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ABSTRACT

Most studies on occupant behaviour (OB) in school classrooms are focused on window
operation in oceanic climates. In naturally ventilated schools, thermal comfort and indoor air
quality are mainly affected by OB with respect to window, door and fan operation. In addition,
the COVID-19 pandemic underscored the importance of indoor air quality, particularly in
densely occupied buildings such as schools. Therefore, this study aimed to identify and
quantify the influence of multi-domain factors (including thermal, indoor air quality, contextual
and multi-behaviour domains) on window, door, and fan status in naturally ventilated school
classrooms in a humid subtropical climate, in order to predict OB. A systematic literature review
was carried out to raise up information about existing models of occupant behaviour for school
buildings. A data collection of 66 public schools located in the state of Sao Paulo, Brazil, was
performed to identify envelope and construction characteristics and select representative
school buildings for a field campaign. Environmental variables, manual operation of windows,
doors and fans, and occupancy rate were monitored and questionnaires were applied in a set
of classrooms of selected school buildings. During part of the physical monitoring, restrictive
occupancy measures due to the COVID-19 pandemic were observed. Statistical analysis was
applied to assess the influence of the recorded parameters on the window, door, and fan status
and to generate OB predictive models. An OB model was implemented in building performance
simulations to predict OB over a year and compare it to optimized scenarios, considering
thermal comfort and indoor air quality requirements. Results showed that indoor environmental
variables influenced window, door, and fan status in school classrooms, with few exceptions.
Yet, the models including school routines, social norms and teachers’ behaviour as predictors
led to the highest accuracy. This suggests that, while a more complex model with additional
predictors can provide more accurate predictions of OB, it also becomes more context-
dependent and less generalizable. The trade-off between model complexity and
generalizability is an important consideration in this research study, and it highlights the
nuanced relationship between multi-domain factors affecting occupant behaviour in school
buildings. The comparison between real and optimized occupant behaviours revealed
variations of up to 42.5% in CO; levels and up to 9% in discomfort hours, highlighting the
potential to enhance indoor conditions by adjusting occupant behaviour. Finally, the optimal
strategies varied by school, emphasizing the importance of evaluating recommendations within

each specific context.

Keywords: occupant behaviour, school building, natural ventilation, multi-domain, building

performance simulation.



RESUMO

A maioria dos estudos sobre o comportamento do usuario em salas de aula de escolas
concentra-se na operacao das janelas em climas oceanicos. Em escolas naturalmente
ventiladas, o conforto térmico e a qualidade do ar interior sdo afetados principalmente pelo
comportamento do usuario com relacdo a operagao de janelas, portas e ventiladores. Além
disso, a pandemia da COVID-19 ressaltou a importadncia da qualidade do ar interior,
especialmente em edificios densamente ocupados, como as escolas. Nesse contexto, esta
pesquisa teve como objetivo identificar e quantificar a influéncia de fatores de multiplos
dominios (incluindo os dominios térmico, de qualidade do ar interior, contextual e de multiplos
comportamentos) sobre o status de janelas, portas e ventiladores em salas de aula de escolas
naturalmente ventiladas em um clima subtropical umido, a fim de prever o comportamento do
usuario. Uma revisdo sistematica da literatura foi realizada com o objetivo de levantar
informacdes sobre os modelos existentes de comportamento do usuario para edificacdes
escolares. Os projetos de 66 escolas publicas localizadas no estado de Sao Paulo, Brasil,
foram analisados com o objetivo de identificar as caracteristicas da envoltéria e da construcao.
As variaveis ambientais, a operacdo manual de janelas, portas e ventiladores e a taxa de
ocupacao foram monitoradas e questionarios foram aplicados em um conjunto de salas de
aula de escolas selecionadas. Durante parte do monitoramento, foram observadas medidas
restritivas de ocupacdo devido a pandemia da COVID-19. Analises estatisticas foram
aplicadas para avaliar a influéncia dos parametros registrados no status das janelas, portas e
ventiladores e para gerar modelos preditivos do comportamento do usuario. Um modelo foi
implementado em simulagdes do desempenho da edificacdo para prever o comportamento do
usuario ao longo de um ano. O comportamento real foi comparado com cenarios otimizados,
considerando parametros de conforto térmico e qualidade do ar interior. Os resultados
mostram que as variaveis ambientais internas influenciaram no status de janelas, portas e
ventiladores das salas de aula, com poucas exceg¢oes. No entanto, os modelos que incluiram
rotinas escolares, normas sociais e comportamento dos professores como preditores levaram
a uma maior precisio. Isso sugere que, embora um modelo mais complexo, com preditores
adicionais, possa fornecer previsdes mais precisas do comportamento do usuario, ele também
se torna mais dependente do contexto e menos generalizavel. O equilibrio entre a
complexidade e a generalizagdo do modelo € uma consideracao importante nesse estudo e
destaca a relagao entre os fatores de varios dominios que afetam o comportamento dos
usuarios em edificagbes escolares. A comparagao entre os comportamentos de ocupantes
baseados em dados reais ou otimizados revelou variagbes de até 42,5% nos niveis de CO e
de até 9% nas horas de desconforto, destacando o potencial para melhorar as condigbes

internas por meio do ajuste do comportamento dos usuarios. Por fim, as estratégias



otimizadas variaram de acordo com a escola, enfatizando a importancia de avaliar as

recomendacdes em cada contexto especifico.

Palavras-chave: comportamento do usuario, edificacdo escolar, ventilagao natural, multiplos
dominios, simulagdo do desempenho da edificagao.
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1 Introduction

Occupant behaviour (OB) plays an important role on the building performance in all its aspects,
such as indoor conditions, usability, functionality and energy use (O’'BRIEN; TAHMASEBI,
2023). Occupants interact with buildings’ controls or interfaces, in order to adapt the
environment to their needs (e.g., window, blinds, lighting and air-conditioning operation) or to
adapt themselves to the environment (e.g., clothing adjustment and drinking hot or cold
beverage), aiming to maintain their comfort and preferences (DELZENDEH et al., 2017; HONG
et al., 2016b; O'BRIEN; TAHMASEBI, 2023). They usually respond in different ways to the
built environment, since there are many factors, such as external (environmental factors, time-
related factors, contextual factors) and internal factors (physiological factors, psychological
factors, social factors), that influence their decision-making process (O’'BRIEN et al., 2016;
YAN et al., 2017). Challenges in studying OB in buildings include its complexity and dynamicity
in nature, privacy issues, which difficult the data collection, and the relatively high costs to

acquire various types of sensors to monitor OB (DONG et al., 2022).

Due to OB uncertainty and unpredictability, this parameter is often oversimplified in building
performance simulation (BPS) and, as a consequence, it is one of the main causes of a
performance gap between buildings’ performance prediction versus reality (SHI et al., 2019;
WANG; HONG; JIA, 2018). In this context, occupant modelling has gained attention by
researchers and practitioners, due to its impacts, which can increase the performance gap;
the increasing interest in occupant wellbeing; and the increased computational and simulation
capabilities (O’BRIEN; TAHMASEBI, 2023). More than 500 papers have been published on
the topic of OB over the last decade, including data regarding occupancy (e.g., occupant
presence and movement) and occupants’ actions (e.g., windows and door operation, blinds/
solar shading operation, thermostat or air-conditioning adjustment) (DONG et al., 2022). OB
models from these studies have been developed to predict and represent human behaviour in
BPS, aiming at optimizing the building design and, therefore, reducing the performance gap,
and also to better understand comfort and adaptive opportunities and to help develop
strategies toward healthy indoor spaces (O’BRIEN; TAHMASEBI, 2023).
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The International Energy Agency (IEA), that co-ordinates international energy research and
development activities, had two projects in this research area: Annex 66 (Definition and
Simulation of Occupant Behaviour in Buildings), conducted between 2013 and 2017, and
Annex 79 (Occupant-Centric Building Design and Operation), conducted between 2018 and
2023. The main objectives of the Annex 66 were to set up a standard OB definition platform,
to establish a quantitative simulation methodology to model OB in buildings and to understand
the influence of OB on building energy use and on the indoor environment (IEA, 2018). The
Annex 79 aimed to integrate and implement occupancy and OB into the design process and
building operation to improve both energy performance and occupant comfort (O’'BRIEN et al.,
2020). One outcome of these two research projects was the development of the ASHRAE
occupant behaviour database, which consists of 34 datasets from 39 institutions located in 15
countries and 10 climate zones (DONG et al., 2022). These datasets cover 11 types of OB
measurements (window, door, fan, lighting and shading status, plug loads, HVAC
measurements, occupancy, occupant number and others) and three building typologies
classified according to the room type: commercial (office), educational (office, classroom and

study zone) and residential (apartment, dorm and single-family house) (DONG et al., 2022).

So far, the human-building interaction has been studied mainly in residential and office
contexts (DELZENDEH et al., 2017). In the Annex 66 and Annex 79, for example, all proposed
models and case studies focused on these two building typologies (IEA, 2018; O'BRIEN;
TAHMASERBI, 2023). School buildings are different from offices, residential buildings and other
educational buildings (e.g., universities), since primary and secondary schools are occupied
mainly by children, in specific periods of the year and with different daily timetables, more
group rules and less freedom of action (BELAFI et al., 2018). The investigation of OB in school
classrooms is far recent, with most studies published in the last five years. Three datasets
regarding OB data collection in school classrooms were included in the ASHRAE occupant
behaviour database, with data from the United Kingdom, China and Australia (DONG et al.,
2022). The OB most addressed in the studies published in this research field included window
(BELAFI et al., 2018; DUTTON; SHAO, 2010; ENGLUND et al.,, 2020; HERACLEOUS;
MICHAEL, 2020; KORSAVI; JONES; FUERTES, 2022b; PISTORE et al., 2019; STAMP et al.,
2020; STAZI; NASPI; D'ORAZIO, 2017a) and lighting operation (BERNARDI;
KOWALTOWSKI, 2006; LOURENCO; PINHEIRO; HEITOR, 2019; SIMANIC et al., 2020;
ZHANG; BLUYSSEN, 2021) and the studies were conducted mainly in an oceanic climate.
The most investigated drivers in these studies were the environmental factors, such as indoor
and outdoor temperature, relative humidity, and CO2 concentration. Also, the teacher was

identified as the main active occupant regarding the environment adjustment, with the
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decision-making process relying mostly on collective needs and school rules (BERNARDI;
KOWALTOWSKI, 2006; PISTORE et al., 2019).

Most school buildings located in tropical or subtropical climates are partially or fully naturally
ventilated, with manually operable windows, which reinforces the occupant’s role over the
environment’s performance (YAN et al., 2017). In the state of Sao Paulo, Brazil, for example,
all public-school buildings maintained by the Foundation for Education Development
(Fundagéo para o Desenvolvimento da Educag¢éo, FDE) have manually operable windows to
provide natural ventilation, and most of them also have manually operable fans. Natural
ventilation, beyond influencing the classroom’s thermal performance, also impacts on its indoor
air quality (IAQ) (STABILE et al., 2017) and, consequently, on students’ health and learning
process (PEREIRA et al., 2017).

In 2020, due to the COVID-19 pandemic, the IAQ became particularly relevant to prevent
airborne virus transmission in indoor environments (FRANCO, 2020), especially in high
occupancy environments, such as school buildings’ classrooms (LIPINSKI et al., 2020).
Therefore, several guidelines to improve air renewal in classrooms were published between
2020 and 2021, suggesting measures related to, among other issues, mechanical ventilation
and, in a lower proportion, operation of windows (JONES et al., 2020; VAN DIJKEN, 2020;
WORLD HEALTH ORGANIZATION, 2020). In addition, recent studies investigated the impact
of the COVID-19 pandemic on the classrooms’ IAQ and thermal comfort (ALONSO et al., 2021;
KONSTANTINOU et al., 2022; MORI et al., 2022) and the infection risk regarding ventilation
and occupancy rates, window opening behaviour and the use of masks (ARJMANDI et al.,
2021; HOU; KATAL; WANG, 2021; OROSA; NEMATCHOUA; REITER, 2020; PARK et al.,
2021; ZIVELONGHI; LAI, 2021). However, whilst occupant behaviour and daily routine in
schools were affected by COVID-19 response measures, to what extent these behaviour
changes will be durable is still unknown and must be investigated (FELL et al., 2020). Also,
since COVID-19 impacts and restrictions were different in each place, the potential changes
on action drivers may be different and not comparable between and within countries (FELL et
al., 2020).

In Brazil, most of the research studies in school buildings focus on building design and
environmental comfort aspects, without investigating the OB (ALEXANDRUK, 2015; BENDER,
2013; DELIBERADOR; KOWALTOWSKI, 2011; GEMELLI, 2009; GERALDI, 2021;
KOWALTOWSKI et al., 2017; KOWALTOWSKI; DELIBERADOR, 2014; MARGCAL, 2016;
MOREIRA, 2005; NOGUEIRA, 2011; OLIVEIRA, 2016; PEREIRA; KOWALTOWSKI, 2011).

Also, a systematic literature review regarding BPS in Brazil showed that OB was poorly
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explored in this context (LOPES; SILVA, 2019). Brazilian publications related to OB focus,
mainly, the residential context (GIGLIO, 2015; SORGATO, 2015) and office buildings
(BAVARESCO, 2016, 2021; GRASSI, 2021; HAZBOUN, 2018; NEVES et al., 2020; RUPP et
al., 2021), and only one study was found with a focus on school buildings (BERNARDI, 2001).
Lastly, few studies consider the COVID-19 pandemic impacts on the occupant behaviour and
built environment. Therefore, this study aims to fill this research gap by investigating the
occupant behaviour in naturally ventilated school classrooms, focused on thermal comfort and
indoor air quality, and providing data and information related to the humid subtropical climate

of the state of Sio Paulo, Brazil.

1.1 Objectives

Main Objective (MO) - This study aims to identify and quantify the influence of multi-domain
factors (including thermal, indoor air quality, contextual and multi-behaviour domains) on
window, door, and fan status in naturally ventilated school classrooms in a humid subtropical

climate, in order to improve the ability to predict occupant behaviour.

The specific objectives (SO) are related to the objectives of the papers that compose this thesis

and include:

SO1 - Identifying and analysing existing occupant behaviour models for naturally ventilated

and mixed-mode school buildings.

SO2 - Investigating potential impacts on occupant behaviour due to restrictions

implemented during the COVID-19 pandemic in school buildings.
SO3 - Developing predictive occupant behaviour models based on the collected data.

S04 — Analysing potential conflicts between thermal comfort and indoor air quality,
regarding triggers for manual operation of windows in naturally ventilated school

classrooms and identifying optimal situations of balance between both drivers.

1.2 Hypothesis and research questions

Considering the research problem addressed and the proposed objectives, the main
hypothesis of this research study is that investigating and including multi-domain factors in
occupant behaviour models for school classrooms can improve the prediction of occupant

behaviour in the building performance simulation.
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Based on this statement, the following research questions were elaborated in order to better

explain the problem:

e Do the drivers for window, door, and fan operation vary between school classrooms
and teachers?

e Which factors (including thermal, indoor air quality, contextual and multi-behaviour
domains) have greater influence on window, door, and fan operation in school
classrooms?

e Are school classrooms’ occupants operating windows near optimal conditions,

considering the balance between thermal comfort and indoor air quality?

1.3 Thesis structure

The structure of this thesis is based on the requirements of Resolution CPPG-ATC/FEC-
051/2015 and is composed, apart from the Introduction and Conclusion chapters, of five papers
reporting the work performed during the doctorate (Table 1.1). Four papers are presented as
chapters, and they were transcribed as they were published or submitted with the layout
adjusted to this document. A fifth paper is currently in development and its preliminary results
are presented in Chapter 6. Also, all the references are presented at the end of this document

for conciseness. An overview of the thesis structure is presented in Figure 1.1 and described

below.
Table 1.1 — Papers included in this thesis.
Thesis Paper title Journal/ Status
structure Conference

A critical review on occupant behaviour modelling for building

Chapter 2  performance simulation of naturally ventilated school buildings En%gg/ and 5ur?llshegagz
and potential changes due to the COVID-19 pandemic uiidings anuary

Chapter 3 Condic¢des de conforto térmico e QAI em salas de aula Ambiente Published in
naturalmente ventiladas durante a pandemia de Covid-19 Construido October 2022
Investigation of window operation behaviour in naturally ventilated 18" Healthy Presented and

Chapter 4 . . Buildings Europe published in
classrooms during the COVID-19 pandemic C

onference June 2023

Chapter 5 Predictive modelling of multi-domain factors on window, door, and Building and Published in
fan status in naturally ventilated school classrooms Environment August 2024
Thermal comfort and perceived indoor air quality optimization with

Chapter 6 respect to occupant behaviour in naturally ventilated school Preliminary results

buildings
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Figure 1.1 — Thesis structure

Chapter 2 presents the literature review, that addresses (i) occupant behaviour models for
building performance simulation, (ii) research studies about occupant behaviour in schools and
(iii) the potential changes on action drivers due to the COVID-19 pandemic (specific objectives
1 and 2 of this thesis). Three main steps to represent the OB modelling approach were
identified in the literature: the data collection (pre-processing, step 1), the OB model
development and evaluation (processing, step 2) and the OB model implementation in building
performance simulation (post-processing, step 3) — which were used to structure this thesis
(Figure 1.1). The main findings regarding the existing OB models for school buildings are
discussed in this chapter. In addition, the outcomes support the need to investigate the

behaviour changes, their action drivers and their impacts on the built environment due to the
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restrictions implemented during the COVID-19 pandemic. Complementary literature reviews

are presented in the following papers with updated studies regarding each subject.

In 2020, due to the COVID-19 pandemic, all public-school buildings in the state of Sao Paulo
were closed and, therefore, the data collection (step 1 of this research study) had to be
postponed. The three schools selected for the study, that had already agreed to participate,
remained closed until August 2021. Therefore, a pilot field study was conducted in a different
school building, which was selected due to having already gone through previous data
collection, before the COVID-19 pandemic (in 2019 by Liguori (2020)). This study, presented
in Chapter 3, compares data collected before (2019) and during (2021) the COVID-19
pandemic in one school classroom located in Campinas, Brazil, in order to analyse the impact
of the restrictions implemented during the COVID-19 pandemic (specific objective 2) and
potential conflicts between thermal comfort and indoor air quality in naturally ventilated school
classrooms (specific objective 4). Indoor environmental variables were monitored during both
periods and were used to calibrate a simulation model, using EnergyPlus. Theoretical
scenarios varying the number of occupants and the air change rates were simulated, in order
to assess their impact on the indoor air quality (CO2 concentration) and thermal comfort (indoor
operative temperature) and identify scenarios that contribute to reducing the risk of spreading
the SARS-CoV-2 virus. The results suggest that the restrictive measures implemented during
the COVID-19 pandemic, which are related to occupant behaviour (opening windows and
doors and reducing the number of occupants), can help to reduce the CO2 concentration and
the probability of infection, in addition to improving the thermal comfort of the analysed
classroom. Yet, the measures adopted by schools must be analysed for each specific climate

and context and in order to balance potential benefits and risks to occupants.

The research framework is presented in Figure 1.2. The first steps, data collection (pre-
processing, step 1) and the model development and evaluation (processing, step 2), are
presented in chapters 4 and 5. The data collection was conducted in three school buildings
located in the cities of Campinas and Sao Paulo, which were selected from a database of 66
public-school buildings, and included the monitoring of indoor environmental variables, number
of occupants and manual operation of windows, door and fans (physical monitoring) and the

application of questionnaires with teachers and students (occupant investigation).
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Figure 1.2 — Research framework
Chapter 4 presents the development of three window status predictive models, one for each
school classroom, in order to compare the window operation drivers between classrooms —
addressing the main objective, specific objective 2 and specific objective 3 of this thesis.
Generalized linear models (GLM) were applied to assess the influence of the recorded
parameters over the window status. Indoor operative temperature, relative humidity, CO-
concentration and the restrictions imposed during the COVID-19 pandemic were identified as
triggers for window operation in all schools. In addition, the differences between the school

classrooms suggest that occupant behaviour is context dependent, being highly influenced by
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rules and habits, as confirmed by the outcomes from the generalized linear models and the

questionnaires responses.

Chapter 5 presents the development of occupant behaviour models for window, fan and door
operation, aiming to identify and quantify the influence of multi-domain factors (including
thermal, indoor air quality, contextual and multi-behaviour domains) on their status — also
addressing the main objective, specific objective 2 and specific objective 3 of this thesis.
Generalized linear mixed models (GLMM) were applied to assess the influence of the recorded
parameters over the window, door and fan status. In addition to the predictors included in the
previous models (environmental domain — indoor operative temperature, relative humidity, CO-
concentration — and contextual domain —the COVID-19 restrictive measures), other predictors
regarding contextual (time of the day, teacher, number of occupants) and multi-behavioural
domains were included to create more complex and real models. The results highlighted that
other predictors, such as the teachers’ behaviour and the COVID-19 restrictions, could have a
greater influence on occupant behaviour than environmental variables, indicating the
relevance of investigating other domains in behavioural studies. Also, the models including
additional predictors were the ones with better results during the validation phase, suggesting
that, while more complex models can provide more accurate predictions of occupant

behaviour, they also become more context-dependent and less generalizable.

Chapter 6 presents the preliminary results and discussion regarding the model implementation
in building performance simulation (post-processing, step 3) (Figure 1.2). By implementing the
OB models into the BPS, the aim of this chapter is to analyse potential conflicts between
thermal comfort and indoor air quality, regarding triggers for manual operation of windows in
naturally ventilated school classrooms, and to identify optimal situations of balance between
both drivers (specific objective 4). This chapter presents the preliminary results of a paper
currently in development, which was also part of Prof. Leticia de Oliveira Neves' research
project titled “Thermal Comfort and Perceived Indoor Air Quality Optimization with Respect to
Occupant Behavior in Naturally Ventilated School Buildings” (FAPESP BPE Grant n.
2021/11903-8).

Chapter 7 presents a general discussion regarding the results of the previous chapters and
Chapter 8 provides a conclusion for all the chapters, including the main contributions of this

thesis, its limitations, and suggestions for future research.



28

2 Literature Review

This chapter is the transcription of the following paper:

A critical review on occupant behaviour modelling for building performance
simulation of naturally ventilated school buildings and potential changes due to
the COVID-19 pandemic

Authored by Paula Brumer Franceschini and Leticia Oliveira Neves

Published in Energy and Buildings (ISSN: 0378-7788), volume 258, in 2022, and
catalogued through the DOI: 10.1016/j.enbuild.2022.111831.

Abstract

Occupant behaviour (OB) is one of the main causes of the energy performance gap between
buildings’ performance prediction versus reality, since, due to its uncertainty and
unpredictability, it is often oversimplified in the building performance simulation (BPS). Hence,
previous studies developed OB models, mainly in the residential and office contexts, in order
to predict and represent human behaviour in BPS. Yet, school buildings are different from other
typologies due to contextual factors (e.g., occupants’ age, different daily timetables and group
rules) and are in a unique position to promote energy efficiency for tomorrow’s citizens.
Assessing OB in schools can lead to an improvement of the indoor environment, especially in
naturally ventilated buildings, where window operation behaviour directly impacts on the air
change rates and, consequently, on the indoor air quality. This study addresses the knowledge
gap on OB modelling for naturally ventilated (NV) and mixed-mode (MM) school buildings. The
reviewed papers were organized in three main themes, namely (i) OB models for BPS of NV
and MM buildings, (ii) OB research studies in NV and MM school buildings and (iii) potential
changes on OB in school buildings due to the COVID-19 pandemic. The analysis focused on
three phases of the OB modelling framework: data collection (pre-processing), model
development (processing) and model implementation (post-processing). Important research
gaps are identified, such as the reduced number of studies that cover the three phases of the

modelling framework within the school buildings context and the need to better investigate the
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teachers’ behaviour and collective actions as important OB drivers in classrooms. Future
research topics are also identified, such as which are the potential changes on actions’ drivers
due to COVID-19 pandemic in naturally ventilated classrooms and to what extent they will be

durable or ephemeral.

Keywords: occupant behaviour, behaviour model, building performance simulation, school
buildings, natural ventilation, COVID-19

2.1 Introduction

The driving factors of energy use in buildings are climate, building envelope, building energy
and services systems, indoor design criteria, building operation and maintenance and
occupant behaviour (IEA, 2016), which are mostly considered in a building performance
simulation (BPS). However, frequently the predicted performance (simulated during the design
phase) is different from the real one (measured during the operation phase), resulting in an
energy performance gap (SHI et al., 2019). One of the most important causes of this gap is
the occupant behaviour (OB) (CHEN; HONG; LUO, 2018; FABI et al., 2012; SHI et al., 2019)
— which refers to occupants actions and responses to stimuli (SHI et al., 2019), being
responsible for up to 71% of the energy demand variation in buildings (IEA, 2016). The energy
performance gap occurs mainly due to OB uncertainty and unpredictability in the design phase
(SHI et al., 2019), which, as a consequence, often oversimplifies the occupant behaviour
models in BPS (WANG; HONG; JIA, 2018). In BPS tools, the occupant's impact is mainly
considered only in the occupancy section and the input data is generally limited to occupants’
presence in fixed and scheduled patterns, which do not reflect reality (DELZENDEH et al.,
2017).

During the last decade, studies about OB in buildings were conducted aiming to better
represent this parameter in the BPS through OB modelling, thus reducing the energy
performance gap. For instance, the International Energy Agency (IEA) has two projects in this
research area: the concluded Annex 66 (Definition and Simulation of Occupant Behaviour in
Buildings) and the ongoing Annex 79 (Occupant-Centric Building Design and Operation). Also,
several reviews about OB modelling for BPS were conducted in the last decade, focusing

mainly on office and residential contexts (Table 2.1).
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Table 2.1 — Previous reviews on OB modelling for BPS

Publication Temporal Building Scope
coverage typology
Azar et al. (2020) Up to 2019 All Occupant-centric building design applications: metrics, modelling

and simulations tools, design methods and supporting practices
and mechanisms

Berger and Mahdavi 2010 - 2018 All Application of agent-based modelling in the built environment

(2020) domain: model purpose, domain knowledge and implementation
tools

Carlucci et al. (2020) Up to 2019 All Modelling techniques to represent occupant behaviour (presence

and actions) on building performance simulation

Laaroussi et al. (2020) 1995 - 2019 Residential Current approaches for occupant behaviour analysis

Lietal (LIetal,2019) Upto 2018 All Environmental and individual adjustments for OB modelling
purposes

Balvedi, et al. (2018) 2008 - 2018 Residential Occupant behaviour in residential buildings

Dong et al. (2018) Up to 2017 All Current modelling efforts of occupant behaviour

Hong et al. (2018) Up to 2017 All Approaches to representing and implementing OB models in
building performance simulation tools

Zhang et al (2018) Up to 2017 All OB model approaches and the energy-saving potential: focus on

window opening behaviour, lighting control behaviour, and space
heating/cooling behaviour

Delzendeh et al. (2017) Up to 2016 All Influence of occupant behaviour on building energy consumption

Gaetani et al. (2016) Up to 2015 All Modelling complexity for occupant behaviour in building energy
simulation

Yan et al. (2015) Up to 2014 All Occupant-related data collection and monitoring, modelling
approaches, model evaluation, and model implementation

Gunay et al. (2013) Up to 2013 Office Findings and limitations of the occupant behaviour research,
including observational, modelling, and simulation methodologies

Parys et al. (2011) Up to 2010 Office Models of occupant control of shading devices, windows, lighting,

appliances and thermal environment

School buildings are in a unique position to promote energy efficiency for tomorrow’s citizens
(KATAFYGIOTOU; SERGHIDES, 2014). This building typology is different from others (e.g.
residential and office buildings) due to contextual factors, since primary and secondary schools
are occupied mainly by children, in specific periods of the year and with different daily
timetables, more group rules and less freedom of action (BELAFI et al., 2018). Assessing its
OB can lead to an improvement of the indoor environment, which is very important in school
buildings, not just in terms of energy use, but also for students health and education (BELAFI
et al., 2018). The indoor environment of school buildings (e.g. noise levels, indoor temperature,
air quality and light) influences students health and sense of well-being (KATAFYGIOTOU;
SERGHIDES, 2014; MONTAZAMI; GATERELL; NICOL, 2015; PEREIRA et al., 2017). A more
comfortable and safe environment can also boost students’ productivity in many activities
(FRANCO, 2020) and reduce students’ absenteeism (PEREIRA et al., 2017). Yet, there is a
gap in the study of the impact of OB on building energy performance of school buildings, since
the subject has been studied mainly in the residential and office contexts (DELZENDEH et al.,
2017). For example, the majority of the review papers here mentioned (Table 2.1) present a
general scope and very few of them discuss school buildings: just seven papers about school
buildings were included in five of the above-mentioned literature reviews (CARLUCCI et al.,
2020; DELZENDEH et al.,, 2017; GAETANI; HOES; HENSEN, 2016; GUNAY; BRIEN;
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BEAUSOLEIL-MORRISON, 2013; LI et al., 2019). The systematic literature review presented
by Carlucci et al. (2020) confirms the fact, since only 5% of the 278 studies identified by the
authors about OB modelling addressed educational buildings, showing that this building

typology requires further analysis.

Most school buildings located in tropical or subtropical climates are partially or fully naturally
ventilated (KAPOOR et al., 2021; SHRESTHA; RIJAL, 2021; VAN DIJKEN, 2020; WORLD
HEALTH ORGANIZATION, 2015). Since natural ventilation depends on the outdoor
conditions, adequate air change rates cannot be guaranteed all the time (VAN DIJKEN, 2020).
Indeed, previous studies demonstrate that naturally ventilated classrooms often fail to achieve
recommended levels of ventilation (DENG; ZOU; LAU, 2021; DUTTON; SHAO, 2010) and, as
consequence, exceed the satisfactory limit of pollutants (DORIZAS et al., 2015). In fact,
window operation behaviour plays an important role on indoor air quality (IAQ) and indoor air
temperature (DUTTON; SHAO, 2010; IEA, 2018; SCHIBUOLA; TAMBANI, 2021), contributing
to improve or to worsen the indoor environment conditions in naturally ventilated school

buildings.

School buildings have high occupancy rates which, in addition to poor IAQ, can provide the
optimum conditions for rapid disease spread (LIPINSKI et al., 2020). A study conducted in 114
European schools, of which 86% were naturally ventilated, showed that in overcrowded
classrooms (less than 1.5 m? per child) the concentration of pollutants increased significantly
and more children suffered from respiratory symptoms (e.g., chronic cough, earache, sinusitis)
compared to classrooms with adequate space and well ventilated (WORLD HEALTH
ORGANIZATION, 2015). In 2020, due the COVID-19 pandemic, the IAQ in school buildings
became particularly relevant (PULIMENO et al., 2020). The IAQ was brought up as a
fundamental path to prevent airborne virus transmission and to maintain low levels of pollutants
in indoor environments (FRANCO, 2020), especially those with poor ventilation and high
density and exposure time, such as school classrooms (HOU; KATAL; WANG, 2021). A study
conducted in naturally ventilated classrooms revealed an infection risk ranging from 1.9% (all
occupants wearing an US N95 mask) to 56% (all occupants without masks) in the presence of
one asymptomatic individual (SCHIBUOLA; TAMBANI, 2021). Thus, recent publications
recommended opening windows always as possible, as one of the main measures to reduce
airborne virus transmission in naturally ventilated classrooms (JONES et al.,, 2020; VAN
DIJKEN, 2020; WORLD HEALTH ORGANIZATION, 2020). Moreover, due to COVID-19
response measures (e.g., window opening, social distancing, masks) and restrictions (e.g.,
schools closure), current research studies anticipate that there will be important changes in

behaviours and daily routines, which will affect directly the decision-making (FELL et al., 2020).
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Yet, the potential changes in OB due to COVID-19 pandemic were not covered in existing

reviews on OB modelling (Table 2.1), since the reviewed papers were published up to 2019.

This review paper aims to address the knowledge gap on occupant behaviour modelling for
naturally ventilated school buildings and understand the potential changes on actions' drivers
due to the COVID-19 pandemic. Therefore, we identify and analyse here the existing occupant
behaviour models for naturally ventilated and mixed-mode school buildings, highlight the main
findings in the current scientific literature and discuss the potential changes on occupant
behaviour due to COVID-19 pandemic, especially related to window operation and natural
ventilation. As to the latter, we consider it an important research topic also in phases without a
pandemic, since it focuses on human and especially children’s health and long-term well-

being.

2.2 Method and material

This research study adopted the systematic review method to conduct the literature review,
including two systematic literature reviews (SLR) and one literature review (LR) using a
snowball strategy. The literature search process aimed to answer the following questions: (i)
Which are the existing occupant behaviour models for building performance simulation focused
on naturally ventilated and mixed-mode buildings? (SLR 1); (ii) What is the status quo on
research studies about occupant behaviour in naturally ventilated school buildings? (SLR 2);
(iii) What are the potential changes on research studies about occupant behaviour in school
buildings due to the COVID-19 pandemic? (LR 3).

The SLR 1 and SLR 2 searches were conducted in Web of Science (WoS) and Scopus
databases on 19th April, 2021 and followed the steps proposed in the PRISMA Statement
(LIBERATI et al., 2009): identification, screening, eligibility and inclusion. The string used for
the SLR 1 included ‘occupant behaviour model’ and ‘building performance simulation’ (and
similar words, such as ‘user’ and ‘behavior’) in the title, abstract and keywords fields. The string
used for the SLR 2 included ‘occupant behaviour’ and ‘school building’ (and also similar words)
in the title, abstract and keywords fields. After excluding the duplicated results, the title and
abstract were analysed and results not related to the review questions were excluded. The
final selection resulted in 46 papers, whose distribution is presented in Figure 2.1. Most of
them were published in the last decade (Figure 2.2), demonstrating that it is a relatively new

research theme.



33

. Journal Country/ Institute
g
cd | g
Joumnal of Cleaner Production % % o 9-, E] t_?
10 /g%’ e %= &
Py & = Z
bl = 0 %08 &
Engineerging Applications of & = ;;B i
8 Artificial Intelligence S,;f e"’{; %‘%i“’m
=) Solar Energy € 2, % ﬁ- )
E Joumnal of Building Engineering A, Q% o
w i Building and ULisp,, = khty
2 Environynt Eni and Envurunrgmenl pennt
6 and Behavior ergy Formga,
E ° [ @ Energies Bukioos Lund Harvard
g 7 Sustainability HIG matk veL
]
S, Buildings Building o™ pel Uk (Ca"’bﬂdge
f/ Simulation ot 0‘\\09 / )“""'%%(
[ 2 = UUM ey
.\ ~2 __ Journal of Building W & \?5 5 % %, 4‘“’%3,,
2 | . Performance Simulation @ 4 5 % ",D"’fi
1L : )
L I ~—Science and Technology & S = 'fx)_!’
Journal of for the Built Environment S £ 2 A\
Sensors S"C: 53 o5 %i 6
0 5 10 15 20 25 30 35 40 § B -“E;
& 2

% in the total publications

Figure 2.1 — Distribution of publications (SLR 1 and SLR 2)
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Figure 2.2 — Year of publication of SLR 1 and SLR 2 results
For the literature review regarding the potential changes on OB due to COVID-19 pandemic
(LR 3), the search included papers, scientific reports and documents addressing the relation
between natural ventilation, indoor environment, especially school buildings, and COVID-19
airborne transmission. The snowball strategy was adopted to extend the search, identifying
other documents in the reference list of the first results. After selection, 26 publications were
included in this review, published in 2020 (13 documents) and 2021 (13 documents).
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2.3 Occupant behaviour modelling for building performance simulation

Occupant behaviour is defined as the occupant’s interaction with building systems in order to
adapt to the building environmental conditions (LAAROUSSI et al., 2020), aiming to obtain
thermal, visual and acoustic comfort (DELZENDEH et al., 2017). According to Fabi et al.
(2012), it includes unconscious and conscious actions to control the physical parameters
based on the comparison of the perceived environment and past experiences. Hong et al.
(2016a) distinguish non-adaptive behaviours, which include occupant presence and
appliances use, from adaptive behaviours, which include changes to adapt the environment to
their needs (e.g., window, blinds, lighting and air-conditioning operation) and changes to adapt

themselves to the environment (e.g. clothing adjustment and drinking hot or cold beverage).

Occupants usually respond in different ways to the built environment, since there are many
factors that influence their decision-making process (O’'BRIEN et al., 2016). For example,
occupancy patterns in buildings are influenced by contextual factors such as occupancy
density and occupancy type (e.g., occupants movements and activities) (CHEN; HONG; LUO,
2018). Brien et al. (2016) identified other driven factors that contribute to occupant behaviour
diversity, such as activity type, personal health and wealth, job type and lifestyle. Delzendeh
et al. (2017) suggested the use of occupant profiling based on occupants’ energy behaviour to
lead to more accurate assumptions in energy analyses. He et al. (2021) and Causone et al.
(2019), for example, identified behaviour styles to represent occupant diversity based on
occupant energy-saving consciousness. D'Oca et al. (2014) classified occupant profiles to
represent window opening behaviour and thermostat adjustment. In addition, occupant
behaviour can be even more diverse when comparing different building typologies and location
(e.g., climate, culture and energy conservation consciousness) (HE; HONG; CHOU, 2021). In
the school building typology, for example, rules and habits can vary between different schools,
climates and cultures (BELAFI et al., 2018). Thus, to be fully understood, occupant behaviour
diversity requires investigation in both boundary and contextual conditions, as well as a more

detailed and dynamic representation than predefined schedules (BELAFI et al., 2018).

Occupants have a significant impact on building energy performance and on occupants
comfort through their with building systems (GILANI et al., 2016; HONG et al., 2016a; PUTRA,;
HONG; ANDREWS, 2021). Previous studies reviewed by Zhang et al. (2018) showed that
improving occupant behaviour in buildings results in an energy-saving potential ranging
between 5% and 30% for total energy consumption, varying according to the building typology
(residential or office buildings) and the building system (air-conditioning, lighting and

appliances). Occupant behaviour models are developed in order to predict and represent
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human behaviour in building performance simulation, optimizing the building design and
reducing the performance gap (CARLUCCI et al., 2020). Therefore, occupant diversity,
although bringing more uncertainty for BPS, can contribute to reduce energy peak demand
(O'BRIEN et al., 2016). Parys et al. (2011) proposed three methods to represent occupant
behaviour diversity in BPS: (i) explicit modelling of variability by randomly sampling, using real
measured occupant data as input, (ii) calculating standard deviations to the averaged
probability functions, and (ii) clustering of occupant type, as defining representative active and

passive users.

Previous studies identified the main steps to represent OB modelling approach (BALVEDI,
GHISI; LAMBERTS, 2018; GUNAY; BRIEN; BEAUSOLEIL-MORRISON, 2013; YAN et al.,
2015, 2017). The first step refers to data collection, including occupant monitoring, system
observation and data validation. The second step consists in the development and evaluation
of the OB model, aiming to accurately predict occupants’ behaviour in buildings. The last step
involves the OB model implementation in building performance simulation, which requires the
integration between the developed OB model and an existing building simulation tool and
application. Figure 2.3 synthetises the OB modelling approach based on the reviewed
publications. In Table 2.2, we identify 27 existing occupant behaviour models for naturally
ventilated and mixed-mode buildings, based on the analysis of the methods section of 33
publications. Most of the presented models were developed for office buildings (63%, 17
models), are based on a mixed-mode ventilation system (70%, 19 models), and were
developed for regions located in the oceanic climate — Cfb (52%, 14 models). The classification

here presented is detailed in the following sub-sections.

2.3.1 Data collection (pre-processing)

The first step of the OB modelling approach is the data collection, which includes physical
monitoring, occupant investigation and validation of the collected data (BALVEDI; GHISI;
LAMBERTS, 2018; YAN et al., 2017). The data collection is an efficient approach for OB
analysis (LAAROUSSI et al., 2020) and is used for the identification of driving factors and
patterns for specific behaviours (BALVEDI; GHISI; LAMBERTS, 2018). The method selection
for the data collection depends on the purpose of the research study (e.g., represent window
operation or occupant presence), that will dictate the required information to use as input in
the BPS.
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Table 2.2 — Reviewed OB models (SLR 1)

Publication Building Ventila- Location Climate Sub-model Method
typology tion ** Data Collection Model Model
system* Development Implementation
Mun et al. Residential MM South Dwa  Window and - Stochastic/  Co-simulation
(2021) Korea air-conditioning Probabilistic
Jia et al. Faculty MM USA Am Window and Physical Agent-based Co-simulation
(2021); Jia office blinds monitoring and
and Srinivasan occupant
(2020); Jia et investigation
al. (2019)
Imagawa et al. Residential MM Japan Cfa  Window, fan, Physical Stochastic/ -
(2020) and air-conditioning monitoring and  Probabilistic
Rijal et al. occupant
(2018) investigation
Micolier et al. Residential MM France Cfb  Window, blinds, Physical Agent-based  Co-simulation
(2019) thermostat, monitoring and
clothing and occupant
appliances investigation
Pan et al. Office MM China Dwa Window Physical Stochastic/ -
(2019) monitoring and  Probabilistic
occupant
investigation
Mo et Residential NV China Dwa Window Physical Stochastic/ -
al.(2019) monitoring Probabilistic
Belafi et al. School MM Hungary Cfa Window Physical Stochastic/ -
(2018) monitoring and  Probabilistic
occupant
investigation
Yao (2018)  Residential MM China Cfa Air-conditioning Physical Stochastic/  User function or
monitoring Probabilistic ~ custom code
Naspi et al. Faculty NV Italy Csa  Window and Physical Stochastic/  Co-simulation
(2018) office lighting monitoring and  Probabilistic
occupant
investigation
Markovic et al. Faculty MM Germany  Cfb Window Physical Data mining  Co-simulation
(2018) office monitoring and and machine
occupant learning
investigation
Laurentetal. University NV USA Dfa Window Physical Stochastic/  User function or
(2017) dormitory monitoring and  Probabilistic  custom code
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occupant
investigation
Chen et al. Office MM USA Am  Window, blinds, - Agent-based  Co-simulation
(2017) thermostat,
lighting and
appliances
Jones etal. Residential MM UK Cfb Window Physical Stochastic/ -
(2017) monitoring Probabilistic
Langevin etal. Office MM USA Dfa, Window, fans, Physical Agent-based  Co-simulation
(2016); Csb, thermostat and monitoring and
Langevin et al. Cfa, clothing occupant
(2015) Csa investigation
Hong et al. Office MM USA Am Window, - Stochastic/  Co-simulation
(2016a); Hong lighting, blinds Probabilistic
et al. (2015b); and thermostat
Hong et al.
(2015a)
Lee and Office MM USA Dfa  Window, blind, - Agent-based Co-simulation
Malkawi thermostat, fan
(2014) and clothing
D'Ocaetal. Residential NV Denmark  Cfb Window and Physical Stochastic/  Direct input or
(2014); Fabi et thermostat monitoring Probabilistic control
al. (2013)
Schwiker et al. Residential NV / MM Switzerland Cfb, Cfa ~ Window Physical Stochastic/ -
(2012) and office and Japan monitoring and  Probabilistic
occupant
investigation
Andersen et Office  NV/MM Denmark Cfb  Window and Physical Stochastic/ -
al. (2011) thermostat  monitoring and Probabilistic
occupant
investigation
Rijal et al. Office NV /MM Europe and Csa, Window and Physical Stochastic/  Direct input or
(2011) Pakistan  Csb, fans monitoring and  Probabilistic control
Cfa, occupant
Cfb, investigation
BWh,
BSk
Wei et al. Faculty NV UK Cfb  Window, blinds  Occupant Stochastic/ -
(2010) office and clothing  investigation  Probabilistic
Haldi and Office NV  Switzerland Cfb Window Physical Stochastic/ -
Robinson monitoring Probabilistic
(2009)
Rijal et al. Office NV/MM UK Cfb Window Physical Stochastic/  Direct input or
(2008) monitoring and  Probabilistic control
occupant
investigation
Yun and Office NV UK Cfb Window Physical Stochastic/ -
Steemers monitoring and  Probabilistic
(2008) occupant
investigation
Herkel et al. Office NV Germany  Cfb Window Physical Stochastic/ -
(2008) monitoring Probabilistic
Pfafferott and Office NV Germany  Cfb Window, Physical Stochastic/  Direct input or
Herkel (2007) lighting, blinds  monitoring Probabilistic control
and appliances
Fritsch et al. Office MM  Switzerland Cfb Windows Physical Stochastic/ -
(1990) monitoring Probabilistic

*NV — natural ventilation; MM — mixed-mode.

**Am — Tropical monsoon; BWh — Hot desert; BSk — Cold semi-arid; Cfa — Humid subtropical; Cfb — Oceanic; Csa — Hot-summer
Mediterranean; Csb — Warm-summer Mediterranean; Dfa — Hot-summer humid continental; Dwa - Monsoon-influenced hot-

summer humid continental.

The physical monitoring is a quantitative approach and includes objective measurements
(physical sensing), that are realized using specific equipment (BALVEDI; GHISI; LAMBERTS,

2018; HONG et al., 2016a). It can be realized in-situ, collecting data in occupants natural
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environment, usually for a long period, or in a laboratory, where the researchers have more
control over different environmental conditions (YAN et al., 2017). The methods used for the
physical monitoring include energy metering, measurement of indoor and outdoor
environmental parameters (e.g., air temperature, relative humidity and CO, concentration) and
occupant interaction with building systems or presence through sensors (e.g. window and door
status — open/close) (HONG et al., 2016a). From the reviewed publications, 33% used only
physical monitoring for data collection, while 48% used the integration of physical monitoring
with occupant investigation methods. As to the monitoring parameters, 78% measured
environmental variables, 56% monitored window and/or door status and 11% measured

energy consumption.

The occupant investigation is a qualitative approach and includes subjective measurements
(non-physical sensing) to monitor OB based on self-reported data (BALVEDI; GHISI;
LAMBERTS, 2018; HONG et al., 2016a). It includes questionnaires, interviews, focus groups,
surveys, diaries, perception, observation and opinions (LAAROUSSI et al.,, 2020). The
occupant investigation often involves ethical issues regarding participant recruitment and risks,
requiring the approval of ethics protocols, privacy issues and informed consent before the data
collection, in order to preserve the identity of the participants (LAAROUSSI et al., 2020; YAN
et al., 2017). From the reviewed papers, 52% performed occupant investigation: 33% applied
questionnaires or surveys, 15% realized interviews and 4% realized occupant observation in-

situ.

The validation of the collected data is addressed in few cases, which may be explained by the
lack of guidelines on how to validate occupant measurements (YAN et al., 2017). Yan et al.
(2017) suggest and explain the calculation of measurements uncertainties to quantify data

quality.

Also, 15% (4 models) of the OB models analysed (Table 2.2) did not realize the data collection
step, using data from previous studies to the OB modelling. In order to support OB model
development, occupant behaviour databases are emerging during the last years, which can
provide a more robust basis for OB modelling with different building typologies and climates
(PUTRA; HONG; ANDREWS, 2021). For example, the ASHRAE Global Thermal Comfort
Database Il is an online open-source database that includes more than 80,000 sets of data
collection about occupant comfort and preferences from field studies conducted since 1995
(LICINA et al., 2018).
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2.3.2 OB model development (processing)

Understanding the correlation between drivers and occupants’ interactions is an essential part
of the OB modelling (LAAROUSSI et al., 2020). Different approaches were proposed in the

reviewed literature to represent this correlation through OB modelling.

2.3.2.1 Sub-models

Previous studies classified OB models in sub-models, which were divided in two groups. The
first group refers to occupancy and includes occupant presence and movement (BALVEDI;
GHISI; LAMBERTS, 2018; GAETANI; HOES; HENSEN, 2016; HE; HONG; CHOU, 2021;
LAAROUSSI et al., 2020; PARYS; SAELENS; HENS, 2011). Occupant presence can be
detailed as occupant detection (presence and absence), estimation (occupancy count) and
prediction (to forecast the occupancy in a future time window), and occupant movement can
be detailed as occupant activity recognition (to identify or forecast a particular activity) and
occupant movement between zones (the transition from one room to another inside a building)
(CARLUCCI et al., 2020).

The second group of sub-models refers to occupants’ interactions with building systems to
meet individual needs (CARLUCCI et al., 2020; LAAROUSSI et al., 2020), which includes,
mainly, windows and door operation, blinds/ solar shading operation, thermostat or air-
conditioning adjustment (cooling and heating systems), artificial lights control, appliances use
and clothing adjustment (BALVEDI; GHISI; LAMBERTS, 2018; CARLUCCI et al., 2020;
GAETANI; HOES; HENSEN, 2016; PARYS; SAELENS; HENS, 2011). Putra et al. (2021) also
differs actions driven by individual needs from collective actions, which are influenced by social
interaction and requires a group decision process (e.g., majority decision or hierarchical

decision).

A comprehensive behaviour model should include more than one sub-model to represent a
combination of occupants’ interactions, since one action can influence the other and vice-versa
(GAETANI; HOES; HENSEN, 2016). The combination could refer to two or more occupancy
sub-models, such as combining lighting and blinds control (CARLUCCI et al., 2020) or
combining occupancy with occupants’ interactions sub-models, since occupant must be
present to interact with the building systems (MURONI et al., 2019). From the reviewed studies,
52% combined two or more sub-models, from which 26% combined window operation with
thermostat adjustment and 19% with blinds control. Fan operation, lighting control and clothing
adjustment were present in 15% of the cases, appliances use and air-conditioning in 11% of

the cases and occupant movement in 4% of the cases.



40

2.3.2.2 Drivers

Each OB sub-model is stimulated by one or more drivers or driving factors, also called in the
specific literature as triggers, predictors or influencing variables (BALVEDI; GHISI;
LAMBERTS, 2018; CARLUCCI et al., 2020; FABI et al., 2012; LANGEVIN; WEN; GURIAN,
2015; MAHDAVI et al., 2021; STAZI; NASPI; D’ORAZIO, 2017b; YAN et al., 2017). Drivers
can be classified in two main categories: external (environmental factors, time-related factors,
contextual factors) and internal (physiological factors, psychological factors, social factors)
(YAN et al., 2017). Other authors use this same categories to classify energy-related drivers,
also including, in the list, random factors (FABI et al., 2012; LAAROUSSI et al., 2020; STAZI,
NASPI; D’ORAZIO, 2017b).

External factors are objective and easier to measure and compare (STAZI; NASPI; D’ORAZIO,
2017b). Environmental factors include indoor and outdoor conditions, such as air temperature,
relative humidity, illuminance and CO, concentration (FABI et al., 2012; STAZI; NASPI;
D’ORAZIO, 2017b). Time-related factors include, for example, time of the day (e.g., morning,
noon), day of the week, season and occupant routine (e.g., arrival and departure) (HONG et
al., 2015a; LAAROUSSI et al., 2020). Contextual factors include building characteristics,
building location, building orientation, etc. (FABI et al., 2012).

Internal factors concern the individual and are more difficult to collect, quantify and analyse
(STAZI; NASPI; D'ORAZIO, 2017b). Physiological factors include occupant’s physiological
condition, such as age, gender, health situation, clothing, activity level), individual sensitivity
to brightness and other variables (FABI et al., 2012; STAZI; NASPI; D’'ORAZIO, 2017b).
Psychological factors include individual perception, expectations, habits and lifestyle (FABI et
al., 2012). Social factors refer to the interaction between occupants and include, for example,
organization policy (FABI et al., 2012; STAZI; NASPI; D’ORAZIO, 2017b). Random factors are
uncertain and not quantifiable factors, which cannot be synthesised with association rules and,
therefore, are very little addressed in OB modelling (BALVEDI; GHISI; LAMBERTS, 2018;
STAZI; NASPI; D'ORAZIO, 2017b).

The majority of the reviewed publications used external factors as drivers. The environmental
were the most addressed: indoor temperature (93%), outdoor temperature (85%), CO.
concentration (37%), relative humidity (37%), illuminance or daylight (33%), wind speed (22%)
and noise (4%). Time-related factors were considered in 33% of the reviewed OB models,
including time of the day and occupant routine, in special occupant arrival and departure. Only
one publication considered internal factors as a driver (physiological crossed with clothing

insulation). Also, 56% of the reviewed papers considered a combination of four or more drivers.
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2.3.2.3 Approaches and methods

The literature review mentions different approaches to model OB, which can vary according to
the model complexity, the input data required by the model, the level of implementation and
the research goals (DONG et al., 2018; JIA; SRINIVASAN; RAHEEM, 2017). Hong et al.
(2016a) classified the approaches in two groups: implicit, which are related to the physical
systems of the building, and explicit, which are directly related to the occupant. As to the OB
model complexity, several authors classify it in (with minor changes between each author):
schedules (or profiles, rule-based), deterministic (or statistical), non-probabilistic (or data-
based, data mining, data-driven), probabilistic (or stochastic, machine learning), agent-based
stochastic (or object-oriented) and virtual OB models (CARLUCCI et al., 2020; DONG et al.,
2018; GAETANI; HOES; HENSEN, 2016; JIA; SRINIVASAN; RAHEEM, 2017; YAN et al.,
2017).

Schedules, profiles or rule-based models represent a simplified scenario (the lowest level of
complexity), introducing occupant behaviour as a static variable (DONG et al., 2018;
GAETANI; HOES; HENSEN, 2016). These models include either deterministic rules, where
actions are direct consequences of drivers, or occupant profiles, representing average and
predictable behaviours (CARLUCCI et al.,, 2020; GAETANI; HOES; HENSEN, 2016). In
general, schedules are the most used model category, since they can be directly implemented
on BPS tools (DONG et al., 2018).

Deterministic or statistical models specify more action drivers than the previous model
category, increasing the model resolution (GAETANI; HOES; HENSEN, 2016). These models
use traditional regression methods or generalized linear methods to quantitatively determine
the relationship between drivers (independent variables) and occupant behaviour (LI et al.,
2019). One limitation of this approach is that a larger sample size and data input of many

variables are required to capture and describe occupant behaviour (ZHANG et al., 2018).

Non-probabilistic or data-based models are determined by training a profile that include factors
resulting from data-mining (GAETANI; HOES; HENSEN, 2016), which consists one of the
approaches to extract occupant behaviour from occupancy related data (DONG et al., 2018;
GAETANI; HOES; HENSEN, 2016). This approach allows integrating machine learning to
data-mining through a clustering analysis to group data into categories based on
measurements of inherent similarity or distance (DONG et al., 2018). Methods used for data-
mining and machine learning models include k-means clustering, decision tree, Bayesian
network, artificial neural network and support vector machine (DONG et al., 2018; LI et al.,
2019).
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Probabilistic or stochastic models use stimuli (drivers) as influencers within the probability
function for an action to occur (GAETANI; HOES; HENSEN, 2016). Thus, behaviour results
from a complex relationship between drivers and may evolve over time and vary between
occupants (CARLUCCI et al., 2020). These models consider only the interactions between
building and occupants and require a high number of simulation runs to increase resolution
and achieve reliable results (GAETANI; HOES; HENSEN, 2016). The most common methods
used to develop these models are Markov chain, Logit analysis (or logistic regression analysis),
Survival analysis, Poisson process, Probit analysis, Monte Carlo method and random sampling
(CARLUCCI et al., 2020; DONG et al., 2018; GAETANI; HOES; HENSEN, 2016; Ll et al., 2019;
PARYS; SAELENS; HENS, 2011).

Agent-based or object-oriented models have a more complex simulation framework, combining
learning and simulation algorithms (DONG et al., 2018; GAETANI; HOES; HENSEN, 2016).
These models predict occupants behaviour by modelling the behaviour of each occupant
independently, instead of in a group-level (GAETANI; HOES; HENSEN, 2016; LI et al., 2019).
The model complexity varies according to the sub-models included, but it usually requires a
large amount of information (GAETANI; HOES; HENSEN, 2016).

Virtual models are a recent approach and, different from the above-mentioned approaches, do
not rely on measured data and surveys (DONG et al., 2018). Instead, this approach is
supported by immersion techniques into virtual reality, which provide images, sound and other

stimuli to simulate the human-building interaction (DONG et al., 2018).

The majority of the reviewed publications present probabilistic/ stochastic OB models (78%),
using techniques such as Logit analysis (56%), Markov chain (15%), survival analysis (4%)
and Monte Carlo method (4%). 19% of the reviewed papers used the agent-based approach
and 4% used the data-mining and machine learning approach, adopting the neural network

method.

2.3.2.4 Model evaluation

An evaluation of the OB model should be performed in order to verify if is reliable and effective,
by considering its intended application (YAN et al., 2015). Several evaluation metrics can be
found in the literature, such as prediction accuracy, precision, recall, f-1 score, mean average
error (MAE), mean average percentage error (MAPE) and root mean squared error (RMSE)
(CARLUCCI et al., 2020). Yan et al. (2017) suggest that an external model evaluation, rather

than an internal evaluation, is essential to prevent bias and to provide more convincing
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evidence of the model’s reliability. The model evaluation should result in a report detailing its

specificities and applicable limitations (YAN et al., 2015).

The evaluation metrics used in several of the reviewed papers are the coefficient of
determination (R?), RMSE, recall, precision, accuracy and f-1 score (JIA et al., 2019;
LANGEVIN; WEN; GURIAN, 2015; NASPI et al., 2018). However, not all studies include the
model evaluation. The model evaluation is a challenge due to the lack of established standard
evaluation protocols for OB modelling and the limited availability of occupant behaviour data,
requiring further investigation to demonstrate the validity of the developed behaviour models
(CARLUCCI et al., 2020; YAN et al., 2017).

2.3.3 Model implementation (post-processing)

This step involves the implementation of the developed OB model in a building energy model
(HONG et al.,, 2018). The implementation tools can be divided in three categories:
representation of people (OB tools), representation of the environment (BPS tools) and their
interactions (coupling engine) (BERGER; MAHDAVI, 2020). The most popular OB tools
include NetLogo, AnyLogic, Occupancy Simulator, Repast Symphony, PMFserv, MATLAB,
Unity 3D, obFMU and obXML (BERGER; MAHDAVI, 2020; YAN et al., 2017). The most
popular BPS tools include DOE-2, EnergyPlus, DeST, ESP-r, IDA ICE, TRNSYS, IES VE and
TRACE (HONG et al., 2018). Examples of coupling engines used to integrate OB and BPS
tools are Building Control Virtual Test Bed (BCVTB) and Lightweight Communications and
Marshalling (LCM) (BERGER; MAHDAVI, 2020).

Four implementation approaches were found in the reviewed literature: (i) direct input or
control, (ii) built-in OB models, (iii) user function or custom code and (iv) co-simulation (HONG
et al.,, 2018; YAN et al., 2017). Direct input or control refers to the implementation of the
occupant related inputs directly through BPS tool semantics and is supported by almost all
BPS programs (AZAR et al., 2020; HONG et al., 2018). The built-in approach uses OB models
already implemented in BPS tools (HONG et al., 2018; YAN et al., 2017). Despite its easy
implementation, there is a limited numbers of built-in OB models in few BPS tools, which is the
main limitation of this approach (HONG et al., 2018). The user function or custom code
approach allows users to write functions or custom codes as part of the building energy model
input file, allowing to overwrite existing values or add new values to an existing code
(BALVEDI; GHISI; LAMBERTS, 2018; HONG et al., 2018). The co-simulation approach allows
the integration of the OB tools and BPS tools by real-time exchange of information (BALVEDI;
GHISI; LAMBERTS, 2018) and it can be realized using two methods: the middleware coupling

method, which uses a middle data exchange tool to manage the integration between OB and
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BPS tools and requires users’ familiarity with different data coding format; and the standardized
coupling method, which provides a uniform interface for information and data exchange,
allowing the direct link between both tools (LI et al., 2019). So far, co-simulation was already
implemented in EnergyPlus and ESP-r (YAN et al., 2017).

A total of 56% of the reviewed publications implemented OB models in BPS tools. From this
percentage, 33% used the co-simulation approach, 15% used the direct input or control
approach and 7% used the user function or custom code approach. The most popular BPS
tool was EnergyPlus (30%), but others were also used, such as ESP-r (11%), IDA ICE (4%)
and IES VE (4%). Regarding the OB tools, MATLAB and obFMU were used by 22% of the
studies and PMFserv, AnyLogic and Occupancy Simulator were used by 12% of the studies.

BCVTB was used as a coupling engine in 15% of the studies.

2.4 Occupant behaviour investigation and modelling in school buildings

Occupant behaviour has a significant impact on IAQ and on building thermal and energy
performance, especially in high-occupancy density environments, such as school classrooms
(DUTTON; SHAO, 2010). Nevertheless, few publications address this building typology. Table
2.3 presents the results from SLR 2, which aimed to investigate the status quo on research
studies about occupant behaviour in naturally ventilated and mixed-mode school buildings.
The data collection (pre-processing phase) has been widely adopted as a research method
and can be identified in all the reviewed studies. The inclusion of model development
(processing phase) and model implementation (post-processing phase) are still limited,

showing an important research gap.

2.4.1 Data collection (pre-processing)

The reviewed papers adopted, for the data collection, physical monitoring methods (38%),
occupant investigation methods (8%) or a combination of both (54%). The measurement of
environmental parameters was the most used physical monitoring method (85%), followed by
energy metering (31%) and window and/or door status measurement (23%). Occupant
observation (31%), questionnaires (23%) and interviews (15%) were adopted as occupant
investigation methods. Important findings from occupant investigation include the identification
of the teacher as the main active occupant regarding the environment adjustment, while
students are more passive users and rely on the teacher to adjust uncomfortable conditions,
since they often have limited freedom of action (BERNARDI; KOWALTOWSKI, 2006;
PISTORE et al., 2019).



Table 2.3 — Reviewed studies on occupant behaviour in school buildings (SLR 2)
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Publication School Ventilation Location Climate** Sub-model Method
level system* Data Model Model
collection development implementation
Zhang and Primary MM and  Nether- Cfb Lighting Physical - -
Bluyssen school NV lands operation and monitoring
(2021) thermostat and occupant
adjustment  investigation
Stamp et al. Secondary MM UK Cfb Window Physical - -
(2020) school operation monitoring
Simanic et Primary MV Sweden Dfb Thermostat Physical Stochastic/  Direct input or
al. (2020) and lower adjustment, monitoring  Probabilistic control
secondary occupant (Previous
school presence, collected
lighting data)
operation and
appliance use
Englund et Secondary MM Sweden Dfb Window and Physical Schedules  Direct input or
al. (2020) school door monitoring and control
operation Deterministic
Heracleous Secondary NV Cyprus BSh Window Physical - -
and Michael  school operation monitoring
(2019) and occupant
investigation
Pistore et Secondary MM Italy Cfb Window and  Occupant - -
al. (2019) school blinds investigation
operation,
clothing
adjustment
Lourencgo et Secondary MM Portugal Csa Window, Physical Schedules  Direct input or
al. (2019) school blinds and monitoring control
lighting and occupant
operation investigation
Belafi et al. Elementary MM Hungary Cfa Window Physical Stochastic/ -
(2018) school operation monitoring  Probabilistic
and occupant
investigation
Heeball et Primary MM Denmark  Cfb Window Physical - -
al. (2018) school operation monitoring
Stazietal. Secondary NV Italy Cfa Window Physical Stochastic/ -
(2017b) school operation monitoring  Probabilistic
and occupant
investigation
Lourengo et Secondary MM Portugal Csa Thermostat Physical - -
al. (2014) school adjustment  monitoring
and water and occupant
heating investigation
Duttonand  Primary NV UK Cfb Window Physical Stochastic/  Direct input or
Shao (2010)  school operation monitoring  Probabilistic control
Bernardi Primary NV Brazil Cfa Door, Physical - -
and school window, monitoring
Kowaltowski blinds, and occupant
(2006) fan and investigation
lighting
operation

* NV — natural ventilation; MM — mixed-mode; MV — mechanical ventilation.

** BSh — Subtropical steppe; Cfa — Humid subtropical; Cfb — Oceanic; Csa — Hot-summer Mediterranean; Dfb — Warm-summer

humid continental.

2.4.2 OB model development (processing)

The reviewed literature showed as main scopes of OB investigation in school buildings the OB

impact on energy consumption (38% of the reviewed papers), followed by indoor
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environmental quality (IEQ) (23%) and IAQ (23%), thermal comfort (15%) and visual comfort
(8%). The addressed sub-models are mostly related to the occupants’ interactions with the
building systems, such as window operation, thermostat adjustment, lighting operation and
appliances use (Simanic et al.,, 2020). Examples of sub-models associated to energy
consumption investigations are the thermostat adjustment and water heating consumption
sub-models, which were investigated in eight Portuguese schools, in terms of energy and gas
consumption (Lourengo et al., 2014). Lourencgo et al. (2014) identified as the main occupant
behaviour driver the time span between the discomfort perception, the action taken and the
expected feedback. The lighting operation sub-model, also associated to energy consumption,
was observed in nine Dutch school buildings (Zhang & Bluyssen, 2021). Results showed a
negative relationship between the frequency of use of artificial lights and energy consumption:
less electricity was consumed when the teachers triggered the light control more often. The
window operation sub-model is mainly associated to IAQ and thermal comfort investigations
(Belafi et al., 2018; Dutton & Shao, 2010; Englund et al., 2020; Heeball et al., 2018; Heracleous
& Michael, 2019; Stamp et al., 2020; Stazi et al., 2017b). Stamp et al. (2020) analysed the IAQ
in UK non-domestic buildings including one MM school building, showing that higher outdoor
air temperatures increased the use of natural ventilation (window opening) and, consequently,
reduced the IAQ due to increased summertime natural ventilation use against controlled
mechanical ventilation. Heebgll et al. (2018) compared a classroom with manually operable
windows (original configuration) to three retrofitted classrooms with mechanical ventilation and
automated windows, showing that the controlled system provided better IAQ (lower CO-

concentrations).

The drivers for the window operation sub-model were identified as being, mainly, the indoor
and outdoor air temperatures (DUTTON; SHAO, 2010; HERACLEOUS; MICHAEL, 2019;
STAZI; NASPI; D'ORAZIO, 2017a). Dutton and Shao (2010), for example, identified
correlations between the window closing behaviour and the indoor air temperature during
unheated periods or the outdoor temperature during heated periods. The window opening
behaviour had correlations with the outdoor air temperature, the CO; concentration and the
vapour pressure. Stazi et al. (2017a) highlighted the indoor and outdoor air temperatures as
the main drivers for window operation, while the association of window operation with CO.
concentration was rated as weak. Conversely, Heracleous and Michael (2019) identified the
CO, concentration and the outdoor air temperature as the main drivers for window opening
behaviour due to poor indoor air quality or thermal discomfort, and the indoor air temperature
as the main driver to window closing behaviour due to thermal discomfort. Belafi et al. (2018)

identified different drivers for different case studies: in one case, window operation was driven
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by habits and time-dependent actions, since the teacher opened the windows during breaks,
regardless of the environmental conditions or students’ complains, while in the other case,
window operation was driven by indoor and outdoor air temperatures, since the teacher

operated the window based on students’ observations and complains.

Although all the reviewed studies considered in their methodology the correlation between
occupant interaction (sub-models) and drivers, only 46% actually presented the resultant OB
model. Lourengo et al. (2019), for example, used the lighting operation behaviour sub-model
as an input to model the occupant behaviour and compared simulation results with measured
data to evaluate the OB model adequacy. Simanic et al. (2020) developed a stochastic OB
model to predict energy use by adopting the random sampling method to determine the
combination of user-related parameters (occupancy rate and energy use for hot water supply,
lighting and appliances). As to the natural ventilation system operation, Englund et al. (2020)
developed a deterministic model of airing behaviour and window and door operation using
linear regression analysis to correlate daily heat power and outdoor temperature. Stazi et al.
(2017a) and Dutton and Shao (2010) developed stochastic models of window operation using
logistic regression analysis to determine the contribution of environmental variables on the
window operation behaviour. Belafi et al. (2018) developed a stochastic model of window

operation by combining regression analysis and absolute thresholds.

2.4.3 Model implementation (post-processing)

Only 31% of the reviewed studies implemented the OB models in a BPS tool. Dutton and Shao
(2010) used their OB stochastic model to schedule window opening in an EnergyPlus model.
Simanic et al. (2020) used a set of combinations of user-related parameters as input for BPS
in IDA ICE software. Lourengo et al. (2019) simulated lighting operation scenarios based on
the behaviour patterns observed in loco, by using Radiance and Energy Plus software tools,
through the Design Builder interface. Englund et al. (2020) calibrated a model in IDA ICE
software based on measured data and implemented a deterministic OB model to determine

heat losses resultant from OB.

2.5 Potential changes on naturally ventilated school buildings design and occupant
behaviour due to the COVID-19 pandemic

Since March 2020, the COVID-19 pandemic not just renewed but also emphasized the interest
and urgency on investigating deficient IAQ and thermal comfort conditions in school

classrooms, since the majority of the COVID-19 infections occur in public indoor environments
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(ALONSO et al., 2021; AZUMA et al., 2020; MOKHTARI; JAHANGIR, 2021; QIAN et al., 2021).
Recent research studies highlighted the association between indoor occupation and risk of
infection, showing that the SARS-CoV-2 reproduction rate (contagiousness) in indoor
environments is three to four times higher than in outdoor environments (DIETZ et al., 2020;
QIAN et al., 2021). Also, the airborne transmission was found to be the main infection route,
especially in indoor environments with poor ventilation, high occupancy and high exposure
time, such as school buildings (HOU; KATAL; WANG, 2021).

In order to reduce the COVID-19 transmission, most of the governments temporarily closed
schools facilities in 2020 and some of them remained closed during the beginning of 2021
(KAPOOR et al., 2021). However, while the COVID airborne transmission in school buildings
is a challenging issue, especially in naturally ventilated classrooms, which rely only on
occupants to achieve good IAQ conditions through manual operation of windows, the necessity
to keep schools opened led to the rapid development of guidelines to improve IAQ in
classrooms (ALONSO et al., 2021; KAPOOR et al., 2021). Such guidelines and protocols were
developed by international organizations and associations (ASHRAE, 2020a; CIBSE, 2020;
VAN DIJKEN, 2020; WORLD HEALTH ORGANIZATION, 2020) and specific literature, but few
of them focus specifically on naturally ventilated buildings. Table 2.4 presents the research
and review papers selected in LR 3, which aimed to investigate the potential changes on

occupant behaviour in school buildings due to the COVID-19 pandemic.

2.5.1 Guidelines to improve IAQ in classrooms and the occupants’ role

Special attention to the IAQ in school buildings has led to the use of ventilation protocols
developed by associations throughout the world. The World Health Organization (WHO) and
the Chartered Institution of Building Services Engineers (CIBSE), for example, proposed
strategies to ensure adequate ventilation in classrooms, such as the use of natural ventilation
to increase dilution of indoor air pollutants and the increase of airflow supply to ensure
adequate ventilation (CIBSE, 2020; WORLD HEALTH ORGANIZATION, 2020). The American
Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) also published a
guidance towards the reopening of schools, suggesting strategies regarding ventilation (to
provide a good supply of outside air), filtration (to use MERV-13 filters or portable HEPA air
cleaners) and air cleaning (to use a germicidal ultraviolet air disinfection device to supplement
ventilation and filtration) (ASHRAE, 2020a). The Federation of European Heating, Ventilation
and Air Conditioning Associations (REHVA) published recommendations especially related to
the classrooms’ ventilation, such as installing CO2 monitors to indicate when extra ventilation

is necessary and installing mechanical ventilation systems to ensure a continuous air renewal
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throughout the year (VAN DIJKEN, 2020). The German Federal Environmental Agency (UBA)
suggested ventilation strategies which includes to maintain a minimum outdoor air ventilation
rate of 3 ACH, to open windows during intervals and every 20 minutes for 3 to 5 minutes during

winter or for 10 to 20 minutes during summer (UBA, 2021).

Table 2.4 — Reviewed research and review papers on OB in school buildings during the COVID-19 pandemic (LR

3)
Publication Ventilation Location Climate Objective Method
system * **
Alonso etal. MV and NV  Spain Csa  Analyse the effects of the COVID-19 pandemic  Field measurements and
(2021) on thermal comfort and IAQ conditions in winter questionnaires
Arjmandi et MV - - Perform numerical modelling of infection control Computational Fluid
al. (2021) to reduce the risk of infectious exposure while Dynamics (CFD)
improving thermal comfort parameters simulation and multi-
objective optimization
Asanatiet MV and NV - - Propose mitigation strategies for school buildings, Literature review
al. (2021) especially regarding ventilation and testing
Deng et al. MV USA BSk Investigate the influence of IAQ and thermal Field measurements and
(2021) comfort on students’ iliness-related absenteeism statistical analysis
(negative binomial model)
Dingetal. NV and MV - - Evaluate the ventilation strategies currently Literature review
(2021) adopted in school buildings regarding their

efficiency of reducing infectious aerosols in the
indoor environment

Hou et al. MV and NV Canada Dfb Estimate ventilation rate and airborne infection  Field measurements and
(2021) risk of COVID-19 sensitivity analysis
(Bayesian calibration and
Markov Chain Monte

Carlo).
Kapoor et al. NV - - Identify the necessity of IEQ in NV school Systematic literature
(2021) buildings during the COVID- 19 pandemic review
Parketal. MV and NV Korea Dwa Quantify the natural ventilation performance Field measurements and
(2021) according to the window opening conditions and  calculation procedure

infection probability.

Schibuola MV and NV  ltaly Cfa Investigate the possibility to contain COVID-19  Field measurements and

and via increasing ventilation rates obtained through calculation procedure
Tambani high energy efficiency systems.

(2021)

Zivelonghi NV - - Propose and analyse strategies to mitigate Calculation procedure
and Lai airborne infection risk (GN-Riley model)
(2021)

Orosaetal. MV and NV  Spain Csa Define the optimal moment and the exact Calculation procedure.
(2020) increment of the number of air changes to lower

energy consumption.

*NV — natural ventilation; MM — mixed-mode; MV — mechanical ventilation.

**Am — Tropical monsoon; BWh — Hot desert; BSh — Subtropical steppe; BSk — Cold semi-arid; Cfa — Humid subtropical; Cfb —
Oceanic; Csa — Hot-summer Mediterranean; Csb — Warm-summer Mediterranean; Dfa — Hot-summer humid continental; Dfb —
Warm-summer humid continental; Dwa - Monsoon-influenced hot-summer humid continental.

Three review articles associating the subjects airborne virus transmission in indoor
environments and school buildings were found. Ding et al. (2021) investigated ventilation
strategies adopted in schools, aiming to outline future possible solutions to control virus
airborne transmission. The authors concluded that both natural and mechanical ventilation can
reduce airborne transmission if properly designed, operated and maintained, but standards
and guidelines are still lacking. Kapoor et al. (2021) discussed the impacts of COVID-19 on

naturally ventilated classrooms and highlighted that most guidelines regarding natural
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ventilation during the pandemic do not consider a specific building typology, which
demonstrates the need of guidelines focused on school buildings. Asanati et al. (2021)
presented a short communication discussing ventilation, testing and vaccination in school
buildings, suggesting that increasing ventilation in classrooms is an important approach to
lower the concentration of indoor air pollutants and contaminants, thus reducing the risk of
infection. The authors proposed a model for ventilation and filtration in schools that suggests
implementing air ducts to increase the air change rate and adding HEPA filters in existing

HVAC units or in portable units.

Original research papers recently published have shown the importance of air renewal to dilute
contaminants and, consequently, to reduce airborne infection risks, both in naturally and
mechanically ventilated school environments (PARK et al., 2021). The indoor CO: levels may
be used as an index to estimate the ventilation rate and, therefore, the airborne transmission
of diseases (BHAGAT et al., 2020; HOU; KATAL; WANG, 2021). Hence, its concentration rate
is widely used as an indicator of IAQ (CHATZIDIAKOU; MUMOVIC; SUMMERFIELD, 2015).
As a result, the current pandemic brought into discussion which CO- levels and ventilation
rates thresholds would be adequate to reduce the probability of infection in school classrooms,
since recommendations from standards could not be enough to prevent airborne transmission
(HOU; KATAL; WANG, 2021).

Schibuola and Tambani (2021) investigated the COVID-19 infection risk in both naturally
ventilated and mechanically ventilated school buildings located in ltaly, by calculating the air
change rates and measuring and simulating the CO2 concentration. Results showed that the
mechanical ventilation could considerably reduce indoor viral concentration and, consequently,
the infection risk — with the reproduction number decreasing from 13.1 in a naturally ventilated
classroom without the use of facemasks to under 1 in a classroom with high ventilation rates
and facemasks’ filtration, which is considered a safe limit to stop the outbreak. Hou et al. (2021)
analysed the ventilation rate and airborne infection risk in three Canadian schools through a
one-day measurement of CO- levels. Results showed that outdoor ventilation rates between 3
and 8 ACH and a CO; concentration around 500 ppm are the thresholds to prevent COVID-19
airborne transmission in classrooms during a school day (less than 8 hours of continuous use).
Park et al. (2021) analysed the natural ventilation performance and the infection probability in
a Korean school building by using air temperature, relative humidity, wind velocity and CO-
concentration data measured during the COVID pandemic. The authors found out that a
window opening ratio of 15% could provide a ventilation rate of 6.5 ACH, which, in addition to
restricting exposure time to less than 3 hours and wearing facemasks, would be adequate to

maintain infection risk at less than 1%. Mokhtari and Jahangir (2021) analysed the effects of
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indoor occupancy on COVID-19 infection risk in an Iranian university classroom, concluding
that an optimum occupant distribution could reduce the number of infected people by up to
56%. The authors also showed that increasing ventilation rates and reducing classes duration
could help airborne transmission prevention. Zivelonghi et al. (2021) applied the GN-Riley
infection risk model in a classroom scenario and proposed mitigation interventions regarding
ventilation, occupancy, classroom’s volume and CO, monitoring. The authors concluded that
regular window opening could almost halve the infection risk in classrooms and, if added to
facemasks use, could achieve acceptable levels of airborne transmission risk. Other

suggested interventions were class splitting and CO- sensors installation.

Recent research studies also focus on the relationship between IAQ and students’ health and
thermal comfort. Alonso et al. (2021) analysed the effects of the COVID-19 pandemic on
thermal comfort and IAQ conditions in two mixed-mode classrooms of southern Spain,
comparing CO- concentration, air temperature and relative humidity data collected before and
during the pandemic. Results showed that CO, concentration weekly average decreased from
values around 1000 ppm before pandemic (medium quality category) to 600-750 ppm during
pandemic (optimum quality category). However, since IAQ was the main priority and
classrooms were only naturally ventilated due to security measures, comfort conditions
worsened, increasing from 50-60% of discomfort hours before pandemic to more than 80% of
discomfort hours during pandemic. Deng et al. (2021) investigated the relationship between
classrooms’ IAQ and thermal comfort and students’ iliness related to absenteeism by analysing
data collected before the pandemic in 85 American school buildings. Results showed that the
maijority of the classrooms were poorly ventilated and students’ absenteeism were associated
to the elevated CO2 concentration only during the heating season. Arjmandi et al. (2021)
analysed the COVID-19 infection risk in school classrooms in order to reduce airborne
transmission and improve thermal comfort, by using Computational Fluid Dynamics to simulate
the performance of five mechanical ventilation systems (with different inlet and outlet vents
position). Results showed the best scenario as the one with individual inlets and outlets located
on the floor and ceiling of the teacher and each student’s desk, since the particles exit through

the shortest and straightest path-line.

Most strategies suggested by the reviewed research papers to improve IAQ in classrooms rely
on the occupant behaviour, especially in naturally ventilated buildings. Nevertheless, only two
research papers mention the occupants’ role as part of the solution to the problem. Schibuola
and Tambani (2021) emphasizes the arbitrariness of natural ventilation management due to

its dependence on the OB, which contributes to the lack of acceptable IAQ conditions in
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naturally ventilated classrooms. Zivelonghi and Lai (2021) consider OB and exposure time to

model the SARS-CoV2 emission rates inside a classroom.

2.5.2 Potential changes on actions’ drivers due to COVID-19 and potential future pandemics

Recommendations and protocols to prevent airborne virus transmission in school classrooms
are leading to changes on occupants’ actions. Until recently, the main drivers to window
operation behaviour were environmental factors associated to thermal comfort requirements,
such as indoor and outdoor air temperature (JIA et al., 2021; MICOLIER et al., 2019; MUN;
KWAK; HUH, 2021; STAZI; NASPI; D’ORAZIO, 2017b). The current pandemic brought up the
urgency in addressing IAQ related drivers, such as the indoor CO; concentration, with direct
association to air renewal. Consequently, the decision to open or close a window, especially
during the heating season, is followed by the trade-off between achieving thermal comfort or
improving indoor air quality (ALONSO et al.,, 2021). Thus, the behavioural dimension is
currently being affected by the COVID-19 response measures, including changes in energy-
related behaviours, decision-making and daily routines (FELL et al., 2020). Also, the potential
changes on actions’ drivers may be different and not comparable between and within countries,
since COVID-19 impacts and restrictions were different in each place (FELL et al., 2020).
Therefore, it is essential to investigate the behaviour changes, their actions’ drivers, their
impact in the building environment, including energy and thermal performance, and whether
they are durable or ephemeral (FELL et al., 2020). Hence, this research topic is also important
in phases without a pandemic, since it focuses on human and especially children’s health and

long-term well-being.

Figure 2.4 represents a framework for OB modelling in naturally ventilated school classrooms,
highlighting in red the potential impacts due to the COVID-19 pandemic. Occupants’
interactions regarding the classroom ventilation system (window, door and fan operation) and
the clothing adjustment (use of masks) were impacted by recent secure measures and
protocols. However, to what extent the behaviours’ changes will be durable is still unknown.
Also, whilst there is an urgent need in increasing IAQ in classrooms to reduce virus airborne
transmission, thermal comfort requirements could potentially be put in second plan, if a
simultaneous multi-input and output parameters interaction is not taken into consideration. So
far, all models developed and simulated during the COVID-19 pandemic regarding window and
door operation and mechanical ventilation operation aimed to find the best scenario to reduce
the infection risk (ARJMANDI et al.,, 2021; HOU; KATAL; WANG, 2021; OROSA;
NEMATCHOUA; REITER, 2020; PARK et al, 2021; SCHIBUOLA; TAMBANI, 2021;
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ZIVELONGHI; LAI, 2021) and do not necessarily reflect the real occupant behaviour or its

potential changes.
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E OCCUPANT INTERACTIONS
' (sub-models)

' Window, door, blinds, lighting, and fan
|\ operation, appliances use, clothing adjustment

Figure 2.4 — Framework for OB in naturally ventilated classrooms

2.6 Conclusion: limitations and future perspectives

Occupant behaviour models have been developed to predict and represent human behaviour
in building performance simulation, aiming at optimizing the building design and, therefore,
reduce the performance gap. Occupants usually respond in different ways to the built
environment, especially when comparing different building typologies and location.
Nevertheless, the developed models focus on, mainly, office and residential contexts, whereas
few publications address school buildings. Also, in locations where natural ventilation and
mixed-mode are effective strategies for the cooling season, school classrooms usually provide
manual operation of windows, which reinforces the occupant’s role over the environment’s
performance. Therefore, this paper presents a comprehensive and critical review about
occupant behaviour modelling for building performance simulation of naturally ventilated and

mixed-mode school buildings.

We identified three main steps to represent the OB modelling approach in current literature,
which refers to the data collection (pre-processing, step 1), the OB model development and
evaluation (processing, step 2) and the OB model implementation (post-processing, step 3) in
building performance simulation. Results from SLR 1 (mainly residential and office buildings,
for instance) showed an implementation rate of 85% for step 1, 100% for step 2 and 56% for
step 3. In contrast, the second and third steps were not fully considered in most of the research

studies focused on school buildings (SLR 2), being present in only 46% (step 2) and 31% (step
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3) of the reviewed studies, showing that OB modelling is still in an initial stage for school
buildings, which is an important research gap. Nevertheless, the data collection (step 1) has
been widely adopted as a research method in school buildings and can be identified in all the

reviewed studies.

By comparing the data collection methods (step 1) adopted in SLR 1 and SLR 2, we identified
similarities, such as the combination of both physical monitoring and occupant investigation
methods. Nevertheless, a particularity of occupant investigation in school buildings is the
identification of the teacher as the main active occupant regarding the environment adjustment,
and the decision-making process relying mostly on collective needs and school rules. As to
the model development (step 2), both SLR 1 and SLR 2 showed the environmental factors as
the most investigated drivers, in special the indoor and outdoor air temperature. Although all
the reviewed studies regarding school buildings considered, in their methodology, the
correlation between occupant interaction (sub-models) and drivers, only 46% actually
presented the resultant OB model. A comparison between SLR 1 and SLR 2 regarding the
model implementation (step 3) showed that, from the few studies on school buildings that
actually implemented the OB model, all of them adopted the ‘direct input or control
implementation approach, by representing the studied environment through BPS tools. The
co-simulation, a common approach adopted in the SLR 1 research studies, was not used in

any of the reviewed studies from SLR 2.

Future research and OB model development and implementation are needed to address the

following challenges, identified during this study:

e Almost half of the reviewed OB models focus on one single behaviour, however, in
reality, occupant behaviours are connected. Therefore, to guarantee a more accurate

representation, OB models should represent multiple behaviours simultaneously.

e External drivers, especially environmental factors (e.g., indoor and outdoor air
temperature and CO- concentration), were more investigated in the reviewed studies
than the internal drivers, since they are easier to measure and quantify. However,
internal drivers, such as physiological and psychological factors, can also influence
occupant behaviour and are essential to compare occupant behaviour in different

typologies (e.g., schools’ and offices’ occupants have different preferences, ages, etc.).

e The OB model evaluation is essential to verify if the model is reliable and effective.
However, it was little addressed in the literature and there is a lack of guidelines to

properly develop this evaluation.
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As in some classrooms children have little or no freedom of action, teachers’ behaviour

and collective actions should be better investigated within the school buildings context.

The OB investigation in school buildings usually focuses on a single scope, mainly
energy consumption, IEQ, IAQ, thermal or visual comfort. However, OB can impact
negatively and/or positively on different aspects of the building performance, so a
simultaneous multi-input and output parameters interaction analysis should be taken
into consideration. As an example, the urgent need to increase IAQ in classrooms to
reduce COVID-19 airborne transmission might have, potentially, put thermal comfort

requirements in second plan.

The behavioural dimension in school buildings is currently being affected by the
COVID-19 response measures, making it essential to investigate which are the
behaviour changes, their actions’ drivers and their impacts on the built environment.
Also, to what extent the potential changes on actions’ drivers due to COVID-19
pandemic in naturally ventilated classrooms will be durable or ephemeral is an
important issue that impacts directly on children health, comfort and learning process

and, therefore, should be better investigated.
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3 School classrooms indoor conditions during the COVID-19

pandemic

This chapter is the transcription of the following paper:

Condicoes de conforto térmico e QAl em salas de aula naturalmente ventiladas
durante a pandemia de Covid-19

Authored by Paula Brumer Franceschini, lara Nogueira Liguori and Leticia Oliveira
Neves

Published in Ambiente Construido (ISSN: 1678-8621), volume 22, in 2022, and
catalogued through the DOI: 10.1590/s1678-86212022000400637.

Resumo

Para a obtengdo de boas condi¢gdes de conforto térmico e qualidade do ar interior (QAI) em
salas de aula naturalmente ventiladas, devem-se garantir taxas de renovacdo do ar
adequadas. Em 2020, esta questao tornou-se especialmente relevante devido a pandemia de
Covid-19, ja que pode contribuir para a redugdo do potencial de transmissdo de doengas
respiratorias. O objetivo deste estudo é avaliar as condigbes de conforto térmico e QAIl de
uma sala de aula naturalmente ventilada a fim de identificar cenarios que contribuam,
simultaneamente, para a redugdo do risco de disseminacao do virus SARS-CoV-2 e para a
manutencdo do conforto térmico dos usuarios. Variaveis climaticas foram monitoradas em
uma sala de aula antes e durante a pandemia de Covid-19 e um modelo de simulacéao foi
calibrado. Cenarios variando o numero de ocupantes e a taxa de renovagdo do ar foram
simulados a fim de avaliar o impacto dessas variaveis na concentragao de CO2, na
probabilidade de infeccdo e na temperatura operativa interna. O melhor cenario apresentou
uma redugao de 42% na concentragcao de CO2 e 33% na probabilidade de infeccao € um
aumento de 60% nas horas ocupadas em conforto, se comparado ao pior cenario. No entanto,
as estratégias adotadas devem ser analisadas para cada situagéo, assim como os riscos e 0s

beneficios para os ocupantes da sala de aula.
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Palavras-chave: Qualidade do Ar Interior (QAI). Conforto térmico. Ventilagdo natural.

Edificacao escolar.

Abstract

In order to achieve good thermal comfort and indoor air quality (IAQ) conditions in naturally
ventilated classrooms, adequate air change rates must be ensured. In 2020, this issue became
especially relevant due to the Covid-19 pandemic, since it may contribute to minimize the
transmission potential of respiratory diseases. This study aims to evaluate the thermal comfort
and |IAQ conditions of a naturally ventilated classroom, in order to identify scenarios that
contribute, simultaneously, to the reduction of the risk of dissemination of the SARS-CoV-2
virus and to the maintenance of thermal comfort for users. Environmental variables were
monitored in a classroom before and during the Covid-19 pandemic and a simulation model
was calibrated. Scenarios varying the number of occupants and the air change rate were
simulated in order to assess the impact of these variables on the CO; concentration, on the
infection probability and on the indoor operative temperature. The best scenario showed a
reduction of 42% in the concentration of CO, and 33% in the infection probability and an
increase of 60% in comfort hours, compared to the worst scenario. However, the strategies
adopted must be analysed for each situation, as well as the risks and benefits for classroom

occupants.

Keywords: Indoor air quality (IAQ). Thermal comfort. Natural ventilation. School building.

3.1 Introdugao

As escolas sao os locais em que as criangas passam a maior parte do tempo durante a
infancia (DENG; ZOU; LAU, 2021; KATAFYGIOTOU; SERGHIDES, 2014; STAZI; NASPI;
D’ORAZIO, 2017b), o que reforga a importancia da qualidade da arquitetura escolar, em amplo
aspecto. As criangas sao mais vulneraveis e sensiveis a influéncias do ambiente do que os

adultos, pois:

(a) elas respiram mais rapido, uma vez que tém a taxa metabdlica mais elevada, inalando

mais ar (e mais poluentes) em relagdo ao peso do corpo;

(b) 0s seus orgaos estdo ainda em desenvolvimento; e
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(c) elas tém uma expectativa de vida maior e, portanto, tém mais tempo para manifestar
qualquer doenga associada (DENG; ZOU; LAU, 2021; WORLD HEALTH ORGANIZATION,
2018).

Além de influenciar a saude e o bem-estar dos usuarios, as condicbes de temperatura,
umidade e qualidade do ar em salas de aula s&o fatores importantes no processo de
aprendizagem dos alunos (DUTTON; SHAO, 2010; KATAFYGIOTOU; SERGHIDES, 2014).
Uma pesquisa conduzida na Dinamarca mostrou que a falta de qualidade ambiental em
escolas reflete em custos adicionais com professores e com cuidados médicos, devido ao
absenteismo por doencgas, além de gerar impactos socioecondmicos (OLESEN, 2015). Nesse
contexto, é importante melhorar as condigcdes de conforto térmico e qualidade do ar interior
(QAI) de salas de aula de edificacdes escolares para que as criangas tenham um

desenvolvimento saudavel e um melhor desempenho escolar.

Uma questao-chave para a obtencao de boas condi¢gdes de conforto térmico e QAI em salas
de aula é o uso de um sistema de ventilacido apropriado, com taxas de renovacao do ar
adequadas (VAN DIJKEN, 2020). A avaliacao da qualidade da ventilacdo de um ambiente
pode ser monitorada pela concentragao de dioxido de carbono (CO3), pois, como os usuarios
exalam CO; ao respirar, a sua alta concentracdo pode indicar que a renovagao do ar esta
inadequada (UMWELTBUNDESAMT, 2021). Esse € um ponto critico para as edificagdes
escolares, devido ao elevado indice de ocupagao dos ambientes (HOU; KATAL; WANG, 2021)
e, em especial, para os ambientes naturalmente ventilados — estratégia adotada em grande
parte das escolas localizadas em climas tropical ou subtropical (WORLD HEALTH
ORGANIZATION, 2015).

Em salas de aula naturalmente ventiladas, os niveis de ventilacgdo recomendados
frequentemente deixam de ser atendidos (DENG; ZOU; LAU, 2021; DUTTON; SHAO, 2010),
uma vez que a ventilagdo natural depende das condi¢des externas, que variam ao longo do
tempo (VAN DIJKEN, 2020). Exemplo disso sdo os resultados obtidos por meio de medigbes
continuas das taxas de CO,; em mais de 1.000 salas de aula na Dinamarca, na Suécia e na
Noruega, que mostraram que apenas 44% das salas apresentavam niveis aceitaveis de
concentracao de CO; (de 385 a 1.000 ppm), sendo os piores resultados obtidos nos ambientes
naturalmente ventilados (OLESEN, 2015).

Em 2020, as questdes relacionadas a QAl em salas de aula tornaram-se especialmente
relevantes devido a pandemia de Covid-19 (PULIMENO et al., 2020). O ambiente construido

serve como potencial vetor de transmissdo de doengas como a Covid-19, principalmente em
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ambientes fechados e com pouca ventilagao, alta taxa de ocupagédo e grande periodo de
exposicao, como as escolas (BHAGAT et al., 2020; DIETZ et al., 2020). Evidéncias mostram
que a taxa de contagio do SARS-CoV-2, ou seja, quantas pessoas saudaveis uma pessoa
infectada contamina, é trés a quatro vezes maior em ambientes internos do que em ambientes
externos (DIETZ et al., 2020; QIAN et al., 2021), sendo a transmissao pelo ar a principal forma
de contagio (HOU; KATAL; WANG, 2021).

Mesmo que muitos casos de transmissdo do SARS-CoV-2 possam ser reduzidos por meio de
medidas como o distanciamento social e o uso de mascaras, o ar interno necessita de
solugdes adequadas de ventilagdo para remover os contaminantes de forma segura (LIPINSKI
et al., 2020). Assim, estratégias adequadas de ventilagdo em ambientes com alta taxa de
ocupagao, como salas de aula, podem contribuir para a redugao do potencial de transmisséo

de doencgas respiratorias (DIETZ et al., 2020).

Com o objetivo de manter as escolas abertas de forma segura, algumas publicacbes recentes
trazem orientagbes para a ventilagdo adequada de salas de aula (ASHRAE, 2020a; CIBSE,
2020; VAN DIJKEN, 2020; WORLD HEALTH ORGANIZATION, 2020). A Agéncia Ambiental
Federal da Alemanha sugere medidas relacionadas a abertura de janelas para garantir um
minimo de trés trocas de ar por hora no ambiente (UMWELTBUNDESAMT, 2021). A
ASHRAE, a Organizagao Mundial da Saude (OMS) e o CIBSE recomendam a implementagao
de medidas para aumentar a ventilagao natural, melhorar o sistema de filtragem do ar e
purificar o ar interno (ASHRAE, 2020a; CIBSE, 2020; WORLD HEALTH ORGANIZATION,
2020). A REHVA ressalta que a ventilagao natural ndo pode ser garantida o tempo todo, pois
depende da diferenca de temperatura entre os ambientes interno e externo e, portanto, a
ventilagdo mecanica pode ser necessaria para a obtengao de uma boa QAI (VAN DIJKEN,
2020).

Estudos recentes apontaram dados mais especificos sobre o risco de transmissao do virus
SARS-CoV-2 em salas de aula de escolas localizadas no Canada (HOU; KATAL; WANG,
2021), na ltalia (SCHIBUOLA; TAMBANI, 2021; ZIVELONGHI; LAI, 2021) e na Coreia do Sul
(PARK et al., 2021), por meio do monitoramento da concentragdo de CO2 no ambiente e do
célculo ou da simulacado das taxas de renovagao do ar. Para estimar a taxa de contagio,
utilizou-se o modelo matematico de Wells-Riley, desenvolvido para prever a transmissao de
doengas respiratdérias em salas de aula (RILEY; MURPHY; RILEY, 1978) adaptado ao

contexto da pandemia de Covid-19.
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Hou, Katal e Wang (2021) identificaram valores recomendaveis para a taxa de renovacgao do
ar ambiente, de 3h™" a 8h™", e para a concentragdo de CO,, de aproximadamente 500 ppm,
para prevenir a transmissao do virus durante um dia letivo de até 8 horas de exposi¢cao para
trés escolas utilizadas como estudo de caso. Park et al. (2021) identificaram que uma taxa de
renovagao de ar de 6,5h™" obtida por ventilagdo cruzada associada ao uso de mascaras seria
medida adequada para proporcionar uma probabilidade de infeccdo abaixo de 1%,

considerando-se um periodo de exposicao de até 3 horas.

Os resultados de Schibuola e Tambani (2021) indicaram taxas de contagio variando entre
valores abaixo de 1 (cenario com o uso de ventilagdo mecéanica e com o uso de mascaras) a
acima de 13 (cenario com ventilagdo natural e sem o uso de mascaras), concluindo que a
ventilacdo mecanica e o uso de mascaras sao estratégias efetivas para reduzir o risco de
infeccdo em ambientes internos. Zivenlonghi e Lai (2021) identificaram que a abertura regular
das janelas poderia reduzir pela metade a taxa de contagio nas salas de aula monitoradas e,

quando associada ao uso de mascaras, poderia atingir niveis seguros de taxa de contagio.

O impacto da pandemia de Covid-19 no conforto térmico de salas de aula também tem sido
abordado pela literatura recente (ALONSO et al., 2021; LOVEC; PREMROV; LESKOVAR,
2021; MONGE-BARRIO et al., 2022). Enquanto a pandemia evidenciou a importancia da QAI
em salas de aula, levando a mudangas significativas nos protocolos de ventilagao, o conforto
térmico, antes uma prioridade, passou para segundo plano (LOVEC; PREMROV;
LESKOVAR, 2021). Diversos estudos mostraram uma piora nas condigbes de conforto
térmico de salas de aula durante a pandemia, em especial em escolas naturalmente ventiladas
e em periodos de temperatura externa muito baixa ou muito alta (ALONSO et al., 2021;
MONGE-BARRIO et al., 2022).

Alonso et al. (2021), em um estudo conduzido em duas salas de aula no sul da Espanha,
identificaram uma redugdo na média da concentracdo de CO; de 1.000 ppm antes da
pandemia para 600-750 ppm durante a pandemia, mas um aumento das horas de desconforto
térmico, de 50-60% para 80%. Monge-Barrio et al. (2022), ao monitorarem salas de aula antes
e durante a pandemia, também na Espanha, identificaram uma redugao na concentragao de
CO2 e um aumento nas horas de desconforto, em especial no inverno, o que levou a um
aumento do consumo de energia para aquecimento. Por outro lado, as condi¢cdes de conforto
térmico ndo se mostraram afetadas durante a pandemia em um estudo conduzido em salas
de aula na Eslovénia, que mostrou, também, uma melhora de 30% na média diaria da
concentragao de CO; interno em comparagao com periodo anterior a pandemia (LOVEC;
PREMROV; LESKOVAR, 2021).
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No Brasil, o Ministério da Saude publicou algumas orientagcbes para a retomada das atividades
escolares presenciais, porém a unica recomendacido em relagdo a ventilacdo das salas de
aula é a de abrir as portas e as janelas para aumentar a circulagdo de ar no ambiente (BRASIL,
2020). No entanto, as condicdes climaticas e a arquitetura escolar brasileiras apresentam
diferencgas significativas em relacao aos paises mencionados nos estudos citados, sendo
inadequado, portanto, importar as medidas sugeridas nos documentos internacionais ja
publicados (ASHRAE, 2020a; CIBSE, 2020; VAN DIJKEN, 2020; WORLD HEALTH
ORGANIZATION, 2020).

As salas de aula de escolas publicas brasileiras e, em especial, das escolas publicas do
estado de Sao Paulo, mantidas pela Fundagao para o Desenvolvimento da Educagao (FDE),
funcionam, em sua maioria, com aberturas para ventilacao natural e, em alguns casos, com
ventilacdo mecanica proporcionada por ventiladores de teto ou parede. Nessas escolas, o0 ano
de 2020 foi marcado pelo ensino a distancia e por tentativas de volta as atividades em

periodos de curta duragdo e com numero reduzido de alunos.

Para que as escolas funcionem de forma mais segura, a QAl em salas de aula precisa ser
avaliada, de forma a auxiliar na definicao de estratégias que resultem em taxas de ventilacdo
adequadas e, por consequéncia, que proporcionem um ambiente mais saudavel e confortavel
aos usuarios. Da mesma forma, aumentos na taxa de renovacao do ar ambiente ndo devem
acarretar uma piora nas condigdes de conforto térmico. Em vista disso, o objetivo deste estudo
€ avaliar as condigdes de conforto térmico e a QAI de salas de aula naturalmente ventiladas
a fim de identificar cenarios que contribuam, simultaneamente, para a reduc¢ao do risco de

disseminacao do virus SARS-CoV-2 e para a manutencao do conforto térmico dos usuarios.

3.2 Método

O método adotado contemplou o monitoramento in loco de variaveis climaticas de uma sala

de aula e simulagbes computacionais. As etapas de trabalho sao detalhadas a seguir.

3.2.1 Monitoramento de variaveis climaticas em sala de aula

A coleta de dados foi realizada em uma escola estadual administrada pela Fundacao para o
Desenvolvimento da Educacao, localizada em Campinas, Sdo Paulo. A escola é de ensino
médio, com alunos entre 14 e 17 anos. As salas de aula tém aproximadamente 49 m? e sao
distribuidas em trés edificagdes térreas (Figura 3.1). A sala de aula selecionada para o estudo

(Figura 3.2) tem a fachada com janela voltada para sudeste (ventilagdo unilateral, sendo o
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vento predominante em direcdo a sudeste). A obtencao de ventilagdo cruzada so é possivel

por meio da abertura da porta.

Rua Willian Booth

UBLLIOY SO [1B]) DISOLLE] By

.

 EX e .Y

il
.

M

IvL

r
UUBLLLIAQI] ZI] By

B

Rua Antdnio Rodrigues Moreira Neto

Figura 3.1 — Foto e planta da situagdo da escola, com a posi¢éo da sala de aula monitorada

Fonte: Liguori (2020).
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Figura 3.2 — Foto e planta baixa da sala de aula

O monitoramento foi realizado em dois periodos — antes e durante a pandemia de Covid-19

(Tabela 3.1). No periodo durante a pandemia, observaram-se mudancas no numero de

ocupantes e no periodo de ocupagao devido as restricdes impostas pelo Plano Sao Paulo

(SAO PAULO, 2021), elaborado para a pandemia de Covid-19, fase amarela. Adicionalmente,

algumas estratégias foram recomendadas as escolas nesse periodo, como manter sempre as

janelas e as portas abertas e nao utilizar o ventilador.
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As variaveis climaticas monitoradas incluiram: temperatura do ar (Ta), temperatura de globo
(Tg) e umidade relativa (UR). Os equipamentos utilizados para a medicao sao apresentados
na Tabela 3.2. O datalogger de temperatura do ar e de globo foi posicionado a uma altura de
1,5 m e a uma distadncia minima de 40 cm da parede interna, em um tripé, para nao atrapalhar
o andamento da aula. Os dados foram registrados a cada 10 minutos. No periodo durante a
pandemia, foram monitoradas também a concentragdo de CO; e a operagdao manual de
janelas e ventiladores. O sensor de CO» foi posicionado na parede a uma altura de 1,1 m,
referente a altura da cabega de uma pessoa sentada (INTERNATIONAL STANDARD, 1998),

afastado das janelas e proximo as mesas dos alunos.

Tabela 3.1 — Coleta de dados antes e durante a pandemia

Coleta Periodo Numero de Periodo de ocupagao
ocupantes
Antes da pandemia (5 dias, sendo 5 ocupados)  11/03 a 15/03/2019 40 7h30min as 12h30min e
13h30min as 16h30min
Durante a pandemia (7 dias, sendo 4 ocupados) 24/02 a 03/03/2021 20 8h as 11h30min

Tabela 3.2 — Especificagdes técnicas dos equipamentos utilizados para 0 monitoramento

Equipamento Alcance Precisao Periodo
Datalogger temperatura/umidade, marca Testo, -20°Ca70°C +0,5°C Antes da
modelo 174H 0% a 100% + 3% pandemia
Datalogger temperatura/temperatura, marca Testo, -35°C a55°C +0,5°C Antes e durante a
modelo 175-T2 pandemia
Sonda de esfera quente, marca Testo, modelos -25°Cas80°C +0,2°C Antes e durante a
0635 1549, 0635 1049 e 0613 1712 pandemia
Datalogger Hobo de State/Pulse/Event/Runtime, Frequéncia + 1 min Durante a
marca ONSET (para o monitoramento da operagdo maxima 1 Hz pandemia
das janelas)
Datalogger de temperatura e umidade, iButton -20°Ca85°C +0,5°C Durante a
Hygrochron (para o monitoramento da operacéo 0% a 100% 1+ 0,6% pandemia
dos ventiladores e das variaveis externas)
Datalogger wi-fi com display e sensores integrados 0°C a 50 °C +0,5°C Durante a
de temperatura e umidade, CO, e presséo 0% a 100% +2% pandemia
atmosférica, marca Testo, modelo 160 IAQ 0a5.000 ppm (100 ppm + 3% do vm)

As variaveis climaticas externas (temperatura do ar, umidade relativa, velocidade e direcao
do vento e indice de precipitagdo) de ambos os periodos (antes e durante a pandemia) foram
disponibilizadas pelo Centro de Pesquisas Meteoroldgicas e Climaticas Aplicadas a
Agricultura (Cepagri) da Unicamp, cuja estacdo meteoroldgica esta localizada acerca de 10
km de distancia da escola monitorada. Os dados foram convertidos para o formato EnergyPlus
Weather File (epw) por meio do Weather Converter versdo 8.1.0.005, um programa auxiliar
do software EnergyPlus. No periodo antes da pandemia, as temperaturas de bulbo seco
média, média maxima e média minima registradas foram, respectivamente, 23,7 °C, 30,4 °C
e 19,9 °C. No periodo durante a pandemia, foram de 23,2 °C, 30 °C e 18,7 °C,

respectivamente.
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3.2.2 Simulagbes computacionais

Um modelo de simulacdo da sala de aula monitorada foi calibrado com base nos dados
coletados in loco, por meio do software EnergyPlus, versdo 9.3. Na sequéncia, o modelo foi
utilizado para a simulagao de cenarios, variando o numero de ocupantes e a taxa de ventilagdo
do ambiente, a fim de avaliar o impacto dessas variaveis na concentracdo de CO; e na

temperatura operativa interna dos ambientes.

3.2.2.1 Elaboracédo do modelo

A sala de aula foi modelada como uma unica zona térmica. As paredes laterais foram
consideradas adiabaticas, pois sdo comuns a outras salas de aula da escola de condigbes
térmicas similares, nao incluidas no modelo (Figura 3.3). O modelo de temperaturas do solo
nao perturbadas Kusuda e Achenbach foi utilizado para simular as trocas de calor pelo solo
(ELI et al., 2019). A sala de aula foi modelada sem obstrugdes no entorno imediato, tendo em
vista que as edificagbes presentes no entorno da escola sado de baixa altura e ndo bloqueiam
a radiacao solar incidente na edificagdo em estudo (Figura 3.4). Para o calculo de ventilacéo
natural, coeficientes de pressao para uma edificagdo de formato retangular e sem obstru¢des
no entorno imediato foram considerados (SWAMI; CHANDRA, 1988), o que pode ser

encarado como uma simplificacdo adotada neste estudo.

Figura 3.3 — Geometria da sala de aula
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Figura 3.4 — Planta do entorno imediato da escola
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As propriedades térmicas dos materiais que compdéem a edificacdo (Tabela 3.3), as
caracteristicas das esquadrias (Tabela 3.4) e as cargas internas de ocupacéao, equipamentos
e iluminacgao (Tabela 3.5), levantadas com base na leitura do projeto e na observagéo in loco,
foram inseridas como dados de entrada. A ventilacdo natural foi modelada com o modelo
AirFlow Network, utilizando como coeficiente de descarga o valor de 0,6 (FLOURENTZOU,;
VAN DER MAAS; ROULET, 1998) e as caracteristicas das esquadrias apresentadas na
Tabela 3.4.

Tabela 3.3 — Propriedades térmicas dos componentes construtivos

Componente Descricao Transmitancia Capacidade Absortancia Fator solar
térmica— U térmica—- C solarda -FS
(W/m2. K) (kd/m2. K) sup.
externa — a

Parede externa Bloco de concreto 190x190x390 mm pintado 2,5 240 0,36 -
Janela Vidro incolor 3 mm 57 - - 0,87
Laje Laje de concreto 150 mm 2,7 243 - -
Piso Argamassa de assentamento + piso ceramico
Forro Forro de PVC 1,8 21 0,65 -
Cobertura Telha ceramica

Tabela 3.4 — Caracteristicas das esquadrias

Item Descrigao Area efetiva de abertura
para ventilagdo
Porta Porta de giro — 90 cm x 210 cm 1
Janela Janela com 12 folhas pivotantes e 6 fixas — 170 0,2

cm x 170 cm / peitoril 90 cm (4 unidades)

Tabela 3.5 — Cargas internas

Item Descrigao Carga total
Ocupagéo Taxa metabdlica de uma pessoa sentada 108
W/pessoa
Equipamentos 2 ventiladores — 300 W 560 W
1 projetor — 260 W
lluminagao 6 luminarias, 2 lampadas fluorescentes cada — 40 W (unid.) 480 W

3.2.2.2 Calibragdo do modelo

O arquivo climatico desenvolvido com base nos dados monitorados pela estacao
meteoroldgica do Cepagri/Unicamp durante o periodo da coleta de dados na escola foi
utilizado para a calibragao do modelo de simulacao. Os dados coletados no periodo noturno
(i.e., sem influéncia da radiagao solar e das cargas térmicas internas) foram utilizados na
calibragédo, de forma a minimizar as incertezas. Nesse periodo, as condi¢des internas séo
influenciadas prioritariamente pelas alteragbes advindas da temperatura externa, da
transferéncia de calor por condugao através da parede e da janela e da infiltragao (NEVES et
al., 2020). O erro médio absoluto (Mean Absolute Error — MAE) foi utilizado para avaliar a
precisao do modelo de calibragdo, de forma a selecionar o modelo com valores de

temperatura operativa interna mais proximos dos dados medidos.
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Com o modelo fisico da envoltéria calibrado, as condi¢bes internas durante o dia foram
calibradas inserindo o padréo de ocupagédo a partir dos dados coletados e observados nos

dois periodos de medicdo. Para o periodo antes da pandemia, a simulagcéo considerou:

(a) os ventiladores, a iluminagao e o projetor ligados durante os periodos de aula (das
7h30min as 12h30min e das 13h30min as 16h30min);
(b) a ocupagao em periodo integral com 40 pessoas (Tabela 3.1); e

(c) asjanelas e a porta da sala abertas durante os periodos de aula.
Para o periodo durante a pandemia, a simulagao considerou:

(a) os ventiladores desligados durante todo o tempo e a iluminagao e o projetor ligados
durante os periodos de aula (das 8h as 11h30min);
(b) a ocupacgao apenas no periodo da manha com 20 pessoas (Tabela 3.1); e

(c) asjanelas e a porta da sala abertas durante o dia todo (das 8h as 17h).

Para as duas simulagdes, o MAE foi calculado novamente para observar a diferenga geral,
sendo utilizados o erro médio normalizado (Normalised Mean Bias Error — NMBE) e o
coeficiente de variagao da raiz quadrada do erro médio (Coefficient of Variation of Root Mean
Square Error — CV(RMSE)) para avaliar a precisao do modelo de calibragdo. Em ambos os
modelos, o MAE ficou abaixo de 1 °C e o NMBE e o CV(RMSE) ficaram abaixo dos valores
de referéncia estabelecidos na ASHRAE Guideline 14 (ANSI/ASHRAE, 2002), que sao de
10% e 30%, respectivamente (Tabela 3.6).

Tabela 3.6 — Precisao da calibragao

Simulagao MAE (°C) NMBE (%) CV(RMSE) (%)
Antes da pandemia 0,35 1,25 7,30
Durante a pandemia 0,85 -3,42 6,42

3.2.2.3 Cenarios simulados

Dois parametros variaveis foram definidos para a elaboragao dos cenarios de simulagao: a
taxa de ocupagcao (numero de ocupantes da sala de aula), tendo em vista que uma das
estratégias utilizadas pelas escolas durante a pandemia foi a redugao do numero de alunos
em sala de aula; e a taxa de renovagao do ar ambiente (numero de renovagdes de ar por
hora) para analisar a necessidade de modificagao do projeto de ventilagao natural da sala de
aula. Ambos os parametros tém por objetivo avaliar o impacto nos resultados da concentragao
de CO; e da temperatura operativa no ambiente interno. Para a simulagdo dos cenarios, foi
utilizado o modelo calibrado com o periodo de ocupagao de aula integral, das 7h30min as
12h30min e das 13h30min as 16h30min.
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Os cenarios propostos para variacao na taxa de ocupacgao (Tabela 3.7) foram definidos com
base no Plano Sdo Paulo (SAO PAULO, 2021), que estabelece um percentual de ocupacéo
das salas de aula para cada fase da pandemia: 35% na fase laranja (TO35), 70% na fase
amarela (TO70) e 100% na fase verde (TO100), sendo a fase verde representativa da
ocupacéo do ambiente antes da pandemia. A ocupagdo maxima (100%) considerou a turma

completa de 45 alunos.

Os cenarios propostos para variagao na taxa de renovagao do ar ambiente seguiram os niveis
de ventilacdo recomendados pela NBR 16401-3 (ABNT, 2008) para salas de aula (Tabela
3.7), que estabelece a vazao minima de ar exterior para promover a renovagao do ar interior
e manter a concentracido de poluentes do ar em niveis aceitaveis. Apesar de a norma tratar
de instalagbes de ar-condicionado, o uso dos valores propostos foi julgado adequado para o
intuito deste estudo, uma vez que inexistem dados normativos brasileiros de taxa de

renovacao do ar para ambientes naturalmente ventilados.

A norma propoe trés niveis de vazao eficaz de ar exterior: minimo (N1), intermediario (N2) e
superior (N3), em que existem evidéncias de reducao de reclamagdes e manifestagdes
alérgicas. Para a area util ocupada pelas pessoas (Az), foi considerada a area da sala de aula
de 49 m? em todos os cenarios. Os valores de vazao foram introduzidos nas simulagbes por

meio do grupo Zone Airflow do EnergyPlus.

Tabela 3.7 — Cenarios propostos, variando a taxa de ocupacgao e a vazao eficaz de ar exterior (Vef)

Variaveis Cenarios
N1 N1 N1 N2 N2 N2 N3 N3 N3
TO35 TO70 TO100 TO35 TO70 TO100 TO35 TO70 TO100
Fp (L/s.pessoa)* 5 (N1) 6,3 (N2) 7,5 (N3)
TO (%)** 35 70 100 35 70 100 35 70 100
P, (pessoas) 16 31 45 16 31 45 16 31 45
Fa (L/s.m?)* 0,6 (N1) 0,8 (N2) 0,9 (N3)
Vet (L/s) 109,4 1844 254.4 140 234,5 322,7 164,1 276,6 381,6

Nota: F, = vazé&o por pessoa; TO = taxa de ocupacéo; P, = nimero maximo de pessoas na zona; F, = vaz&o por area util
ocupada; e Vs = vazao eficaz de ar exterior.

*valores para salas de aula de acordo com a NBR 16401-3 (ABNT, 2008).

**valores propostos no Plano S&o Paulo (SAO PAULO, 2021).

O arquivo climatico da cidade de Campinas no formato Typical Meteorological Year (TMY)
anos 2003-2017 (LABORATORIO..., 2018) foi utilizado para simular tanto os cenérios
propostos como o0 modelo calibrado com a ocupagéao de antes e durante a pandemia de Covid-
19.
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3.2.2.4 Analise de resultados

Os resultados das simulacdes foram analisados em termos de concentragdao de CO; (ppm),
numero de renovagdes do ar por hora (h™') e temperatura operativa interna (°C) do modelo de

referéncia (calibracdo) e dos cenarios propostos.

Uma avaliagao do risco de disseminacao do virus SARS-CoV-2 foi realizada para cada cenario
proposto, considerando a presenca de uma pessoa infectada na sala de aula e o periodo final
do dia letivo, ou seja, a pior situacdo, uma vez que a probabilidade de infeccdo aumenta ao
longo do periodo de exposigdo. A probabilidade de infec¢do foi estimada utilizando a
ferramenta on-line Covid-19 Aerosol Transmission Estimator, versdo 3.5.8, de 10 de
novembro de 2021 (JIMENEZ; PENG, 2021). Essa ferramenta € atualizada constantemente,
uma vez que novas informacdes sobre a Covid-19 sdo descobertas a cada dia, e estima
apenas a transmisséo do virus pelo ar com base no modelo de Wells-Riley, calibrado para o

contexto da pandemia de Covid-19.

Como dado de entrada para a fragao da populagcado imune, foram consideradas a cobertura
vacinal da populagédo com faixa etaria de 15 a 17 anos, de 28,8% no dia 29 de novembro de
2021 (CAMPINAS, 2021), e a eficacia da vacina Pfizer (vacina oferecida a populagao dessa
faixa etaria), de 95% na prevencgao de infecgdes, resultando no valor de 27,4%. Para a taxa
de emissdo quanta, que varia conforme a atividade, foi utilizado o valor de 9,4 quanta/h
(pessoa sentada e falando) (JIMENEZ; PENG, 2021). Ainda, para cada cenario, 0 numero de
pessoas variou de acordo com a ocupacgao proposta, e a temperatura operativa interna e a
taxa de renovacgao do ar variaram de acordo com os resultados das simulagdes. Foi também
estimada a probabilidade de infecgdo para cada cenario variando a filtragem da mascara: sem
mascara (0%), com mascara de pano (30%) e com mascara N95/PFF2 (90%) (JIMENEZ;
PENG, 2021).

Os valores de temperatura operativa interna obtidos nas simulacbes e de temperatura do ar
externa obtidos do arquivo climatico foram utilizados para analisar o conforto térmico dos
ocupantes com base no modelo adaptativo da ASHRAE 55 (ASHRAE, 2020b), considerando
os limites de aceitabilidade de 80%, por meio do calculo do percentual de horas ocupadas em
conforto térmico (PHOCT). Os resultados dessa analise foram comparados com a
probabilidade de infec¢ao a fim de identificar o cenario que contribui simultaneamente para a
reducao do risco de disseminagdo do virus SARS-CoV-2 e para o conforto térmico dos

usuarios, proporcionando condi¢des internas mais satisfatérias.
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3.3 Resultados e discussao

Os resultados da concentracdo de CO2 no ambiente estdo apresentados para um dia letivo
representativo. A simulacéo representativa das condicbes de medicdo antes da pandemia
resultou em alta concentracao de CO., atingindo valores muito proximos do maximo de 1.000
ppm recomendado pela Anvisa (2003) nos periodos de ocupacao (Figura 3.5). No periodo
durante a pandemia, com a redugdo do numero de ocupantes em 45%, a concentragao de
CO. reduziu cerca de 30% em relagdo ao periodo anterior, atingindo picos de

aproximadamente 700 ppm durante o periodo de ocupacao (Figura 3.5).
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Figura 3.5 — Concentragéo de CO2 durante um dia letivo representativo dos periodos de medicédo
Com relagao aos cenarios propostos, aqueles com vazao eficaz de ar exterior de acordo com
o nivel minimo (N1) proposto pela NBR 16401-3 (ABNT, 2008) apresentaram concentragao
de CO; acima do nivel recomendado de até 1.000 ppm (ANVISA, 2003). Ainda, a maioria dos
cenarios apresentou uma concentragdo de CO; elevada durante o periodo de ocupacgao,
acima de 850 ppm, o que demonstra a necessidade de uma ventilacdo acima dos niveis
indicados na NBR 16401-3 (ABNT, 2008) para manter niveis recomendaveis para o contexto
da pandemia (HOU; KATAL; WANG, 2021) (Figura 3.6).
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Figura 3.6 — Predigao da concentragdo de CO:2 durante um dia letivo representativo nos cenarios propostos



70

A mudanca nos valores de vazao eficaz teve maior impacto nos resultados de concentragao
de CO2 no ambiente do que na variagdo no numero de ocupantes, sendo os resultados dos
cenarios do nivel minimo (N1) aproximadamente 13% superiores aos resultados dos cenarios
do nivel intermediario (N2) e aproximadamente 20% superiores aos resultados dos cenarios
do nivel superior (N3). O cenario N3 TO35 apresentou a maior redugao da concentracao de
CO2 em comparagao com os outros cenarios com a mesma taxa de ocupagao: em relacéo ao
cenario N1 TO35, a reducao foi de aproximadamente 35% (350 ppm) e, em relagao ao cenario
N2 TO35, a redugéo foi de 25% (220 ppm).

A alteracdo na taxa de ocupagdo provocou uma diferenga mais significativa entre os cenarios
com 35% e 70% de ocupacao, principalmente para o nivel superior (N3) de vazao eficaz, nos
quais a reducdo do numero de ocupantes resultou em mais de 25% de reducido da
concentracado de CO, (210 ppm). A diferenga na concentracédo de CO; foi menor entre os
cenarios com 70% e 100% de ocupagao — os quais possuem uma taxa de variacdo de

ocupacao menor do que o0s cenarios anteriores, de aproximadamente 3% (entre 25 ppm e 35

ppm).

Como nas simulagbes dos cenarios hipotéticos considerou-se uma taxa fixa de renovagao do
ar (vazao eficaz) para cada cenario, a variagao entre valores maximos e minimos dentro de
cada cenario foi pequena (Tabela 3.8). Maior flutuabilidade nos resultados ao longo do dia
podem ser observados nas simulagdes representativas do monitoramento antes e durante a
pandemia, o que reflete melhor a realidade (Tabela 3.8). Adicionalmente, a redugao no
numero de ocupantes no periodo durante a pandemia resultou em valores de temperatura
interna menores, diminuindo a diferenca entre as temperaturas externa e interna e,
consequentemente, a taxa de renovagao de ar por efeito chaminé e a média da taxa de
renovacgao de ar (dado de saida da simulagio), quando comparada ao resultado do periodo

anterior a pandemia (Tabela 3.8).

Tabela 3.8 — Predicdo da renovagio de ar por hora no periodo de ocupagédo (h™")

N1 N1 N1 N2 N2 N2 N3 N3 N3 Antes da Durante a
TO35 TO70 TO100 TO35 TO70 TO100 TO35 TO70 TO100 pandemia pandemia

Média 276 464 640 352 589 810 660 6,94 957 7,07 515
Desviopadréo 0,02 0,03 0,04 002 003 004 003 0,04 0,05 1,21 1,27
Média maxima 2,78 468 646 355 594 817 665 6,99 9,65 8,12 6,96
Média minima 2,74 4,61 635 350 585 805 657 6,89 950 5,26 3,70

Comparando os resultados de média maxima e minima das condigdes de medigéo antes e
durante a pandemia com os cenarios propostos (Figuras 3.5 e 3.6 e Tabela 3.8), é possivel
observar que a sala analisada apresentou resultados equivalentes aos niveis intermediario
(N2) ou superior (N3) na NBR 16401-3 (ABNT, 2008), ja que o numero de renovagoes de ar
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durante os periodos de medicdo, antes e durante a pandemia, se manteve préximo aos
valores desses cenarios. Os resultados do periodo anterior a pandemia se aproximaram aos
do cenario N2 TO100, que tem aproximadamente a mesma ocupacgédo do ambiente real. Ja os
resultados do periodo durante a pandemia apresentaram menor concentragdo de COo,
préxima de 700 ppm, aproximando-se dos resultados do cenario N3 TO35, com numero

semelhante de ocupantes.

Os resultados demonstram que a sala de aula analisada estd com valores médios de
ventilagdo adequados, de acordo com os padrdes propostos pela NBR 16401-3 (ABNT, 2008)
para ambos os casos analisados, antes e durante a pandemia. No entanto, tanto o cenario
antes da pandemia como todos os cenarios hipotéticos com 70% e 100% de ocupacéao
resultaram em taxas de concentracdo de CO; elevadas durante o periodo de ocupagéo da
sala, o que indicaria a necessidade de aumento do valor de vazao de ar por pessoa, em
relacao ao indicado pela NBR 16401-3 (ABNT, 2008), de forma a auxiliar na obtencdo de uma

melhor qualidade do ar interior na sala de aula.

O calculo da probabilidade de infeccdo mostra que as taxas de renovagao de ar e a ocupacgao
influenciam nos resultados quando os usuarios estdo sem mascara (6,2% de variagdo entre
o melhor e o pior cenarios) ou usando mascara de pano (2,28% de variagdo entre o melhor e
o pior cenarios) (Tabela 3.9). A probabilidade de infecgao varia pouco entre os cenarios com
0 uso da mascara N95/PFF2, ficando sempre abaixo de 1% — valor considerado satisfatério
por estudos anteriores (PARK et al., 2021). Entretanto, considerando-se as observag¢des
realizadas in loco, sabe-se que a situagdo mais comum na sala de aula monitorada € o uso
da mascara de pano. Neste caso, apenas o cenario N3 TO35 apresenta, ao final do periodo
letivo, probabilidade de infec¢ao préxima ao recomendavel pela literatura.

Tabela 3.9 — Predigéo da probabilidade de infec¢do para cada cenario proposto ao final do dia letivo (maior
periodo de exposigdo), considerando diferentes filtragens de mascaras

N1 N1 N1 N2 N2 N2 N3 N3 N3
TO35 TO70 TO100 TO35 TO70 TO100 TO35 TO70 TO100
Sem mascara (0%) 6,23% 8,40% 943% 527% 698% 8,18% 323% 529% 5,86%
Méscara de pano (30%) 2,26% 3,06% 3,43% 190% 252% 297% 115% 1,90% 2,10%
N95/PFF2 (90%) 0,07% 0,09% 0,10% 0,06% 0,07% 0,09% 0,038% 0,05% 0,06%

Ainda considerando apenas o uso da mascara de pano, embora no inicio do periodo letivo
todos os cenarios apresentem probabilidade de infecgao e concentracdo de CO; abaixo de
1% e de 700 ppm, respectivamente, ao longo do dia, a diferenga entre os resultados dos
cenarios torna-se maior, evidenciando, em especial, o cenario N3 TO35 pelos baixos valores
€, em oposi¢ao, os cenarios N1 TO70 e N1 TO100 pelos valores acima de 1.000 ppm (Figura
3.7).
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Figura 3.7 — Relagao entre a probabilidade de infecgdo (mascara de pano) e a concentragdo de CO2 nos
cenarios propostos
Em relagcéo ao conforto térmico, os cendrios com maiores concentragées de CO. (cenarios
N1 TO70 e N1 TO100) apresentam também maiores valores de temperatura operativa interna
e, consequentemente, menos tempo em conforto térmico (PHOCT = 25%) (Figura 3.8). A
mesma relagcdo pode ser observada para o cenario com menor concentragcdo de CO; (N3
TO35), que, apesar de cumprir os valores recomendados de concentracdo de CO2 (1.000
ppm, segundo a Anvisa (2003)) e, na maior parte do tempo, de probabilidade de infecgéo
(abaixo de 1%, de acordo com Park et al. (2021)), ainda assim apresenta condicdes
inadequadas de conforto térmico na maior parte do tempo (PHOCT = 40%, considerando-se
apenas a semana representativa). Ainda, as concentragdes de CO2, menores em cada cenario
(Figura 3.8) acontecem no inicio das aulas, as 8h e as 14h, e vao aumentando ao longo do

periodo de ocupagéo, conforme mostra a Figura 3.8.

Na Figura 3.9, pode-se observar que a taxa de renovacéo de ar altera pouco os resultados de
temperatura operativa interna, havendo uma reducao de 1%, em média, do N1 para o N2 e
do N2 para o N3. A taxa de ocupagao, por sua vez, provocou alteragbes mais significativas
nos resultados de temperatura operativa interna apenas se comparados os cenarios de 35%
de ocupagdo com os demais, sendo o cenario N3 TO35 o que apresenta os melhores

resultados.
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3.4 Conclusao

A pandemia de Covid-19 suscitou uma discussao mundial sobre as condicbes adequadas de
QAI para o funcionamento de escolas, de forma a minimizar o risco de transmissao do virus
SARS-CoV-2 em ambientes fechados e com altas taxas de ocupacdo. As principais
estratégias adotadas até o momento incluiram a redugdo do nimero de ocupantes, a redugao
do periodo letivo em sala de aula e estratégias para o aumento da renovagéao do ar ambiente,

como manter sempre as portas e as janelas das salas de aula abertas.

Neste estudo, um modelo de simulagao calibrado foi utilizado para simular nove cenarios
alterando as taxas de ar externo e de ocupacdo de uma sala de aula, a fim de verificar os
impactos na QAIl, em termos de concentragao de CO, e probabilidade de infecgao; e no
conforto térmico, em termos de temperatura operativa interna. Como objeto de estudo, foi

selecionada uma sala de aula de uma escola da FDE com dimensoes, projeto de esquadrias
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e estratégia de ventilacao (ventilagao natural unilateral) representativas das escolas publicas

do estado de Sao Paulo.

Dentre os cenarios analisados, o cenario N3 TO35 apresentou os menores valores de taxa de
concentracao de CO,, probabilidade de infeccao e horas de desconforto térmico. Se
comparado ao pior cenario (cenario N1 TO100), o cenario N3 TO35 apresentou reducao de
aproximadamente 42% na concentracdo de CO, ambiente e de 33% na probabilidade de
infeccdo e um aumento no PHOCT de 60%, considerando o periodo analisado. Conclui-se
que a reducédo no numero de ocupantes associada a uma taxa adequada de renovagao do ar
sdo estratégias efetivas para a redugdo da concentracdo de CO, no ambiente interno e,
consequentemente, para a reducao do risco de transmissao de doengas respiratérias como a
Covid-19.

Adicionalmente, os resultados das simulacées dos cenarios hipotéticos mostraram que as
medidas implementadas durante a pandemia (abertura das janelas e das portas e redugao do
numero de usuarios) poderiam auxiliar na redugao da concentragcao de CO- e da probabilidade
de infeccdo, além de melhorar o conforto térmico da sala de aula analisada. A diferenca
desses resultados com os obtidos nos estudos conduzidos na Espanha (ALONSO et al., 2021;
MONGE-BARRIO et al.,, 2022) indica, também, a necessidade de investigacao desses

parametros para cada clima e contexto especificos.

As medidas adotadas pelas escolas devem ser analisadas de forma a equilibrar potenciais
beneficios e riscos aos ocupantes. A reducéo de 100% para 70% da ocupagéao, proposta na
fase amarela do Plano S&o Paulo (SAO PAULO, 2021), por exemplo, ndo trouxe grandes
beneficios em relacido a concentracao de CO; e a probabilidade de infecgdo para o ambiente
estudado, o que indica a provavel necessidade de adogdo de medidas mais eficazes de
renovacao do ar ambiente para possibilitar a manutencdo de maior nimero de alunos em sala
de aula, caso a mascara de pano seja adotada. Neste caso, as concentragcdes de CO»
elevadas e a probabilidade de infec¢gao maior do que 1% demonstram que, para manter uma
QA satisfatoria, se faz necessaria uma ventilagao acima dos niveis indicados na NBR 16401-

3 (ABNT, 2008), em especial com relagcéo a taxa de vazao indicada por pessoa.

E importante ressaltar, no entanto, que a generalizagdo deste estudo é limitada, visto que se
trata de apenas um estudo de caso, considerando, portanto, apenas um clima, um projeto
escolar com caracteristicas arquitetonicas especificas e um cenario de taxa de infec¢ao (uma
pessoa infectada dentro da sala de aula em questdo). O estudo aqui apresentado, contudo,

pode ser utilizado como base metodoldgica para replicagéo a outras situagdes. Sugere-se,



75

nesse sentido, a analise de possiveis implicagdes no projeto arquitetbnico de salas de aula
advindas de mudancas nas taxas de renovagao de ar por pessoa e por area do ambiente,
como dimensionamento e posicionamento de esquadrias para ventilagdo natural,
dimensionamento das salas de aula (area de piso e pé-direito), entre outros fatores. Sugere-
se, também, a analise de outros aspectos relacionados a QAI, como a presenca de materiais
particulados e de compostos organicos volateis, além da investigacdo de estratégias que,
associadas a ventilagcdo natural, poderiam melhorar a QAIl, como o uso de filtros e

purificadores de ar.
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4 Window operation behaviour: generalized linear models

This chapter is the transcription of the following paper:

Investigation of window operation behaviour in naturally ventilated classrooms
during the COVID-19 pandemic

Authored by Paula Brumer Franceschini, Marcel Schweiker and Leticia Oliveira Neves
Published in the Proceedings of 18th Healthy Buildings Europe Conference and
presented on 12" June 2023.

Abstract

The COVID-19 pandemic has once again emphasized indoor air quality (IAQ) as a
fundamental path for preventing airborne virus transmission, especially in indoor environments
with increased ventilation needs due to high occupancy and long exposure time, such as
school classrooms. In naturally ventilated classrooms, thermal and IAQ conditions are mainly
affected by window operation. Therefore, this study addresses the window operation
behaviour, the thermal conditions and the perceived IAQ in naturally ventilated classrooms in
a humid subtropical climate during the COVID-19 pandemic. Window operation and
environmental variables of classrooms were monitored in three school buildings. Generalized
linear models were developed to establish correlations between window status, indoor
conditions and COVID-19 restrictive measures. Thermal conditions and IAQ were adequate
most of the time in all classrooms. Indoor operative temperature, relative humidity, CO-
concentration and COVID-19 restrictions were identified as drivers for window status in all
schools. Yet, the results suggest that occupant behaviour is context dependent. Indeed, the
school with the highest number of ‘closed’ status presented higher CO. concentrations and
more differences in seasonal behaviour. The other two schools presented a behaviour pattern
more correlated with the COVID-19 restrictions, a higher number of ‘open’ status and more

cold discomfort hours.
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4 .1 Introduction

Occupant behaviour is defined as the interaction of occupants with building systems with the
goal of achieving thermal, visual or acoustic comfort (DELZENDEH et al., 2017) or a sufficient
indoor air quality (IAQ). If efficient, this interaction allows occupants to adapt the indoor
environment to their needs (e.g., window, blinds, lighting and air-conditioning operation) or
themselves to the environment (e.g., clothing adjustment and drinking hot or cold beverage).
In naturally ventilated buildings with manually operable windows, the IAQ is mainly affected by
occupant behaviour (YAN et al., 2017). In this context, the window fulfils a “multi-purpose
function”, since the occupants’ decision to open or close the window depends on a balance
between IAQ, thermal, visual and acoustic parameters (ZHANG; BARRETT, 2012).

To date, studies on occupant behaviour in naturally ventilated buildings have primarily been
conducted in oceanic climates and in residential and office environments and, more recently,
in school buildings. Assessing occupant behaviour in naturally ventilated school buildings can
lead to guidelines towards improving IAQ and its influence on students’ health, well-being and
learning process (BELAFI et al., 2018). Previous studies have demonstrated that naturally
ventilated classrooms often fail to achieve recommended levels of ventilation, thus providing
poor IAQ (DUTTON; SHAO, 2010). Therefore, the window operation has been the most
investigated occupant behaviour parameter in the literature for naturally ventilated school
buildings (BELAFI et al., 2018; HERACLEOUS; MICHAEL, 2019; KORSAVI; JONES;
FUERTES, 2022b; STAZI; NASPI; D’ORAZIO, 2017a). Other behaviours addressed in schools
included lighting (SIMANIC et al., 2020), blinds operation (PISTORE et al., 2019; SIMANIC et
al., 2020) and clothing adjustment (PISTORE et al., 2019). The students were mainly identified
as passive users towards discomfort, with the teacher being the main active occupant
(PISTORE et al., 2019). Nevertheless, the results from previous research studies showed
differences in behavioural triggers among school buildings and seasons. For example, Belafi
et al. (2018) investigated window operation in two classrooms and identified habits and time-
dependent actions as triggers for occupant behaviour in one classroom, while in the other
classroom behaviour was driven by indoor and outdoor temperatures. These differences
demonstrate that rules and habits can vary between and within different schools, climates and
cultures and, therefore, occupant behaviour must be investigated for each situation (BELAFI
et al., 2018).

The IAQ in school buildings became even more relevant in 2020, due to the COVID-19
pandemic. Recent studies highlighted the association between indoor environments,
especially those with poor ventilation, high occupancy and high exposure time, such as school

buildings; and risk of infection, showing that the SARS-CoV-2 reproduction rate
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(contagiousness) can increase three to four times in these spaces when compared to outdoor
environments (HOU; KATAL; WANG, 2021).

Recent studies investigated the impact of the COVID-19 pandemic on classrooms’ indoor
environmental quality (IEQ) and on the infection risk regarding ventilation and occupancy rates,
window opening behaviour and the use of masks (HOU; KATAL; WANG, 2021; PARK et al.,
2021; ZIVELONGHI; LAI, 2021). It is well known that occupant behaviour and daily routine in
schools have been affected by COVID-19 response measures (FELL et al., 2020). However,
since COVID-19 impacts and restrictions were different in each place, the potential changes
on actions’ drivers may be different and not comparable between and within countries (FELL
et al., 2020).

Most school buildings located in tropical and subtropical climates, including most of the
Brazilian public school buildings, are fully or partially naturally ventilated (WORLD HEALTH
ORGANIZATION, 2015). Publications regarding occupant behaviour in naturally ventilated
school buildings are fare recent (from the last five years, mainly), confirming it as a relatively
new subject. So far, few studies were conducted in tropical or subtropical climates and
addressed the COVID-19 pandemic impact on occupant behaviour. Taking this research gap
into consideration, this study addresses the window operation behaviour, the indoor thermal
conditions and the perceived IAQ in naturally ventilated classrooms in a humid subtropical

climate during the COVID-19 pandemic.

4.2 Methods

This paper is based on a case study and supported by field research and statistical analysis.
The field research included physical monitoring and was performed on a set of classrooms of
three public-school buildings located in the state of Sao Paulo, Brazil (Figure 4.1). The schools
were selected from a database of 130 public-school buildings built in the state of Sao Paulo in
the last fifteen years. All the schools in this database have a standardized design, with
classrooms of same floor area and window design. Thus, the selection of schools for this study
was based on their location and willingness to participate in this research, in order to enable
the data collection. School A is an elementary school (ages 6-15) built in 2015 and located in
the city of Campinas. Schools B and C are located in the city of Sao Paulo, the first is an
elementary school (ages 6-11) built in 2014 and the latter is a high school (ages 15-18) built in
2012. Both cities are characterized by a humid subtropical climate — Cfa (K&ppen climatic

classification).
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Figure 4.1 — Monitored classrooms
4.2.1 Field research

The physical monitoring was conducted during four rounds in each classroom at two-month
intervals within the range of one year (from August 2021 to August 2022), in order to cover all

seasons of the year.

Indoor environmental variables were monitored in a 10-minute time-step by dataloggers placed
inside a typical classroom of each selected school. The dataloggers, Testo 175-T2 with hot
sphere probe, used to monitor air temperature (Tin: range -35 °C to 55 °C £ 0.5 °C) and globe
temperature (T4: range -25 °C to 80 °C £ 0.2 °C), and Testo 160 IAQ, used to monitor relative
humidity (RH: range 0 to 100% +2%) and CO; concentration (range 0 to 5000 ppm = 100 ppm
+ 3 % of reading), were placed away from the windows at about 1.1 m above the floor (seated
person) according to ISO 7726 (International Organization for Standardization, 1998). The
mean radiant temperature (Tw:) and the indoor operative temperature (Top) were calculated
using the air temperature and the globe temperature measurements. The number of occupants
was monitored through the attendance list provided by each classroom’s teacher. The manual
operation of windows was monitored by using an Onset Hobo State with binary output (closed
= 0/ open = 1). Outdoor environmental variables (air temperature — Tou, relative humidity —
RHout, precipitation, wind speed and wind direction) measurements were acquired from the
nearest weather station (3.5 to 8 km distant), to enable comparisons between indoor and

outdoor conditions.

During the physical monitoring, restrictive occupancy measures due to the COVID-19
pandemic were observed. Therefore, the monitoring period was divided into three restrictive

measures levels (Table 4.1).

Table 4.1 — COVID-19 restrictive measures levels

Restrictive measures Levels
High Intermediate Low
Reduced number of occupants X
Reduced exposure time X
Windows and doors opened during occupancy X X
Mandatory use of masks X X X
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Questionnaires (Appendix A) were applied with the classroom teachers in order to describe
the students’ routine and behaviour related to the environmental comfort and sanitary protocols

arising from the pandemic.

4.2.2 Dataset and statistical analysis

The data collected during the physical monitoring phase was merged into a common dataset,

by associating window status (open/closed) with time of the day and environmental variables.

As a first step of analysis, the R programming language (R CORE TEAM, 2022) was used to
create representative plots of the collected data. The indoor operative temperature
acceptability limits (considering 80% of occupant satisfaction) was analysed according to the
ASHRAE 55 adaptive model for naturally conditioned spaces (ASHRAE, 2020b), considering
an interval between 21 °C and 28 °C. Also, relative humidity levels above 40% and below 60%
were considered satisfactory (CIBSE, 2020). The Steady State CO, method (ALLEN et al.,
2020) (Equation 1) was used to set IAQ thresholds to analyse the monitored indoor CO-
concentration levels, according to target levels of outdoor air flow rate (air changes per hour —
ACH) (Table 4.2). The calculation considered a classroom volume of 142.8 m3, an average

number of occupants of 24 persons and a default outdoor CO- concentration level of 400 ppm.

Equation 4.1

CO, genrate + target vol. flow * COy gy * 1% 107°

target vol. flow
1%10-¢

Css =

Where:

Css = steady state CO, concentration (ppm)
CO; gen. rate = CO, generation rate (ppm)
target vol. flow = target volumetric flow (ACH)

CO; out = outdoor CO, concentration (ppm)

Table 4.2 — IAQ thresholds

1AQ level Predicted outdoor Corresponding CO2
air flow rate (ACH)  concentration range (ppm)
Ideal 26 <823
Excellent 5-<6 823 — <907
Good 4-<5 907 — <1034
Bare minimum 3-<4 1034 — <1245
Low <3 2 1245

The second step consisted of applying generalized linear models (logistic regression) to
assess the influence of the recorded parameters on the window status, considering a binary
operation state (all windows closed = 0/ at least one window open = 1). A specific window
operation model was created for each school classroom, in order to compare the window

operation drivers between them. Indoor operative temperature, relative humidity and CO.
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concentration were included as predictors, since they were pointed out as window operation
triggers in previous studies (BELAFI et al., 2018; HERACLEOUS; MICHAEL, 2019; KORSAVI,
JONES; FUERTES, 2022b; STAZI; NASPI; D’ORAZIO, 2017a). A categorical variable related
to the COVID-19 restrictive measures levels (Table 4.1) was also included as a predictor, in
order to analyse the impact of the protocols on the window operation behaviour. Reciprocal
transformation was applied to the CO, concentration data in order to reduce skewness. The
continuous variables were normalized and the imbalanced data was treated by using the
random walk over-sampling approach, an oversampling technique that generates synthetic

instances so that mean and deviation of numerical variables remain close to the original ones.

Goodness-of-fit (GOF) estimators (deviance, chi-square probability, area under the ROC curve
— AUC) and R2 statistics (McFadden's and Nagelkerke's) were employed to evaluate the level
of statistical significance of each parameter (at .05 significance level) and the strength of the
correlations, respectively. The statistical analyses were carried out in software R version 4.2.2
(R CORE TEAM, 2022).

4.3 Results and Discussion

4.3.1 Dataset and questionnaire analysis

The three monitored school classrooms showed similar environmental conditions (Table 4.3),
meeting the required values for indoor operative temperature (according to the ASHRAE 55
adaptive model) and CO, concentration (according to the Steady State CO. method), on

average, 69% and 92.7% of the time, respectively.

Table 4.3 — Summary of recorded parameters during the occupied period.

Variable School A (n =1170) School B (n = 1489) School C (n = 1142)
Mean SD Range Mean SD Range Mean SD Range
Top (°C) 24.5 4.1 14.1-32.1 23.7 34 16.4 — 31.1 24.0 24 16.3 —29.1
Tout (°C) 23.0 5.9 6.8 —33.0 22.2 5.0 10.9-33.4 25.2 49 10.4-35.6
CO2 (ppm) 540 107 359 — 1162 595 112 362 - 975 676 186 333 - 1682
RH (%) 53.1 10.0 27.0-74.0 62.1 111 30.0-80.3 63.6 8.8 30.0-87.0
RHout (%) 59.1 16.7 26.0 — 89.0 73.1 20.7 22.9-99.9 61.8 18.4 16.0 — 96.0

The indoor CO; concentration (Figure 4.2) was ideal (below 823 ppm) in 97.5%, 95.8% and
83.7% of the time in schools A, B and C, respectively, suggesting that the air change rate was
adequate in the measured classrooms (above 6 ACH). Yet, there were few outliers in school
C (0.02%) above 1245 ppm, which represents poor IAQ conditions (less than 3 ACH). Indeed,
school C presented higher CO, concentration during all COVID-19 restrictive levels (Figure
4.3).
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Figure 4.3 — Cumulative indoor CO2 concentration during occupied period.

The indoor operative temperature interquartile range (Figure 4.4) was within the comfort zone
limits for all schools, as the classrooms thermal conditions were adequate on 59%, 61.8% and
87.6% of the time in schools A, B and C, respectively. However, classrooms from schools A
and B presented cold discomfort hours 20.1% and 25.2% of the time and hot discomfort hours
20.9% and 13% of the time, respectively. School C, despite having higher values of CO;
concentration (which indicates lower values of ACH), presented better thermal conditions than
the formers, especially during the period with high restrictive measures regarding the COVID-
19 pandemic (Figure 4.5).

Temperature (°

schoolA schoolB schoolC

Variable B Top B Tout

Figure 4.4 — Indoor operative temperature and outdoor air temperature during occupied period.



83

high intermediate low
100% -

~
a

Class
— schoolA

== schoolB

Distribution (%)
w
o

=== schoolC

)
a

15 20 25 30 15 20 25 30 15 20 25 30
Indoor operative temperature (°C)

Figure 4.5 — Cumulative indoor operative temperature during occupied period.
The indoor relative humidity (Figure 4.6) was satisfactory 63.4%, 29.3% and 28.2% of the time
in schools A, B and C, respectively. Schools B and C presented high humidity levels most of
the time.

100-

Relative humidity (%)

schoolA schoolB schaolC

Variable B RH B RHout
Figure 4.6 - Indoor and outdoor relative humidity during occupied period.
Figure 4.7 shows the frequencies of each window status (open/closed) during school days
(excluding weekends and holidays), presented according to the levels of COVID-19 restrictive
measures. The windows remained open in 71%, 98% and 76% of the time during the occupied
periods in schools A, B and C, respectively. In schools A and C the window status during
occupied periods varied between the restriction levels (especially between the high and
intermediate levels), while in school B the windows remained open during most of the occupied
period, for all restriction levels. A remarkable difference from school B, acknowledged through
the questionnaires’ responses, consists in the fact that only teachers and staff were allowed to
operate the windows, whereas in schools A and C the students were also allowed to operate
them. In school C the ‘closed’ status was more frequent in the higher restriction level, which
could be associated to the lower indoor operative temperatures (Figure 4.3) and a possible
breach of protocol by the students, which were the main active occupants in terms of window
operation.
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Figure 4.7 — Window status during school days and COVID-19 restrictive measures levels.
Additional analysis of the data revealed that differences in seasonal behaviour were more
evident in school C, in which the highest frequency of ‘open’ status coincided with the hottest
season of the year (‘intermediate’ restriction level) regardless of the established protocols. In
opposition, the COVID-19 restrictive measures were strictly followed mainly by school B,
regardless of the weather conditions. A higher number of observations of window ‘open’ status
was observed as the COVID-19 restrictive measures were reduced. Windows remained closed
for longer periods when the outdoor air temperature was lower. Indeed, the cold season

coincided with the period with fewer restrictive measures.

4.3.2 Window status modelling results

Table 4.4 reports the outcomes from the generalized linear model of each school. The models
were selected according to the lowest Akaike information criterion (AIC) value. The outcomes
suggest that window status (open/closed) is related to the indoor environmental variables and
is also highly influenced by the COVID-19 restrictive measures, however some drivers varied
between schools. In schools A (model X? (18) = 443, p <.001) and C (model X2 (16) = 821, p
< .001) all single predictor variables included in the model were significant (p-value < .05),
while in school B (model X* (19) = 1270, p < .001) the categorical variable COVID-19
restrictions intermediate level was not significant.

The area under ROC curve (AUC), used as goodness-of-fit (GOF) estimator, and R? statistics
are provided in Table 4.5. Predictions of window status are significant in all models. Yet, GOF

estimators and R? statistics for school C are of better statistical quality.



85

Table 4.4 — Regression parameters for logistic models.

Model School A School B School C
Correlations Estimate SD p-value Estimate SD p-value Estimate SD p-value
Intercept 0.94 0.21 <.001* 4.85 0.95 <.001* -1.00 0.12  <.001*
COVID-19 restrictions -2.43/ 0.64/ <.001*/ 10.67/- 6.10/ .080/ 6.71/2.59 0.86/ <.001*
(int./ low) -0.89 0.25 <.001* 4.33 0.96 <.001* 0.23 <.001*
RH -2.06 0.38 <.001* 2.68 1.09 .014* -0.64 0.24 .008*
Top -4.60 0.63 <.001* -0.49 0.07 <.001* -0.63 0.15 <.001*
CO2 1.44 0.23 <.001* 5.06 1.07 <.001* 0.47 0.12  <.001*
COVID-19 restrictions 3.41/2.86 0.56/ <.001* -26.70/- 13.26/  .043* 2.74/ 0.52/ <.001%
(int./ low):RH 0.41 <.001* 3.01 1.10 .006* -0.36 0.33 274
COVID-19 restrictions 5.57/5.74 0.78/ <.001%/ NI NI NI NI NI NI
(int./ low): Top 0.64 <.001*
COVID-19 restrictions -1.21/ 0.31/ <.001* -17.18/- 6.75/ .010%/ NI NI NI
(int./ low):CO; -2.50 0.27 <.001* 6.68 1.08 <.001*
RH:Top -0.53 0.14 <.001* -6.89 2.07 <.001* -4.55 0.61 <.001*
RH:CO, -1.49 0.29 <.001* 5.00 1.33 <.001* -2.16 0.35 <.001*
Top:CO2 NI NI NI 7.96 1.04 <.001* NI NI NI
COVID-19 restrictions NI NI NI 5.67/4.93 14.93/ .704/  3.73/3.84 0.65/ <.001*
(int./ low):RH: Top 2.08 .018* 0.65 <.001*
COVID-19 restrictions 1.47/2.49 041/ <.001%/ 6.17/ 11.78/ .600/ 1.40/2.11 0.50/ <.001*
(int./ low):RH:CO, 0.35 <.001* -3.49 1.35 .009* 0.37 .005*
COVID-19 restrictions NI NI NI -5.52/ 7.10/ 437/ NI NI NI
(int./ Iow):Top:CO2 -7.59 1.05 <.001*
RH:T4,:CO2 1.43 0.31 <.001* 1.58 0.15 <.001* -3.48 0.67  <.001*
COVID-19 restrictions -2.01/ 0.51/ <.001%/ NI NI NI 3.59/2.83 0.74/ <.001%
(int./ low):RH:To, :CO» -1.95 0.39 <.001* 0.69 <.001*

Caption: * statistically significant values; NI = interactions not included in the model.
Note: variables have been normalized before the statistical analysis

Table 4.5 — Goodness-of-fit (GOF) estimator and R? statistics for each model.

Model AUC McFadden's R*>  Nagelkerke's R?
School A 0.80 0.25 0.39
School B 0.68 0.39 0.56
School C 0.92 0.42 0.59

The indoor operative temperature was a significant predictor for window status in all schools,
which is in line with current literature (BELAFI et al., 2018; DUTTON; SHAO, 2010; STAZI;
NASPI; D’ORAZIO, 2017a). The correlation between CO, concentration and window status
was also statistically significant in all schools, which was observed in other studies (DUTTON;
SHAO, 2010; HERACLEOUS; MICHAEL, 2019), but differs from the results found by Stazi et
al. (2017a).

The interaction between the COVID-19 restrictive measures levels and indoor operative
temperature was statistically relevant for school A only (Table 4.4). In fact, as shown in Figure
4.7, windows remained fully open mainly during the ‘high’ restriction level, and the operation
during the other two levels was more affected by indoor operative temperature fluctuations.
The interaction between restrictive measures levels and indoor CO. concentration was
statistically relevant for schools A and B. For these schools, the withdrawal of the requirement
to open windows at the ‘low’ restriction level led to an increase in the ‘closed’ window status
and, consequently, an increase in the CO2 concentration. School C did not show a behaviour

pattern that correlates with the restrictive measures.
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The differences among the schools, which was also observed by Belafi et. al. (2018), could be
explained by differences in social behaviour, which were corroborated by the answers to the
questionnaires given by the teachers. This result reinforces the need to investigate window

operation behaviour in each context, considering rules and habits variations.

4 .4 Conclusion

The aim of this study was to investigate the window operation behaviour, the indoor thermal
conditions, and the perceived IAQ in naturally ventilated classrooms in a humid subtropical
climate during the COVID-19 pandemic. Physical monitoring of environmental variables and
occupant investigation were conducted in three Brazilian public-school buildings and
generalized linear models were developed to assess the influence of the recorded parameters

on window status (open/ closed).

Indoor operative temperature, relative humidity and CO. concentration were identified as
triggers for window operation in all schools. Besides having similar indoor dimensions and
layout, the differences between the school classrooms suggest that occupant behaviour is
context dependent, being highly influenced by rules and habits, as confirmed by the outcomes

from the generalized linear models and the questionnaires responses.

The reduced number of a closed status observed during this study show that the COVID-19
pandemic has influenced occupant behaviour through the protocols established in this period,
mainly for schools A and B. Nevertheless, differences in seasonal behaviour were more
evident in school C, regardless of the established protocols. These findings provide a first aid
regarding the impacts of the pandemic on window operation behaviour of naturally ventilated

school classrooms and, consequently, on its indoor environmental conditions.

Previous studies regarding window operation in school buildings were conducted before the
COVID-19 pandemic (BELAFI et al., 2018; DUTTON; SHAO, 2010; HERACLEOUS;
MICHAEL, 2019; STAZI; NASPI; D'ORAZIO, 2017a) and, thus, were not influenced by
restrictive measures. Therefore, our results differ from previous research studies regarding the
reduced number of ‘closed’ status observed during occupied periods, which is a consequence

of the protocols imposed by the COVID-19 pandemic.



87

5 Occupant behaviour: generalized linear mixed models

This chapter is the transcription of the following paper:

Predictive modelling of multi-domain factors on window, door, and fan status in
naturally ventilated school classrooms

Authored by Paula Brumer Franceschini, Marcel Schweiker and Leticia Oliveira Neves
Published in Building and Environment (ISSN: 0360-1323), volume 264, in 2024, and
catalogued through the DOI: 10.1016/j.buildenv.2024.111912.

Abstract

Most studies regarding the investigation of occupant behaviour (OB) in school classrooms
addressed the environmental influence on window operation solely and were conducted in
oceanic climates. This study aimed to identify and quantify the influence of multi-domain factors
(including thermal, indoor air quality, contextual and multi-behaviour domains) on window,
door, and fan status in naturally ventilated school classrooms in a humid subtropical climate,
in order to predict OB. Environmental variables, manual operation of windows, doors and fans,
and occupancy rate were monitored and questionnaires were applied in a set of classrooms
of three public school buildings in the state of Sao Paulo, Brazil, during four rounds at two-
month intervals, resulting in a comprehensive year-long study. During part of the physical
monitoring, restrictive occupancy measures due to the COVID-19 pandemic were observed.
Generalized Linear Mixed Models were applied to assess the influence of the recorded
parameters on the window, door, and fan status and to generate OB predictive models. Results
showed that indoor environmental variables influenced window, door, and fan status in school
classrooms, with few exceptions. Yet, the models including school routines, social norms and
teachers’ behaviour as predictors led to the highest accuracy. This suggests that, while a more
complex model with additional predictors can provide more accurate predictions of OB, it also
becomes more context-dependent and less generalizable. The trade-off between model

complexity and generalizability is an important consideration in this research study, and it
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highlights the nuanced relationship between multi-domain factors affecting occupant behaviour

in school buildings.

Keywords: occupant behaviour, school building, natural ventilation, multi-domain, field

monitoring.

5.1 Introduction

Occupant behaviour (OB) largely impacts a building's performance across various aspects,
including indoor conditions, usability, functionality and energy consumption (O’BRIEN;
TAHMASEBI, 2023). Occupants interact with buildings’ controls and interfaces, in order to
adapt the environment to their needs (e.g., window, blinds, lighting and air-conditioning
operation) or to adapt themselves to the environment (e.g., clothing adjustment and drinking
hot or cold beverages), aiming to maintain their comfort and preferences (DELZENDEH et al.,
2017; HONG et al., 2016b). They usually respond in different ways to the built environment,
since there are many influential factors, such as external (environmental, time-related,
contextual) and internal factors (physiological, psychological, social), to the decision-making
process (SCHWEIKER et al., 2018; YAN et al., 2017).

Studying OB in buildings presents challenges due to its inherent complexity and dynamic
nature, due to issues related to privacy that hinder data collection, and due to substantial costs
associated with obtaining various sensors to monitor OB (DONG et al., 2022). As a result of
OB uncertainty and unpredictability, this parameter is often oversimplified in building
performance simulation (BPS), potentially contributing to a performance gap between
predicted and actual building performance (MAHDAVI et al., 2021; SHI et al., 2019; WANG;
HONG; JIA, 2018). Indeed, for a long time in BPS tools, OB representation was limited to
occupants’ presence in fixed and scheduled patterns, which do not reflect reality
(DELZENDEH et al., 2017). In response to these challenges, occupant modelling has garnered
attention from researchers and practitioners, driven by the potential to reduce the performance
gap, the increasing interest in occupant well-being and the advancements in computational
and simulation capabilities (O'BRIEN; TAHMASEBI, 2023).

Over the last decade, more than 500 papers have been published on OB, providing data on
occupancy, including occupant presence and movement, as well as occupants' actions, such
as window and door operation, blinds or solar shading adjustment, thermostat or air-
conditioning setting (DONG et al., 2022). These studies have led to the development of OB

models and aimed at predicting and representing human behaviour in BPS, optimizing building
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design, reducing the performance gap, enhancing comfort, identifying adaptive opportunities,
and fostering strategies for healthier indoor spaces (O’'BRIEN; TAHMASEBI, 2023). However,
despite OB being influenced by many factors simultaneously, most studies in this area consider
the influence of environmental factors on OB solely (SCHWEIKER et al., 2020). Schweiker et
al. (2020) identified 97 records (64 publications) on behavioural multi-domain studies, most of
them applying field studies approaches and being conducted in office and residential settings
located in Europe (37 records), Asia (14 records), North America (8 records) and Oceania (2
records). No studies identified in this literature review were undertaken in school buildings and

few were conducted in tropical or subtropical climates.

School buildings present unique challenges, distinct from offices, residential buildings, and
other educational buildings like universities, since primary and secondary schools are occupied
mainly by children, in specific periods of the year and with different daily timetables, more
group rules and less freedom of action (BELAFI et al., 2018). We identified six studies in the
literature which developed OB predictive models for school buildings, using linear or logistic
regression analysis to assess the influence of the predictors on OB (Table 5.1). These studies
were conducted mainly in oceanic climate (DUTTON; SHAO, 2010; HEEBGLL; WARGOCKI;
TOFTUM, 2018; KORSAVI; JONES; FUERTES, 2022a, 2022b), according to the Kdppen
classification, and window operation was the most addressed OB. All mentioned studies
investigated the physical domain, including thermal and/ or air quality variables as predictors.
The contextual domain was represented only by the hour of the day in most of these studies
and one study applied a multi-behavioural approach by analysing the blind status as a predictor

for light operation (Table 5.1).

Table 5.1 — Predictors investigated in existing occupant behaviour models for school classrooms.

Occup.ant Model Predictors
behaviour Tn Top RH vV CcOo, P R As Tow RHoue h cB
Window operation Dutton & Shao (2010) . . . . . .
Stazi et al. (2017a) o . . .
Belafi et al. (2018) . . . .
Heeboll et al. (2018) o . .
Korsavi et al. (2022b) . . . . . .
Door operation Heebgll et al. (2018) . . .
Lights operation  Korsavi et al. (2022a) . .
Blinds adjustment Korsavi et al. (2022a) . . . .

Caption: Tin = Indoor air temperature (°C); Top = Indoor operative temperature (°C); RH = relative humidity (%); V = wind speed
(m/s); CO,= CO;, concentration (ppm); P = vapour pressure (Hpa); Rs = solar radiation (W/m?); As = solar altitude (°); Tout = outdoor
air temperature (°C); RHou = outdoor relative humidity (%); h = Hour of the day (h); CB = closed blinds (%).

The results derived from the OB models identified in Table 5.1 reveal differences in behavioural

triggers among school buildings and seasons. For instance, regarding window operation, Belafi
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et al. (2018) observed that habits and time-dependent actions were the main occupant
behaviour drivers in one monitored classroom, whereas indoor and outdoor temperatures were
the main drivers in another one — both classrooms from the same elementary school building.
Similarly, Stazi et al. (2017) identified indoor and outdoor temperatures, daily routine and habits
as primary triggers for window operation, with a weak relationship with CO> concentration. In
contrast, Dutton and Shao (2010) found a significant correlation between window opening and
CO2 concentration. They also noted differences among seasons, such as indoor air
temperature influencing window closing during unheated periods and outdoor temperature
influencing window closing during heated periods. Korsavi et al. (2022b) discovered significant
statistical differences in the median window opening area (WOA) between seasons, with
higher WOA during summer (5 m?) and lower WOA during winter (0.8 m?). Heebgll et al. (2018)
noted disparities in window and door operations based on different ventilation systems
(mechanical ventilation system, automatic window opening and exhaust fan) in classrooms.
Furthermore, Korsavi et al. (2022a) found differences in blind operation between seasons,
influenced by contextual, occupant-related and building-related factors, with solar altitude and
operative temperature affecting blind operation during non-heating seasons and solar altitude
and solar radiation influencing blind operation during heating seasons. In the same research
study, solar radiation and blind occlusion were identified as drivers for light operation
(KORSAVI; JONES; FUERTES, 2022a).

As identified by Schweiker et al. (2020) and corroborated by the studies presented in Table 1
within the context of school buildings, there is a lack of behavioural multi-domain studies in
tropical or subtropical climates. Most school buildings located in these climates are partially or
fully naturally ventilated, with manually operable windows, which reinforces the occupant’s role
over their environment’s performance (YAN et al., 2017). For example, in the state of Sao
Paulo, Brazil, all public-school buildings maintained by the Foundation for Education
Development (Fundagéo para o Desenvolvimento da Educag¢do, FDE) have manually operable
windows to provide natural ventilation, and most of them also have manually operable fans.
Natural ventilation influences not only the classroom’s thermal performance, but also impacts
its indoor air quality (IAQ) (STABILE et al., 2017) and, consequently, on students’ health and
learning process (PEREIRA et al., 2017). The IAQ became particularly relevant in 2020, during
the COVID-19 pandemic, due to its importance in helping prevent airborne virus transmission
in indoor environments (FRANCO, 2020), especially in high occupancy environments, such as
school buildings (LIPINSKI et al., 2020).

Given this scenario, this study aimed to identify and quantify the influence of multi-domain

factors (including thermal, indoor air quality, contextual and multi-behaviour domains) on
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window, door, and fan status in naturally ventilated school classrooms in a humid subtropical

climate, in order to improve the ability to predict occupant behaviour.

5.2 Method

The research method was based on a case study and supported by field research and
statistical analysis. The method was developed in four main steps, which are presented in

Figure 5.1.

DATA COLLECTION " MODEL DEVELOPMENT
(pre-processing) (processing)

School buildings’ Field Predictive 4 Algorithm’s
data collection campaign modelling validation

Public-school buildings| .| Physical monitoring T'—f Data pre-processing | Predlctedvs Measured
database analysis and questionnaires 1 (test dataset)

i ! _ -

Schools’ selection for |: Model demalopment _
field research | Statistical analysis | ,: (training dataset)

Figure 5.1 — Research framework.
5.2.1 School buildings’ data collection

A comprehensive data collection was carried out, encompassing public schools built by the
Foundation for Education Development (FDE) over the past fifteen years in the state of Sdo
Paulo, Brazil. This dataset' included information on 66 school buildings, effectively
representing half of the public-school buildings constructed in the state of Sdo Paulo within this

time frame.

Envelope design and construction characteristics from the architectural design of the 66 school
buildings were collected, organized and classified in five main groups: (i) building general
information (Brazilian bioclimatic zone, construction year, built area, number of floors, number
of classrooms, azimuth angle of long axis of building, ground floor shape plan, width-to-length
ratio); (ii) classrooms characteristics (solar orientation, position in the building, floor-to-ceiling
height, floor-to-floor height); (iii) external and internal walls and roof thermal properties (solar
absorptance, U-factor, thermal capacity); (iv) classrooms’ outdoor fagcade (glazing U-factor,
glazing solar heat gain coefficient, natural ventilation strategy, window sill height, window

frame height, percentage of operable window frame, window opening factor, window-to-wall

" The dataset is available at https://doi.org/10.25824/redu/Z4BWFL
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ratio); (v) shading device (type, material, perforation, horizontal distance between shading

device and window, vertical shadow angle, horizontal shadow angle).

The number of classrooms from the schools’ dataset varied between 6 and 27 in each school
(mean = 13), and the number of floors varied between 2 and 5 (mean = 4). The classrooms’
architectural design is standardized, with dimensions of 6.9 m x 6.9 m (floor area = 47.6 m?)
and a floor-to-ceiling height varying between 2.75 m to 3.19 m (mean = 2.96 m). Most of the
classrooms have large operable windows in the main fagade and operable windows facing the
corridor (except for two schools). The fagade windows have a window-to-wall ratio (WWR)
varying between 8% and 73% (mean = 67, standard deviation = 9) and an operable window
frame (OWF) varying between 16% and 100% (mean = 63, standard deviation = 11), while the
corridor windows have a WWR varying between 9% and 70% (mean = 22, standard deviation
= 8) and an OWF varying between 25% and 100% (mean = 63, standard deviation = 25). The

categorical variables statistical analysis is presented in Table 5.2.

Table 5.2 — Categorical variables analysis, based on the dataset of 66 FDE schools.

Variable Categories Frequency Selected school

building
Rectangular 91% Schools A, B and C
U-shape 5% -
Ground shape plan H-shape 2%
O-shape 2% -
N-S 35% Schools A and C
Classrooms solar orientation NW-SE 27% )
NE-SW 20% -
E-W 18% School B
Middle floor 38% School C
, o Middle and top floors 23% School B
glljeilksjisr:goms position in the Top floor 21% School A
Bottom and top floors 6% -
Bottom, middle, and top floors 2% -
Natural ventilation strategy Single sided ventilation 85% Schools B and C
Cross ventilation 15% School A

Three schools were thoughtfully chosen from the dataset for the monitoring phase. The
selection criteria ensured that the chosen school buildings were comparable to one another
and representative of the broader dataset (Table 2). Furthermore, the school location and the

willingness to participate in the research study were also considered.

5.2.2 Field campaign

The physical monitoring was conducted in a set of classrooms within three public school
buildings chosen from the dataset, which are situated in the cities of Campinas and Sao Paulo
(Table 5.3). These cities share a common humid subtropical climate (Cfa), as per the Képpen

classification, characterized by hot summers and mild winters. The physical monitoring
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spanned four rounds, each taking place at two-month intervals, resulting in a comprehensive
year-long study period from August 2021 to August 2022 (Table 5.4). Although the
measurement periods are not the same for all schools, the total measured time frame ensured

coverage of all seasons throughout the year.

Table 5.3 — Monitored school buildings.

Variable School A School B School C
Location Campinas, Brazil Sao Paulo, Brazil Sao Paulo, Brazil
Construction year 2015 2014 2012
School general g it area () 3201 4945 2742
Number of classrooms 10 27 12
Students’ age (years old) 6-15 6—11 15-18
Students’ age (years old) 10-15 9-11 15-18
Monitored Position in the building Top floor Middle floor and top floor Middle floor
classroom Natural ventilation strategy Cross ventilation Single-sided ventilation ~ Single-sided ventilation
Solar orientation North East South

Table 5.4 — Monitoring period.

Aug/21 Sep/21 Oct/21 Nov/21 Dec/21 Jan/22 Feb/22 Mar/22 Apr/22 May/22 Jun/22 Jul/22 Aug/22

School A . SB* SB* . . wB*
School B . . SB* SB* . . WwB*
School C . . SB* SB* . WB* .

*SB = Summer break; WB = Winter break.

The school classrooms are naturally ventilated, with manually operable windows and fans. The
fans, windows and door locations in each classroom are presented in the classrooms’
perspectives (Figures 5.2 to 5.4), with the operable frames from the windows marked in red.
The selection of the monitored classrooms considered the occupancy (i.e., classrooms
occupied during a large period of the day), the teachers’ availability to participate in the
research and the students’ capacity to complete questionnaires, taking into account their
reading and interpretation skills. The selected classrooms were occupied during the morning
and afternoon with one short break in each period plus a lunch break. The classrooms from
schools A and B were occupied by one group during the morning and another group during
the afternoon. The classrooms from School C were occupied by multiple groups during both
periods.
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Figure 5.4 — Pictures of the school and the monitored classroom, floor plan and classroom perspective
(School C).

Indoor environmental variables (air temperature, globe temperature, relative humidity, CO
concentration) were monitored in a 10-minute time-step by dataloggers placed inside the
selected classrooms. The dataloggers were placed away from the windows at a height of 1.1
meters. The status of windows and doors (open/ closed) and fans (on/ off) was also monitored
by using binary state sensors. Since there is more than one operable window in each
classroom, a binary approach was adopted, marking 0 when all windows were closed and 1
when at least one window was open. The number of occupants was monitored through the
attendance list provided by each classroom’s teacher. Outdoor environmental variables
measurements (air temperature, relative humidity, precipitation, wind speed and wind
direction) were acquired from the nearest weather station (3.5 to 8 km distant), to enable

comparisons between indoor and outdoor conditions.

During part of the physical monitoring — from August 2021 to February 2022 — restrictive
occupancy measures due to the COVID-19 pandemic were observed, such as a reduced
number of occupants, reduced occupancy period, mandatory use of masks and the necessity
to keep windows and doors open and the fan off during occupancy (Table 5.5). As a result, a
binary variable was incorporated into the data collection, distinguishing between periods with
and without COVID-19 restrictive measures. The schools in Brazil reopened after the COVID-
19 vaccines were made available for adults (starting in January 2021) and for children above
12 years old (starting in June 2021). The vaccination in children below 12 years old began in

January 2022, coinciding with the removal of COVID-19 restrictive measures in schools.
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Table 5.5 — COVID-19 restrictive measures.

Number of occupants | Occupancy period
With COVID-19 Without COVID-  With COVID-19 restrictions Without COVID-19 restrictions
restrictions 19 restrictions - reduced period - - regular period -
(08/21 to 02/22) (03/22 to 08/22) (08/21 to 02/22) (03/22 to 08/22)
School A 3-28 26 — 31 7h—-9:20h/13h-15:20h 7h-11:20h/12:20h-16h
School B 7-28 24 - 36 7h—-11h/13:30h-17:30h  7h-11:50 h/ 13h —17:50 h
School C 14 — 31 11-36 7:00 h—11:30 h/ 13:00h — 16:30 h*

*School C maintained the regular period also during the period with COVID-19 restrictions.

Questionnaires were applied to students to analyse occupant satisfaction levels related to
environmental comfort, clothing and building design (Appendix B). In addition, questionnaires
were applied to teachers in order to describe the students’ routine and behaviour related to the
environmental comfort and sanitary protocols arising from the pandemic (Appendix A). A total
of 113 students, aged between 9 and 18 years old (comprising 23% from School A, 73% from
School B, and 4% from School C), participated in the questionnaire surveys. Responses were
also obtained from three teachers, with one teacher representing each of the three schools in

the study.

5.2.3 Predictive modelling

The questions raised through the analysis of the collected data provided support for the
development of predictive models. The models were developed using the R programming

language, version 4.3.1 (R Core Team, 2023). Data pre-processing included the following:

e CO, concentration data was subjected to a reciprocal transformation to reduce skewness
(see Appendix C in supplementary material).

e Continuous variables were normalized.

e The dataset was randomly split into 80% (training dataset) and 20% (test dataset) in order
to perform cross-validation of the developed models, by assessing their accuracy across
different samples (FIELD; MILES; FIELD, 2012).

e The imbalanced data regarding window, door, and fan status was balanced by using the
random walk over-sampling approach. This technique generates synthetic instances,
ensuring that the mean and standard deviation of numerical variables remain close to the
original data (MARKOVIC, 2020).

In order to assess the behavioural diversity and considering the monitored schools as a
variable of a random nature, the logistic regression was applied in the training dataset by using
the Generalized Linear Mixed Model function. Therefore, occupant behaviour prediction was
assessed through the investigation of the influence of the recorded parameters on the window,

door, and fan status, considering a binary operation state (closed/ off = 0 or open/ on = 1)
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The models were developed based on four hypotheses, which were formulated in light of
previous research findings (Table 5.6). The variables included as predictors represented the
indoor environmental variables (indoor operative temperature, relative humidity and CO-
concentration), the school routine (weekday, hours of the day and occupancy period), teacher
behaviour, window, door, and fan status and the restrictions imposed due to the COVID-19
pandemic (occupancy rate and periods with and without COVID-19 restrictions). One model
was developed for each system (window, door, and fan) and each hypothesis, resulting in a
total of 12 models (4 models per system). Also, a fifth model was developed for each system

(windows, door and fans) including all the significant predictors from models 1 to 4, resulting

in a total of 15 models (5 models per system) (Table 5.6).

Table 5.6 — Proposed models and predictors.

Model Hypothesis Research context Domains Predictors
Indoor environmental conditions Previous studies investigated Physical (thermal  Indoor operative
influence window, door, and fan indoor environmental variables and IAQ) temperature,
status in school classrooms. as predictors for window and relative humidity,

1 door status (Table 1). This CO,
hypothesis aims to confirm or concentration
refute the published results, with
a focus on our case study.
The school routine and the teacher’s During the monitoring period, we  Physical (thermal  Model 1 +
behaviour had a greater influence identified differences in window, and IAQ) and weekday, hour of
2 than the indoor thermal conditions on door, and fan status related to contextual the day,
window, door, and fan status in school  school routine and teachers’ occupancy
classrooms. behaviour. period, teacher
In school classrooms, window, door, The data collected during the Physical (thermal ~ Model 1 +
3 and fan status are predictor variables monitoring period suggests that and IAQ) and window, door,
for each other. windows, doors, and fans status multi-behavioural ~ and/or fan status
impact each other.
The restrictions imposed by the The teachers demonstrated Physical (thermal  Model 1 +
pandemic (social norms) had a awareness of and compliance and |IAQ) and occupancy rate +
4 greater influence than the indoor with COVID-19 pandemic contextual COVID-19
thermal conditions on window, door, restrictions. restrictions
and fan status in school classrooms.
Indoor environmental conditions, Physical (thermal
school routine and the restrictions and IAQ),
5 imposed by the pandemic (multi- Creating a general model based contextual and Models 1 +2 + 3

domain factors) are predictors of
window, door, and fan status in school
classrooms.

on merging the previous models.

multi-behavioural

+4

A base model included all the predictors listed in Table 5.6. Subsequently, the dredge function
was applied to categorize the models based on Akaike's information criterion (AIC), selecting
the models with smaller AIC values, as they represent a better fit of the data. The selected
models were analysed considering the predictors’ standardized coefficients, which indicate
their individual contribution to the model (i.e., to what degree each predictor affects the
outcome and if the relationship is positive or negative); their confidence intervals, which

indicate to what extent these values would vary across different samples; and their p-values,
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which indicate whether the predictor is making a significant contribution to the model or not,
considering a .05 significance level (FIELD; MILES; FIELD, 2012). As the standardized
coefficients were all measured in standard deviation units and, thus, not dependent on the
units of measurement of the variables, they are directly comparable, providing better insight
into the importance, also called effect size, of a predictor in the model (FIELD; MILES; FIELD,
2012) (see Appendix D in supplementary material). The Akaike's information criterion (AIC)
was employed to compare the models, considering a difference in AIC, Aaic, greater than 2 as

a good improvement of the model.

5.2.4 Algorithm’s validation

The validation procedure for each model was conducted using the test dataset to generate
confusion matrices, showing the relationship between predicted and actual results (GERALDI,
2021; MO et al., 2019). The confusion matrix consists of true positive (TP), true negative (TN),
false positive (FP) and false negative (FN) values. These values were used to calculate the
model's prediction accuracy, which indicates the proportion of correct predictions and is
defined as (TP + TN)/ (TP + FP + TN + FN); the model’s precision (or positive predictive value),
which is related to the positively predicted outcomes and all the positively predicted results and
is calculated by TP / (TP + FP); the model’s recall (or sensitivity), which is the proportion of
predicted true positive results and all true positive results and is defined as TP / (TP + FN);
and the model’s F1-score, which is the harmonic mean between the precision and the recall
and makes the models more comparable, being defined as 2TP / (2TP + FP + TN + FN) (Li et
al., 2019; Mo et al., 2019). The Area Under the Receiver Operating Characteristic curve
(AUROC Curve, or AUC) was also calculated, which graphically represents the TP and the FP
rates at various threshold settings obtained from the predictions on real data (BELAFI et al.,
2018). Its index ranges between 0.5 (no correlation at all) and 1 (exact predictions), but values
above 0.7 are generally considered satisfactory (HALDI; ROBINSON, 2009).

5.3 Results

5.3.1 Descriptive statistics of environmental conditions and operational states

Table 5.7 shows descriptive statistics of the indoor and outdoor variables during the whole
occupied period, when the windows and door were closed and the fan was off (window, door,
and fan (WDF) status = 0) and when the windows and door were open and the fan was on
(WDF status = 1). The indoor conditions during other scenarios are presented in the
supplementary material (Appendix E). The indoor conditions were satisfactory most of the time

in all classrooms, meeting the required values for indoor operative temperature according to
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the ASHRAE 55 adaptive thermal comfort model (80% acceptability) (ASHRAE, 2020b) on
average 69% of the time. The adaptive comfort temperature range varied depending on the
month and school location (Sao Paulo or Campinas). The lower temperature range considered
in this study was between 19.8 °C and 26.8 °C and the upper range was between 21.8° C and
28.8 °C. The indoor CO; concentration met ideal levels on average 92.7% of the time,
according to the limits suggested by Allen et al. (2020). Periods of WDF status = 1 had in
comparison to periods with WDF status = 0 on average higher outdoor and indoor operative

temperatures, indoor relative humidity and CO. concentration.

Table 5.7 — Descriptive statistics of indoor and outdoor conditions during the occupied period.

Variable All occupied period (n = 3800) WDF* status = 0 (n = 68) WDF status =1 (n = 503)
Mean SD Range Mean SD Range Mean SD Range
Top (°C) 24.0 34 14.1 - 32.1 22.9 45 15.8-31.7 23.8 4.3 16.4 — 32.1
Tout (°C) 234 54 6.8 — 35.6 21.2 6.1 85-31.8 244 5.3 10.4 -35.5
RH (%) 59.8 111 27.0-87.0 57.6 7.9 32.0-72.0 62.1 9.0 37.0-87.0
RHout (%) 65.4 19.9 16.0 — 100.0 64.5 15.6 32.0-99.0 63.4 15.9 20.3-99.9
CO2 (ppm) 602.3 1471 333.0-1682.0 580.3 1274 393.0-948.0 633.7 156.8 333 — 1682

*WDF = Window, door, and fan

Table 5.8 shows the frequency of window, door, and fan status during the occupied period.
The most prevalent scenario observed was both the windows and door open while the fan
remained off. In contrast, the less common situation involved both the windows and door
closed, with the fan turned on. In addition, some associations were observed. For instance,
the fan was on predominantly when the window was open, probably due to higher outdoor
temperatures (Figure D1 in Appendix E). In this context, the temperature could be a trigger for
occupants to use all available resources (i.e., window and fan) aiming to reduce thermal
discomfort due to heat. These results suggest that one status can influence the others and
these correlations should be further investigated.

Table 5.8 — Window, door, and fan (WDF) status frequency.

Fan
Off (0) On (1)
68 (2%) 27 (1%)  Closed (0)
Closed (0
Window ored @ 466 (12%) 80 (2%) Open (1) Door
287 (8% 171 (5% |
Open (1) 87 (8%) (5%) _ Closed (0)

2198 (58%) 503 (13%)  Open (1)

Figure 5.5 illustrates the frequency of open/on or closed/off status for windows, doors, and
fans, according to each teacher. Results show different behaviours, especially for windows
and fans. The difference was less evident for the door operation since the door remained open
most of the time during all lessons. This prompts the question of the extent to which teachers
exert influence over the status of windows, doors and fans, and whether this influence holds

greater significance compared to indoor environmental conditions.



100

(@) 100%
3 75%
&
S 50%
o
,_% 25%
0%- | , , , , ; , , . . : . .
Al A2 A3 A4 A5 A6 B1 C1 C2 C3 C4 C5 C6
Teacher
Window status Closed Open
(b) 100%-

Frequency
8]
o
=

A A2 A3 A4 A5 A8 Bl C1 C2 C3 C4 C5 Cé
Teacher

Door status Closed Open

(C) 100%-

Frequency
(%))
(=]
=

AM A2 A3 A4 A5 A8 Bl C1 C2 GC3 C4 C5 Cé
Teacher

Fan status Off Cn

Figure 5.5 — Teachers and (a) window, (b) door, and (c) fan status during the occupied period.
The answers to the questionnaires showed that 46% of the participants were satisfied with the
classroom thermal conditions, with a mean indoor operative temperature of 26.2 °C, while 42%
reported feeling hot, with a mean indoor operative temperature of 27.8 °C, and 12% reported

feeling cold, with a mean indoor operative temperature of 23.6 °C.

When questioned about window operation, 80% of the students declared that they did not open
or close the window during the day that the questionnaire was applied. Those who did operate
the windows cited indoor thermal conditions as their primary motivation, such as ventilating the
classroom or addressing discomfort due to heat. The hour of the day they declared as most
usual to open the windows was upon arriving in the classroom. In addition, the students that
operated the windows on that day were predominantly from schools A and C, which is
explained by the teachers’ responses to the questionnaires: in school B, only teachers and

staff were allowed to operate the windows, whereas in schools A and C — where classrooms
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are occupied by older students than the monitored classrooms from school B — the students

were also allowed to operate them.

A small percentage of students (2%) reported operating the fans during the days that the
questionnaires were applied, and their main motivation was also the indoor thermal conditions.
All students who reported operating the fans were from schools A and C, which strengthens
the notion that teacher behaviour or students' age may influence occupant behaviour in this
regard. In the case of the fan operation, the accessibility could also be an obstacle for the
students, since they could not reach the switches without the use of a ladder or chair. All
teachers reported that they often turn on the fans upon students’ request, as well as other
times of the day, based on their own decisions. This behaviour contrasts with students’
approach to the windows, as they can reach and operate the windows themselves. This could
explain the limited use of fans, as shown in Figure 5c. These findings reinforce the necessity
of exploring predictors beyond environmental variables for determining window, door, and fan

status, such as teachers' behaviour and school routine.

All teachers reported being conscious of and adhering to the COVID-19 pandemic restrictions
during the initial phase of the monitoring period. This observation is partly supported by the
collected data (Figure 5.6), particularly concerning door and fan status. During the occupied
period with restrictions, the door was open 90% of the occupied time and the fan was off 87%
of the time, suggesting that most of the time the guidelines were followed in these classrooms,
whereas during the period without restrictions, the door was open 81% of the occupied time
and the fan was off 71% of the time. The window remained open for longer periods during the
occupied period without restrictions (86%) than during the occupied period with restrictions
(80%), indicating a potential impact from other factors, such as indoor thermal conditions. Yet,
the window, door and fan status in both periods were similar, with a predominance of open
status for windows and doors and off status for fans. This suggests that, just after the COVID-
19 restrictions were lifted, occupant behaviour changed very little. However, it is important to
highlight that the habits and concerns raised during the pandemic may have continued even

after restrictions were lifted.
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Figure 5.6 — COVID-19 restrictions and (a) window, (b) door, and (c) fan status during the occupied period.
5.3.2 Predictive modelling

e Hypothesis 1: Indoor conditions influence window, door, and fan status in school

classrooms.

Environmental variables were, so far, the most investigated predictors for occupant behaviour
in school buildings, as presented in Table 5.1. Our models from hypothesis 1 (Table 5.9) reveal
that indoor operative temperature, relative humidity and CO, concentration are significant
predictors of the status of windows and doors, confirming that indoor conditions influence their
status in school classrooms. The fan status, though, was influenced only by relative humidity
and CO; concentration, since indoor operative temperature presented a small effect on the

AlIC and, therefore, was not included in this model.

Relative humidity and CO- concentration presented a negative relationship with window status,
indicating that as relative humidity and CO, concentration increase, the likelihood of the
window being open decreases. The same pattern is observed between CO; concentration and
door status. The other predictors exhibit a positive correlation with window, door, and fan
status. The relative humidity has a stronger influence over the window status than the other
predictors, as indicated by the standardized coefficients, but still similar to CO, concentration
and indoor operative temperature, while the CO» concentration has a stronger influence over
the door and fan status. The two predictors with stronger influence in each model are

represented in Figure 5.7, which also shows the positive or negative correlations.

Table 5.9 — Models for window, door, and fan status — hypothesis 1.

Window (AIC = 6670.7) Door (AIC =7210.8) Fan (AIC = 6468.4)
Std. Coef. 95% CI p-value Std. Coef. 95% ClI p-value Std. Coef. 95% CI p-value
Top 0.04 [0.01,0.07] 0.00* 0.16 [0.13,0.19] 0.00* NI NI NI
RH -0.05 [-0.08,-0.01] 0.01* 0.07 [0.04, 0.10] 0.00* 0.12  [0.09, 0.15] 0.00*
CO; -0.04  [-0.07,-0.02] 0.00* -0.17 [-0.20, -0.14] 0.00* 0.25 [0.22,0.28] 0.00*

Caption: * statistically significant values; NI = interactions not included in the model; AIC = Akaike's information criterion.
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Note: scale -2 to 2 represents normalized values. Actual ranges: Top 14.1 °C — 32.1 °C; RH 27% - 87%; CO, 333 ppm —
1682 ppm.

Figure 5.7 — Models’ prediction based on environmental variables, showing the predictors with higher
effect size.

o Hypothesis 2: The school routine and the teacher’s behaviour had a greater influence
than the indoor thermal conditions on window, door, and fan status in school

classrooms.

Consistent with the findings from hypothesis 1, the indoor environmental variables were also
identified as significant predictors for window, door, and fan status in models from hypothesis
2, except for CO, concentration for window status and indoor operative temperature for fan
status (Table 5.10). The negative and positive relationships between these predictors and
window, door, and fan status remained consistent with the previous models. However, it is
important to note that the effect sizes of these predictors changed with the inclusion of other
variables in the models. In models from hypothesis 2, the indoor operative temperature had a
stronger influence on window and door status, while relative humidity had a stronger impact

on fan status.

Based on the collected data, we reinforce here the influence of the teacher, particularly on
window and fan status. Indeed, most of the teachers were identified as significant predictors
(Table 5.10). The variables weekday and hour of the day, which represent the school routine,
were also identified as significant predictors in all models. The occupancy period, though, was
not included in the window model due to its small effect on the AIC. The hour of the day
exhibited a negative correlation with window and door status, suggesting that the likelihood of
the window and door being open decreases with time (Figure 5.8). This could be related to the
school routine, since windows and doors tend to be opened mainly during arrival times and
closed mainly during departure times, regardless of the environmental conditions. In contrast,
the hour of the day exhibited a positive correlation with fan status, indicating that the fan was

more frequently operated during the afternoon.
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Window (AIC = 5557.5) Door (AIC = 5757.6) Fan (AIC = 5174.3)

CS;:%_ 95% Cl  p-value CS;:%_ 95% Cl  p-value csgg%_ 95% Cl  p-value
Top 007 [005010] 000" 019 [0.16,021] 000" 002 [001,005 0.3
RH 005 [0.08 -002] 0.00* 004 [0.01,007 000* 0417 [0.14,020]  0.00*
CcOo, 002 [0.05 000 010 -012 [0.15,-010] 0.00* 016 [0.13,0.19  0.00*
TeacherA2 2010 [0.24,004 015 -023 [0.39,-007] 0.01* 008 [-007,023 032
Teacher A3 2011 [029, 008 021 -063 [0.84 -043] 000* 041 [0.23 059  0.00*
TeacherAd 043 [0.56,-030] 0.00* -031 [-047,-016] 000* 003 [-0.13,019] 071
TeacherA5 2006 [021,009 041 -051 [0.66,-036] 000° 005 [-012,022] 055
TeacherA6 027 [049 -005 002* -133 [146 -119] 0.00* 080 [0.64, 095  0.00*
TeacherB1 077 [0.53,1.00] 0.00* -034 [0.48 -0.19] 0.00* 006 [0.09 021 046
TeacherC1 057 [0.82-032 000° -125 [142-1.07] 0.00* 075 [0.57,093]  0.00*
TeacherC2 077 [1.03,-052] 0.00* -154 [1.72,-137] 0.00* 114 [0.96,1.32]  0.00*
TeacherC3 042 [0.68 -017] 0.00* -155 [1.72,-1.38] 0.00* 088 [0.70,1.06]  0.00*
TeacherC4 078 [1.07,-050] 0.00* -194 [2.13,-176] 0.00* 152 [1.32,1.73]  0.00*
TeacherC5 015 [042,011 026 -170 [1.88 -152] 0.00* 112 [0.93,131]  0.00*
TeacherCé 122 [1.60 -0.84] 0.00* -179 [2.08 -149] 0.00* 124 [0.86,1.62]  0.00*
Tuesday 035 [0.27,042] 0.00* 024 [0.16,0.31] 000* -0.35 [-0.42 -028  0.00*
Wednesday 022 [014,029] 000* 023 [0.15031] 000* -062 [0.70,-054] 0.00*
Thursday 005 [0.02 013 017 026 [0.19,0.34] 000* -077 [0.85,-069] 0.00*
Friday 0.18 [0.09,0.26] 0.00* 038 [0.30,047] 0.00* -0.90 [0.98 -0.81]  0.00*
Hour of the day 012 [0.15,-0.09] 0.00* -017 [0.19,-0.14] 0.00* 010 [0.07,0.13]  0.00*
Oceupancy period NI NI NI 006 [0.04,009 000 -0.04 [-0.07,-0.02] 0.00*

Caption: *statistically significant values; NI = interactions not included in the model; AIC = Akaike's information criterion.

The variables representing school routine and teacher behaviour had a more significant

influence on window, door, and fan status, in terms of effect size, if compared to the indoor

thermal conditions. However, there were exceptions to this trend. For instance, the hour of the

day was less influential on the fan status than the relative humidity and the CO, concentration.

Additionally, specific teachers had either less importance or no influence at all on window and

fan status, when compared to indoor thermal conditions.
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Figure 5.8 — Models’ prediction based on the hour of the day and environmental variables, showing the
predictors with higher effect size.
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e Hypothesis 3: In school classrooms, window, door, and fan status are predictor

variables for each other.

By including window, door or fan status as predictors, the indoor operative temperature for
window status and the relative humidity for door status did not present a notable impact on
occupant behaviour (Table 5.11), unlike the models from hypotheses 1 and 2. The negative
correlation between relative humidity, CO» concentration and window status, as well as
between CO, concentration and door status, remained consistent, as observed in the previous

models.

The door and fan status were significant predictors for the window status, as well as the window
and door for the fan status. The window status was the only significant predictor for the door
status. These correlations were positive for the window and door status models (Figure 5.9),
indicating that the probability of the window being open was higher when the door was open
and the fan was on and the probability of the door being open was higher when the window
was open. On the contrary, the correlations between window and door status with fan status
were negative. This implies that the likelihood of the fan being on when the door and window

were closed was higher than when they were open.

Table 5.11 — Models for window, door, and fan status — hypothesis 3.

Window (AIC = 5882.5) Door (AIC = 6538.6) Fan (AIC = 5342.6)
Std. Coef. 95% ClI p-value Std.Coef. 95% Cl p-value Std. Coef. 95% CI p-value

Top NI NI NI 0.14 [0.11,0.17] 0.00* 0.02  [-0.21,0.19] 0.00*
RH -0.07  [-0.10,-0.04] 0.00* 0.07 [0.04,0.10] 0.12 0.12 [0.09,0.15] 0.00*
CO; -0.04  [-0.07,-0.02] 0.00* -0.15 [-0.18,-0.12] 0.00* 0.16 [0.13,0.19] 0.00*
Window status NI NI NI 0.35 [0.32,0.37] 0.00* -0.16  [-0.19, -0.14] 0.00*
Door status 0.32 [0.29,0.34] 0.00* NI NI NI -0.39 [-0.41,-0.36] 0.00*
Fan status 0.19 [0.16,0.21] 0.00* -0.02 [-0.05,0.00] 0.06 NI NI NI

Caption: *statistically significant values; NI = interactions not included in the model; AIC = Akaike's information criterion.
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Figure 5. 9 — Models’ prediction based on window, door or fan status and environmental variables,
showing the predictors with higher effect size.
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o Hypothesis 4: The restrictions imposed by the pandemic (social norms) had a greater
influence than the indoor thermal conditions on window, door, and fan status in school

classrooms.

The addition of COVID-19 restrictions as predictor variables resulted in the indoor operative
temperature not being a significant predictor for the window status and the relative humidity
not being a significant predictor for the door status (Table 5.12). The other environmental
variables remained significant predictors for window, door, and fan status, maintaining the

same positive or negative correlations as before.

Given that part of the data was collected during the COVID-19 pandemic (Table 5.4), the
inclusion of these predictors (variations in occupancy rate and COVID-19 restrictions, which
were mandatory use of masks and the necessity to keep windows and doors open and fans
off during occupancy) in the models is a unique and novel aspect, compared to studies
conducted prior to the pandemic. The impacts of the restrictions imposed by the pandemic on
the window, door, and fan status appeared to be of a greater influence than indoor thermal
conditions. Therefore, these variables emerged as significant predictors in all models, as
expected, since it includes general recommendations that the users were adhering to, except

for the interaction between CO; concentration and occupancy rate in the door status model.

The COVID-19 restrictions exhibited a positive correlation with window and door status,
indicating that, during the period with restrictions, the likelihood of the window and door being
open was higher (Figure 5.10). The fan status showed an opposite trend: during the period
with restrictions, the likelihood of the fan being on was lower. These findings are in line with
the analysis of the collected data (Figure 5.6) and the protocols imposed by the COVID-19
pandemic, as they suggest that during the period with restrictions, windows and doors should

remain open, while the fan should remain off.

Table 5.12 — Models for window, door, and fan status — hypothesis 4.

Window (AIC = 5824.6) Door (AIC = 6586.9) Fan (AIC = 5809.3)

CS;;‘;_ 95% c| ~ P-value CS;Z';_ 95%c| ~ P-value (?;2%. 95%c| P-value
Tor NI NI NI 005 [002008 000" 006 [0.04009] 0.00*
RH 008 [0.11,-005] 000 011 [0.080.14 010 005 [0.02,0.08] 0.00*
CcOo, 010 [0.13,-007] 0.00* -0.11 [0.14,-008] 0.00* 013 [0.10,0.16] 0.00*
COVID restrictions  0.62 [0.56,0.68] 0.00*  0.84 [0.78,091] 0.00*  -072 [-0.78, -0.65] 0.00*
Occupancyrate 042 [0.17,022] 000* 011 [0.080.14] 000 005 [0.01,0.08] 0.00*
COs:Occupancy™ 019 [0.17,022] 0.00* NI NI NI 003 [0.06,-0.01] 0.02*

Caption: *statistically significant values; **the use of colon between predictors refers to an interaction between two
variables; NI = interactions not included in the model; AIC = Akaike's information criterion.
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Figure 5.10 — Models’ prediction based on COVID-19 restrictions and environmental variables, showing
the predictors with higher effect size.

o Hypothesis 5: indoor environmental conditions, school routine and the restrictions
imposed by the pandemic are predictors of window, door, and fan status in school

classrooms.

A fifth model was created for window, door, and fan status including all significant variables
from the previous models, in order to predict occupant behaviour more accurately in school
classrooms (Table 5.13), given the current research scenario (naturally ventilated school

classrooms situated in a humid subtropical climate).

The predictive model for window status revealed that the variables relative humidity, CO»
concentration, COVID-19 restrictions, teacher behaviour, school routine and door and fan
status are significant predictors, corroborating the results of the previous models. The variables
relative humidity, CO concentration and hour of the day presented a negative correlation with
window status, indicating that, as their values increased, the likelihood of the window being
open decreased (Figure 5.11a). The other significant predictors had a positive correlation with
the window status, suggesting that the period with the restrictions imposed by the COVID-19
pandemic, a higher number of occupants, the door open and the fan on increase the chance
of the window being open (Figure 5.11b). In contrast, the variables indoor operative
temperature and occupancy period were not identified as significant predictors for window

status.
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Table 5.13 — Models for window, door, and fan status — hypothesis 5.

Window (AIC = 4483.5) Door (AIC = 4927.7) Fan (AIC = 4119.4)
CS;:;‘, 95% CI p-value (?c:gf 95% ClI p-value CS(::f 95% ClI p-value

Top NI NI NI 0.08 [0.06,0.11] 0.00* 0.10 [0.08,0.13] 0.00*
RH -0.09 [-0.12,-0.07] 0.00* 0.10 [0.07,0.13] 0.00* 0.09 [0.06,0.11] 0.00*
CO; -0.05 [-0.08,-0.03] 0.00* -0.05 [-0.08,-0.02] 0.00* 0.03 [0.00,0.06] 0.02*
COVID restrictions 0.43 [0.38,0.49] 0.00* 0.60 [0.54,0.65] 0.00* -0.42 [-0.48,-0.37] 0.00*
Occupancy rate 0.26 [0.23,0.29] 0.00* 0.00 [-0.02,0.04] 0.37 0.07 [0.05,0.10] 0.00*
CO,:Occupancy” 0.12 [0.10,0.14] 0.00* -0.07 [-0.09,-0.05] 0.00* NI NI NI

TeacherA2 -0.06 [-0.18,0.07] 0.36 -0.14 [-0.29,0.01] 0.06 -0.05 [-0.19,0.08] 0.44
TeacherA3 -0.13 [-0.29,0.03] 0.12 -0.53 [-0.71,-0.34] 0.00* 0.26 [0.10,0.42] 0.00*
TeacherA4 -0.43 [-0.54,-0.31] 0.00* -0.04 [-0.19,0.10] 0.58 -0.16 [-0.30, -0.02] 0.03*
TeacherA5 -0.11 [-0.24,0.03] 0.12 -0.38 [-0.53,-0.24] 0.00* -0.15 [-0.30,0.00] 0.06
TeacherA6 -0.23 [-0.42,-0.03] 0.02* -1.17 [-1.29,-1.04] 0.00* 0.63 [0.49,0.77] 0.00*
TeacherB1 0.57 [0.36,0.79] 0.00* -0.34 [-0.48,-0.21] 0.00* 0.09 [-0.04,0.23] 0.19
TeacherC1 -0.47 [-0.70,-0.25] 0.00* -1.14 [-1.30,-0.97] 0.00* 0.59 [0.43,0.75] 0.00*
TeacherC2 -0.54 [-0.77,-0.31] 0.00* -1.34 [-1.50,-1.18] 0.00* 0.85 [0.69, 1.02] 0.00*
TeacherC3 -0.23 [-0.46,0.00] 0.05 -1.38 [-1.54,-1.23] 0.00* 0.64 [0.48,0.80] 0.00*
TeacherC4 -0.56 [-0.81,-0.30] 0.00* -1.64 [-1.81,-1.47] 0.00* 1.02 [0.84,1.20] 0.00*
TeacherC5 -0.04 [-0.28,0.20] 0.76 -1.56 [-1.72,-1.40] 0.00* 0.77 [0.60,0.94] 0.00*
TeacherC6 -0.94 [-1.28,-0.60] 0.00* -1.53 [-1.80,-1.26] 0.00* 0.94 [0.60,1.28] 0.00*
Tuesday 0.22 [0.15,0.29] 0.00* 0.17 [0.10,0.24] 0.00* -0.27 [-0.34,-0.21] 0.00*
Wednesday 0.20 [0.13,0.26] 0.00* 0.14 [0.07,0.21] 0.00* -0.45 [-0.52,-0.38] 0.00*
Thursday 0.08 [0.01,0.15] 0.03* 0.19 [0.12,0.26] 0.00* -0.60 [-0.67,-0.53] 0.00*
Friday 0.16 [0.08,0.24] 0.00* 0.31 [0.23,0.39] 0.00* -0.70 [-0.78,-0.62] 0.00*
Hour of the day -0.11 [-0.13,-0.08] 0.00* -0.08 [-0.11,-0.05] 0.00* NI NI NI

Occupancy period NI NI NI 0.03 [0.01,0.05] 0.01* NI NI NI

Window status NI NI NI 0.22 [0.20,0.24] 0.00* -0.11 [-0.13,-0.09] 0.00*
Door status 0.21 [0.19,0.23] 0.00* NI NI NI -0.26 [-0.28, 0.23] 0.00*
Fan status 0.17 [0.15,0.20] 0.00* 0.04 [0.02,0.06] 0.00* NI NI NI

Caption: *statistically significant values; **the use of colon between predictors refers to an interaction between two
variables; NI = interactions not included in the model; AIC = Akaike's information criterion.

The predictive model for door status showed that the indoor environmental variables, the
COVID-19 restrictions, the teachers’ behaviour, the school routine and the window and fan
status were significant predictors. This differs from the results of the predictive models for door
status from hypotheses 1 to 4, where relative humidity and fan status did not emerge as
significant predictors and, specifically for hypothesis 4, occupancy rate emerged as a
significant predictor. This suggests that other factors in the model may be playing a more
dominant role in influencing the door status. Similar to the predictive model for window status,
the CO2 concentration, the hour of the day and the teachers’ behaviour had a negative
correlation with door status, while the correlations between indoor operative temperature,
relative humidity, COVID-19 restrictions, weekdays, window and fan status were positive
(Figure 5.12).

The predictive model for fan status had similar significant predictors as the model for window
status, except for the hour of the day. Nevertheless, the correlations between predictors and

fan status were opposite to what was observed in the predictive models for window and door
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(Figure 5.13). This suggests that, as the indoor environmental variables’ values increase, the

probability of the fan being on also increases. On the other hand, the COVID-19 restrictions

and the open door and windows decrease the probability of the fan being on.
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Figure 5.11 — Window status models’ prediction, showing the predictors with higher effect size
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Figure 5.12 — Door status models’ prediction, showing the predictors with higher effect size.
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(a) Significant predictor with a negative (b) Significant predictor with a positive
correlation with fan status correlation with fan status
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Figure 5.13 — Fan status models’ prediction, showing the predictors with higher effect size.

5.3.3 Algorithm’s validation

The models for window and door status predicted more open (1) than closed status (0) (Tables
5.14 and 5.15), while the models for fan status predicted more off (0) than on status (1) (Table
5.16), with an accuracy greater than 0.5 for all models. This means that more than 50% of the
predictions were correct in all models — specifically 72%, 79% and 74% for window, door, and
fan models of hypothesis 5, which is a positive outcome for assessing occupant behaviour.
The F1-score, which incorporates both precision and recall in its calculation, demonstrated
satisfactory values for window and door models. However, the F1-score for the fan status
models was lower, below 0.3 for all models. This occurred because these three indexes (F1-
score, precision and recall) consider the true positive values, and these models predicted more

negative values, or off status (0).

Most window and fan status models presented values for AUC above 0.7, which is considered
satisfactory. Despite only the model for door status from hypothesis 2 presenting an AUC of
0.7, models from hypotheses 4 and 5 came very close to this threshold. In general, models
from hypothesis 5 presented higher values of AUC, followed by models from hypotheses 2 and
4, which reinforces the importance of school routine, teachers’ behaviour and social norms

(COVID-19 restrictions) as predictors for window, door, and fan status.

The comparison between the models from hypothesis 1, which include fewer predictors (only
environmental variables), and the models from hypothesis 5, which include all significant
predictors from the other models (multi-domain variables), reveals that window, door and fan
models from hypothesis 1 are less accurate, with less than 70% of correct predictions. This

result suggests that by including variables from multiple domains to the models, they better
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describe the obtained data from reality, but also became more context-dependent. Thus, the
models get less generalizable, especially if we consider the contextual domain, such as school
routine and teachers’ behaviour. Therefore, the trade-off between a more accurate or a more

general model should be further investigated, in order to evaluate the models’ applicability.

Table 5.14 — Prediction performance and AUC for window models.

Confusion Matrix

Models Pred. (0) Pred. (1) Precision Recall Accuracy F1-score AUC
Model 1 268 515 0.89 0.69 0.67 0.74 0.71
Model 2 331 452 0.94 0.65 0.67 0.70 0.75
Model 3 244 539 0.87 0.71 0.67 0.75 0.69
Model 4 281 502 0.90 0.69 0.67 0.73 0.72
Model 5 231 552 0.90 0.75 0.72 0.78 0.76

Table 5.15 — Prediction performance and AUC for door models.

Confusion Matrix

Models Pred. (0) Pred. (1) Precision Recall Accuracy F1-score AUC
Model 1 335 448 0.92 0.61 0.62 0.69 0.66
Model 2 229 554 0.92 0.76 0.74 0.79 0.70
Model 3 173 610 0.88 0.79 0.73 0.81 0.63
Model 4 333 450 0.91 0.61 0.62 0.69 0.68
Model 5 165 618 0.91 0.83 0.79 0.83 0.69

Table 5.16 — Prediction performance and AUC for fan models.

Confusion Matrix

Models Pred. (0) Pred. (1) Precision Recall Accuracy F1-score AuC
Model 1 434 349 0.33 0.67 0.63 0.25 0.69
Model 2 566 217 0.41 0.52 0.73 0.20 0.72
Model 3 625 158 0.35 0.32 0.72 0.13 0.67
Model 4 427 356 0.29 0.61 0.59 0.23 0.72
Model 5 613 170 0.41 0.41 0.74 0.16 0.76

The metrics analysed during the algorithm’s validation were compared to those of existing
models (Table 5.17), showing that the values from the models in this study, particularly from

model 5, are satisfactory and similar to literature.

Table 5.17 — Comparison of prediction performance and AUC of existing models in the literature.

Reference Context Model Accuracy F1-score AUC

Present study School Window 0.67-0.72 0.70-0.78 0.69-0.76
Door 0.62-0.79 0.69-0.83 0.63-0.70
Fan 059-0.74 0.13-0.25 0.69-0.76

Stazi et al. (2017a) School Window - - 0.51-0.72

Belafi et al. (2018) School Window - - 0.50 - 0.68

Markovic et al. (2018) Office Window 0.86-0.89 0.53-0.65 -

Mo et al. (2019) Residential Window 0.59-0.82 0.55-0.82 -

Jia et al. (2019) Office Window 0.77 0.49 -
Door 0.81 0.87 -
Blinds 0.74 0.83 -

Grassi et al. (2022) Office Window 0.72 0.13 0.78

Air-Conditioning 0.83 0.23 0.84
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5.4 Discussion

Environmental variables (physical domain) were the most investigated predictors in literature
for occupant behaviour in school buildings. Taking this into account, the findings from the first
and second models are aligned with prior research studies, indicating that indoor operative
temperature serves as a predictor for window status (BELAFI et al., 2018; DUTTON; SHAO,
2010; KORSAVI; JONES; FUERTES, 2022b; STAZI; NASPI; D’ORAZIO, 2017a). Yet, when
other domains were included in models 3, 4 and 5, this association was not maintained. Korsavi
et al. (2022b) identified a negative correlation between relative humidity and window status,
which is in line with our results, showing that high indoor humidity indicates that windows are
closed. The association between CO2 concentration and window status, identified in almost all
models of this study, with exception of model 2, was significant in only one study from current
literature (DUTTON; SHAO, 2010), with weak correlations reported in other studies (KORSAVI;
JONES; FUERTES, 2022b; STAZI; NASPI; D’ORAZIO, 2017a). We identified a negative
correlation between CO; concentration and window status in our models, suggesting that, as
for relative humidity, high CO- concentration indicates that windows are closed. No correlation
was found between indoor environmental variables and door status in the study conducted by

Heeball et al. (2018), which differs from our results.

Time-dependent actions, daily routines and teacher behaviour (contextual domain) were
identified as predictors for window and door status in previous studies in school classrooms
(BELAFI et al., 2018; HEEBJLL; WARGOCKI; TOFTUM, 2018; KORSAVI; JONES;
FUERTES, 2022b; STAZI; NASPI; D’'ORAZIO, 2017a), aligning with the outcomes of this
study. The hour of the day, especially the arrival and departure periods, was identified as a
predictor for window status in three studies (BELAFI et al.,, 2018; KORSAVI; JONES;
FUERTES, 2022b; STAZI; NASPI; D’ORAZIO, 2017a). These findings align with the results of
the present study, which observed a negative correlation between the hour of the day and
window status, suggesting that as the hour increases (i.e., approaching departure time), the
likelihood of the window being open decreases. This might be because occupants closed the
windows before leaving the classroom. Heebgll et al. (2018) also identified the hour of the day
as a trigger for door status and, despite not including teacher behaviour as a predictor in their
model, they suggest that the differences found in door status between classrooms could be

due to a particular teacher behaviour.

No studies regarding the relation between variables related to the school routine and fan status
were identified in the literature. Yet, our study revealed a positive correlation between hour of

the day and fan status, suggesting that the fan was more operated during the afternoon. This
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finding could be also related to the indoor operative temperature, that also presented a positive
correlation with fan status, as temperatures tend to be higher in the afternoon. In addition, fan
status presented a positive correlation with CO concentration in all models (i.e., an increase
in CO2concentration can lead to increased use of fans), which could be related to the sensation
of stale air, that might trigger occupants to turn on the fan. Yet, it should be further investigated

in future studies.

Our results suggest that one status can impact others (multi-behavioural domain). However,
the actions could be often taken at the same time, influenced by the same environmental
predictor, requiring further investigation to confirm our findings. Nevertheless, no research
studies were found correlating window, door, and fan status in the context of school

classrooms, which is a novelty of this study.

The inclusion of predictors related to the COVID-19 pandemic (variations in occupancy rate
and COVID-19 restrictions) in the models (contextual domain) is also a unique and novel
aspect, compared to studies conducted prior to the pandemic. No studies including restrictions
or other social norms as predictor variables for occupant behaviour in school classrooms were
found in literature, as presented in Table 5.1. These findings reinforce the importance of social
norms in indoor environments with high density, such as school classrooms. Indeed, scenarios
such as the COVID-19 pandemic, in which such norms became more pronounced, require a
review of predictive models since they can effectively change occupant behaviour, impacting
on indoor conditions. In addition, cultural factors also play a significant role on occupant
behaviour, for example, in the context of the COVID-19 pandemic, on how much people adhere
or not to the imposed restrictions, thus requiring further investigation considering other

locations.

The models from hypothesis 5 presented improved predictions of occupant behaviour, as
confirmed by the algorithm validation, by including multi-domain factors as predictors for
window, door and fan status. These models could be applied in future studies as reference
models. Yet, while more complex models with additional predictors can provide more accurate
predictions of occupant behaviour, they also become more context-dependent and less
generalizable. Given the significant influence of school routine, teachers’ behaviour and social
norms (COVID-19 restrictions) on window, door, and fan status, further research is warranted.
Expanding the scope to include more case studies would contribute to a more comprehensive

understanding of these dynamics.
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5.4.1 Limitations

This study has some limitations primarily associated with the field campaign phase, which is a

common challenge in studies involving monitoring campaigns. These limitations include:

(i) Sample size: the restricted number of monitoring equipment required a limited
number of monitored classrooms, resulting in a sample of three schools. Larger
sample sizes are often preferred to develop more precise models, as they provide
more data to train the models effectively.

(ii) Measurement lengths: due to equipment constraints, classrooms were not
monitored simultaneously. Instead, the monitoring campaign was split into four
rounds to cover all the seasons in each classroom (Table 5.4). This sequential
monitoring may introduce variability based on time of the year.

(iii) Occupancy data: the absence of equipment to monitor occupancy required the use
of attendance lists provided by each teacher, which may not be as reliable as data
obtained from dedicated occupancy monitoring equipment, potentially introducing
some level of uncertainty into the analysis.

(iv) Internal factors: the study did not consider internal factors such as psychological
and physiological variables that could potentially be included as predictors in the
models. This omission was due to the complexity of monitoring these factors.

(v) Lack of measured data on OB before the COVID-19 pandemic: since we do not
have data from these schools before the restrictions, we could not analyse the

changes in OB by comparing it before and after the pandemic.

Despite these limitations, the study offers valuable insights and a foundation for future research

in the field of occupant behaviour and its impact on school buildings’ performance.

5.5 Conclusions

This study aimed to identify and quantify the influence of multi-domain factors (including
thermal, indoor air quality, contextual and multi-behaviour domains) on window, door, and fan
status in naturally ventilated school classrooms in a humid subtropical climate, in order to
predict occupant behaviour. The novelties of this research study were the investigation of door
and fan together with the window status, which can significantly influence indoor environmental
conditions; the inclusion of time-related and contextual factors as predictor variables, which
were less explored in previous studies; and the comparison between periods with and without
restrictions imposed by the COVID-19 pandemic, which highlighted the interference of social

norms on occupant behaviour.
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In general, the indoor environmental variables (indoor operative temperature, relative humidity
and CO; concentration) influenced window, door, and fan operation in school classrooms,
confirming findings from previous studies (BELAFI et al., 2018; DUTTON; SHAO, 2010; STAZI;
NASPI; D’ORAZIO, 2017a). Yet, we showed that other predictors could have a greater
influence on occupant behaviour, such as the teachers’ behaviour and the COVID-19
restrictions, indicating the relevance of investigating the contextual domain in behavioural
studies. Indeed, the models including school routines, social norms and teachers’ behaviour
as predictors were the ones with better results during the validation phase. This suggests that,
while more complex models with additional predictors can provide more accurate predictions
of occupant behaviour, they also become more context-dependent and less generalizable.
Also, the inclusion or exclusion of variables in the models led to some differences in the
significance of predictors. The trade-off between model complexity and generalizability is an
important consideration in this research study, and it highlights the nuanced relationship

between various factors affecting occupant behaviour in school buildings.

This study provides a more comprehensive understanding of occupant behaviour from a multi-
domain approach and its impact on environmental conditions in school classrooms. The
presented results hold the potential to advance our understanding of occupant behaviour in
school buildings and its implications for building performance. Future studies could further
enhance the sample size by collecting data from other school classrooms, investigating
teachers’ and students’ behaviour in different contexts (e.g., different climates, types of
classrooms, students of different ages). This could lead to the development of more
generalizable predictive models, as well as suggestions and recommendations for

performance-based design and operation of classrooms.
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6 Model implementation

This chapter is part of a paper currently in development in collaboration with Prof. Dr. Leticia
Oliveira Neves and Prof. Dr. Marcel Schweiker. It presents preliminary results of the

implementation of a window status predictive model on building performance simulation.

Thermal comfort and perceived indoor air quality optimization with respect to

occupant behaviour in naturally ventilated school buildings

Abstract

School classrooms often present poor indoor air quality (IAQ) conditions, especially if naturally
ventilated, when the building’s thermal and IAQ performance is directly associated to the
occupant behaviour regarding window operation. Therefore, research efforts have been
directed at understanding which parameters are the main triggers for occupants’ actions
towards window operation, pointing out thermal comfort parameters as the main action
triggers, while IAQ (CO concentration) remains a secondary restriction. Since March 2020,
the COVID-19 pandemic not just renewed but also emphasized the interest and urgency on
investigating deficient IAQ and thermal comfort conditions in classrooms. Yet, most of the
published research studies have been carried out considering isolated objectives. Giving this
scenario, this paper aims at filling this research gap, regarding the need to develop a
comprehensive study of the relationship between thermal comfort and perceived IAQ and their
association with occupant behaviour, considering a simultaneous multi-input and output
parameters interaction. Therefore, we analysed potential conflicts between thermal comfort
and IAQ, with regard to triggers for manual operation of windows in naturally ventilated
classrooms, and identified optimal situations of balance between both drivers. The
methodological approach included statistical analysis, development of an occupant behaviour
predictive model, building performance simulation and multi-objective optimization. The
findings reveal variations of up to 42.5% in CO: levels and 9% in discomfort hours between
actual and optimized occupant behaviours. This suggests that adjusting occupant behaviour

can significantly improve indoor conditions, leading to enhanced thermal comfort and air
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quality. The results also indicate that optimal window operation and occupancy strategies differ
among schools, highlighting the need for context-specific analyses. Tailoring these strategies

to each setting is crucial for improving classroom design and operational efficiency.

Keywords: occupant behaviour, school building, thermal comfort, indoor air quality, multi-

objective optimization.

6.1 Introduction

Occupant behaviour (OB) is defined as the actions building users may (or may not) take to
modify the indoor environment (HOES et al., 2009). The prediction accuracy of building
performance simulations (BPS) has been greatly associated to occupant behaviour modelling,
which led to an increasing attention to the topic specially in the last ten years (AHMED et al.,
2023). Researchers have been developing behavioural models with the aim of accurately
predicting human behaviour in BPS (BELAFI et al.,, 2018; CHATZIDIAKOU; MUMOVIC;
SUMMERFIELD, 2015; MADUREIRA et al., 2016; STAZI; NASPI; D'ORAZIO, 2017a).
Deterministic models with fixed rules and, more recently, stochastic dynamic models have both
been adopted in the abovementioned studies, aiming to estimate the human behaviour in a
more realistic way. Logistic regression is one of the most adopted methods, since it provides

good approximations with occupants' behaviours (BELAFI et al., 2018).

The main building typologies under investigation are, usually, offices and residential buildings,
while research studies concerning school buildings are less frequent and more recent (BELAFI
et al., 2018; HEEBJLL; WARGOCKI; TOFTUM, 2018; KORSAVI; JONES; FUERTES, 2022b;
LOURENCO; PINHEIRO; HEITOR, 2014; MADUREIRA et al., 2016; STAZI; NASPI;
D’ORAZIO, 2017a). Nevertheless, this typology has its particularities, such as the classroom’s
management, which is often dictated by the teacher, its high occupation density and excessive
internal gains, with direct implications on occupants’ health and well-being. In addition,
classrooms usually present poor thermal comfort and indoor air quality? (IAQ) conditions, in
special if naturally ventilated (De Giuli et al., 2012; Pereira et al., 2014), which emphasizes the
relevance of this research topic. Thus, one of the key behaviour types investigated in the
current literature is related to the ventilation strategy (mechanical and/or natural ventilation),

since it impacts directly on thermal comfort, IAQ and energy consumption.

2 According to EPA (2021): “Indoor Air Quality (IAQ) refers to the air quality within and around buildings and
structures, especially as it relates to the health and comfort of building occupants.”
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In regions where natural ventilation is an effective strategy for the cooling season, such as
Brazil and Southern European countries, for example, classrooms are usually naturally
ventilated, with manual operation of windows (DUARTE; GLORIA GOMES; MORET
RODRIGUES, 2017). In this case, the building’s thermal and IAQ performance is directly
associated to the outdoor environmental conditions; to the architectural design, especially the
building envelope; and to the occupant behaviour regarding window and door operation, which
can represent up to 87% of the total air change rates (lwashita and Akasaka, 1997). Natural
ventilation can be an effective strategy to reduce energy consumption and improve IAQ
(HERACLEOQOUS; MICHAEL, 2019) provided that, among other factors, an optimal operation of

windows is achieved.

Research efforts have been directed at understanding which parameters are the main triggers
for occupants’ actions towards window operation. Results from several field studies and
surveys regarding occupant behaviour models for naturally ventilated school buildings point
out thermal comfort parameters as the main action triggers regarding window operation, while
IAQ (CO2 concentrations) remains as a secondary restriction (Stazi et al., 2017a; Stazi et al.,
2017b). Indeed, correlations between occupant behaviour and CO; concentrations were
proven to be weak, which means that users’ actions are not driven by this stimulus because of
their unawareness of indoor CO, concentrations (STAZI; NASPI; D’ORAZIO, 2017a).
Research studies also point out noise problems (Madureira et al., 2016), improper direct solar
radiation on seated users (BERNARDI; KOWALTOWSKI, 2006) and daily routine, such as
arrivals and breaks (BELAFI et al., 2018; STAZI; NASPI; D’ORAZIO, 2017a) as triggers for
window operation. In fact, in terms of occupant behaviour, in school environments nonphysical
behavioural patterns should also be investigated, since social rules and habits can override
thermal stimuli (BELAFI et al., 2018; STAZI; NASPI; D’ORAZIO, 2017a). Suggestions for future
studies include analysing occupant behaviour in different seasons and climates to support
building use practices (BELAFI et al., 2018) and further investigating health risks
(MADUREIRA et al., 2016).

Still, the 1AQ is an important problem in school classrooms, since high indoor CO: levels and
other pollutants might impact human health and well-being (BELAFI et al., 2018; STAZI et al.,
2017; STAZI; NASPI; DORAZIO, 2017a). The IAQ is a globally relevant issue in school
classrooms, since several research studies reported poor indoor ventilation rates and high CO»
levels, in special in naturally ventilated rooms (Mendell and Heath, 2005; Stazi et al., 2017b).
Since March 2020, the COVID-19 pandemic not just renewed but also emphasized the interest
and urgency on investigating deficient IAQ and thermal comfort conditions in school

classrooms (ALONSO et al., 2021). Research studies have confirmed airborne transmission
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(respiratory droplets and aerosols) as one of the major transmission routes of SARS-CoV-2,
which increases the possibility of transmission of COVID-19 in indoor environments with high
occupancy rates, such as classrooms (MORAWSKA et al., 2020; NOORIMOTLAGH et al.,
2021). The problem can become even more serious in naturally ventilated classrooms that rely
only on occupants to achieve good IAQ conditions through manual operation of windows
(ALONSO et al., 2021).

Several research studies have shown the importance of air renewal to dilute contaminants
and, consequently, to reduce airborne infection risks, both in naturally and mechanically
ventilated environments (PARK et al., 2021; QIAN et al., 2021). The indoor CO- levels may be
used as an index to estimate the ventilation rate and, therefore, the airborne transmission of
diseases (BHAGAT et al., 2020; HOU; KATAL; WANG, 2021). Hence, its concentration rate is
widely used as an indicator of IAQ (CHATZIDIAKOU; MUMOVIC; SUMMERFIELD, 2015). As
a result, the current pandemic brought into discussion which CO- levels and ventilation rates
thresholds would be adequate to reduce the probability of infection in school classrooms, since
recommendations from standards could not be enough to prevent airborne transmission (HOU;
KATAL; WANG, 2021). Yet, there are no generic conclusions when the subject is the adequate
ventilation rate threshold to prevent the airborne transmission of COVID-19, since it depends
on several parameters such as occupancy density, room size, exposure time/duration, indoor
heat sources, humidity, etc. (ASCIONE et al., 2021; HOU; KATAL; WANG, 2021; SUN; ZHAI,
2020; ZIVELONGHI; LAI, 2021). In the case of fully naturally ventilated environments, the
performance is also associated to the local climate, the building design (opening sizes and
relative positions) and the occupant behaviour (PARK et al., 2021; QIAN et al., 2021).
Seasonal variation is also an important variable, since occupants tend to leave windows closed
when outdoor temperatures are low (DENG; ZOU; LAU, 2021; ZIVELONGHI; LAI, 2021). Yet,
most of the published research studies have been carried out considering isolated objectives
solely (ARJMANDI et al., 2021).

Giving this scenario, this research study aims to analyse potential conflicts between thermal
comfort and perceived indoor air quality, with regard to triggers for manual operation of
windows in naturally ventilated classrooms, and to identify optimal situations of balance
between both drivers to support building use practices focused on occupant-centric building

operation.
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6.2 Method

This research method is based on a case study and supported by field research, statistical
analysis, and building performance simulation. The method was developed in three main

steps, which are presented in Figure 6.1.
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Figure 6.1 — Research method.
6.2.1 Data collection (pre-processing)

e School buildings’ data collection

A comprehensive data collection was carried out, encompassing public schools built by the
Foundation for Education Development (FDE) over the past fifteen years in the state of Sdo
Paulo, Brazil. This dataset® included information on 66 school buildings, effectively
representing half of the public-school buildings constructed in the state of Sdo Paulo within this
time frame. All the schools in this database have a standardized design, with classrooms of
the same floor area and window design. The school classrooms are naturally ventilated, with

large operable windows in the main fagade and operable windows facing the corridor.
o Field campaign

The physical monitoring was performed on a set of classrooms of three public-school buildings
thoughtfully chosen from the dataset (Figure 6.2). The selection criteria ensured that the
selected school buildings were comparable to one another and representative of the broader
dataset. Furthermore, the school location and the willingness to participate in the research
study were also considered. School A is an elementary school (ages 6-15) built in 2015 and
located in the city of Campinas. Schools B and C are in the city of Sao Paulo, the first is an

3 The dataset is available at https://doi.org/10.25824/redu/Z4BWFL
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elementary school (ages 6-11) built in 2014 and the latter is a high school (ages 15-18) built in
2012. Both cities are characterized by a humid subtropical climate — Cfa (Képpen climatic
classification). The selected classrooms are occupied during the morning and afternoon with

one short break in each period plus a lunch break.
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Figure 6.2 — Monitored classrooms.
The physical monitoring was conducted during four rounds in each classroom at two-month
intervals within the range of one year (from August 2021 to August 2022). Besides the
measurement periods not being the same for all schools, the total measured time frame
ensured coverage of all seasons throughout the year. Indoor environmental variables were
monitored in a 10-minute time-step by dataloggers placed inside a typical classroom of each
selected school. The dataloggers, Testo 175-T2 with hot sphere probe, used to monitor air
temperature (Tin: range -35 °C to 55 °C + 0.5 °C) and globe temperature (Tg: range -25 °C to
80 °C £ 0.2 °C), and Testo 160 IAQ, used to monitor relative humidity (RH: range 0 to 100%
+2%) and CO. concentration (range 0 to 5000 ppm + 100 ppm + 3 % of reading), were placed
away from the windows at about 1.1 m above the floor (seated person) according to ISO 7726
(International Organization for Standardization, 1998). The mean radiant temperature (Tmr)
and the indoor operative temperature (Top) were calculated using the air temperature and the
globe temperature measurements. The number of occupants was monitored through the
attendance list provided by each classroom’s teacher. The manual operation of windows was
monitored by using an Onset Hobo State with binary output (closed = 0/ open = 1). Outdoor
environmental variables (air temperature — Tout, relative humidity — RHout, precipitation, wind
speed and wind direction) measurements were acquired from the nearest weather station (3.5

to 8 km distant), to enable comparisons between indoor and outdoor conditions.

During part of the physical monitoring — from August 2021 to February 2022, restrictive
occupancy measures due to the COVID-19 pandemic were observed. Therefore, the
monitoring period was divided into two sets — with and without restrictive measures. The
restrictive measures consisted of reduced number of occupants in the classroom, reduced
occupancy period, necessity to keep windows and doors opened during the whole occupancy

period, mandatory use of masks.
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6.2.2 OB model development (processing)

e Predictive modelling

The data collected during the physical monitoring phase was merged into a common dataset,
by associating window status (open/closed) with time of the day and environmental variables.
The R programming language (R Core Team, 2022) was used to create representative plots
of the collected data and to develop a predictive model of window status. The dataset was
randomly split into two subsets: one to generate the models, using 80% of the dataset (train

dataset), and another one to evaluate the models, using 20% of the dataset (test dataset).

Binary logistic regression was chosen as the statistical method to analyse the sample and to
create the model, since it is a stochastic model widely used to estimate window operation
behaviour, by assuming a probabilistic relationship with previously selected predictor variables
(CARLUCCI et al., 2020). A window status predictive model was developed by applying the
generalized linear mixed model (GLMM) function in the training dataset, considering the
monitored schools as a variable of random nature, to assess the influence of the recorded
parameters on the window status, which was defined as a binary operation state (all windows

closed = 0, at least one window open = 1).

Indoor operative temperature, indoor relative humidity, indoor CO, concentration and number
of occupants were tested as possible predictor variables. The outdoor weather variables air
temperature, relative humidity and CO. concentration were not considered to avoid
multicollinearity, which may bias the regression model. Also, a categorical variable related to
the COVID-19 restrictive measures was included as a predictor variable, in order to analyse
the impact of the protocols on the window status, considering two COVID-19 restriction
categories: “yes” when windows and doors should remain open during occupancy) and “no”
(when windows and doors could be freely operated). In addition, the interaction between the
environmental variables (indoor operative temperature, indoor relative humidity and indoor
CO; concentration) and the interaction between occupancy and COVID-19 restrictions were
tested as predictors in the model. The variables and interactions that were not significant as

predictors for window status (p-value > 0.05) were excluded from the model.
e Algorithms’ validation

The model was evaluated by using the test dataset to generate a confusion matrix, showing
the relationship between predicted and actual results. The confusion matrix consists of true

positive, true negative, false positive and false negative values. The Area Under the Receiver



123

Operating Characteristic curve (AUROC Curve, or AUC) was generated through the
comparison between the train and the test datasets and was used to analyse the performance
of the model. Its index ranges between 0.5 (no correlation at all) and 1 (exact predictions), but
values above 0.7 are generally considered satisfactory (HALDI; ROBINSON, 2009).

6.2.3 OB model implementation (post-processing)

e BPS model calibration

The schools’ geometries and their surroundings were modelled in the plug-in Euclid (Figure
6.3). Information from field measurements, in situ observation and the architectural design
documentation were used as input data in the software EnergyPlus for envelope (Tables 6.1
and 6.2), internal heat gains (Table 6.3) and operation schedules. The Kusuda Achenbach
correlation was used to calculate undisturbed ground temperatures, in order to simulate heat
transfer through the ground (ELI et al., 2019). The multizone AirflowNetwork (AFN) model was
used to model natural ventilation. The discharge coefficient (Cd) was set to the standard value
of 0.6 (Flourentzou, Van Der Maas & Roulet, 1998). The CpSimulator tool, which is based on
computational fluid dynamic (CFD), was used to predict the wind pressure coefficients, in order
to correctly predict the surroundings interference over the building’s natural ventilation
performance. The CpSimulator tool uses OpenFOAM as the background software to solve
steady Reynolds-averaged Navier—Stokes (RANS) equations using turbulence models for
specific atmospheric boundary layer (ABL) applications (BRE; GIMENEZ, 2022). The
boundary conditions of the ABL log-law profile were set as: reference aerodynamic roughness
length (zref) equal to 450 m; aerodynamic roughness length of the building’s terrain (z0) equal
to 0.25 m; reference mean wind velocity at building height (Vref) equal to 40 m/s; mean wind
velocity (V) equal to 21.14 m/s. The wind pressure coefficients were calculated according to

Equation 6.1.

P — Do

P05 Vg2

Eq. 6.1

Where: p, =0 m?/s?
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(a) School A model (b) School B model (c) School C model

Figure 6.3 — Building simulation models geometry.

Table 6.1 — Thermal properties of envelope construction.

U-factor Thermal Solar Solar heat gain
School Item Description (W/m2. capacity absorptanc coefficient
K) (kd/m2. K) e (a) (SHGC)
Walls Concrete block 190x190x390 mm 1.6 202 0.19 -
Windows Clear glazing 3 mm 5.7 - - 0.87
Floor Concrgte.slab 150 mm + plaster + 27 243 ) )
School A ceramic tiles _ _
Galvanized steel roofing + air
chamber + concrete capping +
Roof concrete slab 150 mm+ air chamber 11 164 0.25 )
+ mineral acoustic ceiling
Walls Concrete block 190x190x390 mm 2.2 202 0.65 -
Windows Clear glazing 3 mm 6.3 - - 0.87
Floor Concr_ete_slab 150 mm + plaster + 27 243 ) )
School B ceramic tiles
Galvanized steel roofing + air
Roof chamber + concrete capping + 1.7 140 0.25 -
concrete slab 150 mm
Walls Concrete block 190x190x390 mm 2.2 202 0.27 -
Windows Clear glazing 3 mm 6.3 - - 0.87
School  Floor Concr_ete_slab 150 mm + plaster + 27 243 ) )
c ceramic tiles . _
Sandwich roofing + air chamber +
Roof concrete slab 210 mm + air 0.6 515 0.25 -
chamber + mineral acoustic ceiling
Table 6.2 — Window and door frames.
Window
School Item Description opening
factor
Door 90 cm x 210 cm 1.0
. 20 pivot windows and 8 fixed glazing windows — 180 cm x 210 cm / 0.4
School Fagade window . .
window sill 80 cm (4 units)
A Hallway 0.6
. 4 pivot windows — 180 cm x 80 cm / window sill 220 cm (4 units) ’
window
Door 90 cm x 210 cm 1.0
S . 20 pivot windows and 8 fixed glazing windows — 180 cm x 210 cm / 0.4
chools Fagade window . .
B and C Wln_dow s_lll 80 cm (4 unl_ts) _ _ _
Hallway 6 pivot windows and 4 fixed glazing windows— 180 cm x 80 cm / window 0.4

window sill 220 cm (4 units)
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Table 6.3 — Internal loads.

Item Description Total loads
Occupancy 1.7 m?person during school period (7 h to 16 h) 108 W/person
Equipment 2 fans — 150 W/unit 300 W
Electric lights 6 lamps with 2 fluorescent bulbs each— 40 W/unit 480 W

The BPS models were calibrated through the software EnergyPlus using measured indoor air
temperature and mean radiant temperature data from the field measurements. Data collected
at night (i.e. without the influence of solar radiation and internal thermal loads) was used in the
calibration to minimise uncertainties. During this period, internal conditions are primarily
influenced by changes in outdoor air temperatures, through conduction heat transfer through
the wall, the window and the infiltration (NEVES et al., 2020). Outdoor variables (air
temperature, relative humidity, wind speed and direction and precipitation index) for the same
measurement period were obtained from the nearest weather station (3.5 to 8 km distant).
Data were converted to EnergyPlus Weather File (epw) format using Weather Converter

version 8.1.0, an EnergyPlus auxiliary program.

The Mean Absolute Error (MAE), the Normalised Mean Bias Error (NMBE) and the Coefficient
Variation of Root Mean Square Error (CV RMSE) were used to verify the accuracy of the
models, according to ASHRAE guideline 14 (ASHRAE, 2002). In all models, the MAE was
below 1 °C and the NMBE and the CV RMSE were below the ASHRAE 14 thresholds, which
are 10% and 30%, respectively (Table 6.4).

Table 6.4 — Calibration results.

Model MAE (°C) NMBE (%) CV RMSE (%)
School A 0.95 -3.06 5.31
School B 0.84 -2.82 5.52
School C 0.85 -3.62 3.60

o OB model implementation in BPS

The occupant behaviour predictive model regarding window operation was implemented in
EnergyPlus, in order to reproduce the real occupant behaviour, i.e., perform an annual
simulation considering the window operation schedule based on real occupant behaviour. The
occupant behaviour model implementation was based on the methodology provided by Gunay,
O’Brien and Beausoleil-Morrison (2016), which is based on an EnergyPlus Energy
Management System (EMS) script. In the beginning of each runtime, the inputs from the
behaviour models are generated from a normal distribution, based on values of mean %
standard deviation. Then, the adaptive state for the window status (open/ closed) is computed

via the logistic function previously developed (Equation 6.2), generating a random number
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sampled from a uniform distribution (0 = closed, 1 = open). This number is then compared to

the likelihood estimated from Equation 2.

e(logodds) e (Do+b1X1i+by Xpi+..bpXni) Eq. 6.2

P(Y) = 1 + e(0g0dds) — ] 4 g(bo+b1X1i+b;Xzi+.bnXnp)

Where: P(Y) is the probability of Y occurring, b0 is the Y intercept, bn is the regression coefficient, Xn is the value of the predictor

variable, e is the base of natural logarithms.

The implementation of the occupant behaviour models was divided into two simulation sets,
according to the COVID restrictive measures categorical variable (“yes” when windows and
doors should remain open during occupancy and “no” when windows and doors could be freely

operated), since they characterize variations in the logistic regression function.
e Multi-objective optimization

The multi-objective optimization (MOQO) was chosen as the method to create optimized
solutions in terms of thermal comfort and 1AQ, since it is an interesting method to deal with
conflicting design criteria, as an approach to realistic scenarios (NGUYEN; REITER; RIGO,
2014). The Non-Dominated Sorting Genetic Algorithm (NSGA-II) was chosen to develop this
research study, since it is the most common algorithm implemented to solve multi-objective
problems (EVINS, 2013) and it has been successfully implemented in similar studies
(MOKHTARI; JAHANGIR, 2021). The NSGA-II is based on the evolution of a population of
individuals (chromosomes) through genetic-inspired operations (such as crossover, mutation
and selection), each representing a solution for the optimization problem (AMASYALI; EL-
GOHARY, 2021).

The MOO problem intends to simultaneously maximize the thermal comfort conditions inside
the classroom, in accordance with the adaptive model of ASHRAE 55-2020, and also maximize
IAQ inside the classroom, in accordance with satisfactory levels of CO2 concentration.
Therefore, we selected, as objective functions, minimizing the number of exceedance hours
per year (calculated according to year the ASHRAE 55-2020 adaptive thermal comfort model)
and minimizing the average annual indoor CO2 concentration. Both objective functions were
configured in EnergyPlus through the Output: Table: Annual and Output: Table: Summary
Reports objects.

The deterministic scenarios were created based on a combination of the number of occupants
inside the classroom and the window state (open/ closed) and considering the goal of
optimizing thermal comfort and IAQ conditions in the classroom. For the number of occupants,

minimum and maximum values were defined, as well as a range of variation. For the window
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state, deterministic rules were set based on optimized thermal comfort conditions (based on
the adaptive thermal comfort limits for naturally ventilated spaces from ASHRAE 55-2020) or
optimized IAQ conditions (based on the reference values of CO2 concentration for school
buildings set by guidelines and protocols published during the pandemic (REHVA, 2021;
CIBSE, 2021; UBA, 2021)). The EMS application was used to set the window state scenarios.
For the scenarios regarding CO. concentration, a hysteresis operation was adopted as a
control strategy, i.e., a deadband of 100 ppm was set so the window state would not change
when COz concentration levels fall within it. The deterministic scenarios are presented on
Table 6.5.

Table 6.5 — Deterministic scenarios for multi-objective optimization.

Decision variables Deterministic scenarios

Minimum = 6 (5 students + teacher)
Number of occupants ~ Maximum = 31 (30 students + teacher, which represents current reality)
Range of variation = 5
Always open during occupancy
Always open during occupancy + Night time ventilation during weekdays
Open during occupancy AND when Top > adaptive comfort 80% minimum acceptability
limit (ASHRAE 55-2020)
Open during occupancy AND when Top > adaptive comfort 80% minimum acceptability
limit (ASHRAE 55-2020) + Night time ventilation during weekdays
Open during occupancy AND when Top > adaptive comfort 90% minimum acceptability
limit (ASHRAE 55-2020)
Open during occupancy AND when Top > adaptive comfort 90% minimum acceptability
limit (ASHRAE 55-2020) + Night time ventilation during weekdays
Open during occupancy AND when CO: levels are above 700 ppm + deadband 100
ppm (REHVA, 2021; CIBSE, 2021; UBA, 2021)
Open during occupancy AND when CO: levels are above 700 ppm + deadband 100
ppm (REHVA, 2021; CIBSE, 2021; UBA, 2021) + Night time ventilation during
weekdays
Open during occupancy AND when COz levels are above 800 ppm + deadband 100
ppm (REHVA, 2021; CIBSE, 2021; UBA, 2021)
Open during occupancy AND when CO: levels are above 800 ppm + deadband 100
ppm (REHVA, 2021; CIBSE, 2021; UBA, 2021) + Night time ventilation during
weekdays

Window state

The optimization procedure was developed within the software R, through the packages eplusr
and epluspar. The former establishes the communication between R and EnergyPlus,
conducting data-driven analytics by using EnergyPlus as the background simulation engine
(JIA; CHONG, 2021). The latter is an extension of the eplusr package that conducts specific
parametric analyses on EnergyPlus models, including MOO using the NSGA-II algorithm (JIA;
CHONG, 2021). The simulation job was set to run and evaluate one hundred generations
containing 20 individuals per generation, resulting in a total of 2000 annual energy simulations.
Then, the Pareto set was extracted and the Pareto front of discomfort hours and total carbon

emissions was generated.

e Comparison between real occupant behaviour and optimized theoretical scenarios
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Results from occupant behaviour predictive model implementation in BPS were compared
against optimized scenarios, created through a deterministic approach, aiming to find out if
occupants are operating windows near optimal conditions, considering thermal comfort and
IAQ; and also how could window operation be improved, considering the classrooms’ current

architectural design.

6.3 Preliminary results and discussion

6.3.1 Field research descriptive statistics

The summary of the environmental conditions monitored during the occupied period in the
school classrooms is presented in Table 6.6. The indoor CO» concentration presented similar
values in schools A and B, while school C presented higher CO2 concentration during all
monitoring period (Figure 6.4a). The indoor relative humidity was between 40% and 60%
(CIBSE, 2020) 63.4%, 29.3% and 28.2% of the time in schools A, B and C, respectively.
Indeed, Schools B and C presented high humidity levels most of the time (Figure 6.4b). The
indoor operative temperature was adequate on 59%, 61.8% and 87.6% of the time in schools
A, B and C, respectively, according to the adaptive model of ASHRAE 55-2020 (Figure 6.4c).
However, classrooms from schools A and B presented cold discomfort hours 20.1% and 25.2%
of the time and hot discomfort hours 20.9% and 13% of the time, respectively. School C,
despite having higher values of CO, concentration, presented better thermal conditions than

the formers.

Table 6.6 — Summary of recorded parameters during the occupied period.

Variable School A (n =1170) School B (n = 1489) School C (n = 1142)
Mean SD Range Mean SD Range Mean SD Range
Top (°C) 24.5 4.1 14.1 - 321 23.7 3.4 16.4 - 311 24.0 24  16.3-291
Tout (°C) 23.0 5.9 6.8 —33.0 22.2 5.0 10.9-334 25.2 49 104-356
CO2 (ppm) 540 107  359-1162 595 112 362 — 975 676 186 333 -1682
RH (%) 53.1 10.0 27.0-74.0 62.1 11.1  30.0-80.3 63.6 8.8 30.0-87.0

RHout (%) 59.1 16.7 26.0-89.0 73.1 20.7 22.9-99.9 61.8 184 16.0-96.0
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(a) Indoor CO2 concentration  (b) Indoor relative humidity (c) Indoor operative temperature
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Figure 6.4 — Cumulative indoor environmental variables during occupied period.
The window remained open most of the time in all schools during the periods with and without
COVID-19 restrictive measures (Figure 6.5). Yet, in School C, unlike in Schools A and B, the
window remained open longer during the period without restrictions. This suggests that, in this
school, the window status was influenced more by environmental factors than by the
restrictions. In School B, the windows remained opened almost all the time, with little difference

between both periods.

School A School B School C
100% - 97.75 98.92
- 89.59
Q o/, - 76.73 .
Q 75% 68.14 Window status
) 61.51
3 50%-
g 0 - - Closed
o 25% 23.27 i Open
10.41
0% - 2.25 | 1.08 ‘

Without (0) With (1)  Without (0) With (1)  Without (0) With (1)
COVID-19 restrictions

Figure 6.5 — Window status during occupied period with and without COVID-19 restrictions (field campaign
results).

Figures 6.6 to 6.8 present the frequency of window status throughout the day. In School A, the
windows were mostly open during the morning, particularly in the middle of the period,
indicating that occupants tended to operate the windows more when arriving at or leaving the
classroom. In the afternoon, the windows were primarily open during the first half and in the
end of the period. In School B, the windows remained open throughout the day, except at the
end of the afternoon, suggesting that occupants closed the windows when leaving the
classroom. In School C, the windows remained open most of the day, particularly at the end
of the morning and afternoon periods, suggesting that the windows were likely left open during

unoccupied times to ventilate the classroom.
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Figure 6.6 — Window status during the day — School A.
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Figure 6.7 — Window status during the day — School B.
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Figure 6.8 — Window status during the day — School C.

6.3.2 Occupant behaviour predictive model

Table 6.7 reports the outcomes from the window status model. The model presents a negative
correlation between CO; concentration and window status, suggesting that higher CO. levels
are associated with closed windows. This finding aligns with a study by Dutton and Shao
(2010), but contrasts with other studies (KORSAVI; JONES; FUERTES, 2022b; STAZI; NASPI;
D’ORAZIO, 2017a). Indoor operative temperature and relative humidity were not significant for
window status and, consequently, were excluded from the model. This results differs from
current literature, which found these variables significant predictors for window status in school
classrooms (BELAFI et al.,, 2018; DUTTON; SHAO, 2010; KORSAVI; JONES; FUERTES,
2022b; STAZI; NASPI; D'ORAZIO, 2017a). Yet, while indoor operative temperature and
relative humidity alone were not significant, their interactions with CO. concentration were
found to be significant predictors for window status. COVID-19 restrictions exhibited a negative
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correlation with window status, suggesting that windows were less likely to be open during
periods of restrictions. Despite the fact that this finding aligns with results from window status
in School C, it is surprising, as it contrasts with the protocols implemented during the COVID-
19 pandemic. Occupancy and its interaction with COVID-19 restrictions were not significant

predictors for window status and were therefore excluded from the model.

Table 6.7 — Regression parameters for window status model.

Estimate Standard Error p-value
Intercept 0.9041588 0.07650470 0.0000*
CO: -0.0032530 0.00047187 0.0000*
COVID-19 restrictions -0.0359068 0.01555586 0.0211*
CO2:Top ** 0.0001233 0.00001772 0.0000*
CO2:RH ** 0.0000480 0.00000722 0.0000*
CO2:Top:RH ** -0.0000019 0.00000029 0.0000*

Caption: * statistically significant values; **the use of colon between predictors refers to an interaction between variables.

The model value for AUC resulted in 0.75, which is considered satisfactory. Additionally, the
confusion matrix results showed that the model predicted more open (n = 667) than closed

status (n = 116), with 85% of correct predictions.

6.3.3 Model’s implementation

The model's implementation in the building performance simulation (BPS) was conducted for
an entire year, utilizing a treated weather file specific to each city. As a result, the simulation
outcomes cannot be directly compared to the results from the field research, which focused on
shorter periods of the year and relied on environmental data collected without statistical

treatment.

Despite the window status being influenced by the COVID-19 restrictions, the results for
window status with and without restrictions were very similar in all schools (Figures 6.9). This
suggests that COVID-19 restrictions had a lower impact on window status compared to other
factors included in the model. Furthermore, the simulation indicated a higher frequency of open
windows during the period without restrictions, which was expected based on the model's
negative correlation between COVID-19 restrictions and window status. The simulation results

also showed very similar window status outcomes for all schools.
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Figure 6.9 — Results for window status during occupied period with and without COVID-19 restrictions (BPS
implementation results).

School A presented lower CO; concentration compared to the other schools (Figure 6.10a).
Schools B and C had similar CO2 concentration results, with School C exceeding 2000 ppm.
School A presented lower indoor operative temperature most of the time when compared to
the other schools, but at times it reached higher temperatures (Figure 6.10b). Schools B and
C also presented similar results for indoor operative temperature. The similar results for
Schools B and C could be related to the use of the same weather file in the simulation, as both
schools are located in the same city. This could be seen as a limitation of the study, since

outdoor variables can vary significantly across different areas, especially in large cities like

Sao Paulo.
(a) Indoor CO2 concentration (b) Indoor operative temperature
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Figure 6.10 — Cumulative indoor environmental variables during occupied period.
The results from the model implementation suggest that the OB model predicts window status
in a generalized manner, using data collected from all schools. This approach could be useful
for designing new school buildings by factoring in occupant behaviour to improve predictions
of building performance. Yet, for building renovations, it is recommended to use data from the
specific existing school to develop a tailored model for more accurate predictions of building

performance, highlighting the relevance of contextual factors.
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6.3.4 Comparison between real occupant behaviour and optimized theoretical scenarios

Figures 6.11 to 6.13 show the results for discomfort time (ASHRAE, 2020b) and levels of CO»
concentration, comparing optimized theoretical scenarios with real occupant behaviour across
the three school buildings. The mustard yellow points represent the population, or candidate
solutions, based on the deterministic scenarios outlined in Table 6.5. The blue points indicate
the Pareto front, which comprises a set of optimal trade-off solutions, considering our objective
functions: minimizing the number of exceedance hours per year and minimizing the average
annual indoor CO, concentration. The red and green points represent the real occupant

behaviour with and without the COVID-19 restrictive measures, respectively.

As expected, the real occupant behaviour under COVID-19 restrictive measures (red point)
and without such restrictions (green point) presented similar results in each school, as the

window status was also very similar, as shown in Figure 6.9.

The Pareto front for School A (Figure 6.11) indicates that the scenario achieving the optimal
balance between both objective functions was the one with minimal occupancy (6 persons)
and windows open during occupancy when the indoor operative temperature exceeded the
adaptive comfort 80% minimum acceptability limit (resulting in CO- levels of 452 ppm and 973
hours of discomfort). In comparison, real occupant behaviour resulted in CO- levels that were

approximately 21% higher and 9% more hours of discomfort.

In School B (Figure 6.12), the optimal scenario also involved minimal occupancy (6 persons)
with windows always open during occupancy, resulting in CO: levels of 450 ppm and 1,091
hours of discomfort. Compared to this optimized scenario, real occupant behaviour led to CO»

levels that were 19% higher and 4.5% more hours of discomfort.

In School C (Figure 6.13), the optimal solution involved an occupancy of 11 persons with
windows always open during occupancy, resulting in CO; levels of 469 ppm and 1,030 hours
of discomfort. In comparison to this optimized scenario, real occupant behaviour led to CO»

levels that were 42.5% higher and 6% more hours of discomfort.
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Figure 6.11 — Optimized theoretical scenarios and real occupant behaviour for School A.
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Figure 6.12 — Optimized theoretical scenarios and real occupant behaviour for School B.
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Figure 6.13 — Optimized theoretical scenarios and real occupant behaviour for School C.
Therefore, regarding window status, the optimized scenario for School A suggests that
windows should be opened based on the indoor operative temperature thresholds. In contrast,
for Schools B and C, the windows should remain open during occupancy. As for occupancy,
the optimized solutions for Schools A and B involved a minimum occupancy of 6 persons, while
in School C, the best scenario indicated an occupancy of 11 persons. These findings highlight
an important consideration for managing indoor environments, especially in the context of

future pandemics.

When comparing these optimized scenarios with actual occupant behaviour, the real behaviour

resulted in less favourable indoor conditions, especially concerning CO: levels — although
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satisfactory CO; levels and discomfort times under 1150 hours were achieved. This indicates
that window operation and occupant density significantly influence classroom health,
suggesting that adjustments in occupant behaviour could further improve indoor conditions,

enhancing both thermal comfort and perceived air quality.

6.4 Conclusions

This study aimed to analyse potential conflicts between thermal comfort and perceived indoor
air quality, with regard to triggers for manual operation of windows in naturally ventilated
classrooms, and to identify optimal situations of balance between both drivers to support
building use practices focused on occupant-centric building operation. The data collected in
three school buildings was used to develop a window status predictive model and to calibrate
one BPS model for each school. The window status predictive model was implemented in the
simulation, reproducing the real occupant behaviour for the entire year. Multi-objective
optimization was applied to identify optimal situations of balance between thermal comfort and
perceived indoor air quality. Results from the simulations considering the real occupant
behaviour and the multi-objective optimization were compared to find out if occupants are
operating windows near optimal conditions and to identify how could window operation be

improved, considering the classrooms’ current architectural design.

CO- concentration and its interactions with indoor operative temperature and relative humidity
in addition to the COVID-19 restrictions were identified as significant predictors in our model.
The results from the model implementation suggest that the OB model predicts window status
in a generalized manner, utilizing data collected from all schools. While this generalized
approach may be useful for designing new school buildings by incorporating occupant
behaviour into performance predictions, it is recommended that renovations rely on data
specific to the existing school to develop a tailored model, ensuring more accurate predictions

of building performance.

The results from the multi-objective optimization reveal that the optimal strategies vary by
school. For window operation, School A benefits from adjusting window openings based on
indoor temperature thresholds, while Schools B and C perform better with windows
consistently open during occupancy. In terms of occupancy, the recommendation is a minimum
of 6 persons in Schools A and B, and 11 persons in School C. These strategies underscore a
critical consideration for managing indoor environments, particularly in the context of future
pandemics, where the relationship between classroom size and occupant density and the

recommendations for window operation should be carefully reviewed. It is worth highlighting
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that, since the optimal strategies varied between schools, the recommendations should be

evaluated according to each specific context.

The real occupant behaviour resulted in worse outcomes compared to the optimized scenarios,
with significant differences in CO: levels, especially in School C (42.5% higher), and discomfort
times, particularly in School A (9% higher). This suggests that occupant behaviour concerning
window operation and occupancy directly impacts thermal comfort and perceived indoor air
quality. Additionally, there is an opportunity to enhance indoor conditions by modifying

occupant behaviour.

This study provides valuable insights into how occupant behaviour regarding window operation
and occupancy affects indoor conditions in school classrooms. The findings highlight
significant variations in indoor air quality (CO- levels) and thermal comfort (discomfort hours)
between real and optimized occupant behaviours, suggesting that adjusting occupant
behaviour could improve indoor conditions. Additionally, the optimized scenarios offer practical
recommendations for enhancing classroom design and operational strategies. Future research
should explore other behaviours in school classrooms, such as door and fan operation, to
identify optimal strategies for these elements as well, further improving indoor environmental

conditions.



137

7 General Discussion

Occupant behaviour (OB) models have been developed to predict and represent human
actions in building performance simulations, to optimize building design and reduce the
performance gap. Three main steps to represent the OB modelling approach were identified
in the literature, which were used to structure this research: the data collection (pre-processing,
step 1), the OB model development and evaluation (processing, step 2) and the OB model
implementation in building performance simulation (post-processing, step 3). While data
collection (step 1) is widely adopted as a research method in school buildings, the second and
third steps have been less thoroughly explored in studies conducted in this context. This
indicates that OB modelling is still in its early stages for school buildings, representing an
important research gap. Table 7.1 summarizes the objectives addressed, the methods

employed, and the main contributions of each chapter in this thesis.

The literature review, presented in Chapter 2, highlights several key aspects of occupant
behaviour in school buildings. Teachers were identified as the primary active occupants
responsible for making environmental adjustments, with decision-making processes largely
driven by collective needs and school rules. Environmental factors, particularly indoor and
outdoor air temperatures, were the most frequently studied drivers in this context. Additionally,
most studies tend to focus on a single behaviour, such as window or light operation, and a
specific scope, such as energy consumption, indoor environmental quality, indoor air quality,
or thermal and visual comfort. However, in practice, occupant behaviours are interconnected
and can have both positive and negative impacts on various aspects of building performance.
Furthermore, the COVID-19 pandemic introduced restrictive measures in school buildings
(e.g., opening windows and doors and reducing the number of occupants), directly affecting
occupant behaviour, making it essential to investigate which are the behaviour changes, their

actions’ drivers and their impacts on the built environment.

In this context, a first analysis of the impact of the restrictions implemented during the COVID-
19 pandemic on the built environment is presented in Chapter 3. The results suggest that the
restrictive measures can help to reduce the CO; concentration and the probability of infection,

in addition to improving the thermal comfort of the analysed classroom. Yet, the measures
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adopted by schools must be analysed for each specific climate and context in order to balance
potential benefits and risks to occupants. Due to their impact on the built environment, COVID-
19 restrictive measures were included as a predictor variable in the models developed in this

research aiming to investigate their influence on occupant behaviour.

The OB modelling approach was applied in Chapters 4, 5 and 6. To address the research
gaps identified in the literature, the data collected in three school buildings included multi-
domain factors, considering not only environmental variables (such as thermal and indoor air
quality factors) but also contextual and multi-behaviour domains. Data collection (step 1),
particularly related to occupant investigation, usually presents challenges due to OB
complexity and uncertainty, ethical issues, and the requirement of specific monitoring

equipment, as identified in the literature review and described in this research as limitations.

The data collected was used to develop OB predictive models (step 2), with different objectives
in each chapter. In Chapter 4, three window status predictive models, one for each school,
were developed using the generalized linear model (GLM) to analyse the differences in
behaviour between schools. Indoor operative temperature, relative humidity, CO-
concentration and COVID-19 restrictions were identified as triggers for window operation in all
schools. Yet, the outcomes indicate that occupant behaviour varies between schools,
suggesting that behaviour is context-dependent and strongly influenced by rules and habits,

as confirmed by the questionnaire responses.

In Chapter 5, window, door and fan status predictive models were developed using the
generalized linear mixed model (GLMM), considering the monitored schools as a variable of a
random nature and testing multi-domain variables as possible predictors. The analysis
identified indoor environmental variables, such as operative temperature, relative humidity,
and CO. concentration, as significant predictors for window, door, and fan status in almost all
models. However, other factors like teachers' behaviour and COVID-19 restrictions emerged
as potentially more influential on occupant behaviour and the models that included these
predictors demonstrated better performance during the validation phase, underscoring the

importance of considering the contextual domain in behavioural studies.

In Chapter 6, one window status predictive model was developed using the generalized linear
mixed model (GLMM), considering the monitored schools as a variable of a random nature,
aiming to represent OB in the BPS through an entire year to analyse potential conflicts between
thermal comfort and perceived indoor air quality. Indoor environmental variables (CO.

concentration, indoor operative temperature and relative humidity) were tested as predictors
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for window status in addition to the COVID-19 restrictions. CO; concentration and its
interactions with indoor operative temperature and relative humidity, and the COVID-19

restrictions were identified as significant predictors in this model.

Overall, the OB predictive models indicated that context-related factors (e.g., teachers’
behaviour and COVID-19 restrictions) had a greater influence on window, door, and fan status
than environmental variables in school classrooms. This finding is likely unique to school
buildings, where decision-making processes are primarily driven by collective needs and
school rules, differing from other contexts such as office and residential buildings. However,
the inclusion or exclusion of certain variables in the models resulted in differences in the
significance of predictors, raising questions about which variables should be included when
developing an OB model. While models with additional predictors offered more accurate
predictions, they also became more context-dependent and less generalizable. Therefore, the
inclusion of predictors should consider the objective of the research. This trade-off between
model complexity and generalizability is a key consideration in this research, highlighting the
nuanced relationship between various factors influencing occupant behaviour in school

buildings.

Chapter 6 also presents the OB model implementation (step 3). The window status predictive
model was implemented in building performance simulations to predict occupant behaviour
related to window operation throughout the entire year in each school. The implementation
results suggest that the OB model predicts window status in a generalized manner, as the
outcomes were similar across the three schools. This similarity arises because a single model
was developed using data collected from all schools. An alternative approach would be to
develop one model for each school by applying the Generalized Linear Model (GLM). While
this generalized approach can be valuable for designing new school buildings by incorporating
occupant behaviour into performance predictions, it is recommended that renovations utilize
data specific to the existing school to develop a tailored model, ensuring more accurate
predictions of building performance. However, it is important to note that such a tailored model
would benefit only the specific school for which it was developed. Therefore, once more the
research’s objective should be considered when choosing the approach to develop OB

models.

Results from real occupant behaviour regarding thermal comfort (discomfort hours) and
perceived indoor air quality (CO: levels), extracted from the building performance simulations,
were compared to optimized scenarios in Chapter 6. The parameters analysed in the multi-

objective optimization included those considered in the COVID-19 restrictive measures:
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window operation and occupancy. The optimal strategies varied between schools. For window
operation, school A benefits from adjusting window openings based on indoor temperature
thresholds, while schools B and C perform better with windows consistently open during
occupancy. In terms of occupancy, the recommendation is a minimum of 6 persons in schools
A and B, and 11 persons in school C. The real occupant behaviour resulted in worse outcomes
compared to the optimized scenarios, with significant differences in CO; levels, especially in

school C (42.5% higher), and discomfort times, particularly in school A (9% higher).

This study highlights the significant influence of occupant behaviour on thermal comfort and
indoor air quality within school environments. By comparing real occupant behaviour with
optimized scenarios, it is evident that targeted adjustments to window operation and
occupancy levels can substantially improve indoor conditions. The variation in optimal
strategies across different schools emphasizes the need for context-specific approaches when

designing and managing classroom environments.

Furthermore, these findings are particularly relevant in the context of future pandemics, where
maintaining healthy indoor air quality and comfortable thermal conditions is crucial. The
optimized scenarios not only offer actionable recommendations for enhancing classroom
design and operation but also underscore the importance of revisiting occupant behaviour and
building strategies to ensure the well-being of occupants. Ultimately, this research provides
valuable insights that can inform both new school designs and renovations, helping to create

safer and more comfortable learning environments.
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Table 7.1 — Summary of analyses across chapters.

Chapter Main objective of the paper Thesis objectives Methods OB modelling approach Main contributions
addressed in each chapter* Data Model Model
MO SO1 SO2 SO3 SO4 collection development implementation
(step 1) (step 2) (step 3)

Addressing the knowledge gap on occupant behaviour
modelling for naturally ventilated school buildings and

Systematic

Identification of knowledge and

understanding the potential changes on actions' drivers d d literature review research gaps.
due to the COVID-19 pandemic.
Evaluating the thermal comfort and IAQ conditions of a . ) .
naturally ventilated classroom, in order to identify Field research and Analysis of the impact of the
scenarios that contribute, simultaneously, to the o o building COVID-19 restrictive measures on
reduction of the risk of dissemination of the SARS-CoV-2 performance the risk of dissemination of the
virus and to the maintenance of thermal comfort for simulation (BPS) virus and on thermal comfort.
users.
Addressing the window operation behaviour, the thermal Field research and Identification of predictors for
conditions and the perceived IAQ in naturally ventilated . . . statistical analysis window status and differences in
classrooms in a humid subtropical climate during the (generalized linear occupant behaviour between
COVID-19 pandemic. models - GLM) schools.
Identifying and quantifying the influence of multi-domain Field research and
‘;ancéosuf{ﬂggﬁ;@?otg‘reégﬁgi':sd)ogr: airn%fwtﬁo‘;?_”f:é“gn statistical analysis Identification of predictors for
status in naturally ventilated school classr,ooms‘ ina * * * (ggnerallzed linear Wlndgw, .door anq fan st.atus,
humid subtropical climate, in order to predict occupant mixed models - considering multi-domain factors.
behaviour. GLMM)
Analysing potential conflicts between thermal comfort Field research Recommendations for window
and perceived indoor air quality, with regard to triggers ot o operation and occupancy for

. ! . > statistical analysis
for manual operation of windows in naturally ventilated o N o e (GLMM), BPS and . school classrooms based on
classrooms, and identifying optimal situations of balance A optimal situations of balance
between both drivers to support building use practices mu!t"_ObJe_Ct'V9 between thermal comfort and
focused on occupant-centric building operation. optimization

perceived indoor air quality.

*Main objective (MO): Identify and quantify the influence of multi-domain factors (including thermal, indoor air quality, contextual and multi-behaviour domains) on window, door, and fan status
in naturally ventilated school classrooms in a humid subtropical climate, in order to improve the ability to predict occupant behaviour.

Specific objective 1 (SO1): Identifying and analysing existing occupant behaviour models for naturally ventilated and mixed-mode school buildings.

Specific objective 2 (S02): Investigating potential impacts on occupant behaviour due to restrictions implemented during the COVID-19 pandemic in school buildings.

Specific objective 3 (SO3): Developing predictive occupant behaviour models based on the collected data.

Specific objective 4 (SO4): Analysing potential conflicts between thermal comfort and indoor air quality and identifying optimal situations of balance between both drivers.



142

8 Conclusion

The main objective of this thesis was to identify and quantify the influence of multi-domain
factors (including thermal, indoor air quality, contextual and multi-behaviour domains) on
window, door, and fan status in naturally ventilated school classrooms in a humid subtropical
climate, in order to improve the ability to predict occupant behaviour (OB). The thesis is
structured into five main chapters, each addressing specific objectives as well as the main
objective. This research confirms the hypothesis that including multi-domain factors in OB
models can enhance the prediction of occupant behaviour in building performance simulations
(BPS) of school classrooms. However, the results also suggest that more complex models with
additional predictors become more context-dependent and less generalizable. The trade-off

between model complexity and generalizability is an important consideration in this thesis.

The first specific objective (SO1) — identifying and analysing existing occupant behaviour
models for naturally ventilated and mixed-mode school buildings — is addressed in Chapter 2.
A unique aspect of occupant investigation in school buildings is recognizing the teacher as the
primary active occupant responsible for environmental adjustments, with decision-making
processes largely based on collective needs and school rules. Despite this, environmental
factors, particularly indoor and outdoor air temperatures, remain the most studied drivers. This
finding underscores the need to investigate additional domains beyond the physical
(environmental factors) that influence occupant behaviour in school buildings, especially the
contextual domain, such as teachers' behaviour and collective actions, thus supporting the

main objective of this thesis.

Furthermore, although all the reviewed studies on school buildings considered the correlation
between occupant behaviour and drivers in their methodology, only 46% actually presented
the resultant OB model, and few studies implemented the OB model in BPS tools. These
studies typically focus on a single aspect, such as energy consumption, indoor environmental
quality, indoor air quality (IAQ), or thermal or visual comfort. However, occupant behaviour can
impact various aspects of building performance both negatively and positively, needing a

simultaneous analysis of multi-input and output parameters interaction.
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The second specific objective (SO2) — investigating potential impacts on occupant behaviour
due to restrictions implemented during the COVID-19 pandemic in school buildings — is
addressed in chapters 2 to 6. The outcomes from the literature review, presented in Chapter
2, support the need to investigate the behaviour changes, their actions’ drivers and their
impacts on the built environment due to the restrictions implemented during the COVID-19
pandemic. The restrictions, which are related to occupant behaviour (opening windows and
doors and reducing the number of occupants), can help to reduce the CO2 concentration and
the probability of infection, in addition to improving the thermal comfort in naturally ventilated
school classrooms, as shown in Chapter 3. Yet, the measures adopted by schools must be
analysed for each specific climate and context in order to balance potential benefits and risks

to occupants.

In this context, the restrictions implemented during the COVID-19 pandemic were included as
a predictor in the occupant behaviour predictive models developed in Chapters 4, 5 and 6.
These restrictions showed statistical significance for the status of windows, doors, and fans in
all models, indicating their impact on occupant behaviour. Yet, the results from the real
occupant behaviour, simulated over a year in Chapter 6, revealed little variance when
comparing the periods with and without the COVID-19 restrictions. This suggests that,
although the restrictive measures were identified as a predictor of occupant behaviour, the

actual changes in behaviour might not be as significant as anticipated.

The third specific objective (SO3) — developing predictive occupant behaviour models based
on the collected data — is addressed in chapters 4, 5 and 6. In Chapter 4, that presents one
window status predictive model for each school, indoor operative temperature, relative
humidity, CO2 concentration and the restrictions imposed during the COVID-19 pandemic were
identified as triggers for window operation in all schools. In addition, the differences between
the school classrooms suggest that occupant behaviour is context dependent, being highly

influenced by rules and habits.

The results presented in Chapter 5 highlighted that predictors such as the teachers’ behaviour
and the COVID-19 restrictions could have a greater influence on occupant behaviour than
environmental variables, indicating the relevance of investigating other domains in behavioural
studies. Also, the models including additional predictors were the ones with better results
during the validation phase, suggesting that, while more complex models can provide more
accurate predictions of occupant behaviour, they also become more context-dependent and

less generalizable.
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The model implementation, in Chapter 6, indicates that the developed OB model predicts
window status in a generalized manner, as the outcomes were similar across the three schools.
This generalized approach can be valuable for designing new school buildings by incorporating
occupant behaviour into performance predictions. Yet, for building renovations a specific
model using only data specific to the existing school should ensure more accurate predictions

of building performance.

The fourth specific objective (SO4) — analysing potential conflicts between thermal comfort
and indoor air quality — is addressed in chapters 3 and 6. Chapter 6 also identifies optimal
situations of balance between both drivers. The indoor conditions were analysed considering
occupant behaviours related to the restrictions imposed during the COVID-19 pandemic:
window operation and occupancy. The results from both chapters confirm that occupant
behaviour impacts significantly thermal and indoor air quality conditions. In Chapter 3, a
comparison between the best and the worst simulated scenarios revealed a reduction of 42%
in the concentration of CO2 and 33% in the infection probability and an increase of 60% in
comfort hours. In Chapter 6, the findings highlight variations of up to 42.5% in CO- levels and
up to 9% discomfort hours between real and optimized occupant behaviours. These significant
differences between scenarios indicate the opportunity to enhance indoor conditions by

adjusting occupant behaviour.

The optimal situations of balance between thermal comfort and indoor air quality, presented in
Chapter 6, indicate that the optimal strategies vary by school, highlighting the need for
recommendations to be evaluated according to each specific context. The optimized scenarios
provide practical recommendations for improving classroom design and operational strategies.
These findings underscore a critical consideration for managing indoor environments,
particularly in the context of future pandemics, where the relationship between classroom size

and occupant density and the recommendations for window operation should be reviewed.

8.1 Main contributions to science and society

This thesis addresses a significant gap in the literature by providing data on occupant
behaviour in naturally ventilated school classrooms situated in a humid subtropical climate.
The findings underscore the complexity of occupant behaviour, which is influenced by multiple
factors and presents many challenges for investigation. Consequently, the results contribute
to the debate on the uncertainty of addressing occupancy models in building performance
simulations, allowing standards for integrating occupant models in building design to better

reflect reality.
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Furthermore, occupant behaviour has a direct impact on indoor environmental conditions,
particularly in buildings where occupants can interact with the building systems, such as those
with manually operable windows. The results of this research offer insights for designers and
architects on how to design school buildings that promote the interaction between occupants
and buildings’ systems to contribute to a comfortable and healthy environment. In this context,
the data provided by this research supports the development of more occupant-friendly

spaces, emphasizing systems that are accessible and easy to interact with.

The outcomes also benefit the schools that participated in this research by providing them with
reports on the collected data, key findings regarding the developed occupant behaviour models
and suggestions for operating windows, doors and fans. In addition, a general report provided
to the Foundation for Education Development (FDE) will contribute to the design and operation

of public-school buildings in the state of Sao Paulo.

8.2 Limitations and future research

The limitations of this study include:

(i) Monitoring equipment — Due to the restricted number of monitoring equipment, the
schools were not monitored simultaneously. Instead, the monitoring campaign was
split into four rounds to cover all the seasons in each classroom. This sequential
monitoring may introduce variability based on time of the year. Also, the absence
of equipment to monitor occupancy required the use of attendance lists provided
by each teacher, which may not be as reliable as data obtained from dedicated
occupancy monitoring equipment, potentially introducing some level of uncertainty
into the analysis.

(ii) Sample size — Also due to the restricted number of equipment, the sample was
limited to three schools. Larger sample sizes are often preferred to develop more
precise models, as they provide more data to train the models effectively.

(iii) Internal factors — The study did not consider internal factors such as psychological
and physiological variables that could potentially be included as predictors in the
models. This omission was due to the complexity of investigating and monitoring

these factors.

Future studies could further enhance the sample size by collecting data from other school
classrooms in different contexts (e.g., different climates, types of classrooms, students of

different ages) and investigate a broader range of factors that can influence occupant
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behaviour, such as internal (e.g., psychological and physiological variables) and contextual

(e.g., school routine and rules) factors.
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APPENDICES

Appendix A: Teachers’ questionnaire (Appendix of Chapters 4 and 5)

QUESTIONARIO

Turno(s) em que da aula: 0 Manhd © Tarde Data: / / Hora:

1. O que vocé esta vestindo hoje?

O Short/ Bermuda O Camiseta manga curta 0O Sandalia/ Chinelo
O Saia O Camiseta manga longa O Ténis
O Calga comprida O Malha/ jaqueta 0 Sapato/ Bota

2. Neste momento, a sala esta:
0O Muito quente 0O Nem quente nem fria 0O Muito fria
0O Pouco quente 0O Pouco fria

3. Neste momento, como vocé gostaria que a sua sala estivesse?
O Mais quente 0 Como ja esta O Mais fria

4. Neste momento, o vento que esta entrando pela janela na sala:
(1 Esta agradavel O A janela esta fechada
0 Nao incomoda 00 Incomoda

5. Neste momento, em relagdo ao quadro negro, o sol/ a claridade que esta entrando pela

janela:
(1 Esta agradavel O Atrapalha
[0 Nao atrapalha 00 Nao esta entrando sol/claridade

6. Em geral, quem opera as janelas, as persianas/cortinas (se houver) e os ventiladores
dentro da sala de aula?

0 Apenas os professores ou outros funcionarios

O Apenas os alunos

0 Quase sempre os professores ou outros funcionarios
[0 Quase sempre os alunos

0 Qualquer pessoa (professores ou alunos)

7. Os alunos costumam solicitar para abrir ou fechar a janela?
O Sim, com muita frequéncia O Sim, raramente
O Sim, as vezes O Nao

8. Os alunos costumam solicitar para ligar ou desligar o ventilador?
00 Sim, com muita frequéncia 00 Sim, raramente
O Sim, as vezes O Nao



9. Os alunos costumam solicitar para ligar ou desligar a luz?
0 Sim, com muita frequéncia 00 Sim, raramente
0 Sim, as vezes 0 Nao

10. Os alunos costumam solicitar para abrir ou fechar a persiana/cortina?
0 Sim, com muita frequéncia 00 Sim, raramente

0 Sim, as vezes 0O Nao

0O Nao ha persiana/cortina na sala de aula

11. Quanto tempo a janela da sala permaneceu aberta hoje, durante a aula?
0 Apenas no inicio da aula

O Apenas no fim da aula

O Durante todo o horario de aula

O A janela permaneceu fechada durante toda a aula

12. Quem abriu a janela da sala hoje?

O Eu

00 Outro funcionario

0 Aluno

O Nao sei, a janela ja estava aberta quando eu cheguei
O A janela nao foi aberta hoje

13. Quem fechou a janela da sala hoje?

O Eu

0 Outro funcionério

O Aluno

0 A janela nao foi fechada (esta aberta)

O A janela permaneceu fechada durante toda a aula

14. No caso de vocé ter aberto ou fechado a janela da sala hoje, qual foi a motivagio?
(Apenas responder se respondeu EU nas questbes 12 e/ou 13)

O Porque tinha cheiro ruim

O Para ventilar a sala de aula
0O Por causa da chuva

O Porque estava muito quente
O Porque estava muito frio

0 Outro motivo:

15. Quem ligou o ventilador da sala hoje?
O Eu

0 Outro funcionario

0O Aluno

0 Nao sei, ja estava ligado quando eu cheguei
0 O ventilador nao foi ligado hoje

16. Quem desligou o ventilador da sala hoje?

167
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O Eu

0O Outro funcionario

O Aluno

0 O ventilador nao foi desligado ainda (esta ligado)

0 O ventilador permaneceu desligado durante toda a aula

17. No caso de vocé ter ligado ou desligado o ventilador da sala hoje, qual foi a
motivagao? (Apenas responder se respondeu EU nas questdes 15 e/ou 16)

O Para ventilar a sala de aula
0O Porque estava muito quente
0 Porque estava muito frio

O Outro motivo:

18. Quem ligou a luz da sala hoje?

O Eu

0 Outro funcionario

O Aluno

0 Nao sei, a luz ja estava ligada quando cheguei
O A luz nao foi ligada hoje

19. Quem desligou a luz da sala hoje?

O Eu

01 Outro funcionario

O Aluno

0 A luz néo foi desligada ainda (esta ligada)

O A luz permaneceu desligada durante toda a aula

20. No caso de vocé ter ligado ou desligado a luz da sala hoje, qual foi a motivagao?
(Apenas responder se respondeu EU nas questdes 18 e/ou 19)

O Para enxergar melhor o quadro negro
O Para enxergar melhor a minha mesa
0 Outro motivo:

Caso haja persianal/ cortina na sala de aula:

21. Quem abriu a persiana/ cortina da sala hoje?

O Eu

01 Outro funcionario

0 Aluno

O N&o sei, a persiana/ cortina ja estava aberta quando cheguei
[ A persiana/ cortina nao foi aberta hoje

22. Quem fechou a persiana/ cortina da sala hoje?

O Eu

0 Outro funcionario

0O Aluno

0O A persiana/ cortina néo foi fechada hoje (esta aberta)

O A persiana/ cortina permaneceu fechada durante toda a aula
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23. No caso de vocé ter aberto ou fechado a persiana da sala hoje, qual foi a motivagao?
(Apenas responder se respondeu EU nas questbes 21 e/ou 22)

O Para enxergar melhor o quadro negro
O Para enxergar melhor a minha mesa
O Outro motivo:

Em relacdao as mudancas na escola devido a pandemia do COVID-19:

24. Quais as recomendagdes da escola para o uso de mascara?
0 E obrigatério em todos os ambientes fechados

0 E obrigatério em todos os ambientes da escola (fechados e abertos)
0 E obrigatério apenas na sala de aula

0 Nao é obrigatério

O Outra:

O Nao fizeram nenhuma recomendacgao

25. Quais as estratégias adotadas por vocé (ou recomendadas pela diregdo da escola) para
uso da sala de aula, em fungdo da pandemia? (pode marcar mais de uma alternativa)

0 Deixar a janela sempre aberta [0 N&o abrir a janela

01 Deixar a porta sempre aberta 0O Nao deixar a porta aberta

O Deixar o ventilador sempre ligado 0O Nao ligar o ventilador
0 Outra:

0O A dire¢ao da escola nao fez nenhuma recomendagéo
0 Nao mudei de comportamento em relagdo a antes da pandemia

26. O namero de alunos em sala de aula:
0 Diminuiu 0 Permaneceu o mesmo 0 Aumentou

27. O tempo de permanéncia dos alunos em sala de aula:
O Diminuiu 0 Permaneceu o mesmo O Aumentou

28. Caso o tempo em sala de aula tenha reduzido, qual a alternativa para suprir o niimero
de aulas necessarias?

0 Uso de espagos ao ar livre dentro da escola
O Atividades remotas
O Outro:

29. A posigao dos moveis em sala de aula:
O Mudou O Permaneceu igual

30. Vocé notou alguma mudanga no comportamento dos alunos em relagao ao ambiente
da sala de aula?
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31. Por favor, descreva outras mudangas que vocé notou e nido foram mencionadas:
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Appendix B: Students’ questionnaire (Appendix of Chapter 5)

QUESTIONARIO
NOME: IDADE: SEXO: O FEMININO o MASCULINO
DATA: / / HORA: TURMA: TURNO: 0 MANHA 0 TARDE

1. O QUE VOCE ESTA VESTINDO HOJE?

0 SHORT/ BERMUDA -7 CAMISETA MANGA CURTA 1 SANDALIA/ CHINELO
0O SAIA -7 CAMISETA MANGA LONGA 0 TENIS

0 CALCA COMPRIDA 0 MALHA/ JAQUETA 0 SAPATO/ BOTA

2. NESTE MOMENTO, A SUA SALA ESTA:
O MUITO QUENTE 00 NEM QUENTE, NEM FRIA 0 MUITO FRIA
0 POUCO QUENTE 0 POUCO FRIA

3. NESTE MOMENTO, COMO VOCE GOSTARIA QUE A SUA SALA ESTIVESSE?
O MAIS QUENTE 1 COMO JA ESTA O MAIS FRIA

4. NESTE MOMENTO, O VENTO QUE ESTA ENTRANDO PELA JANELA NA SALA:
1 ESTA AGRADAVEL 1 A JANELA ESTA FECHADA
7 NAO ATRAPALHA 0 ATRAPALHA

5. NESTE MOMENTO, EM RELAGAO A SUA MESA, O SOL/ A CLARIDADE QUE ESTA
ENTRANDO PELA JANELA:

11 ESTA AGRADAVEL 11 NAO ESTA ENTRANDO SOL/CLARIDADE
11 NAO ATRAPALHA 0O ATRAPALHA

6. NESTE MOMENTO, EM RELAGAO AO QUADRO/ LOUSA, O SOL/ A CLARIDADE QUE
ESTA ENTRANDO PELA JANELA:

1 ESTA AGRADAVEL 0 NAO ESTA ENTRANDO SOL/CLARIDADE
1 NAO ATRAPALHA 01 ATRAPALHA

7. VOCE ABRIU A JANELA DA SALA DE AULA HOJE?
0 SIM, QUANDO EU CHEGUEI NA SALA o SIM, DURANTE A AULA
0 SIM, QUANDO EU SAi DA SALA o1 NAO

8. VOCE FECHOU A JANELA DA SALA DE AULA HOJE?
O SIM, QUANDO EU CHEGUEI NA SALA O SIM, DURANTE A AULA
1 SIM, QUANDO EU SAi DA SALA 11 NAO

9. POR QUE VOCE ABRIU/ FECHOU A JANELA DA SALA DE AULA HOJE?
(APENAS RESPONDER SE RESPONDEU SIM NAS QUESTOES 7 E/ OU 8)

0 PORQUE TINHA CHEIRO RUIM

0O PARA VENTILAR A SALA DE AULA
0 POR CAUSA DA CHUVA

0 PORQUE ESTAVA MUITO QUENTE
0 PORQUE ESTAVA MUITO FRIO
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0 OUTRO MOTIVO:

10. VOCE LIGOU O VENTILADOR DA SALA DE AULA HOJE?
0 SIM, QUANDO EU CHEGUEI NA SALA o SIM, DURANTE A AULA
0 SIM, QUANDO EU SAi DA SALA o1 NAO

11. VOCE DESLIGOU O VENTILADOR DA SALA DE AULA HOJE?
0 SIM, QUANDO EU CHEGUEI NA SALA O SIM, DURANTE A AULA
0 SIM, QUANDO EU SAi DA SALA o1 NAO

12. POR QUE VOCE LIGOU/ DESLIGOU O VENTILADOR DA SALA DE AULA HOJE?
(APENAS RESPONDER SE RESPONDEU SIM NAS QUESTOES 10 E/ OU 11)

0O PARA VENTILAR A SALA DE AULA
0 PORQUE ESTAVA MUITO QUENTE
0 PORQUE ESTAVA MUITO FRIO

0 OUTRO MOTIVO:

13. VOCE LIGOU A LUZ DA SALA DE AULA HOJE?
0 SIM, QUANDO EU CHEGUEI NA SALA O SIM, DURANTE A AULA
0 SIM, QUANDO EU SAi DA SALA 01 NAO

14. VOCE DESLIGOU A LUZ DA SALA DE AULA HOJE?
0 SIM, QUANDO EU CHEGUEI NA SALA O SIM, DURANTE A AULA
0 SIM, QUANDO EU SAi DA SALA o1 NAO

15. POR QUE VOCE LIGOU/ DESLIGOU A LUZ DA SALA DE AULA HOJE?
(APENAS RESPONDER SE RESPONDEU SIM NAS QUESTOES 13 E/ OU 14)

00 PARA ENXERGAR MELHOR O QUADRO/ LOUSA
0 PARA ENXERGAR MELHOR A MINHA MESA
0 OUTRO MOTIVO:

CASO HAJA PERSIANA/ CORTINA NA SALA DE AULA:
16. VOCE ABRIU A PERSIANA/ CORTINA DA SALA DE AULA HOJE?
0 SIM, QUANDO EU CHEGUEI NA SALA o SIM, DURANTE A AULA
0 SIM, QUANDO EU SAi DA SALA o NAO

17. VOCE FECHOU A PERSIANA/ CORTINA DA SALA DE AULA HOJE?
0 SIM, QUANDO EU CHEGUEI NA SALA O SIM, DURANTE A AULA
0 SIM, QUANDO EU SAi DA SALA o NAO

18. POR QUE VOCE ABRIU/ FECHOU A PERSIANA/CORTINA DA SALA DE AULA HOJE?
(APENAS RESPONDER SE RESPONDEU SIM NAS QUESTOES 16 E/ OU 17)

0 PARA ENXERGAR MELHOR O QUADRO/ LOUSA
0 PARA ENXERGAR MELHOR A MINHA MESA
0 OUTRO MOTIVO:
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Appendix C: CO2 concentration transformation (Appendix of Chapter 5)

CO; concentration data was subjected to a reciprocal transformation to reduce skewness.

Original distribution Transformed distribution

600~

400~

count

200~
100-

500 1000 1500 -0.003 -0.002 -0.001
co2 co2

-0.0018 -0.0014

500 600 700 800
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Appendix D: Models’ residual analysis (Appendix of Chapter 5)

(a) Model 1 for window
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Appendix E: Indoor conditions, window, door and fan status during occupied period
(Appendix of Chapter 5)

A. Window status B. Door status C. Fan status
(0 =closed / 1 = open) (0 =closed / 1 = open) (0 =off /1 =0n)
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Appendix F: Permission for published journal papers (Chapters 2 and 5)

Chapters 2 and 5 have been formally published via Elsevier (journals Energy and Buildings
and Building and Environment). Elsevier permits the inclusion of published papers in an
author's thesis, as outlined in their guidelines:

"Authors are allowed to incorporate their articles, either in full or in part, within a thesis or

dissertation for non-commercial purposes."

For further details, please refer to Elsevier's guidelines, accessible at the following link:

https://www.elsevier.com/about/policies-and-standards/copyright/permissions#
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ANNEX

Annex A: Permission for published journal paper (Chapter 3)

AMBIENTE CONSTRUINO

Revista da Associagzo Nacional de Tecnologia do Ambiente Construido

Porto Alegre, 06 de julho de 2023.

Permissao

Como autores do artigo “Condi¢bes de conforto térmico e QAI em salas de aula
naturalmente ventiladas durante a pandemia de Covid-19” publicado na revista
Ambiente Construido (v. 22, n. 4, 2022), Paula Brumer Franceschini, lara Nogueira
Liguori e lara Nogueira Liguori, podem incluir este trabalho em dissertacao ou tese

desde que feita a citagcdo da Revista como fonte original.

Ercilia Hitomi Hirota
Editora-chefe

Associacao Nacional de Tecnologia do Ambiente Construido - ANTAC
Av. Osvaldo Aranha, 99 - 3° andar - Centro

Porto Alegre - RS - Brasil

CEP 90035-190

Tel.: (51) 3308-4084 | 3308-3518 Fax: (51) 3308-4054

E-mail: ambienteconstruido@ufrgs.br

wwwy.seer.ufrgs.br/fambienteconstruido
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Titulo da Pesquisa: Avaliacdo do impacto do comportamento do usuario no desempenho termoenergético
de edificagbes escolares com certificagdo AQUA-HQE

Pesquisador: PAULA BRUMER FRANCESCHINI KAGAN

Area Tematica:

Versao: 4

CAAE: 31809020.0.0000.8142

Instituigdo Proponente: Faculdade de Engenharia Civil, Arquitetura e Urbanismo
Patrocinador Principal: Financiamento Préprio

DADOS DO PARECER

NuUmero do Parecer: 4.484.150

Apresentagao do Projeto:
INFORMACOES FORNECIDAS PELO PESQUISADOR VIA PLATAFORMA BRASIL

O setor da construgao civil € responsavel por 36% do consumo global de energia. Além dos sistemas de
iluminacéo, climatizacdo e outros equipamentos, o comportamento do usuario também influencia no
consumo de energia da edificagdo. Os estudos existentes relacionados ao consumo de energia em
edificagbes focam, principalmente, no edificio e nos seus sistemas e nos contextos residenciais e
comerciais. Este estudo objetiva avaliar o impacto do comportamento dos usuarios no desempenho
termoenergético de salas de aula de edificagbes escolares administradas pela Fundagdo para o
Desenvolvimento da Educagio (FDE) do Estado de S&o Paulo, Brasil, e com a certificagdo AQUA-HQE, a
fim de fornecer diretrizes para o projeto e a operagdo de edificagdes centradas no usuario. Primeiro, uma
revisdo sistematica da literatura sera realizada para coletar informagdes sobre modelos existentes de
comportamento do usuario e conforto térmico em edificagcdes escolares. Apés, sera realizada uma coleta de
dados sobre as 20 escolas da FDE com certificagdo AQUA-HQE para agrupa-las de acordo com as suas
caracteristicas e analisa-las em conjunto. Na etapa seguinte, serdo monitorados o comportamento do
usuario e as variaveis climaticas em salas de aula de trés escolas selecionadas e aplicados questionarios
com os usuarios das escolas. Um modelo de simulagéo energética da edificagdo sera calibrado a partir dos
dados

Enderego: Av. Betrand Russell, 801, 2° Piso, Bloco C, Sala 5, Campinas-SP, Brasil.

Bairro: Cidade Universitaria "Zefenno Vaz" CEP: 13.083-865
UF: SP Municipio: CAMPINAS
Telefone: (19)3521-6836 E-mail: cepchs@unicamp.br

Pagina 01 de 06



UNICAMP - PRO-REITORIA DE
PESQUISA DA UNIVERSIDADE wﬂp
ESTADUAL DE CAMPINAS - asil
CHS/UNICAMP

CEPUNICANME
Continuagdo do Parecer: 4.484.150

coletados in loco para explorar diferentes cenarios de operagao dos sistemas (ar condicionado, ventiladores
e/ou ventilacdo natural). O conhecimento adquirido a partir da analise dos estudos de caso sera testado no
modelo calibrado em relagdo as suas consequéncias no desempenho da edificagdo. Por ultimo, serdo
desenvolvidas diretrizes baseadas no comportamento dos usuarios para auxiliar profissionais a escolher o
modelo de ocupagao mais adequado para cada edificagao.

Hipdtese:
O estudo do comportamento do usuario em escolas e a organizacdo destas informacées na forma de

diretrizes podera auxiliar profissionais no projeto de edificagdes com maior eficiéncia energética.

Critério de Inclusao:

Serdo incluidos na amostra, os alunos e professores das escolas estaduais da FDE selecionadas que
aceitarem participar da pesquisa, através da entrega dos Termos de Assentimento e de Consentimento Livre
e Esclarecido assinados.
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INFORMACOES FORNECIDAS PELO PESQUISADOR VIA PLATAFORMA BRASIL

Este estudo objetiva avaliar o impacto do comportamento dos usuarios no desempenho termoenergético de
salas de aula de edificagbes escolares administradas pela Fundacéo para o Desenvolvimento da Educacdo
(FDE) do estado de Sao Paulo, Brasil, e com a certificacdo AQUA-HQE, a fim de fornecer diretrizes para o
projeto e a operagdo de edificagdes centradas no usuario.

Avaliagao dos Riscos e Beneficios:
Segundo os pesquisadores "Riscos minimos (risco existente em atividades habituais como estudar,
conversar, ver TV, etc.) e que envolve o preenchimento de questionario e uso de infraestrutura convencional

de edificios (ligar e desligar o ventilador e/ou o ar condicionado, abrir e fechar as janelas, etc.)."

Quanto aos beneficios, & informado que "O participante podera ter uma ampliacdo da consciéncia ambiental

e da compreensao de problemas ambientais associados ao seu comportamento.”
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Comentarios e Consideragoes sobre a Pesquisa:

Emenda a protocolo ja aprovado.

Justificativa para emenda:

"Devido a pandemia do COVID-19, foi proposta uma emenda a esse projeto de pesquisa, que visa incluir
guestbes relevantes sobre mudangas no comportamento dos usuarios em funcdo da pandemia e sua
consequente interferéncia na taxa de ventilagdo e qualidade do ar de ambientes escolares. Espera-se,
dessa forma, que os dados coletados sejam validos e representativos para o periodo de pandemia, além de
comparaveis com dados de outras pesquisas, coletados anteriormente a pandemia. As modificacdes estao
destacadas em azul no projeto de pesquisa e incluem a medi¢do de mais uma variavel (concentragcio de

CO2) na coleta de dados e a adigdo de algumas questdes nos questionarios para alunos e professores.”

Consideragdes sobre os Termos de apresentagao obrigatoria:
ver "Consideragbes sobre os Termos de apresentagao obrigatéria”

Conclusodes ou Pendéncias e Lista de Inadequagoes:
O protocolo foi considerado aprovado neste CEP e, caso ndo tenha autorizagdes institucionais pendentes ou
centros co-participantes, pode ser iniciado.

N&o estdo sob o escopo deste parecer

- Eventuais alteracdes documentais realizadas sem aviso prévio e/ou ndo solicitadas pelo CEP em forma de
pendéncia ou de recomendacgao;

- Dados coletados em data anterior a este parecer;

- Caso, eventualmente, os dados sejam coletados com autorizagdes institucionais pendentes (se
necessario);

- Caso, eventualmente, os dados sejam coletados sem a aprovacgao/autorizagdo do centro co-participante
(se necessario).

- Relatdrio final deve ser apresentado ao CEP via notificagdo ao término do estudo.

Consideracgoes Finais a critério do CEP:
- Vale lembrar que a interagdo com os participantes de pesquisa sé pode ser iniciada a partir da aprovagéo

desse protocolo no CEP. Os cronogramas de geracgdo/coleta de dados deve acompanhar
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o relatorio final de pesquisa

- Cabe enfatizar que, segundo a Resclugao CNS 510/16, Art.28 Inciso IV, o pesquisador & responsavel por
“(...) manter os dados da pesquisa em arquivo, fisico ou digital, sob sua guarda e responsabilidade, por um

periodo minimo de 5 (cinco) anos apds o término da pesquisa’.

- O participante da pesquisa tem a liberdade de recusar-se a participar ou de retirar seu consentimento em
qualquer fase da pesquisa, sem penalizagdo alguma e sem prejuizo ao seu cuidado. (Res.510/16, Cap.lll,
Art.9, inciso II)

- A responsabilidade de obtengéo de registro de consentimento, bem como o de sua guarda, é de inteira
responsabilidade da equipe de pesquisa. Tais documentos podem ser solicitados a qualquer momento pelo
sistema CEP-CONEP para fins de auditoria, bem como servem de prote¢do para os proprios pesquisadores
em caso de eventuais denuncias por parte dos participantes.

- Eventuais modificagdes ou emendas ao protocolo devem ser apresentadas ao CEP de forma clara e
sucinta, identificando a parte do protocolo a ser modificada e suas justificativas e aguardando a aprovacéao

do CEP para continuidade da pesquisa.

- Relatdrio final deve ser apresentado ao CEP via notificagdo ao término do estudo.

- Caso a pesquisa seja realizada ou dependa de dados a serem observados/coletados em uma instituigao
(ex. empresas, escolas, ONGs, entre outros), essa aprovacao nao dispensa a autorizagao dos responsaveis.
Caso ndo conste no protocolo no momento desta aprovagao, estas autorizagbes devem ser submetidas ao
CEP em forma de notificagdo antes do inicio da pesquisa.

- Vale também ressaltar o Art. 30, inciso VIl da Resolugao 510/16:

"Sao principios éticos das pesquisas em Ciéncias Humanas e Sociais:

VIII - garantia da nao utilizagdo, por parte do pesquisador, das informagées obtidas em pesquisa em
prejuizo dos seus participantes;"

- O papel do CEP & proteger e garantir os direitos do participante de pesquisa. Esta além das funcées e das

capacidades técnicas do CEP a validagdo juridica de documentos como termos de
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cessdo de uso/reproducéo de imagem e voz e demais tipos de autorizagdes.

- As declaracbes feitas na Plataforma Brasil sdo feitas sob pena da incidéncia nos artigos 297-299 do
Cédigo Penal Brasileiro sobre a falsificagdo de documento publico e falsidade ideolégica, respectivamente.

Este parecer foi elaborado baseado nos documentos abaixo relacionados:

Tipo Documento Arquivo Postagem Autor Situacao
Informacgdes Basicas|PB_INFORMACOES_BASICAS_165165| 16/12/2020 Aceito
do Projeto 8 E1.pdf 22:52:23
TCLE / Termos de | TALE_Alunos_16dez20.pdf 16/12/2020 | PAULA BRUMER Aceito
Assentimento / 22:51:26 | FRANCESCHINI
Justificativa de KAGAN
Auséncia
TCLE / Termos de | TCLE_Resp_16dez20.pdf 16/12/2020 | PAULA BRUMER Aceito
Assentimento / 22:51:14 | FRANCESCHINI
Justificativa de KAGAN
Auséncia
TCLE / Termos de | TCLE_Professores_16dez20.pdf 16/12/2020 | PAULA BRUMER Aceito
Assentimento / 22:51:00 |FRANCESCHINI
Justificativa de KAGAN
Auséncia
Projeto Detalhado / |projeto_16dez20 pdf 16/12/2020 | PAULA BRUMER Aceito
Brochura 22:50:20 | FRANCESCHINI
Investigador KAGAN
Qutros CartaResposta2_Parecer4467427_E1_1| 16/12/2020 | PAULA BRUMER Aceito
7dez2020.pdf 22:40:02 |FRANCESCHINI
KAGAN

Qutros AutorizacaoEscola1.pdf 23/07/2020 | PAULA BRUMER Aceito
20:29:43 | FRANCESCHINI

Qutros CartaRespostal_Parecer4155288_23jul | 23/07/2020 | PAULA BRUMER Aceito
2020 pdf 20:27:46 | FRANCESCHINI

Qutros AtestadoMatricula_2020.pdf 10/05/2020 | PAULA BRUMER Aceito
16:14:03 | FRANCESCHINI

Folha de Rosto folhaDeRosto_assinada pdf 13/04/2020 | PAULA BRUMER Aceito
11:16:48 | FRANCESCHINI

Situacao do Parecer:
Aprovado

Necessita Apreciacdo da CONEP:
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Nao

CAMPINAS, 23 de Dezembro de 2020

Assinado por:

Thiago Motta Sampaio
(Coordenador(a))
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