V; from 107! to 10 mm s~! [Fig. (4.32)a]. The materials used in
these experiments and their properties are shown in Tab. (4.10), and more details regarding the

experimental setup can be seen in Sec. 3.2.1.
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Figure 4.32 — (a) Sketch of the experimental setup for the displacement along the z-axis of two
spherical intruders of diameter d, immersed in grains at the depth h. (b) Picture of
an experiment for two immersed intruders A = 30 mm apart, at depth h = 14 mm
and moving at the velocity Vy = 2.7 mm s~! during the forward journey. The
image is used for visualization purposes to show the surface deformation that
occurs at the shallowest depth. Images taken from (Carvalho ef al., 2024b). Same
images as in Fig. (3.2) and shown here for the sake of completeness.

Table 4.10 — Properties of materials used in the experiments: p is the material density and the
last column shows the object’s dimensions [diameters (d, dg, and d,q)].

Material | p (kg/m?) | Dimensions (mm)
Intruder Polyamide 1122 d=20
Cylindrical rod | Metal alloy - drod =5
Grains Glass beads 2500 dg =1£0.3
Walls Plastic - 365 x 270 x 118

Two distinct configurations will be considered below: (i) the displacement of a

single intruder in the x-direction from one edge of the box to the other, and initially placed



158

at y = 0 and depth z = h ; (ii) the displacement of two side-by-side intruders at the same
abscissa = and same depth z = h, located initially at y = +/A /2 and separated by a distance
A measured from their centers as seen in Fig. (4.32)a. In addition, in the z-direction, data are
acquired in a region of interest (ROI) located at the center of the box, in the range 135 mm <
x < 225 mm. Finally, note that one experiment consists of moving the intruder forward (along
positive x) in the undisturbed granular medium, and then, in a second step, making the return
path (towards negative x) in the wake generated by the forward path and seen in Fig. (4.32)b.
Note that free surface deformation can appear at shallow depth. The surface deformations
become less significant as the object is deeper in the granular medium, as observed in previous
studies (Gravish et al., 2010). This view is also consistent with our results where only the data
at the shallowest depth (h = 14 mm) deviates from the others, as shown in Sec. 4.2.2.2. An
interesting idea would be to use a lid on top of the granular bed to avoid free surface effects
and study their importance. However, these experiments are challenging from a technical point
of view because they require the creation of many plates with different groove separation and

would be something to be investigated in the future.

4.2.2  Experimental results
4.2.2.1 Journey of a single intruder

We first study the displacement of a single intruder at constant velocity 1 in the
granular medium at depth h. The inset in Fig. (4.33)a shows the typical evolution of the in-
truder drag force f, as it moves at V, = 2.7 mm s~ ! at the depth 4 = 14 mm, from one side
of the box to the other. Note that here and in the remaining of Sec. 4.2, the drag force mea-
sured during the movement of the rod alone (i.e., without the intruder attached to its end) has
been subtracted from the force signal for each probed depth h, so as to retain only the force
experienced by the intruder [please check Fig. (3.6)]. This method has already been adopted
in others experimental studies (Albert et al., 2001). Despite some fluctuations, associated with
the creation/breaking of force chains (Kolb et al., 2013; Seguin et al., 2016; Carvalho et al.,
2022), we observe distinct zones in the force signal presented in the inset of Fig. (4.33)a. When
the movement of the intruder begins, the force increases abruptly when the motion starts, and
then, after a transient regime, reaches an extended zone of slow variation which becomes more
negligible as the intruder is deeper in the granular medium (Seguin, 2019). This decreasing

trend is present in all our measurements with the same magnitude of about 0.1 N within the
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ROI. For the moment, we do not have any explanation for this particular trend. However, the
variation is smaller than the fluctuations of the force signal for high values of & and comparable
for h = 14 mm. For these reasons, this trend does not affect significantly the average of the
signal force taken inside the ROI. For both signals shown in the inset of Fig. (4.33)a, there is
a slight variation of approximately 0.1 N within the ROI, meaning slighter effects for higher
forces (i.e., decreasing with the depth). Finally, on approaching the box walls, the force starts
to increase again, as already reported in previous studies (Kolb et al., 2013; Carvalho et al.,
2022). In the following, we will define the mean drag force F{ felt by a single intruder, as the
average of the instantaneous force f, over the 90 mm long region of interest (ROI) located at
the center of the box, so that Fy = |(fo(x))ro1|, Where the absolute value accounts for the mean

drag force in both journeys of the intruders (forward and backward).
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Figure 4.33 — (a) Mean drag force on a single intruder [ as a function of its horizontal velocity
Vo at a depth » = 14 mm. Solid symbols correspond to forward motion and
open symbols to backward motion. Inset: Instantaneous drag force on a single
intruder f, as a function of the position x at two different depths (A = 14 mm
and h = 49 mm), and a travel velocity of V) = 2.7 mm s~! for (—) forward and
(—) backward motions, respectively. The shaded area corresponds to the region
of interest where the measurements are carried out. (b) Mean drag force on a
single intruder [} as it moves horizontally at 1, = 2.7 mm s !, as a function
of immersion depth h. Solid symbols correspond to forward motion and open
symbols to backward motion. The curves are the best fits of the data, of the
form Fy = Agh + By h?, where the solid line corresponds to Ay ~ 2.9 1072 &
0.1 1072 Nmm ' and By ~ 4.1 107* £ 0.3 10~* N mm—*%, and the dashed line
to Ag ~ 281072 +£0.1 1072 Nmm "t and By ~ 3.1 107 £ 0.2 10~* N mm2.
Images taken from (Carvalho et al., 2024b).

Figure (4.33)a displays the evolution of the mean drag force F| as a function of the
imposed displacement velocity V. Drag force measurements are made during the intruder’s

first pass (solid symbols), and also during its backward return as it passes through the wake it
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previously created (open symbols). No significant variation in Fj is observed with the displace-
ment velocity Vj, over the two-decade range experimentally explored. In granular medium, the
fact that the drag force does not depend on velocity is the signature of a quasi-static regime
characterized by a Froude number smaller than 1. This Froude number, expressed as the ratio
of the kinetic pressure due to collisions between grains to the pressure generated by the gravity
field, is written as Fr = V/1/gh and has a value smaller than 0.03 for all cases studied here,
consistent with the quasi-static regime hypothesis (Hilton; Tordesillas, 2013; Takehara et al.,
2010; Takehara; Okumura, 2014; Faug, 2015; Seguin, 2019; Seguin et al., 2022).

Figure (4.33)b shows the evolution of the mean drag force F{ on a single intruder as
a function of burial depth h. The drag force Fj is observed to increase with the depth A, both in
the forward and backward directions. This increase is slightly supralinear and can be modeled
by a quadratic function of h, in agreement with observations from a previous experimental
study (Albert et al., 2001). We note that the fitting function is only valid in the range h > 0
and the zero force solution in the negative range, i.e., h = —A(/ By, has no physical meaning.
It is important to note that the trend of the force as a function of the depth is mainly linear,
as expected by the increase of the hydrostatic-like pressure, and the quadratic term is only a
correction from this linear trend that has been measured by Albert et al. (2001) (Albert et
al., 2001). At the present moment, there is not a physical explanation for this non-linearity as
underlined by Albert et al. (2001) (Albert et al., 2001), that suggests that the nonlinearity is
associated with geometrical factors in the drag for which the simple theoretical expectations
do not take into account. In addition, we point out that the backward drag force seems to be
slightly lower than the forward drag force. This difference can be explained by the fact that the
intruder passes in its wake, i.e., in an area that has been slightly “structured" in some way by its
first passage (Guillard et al., 2013). Note that the horizontal free surface has also been disturbed

by the passage of the rod, slightly modifying the effective burial height.

4.2.2.2  Journey of two side-by-side intruders

4.2.2.2.1 Drag forces

Let us now consider the displacement of two side-by-side intruders separated by a
distance A, at velocity V; and depth h, as sketched in Fig. (4.32)a. Each force sensor provides
a signal similar to that shown in the inset in Fig. (4.33)a. The overall drag force F' of the

system composed of the two intruders is determined as the average of the mean drag forces
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experienced by each of the intruders, Fy. Figure (4.34) shows the evolution of the mean drag
force F' as a function of the distance between the intruders (A — d) while the spheres velocity
and depth were kept constant to Vy = 2.7 mm ~! and h = 49 mm respectively. Each point in this
figure corresponds to an average of five experiments. The error bars correspond to the standard
deviation calculated on these five realizations. The variation of force F' with distance between
intruders (A — d) follows the same trend, for both the forward and backward journeys. For large
separations (A — d 2 50 mm), the mean drag force I’ remains constant. This constant value
corresponds to that measured for a single intruder, on both the forward and backward journeys,
as attested by the horizontal lines in Fig. (4.34) depicting the drag force F{ for a single intruder
under similar conditions. Thus, the two intruders do not interact with each other. When the
intruders are closer to each other (A — d < 50 mm), the average drag force is significantly
lower than at large separation. This decrease can reach up to 30% in relative value when the
distance between intruders vanishes, which is well below the usual force fluctuations observed
for a single intruder [depicted as grey regions in Fig. (4.34)]. Therefore, they cooperate with
each other, resulting in a reduction in drag force. Finally, as already mentioned for a single
intruder, we note that the drag force is about 10% lower during the backward journey than
during the forward one due to the passage of intruders in their own wake. We also observe that
the error bars are smaller in the case of backward motion than in the case of forward motion.
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Figure 4.34 — Mean drag force F' for both intruders as a function of the space between them A —
d, for a displacement at V; = 2.7 mm ! at the depth 2 = 49 mm. Solid symbols
correspond to forward motion and open symbols to backward motion, and error
bars represent the standard deviation in five realizations. The horizontal lines
and shaded areas correspond, respectively, to force values Fj and their typical
fluctuations, obtained with a single intruder under similar conditions. Image taken
from (Carvalho et al., 2024b).

Figure (4.35) shows the normalized drag force F =F /Fy as a function of the
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normalized distance between intruders § = (A — d)/d for different burial depths h, on both
the forward [Fig. (4.35)a] and backward [Fig. (4.35)b] journeys. The evolution of F with § is
similar in both cases, and also whatever the burial depth h. It can also be seen that when the
two intruders are close enough to each other, the greater the burial depth, the greater the relative
drag reduction. Since the force increases roughly linearly with ¢ at short distances between
intruders, and saturates at a constant value when they are far enough apart, we propose to model

the observed behavior with an exponential law of the form

F=1-Aexp (-?) , (4.5)

s

where A is a coefficient corresponding to the relative reduction in drag and 0, a normalized
characteristic screening length reflecting the typical distance from which intruders can affect
each other. When & < d,, the intruders cooperate and the drag force per intruder is lower
than the value for a single intruder moving through the grains. Conversely, when 6 > 6, the
intruders do not interact with each other, i.e., we recover the case of a single intruder. Note
that even in the limit of touching spheres, the separation distance between the two rods is large
enough to ensure that there is no interaction between them.

Equation (4.5) allows us to fit our experimental data for each burial depth 4 shown
in Figs. (4.35)a and (4.35)b, and extract the corresponding A and 0, values. We note that the
solid lines plotted in Figs. (4.35)a and (4.35)b were obtained for both the forward and backward
journeys together. The evolution of the drag reduction coefficient A and the normalized screen-
ing length d, as a function of the normalized burial depth h=h /d are plotted in Figs. (4.35)c
and (4.35)d, respectively. It can be seen that as the penetration depth increases, the A reduction
is greater. For the sake of simplicity, the whole data set can be described by a linear behavior
of the form A ~ h. The linear fit proposed here should not be valid for larger values of h,
as it is unreasonable to expect A to exceed the value 1. Saturation of A is therefore expected
for large values of h which are above the depth range possible to be explored with the cur-
rent experimental setup. The normalized screening length 0, is observed to be rather constant
with the normalized burial depth h, with 6, = 1.2. We also note that for the shallowest depth
(h ~ 0.7), the normalized screening length 0, and reduction A deviate from these trends. These
deviations may be due to a free-surface effect, since they are observed when the burial depth is
less than one sphere diameter. It is important to note in Figs. (4.35)c and (4.35)d that additional

measurements were carried out at a velocity approximately four times higher (cross symbols in
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these figures), and we observe that both the coefficients A and Ss are unaffected, at least in the

quasi-static regime.
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Figure 4.35 — Normalized drag force F=F / Fy as a function of the normalized distance be-
tween the intruders 6 = (A — d)/d for (a) a forward motion and (b) a back-
ward motion at V5 = 2.7 mm s~!, and different depths (e,0) h = 14 mm, (H,
(D) A =19 mm, (A, A) h =29 mm, (», >) h = 39 mm, (¢, O) h = 49 mm.
Solid lines correspond to the best fits of the data with Eq. (4.5). Parameters (c) A
and (d) 53 resulting from the fitting of the data with Eq. (4.5) as a function of the
normalized depth h. Dashed lines correspond to (c) A = 0.1k and (d) 58 =12.In
the panels, error bars represent the standard deviation in five realizations. Images
taken from (Carvalho et al., 2024b).

Finally, it is possible to propose a master curve on which the data are superposed.
Figure (4.36) shows the evolution of (F' — 1)/A as a function of 6/4,. We can see that the data
gather around the experimental fit of Eq. (4.5) for both the forward and backward runs. We also

observe that measurements at shallow depths deviate from the model due to free-surface effects.
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Figure 4.36 — Rescaled drag force (1 — F')/A as a function of the rescaled separation distance
5 / 53. For each set of data, we use the values of A and 53 resulting from the best fits
obtained in Fig. (4.35). All the data collapse on the solid line which corresponds
to Eq. (4.5). Image taken from (Carvalho et al., 2024b).

4.2.2.2.2 Side forces

The side forces have also been measured experimentally for two different depths A
for both the forward and backward journeys. These results are shown in Fig. (4.37). We note
that the variation of force I’ (here given by the average of the mean side forces) with distance
between intruders (A — d) follows the same trend, for both the forward [Fig. (4.37)a] and back-
ward journeys [Fig. (4.37b)]. For large separations (A — d 2 50 mm), the average side force F’
remains constant. This constant value corresponds to that measured for a single intruder, both
in forward and backward journeys, as attested by the horizontal lines in Fig. (4.37) representing
the side force for a single intruder under similar conditions (whose value is approximately zero
for all cases, as expected). When the intruders are closer to each other (A — d < 50 mm), the
average side force begins to decrease in a region where its value is negative, indicating a force
of attraction between the intruders. This decrease reaches a minimum value and, if the sepa-
ration between intruders continues to decrease, the side force begins to increase progressively
until it becomes positive, in a condition where the intruders are very close to each other and
begin to repel each other. These observations are in agreement with experimental and numer-
ical observations made by other works (Cruz; Caballero-Robledo, 2016; Dhiman et al., 2020;
Caballero-Robledo ef al., 2021).
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Figure 4.37 — Mean side force F' for both intruders as a function of the space between them
A — d, for a displacement at V, = 2.7 mm s ' at depths (A, A) h = 29 mm
and (¢, 0) h = 49 mm. Solid symbols correspond to (a) forward motion and
open symbols to (b) backward motion, and error bars represent the standard de-
viation in five realizations. The horizontal lines and shaded areas correspond,
respectively, to force values and their typical fluctuations, obtained with a single
intruder under similar conditions.

4.2.3 Discussion

In this section, we discuss how the interactions between two intruders moving side
by side in a granular material can be rationalized. For the side force appearing on two side-
by-side cylinders in a granular flow, it has been shown experimentally and numerically that
the direction of this force (attraction or repulsion) correlates with the sign of the difference in
granular temperature between the inside and outside of the cylinders (Cruz; Caballero-Robledo,
2016; Caballero-Robledo et al., 2021). The same argument of granular temperature difference
has been invoked to rationalize the axial-segregation of large spheres in a rotating drum filled
with small grains (Zuriguel et al., 2005). However, Dhiman et al. (2020) (Dhiman et al.,
2020) carried out discrete element method (DEM) simulations of two side-by-side intruders
and showed that the temperature and pressure fields do not follow the evolution expected by
kinetic theory. They concluded that the difference of granular temperature should rather be a
consequence of the interactions rather than its cause. In order to understand the origin of the
side forces that appear on the intruders when they are close to each other, Dhiman ef al. (2020)
(Dhiman et al., 2020) studied numerically the dynamics of force chains in their vicinity. They
found that the presence of a neighbor shears the force chains of the first intruder and breaks them
more often. As a result, the first intruder pushes less on the granular material on its neighbor’s
side than it does on the other side. In addition, this would also predict a reduction of the drag

force on the intruder when its neighbor is close. This scenario is also in agreement with the
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observations of Reddy ef al. (2011), who observed that the presence of a shear zone in the
vicinity of a cylindrical intruder immersed in grains reduces its yielding force (Reddy et al.,
2011).

We therefore formulate the observations of Dhiman et al. (2020) (Dhiman et al.,
2020) in an empirical model where the force field of the first intruder is perturbed by the velocity
field of its neighbor. Our approach is two-dimensional and is based on time-averaged local force
and velocity fields within the granular material, which is described as a continuous medium. The
velocity field around a cylinder moving amid grains has been studied experimentally (Seguin et

al., 2013) with the following relation:

v(r,0)
Vo

where r and 6 are the cylindrical coordinates with origin at the center of the object, as shown in

= —A,(r)cosfe, + Ag(r)sin 0 ey, (4.6)

Fig. (4.38)a and the two functions A, and Ay write:

A(r) = w {1 ~exp <_T _A;W)} and

4.7)
Ag(r) = 1+r—d/2+)\5—)\0exp (_r—d/2> 7

Ao Ao

where )\ is the characteristic length over which the velocity varies along the radial direction,
and )\, reflects the velocity slip tangential to the object surface. These two parameters have been
shown to depend on the cylinder diameter d and the grain size d, according to the empirical
relations: \g = d/4 + 2d, and \; = 0.45d (Seguin et al., 2013). In our case, i.e., an intruder
of 20 mm in diameter moving amid grains of 1 mm, it corresponds to \g/d = 0.35 and \,/d =
0.45. Note that the velocity field given by Eq. (4.6) is expressed in the reference frame of the
intruder, and here it should be expressed in the reference frame of the laboratory by adding
+Vy e, to Eq. (4.6). This velocity field is represented with blue arrows in Fig. (4.38)a.

The network of forces around an object moving in a granular medium has been
studied in experiments with photoelastic grains (Clark et al., 2012) or by numerical simulations
(Carvalho et al., 2022). Both approaches reveal that the force distribution extends over a charac-
teristic length: high stresses are applied close to the object and there are no stress variations far
from the intruder (Muthuswamy; Tordesillas, 2006). Furthermore, experiments with 2D pho-
toelastic grains revealed that the force distribution decreases exponentially with the distance

from the intruder (Clark et al., 2012; Seguin et al., 2016). From these studies, it is possible to



167

propose an expression for the average local force per unit area in the granular material, which
follows an exponential decay and whose pattern resembles that of the force chains usually ob-
served around intruders (Seguin et al., 2016; Carvalho et al., 2022). The force per unit area

around the intruder can be described empirically by the following expression:

r

—d/2 —d/2
f=f.exp (— /\0/ )cos@er+fgexp (_r /\0/ )sin@eg. (4.8)

This expression assumes that the characteristic length over which the force field
varies in the radial direction is the same as that of the velocity field, i.e., \¢. It also introduces
two force coefficients, f, and fy, whose ratio reflects the way the force chains deviate from
the radial direction. The average force field of Eq. (4.8) corresponds to the space average of
the normal forces transmitted by contacts between particles per unit area and is a continuous
representation of the discrete contact network. Figure (4.38)a shows with red arrows a typical
example of force field resulting from Eq. (4.8). In this approach, the total drag force experienced
by an intruder is considered to correspond to the integral of the force field per unit area over a
surface bounded by the perimeter of the intruder and a thickness of one grain. We have only
considered the frontal part of the object because it is the main contributor to the total drag force

(Seguin et al., 2016). Thus the drag force F{, expresses as

7/2 pd/2+dg
Iy = / / f-e, drrdo, 4.9)
—7/2 Jd/2

and can be calculated analytically as:

d d

Fy = g(fr — fo)Ao {)\0 +5 - ()\0 +5+ dg) exp (—i—i)] : (4.10)

Note that in the limit where d, < A, the previous expression simplifies to F{, ~
(m/4)(fr — fo)dd,. Under these circumstances, the drag force scales linearly with the effective
surface area of the object dd,, as expected in two-dimensional configurations (Seguin, 2019;
Seguin et al., 2022). Once again, we point out that the approach followed is a continuum one
where the velocity and force fields in the medium are continuous. However, the parameters
present in the equations modeling these fields have been shown to depend on the grain size
(Seguin et al., 2013) (which is taken into account in our model). To this end, this is a continuum
model that includes some granular discreteness effects in these dependencies and also in the

computation of the force with Eq. (4.9).
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In the following, the forces will be normalized by this reference value F given by
Eq. (4.10), which corresponds to the case where there is no interaction, and we will consider
the ratio F' = F/Fy introduced in Sec. 4.2.2. In order to account for the mechanism proposed
by Dhiman et al. (Dhiman et al., 2020) in this framework and calculate the drag force in the
presence of interactions, we assume that the force field around the first intruder f; is perturbed
locally by the velocity field of the second intruder vo. We hypothesize that the perturbed force

field f] writes:

£l =f (1 - a‘vlv';’?’) , 4.11)
0

where « is a nondimensional coefficient that represents the strength of the interaction. In this
phenomenological formulation, « is an ad hoc parameter adjusted from experimental data. In
the future, it would be interesting to have a prediction for o on how it depends on other pa-
rameters, such as the grain’s size, for instance. Note that this expression depends only on the
orientation of the local velocity fields of the two intruders and not on their norm. The area of
velocity and force interactions between the two intruders is highlighted in purple in Fig. (4.38)a.

Now we study how this interaction modifies the total drag force on one intruder
as a function of the separation distance A. We solve this problem numerically by computing
Eq. (4.9), where the force field f is replaced by the perturbed force field f] given by Eq. (4.11).
This calculation gives the drag force F' in the presence of interaction and allows it to be com-
pared with the reference force Fj. We repeat this procedure for different separating distances
A and compute the resulting drag force ratio F' on one intruder. This approach results in a
normalized drag force F that tends towards one for large separation distances (A > d) and de-
creases as the separation distance is reduced, in agreement with our observations. As we have
used renormalization, the drag force ratio Fis only a function of «, Ay and ;. Therefore, we
consider )\ and « as free parameters, keep \;/d = 0.45 constant, and search for the best fits of
the measurements of the normalized drag force at each depth.

Figure (4.38)b presents the normalized drag force as a function of the separation
distance for three different depths along with the best fits of the model. We observe that the
model correctly captures the reduction in drag force observed experimentally. We also note that
the model curve for A = 49 mm seems to be a bit non-monotonic for small values of 4. This
behavior is a second-order effect and is the result of the complex orientation of the velocity

and force fields in the zone of interaction. So, in some sense, it is related to the modification



169

(a) (b)
1.1 1
l (@)
N
1.0 1
U
0.9
el 0.8 (0) h=14 mm
) 10 (A) h=29 mm
. (¢) h=49 mm
' 0.7 T T | T
0 1 2 3 4
S
1.5 y
() (d) e
’ /6
0.8 L
1.0 - £
0.6 L
N o < A
S . il = o o -
0.4 4 I ’
0.5 L
0.2 o) y .
0 T T T T T O - T T T T T
0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0
h n

Figure 4.38 — (a) Top view sketches illustrating the model developed to rationalize the inter-
action between the two intruders: (top left) notations of the problem; (bottom
left) area in front of one intruder where the color scale from blue to red encodes
increasing values of the interaction term («|vy - vo|/V{) in Eq. (4.11); (right) ve-
locity field (blue arrows) of the neighboring intruder at the bottom disturbs the
force field (red arrows) induced by the movement of the intruder at the top (and
vice-versa, not shown here for visibility purposes). (b) Normalized drag force
F as a function of the normalized separation distance 5. Symbols correspond to
experimental data at different depths and solid lines represent the best fit with the
model. (c) Parameter )\, divided by d resulting from the best fit of the data as
a function of the normalized depth k. The dashed line indicates \o/d ~ 0.48.
(d) Coefficient « resulting from the best fit of the data as a function of of the nor-
malized depth h. The dashed line corresponds to o =~ 0.55 h. Images taken from
(Carvalho et al., 2024b).

of the shearing effect in this regime, which we expect to increase with the intruder’s depth [as
indirectly shown by the increase of o with h in Fig. (4.38)d]. Note that, given the experimental
accuracy, we are not able to distinguish this weak non-monotonic behavior. Consequently, for
these values of 8, the model is very sensitive to the parameters used in its calculation [\g, Ag, &
and, perhaps, even with d, due to its presence in Eq. (4.9)]. In addition, we would like to point
out that a non-monoticity of the force with the separation between intruders has already been

observed in other experimental and numerical works (Pravin et al., 2021; Carvalho; Franklin,
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2022b), and shown in Sec. 4.1.2.2.1.

In order to not overload Fig. (4.38)b, we decided to show only part of the data corre-
sponding to the backward motion since they are less dispersed. Similar results are obtained for
the forward case with a slight difference in the found fitting coefficients, shown in Tab. (4.11).

Table 4.11 — Fitting coefficients for the solution of the model. In all cases, fs = 1 N m~2.

Forward Journey Backward Journey
hjd | No/d | a | f (X1I0°)Nm™2 | \g/d | a | f(x10°) Nm™?
0.70 | 0.200 | 0.70 0.3297 0.200 | 0.70 0.3170
0.95 | 0.550 | 0.70 0.4430 0.450 | 0.70 0.4290
1.45 ] 0.525 | 0.88 0.7721 0.450 | 0.82 0.6820
1.95 | 0.475 | 0.90 1.0990 0.475 | 1.00 0.9850
2.45 1 0.550 | 1.30 1.5370 0.525 | 1.30 1.3466

The estimated values of \y/d and « found with this procedure are plotted as a
function of £ in Figs. (4.38)c and (4.38)d, respectively. Note that similar parameters are found
when adjusting the forces measured in the case of forward motion. We observe in Fig. (4.38)c
that the ratio \y/d is roughly independent of the depth of the intruder, except at shallow depths
where surface effects are not negligible. At large depths, the ratio \y/d is about 0.48, in close
agreement with the estimate of Seguin et al. (Seguin et al., 2013). Figure (4.38)d shows that the
coefficient a resulting from the fitting procedure increases linearly with depth. This observation
is consistent with the fact that the parameter « is related to the relative magnitude of drag
reduction, which follows the same evolution as seen in Fig. (4.35)c.

In addition, this procedure can also be used to calculate the side force experienced
by the intruders when they interact with each other. The side force is calculated by integrating

the force field projected onto the y-direction in a similar way to Eq. (4.9) as:

7/2  pd/2+dg
Fg = / / f) - e, drrdd. (4.12)
—7/2Jd/2

In doing so, we find that the lateral force tends towards zero at large separation
distances (A > d) and is attractive at smaller separation distances. This prediction is in line
with previous observations made in experiments and simulations for separation distances that
are not too small (A > 0.1d) (Cruz; Caballero-Robledo, 2016; Dhiman et al., 2020; Caballero-
Robledo et al., 2021). Finally, the framework proposed above, although empirical, provides an
extensive prediction of the interaction between two objects moving in a granular material in the

quasi-static regime.
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Another point that is relevant to discuss is the reference case of two spheres in
interaction in a viscous fluid, and how the situation compares with the granular case. The
interaction in viscous fluids has been analytically solved using force-point methods by Happel
and Brenner (Happel; Brenner, 1983). In the case of two identical spheres moving side by side
at a constant velocity (flow perpendicular to the centerline linking the spheres), the drag force is
predicted to reduce as the separation between the sphere decreases. At the first order, the drag

force on the sphere is predicted to reduce as:

F 1

pu— 4.13
3mndVy 1+§%’ ( )

where 7 is the fluid’s viscosity. Note that in the limit of touching spheres (A = d), the relative
drag reduction in the viscous case is approximately equal to 27%, which is the same order of the
highest drag reduction measured in our experiments in granular materials [Fig. (4.35)c]. Such
drag reduction in viscous flow has been observed experimentally in the case of two bubbles
ascending side by side (Saad, 2015), and with two spheres in yield-stress fluid (Merkak et al.,
2006). However, in the case of interacting spheres in viscous flows, no depth dependence on
drag reduction is predicted. Another important difference between both situations is that side
forces are not present in the viscous case.

In summary, we investigated experimentally how drag forces acting on a pair of
transversely aligned intruders vary with their depth and transverse separation as they move at
constant speed in a granular bed. We found that the mean drag experienced by each intruder is
lower than that for a single intruder when separations are small, and that the drag increases with
their separation, until it reaches a plateau equal to the single intruder’s value for large separa-
tions, evincing, therefore, a cooperation dynamics within a given distance range. In addition,
we found that the drag reduction for small separations increases with depth and that data for the
mean drag varies exponentially with the intruder-intruder separation, and propose a model for
the drag reduction based on the breakup of contact chains caused by the local motion of grains.
Although the model has some limitations, being two-dimensional and using phenomenologi-
cal laws, it describes well our experimental results. Our findings shed light on the cooperative

dynamics and coupling effects taking place in granular media.
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S RESULTS AND DISCUSSION - COLLISIONAL REGIME -
IMPACT PROBLEMS

5.1 Numerical Investigation

5.1.1 Impact of a spherical projectile

This section (Sec. 5.1.1) reproduces material from Douglas D. Carvalho, Nicolao
C. Lima, and Erick M. Franklin, “Roles of packing fraction, microscopic friction, and projectile
spin in cratering by impact”, Phys. Rev. E 107, 044901 (2023), with permission from the
American Physical Society (Carvalho et al., 2023b).

Although considerable progress on the mechanics of impacts and crater formation
was made from previous studies, many questions remain open, such as the scaling laws for the
penetration depth, and the roles of friction and initial packing fractions. Other questions are still
to be investigated, such as how the initial spin of projectiles (rotational kinetic energy) affects
cratering. In this section, we inquire into those questions by carrying out DEM computations
of the impact of solid projectiles onto a cohesionless granular medium (in the gravity regime),
in accordance to the methodology presented in Sec. 3.1.2. For different projectile and grain
properties (diameter, density, friction coefficients and packing fraction), we measured the mor-
phology of craters, fluctuations of grains, and resultant force on the projectile. In summary, we
show that the scales of craters and the dynamics of projectiles compare well with some of the
existing scaling laws, but not with others. We find that, after an initial fluidization, a denser
region forms below the projectile, which pushes it back and causes its rebound by the end of its
motion, and that solid friction affects considerably the crater morphology. In addition, we show
that the penetration length ¢§ increases with the initial spin (angular velocity) of the projectile
and that differences in the initial packing fraction ¢ engender the diversity of scaling laws found
in the literature. Finally, we propose an ad hoc scaling for ¢ involving ¢ that can, perhaps, unify

the existing correlations.

5.1.1.1 Numerical setup

The computed system consisted of N ~ 10° spheres with diameter d and density
p, forming a granular bed in a cylindrical container, and a projectile with diameter D, and

density p,. Prior to each simulation, around 10° spheres with a Gaussian distribution for d
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were randomly arranged in space, and let to fall freely in the container and settle until a low
level of kinetic energy was attained. By varying the initial value of the grain-grain friction
coefficient p4,, we obtained different packing fractions ¢ for the bed, after which we changed
ftgg back to the correct value. The grains were then allowed to relax, and only afterward the
simulations began. The distribution of diameters used in the simulations are shown in Tab. (5.1).
We then computed the minimum height necessary for having a horizontal surface and deleted
all the grains above that height (around 10* grains removed). Depending on the properties of
the spheres and their initial number, the number N that remained in the computational domain
varied. The granular beds had a diameter Dj.; = 125 mm and heights hp.q = 67.0-76.5 mm
(depending on the packing fraction). In order to avoid strong confinement effects, the bed
dimensions are equal to the largest dimensions investigated by Seguin et al. (2008) (Seguin et

al., 2008).

Table 5.1 — Distribution of diameters for the settling grains: number of grains /N, for each di-

ameter d.
d (mm) 0.6 0.8 1.0 1.2 1.4
Ny (¢ =0.554) 21524 | 128125 | 643002 | 128053 | 21421
Ny (¢ =0.575-0.632) | 21483 | 128214 | 642847 | 127831 | 21340

Table 5.2 — Properties of materials used in the simulations: E is Young’s modulus, v is the
Poisson ratio, and p is the material density. The last column corresponds to the
diameter of the considered object.

Material E (Pa) v | p(kg/m?) | Diameters (mm)
Projectile | Steel® | 0.2 x 10" | 0.3 7865 15
Grains Sand®-®@ | 0.1 x 10° | 0.3 2600 06<d<14
Walls Steel M | 0.2 x 10'2 | 0.3 7865 125

&) Ucgul et al. (Ucgul et al., 2014a; Ucgul et al., 2014b; Ucgul et al., 2015)
(2) Derakhshani et al. (Derakhshani et al., 2015)

At the beginning of the simulations, the projectile is put into motion in order to
collide with the granular bed with collision velocities V), that are related with the free-fall height
h (distance from the bed surface to the initial position of the projectile centroid minus its radius,
V, = v/2gh). With that, Froude numbers were within 3.75 x 107* < Fr~! < 3, all of which we
consider in the gravity regime. Figure (5.1) shows a layout of the numerical setup. Animations
showing impacts and cratering are available in <https://journals.aps.org/pre/supplemental/10.

1103/PhysRevE.107.044901>.
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Niped

Figure 5.1 — Layout of the numerical setup. The origin of the coordinate system is on the bed
surface, in the center of the domain; however, it is shown on the bottom right for
better visualization. Image taken from (Carvalho et al., 2023b).

Table 5.3 — Coefficients used in the numerical simulations.

Coefficient Symbol | Value
Restitution coefficient (grain-grain)®) €gg 0.6
Restitution coefficient (grain-projectile)®) €gp 0.6
Restitution coefficient (grain-wall)™ €gw 0.6
Fiction coefficient (grain-grain)(*)—(2) Lgg 0.52
Friction coefficient (grain-projectile)®) Lgp 0.5
Friction coefficient (grain-walls)(*) Hgw 0.5
Coefficient of rolling friction (grain-grain)® r.gg 0.3
Coefficient of rolling friction (grain-projectile)) | ;. 4, 0.05
Coefficient of rolling friction (grain-wall)®) L, gw 0.05

M Ucgul et al. (Ucgul et al., 2014a; Ucgul et al., 2014b; Ucgul et al., 2015)
(2) Derakhshani et al. (Derakhshani et al., 2015)

We used different properties for the grains and projectile, listed in Tabs. (5.2) and
(5.3) together with those for walls. We used the real Young’s modulus £, with the exception
of projectiles in steel, for which we used a value that was smaller by one order of magnitude.
Because steel has the higher Young’s modulus among the used materials, and since the projectile
suffers a considerable number of energetic impacts (much larger than the walls), this numerical

artifice increased the necessary time step without affecting significantly the results (Lommen
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et al., 2014). In our simulations, all the coefficients were taken from the literature, and the
sand grains were modeled as spherical particles with angularity effects embedded in the rolling
friction, for which we used the value p, = 0.3 validated by Derakhshani et al. (Derakhshani
et al., 2015). We validated the friction coefficients listed in Tab. (5.3) by measuring the angles
of repose obtained numerically: prior to starting any computation, we evaluated the friction
coefficients [listed in Tab. (5.3)] by letting the grains fall freely and form a conical heap, as
can be seen in Fig. (5.2). We then measured the angle of repose and compared it with values
found in the literature (Ref. (Derakhshani et al., 2015), for example). Because we modeled

sand grains as spherical particles with angularity effects embedded in the rolling friction, the

agreement was good (= 32°).

Figure 5.2 — Angle of repose obtained by settling particles with 4, = 0.52 and p,. 4, = 0.3.
Image taken from (Carvalho et al., 2023b).

Although we present results for fixed p, and D, [as listed in Tab. (5.2)] in the
following, we also carried out simulations with 2685 kg/m3 < pp < 11865 kg/m3 and 5 mm <
D,, < 30 mm, the results being shown at the end of Sec. 5.1.1.2.1.

The time step was At = 8 x 10~ s in all our computations, assuring At less than 10
% of the Rayleigh time ¢y for all particles [Eq. (4.2)] (Derakhshani et al., 2015). More details

about the numerical setup are available in an open repository (Lima et al., 2022).

5.1.1.2 Results and discussion

5.1.1.2.1 Morphology of craters

Although extensively investigated over the last decades, the morphological laws for

craters are still object of debate (with the exception, perhaps, of the crater diameter D.), and
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Figure 5.3 — Morphological aspects: (a) Crater diameter [, as a function of the total drop dis-
tance H; (b) depth ¢ reached by the projectile as a function of H; and (c) ¢ as
a function of the projectile velocity at the impact V. (d) Top view of a crater,
showing a circle fitted over the corona. The crater diameter 1), is defined as the di-
ameter of this circle. In Figs. (a) and (b), the corresponding correlations proposed
by Uehara er al. (2003) (Uehara et al., 2003b), Katsuragi et al. (2013) (Katsuragi;
Durian, 2013) and Seguin ef al. (2008) (Seguin ef al., 2008) are also plotted, and
Figs. (a) to (c) are parameterized by the initial packing fraction. Images (a) to (c)
taken from (Carvalho er al., 2023b) and image (d) taken from (Carvalho er al.,
2023a).

correlations available in the literature often mix data obtained under different (if not unknown)
packing fractions. In other instances, functional relations are based on different parameters

(h instead of the total drop height H = h + ¢, where ¢ is the projectile’s penetration depth,
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for example). Therefore, we investigate initially how the crater diameter D, and the depth §
reached by the projectile behave with varying the drop distance H (or the height to impact A,
related to the velocity at the impact V},), and compare them with morphological laws found in
the literature. In addition, different from previous studies, we evaluate how those relations vary
with the initial packing fraction ¢ of the bed.

Figure (5.3)a shows the crater diameter D, [measured as indicated in Fig. (5.3)d] as
a function of the total drop distance H, parameterized by the initial packing fraction ¢, and the

correlation proposed by Uehara et al. (2003) (Uehara et al., 2003b), given by Eq. (5.1),

1/4
D, = 0.90(’)—;’) DI HM, (5.1)
P2,

where [, is the macroscopic friction measured as the tangent of the angle of repose, which
Uehara et al. (2003) (Uehara et al., 2003b) considered equal to fi,44, and p is the density of the
grains. In fact, we find a consensus in the literature that D, varies with H /4 and our data shows
the same, with a collapse of data for all the different packing fractions used in the simulations.
Therefore, D, is independent of ¢, and this is the main reason for the existing consensus since
the different experiments reported in the literature were conducted at different packing fractions.
The same does not occur with the depth o reached by the projectile. Figure (5.3)b shows ¢ as a
function of H, parameterized by ¢, and the corresponding correlations proposed by Uehara et
al. (2003) (Uehara et al., 2003b), Katsuragi et al. (2013) (Katsuragi; Durian, 2013) and Seguin
et al. (2008) (Seguin et al., 2008), given by Egs. (5.2), (5.3) and (5.5), respectively. We observe
a clear dependence of § on ¢, and that correlations give different results. The discrepancies
between the existing correlations are thus, at least in part, due to the different packing fractions
of the experiments they came from. The dependence of J on ¢ is shown also in Fig. (5.3)c in
terms of the projectile velocity at the impact V,,. We observe that the data diverge for increasing
values of V,,, presenting a non-linear variation with V, for higher values of ¢. This is in contrast
with Katsuragi and Durian (2007) (Katsuragi; Durian, 2007) and Goldman and Umbanhowar
(2008) (Goldman; Umbanhowar, 2008), who found that  varies linearly with V,,. However,
we note that: (i) most of the data presented by Refs. (Katsuragi; Durian, 2007; Goldman;
Umbanhowar, 2008) are within 0 m/s < V}, < 4 m/s, for which the dependencies tend to appear
more linear; and (ii) we controlled the packing fraction in each of our simulations (different
from previous works), finding considerable deviations for higher values of ¢. If we consider O

m/s <V, <4 m/s, the curves in Fig. (5.3)c become roughly linear. The correlations plotted in
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Fig. (5.3)b are presented below.
(1) Correlation proposed by Uehara et al. (2003) (Uehara et al., 2003b):

1/2
5=0.14 (p—;’) D3 HY3, (5.2)
PHEey

(i1) Correlation proposed by Katsuragi et al. (2013) (Katsuragi; Durian, 2013):

(5.3)

dq kdq Kd3elt2mpg/rdy

25 - 2m,g N W(zmpvg — 2my,gd; — lid%)

where W(z) is the Lambert function, and x and d; are constants given by Eq. (5.4):

d 0.25 D 2
D_1 _ & : RLp _ 12,urep ﬁ . 5.4)
b Lrep ) \ P mpg Pp

OBS: in Eq. (2.3), £ =m,,/d;.

(ii1) Correlation proposed by Seguin et al. (2008) (Seguin et al., 2008):

) p ’ H ’

) ()
where A = 0.37 £+ 0.01, 3 =0.61 + 0.02 and A = 0.40 4+ 0.04. We note that in Fig. (5.3)b we
used the lower limit of these constants.

Unlike most of previous experiments, de Bruyn and Walsh (2004) (Bruyn; Walsh,
2004) varied the packing fraction and, by modeling the granular system as a Bingham fluid,
found that § ~ ¢. They proposed a correlation where § ~ h'/ QD;/ ?, which contrasts with the
above ones [Eqgs. (5.2) to (5.5)]. However, as pointed out by the authors, they expected that
inaccuracies in their measurements of ¢ could affect the results. From our numerical data,
we also noticed that the penetration depth depends on the packing fraction, producing thus
different correlations for 6 with H or V,. We propose an ad hoc scaling that collapses our
data, but without additional modeling (we maintain the discrete nature of granular matter in
our analysis). Our objective in proposing this ad hoc scaling is simply to collapse our 6(H)
data for different values of ¢, showing that, perhaps, the existing correlations can be unified by
considering a dependency on ¢.

Figure (5.4)a shows 0(H) for our simulations, where a factor ¢/ was introduced
in order to collapse the data into a master curve. We notice that the collapse is reasonable, indi-

cating that ¢ is a parameter to be taken into account. By considering specifically the correlation

proposed by Uehara et al. (2003) (Uehara et al., 2003b) [Eq. (5.2)], Fig. (5.4)b shows 6¢°/? as
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Figure 5.4 — Depth reached by the projectile multiplied by a power of the packing fraction,
§¢°/2, as a function of (a) the drop distance H, and (b) D,%/ SH1/3, parameterized
by ¢. Images taken from (Carvalho et al., 2023b).

a function of DIQ,/ SH'/3. The data collapse and follow a master line, with some dispersion for
higher values of H. This indicates that by taking into account a term ¢" [as in Eq. (5.6)], where
n is a coefficient, some of the existing expressions may be turned into universal correlations.
For our data, n = 9/2 is a reasonable value (please note that n = 4.74 gave a slightly better

collapse than 9/2).

5¢" ~ D23, (5.6)

Although the results presented above were obtained for fixed density p, and diame-
ter D, of the projectile [as listed in Tab. (5.2)], we also carried out simulations with 2685 kg/m?
< pp < 11865 kg/m? and 5 mm < D, < 30 mm, and the results are shown in Figs. (5.5)a
and (5.5)b. Note that the results obtained can be modeled, for both variables, by the powers
presented in the correlation proposed by Uehara et al. (2003) (Uehara et al., 2003b) [Eq. (5.2)].

5.1.1.2.2  Forces on the projectile and stopping time

We investigate now the projectile dynamics, in particular the accelerations experi-
enced by the projectile and the time ¢. that it takes for reaching full stop. In the DEM simu-
lations, positions, velocities and forces are computed for all objects at each time step, so that

the time evolution of the projectile acceleration @ can be obtained from the resultant force (a@ =
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Figure 5.5 — (a) Penetration depth J as a function of the projectile diameter D,. The blue-

dashed line corresponds to a functional dependence on D,%/ % (as in the correlation
of Uehara er al. (2003) (Uehara et al., 2003b)), and the red-continuous line to a
fitting of our data. In this figure, 4 = 0.1 m and p, = 7865 kg/m>. (b) Penetration
depth ¢ as a function of the projectile density p,. The blue-dashed line corresponds

to a functional dependence on p;,l/ 2 (as in the correlation of Uehara et al. (2003)
(Uehara et al., 2003b)), and the red-continuous line to a fitting of our data. In this
figure, h = 0.1 m and D, = 15 mm. Images taken from (Carvalho et al., 2023b).

]3,, /m,,), the drag force by subtracting the projectile weight from ﬁp, and the stopping time by
finding the instant when the projectile velocity V' reaches zero. In our analyses, the origin of
time is the instant when the bottom of the projectile touches the granular bed, and a,, is positive
upwards (as £}, in Eq. (2.3)).

Figure (5.6)a shows the time evolution of the vertical component of the projectile
deceleration a,,, normalized by g, for a fixed packing fraction (¢ = 0.554) and different values of
h, i.e., different energies available at the impact. We observe the features described by Goldman
and Umbanhowar (2008) (Goldman; Umbanhowar, 2008): (1) a high peak just after the impact
has taken place, with its magnitude increasing with h; (ii) the presence of strong fluctuations;
(iii) a discontinuity of the deceleration by the end of the motion; and (iv) a slight inversion in
the sign of a, before reaching full stop. The a, inversion and the full stop is shown in detail
in Fig. (5.8). The last instants of the motion (focusing on the rebound region) are presented in
Fig. (5.9). In addition, a movie showing the projectile and grains during the impact can be seen
in <https://journals.aps.org/pre/supplemental/10.1103/PhysRevE.107.044901>.

Besides reproducing the experimental findings of Goldman and Umbanhowar
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Figure 5.6 — Projectile dynamics. (a) Time evolution of the vertical component of the decel-

eration a, for different initial heights h. (b) Maximum values of the deceleration
.y peak as a function of V;?, for different packing fractions ¢. (c) Inertial component
of the vertical deceleration, a, inertial> @s a function of V2 for different values of A.
The dashed line corresponds to the model proposed by Katsuragi et al. (2007)
(Katsuragi; Durian, 2007) (with x = 37.6287 and d; = 0.0189). In Figures (a) and
(c), the packing fraction was fixed to ¢ = 0.554. Images taken from (Carvalho et
al., 2023b).

(2008) (Goldman; Umbanhowar, 2008), we can now inquire into aspects not previously inves-

tigated, such as the effect of the packing fraction and the mechanics of the projectile rebound.

Figure (5.6)b presents the maximum values of the deceleration, a, ,cqk, as a func-

tion of the square of the impact velocity V), for different packing fractions ¢. It is clear from
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Figure 5.7 — Time evolution of the vertical component of the projectile velocity V), for different
values of h for (a) the entire simulation and (b) zoomed in the region corresponding
to the projectile rebound and final stop. The packing fraction was fixed to ¢ =
0.554. Images taken from (Carvalho et al., 2023b).

Fig. (5.6)b that the value of the peak increases not only with the available energy at the impact,
but also with the packing fraction. In mechanical terms, the projectile deceleration is expected
to increase with the bed compaction, since more grains are in contact as ¢ increases, hindering
their motion and, consequently, that of the projectile. Although previous works showed the
deceleration peak and its dependence on h, this is the first time that a parametric study on ¢
is presented, which corroborates the idea of higher a, for higher ¢ and, in part, the argument
advanced by Goldman and Umbanhowar (2008) (Goldman; Umbanhowar, 2008) that Eq. (2.3)
should depend on ¢ (and would be valid only close to a critical packing ¢ps).

In order to inquire if our results agree with the model of Katsuragi er al. (2007)
(Katsuragi; Durian, 2007), we evaluated the inertial term of the vertical deceleration, a, inertial-
By considering Fy,qy = V2 4 ky in Eq. (2.3), where V2 = my, 4y inertia 18 the inertial term of

the drag force (positive upwards), @y inertial 1S given by Eq. (5.7):

Ay inertial = Qy +9— (H/mp)y- (57)

Figure (5.6)c shows ay inertial as a function of the square of the instantaneous veloc-
ity of the projectile, V2, for ¢ = 0.554 and different values of /, and also the model proposed
by Katsuragi et al. (2007) (Katsuragi; Durian, 2007) (dashed line). For all initial heights inves-
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Figure 5.8 — Time evolution of (a) vertical position y of the projectile; (b) vertical velocity V,,
of the projectile; (c¢) vertical deceleration a,, of the projectile, normalized by g; and
(d) space-averaged granular temperature § considering all grains. In this figure, ¢
=0.554 and h = 1 m. Images taken from (Carvalho et al., 2023b).

tigated (at ¢ = 0.554), the agreement with Katsuragi et al. (2007) (Katsuragi; Durian, 2007) is
good.

Figure (5.7) presents the time evolution of the vertical component of the projec-
tile velocity, V,, for different values of h, showing that the time ¢. to reach the full stop is
independent of the available energy, in agreement with previous works (Ciamarra et al., 2004;
Katsuragi; Durian, 2007; Goldman; Umbanhowar, 2008; Seguin et al., 2009) (in Fig. (5.7)a, V,,
> 0.99 m/s). Furthermore, the stopping time ¢. scales well with the timescale ¢, proposed by
Goldman and Umbanhowar (2008) (Goldman; Umbanhowar, 2008):

1/4 1/2
()" (3)"
p 29

which is £, = 0.0365 s in our case [very close to the values of ¢, in Fig. (5.7)], and the sign of
V,, changes just before the full stop (indicative of the final rebound).
Finally, we investigate the projectile rebounding. We begin by showing how the

granular temperature ¢ evolves as the projectile penetrates into the bed. For that, we computed
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Figure 5.10 — Time evolution of the normalized deceleration in the vertical direction a, /g, and
snapshots of the granular temperature # at the instants indicated in the a,/g
graphic. The colorbar indicates the values of § in m?/s?, and the figure corre-
sponds to ¢ = 0.554 and h = 1 m. Images taken from (Carvalho et al., 2023b).

the granular temperature of the bed as in Eq. (5.9),

1 - 1
0(z,y,2,t) = o C (u? 4+ 0* +w”) (5.9)

3% =3

where UZ; is the instantaneous fluctuation velocity of each grain (its velocity relative to the
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ensemble of grains), and v/, v" and w’ are the x, y and z components of uz. Therefore, high
values of ¢ indicate more agitation and a fluid-like behavior, while low values indicate less
agitation and a solid-like behavior.

Figure (5.10) shows the time evolution of the vertical deceleration of the projectile
a, normalized by ¢, and snapshots of the granular temperature ¢ at some instants (indicated
in the a,/g graphic), for ¢ = 0.554 and h = 1 m. A movie showing the time evolution of ¢
during all the penetration process is available in <https://journals.aps.org/pre/supplemental/10.
1103/PhysRevE.107.044901>. From both Fig. (5.10) and the movie, we observe that initially
(t < 0.005 s) the region of higher granular temperatures is just below the projectile and, with
its motion downwards, grains above the projectile reach higher values of 6 at a later time (0.01
s & t < 0.02 s), in particular the ejecta. By the end of its motion and before full stop (0.025 s
St < 0.04 s), values of 6 are considerable smaller, reaching zero below the projectile earlier
than above it. This means that the region in front of the projectile (below it) is hardened (solid-
like behavior) while that behind it (above the projectile) has still some mobility. Therefore, the
rebound can be understood as a result of the faster de-fluidization on the front (bottom) than on
the rear (top) of the projectile. We note that we have not inquired into shockwaves propagating
from the impact point, toward the walls, and back to the projectile, which can play a role in the
projectile rebound, as pointed out by Bourrier et al. (2008) (Bourrier et al., 2008). However,
Bourrier et al. (2008) (Bourrier et al., 2008) propose that the rebound of large projectiles is
caused by the compaction of grains below the projectile, in agreement with our results (though
we cannot assert that shockwaves are responsible for the rebound).

The vertical position y of the projectile as a function of time for ¢ > 0.025 s, and
the displacement in the vertical direction Ay,cpoung for simulations with different values of H,
are shown, respectively, in Figs. (5.11)a and (5.11)b. For the latter, we noticed that, although
the data oscillate considerably, it seems that Avy,.cpoung increases with H for small heights, and

then reaches a plateau for ' ~ 0.7 m (it remains, however, to be investigated in future works).

5.1.1.2.3  Frictionless grains

The role of friction in the projectile dynamics and cratering is still an open ques-
tion, with previous works showing that the friction either promotes a strong energy dissipation
(Tsimring; Volfson, 2005; Kondic et al., 2012) or does not affect the projectile penetration and

stopping time (Seguin et al., 2009) (those results are contradictory). In order to further investi-
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Figure 5.11 — (a) Vertical position y of the projectile as a function of time for the final phase of
the penetration (¢ > 0.025 s), for the case depicted in Fig. (5.10). (b) The verti-
cal displacement during the rebound Ay, epound, normalized by D,, for different
values of H. Images taken from (Carvalho et al., 2023b).

gate the role of friction, we carried out simulations that considered: (i) all friction coefficients
as in Tab. (4.3) (case ;1 # 0); (ii) all friction coefficients equal to zero (case ;. = 0); (iii) only the
grain-grain friction equal to zero (case i, 7 0 and pi4, 7# 0); and (iv) the friction due to both
the grain-grain and grain-wall contacts (but not grain-projectile) equal to zero (case jig, 7 0). In
all these cases, whenever we indicate that jig,, 14, OF 1 Was turned to zero, the corresponding
rolling frictions were also zero.

Before each simulation, approximately 10° spheres were randomly arranged and let
to fall freely in the container and settle. The grains had a Gaussian distribution for d, shown in
Tab. (5.1) for the cases with friction, and shown in Tab. (5.4) for frictionless cases. The initial

packing fractions were ¢ = 0.641 and 0.640 for ;1 = 0 and p,4, = 0, respectively.

Table 5.4 — Distribution of diameters of settling grains: number of grains N, for each diameter
d. The table shows values for the absence of friction p = 0 (frictionless grain-grain,
grain-wall and grain-projectile contacts) and for the absence of only the grain-grain
friction, pi4q = 0.

d (mm) 0.6 0.8 1.0 1.2 1.4
Ng(u=0) | 22114 | 131688 | 661232 | 131878 | 22091
Ng (pgg=0) | 22092 | 131523 | 660681 | 131675 | 22068

Figure (5.12) presents the effects of the total or partial absence of friction on the

crater diameter D, [Figs. (5.12)a and (5.12)c], penetration depth ¢ [Fig. (5.12)b] and projectile
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Figure 5.12 — (a) Crater diameter D, as a function of the drop distance H for simulations in the
absence of friction (case p = 0). ¢ =0.554 and the red line corresponds to a fitting
with H'/4. (b) Depth § reached by the projectile as a function of the initial height
h for simulations with all friction coefficients as listed in Tab. (5.3) (case u # 0),
without any friction (case p = 0), with only the grain-projectile friction (case gy,
# 0), and with only the grain-grain equal to zero (case jig, 7 0 and jig4,, 7 0). (c)
For the same cases of figure (b), D, as a function of h. (d) Time evolution of the
normalized deceleration in the vertical direction a,/g for the cases with (black
line) and without (red line) friction. In figure (d), ¢ = 0.554 when 1 # 0, and h =
0.075 m. Images taken from (Carvalho et al., 2023b).

deceleration in the vertical direction a, /g [Fig. (5.12)d]. We observe that D., 6 and a,, are highly

affected by the absence of grain-grain friction, and that the presence/absence of the grain-wall

and grain-projectile frictions have little effect on them. For the crater diameter, we observe that
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the H/4 scaling remains valid [Fig. (5.12)a], but the magnitude of D, increases considerably in
the absence of friction between grains, D, being roughly 50% larger when 1 = 0 (or at least 114,
= 0) than when p # 0 [Fig. (5.12)c]. For the penetration depth, ¢ presents a variation with / that
is slighter when the grain-grain friction is present (4 # 0), and has much smaller magnitudes
than in the frictionless cases [roughly 75% smaller, Fig. (5.12)b]. The vertical deceleration
of the projectile, a,, shows a different behavior in the absence of friction [Fig. (5.12)d]: it
presents a smaller peak just after the impact, followed by a fast decrease to values that oscillate
around 1.5g, and finally a fast decrease to zero much after that of the frictional case [t. is
much higher in the frictionless case, approximately by four times in Fig. (5.12)d]. The granular
temperature and projectile rebounding of a projectile colliding with a frictionless bed are shown,
respectively, in Figs. (5.13) and (5.14), where we notice that in the frictionless case grains reach
and maintain a much higher degree of fluctuation and an absence of rebound in the absence
of friction. In addition, a movie of a projectile colliding with a frictionless bed is available in

<https://journals.aps.org/pre/supplemental/10.1103/PhysRevE.107.044901>.
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Figure 5.13 — Time evolution of the space-averaged granular temperature 6 considering all
grains. The red line corresponds to frictionless objects (1 = 0) and the black
line to grains with friction (1 # 0). ¢ = 0.554 and h = 1 m. Image taken from
(Carvalho et al., 2023b).

In summary, our results show a strong influence of the grain-grain friction in both
the morphology of craters and the projectile dynamics, which reflects the lower resistance to the
projectile penetration when grain-grain friction is absent. The disagreement of our conclusions

with those of Seguin ez al. (2009) (Seguin et al., 2009) is probably due to their highly confined
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Figure 5.14 — Time evolution of (a) vertical position y of the projectile; (b) vertical velocity V,,
of the projectile; (c) vertical deceleration a,, of the projectile, normalized by g;
and (d) space-averaged granular temperature § considering all grains. The red
line corresponds to frictionless objects (1 = 0) and the black line to grains with
friction (1 # 0). ¢ = 0.554 and h = 1 m. Images taken from (Carvalho et al.,
2023b).

2D case. In our case, the simulations are 3D and wall effects are much less pronounced. Our
results are important for deciding on the pertinence of the grain-grain friction and, therefore,

for modeling and computing cratering in various scenarios.

5.1.1.2.4 Rotating projectile (initial spin)

A question that has remained without investigation over the last decades, and that
we scrutinize now, is the effect of the angular velocity of the projectile (rotational kinetic en-
ergy) on cratering. Our studies are motivated by the presence of spinning projectiles in natural
and artificial processes, such as the fall of asteroids, weapon projectiles (spin imposed in order
to stabilize their ballistic trajectory) and seeds (which acquire spin during their fall). To inves-
tigate this question, we carried out simulations where we imposed an initial angular velocity

(initial spin) & to the projectile impacting the bed and computed the crater diameter, penetration
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Figure 5.15 — (a) Crater diameter D, as a function of the ratio of rotational to linear kinetic
energies, K,/ K,, in percentage, by considering only w,. (b) Penetration depth
§ as a function of K,,/K, by considering only w,, and (c) for either w,, w, or
w, # 0. (d) Total revolution angle (in degrees), «,,, that the projectile effectuate
after colliding with the bed as a function of K,/ K, (by considering only w,). In
figures (a) to (d), ¢ =0.554 and h = 0.1 m. In figure (b), the line corresponds to ¢§
=0.014 + (K,,/K,)*%7. Images taken from (Carvalho et al., 2023b).

depth and projectile dynamics for different ¢ in terms of magnitude and direction. The angular

velocity < was imposed only as an initial condition, the projectile being free to rotate or stop

rotating in any direction after the impact has taken place (there was no constraint), so that it

went to zero as the projectile finished penetrating the bed (excepting for frictionless solids, as

explained next). In the following, we consider w,, w, and w, the x, y and z components of
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@, respectively, and K, = (1/2)m,V;? and K, = (1/2)I|&|* the linear and rotational kinetic
energies of the projectile, where I = (2/5)m,(D,/2)? is its moment of inertia.

Figures (5.15)a and (5.15)b show, respectively, the crater diameter D, and penetra-
tion depth 0 as functions of the ratio of rotational to linear kinetic energies, K,/ K, by varying
only the y component of the angular velocity, w,, (both w, and w, were set to zero). We observe
that both D, and ¢ vary with the rotation rate of the projectile, with D, and 0 increasing by
roughly 20 and 40%, respectively, when K,/ K, varies from zero to two. Apparently, part of
the rotational kinetic energy further agitates the bed, helping to dislodge more grains and exca-
vate it. Figure (5.16)a compares the granular temperatures for rotating and non-rotating cases,

where we notice that the rotating case maintains a higher degree of fluctuation.
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Figure 5.16 — (a) Time evolution of the space-averaged granular temperature § considering all
grains. The red line corresponds to a rotating projectile (K, /K, = 0.5) and the
black line to a non-rotating projectile. ¢ = 0.554 and h = 1 m. (b) Penetration
depth § as a function of K,,/K, by considering only w,, for frictionless grains.
In the figure, squares correspond to simulations where all friction coefficients
are zero (u = 0), and circles to those where only the grain-projectile friction is
nonzero (fig, 7 0). Images taken from (Carvalho et al., 2023b).

In addition, we notice that, while a clear fitting cannot be found for D, (it seems to
increase and then reach a plateau for K, /K, > 1, but we cannot assert it for the moment), ¢

follows a curve as in Eq. (5.10),

§ ~ (Ky/K,)", (5.10)
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where n = 0.075. In terms of the total rotation «, that the projectile effectuate after colliding
with the bed, Fig. (5.15)d shows a linear variation with K,/ K. In order to investigate the effect
of the direction of ¢ on the penetration depth J, we set either w,, w, or w, to a nonzero value
for K,/ K, equal to 10, 50 and 100%. This is presented in Fig. (5.15)c, which shows that in
all cases ¢ follows the same trend with K,/ K, but with higher values for w, (by symmetry, w,
and w, are equivalent).

In the specific case of frictionless solids, ¢ reaches higher values and the projectile
takes more time to stop rotating (when 14, # 0) or even keeps rotating (when ;o = 0), though ¢
reaches a final value. Figure (5.16)b shows 0 as a function of K, /K, for frictionless grains. We
note that for simulations with p = 0 the angular velocity of the projectile, w,, remained constant
during our simulations, though ¢ reached a final (stable) value. For the simulations with /i, 7
0, w, decreased slowly in time, but ¢ reached a final value much before w, reached zero.

Concerning the general morphology of the crater, Fig. (5.17) shows top views of
final forms resulting from projectiles with angular velocities in the y, x and z directions (—w,,
w, and —w,, respectively). We observe strong asymmetries when either w, or w, are nonzero,
with grains accumulating (forming the corona) mostly in the direction of the tangential velocity,

since they are partially excavated by the projectile rotation.

_wy wI _wZ
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Figure 5.17 — Top views of final forms of craters resulting from projectiles with angular veloc-
ities in the y, = and z directions (—w,, w, and —w,, respectively). The colors
correspond to hy.q — ¥ (the bed height measured from the bottom) and the values
in the colorbar are in m. In this figure, K,/K, = 1, ¢ = 0.554 and h = 0.1 m.
Image taken from (Carvalho et al., 2023b).

Finally, we measured the final rebound and time to reach the full stop for different
values of K,/ K,, which we present in Fig. (5.18), Fig. (5.18)a showing the vertical displace-
ment of the projectile during the rebound Ay, cpoung and Fig. (5.18)b the time evolution of the

vertical component of the projectile velocity V;,. We observe in Fig. (5.18)a that Ay,cound 18
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Figure 5.18 — (a) Vertical displacement during the rebound Ay, ¢pounq, Normalized by D,, as a
function of the ratio of rotational to linear kinetic energies, K, /K, in percentage.
(b) Time evolution of the vertical component of the projectile velocity V;, for
different values of K,/ K, and the entire simulation, and (c) zoomed in the region
corresponding to the projectile rebound and final stop. In figures (a) to (c), we
consider only w,, and ¢ = 0.554 and ~ = 0.1 m. Images taken from (Carvalho et

al., 2023b).

approximately zero for rotating projectiles, indicating that in this case the rebound is suppressed

even for small angular velocities (K, /K, = 0.1), as can be see in detail in Fig. (5.18)c. While

the rebound is suppressed, Figs. (5.18)b and (5.18)c show that the stopping time . increases

slightly with the angular velocity of the projectile. Figure (5.19) presents a full comparison

between a rotating and non-rotating case, on which we observe the absence of the rebound for

a rotating case.
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Figure 5.19 — Time evolution of (a) vertical position y of the projectile; (b) vertical velocity V,,
of the projectile; (c) vertical deceleration a,, of the projectile, normalized by g;
and (d) space-averaged granular temperature § considering all grains. The red
line corresponds to a rotating projectile (K, /K, = 0.5) and the black line to a
non-rotating projectile. ¢ = 0.554 and h = 1 m. Images taken from (Carvalho e?
al., 2023b).

Finally, Tab. (B.1) in Annex B summarizes results obtained for rotating projectiles
with different angular velocities &.

In summary, we investigated numerically the formation of craters by an object im-
pacting a granular bed, and concentrated our efforts into questions that were still open or to be
investigated, such as the effects on cratering of the packing fraction of beds, solid friction of
grains, and initial spin of projectiles. We found that the packing fraction ¢ does not affect the
crater diameter D)., both in terms of magnitude and functional relation with the drop distance
H, while the depth ¢ reached by the projectile is highly influenced by ¢. By observing a lack
of consensus in the literature, with diverging correlations for §(H ), and based on our results
for different packing fractions, we proposed an ad hoc scaling law that collapsed our data and
indicates that some of the existing 0 (H ) correlations may be turned universal by considering ¢.
For the projectile dynamics, we showed that it presents a high dependency on ¢, and explained

the final rebound as the result of a faster de-fluidization on the front (bottom) than on the rear
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(top) of the projectile. We also showed that both the morphology of craters and the projectile
dynamics are highly affected by the presence of fricionless grains (both D, and § increase with
the absence of friction, a,, oscillates around a constant value during great part of the penetration,
and the projectile rebound is suppressed), evidencing the importance of grain-grain friction in
models and computations. Finally, we revealed how D, and ¢ increase with the initial spin
(angular velocity) & of the projectile, and that the final rebound is suppressed by . Our results
represent a new step toward understanding the mechanics of impact cratering in granular matter.

In the next section (Sec. 5.1.2), we investigate numerically some aspects of the
dynamics behind the cratering process when the projectile is formed as an aggregate (cohesive)

of smaller particles.
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5.1.2 Impact of a cohesive projectile (aggregate)

This section (Sec. 5.1.2) reproduces material from Douglas D. Carvalho, Nicolao C.
Lima, and Erick M. Franklin, “Impact craters formed by spinning granular projectiles”, Phys.
Rev. E 108, 054904 (2023), with permission from the American Physical Society (Carvalho et
al., 2023a).

Even though previous studies explained important aspects of impact cratering, many
questions remain open. One of them concerns the mechanics of cratering for spinning aggre-
gates impacting a granular ground. In this specific case, close to impacts observed in nature, the
total or partial collapse of projectiles can engender different crater structures, explaining some
of the crater shapes observed in nature and how materials from the projectile spread below and
over the ground. This section inquires into these questions. For that, we carried out 3D DEM
computations of spinning granular projectiles (aggregates) impacting onto a bed consisting of
cohesionless grains, for different bonding stresses (between the projectile’s grains), initial spins
and initial heights, in accordance to the methodology presented in Sec. 3.1.2, with the addi-
tional modeling of Sec. 3.1.2.2. In summary, we show that, as the bonding stresses decrease
and the initial spin increases, the projectile’s grains spread farther from the collision point, and,
in consequence, the crater shape becomes flatter, with peaks around the rim and in the center
of craters. In addition, we found that the penetration depth of rotating projectiles varies with
their angular velocity and degree of collapse (number of detached particles), but not necessarily
with the bonding stresses, indicating that under high spinning velocities the excess of breaking
energy contributes only for the larger spreading in the horizontal plane and formation of peaks.
Our results shed light on the different shapes of craters found on planets and moons, as well as

on the distribution of the projectile material below and over the ground.

5.1.2.1 Numerical setup

The numerical domain consisted of: (i) N ~ 10° spheres with diameter 0.6 mm <
d < 1.4 mm following a Gaussian distribution and fixed density p = 2600 kg/m?, which formed
a granular bed in a cylindrical container [the distribution of diameters used in the simulations is
shown in Tab. (5.5)]; and (ii) /N, = 1710 spheres with d, = 1 mm and p, = 15523 kg/m? bonded
together [please check Fig. (3.1)b], which formed a round projectile with total diameter D, =
0.015 m and bulk density p,, pux = 7865 kg/m* (packing fraction ¢, = 0.507). A scheme of the

numerical setup and an image of the granular projectile are shown in Fig. (5.20)a and (5.20b),
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respectively.

Prior to each simulation, around 10° grains (bed spheres) were let to fall freely and
settle, and grains that were above that height were deleted in order to have a horizontal surface
(around 10* grains were removed), the number N then depending on the initialization (being
always ~ 10°). With that, we obtained a granular bed with diameter Dj.; = 125 mm, height
hieqa = 76.5 mm, and packing fraction ¢ = 0.554. For the projectile, the value of p, assured
that the agglomerated material had the same size and mass of solid projectiles investigated in
(Carvalho et al., 2023b), and we applied a given bonding stress o), to all grain-grain contacts.
In our simulations, o, was modeled through a breakup-tension threshold, and we used either o),
=1 x 107, 5 x 107 or 1 x 10?2 N/m? in order to investigate the effect of bonding stresses on
cratering. The highest value was chosen to avoid the projectile collapse, and the others to have
partial or total collapses. The material that bonds two or more particles together can be modeled
in several ways (Guo et al., 2013; Schramm et al., 2019; Chen et al., 2022a; Gong et al., 2023).
In this work, it acts as a spring and damper system, where the bonds can twist, bend, stretch
and break due to both normal and tangential stresses. The damping system is based on Guo
et al. (2013) (Guo et al., 2013), whereas the bond normal force and the bending and torsional
moments are determined using linear models. More details can be seen in Sec. 3.1.2.2, and
validation and details of the used model can be found in Guo et al. (2013) (Guo et al., 2013)
and Schramm et al. (2019) (Schramm et al., 2019).

Table 5.5 — Distribution of diameters for the settling grains: number of grains N, for each di-

ameter d.

d (mm) 0.6 0.8
Ny 21524 | 128125

1.0 1.2 1.4
643002 | 128053 | 21421

Table 5.6 — Properties of materials used in the simulations: E is Young’s modulus, v is the
Poisson ratio, and p is the material density. The last column corresponds to the
diameter of the considered object.

Material E (Pa) v | p(kg/m?) | Diameters (mm)
Bed grains Sand®-(® | 0.1 x 10° | 0.3 2600 06<d<14
Projectile grains - 0.2 x 10 | 0.3 | 15523 1.0
Bond material - 0.2 x 10" | 0.3 - 0.1
Walls Steel (M 0.2 x 102 | 0.3 7865 125

) Ucgul et al. (Ucgul et al., 2014a; Ucgul et al., 2014b; Ucgul et al., 2015)

(2) Derakhshani et al. (Derakhshani et al., 2015)
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Figure 5.20 — (a) Layout of the numerical setup (the y coordinate points downwards, and, al-
though shown on the bottom, the origin of the coordinate system is on the bed
surface centered horizontally in the domain); (b) Detail of the granular projectile
(aggregate); (c) Topography (elevation) of a crater formed by a spinning projec-
tile consisting of bonded grains (we notice at least one internal peak close to the
rim). In this figure, the bonding stresses are 107 N/m?, the ratio between linear
and angular kinetic energies is 1, and the colorbar shows the elevation from the
undisturbed surface (pointing downwards). Images taken from (Carvalho et al.,
2023a).

The properties and coefficients of grains forming the bed and projectile were taken
from the literature, and are listed in Tabs. (5.6) and (5.7) (together with those for the walls).
In addition, we validated the friction coefficients listed in Tab. (5.7) by measuring the angles
of repose obtained numerically, as shown in Sec. 5.1.1.1. Because we used spherical particles,
we embedded angularity in the rolling friction ., (for typical sand, Derakhshani et al. (2015)

(Derakhshani et al., 2015) showed that x,, = 0.3). The simulations began by imposing to the
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Table 5.7 — Coefficients used in the numerical simulations.

Coefficient Symbol | Value
Restitution coefficient (bed grain-bed grain)™ €gg 0.60
Restitution coefficient (bed grain-projectile grain)(*) €gp 0.60
Restitution coefficient (projectile grain-projectile grain)® €pp 0.56
Restitution coefficient (bed grain-wall)(*) €qu 0.60
Restitution coefficient (projectile grain-wall)™) Epw 0.60
Fiction coefficient (bed grain-bed grain)™®)-(3) Hag 0.52
Friction coefficient (bed grain-projectile grain)(*) Lgp 0.50
Friction coefficient (projectile grain-projectile grain) Hpp 0.57
Friction coefficient (bed grain-wall)™ gw 0.50
Friction coefficient (projectile grain-wall) Hpw 1.00
Coefficient of rolling friction (bed grain-bed grain)® L. gg 0.30
Coefficient of rolling friction (bed grain-projectile grain)® fr.gp 0.05
Coefficient of rolling friction (projectile grain-projectile grain) | i, ,p 0.30
Coefficient of rolling friction (bed grain-wall)(*) L g 0.05
Coefficient of rolling friction (projectile grain-wall) Ly pw 1.00

M Ucgul et al. (Ucgul et al., 2014a; Ucgul et al., 2014b; Ucgul et al., 2015)
(2) Zaikin et al. (Zaikin et al., 2017)
(3) Derakhshani et al. (Derakhshani et al., 2015)

projectile a collision velocity V,, corresponding to the free-fall height h, i.e., V, = v/2gh. For
the values used in our simulations, Froude numbers were within 3.8 x 1072 < Fr! < 7.5
x 1072, and we used a time step At = 1 x 107" s, which corresponds to less than 10 % of
the Rayleigh time ¢y [Eq. (4.2)] (Derakhshani et al., 2015). Figure (5.20)a shows a layout
of the numerical setup, and animations showing impacts and cratering are available in <https:
/ljournals.aps.org/pre/supplemental/10.1103/PhysRevE.108.054904>. The numerical setup of
our simulations, output files, and scripts for post-processing the outputs are available in an open

repository (Lima et al., 2023).

5.1.2.2 Results and discussion

Figure (5.21) shows top view images of the final position of grains for non-rotating
and rotating projectiles with different bonding stresses o,,. The bonding stresses are listed on the
left, the corresponding elevation (from the undisturbed surface) of each grain is shown on the
right, and initial heights & (non-rotating cases) and ratios of rotational to linear kinetic energies
K, /K, available at the impact (for spinning projectiles) are shown on the top. We used three
different values of 0,: 0, = 1032 N/m?, which is strong enough to ensure that the agglomerate
behaves as a single solid (no breaking) for the range of energies simulated; o, =5 x 107 N/m?,

for which the aggregate collapses partially within the ranges of energy simulated; and 0, = 1 x
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Figure 5.21 — Top view of final positions of grains, showing the final morphology of craters for
non-rotating and rotating projectiles with different bonding stresses. For spinning
projectiles, i = 0.1 m. The colorbar on the right shows the elevation of each grain
from the undisturbed surface (coordinate pointing downwards). The same figure

in gray scale is shown in Fig. (C.1), in Annex C. Images taken from (Carvalho e?
al., 2023a).

107 N/m?, for which the projectile collapses completely for the highest energies simulated. For
the non-rotating case, we observe that the crater diameter D, remains roughly constant and the
height of the corona (rim) increases with the decrease in the bonding stresses, and, consequently,
with the number of broken bonds [shown next in Fig. (5.28)c]. In the rotating case, craters are
shallower, wider, and with lower rims when compared to the non-rotating case. This is caused
by the stronger spreading of grains when the projectile has an initial spin, which we inquire
further in the following. In addition, we observe that large asymmetries can appear for rotating
cases in which partial breaking occurs, such as when 0, =5 x 107 N/m? and K,/ K, = 200%
[the partial breaking is confirmed in Fig. (5.28)f]. The asymmetries come then from a small
number of chunks spreading in the horizontal plane (when o, =5 x 10" N/m? and K, /K, =
200%, three large pieces were spread by centrifugal effect. For a clearer view, Figs. (5.22) and
(5.23) show snapshots of the final positions of grains originally in the projectile. A movie of the
entire process can be found at <https://journals.aps.org/pre/supplemental/10.1103/PhysRevE.
108.054904>.

Most of the aforementioned comments can be observed in Figs. (5.24) and (5.25),
which show the topography (elevation) of the final craters for non-rotating and rotating pro-

jectiles, respectively, for the same variations of the bonding stress and available energy of
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Figure 5.22 — Snapshots of the final positions of grains originally in the projectile, for the non-
rotating cases. The colorbar on the right of each graphic shows the corresponding
depth measured from the initial bed surface in m. Images taken from (Carvalho
et al., 2023a).

Fig. (5.21). Although variations of D, are easier observed in Fig. (5.21), Figs. (5.24) and (5.25)
allow for easier and direct observations of the crater depth and the formation of small peaks (we
note that the scales of figures are not the same). We notice that the crater shape becomes flatter,
with peaks around the rim and in the center of craters as the bonding stresses decrease and the
initial spin increases (although peaks can also appear in low-energy cases without fragmenta-
tion). Some of these observations are corroborated by Fig. (5.26), which shows profiles of the
elevations of final craters for both non-rotating and rotating projectiles, with different bonding
stresses. Profiles corresponding to different heights are superimposed for non-rotating cases and
to different rotational energies for rotating cases, allowing direct comparisons. We observe that
craters have higher diameters and lower depths when projectiles have large rotational energies

and low bonding stresses, and that some oscillations appear in the region near the corona (cor-
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Figure 5.23 — Snapshots of the final positions of grains originally in the projectile, for the ro-
tating cases. The colorbar on the right of each graphic shows the corresponding
depth measured from the initial bed surface in m, and A = 0.1 m for all figures.
Images taken from (Carvalho et al., 2023a).

responding to peripheral peaks). We can observe a central peak in low-energy non-fragmenting
cases, but they correspond to the projectile itself (which was not completely buried). Check
Fig. (5.27) for profiles excluding the projectile’s grains. Therefore, the final topographies in-
dicate that the formation of central and peripheral peaks are due to the stronger spreading of
grains when the projectile has higher rotational energies. In addition, the central peak can also
be formed by a partially penetrating projectile when the available energy is relatively low.

In order to inquire further into the crater shape and the level of fracture of the pro-
jectile, we plot in Fig. (5.28) the crater diameter D, the penetration depth d, and the percentage
of broken bonds as functions of the initial height h or the ratio of rotational to linear kinetic
energies K, /K, for, respectively, non-rotating and rotating projectiles. The crater diameter

D. was determined as the diameter of a circle fitted over the corona, as shown in Fig. (5.3)d,
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Figure 5.24 — Topography (elevation) of the final craters for non-rotating projectiles with differ-
ent bonding stresses. The colorbar on the right of each panel shows the elevation
from the undisturbed surface in m. The same figure in gray scale is shown in
Fig. (C.2), in Annex C. Images taken from (Carvalho et al., 2023a).
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Figure 5.25 — Topography (elevation) of the final craters for rotating projectiles with different
bonding stresses. The colorbar on the right of each panel shows the elevation
from the undisturbed surface in m, and & = 0.1 m for all panels. The same figure

in gray scale is shown in Fig. (C.3), in Annex C. Images taken from (Carvalho et
al., 2023a).
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Figure 5.26 — Profiles of the elevations of final craters for both non-rotating and rotating pro-
jectiles, with different bonding stresses. The heights and rotational energies are
shown in the figure key, and 2 = 0.1 m for non-rotating projectiles. All profiles
were plot in a vertical plane of symmetry (therefore, include the crater center).
These profiles include the projectile’s grains. Figure (5.27) presents profiles ex-
cluding the projectile’s grains. Images taken from (Carvalho et al., 2023a).

and corresponds to an equivalent diameter in the case of asymmetric craters. Whenever the
projectile collapsed, we computed o based on the center of mass of the projectile’s grains. For
the non-rotating case, we observe that D, [Fig. (5.28)a] is roughly independent of o, (for the
levels of energy investigated here), varying as D, ~ h'/4, in agreement with Pacheco-Vazquez
and Ruiz-Sudrez (2011) (Pacheco-Véazquez; Ruiz-Sudrez, 2011), although they measured the
packing fraction of agglomerates instead of o, (to which we have access in our simulations).
However, Pacheco-Vazquez and Ruiz-Suérez (2011) (Pacheco-Vazquez; Ruiz-Sudrez, 2011)
identified a discontinuity in D, as a result of fragmentation, which depended on the projectile
packing fraction. We did not observe the discontinuity, perhaps because our projectiles were
lighter than those in Ref. (Pacheco-Vazquez; Ruiz-Sudrez, 2011) (13.9 g in our simulations,
against 33.0—45.5¢g in their experiments). The penetration depth ¢ [Fig. (5.28)b], on the other
hand, depends on o, varying with the percentage of broken bonds [Fig. (5.28)c]. In addition,

the rate of change of ) with h decreases as h increases, and it is possible that a plateau is reached
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Figure 5.27 — Same as Fig. (5.26), however these profiles do not include the projectile’s grains.
Images taken from (Carvalho et al., 2023a).

for values of h higher than those simulated in this work. This would be in agreement with the re-
sults of Ref. (Pacheco-Véazquez; Ruiz-Sudrez, 2011), but remains to be investigated further. For
0, Pacheco-Vazquez and Ruiz-Sudrez (2011) (Pacheco-Vazquez; Ruiz-Suérez, 2011) also found
a discontinuity resulting from fragmentation, which our simulations did not show. As stated for
D., the absence of discontinuity is due, perhaps, to the lighter weight of our projectiles. For the
rotating case, the situation is different: D, varies strongly with o, [Fig. (5.28)d], and variations
for ¢ are even stronger [Fig. (5.28)e]. Figure (5.28)d shows that D, increases up to approxi-
mately 2 times when o, varies from the largest (non-breaking) to the lowest (breaking) values
(for K,/ K, varying between 0 and 200%), and for moderate stresses (o, = 5 X 107 N/m?)
we notice that partial breaking makes D, to deviate from the curve for the non-breaking case
toward to that for the breaking case [Jwhich occurs for K,/ K, around 100% in Fig. (5.28)d].
The inverse behavior occurs for d: it decreases by one order of magnitude when ¢, varies from
the largest to the lowest value, with also partial breaking (o, =5 x 107 N/m?) leading to the
breaking case as K, /K, increases. Finally, Fig. (5.28)f shows that, indeed, the percentage of
broken bonds is 0% for the largest o,,, and 100% for the lowest o, when K,/ K, > 30%, while

that for moderate o, evolves toward 100% for increasing K, /K,. At the same time, values
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Figure 5.28 — (a) Crater diameter D, (b) penetration depth 9, and (c) the percentage of broken
bonds as functions of the initial height A for a non-rotating projectile; panels (d),
(e) and (f) show D., § and the percentage of broken bonds as functions K /K,
for spinning projectiles falling from h = 0.1 m, respectively. The graphics are
parameterized by the bonding stresses (shown in the key of panel (a)), and the
results for the solid projectile reported in Carvalho ef al. (2023) (Carvalho et al.,
2023b) and showed in Sec. 5.1.1 are shown for reference. Images adapted from
(Carvalho er al., 2023a).

of ¢ for 0, =5 x 107 N/m? evolve toward those for o, = 1 x 10" N/m? [Fig. (5.28)e]. This
implies that the penetration depth of rotating projectiles varies with their angular velocity and
degree of collapse (number of detached particles), but not necessarily with the bonding stresses,
indicating that under high spinning velocities the excess of breaking energy contributes only for
the larger spreading in the horizontal plane and the formation of peaks.

After the impact has occurred, the projectile collapses if the bonding stresses are not
strong enough to maintain the agglomerate integrity. In these cases, besides changing consid-
erably the crater shape, the once agglomerated material is spread on or within the ground, over
distances that depend on the initial height, bonding stresses and initial spin of the projectile.
Understanding how this process occurs can help us, for example, to interpret whether materials
found today under the ground have their origin on the ancient impact of asteroids, and how they
are distributed, with important applications in geophysics and mining. Therefore, we inquire

now into the dispersion of the projectile’s grains.
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Figure 5.29 — Final positions the projectile’s grains after the impact has taken place, for o, = 1
x 107 N/m? and different values of K, / K,,. From top to bottom: (a) Frequencies
of occurrence of the projectile’s grains in the r—6 plane (radius—angle plane, in-
dependent of the depth); (b) frequencies of occurrence of final positions in terms
of the angle (all depths); (c) frequencies of occurrence of final positions in terms
of radius (all depths); (d) frequencies of occurrence of final positions in the y
coordinate (depths for all angles and radii). Images taken from (Carvalho et al.,
2023a).

Figure (5.29) shows the final positions of grains initially forming the projectile, for
o, =1 x 10" N/m? and different K, /K. The first row [Fig. (5.29)a] shows the frequencies of
occurrence of the projectile’s grains in the r—f plane (radius—angle plane, independent of the
depth), corresponding then to top views of the distributions of the projectile’s grains (in the polar
plane). We clearly observe that the projectile material reaches distances farther from the colli-
sion point as the rotational energy increases. In order to have more quantitative measurements,
the second [Fig. (5.29)b] and third [Fig. (5.29)c] rows show the frequencies of occurrence of
final positions in terms of the angle ¢ and radius r, for all depths, where the angles are given

in degrees and the radius in m [see Fig. (2.1)c for # and r]. We observe that in this weak-bond
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case the projectile’s grains spread in a roughly symmetrical way along the angles, and distances
reached in the radial direction increase with K, /K,: the most probable values of the radius
increase from approximately 0.007 m when K, /K, = 0 to 0.03 m (one order of magnitude
greater) when K, /K, = 200%. Finally, the last row [Fig. (5.29)d] shows the frequencies of
occurrence of final positions in terms of depth (all angles and radii). Interestingly, we observe
that the most probable value decreases with K, /K, so that in average the projectile’s grains
tend to remain closer to the surface for higher spinning velocities, different from the behavior of
solid projectiles (which reach deeper depths for increasing K,/ K, as shown in Sec. 5.1.1.2.4).
However, the depth distribution widens, so that the projectile’s grains populate depths that spans
over larger values, including negative ones corresponding to peaks or the corona. Snapshots of
the final positions of grains originally in the projectile are shown in Figs. (5.22) and (5.23).

We note that we did not investigate here the effect of initial packing fractions on
the dynamics of cratering (as done in Sec. 5.1). However, we measured how the bed packing
fraction far from the collision point varies with the linear and rotational energies, for the differ-
ent bonding stresses used. For that, we selected a 20-mm-height cylindrical region occupying
the bottom of the cylindrical container (corresponding to 26% of the container) and measured
the average packing fraction before and after the impact. For rotating projectiles, we found no
change at all in the packing fraction, while negligible variations (increasing with h) were mea-
sured for non-rotating projectiles. The maximum variations were of 0.34%, 0.30% and 0.20%
for 0, =107, 5 x 107 and 10%2, respectively, and & =2 m. We also note that, under some con-
ditions, the dynamics of both cratering and projectile fragmentation change with the stiffness
of grains and bonds. Due to the presence of bonds, the effect of stiffness is rather complex and
needs to be investigated further.

In summary, we investigated numerically how the projectile spin and cohesion lead
to different crater shapes, and how the projectile’s materials spread over and below the ground.
We found that, as the bonding stresses decrease and the initial spin increases: (i) the projec-
tile’s grains spread radially farther from the collision point; (ii) the projectile’s grains remain
in average closer to the surface (lower penetration depths), but spread horizontally over longer
distances, with some grains buried deep in the bed while others are above the surface populating
peaks or the corona; (iii) as a consequence, the crater shape becomes flatter, with peaks around
the rim and in the center of craters. In addition, we found that the penetration depth of rotat-

ing projectiles varies with their angular velocity and degree of collapse (number of detached
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particles), but not necessarily with the bonding stresses themselves, indicating that under high
spinning velocities the excess of breaking energy contributes only for the larger spreading in
the horizontal plane and formation of peaks. Our results represent a significant step for under-
standing how cratering occurs, helping us, for example, to interpret whether materials found
today under the ground have their origin on the ancient impact of asteroids, and how they are
distributed, with important applications in geophysics and engineering.

In the next section (Sec. 5.2), we investigate experimentally some consequences of

spinning in the cratering process of a solid spherical projectile.
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5.2 Experimental Investigation

This section (Sec. 5.2) reproduces material from Douglas D. Carvalho, Yann Bertho,
Erick M. Franklin, and Antoine Seguin, “Penetration of a spinning sphere impacting a granular
medium”, Phys. Rev. E 109, 054902 (2024), with permission from the American Physical
Society (Carvalho et al., 2024a).

In this section, we investigate experimentally the impact dynamics of a sphere col-
liding with a granular bed, considering rotational effects, in accordance to the methodology
presented in Sec. 3.2.3. In summary, we observe that the rotation has an influence on the pene-
tration dynamics, increasing the sphere penetration as it rotates faster. Additionally, we develop
a first-order model that takes the effect of spinning into account to describe our experimental
observations. The resulting model can be used for estimating the depth reached by spinning
projectiles, with important applications in agriculture, reforestation, civil constructions, and

planetary exploration.

5.2.1 Experimental setup

magnet
projectile \

grains

Figure 5.30 — Sketch of the experimental setup and notations introduced. Image taken from
(Carvalho et al., 2024a). Same image as in Fig. (3.14)a and shown here for the
sake of completeness.

The penetration depth ¢ of a spherical projectile of diameter d and density p is
investigated by dropping it onto a fine granular material confined in a cylindrical container of

diameter D and height b [Fig. (5.30)]. The granular medium consists of slightly polydisperse
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glass spheres (diameter d, = 1 & 0.3 mm and density p, ~ 2.5 x 10® kg m—®) with an initial
packing fraction of ¢ ~ 0.6.

Different materials and sizes of spherical projectiles were used to highlight the in-
fluence of the sphere density p and diameter d on the penetration depth . For a container of
diameter D = 140 mm and height b = 90 mm, three different metallic projectiles were used,
with diameters d = 20, 25, and 30 mm and densities p ~ 14920, 8160, and 7710 kg m~3,
respectively. For a plastic projectile with diameter d = 80 mm and density p ~ 1150 kg m~3,
two different cylindrical containers were used, with diameter D = 400 mm and heights equal to
b = 50 mm and b = 180 mm. This allows us to keep aratio D /d 2 5, avoiding any confinement
effects (Seguin et al., 2008). All materials properties used in this study are shown in Tab. (5.8).
Note that for all cases studied here, the grain size d, remains much smaller than the projectile

diameter d, with d,/d < 0.05.

Table 5.8 — Properties of materials used in the experiments: p is the material density and the last
column shows the object’s dimensions [diameters (d, d,, and D) and height (b)].

Material p (kg/m?) Dimensions (mm)
Projectile | Metal (ferrous alloys) | 8160 and 7710 d =25 and 30
Projectile Tungsten 14920 d=20
Projectile Polyamide 1150 d=280
Grains Glass beads 2600 dg =1+£0.3
1) D = 140 mm and b = 90 mm
Walls Plexiglass - ii) D = 400 mm and b = 50 mm
iii) D = 400 mm and b = 180 mm

The impact velocity is adjusted by varying the releasing height A from 2 mm to
2.17 m. Hence, the corresponding speed at impact v;, given by v; = +/2gh, where g is the
gravitational acceleration, varies from 0.2 to 6.5 m s~'. Note that the projectile is released just
above the center of the cylindrical container and falls along its axis.

As ameans to investigate rotational effects and as described in Sec. 3.2.3, rather than
releasing a rotating projectile to impact a nonrotating granular bed, it is experimentally more
feasible to release a nonrotating projectile onto a rotating granular medium. In the absence of
relatively strong centrifugal effects, these situations are equivalent, since they induce the same
relative motion between the projectile and grains. Hence, the cylindrical container is placed on
a rotating platform allowing its rotation around its main axis at a constant angular velocity w;

1

in the range 0 — 10 rad s™". In the following, we will denote by an index “0” the quantities

referring to the case without any rotation (w; = 0).
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5.2.2 Results and discussion
5.2.2.1 Impact without rotation

Figure (5.31) displays the penetration depth d, as a function of the total distance
Hy = h + 4y traveled by the projectile, for a motionless reservoir (w; = 0) and four different

projectiles of different diameters d and densities p.
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Figure 5.31 — Penetration depth J, as a function of the total distance Hy = h + J, traveled by
the projectile for ((J) d = 20 mm, p ~ 14920 kg m~3, and 55 < h < 412 mm;
(A)d = 25mm, p ~ 8160 kgm~3, and 54.5 < h < 400 mm; and (©) d = 30 mm,
p =~ 7710 kg m~3, and 2 < h < 391 mm. Inset: &, as a function of H, for
(¢)d =80 mm, p ~ 1150 kg m3, and 3 < h < 2170 mm. Solid lines are the
best fits of experimental data following dy oc H', with a = 0.35, 0.40, 0.39, and
0.35 for increasing projectile sizes. Image taken from (Carvalho et al., 2024a).

As expected, and as already observed in several studies, the bigger and/or denser
the projectile, the deeper it sinks into the granular medium (Seguin et al., 2008). Moreover, the
greater the drop height, the deeper the penetration depth, with a power-law dependence close
to &y o« HY* in good agreement with the empirical power laws proposed in previous studies
(Uehara et al., 2003b; Ambroso et al., 2005; Bruyn; Walsh, 2004; Seguin et al., 2008).

Let us then write the equation describing the dynamics of the projectile. The pro-
jectile experiences its own weight and a force resulting from its interactions with the granular
medium, the latter having collisional and frictional origins that are proportional to v? and z,
respectively (Katsuragi; Durian, 2007). Hence, the equation of motion for the projectile can be

written as
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rd®d?z  wd®
= qm = g P9~ Kepgdd®v’ — Kopydgd®z, (5.11)

where K, and K, are coefficients. Based on previous theoretical studies (Guo, 2018), we can

define a dimensionless depth Z and a dimensionless time ¢ as

6 ) 6 1/2
Z= p—g¢z and t= M t. (5.12)
mpd mpd

This allows one to build the dimensionless penetration depth do and the dimension-
less total distance Hy, = h + &, which are plotted in Fig. (5.32). We observe that all the

experimental data collapse remarkably well on a single curve following the scaling law:

oo = AHZ, (5.13)

with A ~ 0.49 and o ~ 0.4 [dashed line in Fig. (5.32)].
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Figure 5.32 — Nondimensional penetration depth do as a function of the nondimensional total
distance Hy = h + 0, traveled by the projectile in log-log scales for the same data
as in Fig. (5.31). (- - -) Best fit of the data, with 50 = 0.49 HO 4. (—) Solution
of Eq. (5.14), with K, = 0.39 and K, = 7.2. Image taken from (Carvalho et al.,
2024a).

By using the same scaling from Eqgs. (5.12), Eq. (5.11) can be made dimensionless,

d?z dz\?
1ok (L) K.z (5.14)
P2 di
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and be solved numerically with the initial conditions z = 0 and dz/dt = v; = \/2gh att = 0,
for the position and the impact velocity of the projectile, respectively, i.e., in dimensionless

notations:

G 1/2
F=0; 0= (p—g(b) v;. (5.15)
mpgd

The final penetration depth & corresponds to the depth where the velocity vanishes,

the characteristic time of the penetration linked to the impact being typically:

-1/2
T, = (M) . (5.16)
mpd

At this point, a small discussion on the definition of 7}, should be addressed. We
note that the more “natural” characteristic penetration time d/v; is partially inappropriate. Two
time scales can be extracted from Eq. (5.11) by considering independently its two force terms.
By considering only the depth-dependent force term, the characteristic time is 7;,. Whereas,
by considering only the non-linear velocity-dependent force term, the characteristic time is
pd/(pyv;), which depends on the impact velocity v;. The velocity-dependent force term de-
creases from its maximal value at impact to zero at the stop, whereas the depth-dependent force
term increases from zero at impact to its maximal value at the stop. So, the timescale d/v; is
valuable for very low impact velocities, corresponding to small penetration depths. Conversely,
the greater the impact velocity, the closer the characteristic time is to 7, since d/v; tends to
zero. This topic has already been addressed in some previous studies supported with both ex-
perimental and numerical data (Katsuragi; Durian, 2007; Goldman; Umbanhowar, 2008; Seguin
et al., 2009).

Integrating Eq. (5.14) with the values K, = 0.39 and K, = 7.2 leads to the red
solid curve shown in Fig. (5.32), which is very close to the empirical power-law fit (dashed
line in the same figure). A large range of variations is reported in the literature for the /', and
K, coefficients, depending on material properties (density, friction coefficient, shape) and/or
packing fraction ¢ (Kang et al., 2018; Katsuragi; Durian, 2013; Guo, 2018). In particular, note
that we expect these coefficients to increase with ¢, leading to a decrease of the penetration
depth SO with ¢ (Umbanhowar; Goldman, 2010; Carvalho et al., 2023b). For instance, based on
the model proposed by Katsurati & Durian (2013) (Katsuragi; Durian, 2013), the coefficients
K, and K, from Eq. (5.11) should be calculated as:
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2 1
K=" K=2mp(2)7 (5.17)
3 Ppg

where 1 is the internal friction coefficient, defined as the tangent of the angle of repose, reported
by the authors to be ;1 ~ 0.45 for glass beads (as is the case in our experiments). The predicted

values of the coefficients for each one of the spheres used in our experiments are then:

Table 5.9 — Coefficients K, and K, calculated using Eq. (5.17).

phkem ™| K, [ K.
14920 0.9425 | 8.9173
8160 0.9425 | 6.5947
7710 0.9425 | 6.4102
1150 0.9425 | 2.4757

We note that the values of K, are a bit higher than that used in the manuscript.
As for K, the value used here is very close for the spheres with densities p = 8160 kg m™3
and p = 7710 kg m~3, a bit higher for the sphere with p = 1150 kg m—3 and smaller for that
with p = 14920 kg m~3 [for small impact speeds and low density projectiles, the shape of
the projectile during penetration should be considered (Katsuragi; Durian, 2013)]. As a basis
for comparison, K, = 0.8 and K, = 9 are reported for the data in Katsuragi et al. (2007)
(Katsuragi; Durian, 2007). In addition to that, Kang et al. (2018) (Kang et al., 2018) show
a large variation for the values predicted for K. They highlight that 10 < K, < 10> when
0.4 < p<0.8.
Finally, contrasting with the model by Katsuragi & Durian (2013) (Katsuragi; Durian, 2013)
[Eq. (5.17)], Guo (2018) (Guo, 2018) proposes that these coefficients might depend only on the
packing fraction ¢. Since our experiments are performed with the same grains and at approxi-
mately the same packing fraction, we decided to use a single pair of coefficients K, and /K, that
fit well all our experimental data [Fig. (5.32)]. Having said that, we point out that our values for
both coefficients are in the same order of magnitude as compared to these other similar stud-
ies (Katsuragi; Durian, 2007; Pacheco-Vazquez et al., 2011; Katsuragi; Durian, 2013; Hinch,
2014; Guo, 2018).
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5.2.2.2 Impact with rotation

5.2.2.2.1 Experimental and numerical results

In the reference frame of the tank, the spherical projectile has an initial spin w;. This

rotational velocity can be compared to the impact velocity using the velocity ratio v:

wid

(%

(5.18)

UV =

Note that v can be interpreted as the square root of the ratio between angular and

translational kinetic energies.
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Figure 5.33 — Nondimensional penetration depth 6 divided by the nondimensional penetration
depth without rotation b, as a function of the nondimensional velocity ratio
v = w; d/v;, for the following configurations: d = 20 mm and (>) h = 57 mm,
Chh =412mm ; d = 30 mm and (¢) h = 2 mm, (<) h = 45 mm,
(A)h =391 mm;d=80mmand (¢) h = 3mm, (V) h = 8 mm. (A) Numerical
simulations from Ref. (Carvalho et al., 2023b). (- - -) Best fit of both experimen-
tal and numerical data with & / 0o = 1+ 0.08v. Inset: Same data in linear plot.
Image taken from (Carvalho et al., 2024a).

Figure (5.33) displays the evolution of the relative penetration depth 5 / do as a func-
tion of the velocity ratio v (note that ) / do is also simply d/d,). We observe that the data collapse
on a single curve, as well as a slight increase in penetration depth with rotation. Indeed, within
the experimental range of v, the relative rotation between the projectile and the grains leads to

variations in the penetration depth of up to approximately 15%.
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To enhance the experimental data, we supplement them with numerical results ex-
tracted from a previous study obtained from three-dimensional discrete element method com-
putations (Carvalho et al., 2023b) and presented in Sec. 5.1.1.2.4. Just as reminder, in that case
(numerical), the granular medium consisted of spheres (d, = 1 + 0.4 mm, p, = 2600 kg m~?)
confined in a cylindrical container (D = 125 mm, b = 76.5 mm), leading to a granular packing
fraction of ¢ ~ 0.554. The projectile (d = 15 mm, p = 7865 kg m~?) was released from a
height h = 10 mm, with an angular velocity w; that varied from 0 to 418 rad s~!. The results
of these simulations are plotted in Fig. (5.33) (dark symbols) and complement our experimental
findings at large v, in a range of parameters that are difficult to access experimentally, since if
w; 1s too large, then the grains tend to be ejected due to centrifugal forces. A very good agree-
ment between experimental and numerical data is observed, with an overlap zone around v ~ 1.
For rotating projectiles impacting a granular bed (Carvalho et al., 2023b), part of the rotational
kinetic energy of the projectile agitates the bed, helping to dislodge more grains and excavate
it, leading to an increase in the penetration depth.

The inset in Fig. (5.33) shows the same data in linear plot and suggests that the
relative penetration depth o / do increases linearly with the velocity ratio v, following a law of
the form & / 50 = 1+ Br, with B ~ 0.08. Finally, considering that 50 = Aﬁg“, the data are well
described by the general fit,

6 =AHS (1+ Bv), (5.19)

where A ~ 0.49 and o ~ 0.4 come from the case without rotation (v — 0). The penetration

depth 0 of the projectile, expressed in terms of impact velocity v; and rotation velocity w;, writes

5= Ad (P o vl 0\ (), puid (5.20)
B 60,9 29d  d v; ) '

We note that the scaling drawn in Fig. (5.33) is not a master curve since Eq. (5.20)

cannot be written in a separable form with v; and w;. Consequently, 0 / do is still a function of
both variables v; and w;. However, the dependence of ) / 50 with v; is quite soft, which is why

we observe that all the data collapse on a single curve for the range of w; and v; explored.

5.2.2.2.2 Model update and discussion

We observed in Fig. (5.33) that the penetration depth varies continuously across

the different angular velocities (spins), for all initial heights and angular velocities tested ex-
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Figure 5.34 - [K.(0) — K.(v)]/K.(0) as a function of the nondimensional ratio velocity v =
w; d/v;. Symbols correspond to the same data as in Fig. (5.33). Numerical data
have been integrated with K, (0) = 26.84 and K, = 0.68 corresponding to values
for the nonrotating projectile in numerical simulations. (- - -) Fit of both experi-
mental and numerical data with [K,(0) — K.(v)]/K,(0) = 0.08 v. Image taken
from (Carvalho et al., 2024a).

perimentally and numerically (Carvalho et al., 2023b). This suggests that the dynamics of the
projectile should be continuous across different initial spins as it penetrates the granular bed.
Therefore, we aim at modifying Eq. (5.14) by incorporating the contribution of the projectile
spin.

The increase in penetration depth with the initial spin indicates that rotation en-
hances the fluidization of part of the granular medium around the projectile. As a result, the
pressure beneath the projectile decreases, with its angular velocity decreasing over a charac-
teristic time 7}, due to a resisting torque exerted by the granular medium on the sphere (7, is
the characteristic time for stopping the rotation of an initially spinning projectile, i.e., the time
interval for reaching a zero angular velocity).

The conservation of momentum for a sphere’s rotation is written as follows:

pd®— ~ Cf, (5.21)

where C'y corresponds to the resisting torque exerted by the granular medium on the object
during penetration. This resisting torque corresponds to a local solid friction force per unit area

between the grains and the sphere, noted 7;. This solid friction force cannot be reasonnably
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linked to the object’s angular velocity nor its geometrical properties. As it is applied to the
entire sphere of area ~ d?, a reasonable scale for the resistive torque should be Cy ~ d®7. This

scaling of the spin deceleration, dw/dt, can be obtained by carrying out a dimensional analysis:

dv  w; —0
dt T,

Working on the two previous relationships leads to pd°w; /T,, ~ d*7y, so the char-

(5.22)

acteristic time 7, should be proportional to the rotational inertia, i.e., T}, ~ pd*w; /7¢. Even if

we have no clear idea of what 7 is, it does not depend on p, d and w;. This way:

T, < pd*w;. (5.23)

As rotation and vertical penetration are decoupled in our experiments, there is no
obvious reason for the two corresponding timescales 7,, and 7T, to be of the same order of
magnitude. For example, for low rotational velocity, the characteristic time 7,, is such as 7, <
T, so that the rotation of the projectile can be neglected. Conversely, for high rotational velocity
(T, > T,), the projectile can keep on rotating while final penetration is reached. It is then
reasonable to assume that the resisting torque arises from contact between the grains and the
projectile and is therefore frictional rather than collisional in origin. Hence, we will suppose
that only the coefficient K, will be affected by the rotation of the projectile w(?), while the
coefficient K, will not depend on it. Let us consider two limiting cases: (i) The first one is
the regime where the impact velocity v; dominates and leads to a penetration time 7, much
greater than the characteristic time for spinning 7. In this situation, rotation will have no effect
on penetration depth. (i) The second one is the regime where the characteristic time due to
rotation 7}, is much greater than that due to translation 7;,. In this case, the angular velocity can
be considered constant over time, so that w(t) ~ w;. Both extreme cases are well describe by
the relevant dimensionless number v = w; d/v;. Consequently, in first approximation, the effect

of rotation can be modeled by defining a function K, (v). Let us set

K.(v) = K(0)[1 = [x()]] (5.24)

Note that the absolute value allows to overcome the direction of rotation of the
projectile.
Let us determine x(v) in our experiments. To do so, we set K,(0) = 7.2 and

K, = 0.39 (same values as for the nonrotating projectile) and determine Y for solving
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Eq. (5.14) continuously across different values of v. Figure (5.34) shows the evolution of
[K.(0) — K.(v)]/K,(0) as a function of v for both experimental and numerical data. Although
with a significant dispersion of data at low values of v, we observe that the coefficient K, de-
creases with v, which is consistent with the fact that the penetration depth 0 increases with the
angular velocity. This decrease is rather linear, so that we can define the function x such that
x(v) = Cv with C' ~ 0.08 to fit the data [dashed line in Fig. (5.34)].

We point out that the coefficients of the linear correction B in Eq. (5.19) and C' in
Eq. (5.25) are equal to 0.08. We believe that it is only a coincidence that they are equal, however
we are not sure of the origin of the equality of both coefficients. We note that the coefficient B
originally comes from the fit of the data of the relative penetration depth 0 / do as a function of v
in Fig. (5.33), while the coefficient C' only appears when the dependence of K, on v is analyzed
in Fig. (5.34). Thus, both coefficients were obtained from a simple linear fit of the data which
they represent, being linked to the dilation/fluidization of the granular material due to rotational
effects.

In this way, we are now able to modify the initial model [Eq. (5.14)] for taking

rotation effects into account, leading to:

¢E_ g, (‘Z)Q — K.(0)(1— |Cv]). (5.25)
dt? dt

We observe a discrepancy between the experimental data for the highest diameter
(d = 80 mm) and the dashed line on Fig. (5.34). These experiments always exhibit a pene-
tration depth smaller than the projectile diameter (0/d < 1). Since the model is based on the
assumption that the projectile is a point object, it is not precise enough to capture such limiting
cases. It should be noted, however, that the trend remains consistent, since these data follow
a curve parallel to the dashed line. In addition, we believe the dispersion observed for the
densest sphere (d = 20 mm) to be associated with the fact that /,(0) and K, are supposed to
be constant [although the data are well described by one single pair of coefficients, as seen in
Fig. (5.32)]. To calculate the values present in Fig. (5.34), we consider the spheres individually
(not all together as previously done in the other figures) and, since this sphere is twice as dense
as the other metalic spheres that we used in our experiments, and as Tab. (5.9) suggests, K, (0)
could be different (probably larger) for this specific sphere. We point out again that we made
the choice of using of a single pair of /i, and K, (Guo, 2018) because they describe well all

our experimental data [Fig. (5.32)]. In the end, the data collapses reasonably well by using
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the proposed scales and model, as can be seen in Fig. (5.33). What Fig. (5.34) is showing is
only part of our assumptions for the model (for obtaining the results of Fig.(5.35), for exam-
ple): it shows some linearity between /K, and v, with some deviations (as the case of d = 20
mm). Therefore, we understand that our model works well at first order, and that Fig. (5.34)
shows some second-order deviations (which seems to affect little the final results). Moreover,
the linear model proposed in Eq. (5.25) works only for cases where |x(v)| < 1, ensuring energy

dissipation.

35

Figure 5.35 — Nondimensional penetration depth § as a function of the dimensionless total dis-
tance H, and the nondimensional velocity ratio v. Black surface corresponds to
the solution of Eq. (5.25). Blue surface corresponds to the scaling law (5.19).
Image taken from (Carvalho et al., 2024a).

The resolution of Eq. (5.25) generates the black surface displayed in the three-
dimensional graphic of Fig. (5.35), which describes the penetration depth & (f[o, v) as a function
of the total height and the velocity ratio. Figure (5.35) also shows a blue surface that represents
the scaling law described by relation (5.19). We can see that both surfaces are very close to
each other, showing that the proposed model correctly captures the observed scaling law.

In summary, we have shown that rotational velocity increases the penetration depth
of a projectile impacting a granular material. However, the effect of rotation on the penetration
depth is of a lower order than that of impact velocity. It is possible to take the effect of rotation
v into account in the penetration depth 6 by modifying the usual scaling law for penetration
depth without rotation &y. The new scaling law is an affine relation that reads (6 — d¢) /0y ~
v. Moreover, by implementing rotation effects, we have adapted the dynamic equation for

penetration of a projectile into granular materials. The influence of rotation v essentially reduces
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the frictional drag term (proportional to depth). The resolution of this updated equation leads
to a solution & (lflo, v) represented by a nonplanar surface very close to the aforementioned new
scaling law. Nevertheless, the model proposed can be used to estimate the depth reached by
spinning projectiles, with important industrial, geotechnical and environmental applications.
Overall, our results represent a new step for understanding the mechanics of impact in granular

media.
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6 CONCLUSIONS AND FUTURE WORKS

This Thesis presents an investigation of the dynamics of solid objects (intruders)
moving in granular materials using numerical simulations, experimental approaches, and math-
ematical modeling. The work covers a variety of scenarios, including single and multiple intrud-
ers moving horizontally in granular media, as well as the impact of projectiles on granular beds.
The role of key parameters in the dynamics of these movements, such as intruder velocity, basal
friction, packing fraction, spatial arrangement of intruders, projectile rotation, bonding stresses
in particle aggregates, among others, are analyzed. The results provide new insights into the
mechanics of granular media when interacting with intruders, which are crucial for applications
in various fields, such as geophysics, engineering, and planetary science.

Through the use of the Discrete Element Method (DEM) and the open source code
LIGGGHTS, the study revealed complex mechanisms of force transmission in granular sys-
tems. The force network around a moving intruder was observed to be composed of two main
types of chains: load-bearing and dissipative. Load-bearing chains transmit large forces, lead-
ing to the formation of jammed regions and high drag forces, while dissipative chains percolate
smaller forces and contribute less to drag. The study also highlighted that anisotropy is more
pronounced in load-bearing chains, with a noticeable increase in anisotropy in regions down-
stream of the intruder path. Furthermore, variations in basal friction significantly influenced
the extent and strength of these force networks, as well as the formation of downstream cavi-
ties, demonstrating the critical role of friction in granular displacement. In addition, it has been
shown that load-bearing contact networks creep before breaking, thus allowing the intruders to
continue moving.

The interaction between multiple intruders moving in a granular bed was numeri-
cally explored, revealing a cooperative dynamics that is not present in single intruder scenarios.
The cooperative behavior arises from the compaction (in front of the intruder) and expansion
(downstream of the intruder) of the granular medium. For the case of two intruders moving side
by side at constant velocity, the study identified the optimal intruder spacing that minimizes
drag, offering potential applications for designing systems that need to navigate or agitate gran-
ular media efficiently. It was also found that the initial configuration and packing fraction

play crucial roles in determining the interaction patterns for intruders moving freely in granular



224

media. Certain configurations led to attractor-like behaviors, where intruders settled into stable
formations, indicating that granular systems can exhibit complex and stable cooperative dynam-
ics depending on their initial states. Experimentally, we showed that for two intruders moving
side by side at a constant speed, from a certain separation, the average drag felt by each intruder
decreases significantly and that there is an increase in this relative drag reduction with the depth
of the intruders. These findings were rationalized by the proposition of a phenomenological
model, based on the breakdown of contact networks between intruders when they move side by
side.

The research extended to projectile impacts on granular beds, a scenario relevant
to planetary science and engineering. Numerical simulations showed that the packing fraction
of the granular bed significantly affects the penetration depth of the projectile, while the crater
diameter remains apparently unchanged. The influence of friction between grains was also
critical; lower friction led to deeper penetration and larger craters, highlighting the importance
of friction in granular impact processes. In addition, the study explored the role of projectile
spin, finding that increasing spin leads to greater penetration depths and changes the final crater
shape. These findings suggest that both the mechanical properties of the granular bed and the
characteristics of the impacting object must be taken into account to accurately predict crater-
ing outcomes. Through experiments, we confirmed that increasing rotational speed leads to
increasing penetration depth, leading to the proposal of an updated model that incorporates ro-
tational effects to provide a refined scaling law for penetration depth, with potential applications
in geotechnical engineering and planetary exploration.

Further investigation into the effects of cohesion and rotational speed on crater for-
mation dynamics by the impact of aggregates revealed that decreasing bond stresses (between
the constituents of the aggregate) and increasing spin lead to more pronounced radial spread-
ing of projectile material. This results in flatter crater shapes with peaks around the rim and
center, and variable penetration depths, highlighting the diversity of crater shapes found in na-
ture. These results indicate that the interplay between cohesion, rotational speed, and granular
strength plays a crucial role in determining the final distribution of materials after an impact.
These results can be used for interpreting geological formations and the distribution of materials
in natural impact events.

Overall, the findings of this Thesis contribute to the understanding of the behavior of

granular materials when in the presence of an intruder. By elucidating the importance of some
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important mechanisms and parameters, both in cooperative dynamics and in crater formation,
this research provides a basis for the development of better predictive models and engineering
solutions for systems that interact with granular materials. Although this Thesis presents an
advance in the understanding of the dynamics of these movements, several aspects remain to be
better investigated in the future to deepen our understanding and enhance practical applications,
some of which are listed below.

Our current numerical studies for intruders moving in the quasi-static regime focus
on two-dimensional representations of granular systems. Extending these analyses to three-
dimensional systems would provide a more realistic and comprehensive understanding of in-
truder dynamics. Three-dimensional models can capture additional complexities, such as out-
of-plane force chains and three-dimensional flow patterns, which are essential for accurately
predicting behavior in natural and industrial environments. As shown in the experimental re-
sults for the interaction between intruders moving side by side, the deeper the intruders are,
the greater the relative drag reduction. Future investigations, both numerical and experimental,
performed at greater depths, could predict a saturation of this behavior and help elucidate the
physical mechanisms underlying this drag reduction.

Future research should investigate how varying the shapes (e.g., elliptical, angu-
lar, irregular) and sizes of intruders affect the force transmission, drag, and stability of granular
systems, especially when in the presence of multiple intruders. Experimental techniques involv-
ing photoelasticity could be employed as a means to achieve it, aiming at better understanding
the internal structure os these materials when under load or in the presence on intruders. Un-
derstanding these variations could lead to the development of optimized designs for tools and
devices that interact with granular media, such as agricultural machinery for soil preparation,
excavation equipment, and robotic systems for exploration in extraplanetary granular environ-
ments.

Further studies are needed to explore the effects of different levels of friction and
cohesion on granular behavior. In particular, incorporating other models for friction forces
into numerical simulations would be very valuable, especially for understanding events such as
jamming and stick-slip motion.

Examining the behavior of intruders at higher speeds and with multidirectional ca-
pabilities (e.g., lateral movements, rotations) would provide a more comprehensive and realistic

understanding of dynamic interactions in granular media, especially in characterizing the coop-



226

erative motion between intruders moving side by side.

The effects of oblique impacts at different impact angles on crater dynamics should
be explored. Understanding how these factors influence crater morphology and penetration
depth would be valuable for interpreting planetary surface features and designing impact miti-
gation strategies, since real impacts do not always occur perpendicular to the granular material.
Developing more sophisticated models that take into account the deceleration of projectile spin
over time and complex collision dynamics could improve predictions for various impact sce-
narios, especially in predicting crater diameter and projectile penetration depth.

For mathematical modeling of numerical and experimental observations, it would
be interesting to develop universal scaling laws that incorporate various factors, such as packing
fraction, friction, intruder shape, rotational effects, and high-energy impacts, thus allowing more
accurate predictions of granular behavior in impact dynamics.

Overall, exploring more realistic and complex conditions of intruder motion could
help bridge the gap between theoretical research and practical implementation. Likewise, the
motion of intruders through wet granular materials would be an interesting topic to be covered
in the future.

By pursuing these future research directions, we can further unravel the complex-
ities of granular materials when interacting with intruders, leading to more accurate models,
better predictions, and improved engineering solutions for various applications. Continued ex-
ploration of this topic could contribute to helping solve practical challenges in fields ranging

from fundamental physics to planetary exploration.
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APPENDIX A - INTERACTIONS AT THE GRAINS SCALE

The contact force between two dry grains is usually decomposed into a normal and
tangential reaction, which for particles large enough are dominated by the elastic repulsion
(Hertz contact) and solid friction (Amontons-Coulomb’s law), respectively (Andreotti et al.,
2011). When flowing, these materials are also subjected to inelastic collisions between the

particles. A brief description of these interactions is given below.

Figure A.1 — (a) Elastic contact between two spheres with a deformation of 24. (b) Free body
diagram of a block sliding over a surface. (c) Collision between two particles.
Images adapted from (Andreotti ef al., 2011).



242

A.1 Hertz elastic contact

The normal reaction force between two spherical grains of radius R forced against
each other by a force F)y originates, at a first approximation, of the elastic repulsion during the
deformation of the grains at the contact zone (Andreotti et al., 2011). Considering the hypothe-
sis that the two spheres are elastic and perfectly smooth (frictionless), the relation between the
force Fy and the deformation ¢ (check Fig. A.1a) is given by:

BVIR ),

FN:3(1—I/2)5 : (A.1)

where E is the particle Young modulus and v is the Poisson coefficient.
Note that the force does not depend linearly on the deformation §. Usually 6 < 2R,
and small deformations are present for rigid grains, however, the hypothesis that the deforma-

tions remain in the elastic domain is less certain (Andreotti ef al., 2011).

A.2 Solid friction - Amontons-Coulomb’s law

The tangential force between two grains comes from the friction between the sur-
faces in contact. By considering a block on top of a solid surface (Fig. A.1b), over which a
normal (Fy) and tangential (F't) force is applied, the laws of Amontons-Coulomb are given by

(Andreotti et al., 2011):

1. Starting from rest, to make the block move, it is necessary that the norm of the tangential

reaction R reachs |Rr| = us|Rn|, where Ry is the normal reaction and 1, is the static
friction coefficient between the two solids in contact. If there is no motion, the friction

force R is unknown, and just the inequality |Rr| < us|Rn| is verified;

2. If the block is moving, the friction force is given by |Rr| = p4|Rn|, where pq is the
dynamic friction coefficient between the two solids in contact, and it is in the direction

opposite to the block’s velocity;

3. The constants us and py depend only on the nature of the materials in contact, with

typically 1 > pg > pg > 0.1.
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A.2.1 Stick-slip motion

One important phenomenon associated with friction in granular materials is the
stick-slip motion, where the material alternates between phases of sticking (no movement) and
sliding (sudden movement). It usually occurs due to the intermittent rearrangement of force
chains. When external forces are applied, these force chains resist movement until the stress
exceeds a critical threshold. Once the threshold is exceeded, the structure of the granular ma-
terial breaks down locally, resulting in a sliding event. This may be followed by a period of
sticking, where the granular medium reorganizes and the force chains reform before the next

sliding event occurs (Kozlowski et al., 2019; Carlevaro et al., 2020).

A.3 Inelastic collisions between two particles

Consider two identical spherical particles of mass m, radius R and velocities vy
and vo (Fig. A.1c) experiencing a frontal collision, the impact is inevitably followed by a loss
of kinetic energy and the velocities of the sphere after the impact v} and v, are always smaller
than those previous to the impact, with the relation between these velocities given by (Andreotti

etal.,2011):

(v —v}) -k =—€(va —vy) -k, (A.2)

where k is the unit vector connecting the center of the particles during the impact and e is the
restituent coefficient.

For smooth spheres, the velocities after impact are written as (Andreotti et al.,

2011):
, 1+e
vy =Vi+ 5 [(ve — v1) - k]k, (A.3)
, 1+e€
Vy=Vz - — [(vo —v1) - kK, (A4)
And the variation in kinetic energy AF, during the collision is (Andreotti et al.,
2011):
_ . m 2 2
AE. = ——(1—¢€)[(va — v1) - kK]°. (A.S5)

4
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APPENDIX B - FABRIC TENSOR R

The fabric tensor is a mathematical tool used to describe the structure of a granular
material by quantifying the orientation and distribution of contacts between particles. In a
granular assembly, each contact between two particles contributes to the overall organization of
the material, and the fabric tensor is derived from these contacts. Mathematically, it is expressed

as (Latzel et al., 2000; Bi et al., 2011):

R=xY et B.1)
where N is the number of non-rattler particles (particles with at least two contacts), r;; is the
contact vector from the center of particle ¢ to the contact between particles ¢ and j, and ®
denotes the vector outer product. For two particles in contact, the outer product n;; ® n;j,
where n;; = r;;/|r;;| is a unit vector, gives a tensor that captures how much the contact is
oriented in various directions. In 2D, for n = [n,, n,], the outer product is:

2
ny  NgNy

NyNg n

Yy

This matrix describes how the contact vector n;; contributes to the material’s struc-
ture. Each entry in this matrix reflects how much the contact aligns with the x or y directions,
both individually (diagonal terms) and in combination (off-diagonal terms): diagonal elements
(e.g., n2) reflect contact alignment along the principal axes, while off-diagonal terms (e.g.,
ngn,) represent cross-axis interactions. The structure of the granular material can vary between
isotropic and anisotropic states, depending on the orientation of the contacts. If contacts are
randomly oriented, the sum of the outer products will yield an isotropic fabric tensor, meaning
all directions contribute equally, with no directional bias. If contacts are aligned in specific
directions (e.g., due to external forces like compression or shear), the fabric tensor becomes
anisotropic, indicating that some directions are more dominant than others.

The sum of the outer products over all N, contacts provides a macroscopic descrip-
tion of the contact network’s distribution. The resulting fabric tensor offers a statistical repre-

sentation of contact orientation across the entire granular material. For example, in a material

undergoing vertical compression, more contacts will form along the vertical axis, and the fabric
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tensor will reflect this anisotropy by showing a larger value in the direction of compression.
Similarly, in simple shear, the contacts reorient along the shear direction, leading to a fabric
tensor that captures this directional bias.

The diagonal elements of the fabric tensor (R and Ryy), represent the strength of
contact alignment along the principal axes. If Ryy > Ryy, it indicates that most contacts are
aligned in the z direction, suggesting anisotropy in the material’s contact network. The off-
diagonal elements (Rry and Ryx), capture the correlation between different directions. If ny
is large, it shows that contacts are not purely aligned with the x or y axis, but skewed between
them, contributing to overall anisotropy.

When the fabric tensor is diagonalized, we obtain its eigenvalues and eigenvectors,
which provide a clear physical interpretation of the internal structure of granular materials. The
eigenvectors represent the principal directions of the contact network, indicating the directions
along which the contacts (or force chains) are most aligned. In 2D, the fabric tensor has two
eigenvectors corresponding to two principal directions of alignment. The eigenvalues, on the
other hand, represent the magnitude of contact alignment in each of these principal directions.
A larger eigenvalue indicates stronger alignment of contacts along the associated eigenvector,
meaning more contacts are concentrated in that direction. Conversely, a smaller eigenvalue
indicates weaker alignment, with fewer contacts oriented along that direction. With the eigen-
values R; and R, of the tensor R, we can compute the average number of contacts per particle
Z = Ry + R, and the anisotropy of the contact network p = Ry — Ry (Biet al., 2011).

The sum of the eigenvalues represents the total contribution of contact alignment in
all directions. This sum is related to the mean contact number Z, which is the average number
of contacts per particle. The trace of the fabric tensor (the sum of its diagonal components)
is proportional to the mean contact number. This reflects the material’s overall connectivity,
with a larger sum indicating a higher number of contacts and a more interconnected granular
assembly. The difference between the eigenvalues measures the anisotropy p of the material.
If the eigenvalues are all equal, the material is isotropic, with contacts uniformly distributed
in all directions. When the eigenvalues differ, the material becomes anisotropic, showing a
directional preference in its contact structure. The larger the difference between eigenvalues,
the more pronounced the anisotropy.

For example, in 2D: if the eigenvalues 17, and R, are equal, the material is isotropic;

if R; # R», the material is anisotropic, with more contacts aligned along one principal direction.
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The difference 17y - Ry quantifies this anisotropy.

In an isotropic material, each particle has roughly the same number of contacts, and
these contacts are evenly distributed in all directions. However, under external loading (e.g.,
compression or shear), the contact network becomes anisotropic, with more contacts forming in
specific directions to resist the applied forces. The sum of the eigenvalues of the fabric tensor
still reflects the total number of contacts, while the difference between the eigenvalues captures
the directional bias introduced by the loading. For example: under vertical compression, more
contacts form in the vertical direction, leading to a fabric tensor with a larger eigenvalue corre-
sponding to the vertical axis. The sum of the eigenvalues increases as more contacts form, and
the difference between the eigenvalues grows, reflecting the anisotropy caused by the external
load. In simple shear, contacts realign with the shear direction, and the fabric tensor becomes
anisotropic. The eigenvalue associated with the shear direction increases, while those in other
directions may decrease. Off-diagonal terms may also become significant, reflecting the com-
plex interactions between the directions under shear. In both cases, the sum of the eigenvalues
remains related to the mean contact number, while the difference between the eigenvalues pro-

vides a measure of anisotropy.
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ANNEX A - ADDITIONAL GRAPHICS OF THE EVOLUTION OF
SOME FABRIC TENSOR R QUANTITIES

Additional graphics of the evolution of the mean number of contacts per particle Z,
the number of non-rattler particles N, and anisotropy level p for the different cases presented in

Sec. 4.1.2 and illustrated in Fig. (4.14) are given below.
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Figure A.1 — Time evolution of [(a) , (d)] the mean number of contacts per particle Z; [(b) ,
(e)] number of non-rattler particles /V; and [(c) , (f)] anisotropy level p for duos in
configuration of type IV. (a)-(c) correspond to Fig. (4.22c), and (d)-(f) correspond
to Fig. (4.22d). ¢ = 0.76. Images taken from (Carvalho; Franklin, 2022b).
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I. The figures correspond to Fig. (4.24b) and ¢ = 0.76. Snapshots of the intruders
and grains at the instants marked up in figure (c) are shown in Fig. A.3. Images

taken from (Carvalho; Franklin, 2022b).
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Figure A.3 — Snapshots showing the positions of the intruders and grains at the instants marked
up in Fig. A.2. Figures (a) to (d) follow the temporal sequence. Images taken from
(Carvalho; Franklin, 2022b).
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Figure A.4 — Time evolution of [(a) , (d)] the mean number of contacts per particle Z; [(b) ,
(e)] number of non-rattler particles N; and [(c) , (f)] anisotropy level p for trios in
configuration of type I. (a)-(c) correspond to Fig. (4.24)a, and (d)-(f) correspond
to Fig. (4.24)c. ¢ = 0.76. Images taken from (Carvalho; Franklin, 2022b).
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ANNEX B - RESULTS OBTAINED FOR ROTATING PROJECTILES
WITH DIFFERENT ANGULAR VELOCITIES
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ANNEX C - GRAYSCALE IMAGES FOR THE CRATERING
PROCESS OF A COHESIVE (AGGREGATE) PROJECTILE

Non-rotating Rotating
h=01m h=05m K,/K,=10% K,/K,=T7% K,/K,=200% [m]

" -0.0065
g
Deae
Z
&3
LYTT -0.0046
bm.
3 -0.0027
Z
N~
m
o)

I -0.0009
Y

(<)
= 0.0010
I~
=

Il

& 0.0029

Figure C.1 — Same as Fig. 5.21. The colorbar (in gray scale) on the right shows the elevation of

each grain from the undisturbed surface (coordinate pointing downwards). Images
taken from (Carvalho er al., 2023a).
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Figure C.2 — Same as Fig. 5.24. The colorbar (in gray scale) on the right of each panel shows
the elevation from the undisturbed surface in m. Images taken from (Carvalho et

al., 2023a).
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Figure C.3 — Same as Fig. 5.25. The colorbar (in gray scale) on the right of each panel shows
the elevation from the undisturbed surface in m, and h = 0.1 m for all panels.
Images taken from (Carvalho et al., 2023a).



