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ABSTRACT 

Most studies on occupant behaviour (OB) in school classrooms are focused on window 

operation in oceanic climates. In naturally ventilated schools, thermal comfort and indoor air 

quality are mainly affected by OB with respect to window, door and fan operation. In addition, 

the COVID-19 pandemic underscored the importance of indoor air quality, particularly in 

densely occupied buildings such as schools. Therefore, this study aimed to identify and 

quantify the influence of multi-domain factors (including thermal, indoor air quality, contextual 

and multi-behaviour domains) on window, door, and fan status in naturally ventilated school 

classrooms in a humid subtropical climate, in order to predict OB. A systematic literature review 

was carried out to raise up information about existing models of occupant behaviour for school 

buildings. A data collection of 66 public schools located in the state of Sao Paulo, Brazil, was 

performed to identify envelope and construction characteristics and select representative 

school buildings for a field campaign. Environmental variables, manual operation of windows, 

doors and fans, and occupancy rate were monitored and questionnaires were applied in a set 

of classrooms of selected school buildings. During part of the physical monitoring, restrictive 

occupancy measures due to the COVID-19 pandemic were observed. Statistical analysis was 

applied to assess the influence of the recorded parameters on the window, door, and fan status 

and to generate OB predictive models. An OB model was implemented in building performance 

simulations to predict OB over a year and compare it to optimized scenarios, considering 

thermal comfort and indoor air quality requirements. Results showed that indoor environmental 

variables influenced window, door, and fan status in school classrooms, with few exceptions. 

Yet, the models including school routines, social norms and teachers’ behaviour as predictors 

led to the highest accuracy. This suggests that, while a more complex model with additional 

predictors can provide more accurate predictions of OB, it also becomes more context-

dependent and less generalizable. The trade-off between model complexity and 

generalizability is an important consideration in this research study, and it highlights the 

nuanced relationship between multi-domain factors affecting occupant behaviour in school 

buildings. The comparison between real and optimized occupant behaviours revealed 

variations of up to 42.5% in CO2 levels and up to 9% in discomfort hours, highlighting the 

potential to enhance indoor conditions by adjusting occupant behaviour. Finally, the optimal 

strategies varied by school, emphasizing the importance of evaluating recommendations within 

each specific context. 

Keywords: occupant behaviour, school building, natural ventilation, multi-domain, building 

performance simulation.  



 

RESUMO 

A maioria dos estudos sobre o comportamento do usuário em salas de aula de escolas 

concentra-se na operação das janelas em climas oceânicos. Em escolas naturalmente 

ventiladas, o conforto térmico e a qualidade do ar interior são afetados principalmente pelo 

comportamento do usuário com relação à operação de janelas, portas e ventiladores. Além 

disso, a pandemia da COVID-19 ressaltou a importância da qualidade do ar interior, 

especialmente em edifícios densamente ocupados, como as escolas. Nesse contexto, esta 

pesquisa teve como objetivo identificar e quantificar a influência de fatores de múltiplos 

domínios (incluindo os domínios térmico, de qualidade do ar interior, contextual e de múltiplos 

comportamentos) sobre o status de janelas, portas e ventiladores em salas de aula de escolas 

naturalmente ventiladas em um clima subtropical úmido, a fim de prever o comportamento do 

usuário. Uma revisão sistemática da literatura foi realizada com o objetivo de levantar 

informações sobre os modelos existentes de comportamento do usuário para edificações 

escolares. Os projetos de 66 escolas públicas localizadas no estado de São Paulo, Brasil, 

foram analisados com o objetivo de identificar as características da envoltória e da construção. 

As variáveis ambientais, a operação manual de janelas, portas e ventiladores e a taxa de 

ocupação foram monitoradas e questionários foram aplicados em um conjunto de salas de 

aula de escolas selecionadas. Durante parte do monitoramento, foram observadas medidas 

restritivas de ocupação devido à pandemia da COVID-19. Análises estatísticas foram 

aplicadas para avaliar a influência dos parâmetros registrados no status das janelas, portas e 

ventiladores e para gerar modelos preditivos do comportamento do usuário. Um modelo foi 

implementado em simulações do desempenho da edificação para prever o comportamento do 

usuário ao longo de um ano. O comportamento real foi comparado com cenários otimizados, 

considerando parâmetros de conforto térmico e qualidade do ar interior. Os resultados 

mostram que as variáveis ambientais internas influenciaram no status de janelas, portas e 

ventiladores das salas de aula, com poucas exceções. No entanto, os modelos que incluíram 

rotinas escolares, normas sociais e comportamento dos professores como preditores levaram 

a uma maior precisão. Isso sugere que, embora um modelo mais complexo, com preditores 

adicionais, possa fornecer previsões mais precisas do comportamento do usuário, ele também 

se torna mais dependente do contexto e menos generalizável. O equilíbrio entre a 

complexidade e a generalização do modelo é uma consideração importante nesse estudo e 

destaca a relação entre os fatores de vários domínios que afetam o comportamento dos 

usuários em edificações escolares. A comparação entre os comportamentos de ocupantes 

baseados em dados reais ou otimizados revelou variações de até 42,5% nos níveis de CO2 e 

de até 9% nas horas de desconforto, destacando o potencial para melhorar as condições 

internas por meio do ajuste do comportamento dos usuários. Por fim, as estratégias 



 

otimizadas variaram de acordo com a escola, enfatizando a importância de avaliar as 

recomendações em cada contexto específico. 

Palavras-chave: comportamento do usuário, edificação escolar, ventilação natural, múltiplos 

domínios, simulação do desempenho da edificação.  
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1 Introduction 

Occupant behaviour (OB) plays an important role on the building performance in all its aspects, 

such as indoor conditions, usability, functionality and energy use (O’BRIEN; TAHMASEBI, 

2023). Occupants interact with buildings’ controls or interfaces, in order to adapt the 

environment to their needs (e.g., window, blinds, lighting and air-conditioning operation) or to 

adapt themselves to the environment (e.g., clothing adjustment and drinking hot or cold 

beverage), aiming to maintain their comfort and preferences (DELZENDEH et al., 2017; HONG 

et al., 2016b; O’BRIEN; TAHMASEBI, 2023). They usually respond in different ways to the 

built environment, since there are many factors, such as external (environmental factors, time-

related factors, contextual factors) and internal factors (physiological factors, psychological 

factors, social factors), that influence their decision-making process (O’BRIEN et al., 2016; 

YAN et al., 2017). Challenges in studying OB in buildings include its complexity and dynamicity 

in nature, privacy issues, which difficult the data collection, and the relatively high costs to 

acquire various types of sensors to monitor OB (DONG et al., 2022). 

Due to OB uncertainty and unpredictability, this parameter is often oversimplified in building 

performance simulation (BPS) and, as a consequence, it is one of the main causes of a 

performance gap between buildings’ performance prediction versus reality (SHI et al., 2019; 

WANG; HONG; JIA, 2018). In this context, occupant modelling has gained attention by 

researchers and practitioners, due to its impacts, which can increase the performance gap;  

the increasing interest in occupant wellbeing; and the increased computational and simulation 

capabilities (O’BRIEN; TAHMASEBI, 2023). More than 500 papers have been published on 

the topic of OB over the last decade, including data regarding occupancy (e.g., occupant 

presence and movement) and occupants’ actions (e.g., windows and door operation, blinds/ 

solar shading operation, thermostat or air-conditioning adjustment) (DONG et al., 2022). OB 

models from these studies have been developed to predict and represent human behaviour in 

BPS, aiming at optimizing the building design and, therefore, reducing the performance gap, 

and also to better understand comfort and adaptive opportunities and to help develop 

strategies toward healthy indoor spaces (O’BRIEN; TAHMASEBI, 2023).  
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The International Energy Agency (IEA), that co-ordinates international energy research and 

development activities, had two projects in this research area: Annex 66 (Definition and 

Simulation of Occupant Behaviour in Buildings), conducted between 2013 and 2017, and 

Annex 79 (Occupant-Centric Building Design and Operation), conducted between 2018 and 

2023. The main objectives of the Annex 66 were to set up a standard OB definition platform, 

to establish a quantitative simulation methodology to model OB in buildings and to understand 

the influence of OB on building energy use and on the indoor environment (IEA, 2018). The 

Annex 79 aimed to integrate and implement occupancy and OB into the design process and 

building operation to improve both energy performance and occupant comfort (O’BRIEN et al., 

2020). One outcome of these two research projects was the development of the ASHRAE 

occupant behaviour database, which consists of 34 datasets from 39 institutions located in 15 

countries and 10 climate zones (DONG et al., 2022). These datasets cover 11 types of OB 

measurements (window, door, fan, lighting and shading status, plug loads, HVAC 

measurements, occupancy, occupant number and others) and three building typologies 

classified according to the room type: commercial (office), educational (office, classroom and 

study zone) and residential (apartment, dorm and single-family house) (DONG et al., 2022). 

So far, the human-building interaction has been studied mainly in residential and office 

contexts (DELZENDEH et al., 2017). In the Annex 66 and Annex 79, for example, all proposed 

models and case studies focused on these two building typologies (IEA, 2018; O’BRIEN; 

TAHMASEBI, 2023). School buildings are different from offices, residential buildings and other 

educational buildings (e.g., universities), since primary and secondary schools are occupied 

mainly by children, in specific periods of the year and with different daily timetables, more 

group rules and less freedom of action (BELAFI et al., 2018). The investigation of OB in school 

classrooms is far recent, with most studies published in the last five years. Three datasets 

regarding OB data collection in school classrooms were included in the ASHRAE occupant 

behaviour database, with data from the United Kingdom, China and Australia (DONG et al., 

2022). The OB most addressed in the studies published in this research field included window 

(BELAFI et al., 2018; DUTTON; SHAO, 2010; ENGLUND et al., 2020; HERACLEOUS; 

MICHAEL, 2020; KORSAVI; JONES; FUERTES, 2022b; PISTORE et al., 2019; STAMP et al., 

2020; STAZI; NASPI; D’ORAZIO, 2017a) and lighting operation (BERNARDI; 

KOWALTOWSKI, 2006; LOURENÇO; PINHEIRO; HEITOR, 2019; SIMANIC et al., 2020; 

ZHANG; BLUYSSEN, 2021) and the studies were conducted mainly in an oceanic climate. 

The most investigated drivers in these studies were the environmental factors, such as indoor 

and outdoor temperature, relative humidity, and CO2 concentration. Also, the teacher was 

identified as the main active occupant regarding the environment adjustment, with the 
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decision-making process relying mostly on collective needs and school rules (BERNARDI; 

KOWALTOWSKI, 2006; PISTORE et al., 2019). 

Most school buildings located in tropical or subtropical climates are partially or fully naturally 

ventilated, with manually operable windows, which reinforces the occupant’s role over the 

environment’s performance (YAN et al., 2017). In the state of Sao Paulo, Brazil, for example, 

all public-school buildings maintained by the Foundation for Education Development 

(Fundação para o Desenvolvimento da Educação, FDE) have manually operable windows to 

provide natural ventilation, and most of them also have manually operable fans. Natural 

ventilation, beyond influencing the classroom’s thermal performance, also impacts on its indoor 

air quality (IAQ) (STABILE et al., 2017) and, consequently, on students’ health and learning 

process (PEREIRA et al., 2017). 

In 2020, due to the COVID-19 pandemic, the IAQ became particularly relevant to prevent 

airborne virus transmission in indoor environments (FRANCO, 2020), especially in high 

occupancy environments, such as school buildings’ classrooms (LIPINSKI et al., 2020). 

Therefore, several guidelines to improve air renewal in classrooms were published between 

2020 and 2021, suggesting measures related to, among other issues, mechanical ventilation 

and, in a lower proportion, operation of windows (JONES et al., 2020; VAN DIJKEN, 2020; 

WORLD HEALTH ORGANIZATION, 2020). In addition, recent studies investigated the impact 

of the COVID-19 pandemic on the classrooms’ IAQ and thermal comfort (ALONSO et al., 2021; 

KONSTANTINOU et al., 2022; MORI et al., 2022) and the infection risk regarding ventilation 

and occupancy rates, window opening behaviour and the use of masks (ARJMANDI et al., 

2021; HOU; KATAL; WANG, 2021; OROSA; NEMATCHOUA; REITER, 2020; PARK et al., 

2021; ZIVELONGHI; LAI, 2021). However, whilst occupant behaviour and daily routine in 

schools were affected by COVID-19 response measures, to what extent these behaviour 

changes will be durable is still unknown and must be investigated (FELL et al., 2020). Also, 

since COVID-19 impacts and restrictions were different in each place, the potential changes 

on action drivers may be different and not comparable between and within countries (FELL et 

al., 2020). 

In Brazil, most of the research studies in school buildings focus on building design and 

environmental comfort aspects, without investigating the OB (ALEXANDRUK, 2015; BENDER, 

2013; DELIBERADOR; KOWALTOWSKI, 2011; GEMELLI, 2009; GERALDI, 2021; 

KOWALTOWSKI et al., 2017; KOWALTOWSKI; DELIBERADOR, 2014; MARÇAL, 2016; 

MOREIRA, 2005; NOGUEIRA, 2011; OLIVEIRA, 2016; PEREIRA; KOWALTOWSKI, 2011). 

Also, a systematic literature review regarding BPS in Brazil showed that OB was poorly 
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explored in this context (LOPES; SILVA, 2019). Brazilian publications related to OB focus, 

mainly, the residential context (GIGLIO, 2015; SORGATO, 2015) and office buildings 

(BAVARESCO, 2016, 2021; GRASSI, 2021; HAZBOUN, 2018; NEVES et al., 2020; RUPP et 

al., 2021), and only one study was found with a focus on school buildings (BERNARDI, 2001). 

Lastly, few studies consider the COVID-19 pandemic impacts on the occupant behaviour and 

built environment. Therefore, this study aims to fill this research gap by investigating the 

occupant behaviour in naturally ventilated school classrooms, focused on thermal comfort and 

indoor air quality, and providing data and information related to the humid subtropical climate 

of the state of São Paulo, Brazil. 

1.1 Objectives 

Main Objective (MO) - This study aims to identify and quantify the influence of multi-domain 

factors (including thermal, indoor air quality, contextual and multi-behaviour domains) on 

window, door, and fan status in naturally ventilated school classrooms in a humid subtropical 

climate, in order to improve the ability to predict occupant behaviour. 

The specific objectives (SO) are related to the objectives of the papers that compose this thesis 

and include: 

SO1 – Identifying and analysing existing occupant behaviour models for naturally ventilated 

and mixed-mode school buildings. 

SO2 – Investigating potential impacts on occupant behaviour due to restrictions 

implemented during the COVID-19 pandemic in school buildings. 

SO3 – Developing predictive occupant behaviour models based on the collected data. 

SO4 – Analysing potential conflicts between thermal comfort and indoor air quality, 

regarding triggers for manual operation of windows in naturally ventilated school 

classrooms and identifying optimal situations of balance between both drivers. 

1.2 Hypothesis and research questions 

Considering the research problem addressed and the proposed objectives, the main 

hypothesis of this research study is that investigating and including multi-domain factors in 

occupant behaviour models for school classrooms can improve the prediction of occupant 

behaviour in the building performance simulation. 
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Based on this statement, the following research questions were elaborated in order to better 

explain the problem: 

• Do the drivers for window, door, and fan operation vary between school classrooms 

and teachers? 

• Which factors (including thermal, indoor air quality, contextual and multi-behaviour 

domains) have greater influence on window, door, and fan operation in school 

classrooms? 

• Are school classrooms’ occupants operating windows near optimal conditions, 

considering the balance between thermal comfort and indoor air quality? 

1.3 Thesis structure 

The structure of this thesis is based on the requirements of Resolution CPPG-ATC/FEC-

051/2015 and is composed, apart from the Introduction and Conclusion chapters, of five papers 

reporting the work performed during the doctorate (Table 1.1). Four papers are presented as 

chapters, and they were transcribed as they were published or submitted with the layout 

adjusted to this document. A fifth paper is currently in development and its preliminary results 

are presented in Chapter 6. Also, all the references are presented at the end of this document 

for conciseness. An overview of the thesis structure is presented in Figure 1.1 and described 

below. 

Table 1.1 – Papers included in this thesis. 

Thesis 
structure 

Paper title Journal/ 
Conference 

Status 

Chapter 2 
A critical review on occupant behaviour modelling for building 
performance simulation of naturally ventilated school buildings 
and potential changes due to the COVID-19 pandemic 

Energy and 
Buildings 

Published in 
January 2022 

Chapter 3 Condições de conforto térmico e QAI em salas de aula 
naturalmente ventiladas durante a pandemia de Covid-19 

Ambiente 
Construído 

Published in 
October 2022 

Chapter 4 Investigation of window operation behaviour in naturally ventilated 
classrooms during the COVID-19 pandemic 

18th Healthy 
Buildings Europe 
Conference 

Presented and 
published in 
June 2023 

Chapter 5 Predictive modelling of multi-domain factors on window, door, and 
fan status in naturally ventilated school classrooms 

Building and 
Environment 

Published in 
August 2024 

Chapter 6 
Thermal comfort and perceived indoor air quality optimization with 
respect to occupant behaviour in naturally ventilated school 
buildings 

Preliminary results 
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Figure 1.1 – Thesis structure 

Chapter 2 presents the literature review, that addresses (i) occupant behaviour models for 

building performance simulation, (ii) research studies about occupant behaviour in schools and 

(iii) the potential changes on action drivers due to the COVID-19 pandemic (specific objectives 

1 and 2 of this thesis). Three main steps to represent the OB modelling approach were 

identified in the literature: the data collection (pre-processing, step 1), the OB model 

development and evaluation (processing, step 2) and the OB model implementation in building 

performance simulation (post-processing, step 3) – which were used to structure this thesis 

(Figure 1.1). The main findings regarding the existing OB models for school buildings are 

discussed in this chapter. In addition, the outcomes support the need to investigate the 

behaviour changes, their action drivers and their impacts on the built environment due to the 
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restrictions implemented during the COVID-19 pandemic. Complementary literature reviews 

are presented in the following papers with updated studies regarding each subject. 

In 2020, due to the COVID-19 pandemic, all public-school buildings in the state of Sao Paulo 

were closed and, therefore, the data collection (step 1 of this research study) had to be 

postponed. The three schools selected for the study, that had already agreed to participate, 

remained closed until August 2021. Therefore, a pilot field study was conducted in a different 

school building, which was selected due to having already gone through previous data 

collection, before the COVID-19 pandemic (in 2019 by Liguori (2020)). This study, presented 

in Chapter 3, compares data collected before (2019) and during (2021) the COVID-19 

pandemic in one school classroom located in Campinas, Brazil, in order to analyse the impact 

of the restrictions implemented during the COVID-19 pandemic (specific objective 2) and 

potential conflicts between thermal comfort and indoor air quality in naturally ventilated school 

classrooms (specific objective 4). Indoor environmental variables were monitored during both 

periods and were used to calibrate a simulation model, using EnergyPlus. Theoretical 

scenarios varying the number of occupants and the air change rates were simulated, in order 

to assess their impact on the indoor air quality (CO2 concentration) and thermal comfort (indoor 

operative temperature) and identify scenarios that contribute to reducing the risk of spreading 

the SARS-CoV-2 virus. The results suggest that the restrictive measures implemented during 

the COVID-19 pandemic, which are related to occupant behaviour (opening windows and 

doors and reducing the number of occupants), can help to reduce the CO2 concentration and 

the probability of infection, in addition to improving the thermal comfort of the analysed 

classroom. Yet, the measures adopted by schools must be analysed for each specific climate 

and context and in order to balance potential benefits and risks to occupants. 

The research framework is presented in Figure 1.2. The first steps, data collection (pre-

processing, step 1) and the model development and evaluation (processing, step 2), are 

presented in chapters 4 and 5. The data collection was conducted in three school buildings 

located in the cities of Campinas and Sao Paulo, which were selected from a database of 66 

public-school buildings, and included the monitoring of indoor environmental variables, number 

of occupants and manual operation of windows, door and fans (physical monitoring) and the 

application of questionnaires with teachers and students (occupant investigation). 
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Figure 1.2 – Research framework 

Chapter 4 presents the development of three window status predictive models, one for each 

school classroom, in order to compare the window operation drivers between classrooms – 

addressing the main objective, specific objective 2 and specific objective 3 of this thesis. 

Generalized linear models (GLM) were applied to assess the influence of the recorded 

parameters over the window status. Indoor operative temperature, relative humidity, CO2 

concentration and the restrictions imposed during the COVID-19 pandemic were identified as 

triggers for window operation in all schools.  In addition, the differences between the school 

classrooms suggest that occupant behaviour is context dependent, being highly influenced by 
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rules and habits, as confirmed by the outcomes from the generalized linear models and the 

questionnaires responses. 

Chapter 5 presents the development of occupant behaviour models for window, fan and door 

operation, aiming to identify and quantify the influence of multi-domain factors (including 

thermal, indoor air quality, contextual and multi-behaviour domains) on their status – also 

addressing the main objective, specific objective 2 and specific objective 3 of this thesis. 

Generalized linear mixed models (GLMM) were applied to assess the influence of the recorded 

parameters over the window, door and fan status. In addition to the predictors included in the 

previous models (environmental domain – indoor operative temperature, relative humidity, CO2 

concentration – and contextual domain – the COVID-19 restrictive measures), other predictors 

regarding contextual (time of the day, teacher, number of occupants) and multi-behavioural 

domains were included to create more complex and real models. The results highlighted that 

other predictors, such as the teachers’ behaviour and the COVID-19 restrictions, could have a 

greater influence on occupant behaviour than environmental variables, indicating the 

relevance of investigating other domains in behavioural studies. Also, the models including 

additional predictors were the ones with better results during the validation phase, suggesting 

that, while more complex models can provide more accurate predictions of occupant 

behaviour, they also become more context-dependent and less generalizable.  

Chapter 6 presents the preliminary results and discussion regarding the model implementation 

in building performance simulation (post-processing, step 3) (Figure 1.2). By implementing the 

OB models into the BPS, the aim of this chapter is to analyse potential conflicts between 

thermal comfort and indoor air quality, regarding triggers for manual operation of windows in 

naturally ventilated school classrooms, and to identify optimal situations of balance between 

both drivers (specific objective 4). This chapter presents the preliminary results of a paper 

currently in development, which was also part of Prof. Leticia de Oliveira Neves' research 

project titled “Thermal Comfort and Perceived Indoor Air Quality Optimization with Respect to 

Occupant Behavior in Naturally Ventilated School Buildings” (FAPESP BPE Grant n. 

2021/11903-8). 

Chapter 7 presents a general discussion regarding the results of the previous chapters and 

Chapter 8 provides a conclusion for all the chapters, including the main contributions of this 

thesis, its limitations, and suggestions for future research. 
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2 Literature Review 

This chapter is the transcription of the following paper: 

A critical review on occupant behaviour modelling for building performance 
simulation of naturally ventilated school buildings and potential changes due to 
the COVID-19 pandemic 
Authored by Paula Brumer Franceschini and Leticia Oliveira Neves 

Published in Energy and Buildings (ISSN: 0378-7788), volume 258, in 2022, and 

catalogued through the DOI: 10.1016/j.enbuild.2022.111831. 

Abstract 

Occupant behaviour (OB) is one of the main causes of the energy performance gap between 

buildings’ performance prediction versus reality, since, due to its uncertainty and 

unpredictability, it is often oversimplified in the building performance simulation (BPS). Hence, 

previous studies developed OB models, mainly in the residential and office contexts, in order 

to predict and represent human behaviour in BPS. Yet, school buildings are different from other 

typologies due to contextual factors (e.g., occupants’ age, different daily timetables and group 

rules) and are in a unique position to promote energy efficiency for tomorrow’s citizens. 

Assessing OB in schools can lead to an improvement of the indoor environment, especially in 

naturally ventilated buildings, where window operation behaviour directly impacts on the air 

change rates and, consequently, on the indoor air quality. This study addresses the knowledge 

gap on OB modelling for naturally ventilated (NV) and mixed-mode (MM) school buildings. The 

reviewed papers were organized in three main themes, namely (i) OB models for BPS of NV 

and MM buildings, (ii) OB research studies in NV and MM school buildings and (iii) potential 

changes on OB in school buildings due to the COVID-19 pandemic. The analysis focused on 

three phases of the OB modelling framework: data collection (pre-processing), model 

development (processing) and model implementation (post-processing). Important research 

gaps are identified, such as the reduced number of studies that cover the three phases of the 

modelling framework within the school buildings context and the need to better investigate the 
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teachers’ behaviour and collective actions as important OB drivers in classrooms. Future 

research topics are also identified, such as which are the potential changes on actions’ drivers 

due to COVID-19 pandemic in naturally ventilated classrooms and to what extent they will be 

durable or ephemeral. 

Keywords: occupant behaviour, behaviour model, building performance simulation, school 

buildings, natural ventilation, COVID-19 

2.1 Introduction 

The driving factors of energy use in buildings are climate, building envelope, building energy 

and services systems, indoor design criteria, building operation and maintenance and 

occupant behaviour (IEA, 2016), which are mostly considered in a building performance 

simulation (BPS). However, frequently the predicted performance (simulated during the design 

phase) is different from the real one (measured during the operation phase), resulting in an 

energy performance gap (SHI et al., 2019). One of the most important causes of this gap is 

the occupant behaviour (OB) (CHEN; HONG; LUO, 2018; FABI et al., 2012; SHI et al., 2019) 

– which refers to occupants actions and responses to stimuli (SHI et al., 2019), being 

responsible for up to 71% of the energy demand variation in buildings (IEA, 2016). The energy 

performance gap occurs mainly due to OB uncertainty and unpredictability in the design phase 

(SHI et al., 2019), which, as a consequence, often oversimplifies the occupant behaviour 

models in BPS (WANG; HONG; JIA, 2018). In BPS tools, the occupant's impact is mainly 

considered only in the occupancy section and the input data is generally limited to occupants’ 

presence in fixed and scheduled patterns, which do not reflect reality (DELZENDEH et al., 

2017).  

During the last decade, studies about OB in buildings were conducted aiming to better 

represent this parameter in the BPS through OB modelling, thus reducing the energy 

performance gap. For instance, the International Energy Agency (IEA) has two projects in this 

research area: the concluded Annex 66 (Definition and Simulation of Occupant Behaviour in 

Buildings) and the ongoing Annex 79 (Occupant-Centric Building Design and Operation). Also, 

several reviews about OB modelling for BPS were conducted in the last decade, focusing 

mainly on office and residential contexts (Table 2.1). 
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Table 2.1 – Previous reviews on OB modelling for BPS 

Publication Temporal 
coverage 

Building 
typology 

Scope 

Azar et al. (2020)  Up to 2019 All Occupant-centric building design applications: metrics, modelling 
and simulations tools, design methods and supporting practices 
and mechanisms 

Berger and Mahdavi 
(2020)  

2010 – 2018 All Application of agent-based modelling in the built environment 
domain: model purpose, domain knowledge and implementation 
tools 

Carlucci et al. (2020)  Up to 2019 All Modelling techniques to represent occupant behaviour (presence 
and actions) on building performance simulation 

Laaroussi et al. (2020)  1995 - 2019 Residential Current approaches for occupant behaviour analysis 
Li et al. (LI et al., 2019) Up to 2018 All Environmental and individual adjustments for OB modelling 

purposes 
Balvedi, et al. (2018)  2008 - 2018 Residential Occupant behaviour in residential buildings 
Dong et al. (2018)  Up to 2017 All Current modelling efforts of occupant behaviour 
Hong et al. (2018)  Up to 2017 All Approaches to representing and implementing OB models in 

building performance simulation tools 
Zhang et al (2018)  Up to 2017 All OB model approaches and the energy-saving potential: focus on 

window opening behaviour, lighting control behaviour, and space 
heating/cooling behaviour 

Delzendeh et al. (2017)  Up to 2016 All Influence of occupant behaviour on building energy consumption 
Gaetani et al. (2016)  Up to 2015 All Modelling complexity for occupant behaviour in building energy 

simulation 
Yan et al. (2015)  Up to 2014 All Occupant-related data collection and monitoring, modelling 

approaches, model evaluation, and model implementation 
Gunay et al. (2013)  Up to 2013 Office Findings and limitations of the occupant behaviour research, 

including observational, modelling, and simulation methodologies 
Parys et al. (2011)  Up to 2010 Office Models of occupant control of shading devices, windows, lighting, 

appliances and thermal environment 

School buildings are in a unique position to promote energy efficiency for tomorrow’s citizens 

(KATAFYGIOTOU; SERGHIDES, 2014). This building typology is different from others (e.g. 

residential and office buildings) due to contextual factors, since primary and secondary schools 

are occupied mainly by children, in specific periods of the year and with different daily 

timetables, more group rules and less freedom of action (BELAFI et al., 2018). Assessing its 

OB can lead to an improvement of the indoor environment, which is very important in school 

buildings, not just in terms of energy use, but also for students health and education (BELAFI 

et al., 2018). The indoor environment of school buildings (e.g. noise levels, indoor temperature, 

air quality and light) influences students health and sense of well-being (KATAFYGIOTOU; 

SERGHIDES, 2014; MONTAZAMI; GATERELL; NICOL, 2015; PEREIRA et al., 2017). A more 

comfortable and safe environment can also boost students’ productivity in many activities 

(FRANCO, 2020) and reduce students’ absenteeism (PEREIRA et al., 2017). Yet, there is a 

gap in the study of the impact of OB on building energy performance of school buildings, since 

the subject has been studied mainly in the residential and office contexts (DELZENDEH et al., 

2017). For example, the majority of the review papers here mentioned (Table 2.1) present a 

general scope and very few of them discuss school buildings: just seven papers about school 

buildings were included in five of the above-mentioned literature reviews (CARLUCCI et al., 

2020; DELZENDEH et al., 2017; GAETANI; HOES; HENSEN, 2016; GUNAY; BRIEN; 
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BEAUSOLEIL-MORRISON, 2013; LI et al., 2019). The systematic literature review presented 

by Carlucci et al. (2020) confirms the fact, since only 5% of the 278 studies identified by the 

authors about OB modelling addressed educational buildings, showing that this building 

typology requires further analysis. 

Most school buildings located in tropical or subtropical climates are partially or fully naturally 

ventilated (KAPOOR et al., 2021; SHRESTHA; RIJAL, 2021; VAN DIJKEN, 2020; WORLD 

HEALTH ORGANIZATION, 2015). Since natural ventilation depends on the outdoor 

conditions, adequate air change rates cannot be guaranteed all the time (VAN DIJKEN, 2020). 

Indeed, previous studies demonstrate that naturally ventilated classrooms often fail to achieve 

recommended levels of ventilation (DENG; ZOU; LAU, 2021; DUTTON; SHAO, 2010) and, as 

consequence, exceed the satisfactory limit of pollutants (DORIZAS et al., 2015). In fact, 

window operation behaviour plays an important role on indoor air quality (IAQ) and indoor air 

temperature (DUTTON; SHAO, 2010; IEA, 2018; SCHIBUOLA; TAMBANI, 2021), contributing 

to improve or to worsen the indoor environment conditions in naturally ventilated school 

buildings. 

School buildings have high occupancy rates which, in addition to poor IAQ, can provide the 

optimum conditions for rapid disease spread (LIPINSKI et al., 2020). A study conducted in 114 

European schools, of which 86% were naturally ventilated, showed that in overcrowded 

classrooms (less than 1.5 m² per child) the concentration of pollutants increased significantly 

and more children suffered from respiratory symptoms (e.g., chronic cough, earache, sinusitis) 

compared to classrooms with adequate space and well ventilated (WORLD HEALTH 

ORGANIZATION, 2015). In 2020, due the COVID-19 pandemic, the IAQ in school buildings 

became particularly relevant (PULIMENO et al., 2020). The IAQ was brought up as a 

fundamental path to prevent airborne virus transmission and to maintain low levels of pollutants 

in indoor environments (FRANCO, 2020), especially those with poor ventilation and high 

density and exposure time, such as school classrooms (HOU; KATAL; WANG, 2021). A study 

conducted in naturally ventilated classrooms revealed an infection risk ranging from 1.9% (all 

occupants wearing an US N95 mask) to 56% (all occupants without masks) in the presence of 

one asymptomatic individual (SCHIBUOLA; TAMBANI, 2021). Thus, recent publications 

recommended opening windows always as possible, as one of the main measures to reduce 

airborne virus transmission in naturally ventilated classrooms (JONES et al., 2020; VAN 

DIJKEN, 2020; WORLD HEALTH ORGANIZATION, 2020). Moreover, due to COVID-19 

response measures (e.g., window opening, social distancing, masks) and restrictions (e.g., 

schools closure), current research studies anticipate that there will be important changes in 

behaviours and daily routines, which will affect directly the decision-making (FELL et al., 2020). 
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Yet, the potential changes in OB due to COVID-19 pandemic were not covered in existing 

reviews on OB modelling (Table 2.1), since the reviewed papers were published up to 2019. 

This review paper aims to address the knowledge gap on occupant behaviour modelling for 

naturally ventilated school buildings and understand the potential changes on actions' drivers 

due to the COVID-19 pandemic. Therefore, we identify and analyse here the existing occupant 

behaviour models for naturally ventilated and mixed-mode school buildings, highlight the main 

findings in the current scientific literature and discuss the potential changes on occupant 

behaviour due to COVID-19 pandemic, especially related to window operation and natural 

ventilation. As to the latter, we consider it an important research topic also in phases without a 

pandemic, since it focuses on human and especially children’s health and long-term well-

being. 

2.2 Method and material 

This research study adopted the systematic review method to conduct the literature review, 

including two systematic literature reviews (SLR) and one literature review (LR) using a 

snowball strategy. The literature search process aimed to answer the following questions: (i) 

Which are the existing occupant behaviour models for building performance simulation focused 

on naturally ventilated and mixed-mode buildings? (SLR 1); (ii) What is the status quo on 

research studies about occupant behaviour in naturally ventilated school buildings? (SLR 2); 

(iii) What are the potential changes on research studies about occupant behaviour in school 

buildings due to the COVID-19 pandemic? (LR 3). 

The SLR 1 and SLR 2 searches were conducted in Web of Science (WoS) and Scopus 

databases on 19th April, 2021 and followed the steps proposed in the PRISMA Statement 

(LIBERATI et al., 2009): identification, screening, eligibility and inclusion. The string used for 

the SLR 1 included ‘occupant behaviour model’ and ‘building performance simulation’ (and 

similar words, such as ‘user’ and ‘behavior’) in the title, abstract and keywords fields. The string 

used for the SLR 2 included ‘occupant behaviour’ and ‘school building’ (and also similar words) 

in the title, abstract and keywords fields. After excluding the duplicated results, the title and 

abstract were analysed and results not related to the review questions were excluded. The 

final selection resulted in 46 papers, whose distribution is presented in Figure 2.1. Most of 

them were published in the last decade (Figure 2.2), demonstrating that it is a relatively new 

research theme.   
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Figure 2.1 – Distribution of publications (SLR 1 and SLR 2) 

Berkeley Lab – Lawrence Berkeley National Laboratory; UF – University of Florida; Drexel – Drexel University; Penn – University 
of Pennsylvania; Harvard – Harvard University; UCL – University College London; Cambridge – University of Cambridge; Oxford 
Brokes – Oxford Brookes University; Loughborough – Loughborough University; Plymouth – Plymouth University; UnivPM – 
Università Politecnica delle Marche; PoliTO – Politecnico di Torino; Iuav – Iuav University of Venice ; Fraunhofer ISE – Fraunhofer 
Institute for Solar Energy Systems; RWTH Aachen  - RWTH Aachen University; KIT – Karlsruhe Institute of Technology; TCU – 
Tokyo City University; TJU – Tianjin University; BJUT – Beijing University of Technology; NBU – Ningbo University; DTI – Danish 
Technological Institute; DTU – Technical University of Denmark; HiG – University of Gävle; Lund – Lund University; ULisboa – 
University of Lisbon; BME – Budapest University of Technology and Economics; EPFL - Ecole Polytechnique Federale de 
Lausanne; UNICAMP – University of Campinas; UCY – University of Cyprus; TU Delft – Delft University of Technology; UOS – 
University of Seoul; Bordeaux – University of Bordeaux. 

 

 
Figure 2.2 – Year of publication of SLR 1 and SLR 2 results 

For the literature review regarding the potential changes on OB due to COVID-19 pandemic 

(LR 3), the search included papers, scientific reports and documents addressing the relation 

between natural ventilation, indoor environment, especially school buildings, and COVID-19 

airborne transmission. The snowball strategy was adopted to extend the search, identifying 

other documents in the reference list of the first results. After selection, 26 publications were 

included in this review, published in 2020 (13 documents) and 2021 (13 documents).  
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2.3 Occupant behaviour modelling for building performance simulation 

Occupant behaviour is defined as the occupant’s interaction with building systems in order to 

adapt to the building environmental conditions (LAAROUSSI et al., 2020), aiming to obtain 

thermal, visual and acoustic comfort (DELZENDEH et al., 2017). According to Fabi et al. 

(2012), it includes unconscious and conscious actions to control the physical parameters 

based on the comparison of the perceived environment and past experiences. Hong et al. 

(2016a) distinguish non-adaptive behaviours, which include occupant presence and 

appliances use, from adaptive behaviours, which include changes to adapt the environment to 

their needs (e.g., window, blinds, lighting and air-conditioning operation) and changes to adapt 

themselves to the environment (e.g. clothing adjustment and drinking hot or cold beverage). 

Occupants usually respond in different ways to the built environment, since there are many 

factors that influence their decision-making process (O’BRIEN et al., 2016). For example, 

occupancy patterns in buildings are influenced by contextual factors such as occupancy 

density and occupancy type (e.g., occupants movements and activities) (CHEN; HONG; LUO, 

2018). Brien et al. (2016) identified other driven factors that contribute to occupant behaviour 

diversity, such as activity type, personal health and wealth, job type and lifestyle. Delzendeh 

et al. (2017) suggested the use of occupant profiling based on occupants’ energy behaviour to 

lead to more accurate assumptions in energy analyses. He et al. (2021) and Causone et al. 

(2019), for example, identified behaviour styles to represent occupant diversity based on 

occupant energy-saving consciousness. D’Oca et al. (2014) classified occupant profiles to 

represent window opening behaviour and thermostat adjustment. In addition, occupant 

behaviour can be even more diverse when comparing different building typologies and location 

(e.g., climate, culture and energy conservation consciousness) (HE; HONG; CHOU, 2021). In 

the school building typology, for example, rules and habits can vary between different schools, 

climates and cultures (BELAFI et al., 2018). Thus, to be fully understood, occupant behaviour 

diversity requires investigation in both boundary and contextual conditions, as well as a more 

detailed and dynamic representation than predefined schedules (BELAFI et al., 2018).  

Occupants have a significant impact on building energy performance and on occupants 

comfort through their   with building systems (GILANI et al., 2016; HONG et al., 2016a; PUTRA; 

HONG; ANDREWS, 2021).  Previous studies reviewed by Zhang et al. (2018) showed that 

improving occupant behaviour in buildings results in an energy-saving potential ranging 

between 5% and 30% for total energy consumption, varying according to the building typology 

(residential or office buildings) and the building system (air-conditioning, lighting and 

appliances). Occupant behaviour models are developed in order to predict and represent 
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human behaviour in building performance simulation, optimizing the building design and 

reducing the performance gap (CARLUCCI et al., 2020). Therefore, occupant diversity, 

although bringing more uncertainty for BPS, can contribute to reduce energy peak demand 

(O’BRIEN et al., 2016). Parys et al. (2011) proposed three methods to represent occupant 

behaviour diversity in BPS: (i) explicit modelling of variability by randomly sampling, using real 

measured occupant data as input, (ii) calculating standard deviations to the averaged 

probability functions, and (ii) clustering of occupant type, as defining representative active and 

passive users.  

Previous studies identified the main steps to represent OB modelling approach (BALVEDI; 

GHISI; LAMBERTS, 2018; GUNAY; BRIEN; BEAUSOLEIL-MORRISON, 2013; YAN et al., 

2015, 2017). The first step refers to data collection, including occupant monitoring, system 

observation and data validation. The second step consists in the development and evaluation 

of the OB model, aiming to accurately predict occupants’ behaviour in buildings. The last step 

involves the OB model implementation in building performance simulation, which requires the 

integration between the developed OB model and an existing building simulation tool and 

application. Figure 2.3 synthetises the OB modelling approach based on the reviewed 

publications. In Table 2.2, we identify 27 existing occupant behaviour models for naturally 

ventilated and mixed-mode buildings, based on the analysis of the methods section of 33 

publications. Most of the presented models were developed for office buildings (63%, 17 

models), are based on a mixed-mode ventilation system (70%, 19 models), and were 

developed for regions located in the oceanic climate – Cfb (52%, 14 models). The classification 

here presented is detailed in the following sub-sections.  

2.3.1 Data collection (pre-processing) 

The first step of the OB modelling approach is the data collection, which includes physical 

monitoring, occupant investigation and validation of the collected data (BALVEDI; GHISI; 

LAMBERTS, 2018; YAN et al., 2017). The data collection is an efficient approach for OB 

analysis (LAAROUSSI et al., 2020) and is used for the identification of driving factors and 

patterns for specific behaviours (BALVEDI; GHISI; LAMBERTS, 2018). The method selection 

for the data collection depends on the purpose of the research study (e.g., represent window 

operation or occupant presence), that will dictate the required information to use as input in 

the BPS.  
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Figure 2.3 – OB modelling framework 

Table 2.2 – Reviewed OB models (SLR 1) 

Publication Building 
typology 

Ventila-
tion 

system* 

Location Climate 
** 

Sub-model Method 
Data Collection Model 

Development 
Model 

Implementation 
Mun et al. 
(2021) 

Residential MM South 
Korea 

Dwa Window and 
air-conditioning 

- Stochastic/ 
Probabilistic 

Co-simulation 

Jia et al. 
(2021); Jia 
and Srinivasan 
(2020); Jia et 
al. (2019) 

Faculty 
office 

MM USA Am Window and 
blinds 

Physical 
monitoring and 

occupant 
investigation 

Agent-based Co-simulation 

Imagawa et al. 
(2020) and 
Rijal et al. 
(2018) 

Residential MM Japan Cfa Window, fan, 
air-conditioning 

Physical 
monitoring and 

occupant 
investigation 

Stochastic/ 
Probabilistic 

- 

Micolier et al. 
(2019) 

Residential MM France Cfb Window, blinds, 
thermostat, 
clothing and 
appliances 

Physical 
monitoring and 

occupant 
investigation 

Agent-based Co-simulation 

Pan et al. 
(2019) 

Office MM China Dwa Window Physical 
monitoring and 

occupant 
investigation 

Stochastic/ 
Probabilistic 

- 

Mo et 
al.(2019) 

Residential NV China Dwa Window Physical 
monitoring 

Stochastic/ 
Probabilistic 

- 

Belafi et al. 
(2018) 

School MM Hungary Cfa Window Physical 
monitoring and 

occupant 
investigation 

Stochastic/ 
Probabilistic 

- 

Yao (2018) Residential MM China Cfa Air-conditioning Physical 
monitoring 

Stochastic/ 
Probabilistic 

User function or 
custom code 

Naspi et al. 
(2018) 

Faculty 
office 

NV Italy Csa Window and 
lighting 

Physical 
monitoring and 

occupant 
investigation 

Stochastic/ 
Probabilistic 

Co-simulation 

Markovic et al. 
(2018) 

Faculty 
office 

MM Germany Cfb Window Physical 
monitoring and 

occupant 
investigation 

Data mining 
and machine 

learning 

Co-simulation 

Laurent et al. 
(2017) 

University 
dormitory 

NV USA Dfa Window Physical 
monitoring and 

Stochastic/ 
Probabilistic 

User function or 
custom code 
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occupant 
investigation 

Chen et al. 
(2017) 

Office MM USA Am Window, blinds, 
thermostat, 
lighting and 
appliances 

- Agent-based Co-simulation 

Jones et al. 
(2017) 

Residential MM UK Cfb Window Physical 
monitoring 

Stochastic/ 
Probabilistic 

- 

Langevin et al. 
(2016); 
Langevin et al. 
(2015) 

Office MM USA Dfa, 
Csb, 
Cfa, 
Csa 

Window, fans, 
thermostat and 

clothing 

Physical 
monitoring and 

occupant 
investigation 

Agent-based Co-simulation 

Hong et al. 
(2016a); Hong 
et al. (2015b); 
Hong et al. 
(2015a) 

Office MM USA Am Window, 
lighting, blinds 
and thermostat 

- Stochastic/ 
Probabilistic 

Co-simulation 

Lee and 
Malkawi 
(2014) 

Office MM USA Dfa  Window, blind, 
thermostat, fan 

and clothing 

- Agent-based Co-simulation 

D’Oca et al. 
(2014); Fabi et 
al. (2013) 

Residential NV Denmark Cfb Window and 
thermostat 

Physical 
monitoring 

Stochastic/ 
Probabilistic 

Direct input or 
control 

Schwiker et al. 
(2012) 

Residential 
and office 

NV / MM Switzerland 
and Japan 

Cfb, Cfa Window Physical 
monitoring and 

occupant 
investigation 

Stochastic/ 
Probabilistic 

- 

Andersen et 
al. (2011) 

Office NV / MM Denmark Cfb Window and 
thermostat 

Physical 
monitoring and 

occupant 
investigation 

Stochastic/ 
Probabilistic 

- 

Rijal et al. 
(2011) 

Office NV / MM Europe and 
Pakistan 

Csa, 
Csb, 
Cfa, 
Cfb, 

BWh, 
BSk  

Window and 
fans 

Physical 
monitoring and 

occupant 
investigation 

Stochastic/ 
Probabilistic 

Direct input or 
control 

Wei et al. 
(2010) 

Faculty 
office 

NV UK Cfb Window, blinds 
and clothing 

Occupant 
investigation 

Stochastic/ 
Probabilistic 

- 

Haldi and 
Robinson 
(2009) 

Office NV Switzerland Cfb Window Physical 
monitoring 

Stochastic/ 
Probabilistic 

- 

Rijal et al. 
(2008) 

Office NV / MM UK Cfb Window Physical 
monitoring and 

occupant 
investigation 

Stochastic/ 
Probabilistic 

Direct input or 
control 

Yun and 
Steemers 
(2008) 

Office NV UK Cfb Window Physical 
monitoring and 

occupant 
investigation 

Stochastic/ 
Probabilistic 

- 

Herkel et al. 
(2008) 

Office NV Germany Cfb Window Physical 
monitoring 

Stochastic/ 
Probabilistic 

- 

Pfafferott and 
Herkel (2007) 

Office NV Germany Cfb Window, 
lighting, blinds 
and appliances 

Physical 
monitoring 

Stochastic/ 
Probabilistic 

Direct input or 
control 

Fritsch et al. 
(1990) 

Office MM Switzerland Cfb Windows Physical 
monitoring 

Stochastic/ 
Probabilistic 

- 

*NV – natural ventilation; MM – mixed-mode. 
**Am – Tropical monsoon; BWh – Hot desert; BSk – Cold semi-arid; Cfa – Humid subtropical; Cfb – Oceanic; Csa – Hot-summer 
Mediterranean; Csb – Warm-summer Mediterranean; Dfa – Hot-summer humid continental; Dwa - Monsoon-influenced hot-
summer humid continental. 

The physical monitoring is a quantitative approach and includes objective measurements 

(physical sensing), that are realized using specific equipment (BALVEDI; GHISI; LAMBERTS, 

2018; HONG et al., 2016a). It can be realized in-situ, collecting data in occupants natural 
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environment, usually for a long period, or in a laboratory, where the researchers have more 

control over different environmental conditions (YAN et al., 2017). The methods used for the 

physical monitoring include energy metering, measurement of indoor and outdoor 

environmental parameters (e.g., air temperature, relative humidity and CO2 concentration) and 

occupant interaction with building systems or presence through sensors (e.g. window and door 

status – open/close) (HONG et al., 2016a). From the reviewed publications, 33% used only 

physical monitoring for data collection, while 48% used the integration of physical monitoring 

with occupant investigation methods. As to the monitoring parameters, 78% measured 

environmental variables, 56% monitored window and/or door status and 11% measured 

energy consumption. 

The occupant investigation is a qualitative approach and includes subjective measurements 

(non-physical sensing) to monitor OB based on self-reported data (BALVEDI; GHISI; 

LAMBERTS, 2018; HONG et al., 2016a). It includes questionnaires, interviews, focus groups, 

surveys, diaries, perception, observation and opinions (LAAROUSSI et al., 2020). The 

occupant investigation often involves ethical issues regarding participant recruitment and risks, 

requiring the approval of ethics protocols, privacy issues and informed consent before the data 

collection, in order to preserve the identity of the participants (LAAROUSSI et al., 2020; YAN 

et al., 2017). From the reviewed papers, 52% performed occupant investigation: 33% applied 

questionnaires or surveys, 15% realized interviews and 4% realized occupant observation in-

situ. 

The validation of the collected data is addressed in few cases, which may be explained by the 

lack of guidelines on how to validate occupant measurements (YAN et al., 2017). Yan et al. 

(2017) suggest and explain the calculation of measurements uncertainties to quantify data 

quality.  

Also, 15% (4 models) of the OB models analysed (Table 2.2) did not realize the data collection 

step, using data from previous studies to the OB modelling. In order to support OB model 

development, occupant behaviour databases are emerging during the last years, which can 

provide a more robust basis for OB modelling with different building typologies and climates 

(PUTRA; HONG; ANDREWS, 2021). For example, the ASHRAE Global Thermal Comfort 

Database II is an online open-source database that includes more than 80,000 sets of data 

collection about occupant comfort and preferences from field studies conducted since 1995 

(LIČINA et al., 2018). 



39 

 

 

2.3.2 OB model development (processing) 

Understanding the correlation between drivers and occupants’ interactions is an essential part 

of the OB modelling (LAAROUSSI et al., 2020). Different approaches were proposed in the 

reviewed literature to represent this correlation through OB modelling. 

2.3.2.1 Sub-models 

Previous studies classified OB models in sub-models, which were divided in two groups. The 

first group refers to occupancy and includes occupant presence and movement (BALVEDI; 

GHISI; LAMBERTS, 2018; GAETANI; HOES; HENSEN, 2016; HE; HONG; CHOU, 2021; 

LAAROUSSI et al., 2020; PARYS; SAELENS; HENS, 2011). Occupant presence can be 

detailed as occupant detection (presence and absence), estimation (occupancy count) and 

prediction (to forecast the occupancy in a future time window), and occupant movement can 

be detailed as occupant activity recognition (to identify or forecast a particular activity) and 

occupant movement between zones (the transition from one room to another inside a building) 

(CARLUCCI et al., 2020).  

The second group of sub-models refers to occupants’ interactions with building systems to 

meet individual needs (CARLUCCI et al., 2020; LAAROUSSI et al., 2020), which includes, 

mainly, windows and door operation, blinds/ solar shading operation, thermostat or air-

conditioning adjustment (cooling and heating systems), artificial lights control, appliances use 

and clothing adjustment (BALVEDI; GHISI; LAMBERTS, 2018; CARLUCCI et al., 2020; 

GAETANI; HOES; HENSEN, 2016; PARYS; SAELENS; HENS, 2011). Putra et al. (2021) also 

differs actions driven by individual needs from collective actions, which are influenced by social 

interaction and requires a group decision process (e.g., majority decision or hierarchical 

decision). 

A comprehensive behaviour model should include more than one sub-model to represent a 

combination of occupants’ interactions, since one action can influence the other and vice-versa 

(GAETANI; HOES; HENSEN, 2016). The combination could refer to two or more occupancy 

sub-models, such as combining lighting and blinds control (CARLUCCI et al., 2020) or 

combining occupancy with occupants’ interactions sub-models, since occupant must be 

present to interact with the building systems (MURONI et al., 2019). From the reviewed studies, 

52% combined two or more sub-models, from which 26% combined window operation with 

thermostat adjustment and 19% with blinds control. Fan operation, lighting control and clothing 

adjustment were present in 15% of the cases, appliances use and air-conditioning in 11% of 

the cases and occupant movement in 4% of the cases. 
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2.3.2.2 Drivers 

Each OB sub-model is stimulated by one or more drivers or driving factors, also called in the 

specific literature as triggers, predictors or influencing variables (BALVEDI; GHISI; 

LAMBERTS, 2018; CARLUCCI et al., 2020; FABI et al., 2012; LANGEVIN; WEN; GURIAN, 

2015; MAHDAVI et al., 2021; STAZI; NASPI; D’ORAZIO, 2017b; YAN et al., 2017). Drivers 

can be classified in two main categories: external (environmental factors, time-related factors, 

contextual factors) and internal (physiological factors, psychological factors, social factors) 

(YAN et al., 2017). Other authors use this same categories to classify energy-related drivers, 

also including, in the list, random factors (FABI et al., 2012; LAAROUSSI et al., 2020; STAZI; 

NASPI; D’ORAZIO, 2017b). 

External factors are objective and easier to measure and compare (STAZI; NASPI; D’ORAZIO, 

2017b). Environmental factors include indoor and outdoor conditions, such as air temperature, 

relative humidity, illuminance and CO2 concentration (FABI et al., 2012; STAZI; NASPI; 

D’ORAZIO, 2017b). Time-related factors include, for example, time of the day (e.g., morning, 

noon), day of the week, season and occupant routine (e.g., arrival and departure) (HONG et 

al., 2015a; LAAROUSSI et al., 2020). Contextual factors include building characteristics, 

building location, building orientation, etc. (FABI et al., 2012). 

Internal factors concern the individual and are more difficult to collect, quantify and analyse  

(STAZI; NASPI; D’ORAZIO, 2017b). Physiological factors include occupant’s physiological 

condition, such as age, gender, health situation, clothing, activity level), individual sensitivity 

to brightness and other variables (FABI et al., 2012; STAZI; NASPI; D’ORAZIO, 2017b). 

Psychological factors include individual perception, expectations, habits and lifestyle (FABI et 

al., 2012). Social factors refer to the interaction between occupants and include, for example, 

organization policy (FABI et al., 2012; STAZI; NASPI; D’ORAZIO, 2017b). Random factors are 

uncertain and not quantifiable factors, which cannot be synthesised with association rules and, 

therefore, are very little addressed in OB modelling (BALVEDI; GHISI; LAMBERTS, 2018; 

STAZI; NASPI; D’ORAZIO, 2017b). 

The majority of the reviewed publications used external factors as drivers. The environmental 

were the most addressed: indoor temperature (93%), outdoor temperature (85%), CO2 

concentration (37%), relative humidity (37%), illuminance or daylight (33%), wind speed (22%) 

and noise (4%). Time-related factors were considered in 33% of the reviewed OB models, 

including time of the day and occupant routine, in special occupant arrival and departure. Only 

one publication considered internal factors as a driver (physiological crossed with clothing 

insulation). Also, 56% of the reviewed papers considered a combination of four or more drivers. 
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2.3.2.3 Approaches and methods 

The literature review mentions different approaches to model OB, which can vary according to 

the model complexity, the input data required by the model, the level of implementation and 

the research goals (DONG et al., 2018; JIA; SRINIVASAN; RAHEEM, 2017). Hong et al. 

(2016a) classified the approaches in two groups: implicit, which are related to the physical 

systems of the building, and explicit, which are directly related to the occupant. As to the OB 

model complexity, several authors classify it in (with minor changes between each author): 

schedules (or profiles, rule-based), deterministic (or statistical), non-probabilistic (or data-

based, data mining, data-driven), probabilistic (or stochastic, machine learning), agent-based 

stochastic (or object-oriented) and virtual OB models (CARLUCCI et al., 2020; DONG et al., 

2018; GAETANI; HOES; HENSEN, 2016; JIA; SRINIVASAN; RAHEEM, 2017; YAN et al., 

2017). 

Schedules, profiles or rule-based models represent a simplified scenario (the lowest level of 

complexity), introducing occupant behaviour as a static variable (DONG et al., 2018; 

GAETANI; HOES; HENSEN, 2016). These models include either deterministic rules, where 

actions are direct consequences of drivers, or occupant profiles, representing average and 

predictable behaviours (CARLUCCI et al., 2020; GAETANI; HOES; HENSEN, 2016). In 

general, schedules are the most used model category, since they can be directly implemented 

on BPS tools (DONG et al., 2018). 

Deterministic or statistical models specify more action drivers than the previous model 

category, increasing the model resolution (GAETANI; HOES; HENSEN, 2016). These models 

use traditional regression methods or generalized linear methods to quantitatively determine 

the relationship between drivers (independent variables) and occupant behaviour (LI et al., 

2019). One limitation of this approach is that a larger sample size and data input of many 

variables are required to capture and describe occupant behaviour (ZHANG et al., 2018). 

Non-probabilistic or data-based models are determined by training a profile that include factors 

resulting from data-mining (GAETANI; HOES; HENSEN, 2016), which consists one of the 

approaches to extract occupant behaviour from occupancy related data (DONG et al., 2018; 

GAETANI; HOES; HENSEN, 2016). This approach allows integrating machine learning to 

data-mining through a clustering analysis to group data into categories based on 

measurements of inherent similarity or distance (DONG et al., 2018). Methods used for data-

mining and machine learning models include k-means clustering, decision tree, Bayesian 

network, artificial neural network and support vector machine (DONG et al., 2018; LI et al., 

2019). 
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Probabilistic or stochastic models use stimuli (drivers) as influencers within the probability 

function for an action to occur (GAETANI; HOES; HENSEN, 2016). Thus, behaviour results 

from a complex relationship between drivers and may evolve over time and vary between 

occupants (CARLUCCI et al., 2020). These models consider only the interactions between 

building and occupants and require a high number of simulation runs to increase resolution 

and achieve reliable results (GAETANI; HOES; HENSEN, 2016). The most common methods 

used to develop these models are Markov chain, Logit analysis (or logistic regression analysis), 

Survival analysis, Poisson process, Probit analysis, Monte Carlo method and random sampling 

(CARLUCCI et al., 2020; DONG et al., 2018; GAETANI; HOES; HENSEN, 2016; LI et al., 2019; 

PARYS; SAELENS; HENS, 2011).  

Agent-based or object-oriented models have a more complex simulation framework, combining 

learning and simulation algorithms (DONG et al., 2018; GAETANI; HOES; HENSEN, 2016). 

These models predict occupants behaviour by modelling the behaviour of each occupant 

independently, instead of in a group-level (GAETANI; HOES; HENSEN, 2016; LI et al., 2019). 

The model complexity varies according to the sub-models included, but it usually requires a 

large amount of information (GAETANI; HOES; HENSEN, 2016). 

Virtual models are a recent approach and, different from the above-mentioned approaches, do 

not rely on measured data and surveys (DONG et al., 2018). Instead, this approach is 

supported by immersion techniques into virtual reality, which provide images, sound and other 

stimuli to simulate the human-building interaction (DONG et al., 2018). 

The majority of the reviewed publications present probabilistic/ stochastic OB models (78%), 

using techniques such as Logit analysis (56%), Markov chain (15%), survival analysis (4%) 

and Monte Carlo method (4%). 19% of the reviewed papers used the agent-based approach 

and 4% used the data-mining and machine learning approach, adopting the neural network 

method. 

2.3.2.4 Model evaluation 

An evaluation of the OB model should be performed in order to verify if is reliable and effective, 

by considering its intended application (YAN et al., 2015). Several evaluation metrics can be 

found in the literature, such as prediction accuracy, precision, recall, f-1 score, mean average 

error (MAE), mean average percentage error (MAPE) and root mean squared error (RMSE) 

(CARLUCCI et al., 2020). Yan et al. (2017) suggest that an external model evaluation, rather 

than an internal evaluation, is essential to prevent bias and to provide more convincing 
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evidence of the model’s reliability. The model evaluation should result in a report detailing its 

specificities and applicable limitations (YAN et al., 2015). 

The evaluation metrics used in several of the reviewed papers are the coefficient of 

determination (R²), RMSE, recall, precision, accuracy and f-1 score (JIA et al., 2019; 

LANGEVIN; WEN; GURIAN, 2015; NASPI et al., 2018). However, not all studies include the 

model evaluation. The model evaluation is a challenge due to the lack of established standard 

evaluation protocols for OB modelling and the limited availability of occupant behaviour data, 

requiring further investigation to demonstrate the validity of the developed behaviour models 

(CARLUCCI et al., 2020; YAN et al., 2017). 

2.3.3 Model implementation (post-processing) 

This step involves the implementation of the developed OB model in a building energy model 

(HONG et al., 2018). The implementation tools can be divided in three categories: 

representation of people (OB tools), representation of the environment (BPS tools) and their 

interactions (coupling engine) (BERGER; MAHDAVI, 2020). The most popular OB tools 

include NetLogo, AnyLogic, Occupancy Simulator, Repast Symphony, PMFserv, MATLAB, 

Unity 3D, obFMU and obXML (BERGER; MAHDAVI, 2020; YAN et al., 2017). The most 

popular BPS tools include DOE-2, EnergyPlus, DeST, ESP-r, IDA ICE, TRNSYS, IES VE and 

TRACE (HONG et al., 2018). Examples of coupling engines used to integrate OB and BPS 

tools are Building Control Virtual Test Bed (BCVTB) and Lightweight Communications and 

Marshalling (LCM) (BERGER; MAHDAVI, 2020). 

Four implementation approaches were found in the reviewed literature: (i) direct input or 

control, (ii) built-in OB models, (iii) user function or custom code and (iv) co-simulation (HONG 

et al., 2018; YAN et al., 2017). Direct input or control refers to the implementation of the 

occupant related inputs directly through BPS tool semantics and is supported by almost all 

BPS programs (AZAR et al., 2020; HONG et al., 2018). The built-in approach uses OB models 

already implemented in BPS tools (HONG et al., 2018; YAN et al., 2017). Despite its easy 

implementation, there is a limited numbers of built-in OB models in few BPS tools, which is the 

main limitation of this approach (HONG et al., 2018). The user function or custom code 

approach allows users to write functions or custom codes as part of the building energy model 

input file, allowing to overwrite existing values or add new values to an existing code 

(BALVEDI; GHISI; LAMBERTS, 2018; HONG et al., 2018). The co-simulation approach allows 

the integration of the OB tools and BPS tools by real-time exchange of information (BALVEDI; 

GHISI; LAMBERTS, 2018) and it can be realized using two methods: the middleware coupling 

method, which uses a middle data exchange tool to manage the integration between OB and 
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BPS tools and requires users’ familiarity with different data coding format; and the standardized 

coupling method, which provides a uniform interface for information and data exchange, 

allowing the direct link between both tools (LI et al., 2019). So far, co-simulation was already 

implemented in EnergyPlus and ESP-r (YAN et al., 2017). 

A total of 56% of the reviewed publications implemented OB models in BPS tools. From this 

percentage, 33% used the co-simulation approach, 15% used the direct input or control 

approach and 7% used the user function or custom code approach. The most popular BPS 

tool was EnergyPlus (30%), but others were also used, such as ESP-r (11%), IDA ICE (4%) 

and IES VE (4%). Regarding the OB tools, MATLAB and obFMU were used by 22% of the 

studies and PMFserv, AnyLogic and Occupancy Simulator were used by 12% of the studies. 

BCVTB was used as a coupling engine in 15% of the studies. 

2.4 Occupant behaviour investigation and modelling in school buildings 

Occupant behaviour has a significant impact on IAQ and on building thermal and energy 

performance, especially in high-occupancy density environments, such as school classrooms 

(DUTTON; SHAO, 2010). Nevertheless, few publications address this building typology. Table 

2.3 presents the results from SLR 2, which aimed to investigate the status quo on research 

studies about occupant behaviour in naturally ventilated and mixed-mode school buildings. 

The data collection (pre-processing phase) has been widely adopted as a research method 

and can be identified in all the reviewed studies. The inclusion of model development 

(processing phase) and model implementation (post-processing phase) are still limited, 

showing an important research gap. 

2.4.1 Data collection (pre-processing) 

The reviewed papers adopted, for the data collection, physical monitoring methods (38%), 

occupant investigation methods (8%) or a combination of both (54%). The measurement of 

environmental parameters was the most used physical monitoring method (85%), followed by 

energy metering (31%) and window and/or door status measurement (23%). Occupant 

observation (31%), questionnaires (23%) and interviews (15%) were adopted as occupant 

investigation methods. Important findings from occupant investigation include the identification 

of the teacher as the main active occupant regarding the environment adjustment, while 

students are more passive users and rely on the teacher to adjust uncomfortable conditions, 

since they often have limited freedom of action (BERNARDI; KOWALTOWSKI, 2006; 

PISTORE et al., 2019).   



45 

 

 

Table 2.3 – Reviewed studies on occupant behaviour in school buildings (SLR 2) 

Publication School 
level 

Ventilation 
system* 

Location Climate** Sub-model Method 
Data 

collection 
Model 

development 
Model 

implementation 
Zhang and 
Bluyssen 
(2021) 

Primary 
school 

MM and 
NV 

Nether-
lands 

Cfb Lighting 
operation and 

thermostat 
adjustment 

Physical 
monitoring 

and occupant 
investigation 

- - 

Stamp et al. 
(2020) 

Secondary 
school 

MM UK Cfb Window 
operation 

Physical 
monitoring 

- - 

Simanic et 
al. (2020) 

Primary 
and lower 
secondary 

school 

MV Sweden Dfb Thermostat 
adjustment, 

occupant 
presence, 

lighting 
operation and 
appliance use 

Physical 
monitoring 
(Previous 
collected 

data) 

Stochastic/ 
Probabilistic 

Direct input or 
control 

Englund et 
al. (2020) 

Secondary 
school 

MM Sweden Dfb Window and 
door 

operation 

Physical 
monitoring 

Schedules 
and 

Deterministic 

Direct input or 
control 

Heracleous 
and Michael 
(2019) 

Secondary 
school 

NV Cyprus BSh Window 
operation 

Physical 
monitoring 

and occupant 
investigation 

- - 

Pistore et 
al. (2019) 

Secondary 
school 

MM Italy Cfb Window and 
blinds 

operation, 
clothing 

adjustment 

Occupant 
investigation 

- - 

Lourenço et 
al. (2019) 

Secondary 
school 

MM Portugal Csa Window, 
blinds and 

lighting 
operation 

Physical 
monitoring 

and occupant 
investigation 

Schedules Direct input or 
control 

Belafi et al. 
(2018) 

Elementary 
school 

MM Hungary Cfa Window 
operation 

Physical 
monitoring 

and occupant 
investigation 

Stochastic/ 
Probabilistic 

- 

Heebøll et 
al. (2018) 

Primary 
school 

MM Denmark Cfb Window 
operation 

Physical 
monitoring 

- - 

Stazi et al. 
(2017b) 

Secondary 
school 

NV Italy Cfa Window 
operation 

Physical 
monitoring 

and occupant 
investigation 

Stochastic/ 
Probabilistic 

- 

Lourenço et 
al. (2014) 

Secondary 
school 

MM Portugal Csa Thermostat 
adjustment 
and water 

heating 

Physical 
monitoring 

and occupant 
investigation 

- - 

Dutton and 
Shao (2010) 

Primary 
school 

NV UK Cfb Window 
operation 

Physical 
monitoring  

Stochastic/ 
Probabilistic 

Direct input or 
control 

Bernardi 
and 
Kowaltowski 
(2006) 

Primary 
school 

NV Brazil Cfa Door, 
window, 
blinds, 
fan and 
lighting 

operation 

Physical 
monitoring 

and occupant 
investigation 

- - 

* NV – natural ventilation; MM – mixed-mode; MV – mechanical ventilation. 
** BSh – Subtropical steppe; Cfa – Humid subtropical; Cfb – Oceanic; Csa – Hot-summer Mediterranean; Dfb – Warm-summer 
humid continental. 
 

2.4.2 OB model development (processing) 

The reviewed literature showed as main scopes of OB investigation in school buildings the OB 

impact on energy consumption (38% of the reviewed papers), followed by indoor 
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environmental quality (IEQ) (23%) and IAQ (23%), thermal comfort (15%) and visual comfort 

(8%). The addressed sub-models are mostly related to the occupants’ interactions with the 

building systems, such as window operation, thermostat adjustment, lighting operation and 

appliances use (Simanic et al., 2020). Examples of sub-models associated to energy 

consumption investigations are the thermostat adjustment and water heating consumption 

sub-models, which were investigated in eight Portuguese schools, in terms of energy and gas 

consumption (Lourenço et al., 2014). Lourenço et al. (2014) identified as the main occupant 

behaviour driver the time span between the discomfort perception, the action taken and the 

expected feedback. The lighting operation sub-model, also associated to energy consumption, 

was observed in nine Dutch school buildings (Zhang & Bluyssen, 2021). Results showed a 

negative relationship between the frequency of use of artificial lights and energy consumption: 

less electricity was consumed when the teachers triggered the light control more often. The 

window operation sub-model is mainly associated to IAQ and thermal comfort investigations 

(Belafi et al., 2018; Dutton & Shao, 2010; Englund et al., 2020; Heebøll et al., 2018; Heracleous 

& Michael, 2019; Stamp et al., 2020; Stazi et al., 2017b). Stamp et al. (2020) analysed the IAQ 

in UK non-domestic buildings including one MM school building, showing that higher outdoor 

air temperatures increased the use of natural ventilation (window opening) and, consequently, 

reduced the IAQ due to increased summertime natural ventilation use against controlled 

mechanical ventilation. Heebøll et al. (2018) compared a classroom with manually operable 

windows (original configuration) to three retrofitted classrooms with mechanical ventilation and 

automated windows, showing that the controlled system provided better IAQ (lower CO2 

concentrations).  

The drivers for the window operation sub-model were identified as being, mainly, the indoor 

and outdoor air temperatures (DUTTON; SHAO, 2010; HERACLEOUS; MICHAEL, 2019; 

STAZI; NASPI; D’ORAZIO, 2017a). Dutton and Shao (2010), for example, identified 

correlations between the window closing behaviour and the indoor air temperature during 

unheated periods or the outdoor temperature during heated periods. The window opening 

behaviour had correlations with the outdoor air temperature, the CO2 concentration and the 

vapour pressure. Stazi et al. (2017a) highlighted the indoor and outdoor air temperatures as 

the main drivers for window operation, while the association of window operation with CO2 

concentration was rated as weak. Conversely, Heracleous and Michael (2019) identified the 

CO2 concentration and the outdoor air temperature as the main drivers for window opening 

behaviour due to poor indoor air quality or thermal discomfort, and the indoor air temperature 

as the main driver to window closing behaviour due to thermal discomfort. Belafi et al. (2018) 

identified different drivers for different case studies: in one case, window operation was driven 
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by habits and time-dependent actions, since the teacher opened the windows during breaks, 

regardless of the environmental conditions or students’ complains, while in the other case, 

window operation was driven by indoor and outdoor air temperatures, since the teacher 

operated the window based on students’ observations and complains.  

Although all the reviewed studies considered in their methodology the correlation between 

occupant interaction (sub-models) and drivers, only 46% actually presented the resultant OB 

model. Lourenço et al. (2019), for example, used the lighting operation behaviour sub-model 

as an input to model the occupant behaviour and compared simulation results with measured 

data to evaluate the OB model adequacy. Simanic et al. (2020) developed a stochastic OB 

model to predict energy use by adopting the random sampling method to determine the 

combination of user-related parameters (occupancy rate and energy use for hot water supply, 

lighting and appliances). As to the natural ventilation system operation, Englund et al. (2020) 

developed a deterministic model of airing behaviour and window and door operation using 

linear regression analysis to correlate daily heat power and outdoor temperature. Stazi et al. 

(2017a) and Dutton and Shao (2010) developed stochastic models of window operation using 

logistic regression analysis to determine the contribution of environmental variables on the 

window operation behaviour. Belafi et al. (2018) developed a stochastic model of window 

operation by combining regression analysis and absolute thresholds.  

2.4.3 Model implementation (post-processing) 

Only 31% of the reviewed studies implemented the OB models in a BPS tool. Dutton and Shao 

(2010) used their OB stochastic model to schedule window opening in an EnergyPlus model. 

Simanic et al. (2020) used a set of combinations of user-related parameters as input for BPS 

in IDA ICE software. Lourenço et al. (2019) simulated lighting operation scenarios based on 

the behaviour patterns observed in loco, by using Radiance and Energy Plus software tools, 

through the Design Builder interface. Englund et al. (2020) calibrated a model in IDA ICE 

software based on measured data and implemented a deterministic OB model to determine 

heat losses resultant from OB. 

2.5 Potential changes on naturally ventilated school buildings design and occupant 

behaviour due to the COVID-19 pandemic 

Since March 2020, the COVID-19 pandemic not just renewed but also emphasized the interest 

and urgency on investigating deficient IAQ and thermal comfort conditions in school 

classrooms, since the majority  of the COVID-19 infections occur in public indoor environments 
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(ALONSO et al., 2021; AZUMA et al., 2020; MOKHTARI; JAHANGIR, 2021; QIAN et al., 2021). 

Recent research studies highlighted the association between indoor occupation and risk of 

infection, showing that the SARS-CoV-2 reproduction rate (contagiousness) in indoor 

environments is three to four times higher than in outdoor environments (DIETZ et al., 2020; 

QIAN et al., 2021).  Also, the airborne transmission was found to be the main infection route, 

especially in indoor environments with poor ventilation, high occupancy and high exposure 

time, such as school buildings (HOU; KATAL; WANG, 2021).  

In order to reduce the COVID-19 transmission, most of the governments temporarily closed 

schools facilities in 2020 and some of them remained closed during the beginning of 2021 

(KAPOOR et al., 2021). However, while the COVID airborne transmission in school buildings 

is a challenging issue, especially in naturally ventilated classrooms, which rely only on 

occupants to achieve good IAQ conditions through manual operation of windows, the necessity 

to keep schools opened led to the rapid development of guidelines to improve IAQ in 

classrooms (ALONSO et al., 2021; KAPOOR et al., 2021). Such guidelines and protocols were 

developed by international organizations and associations (ASHRAE, 2020a; CIBSE, 2020; 

VAN DIJKEN, 2020; WORLD HEALTH ORGANIZATION, 2020) and specific literature, but few 

of them focus specifically on naturally ventilated buildings. Table 2.4 presents the research 

and review papers selected in LR 3, which aimed to investigate the potential changes on 

occupant behaviour in school buildings due to the COVID-19 pandemic. 

2.5.1 Guidelines to improve IAQ in classrooms and the occupants’ role 

Special attention to the IAQ in school buildings has led to the use of ventilation protocols 

developed by associations throughout the world. The World Health Organization (WHO) and 

the Chartered Institution of Building Services Engineers (CIBSE), for example, proposed 

strategies to ensure adequate ventilation in classrooms, such as the use of natural ventilation 

to increase dilution of indoor air pollutants and the increase of airflow supply to ensure 

adequate ventilation (CIBSE, 2020; WORLD HEALTH ORGANIZATION, 2020). The American 

Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) also published a 

guidance towards the reopening of schools, suggesting strategies regarding ventilation (to 

provide a good supply of outside air), filtration (to use MERV-13 filters or portable HEPA air 

cleaners) and air cleaning (to use a germicidal ultraviolet air disinfection device to supplement 

ventilation and filtration) (ASHRAE, 2020a). The Federation of European Heating, Ventilation 

and Air Conditioning Associations (REHVA) published recommendations especially related to 

the classrooms’ ventilation, such as installing CO2 monitors to indicate when extra ventilation 

is necessary and installing mechanical ventilation systems to ensure a continuous air renewal 
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throughout the year (VAN DIJKEN, 2020). The German Federal Environmental Agency (UBA) 

suggested ventilation strategies which includes to maintain a minimum outdoor air ventilation 

rate of 3 ACH, to open windows during intervals and every 20 minutes for 3 to 5 minutes during 

winter or for 10 to 20 minutes during summer (UBA, 2021). 

Table 2.4 – Reviewed research and review papers on OB in school buildings during the COVID-19 pandemic (LR 
3) 

Publication Ventilation 
system * 

Location Climate 
** 

Objective Method 

Alonso et al. 
(2021) 

MV and NV Spain Csa Analyse the effects of the COVID-19 pandemic 
on thermal comfort and IAQ conditions in winter 

Field measurements and 
questionnaires 

Arjmandi et 
al. (2021) 

MV - - Perform numerical modelling of infection control 
to reduce the risk of infectious exposure while 

improving thermal comfort parameters 

Computational Fluid 
Dynamics (CFD) 

simulation and multi-
objective optimization 

Asanati et 
al. (2021) 

MV and NV - - Propose mitigation strategies for school buildings, 
especially regarding ventilation and testing 

Literature review 

Deng et al. 
(2021) 

MV USA BSk Investigate the influence of IAQ and thermal 
comfort on students’ illness-related absenteeism 

Field measurements and 
statistical analysis 

(negative binomial model) 
Ding et al. 
(2021) 

NV and MV - - Evaluate the ventilation strategies currently 
adopted in school buildings regarding their 

efficiency of reducing infectious aerosols in the 
indoor environment 

Literature review 

Hou et al. 
(2021) 

MV and NV Canada Dfb Estimate ventilation rate and airborne infection 
risk of COVID-19 

Field measurements and 
sensitivity analysis 

(Bayesian calibration and 
Markov Chain Monte 

Carlo). 
Kapoor et al. 
(2021) 

NV - - Identify the necessity of IEQ in NV school 
buildings during the COVID- 19 pandemic 

Systematic literature 
review 

Park et al. 
(2021) 

MV and NV Korea Dwa Quantify the natural ventilation performance 
according to the window opening conditions and 

infection probability. 

Field measurements and 
calculation procedure 

Schibuola 
and 
Tambani 
(2021) 

MV and NV Italy Cfa Investigate the possibility to contain COVID-19 
via increasing ventilation rates obtained through 

high energy efficiency systems. 

Field measurements and 
calculation procedure 

Zivelonghi 
and Lai 
(2021) 

NV - - Propose and analyse strategies to mitigate 
airborne infection risk 

Calculation procedure 
(GN-Riley model) 

Orosa et al. 
(2020) 

MV and NV Spain Csa Define the optimal moment and the exact 
increment of the number of air changes to lower 

energy consumption. 

Calculation procedure. 

*NV – natural ventilation; MM – mixed-mode; MV – mechanical ventilation. 
**Am – Tropical monsoon; BWh – Hot desert; BSh – Subtropical steppe; BSk – Cold semi-arid; Cfa – Humid subtropical; Cfb – 
Oceanic; Csa – Hot-summer Mediterranean; Csb – Warm-summer Mediterranean; Dfa – Hot-summer humid continental; Dfb – 
Warm-summer humid continental; Dwa - Monsoon-influenced hot-summer humid continental. 
 
Three review articles associating the subjects airborne virus transmission in indoor 

environments and school buildings were found. Ding et al. (2021) investigated ventilation 

strategies adopted in schools, aiming to outline future possible solutions to control virus 

airborne transmission. The authors concluded that both natural and mechanical ventilation can 

reduce airborne transmission if properly designed, operated and maintained, but standards 

and guidelines are still lacking. Kapoor et al. (2021) discussed the impacts of COVID-19 on 

naturally ventilated classrooms and highlighted that most guidelines regarding natural 
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ventilation during the pandemic do not consider a specific building typology, which 

demonstrates the need of guidelines focused on school buildings. Asanati et al. (2021) 

presented a short communication discussing ventilation, testing and vaccination in school 

buildings, suggesting that increasing ventilation in classrooms is an important approach to 

lower the concentration of indoor air pollutants and contaminants, thus reducing the risk of 

infection. The authors proposed a model for ventilation and filtration in schools that suggests 

implementing air ducts to increase the air change rate and adding HEPA filters in existing 

HVAC units or in portable units.     

Original research papers recently published have shown the importance of air renewal to dilute 

contaminants and, consequently, to reduce airborne infection risks, both in naturally and 

mechanically ventilated school environments (PARK et al., 2021). The indoor CO2 levels may 

be used as an index to estimate the ventilation rate and, therefore, the airborne transmission 

of diseases (BHAGAT et al., 2020; HOU; KATAL; WANG, 2021). Hence, its concentration rate 

is widely used as an indicator of IAQ (CHATZIDIAKOU; MUMOVIC; SUMMERFIELD, 2015). 

As a result, the current pandemic brought into discussion which CO2 levels and ventilation 

rates thresholds would be adequate to reduce the probability of infection in school classrooms, 

since recommendations from standards could not be enough to prevent airborne transmission 

(HOU; KATAL; WANG, 2021).  

Schibuola and Tambani (2021) investigated the COVID-19 infection risk in both naturally 

ventilated and mechanically ventilated school buildings located in Italy, by calculating the air 

change rates and measuring and simulating the CO2 concentration. Results showed that the 

mechanical ventilation could considerably reduce indoor viral concentration and, consequently, 

the infection risk – with the reproduction number decreasing from 13.1 in a naturally ventilated 

classroom without the use of facemasks to under 1 in a classroom with high ventilation rates 

and facemasks’ filtration, which is considered a safe limit to stop the outbreak. Hou et al. (2021) 

analysed the ventilation rate and airborne infection risk in three Canadian schools through a 

one-day measurement of CO2 levels. Results showed that outdoor ventilation rates between 3 

and 8 ACH and a CO2 concentration around 500 ppm are the thresholds to prevent COVID-19 

airborne transmission in classrooms during a school day (less than 8 hours of continuous use). 

Park et al. (2021) analysed the natural ventilation performance and the infection probability in 

a Korean school building by using air temperature, relative humidity, wind velocity and CO2 

concentration data measured during the COVID pandemic. The authors found out that a 

window opening ratio of 15% could provide a ventilation rate of 6.5 ACH, which, in addition to 

restricting exposure time to less than 3 hours and wearing facemasks, would be adequate to 

maintain infection risk at less than 1%. Mokhtari and Jahangir (2021) analysed the effects of 
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indoor occupancy on COVID-19 infection risk in an Iranian university classroom, concluding 

that an optimum occupant distribution could reduce the number of infected people by up to 

56%. The authors also showed that increasing ventilation rates and reducing classes duration 

could help airborne transmission prevention. Zivelonghi et al. (2021) applied the GN-Riley 

infection risk model in a classroom scenario and proposed mitigation interventions regarding 

ventilation, occupancy, classroom’s volume and CO2 monitoring. The authors concluded that 

regular window opening could almost halve the infection risk in classrooms and, if added to 

facemasks use, could achieve acceptable levels of airborne transmission risk. Other 

suggested interventions were class splitting and CO2 sensors installation. 

Recent research studies also focus on the relationship between IAQ and students’ health and 

thermal comfort. Alonso et al. (2021) analysed the effects of the COVID-19 pandemic on 

thermal comfort and IAQ conditions in two mixed-mode classrooms of southern Spain, 

comparing CO2 concentration, air temperature and relative humidity data collected before and 

during the pandemic. Results showed that CO2 concentration weekly average decreased from 

values around 1000 ppm before pandemic (medium quality category) to 600-750 ppm during 

pandemic (optimum quality category). However, since IAQ was the main priority and 

classrooms were only naturally ventilated due to security measures, comfort conditions 

worsened, increasing from 50-60% of discomfort hours before pandemic to more than 80% of 

discomfort hours during pandemic. Deng et al. (2021) investigated the relationship between 

classrooms’ IAQ and thermal comfort and students’ illness related to absenteeism by analysing 

data collected before the pandemic in 85 American school buildings. Results showed that the 

majority of the classrooms were poorly ventilated and students’ absenteeism were associated 

to the elevated CO2 concentration only during the heating season. Arjmandi et al. (2021) 

analysed the COVID-19 infection risk in school classrooms in order to reduce airborne 

transmission and improve thermal comfort, by using Computational Fluid Dynamics to simulate 

the performance of five mechanical ventilation systems (with different inlet and outlet vents 

position). Results showed the best scenario as the one with individual inlets and outlets located 

on the floor and ceiling of the teacher and each student’s desk, since the particles exit through 

the shortest and straightest path-line.  

Most strategies suggested by the reviewed research papers to improve IAQ in classrooms rely 

on the occupant behaviour, especially in naturally ventilated buildings. Nevertheless, only two 

research papers mention the occupants’ role as part of the solution to the problem. Schibuola 

and Tambani (2021) emphasizes the arbitrariness of natural ventilation management due to 

its dependence on the OB, which contributes to the lack of acceptable IAQ conditions in 
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naturally ventilated classrooms. Zivelonghi and Lai (2021) consider OB and exposure time to 

model the SARS-CoV2 emission rates inside a classroom. 

2.5.2 Potential changes on actions’ drivers due to COVID-19 and potential future pandemics 

Recommendations and protocols to prevent airborne virus transmission in school classrooms 

are leading to changes on occupants’ actions. Until recently, the main drivers to window 

operation behaviour were environmental factors associated to thermal comfort requirements, 

such as indoor and outdoor air temperature (JIA et al., 2021; MICOLIER et al., 2019; MUN; 

KWAK; HUH, 2021; STAZI; NASPI; D’ORAZIO, 2017b). The current pandemic brought up the 

urgency in addressing IAQ related drivers, such as the indoor CO2 concentration, with direct 

association to air renewal. Consequently, the decision to open or close a window, especially 

during the heating season, is followed by the trade-off between achieving thermal comfort or 

improving indoor air quality (ALONSO et al., 2021). Thus, the behavioural dimension is 

currently being affected by the COVID-19 response measures, including changes in energy-

related behaviours, decision-making and daily routines (FELL et al., 2020). Also, the potential 

changes on actions’ drivers may be different and not comparable between and within countries, 

since COVID-19 impacts and restrictions were different in each place (FELL et al., 2020). 

Therefore, it is essential to investigate the behaviour changes, their actions’ drivers, their 

impact in the building environment, including energy and thermal performance, and whether 

they are durable or ephemeral (FELL et al., 2020). Hence, this research topic is also important 

in phases without a pandemic, since it focuses on human and especially children’s health and 

long-term well-being. 

Figure 2.4 represents a framework for OB modelling in naturally ventilated school classrooms, 

highlighting in red the potential impacts due to the COVID-19 pandemic. Occupants’ 

interactions regarding the classroom ventilation system (window, door and fan operation) and 

the clothing adjustment (use of masks) were impacted by recent secure measures and 

protocols. However, to what extent the behaviours’ changes will be durable is still unknown. 

Also, whilst there is an urgent need in increasing IAQ in classrooms to reduce virus airborne 

transmission, thermal comfort requirements could potentially be put in second plan, if a 

simultaneous multi-input and output parameters interaction is not taken into consideration. So 

far, all models developed and simulated during the COVID-19 pandemic regarding window and 

door operation and mechanical ventilation operation aimed to find the best scenario to reduce 

the infection risk (ARJMANDI et al., 2021; HOU; KATAL; WANG, 2021; OROSA; 

NEMATCHOUA; REITER, 2020; PARK et al., 2021; SCHIBUOLA; TAMBANI, 2021; 
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ZIVELONGHI; LAI, 2021) and do not necessarily reflect the real occupant behaviour or its 

potential changes. 

 
Figure 2.4 – Framework for OB in naturally ventilated classrooms 

2.6 Conclusion: limitations and future perspectives 

Occupant behaviour models have been developed to predict and represent human behaviour 

in building performance simulation, aiming at optimizing the building design and, therefore, 

reduce the performance gap. Occupants usually respond in different ways to the built 

environment, especially when comparing different building typologies and location. 

Nevertheless, the developed models focus on, mainly, office and residential contexts, whereas 

few publications address school buildings. Also, in locations where natural ventilation and 

mixed-mode are effective strategies for the cooling season, school classrooms usually provide 

manual operation of windows, which reinforces the occupant’s role over the environment’s 

performance. Therefore, this paper presents a comprehensive and critical review about 

occupant behaviour modelling for building performance simulation of naturally ventilated and 

mixed-mode school buildings. 

We identified three main steps to represent the OB modelling approach in current literature, 

which refers to the data collection (pre-processing, step 1), the OB model development and 

evaluation (processing, step 2) and the OB model implementation (post-processing, step 3) in 

building performance simulation. Results from SLR 1 (mainly residential and office buildings, 

for instance) showed an implementation rate of 85% for step 1, 100% for step 2 and 56% for 

step 3. In contrast, the second and third steps were not fully considered in most of the research 

studies focused on school buildings (SLR 2), being present in only 46% (step 2) and 31% (step 



54 

 

 

3) of the reviewed studies, showing that OB modelling is still in an initial stage for school 

buildings, which is an important research gap. Nevertheless, the data collection (step 1) has 

been widely adopted as a research method in school buildings and can be identified in all the 

reviewed studies.  

By comparing the data collection methods (step 1) adopted in SLR 1 and SLR 2, we identified 

similarities, such as the combination of both physical monitoring and occupant investigation 

methods. Nevertheless, a particularity of occupant investigation in school buildings is the 

identification of the teacher as the main active occupant regarding the environment adjustment, 

and the decision-making process relying mostly on collective needs and school rules. As to 

the model development (step 2), both SLR 1 and SLR 2 showed the environmental factors as 

the most investigated drivers, in special the indoor and outdoor air temperature. Although all 

the reviewed studies regarding school buildings considered, in their methodology, the 

correlation between occupant interaction (sub-models) and drivers, only 46% actually 

presented the resultant OB model. A comparison between SLR 1 and SLR 2 regarding the 

model implementation (step 3) showed that, from the few studies on school buildings that 

actually implemented the OB model, all of them adopted the ‘direct input or control’ 

implementation approach, by representing the studied environment through BPS tools. The 

co-simulation, a common approach adopted in the SLR 1 research studies, was not used in 

any of the reviewed studies from SLR 2.  

Future research and OB model development and implementation are needed to address the 

following challenges, identified during this study:  

• Almost half of the reviewed OB models focus on one single behaviour, however, in 

reality, occupant behaviours are connected. Therefore, to guarantee a more accurate 

representation, OB models should represent multiple behaviours simultaneously. 

• External drivers, especially environmental factors (e.g., indoor and outdoor air 

temperature and CO2 concentration), were more investigated in the reviewed studies 

than the internal drivers, since they are easier to measure and quantify. However, 

internal drivers, such as physiological and psychological factors, can also influence 

occupant behaviour and are essential to compare occupant behaviour in different 

typologies (e.g., schools’ and offices’ occupants have different preferences, ages, etc.).  

• The OB model evaluation is essential to verify if the model is reliable and effective. 

However, it was little addressed in the literature and there is a lack of guidelines to 

properly develop this evaluation. 
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• As in some classrooms children have little or no freedom of action, teachers’ behaviour 

and collective actions should be better investigated within the school buildings context.  

• The OB investigation in school buildings usually focuses on a single scope, mainly 

energy consumption, IEQ, IAQ, thermal or visual comfort. However, OB can impact 

negatively and/or positively on different aspects of the building performance, so a 

simultaneous multi-input and output parameters interaction analysis should be taken 

into consideration. As an example, the urgent need to increase IAQ in classrooms to 

reduce COVID-19 airborne transmission might have, potentially, put thermal comfort 

requirements in second plan. 

• The behavioural dimension in school buildings is currently being affected by the 

COVID-19 response measures, making it essential to investigate which are the 

behaviour changes, their actions’ drivers and their impacts on the built environment. 

Also, to what extent the potential changes on actions’ drivers due to COVID-19 

pandemic in naturally ventilated classrooms will be durable or ephemeral is an 

important issue that impacts directly on children health, comfort and learning process 

and, therefore, should be better investigated. 
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3 School classrooms indoor conditions during the COVID-19 
pandemic  

This chapter is the transcription of the following paper: 

Condições de conforto térmico e QAI em salas de aula naturalmente ventiladas 
durante a pandemia de Covid-19  
Authored by Paula Brumer Franceschini, Iara Nogueira Liguori and Leticia Oliveira 

Neves 

Published in Ambiente Construído (ISSN: 1678-8621), volume 22, in 2022, and 

catalogued through the DOI: 10.1590/s1678-86212022000400637. 

 

Resumo 

Para a obtenção de boas condições de conforto térmico e qualidade do ar interior (QAI) em 

salas de aula naturalmente ventiladas, devem-se garantir taxas de renovação do ar 

adequadas. Em 2020, esta questão tornou-se especialmente relevante devido à pandemia de 

Covid-19, já que pode contribuir para a redução do potencial de transmissão de doenças 

respiratórias. O objetivo deste estudo é avaliar as condições de conforto térmico e QAI de 

uma sala de aula naturalmente ventilada a fim de identificar cenários que contribuam, 

simultaneamente, para a redução do risco de disseminação do vírus SARS-CoV-2 e para a 

manutenção do conforto térmico dos usuários. Variáveis climáticas foram monitoradas em 

uma sala de aula antes e durante a pandemia de Covid-19 e um modelo de simulação foi 

calibrado. Cenários variando o número de ocupantes e a taxa de renovação do ar foram 

simulados a fim de avaliar o impacto dessas variáveis na concentração de CO2, na 

probabilidade de infecção e na temperatura operativa interna. O melhor cenário apresentou 

uma redução de 42% na concentração de CO2 e 33% na probabilidade de infecção e um 

aumento de 60% nas horas ocupadas em conforto, se comparado ao pior cenário. No entanto, 

as estratégias adotadas devem ser analisadas para cada situação, assim como os riscos e os 

benefícios para os ocupantes da sala de aula. 
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Palavras-chave: Qualidade do Ar Interior (QAI). Conforto térmico. Ventilação natural. 

Edificação escolar. 

Abstract 

In order to achieve good thermal comfort and indoor air quality (IAQ) conditions in naturally 

ventilated classrooms, adequate air change rates must be ensured. In 2020, this issue became 

especially relevant due to the Covid-19 pandemic, since it may contribute to minimize the 

transmission potential of respiratory diseases. This study aims to evaluate the thermal comfort 

and IAQ conditions of a naturally ventilated classroom, in order to identify scenarios that 

contribute, simultaneously, to the reduction of the risk of dissemination of the SARS-CoV-2 

virus and to the maintenance of thermal comfort for users. Environmental variables were 

monitored in a classroom before and during the Covid-19 pandemic and a simulation model 

was calibrated. Scenarios varying the number of occupants and the air change rate were 

simulated in order to assess the impact of these variables on the CO2 concentration, on the 

infection probability and on the indoor operative temperature. The best scenario showed a 

reduction of 42% in the concentration of CO2 and 33% in the infection probability and an 

increase of 60% in comfort hours, compared to the worst scenario. However, the strategies 

adopted must be analysed for each situation, as well as the risks and benefits for classroom 

occupants. 

Keywords: Indoor air quality (IAQ). Thermal comfort. Natural ventilation. School building. 

3.1 Introdução 

As escolas são os locais em que as crianças passam a maior parte do tempo durante a 

infância (DENG; ZOU; LAU, 2021; KATAFYGIOTOU; SERGHIDES, 2014; STAZI; NASPI; 

D’ORAZIO, 2017b), o que reforça a importância da qualidade da arquitetura escolar, em amplo 

aspecto. As crianças são mais vulneráveis e sensíveis a influências do ambiente do que os 

adultos, pois: 

(a) elas respiram mais rápido, uma vez que têm a taxa metabólica mais elevada, inalando 

mais ar (e mais poluentes) em relação ao peso do corpo; 

(b) os seus órgãos estão ainda em desenvolvimento; e 
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(c) elas têm uma expectativa de vida maior e, portanto, têm mais tempo para manifestar 

qualquer doença associada (DENG; ZOU; LAU, 2021; WORLD HEALTH ORGANIZATION, 

2018). 

Além de influenciar a saúde e o bem-estar dos usuários, as condições de temperatura, 

umidade e qualidade do ar em salas de aula são fatores importantes no processo de 

aprendizagem dos alunos (DUTTON; SHAO, 2010; KATAFYGIOTOU; SERGHIDES, 2014). 

Uma pesquisa conduzida na Dinamarca mostrou que a falta de qualidade ambiental em 

escolas reflete em custos adicionais com professores e com cuidados médicos, devido ao 

absenteísmo por doenças, além de gerar impactos socioeconômicos (OLESEN, 2015). Nesse 

contexto, é importante melhorar as condições de conforto térmico e qualidade do ar interior 

(QAI) de salas de aula de edificações escolares para que as crianças tenham um 

desenvolvimento saudável e um melhor desempenho escolar. 

Uma questão-chave para a obtenção de boas condições de conforto térmico e QAI em salas 

de aula é o uso de um sistema de ventilação apropriado, com taxas de renovação do ar 

adequadas (VAN DIJKEN, 2020). A avaliação da qualidade da ventilação de um ambiente 

pode ser monitorada pela concentração de dióxido de carbono (CO2), pois, como os usuários 

exalam CO2 ao respirar, a sua alta concentração pode indicar que a renovação do ar está 

inadequada (UMWELTBUNDESAMT, 2021). Esse é um ponto crítico para as edificações 

escolares, devido ao elevado índice de ocupação dos ambientes (HOU; KATAL; WANG, 2021) 

e, em especial, para os ambientes naturalmente ventilados – estratégia adotada em grande 

parte das escolas localizadas em climas tropical ou subtropical (WORLD HEALTH 

ORGANIZATION, 2015). 

Em salas de aula naturalmente ventiladas, os níveis de ventilação recomendados 

frequentemente deixam de ser atendidos (DENG; ZOU; LAU, 2021; DUTTON; SHAO, 2010), 

uma vez que a ventilação natural depende das condições externas, que variam ao longo do 

tempo (VAN DIJKEN, 2020). Exemplo disso são os resultados obtidos por meio de medições 

contínuas das taxas de CO2 em mais de 1.000 salas de aula na Dinamarca, na Suécia e na 

Noruega, que mostraram que apenas 44% das salas apresentavam níveis aceitáveis de 

concentração de CO2 (de 385 a 1.000 ppm), sendo os piores resultados obtidos nos ambientes 

naturalmente ventilados (OLESEN, 2015).  

Em 2020, as questões relacionadas à QAI em salas de aula tornaram-se especialmente 

relevantes devido à pandemia de Covid-19 (PULIMENO et al., 2020). O ambiente construído 

serve como potencial vetor de transmissão de doenças como a Covid-19, principalmente em 
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ambientes fechados e com pouca ventilação, alta taxa de ocupação e grande período de 

exposição, como as escolas (BHAGAT et al., 2020; DIETZ et al., 2020). Evidências mostram 

que a taxa de contágio do SARS-CoV-2, ou seja, quantas pessoas saudáveis uma pessoa 

infectada contamina, é três a quatro vezes maior em ambientes internos do que em ambientes 

externos (DIETZ et al., 2020; QIAN et al., 2021), sendo a transmissão pelo ar a principal forma 

de contágio (HOU; KATAL; WANG, 2021). 

Mesmo que muitos casos de transmissão do SARS-CoV-2 possam ser reduzidos por meio de 

medidas como o distanciamento social e o uso de máscaras, o ar interno necessita de 

soluções adequadas de ventilação para remover os contaminantes de forma segura (LIPINSKI 

et al., 2020). Assim, estratégias adequadas de ventilação em ambientes com alta taxa de 

ocupação, como salas de aula, podem contribuir para a redução do potencial de transmissão 

de doenças respiratórias (DIETZ et al., 2020). 

Com o objetivo de manter as escolas abertas de forma segura, algumas publicações recentes 

trazem orientações para a ventilação adequada de salas de aula (ASHRAE, 2020a; CIBSE, 

2020; VAN DIJKEN, 2020; WORLD HEALTH ORGANIZATION, 2020). A Agência Ambiental 

Federal da Alemanha sugere medidas relacionadas à abertura de janelas para garantir um 

mínimo de três trocas de ar por hora no ambiente (UMWELTBUNDESAMT, 2021). A 

ASHRAE, a Organização Mundial da Saúde (OMS) e o CIBSE recomendam a implementação 

de medidas para aumentar a ventilação natural, melhorar o sistema de filtragem do ar e 

purificar o ar interno (ASHRAE, 2020a; CIBSE, 2020; WORLD HEALTH ORGANIZATION, 

2020). A REHVA ressalta que a ventilação natural não pode ser garantida o tempo todo, pois 

depende da diferença de temperatura entre os ambientes interno e externo e, portanto, a 

ventilação mecânica pode ser necessária para a obtenção de uma boa QAI (VAN DIJKEN, 

2020). 

Estudos recentes apontaram dados mais específicos sobre o risco de transmissão do vírus 

SARS-CoV-2 em salas de aula de escolas localizadas no Canadá (HOU; KATAL; WANG, 

2021), na Itália (SCHIBUOLA; TAMBANI, 2021; ZIVELONGHI; LAI, 2021) e na Coreia do Sul 

(PARK et al., 2021), por meio do monitoramento da concentração de CO2 no ambiente e do 

cálculo ou da simulação das taxas de renovação do ar. Para estimar a taxa de contágio, 

utilizou-se o modelo matemático de Wells-Riley, desenvolvido para prever a transmissão de 

doenças respiratórias em salas de aula (RILEY; MURPHY; RILEY, 1978) adaptado ao 

contexto da pandemia de Covid-19. 
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Hou, Katal e Wang (2021) identificaram valores recomendáveis para a taxa de renovação do 

ar ambiente, de 3h−1 a 8h−1, e para a concentração de CO2, de aproximadamente 500 ppm, 

para prevenir a transmissão do vírus durante um dia letivo de até 8 horas de exposição para 

três escolas utilizadas como estudo de caso. Park et al. (2021) identificaram que uma taxa de 

renovação de ar de 6,5h−1 obtida por ventilação cruzada associada ao uso de máscaras seria 

medida adequada para proporcionar uma probabilidade de infecção abaixo de 1%, 

considerando-se um período de exposição de até 3 horas. 

Os resultados de Schibuola e Tambani (2021) indicaram taxas de contágio variando entre 

valores abaixo de 1 (cenário com o uso de ventilação mecânica e com o uso de máscaras) a 

acima de 13 (cenário com ventilação natural e sem o uso de máscaras), concluindo que a 

ventilação mecânica e o uso de máscaras são estratégias efetivas para reduzir o risco de 

infecção em ambientes internos. Zivenlonghi e Lai (2021) identificaram que a abertura regular 

das janelas poderia reduzir pela metade a taxa de contágio nas salas de aula monitoradas e, 

quando associada ao uso de máscaras, poderia atingir níveis seguros de taxa de contágio.  

O impacto da pandemia de Covid-19 no conforto térmico de salas de aula também tem sido 

abordado pela literatura recente (ALONSO et al., 2021; LOVEC; PREMROV; LESKOVAR, 

2021; MONGE-BARRIO et al., 2022). Enquanto a pandemia evidenciou a importância da QAI 

em salas de aula, levando a mudanças significativas nos protocolos de ventilação, o conforto 

térmico, antes uma prioridade, passou para segundo plano (LOVEC; PREMROV; 

LESKOVAR, 2021). Diversos estudos mostraram uma piora nas condições de conforto 

térmico de salas de aula durante a pandemia, em especial em escolas naturalmente ventiladas 

e em períodos de temperatura externa muito baixa ou muito alta (ALONSO et al., 2021; 

MONGE-BARRIO et al., 2022). 

Alonso et al. (2021), em um estudo conduzido em duas salas de aula no sul da Espanha, 

identificaram uma redução na média da concentração de CO2 de 1.000 ppm antes da 

pandemia para 600-750 ppm durante a pandemia, mas um aumento das horas de desconforto 

térmico, de 50-60% para 80%. Monge-Barrio et al. (2022), ao monitorarem salas de aula antes 

e durante a pandemia, também na Espanha, identificaram uma redução na concentração de 

CO2 e um aumento nas horas de desconforto, em especial no inverno, o que levou a um 

aumento do consumo de energia para aquecimento. Por outro lado, as condições de conforto 

térmico não se mostraram afetadas durante a pandemia em um estudo conduzido em salas 

de aula na Eslovênia, que mostrou, também, uma melhora de 30% na média diária da 

concentração de CO2 interno em comparação com período anterior à pandemia (LOVEC; 

PREMROV; LESKOVAR, 2021). 
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No Brasil, o Ministério da Saúde publicou algumas orientações para a retomada das atividades 

escolares presenciais, porém a única recomendação em relação à ventilação das salas de 

aula é a de abrir as portas e as janelas para aumentar a circulação de ar no ambiente (BRASIL, 

2020). No entanto, as condições climáticas e a arquitetura escolar brasileiras apresentam 

diferenças significativas em relação aos países mencionados nos estudos citados, sendo 

inadequado, portanto, importar as medidas sugeridas nos documentos internacionais já 

publicados (ASHRAE, 2020a; CIBSE, 2020; VAN DIJKEN, 2020; WORLD HEALTH 

ORGANIZATION, 2020). 

As salas de aula de escolas públicas brasileiras e, em especial, das escolas públicas do 

estado de São Paulo, mantidas pela Fundação para o Desenvolvimento da Educação (FDE), 

funcionam, em sua maioria, com aberturas para ventilação natural e, em alguns casos, com 

ventilação mecânica proporcionada por ventiladores de teto ou parede. Nessas escolas, o ano 

de 2020 foi marcado pelo ensino a distância e por tentativas de volta às atividades em 

períodos de curta duração e com número reduzido de alunos. 

Para que as escolas funcionem de forma mais segura, a QAI em salas de aula precisa ser 

avaliada, de forma a auxiliar na definição de estratégias que resultem em taxas de ventilação 

adequadas e, por consequência, que proporcionem um ambiente mais saudável e confortável 

aos usuários. Da mesma forma, aumentos na taxa de renovação do ar ambiente não devem 

acarretar uma piora nas condições de conforto térmico. Em vista disso, o objetivo deste estudo 

é avaliar as condições de conforto térmico e a QAI de salas de aula naturalmente ventiladas 

a fim de identificar cenários que contribuam, simultaneamente, para a redução do risco de 

disseminação do vírus SARS-CoV-2 e para a manutenção do conforto térmico dos usuários. 

3.2 Método 

O método adotado contemplou o monitoramento in loco de variáveis climáticas de uma sala 

de aula e simulações computacionais. As etapas de trabalho são detalhadas a seguir. 

3.2.1 Monitoramento de variáveis climáticas em sala de aula 

A coleta de dados foi realizada em uma escola estadual administrada pela Fundação para o 

Desenvolvimento da Educação, localizada em Campinas, São Paulo. A escola é de ensino 

médio, com alunos entre 14 e 17 anos. As salas de aula têm aproximadamente 49 m² e são 

distribuídas em três edificações térreas (Figura 3.1). A sala de aula selecionada para o estudo 

(Figura 3.2) tem a fachada com janela voltada para sudeste (ventilação unilateral, sendo o 
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vento predominante em direção a sudeste). A obtenção de ventilação cruzada só é possível 

por meio da abertura da porta. 

 
Figura 3.1 – Foto e planta da situação da escola, com a posição da sala de aula monitorada 

Fonte: Liguori (2020). 

    
Figura 3.2 – Foto e planta baixa da sala de aula 

O monitoramento foi realizado em dois períodos – antes e durante a pandemia de Covid-19 

(Tabela 3.1). No período durante a pandemia, observaram-se mudanças no número de 

ocupantes e no período de ocupação devido às restrições impostas pelo Plano São Paulo 

(SÃO PAULO, 2021), elaborado para a pandemia de Covid-19, fase amarela. Adicionalmente, 

algumas estratégias foram recomendadas às escolas nesse período, como manter sempre as 

janelas e as portas abertas e não utilizar o ventilador. 
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As variáveis climáticas monitoradas incluíram: temperatura do ar (Ta), temperatura de globo 

(Tg) e umidade relativa (UR). Os equipamentos utilizados para a medição são apresentados 

na Tabela 3.2. O datalogger de temperatura do ar e de globo foi posicionado a uma altura de 

1,5 m e a uma distância mínima de 40 cm da parede interna, em um tripé, para não atrapalhar 

o andamento da aula. Os dados foram registrados a cada 10 minutos. No período durante a 

pandemia, foram monitoradas também a concentração de CO2 e a operação manual de 

janelas e ventiladores. O sensor de CO2 foi posicionado na parede a uma altura de 1,1 m, 

referente à altura da cabeça de uma pessoa sentada (INTERNATIONAL STANDARD, 1998), 

afastado das janelas e próximo às mesas dos alunos. 

Tabela 3.1 – Coleta de dados antes e durante a pandemia 

Coleta Período Número de 
ocupantes 

Período de ocupação 

Antes da pandemia (5 dias, sendo 5 ocupados) 11/03 a 15/03/2019 40 7h30min às 12h30min e 
13h30min às 16h30min 

Durante a pandemia (7 dias, sendo 4 ocupados) 24/02 a 03/03/2021 20 8h às 11h30min 

Tabela 3.2 – Especificações técnicas dos equipamentos utilizados para o monitoramento 

Equipamento Alcance Precisão Período 
Datalogger temperatura/umidade, marca Testo, 
modelo 174H 

-20 ºC a 70 ºC 
0% a 100% 

± 0,5 ºC 
± 3% 

Antes da 
pandemia 

Datalogger temperatura/temperatura, marca Testo, 
modelo 175-T2 

-35 ºC a 55 ºC ± 0,5 ºC Antes e durante a 
pandemia 

Sonda de esfera quente, marca Testo, modelos 
0635 1549, 0635 1049 e 0613 1712 

-25 ºC a 80 ºC ± 0,2 ºC Antes e durante a 
pandemia 

Datalogger Hobo de State/Pulse/Event/Runtime, 
marca ONSET (para o monitoramento da operação 
das janelas) 

Frequência 
máxima 1 Hz 

± 1 min Durante a 
pandemia 

Datalogger de temperatura e umidade, iButton 
Hygrochron (para o monitoramento da operação 
dos ventiladores e das variáveis externas) 

-20 °C a 85 °C 
0% a 100% 

± 0,5 ºC 
± 0,6% 

Durante a 
pandemia 

Datalogger wi-fi com display e sensores integrados 
de temperatura e umidade, CO2 e pressão 
atmosférica, marca Testo, modelo 160 IAQ 

0 ºC a 50 ºC 
0% a 100% 

0 a 5.000 ppm 

± 0,5 ºC 
± 2% 

± (100 ppm + 3% do vm) 

Durante a 
pandemia 

As variáveis climáticas externas (temperatura do ar, umidade relativa, velocidade e direção 

do vento e índice de precipitação) de ambos os períodos (antes e durante a pandemia) foram 

disponibilizadas pelo Centro de Pesquisas Meteorológicas e Climáticas Aplicadas à 

Agricultura (Cepagri) da Unicamp, cuja estação meteorológica está localizada acerca de 10 

km de distância da escola monitorada. Os dados foram convertidos para o formato EnergyPlus 

Weather File (epw) por meio do Weather Converter versão 8.1.0.005, um programa auxiliar 

do software EnergyPlus. No período antes da pandemia, as temperaturas de bulbo seco 

média, média máxima e média mínima registradas foram, respectivamente, 23,7 °C, 30,4 °C 

e 19,9 °C. No período durante a pandemia, foram de 23,2 °C, 30 °C e 18,7 °C, 

respectivamente. 
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3.2.2 Simulações computacionais 

Um modelo de simulação da sala de aula monitorada foi calibrado com base nos dados 

coletados in loco, por meio do software EnergyPlus, versão 9.3. Na sequência, o modelo foi 

utilizado para a simulação de cenários, variando o número de ocupantes e a taxa de ventilação 

do ambiente, a fim de avaliar o impacto dessas variáveis na concentração de CO2 e na 

temperatura operativa interna dos ambientes.  

3.2.2.1 Elaboração do modelo 

A sala de aula foi modelada como uma única zona térmica. As paredes laterais foram 

consideradas adiabáticas, pois são comuns a outras salas de aula da escola de condições 

térmicas similares, não incluídas no modelo (Figura 3.3). O modelo de temperaturas do solo 

não perturbadas Kusuda e Achenbach foi utilizado para simular as trocas de calor pelo solo 

(ELI et al., 2019). A sala de aula foi modelada sem obstruções no entorno imediato, tendo em 

vista que as edificações presentes no entorno da escola são de baixa altura e não bloqueiam 

a radiação solar incidente na edificação em estudo (Figura 3.4). Para o cálculo de ventilação 

natural, coeficientes de pressão para uma edificação de formato retangular e sem obstruções 

no entorno imediato foram considerados (SWAMI; CHANDRA, 1988), o que pode ser 

encarado como uma simplificação adotada neste estudo. 

 
Figura 3.3 – Geometria da sala de aula 

 
Figura 3.4 – Planta do entorno imediato da escola 
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As propriedades térmicas dos materiais que compõem a edificação (Tabela 3.3), as 

características das esquadrias (Tabela 3.4) e as cargas internas de ocupação, equipamentos 

e iluminação (Tabela 3.5), levantadas com base na leitura do projeto e na observação in loco, 

foram inseridas como dados de entrada. A ventilação natural foi modelada com o modelo 

AirFlow Network, utilizando como coeficiente de descarga o valor de 0,6 (FLOURENTZOU; 

VAN DER MAAS; ROULET, 1998) e as características das esquadrias apresentadas na 

Tabela 3.4. 

Tabela 3.3 – Propriedades térmicas dos componentes construtivos 

Componente Descrição Transmitância 
térmica – U 
(W/m². K) 

Capacidade 
térmica – C 
(kJ/m². K) 

Absortância 
solar da 

sup. 
externa – α 

Fator solar 
– FS 

Parede externa Bloco de concreto 190x190x390 mm pintado 2,5 240 0,36 - 
Janela Vidro incolor 3 mm 5,7 - - 0,87 
Laje Laje de concreto 150 mm 2,7 243 - - 
Piso Argamassa de assentamento + piso cerâmico 
Forro Forro de PVC 1,8 21 0,65 - 
Cobertura  Telha cerâmica 

Tabela 3.4 – Características das esquadrias 

Item Descrição Área efetiva de abertura 
para ventilação 

Porta Porta de giro – 90 cm x 210 cm 1 
Janela Janela com 12 folhas pivotantes e 6 fixas – 170 

cm x 170 cm / peitoril 90 cm (4 unidades) 
0,2 

Tabela 3.5 – Cargas internas 

Item Descrição Carga total 
Ocupação Taxa metabólica de uma pessoa sentada 108 

W/pessoa 
Equipamentos 2 ventiladores – 300 W  

1 projetor – 260 W 
560 W 

Iluminação 6 luminárias, 2 lâmpadas fluorescentes cada – 40 W (unid.) 480 W 

3.2.2.2 Calibração do modelo 

O arquivo climático desenvolvido com base nos dados monitorados pela estação 

meteorológica do Cepagri/Unicamp durante o período da coleta de dados na escola foi 

utilizado para a calibração do modelo de simulação. Os dados coletados no período noturno 

(i.e., sem influência da radiação solar e das cargas térmicas internas) foram utilizados na 

calibração, de forma a minimizar as incertezas. Nesse período, as condições internas são 

influenciadas prioritariamente pelas alterações advindas da temperatura externa, da 

transferência de calor por condução através da parede e da janela e da infiltração (NEVES et 

al., 2020). O erro médio absoluto (Mean Absolute Error – MAE) foi utilizado para avaliar a 

precisão do modelo de calibração, de forma a selecionar o modelo com valores de 

temperatura operativa interna mais próximos dos dados medidos. 
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Com o modelo físico da envoltória calibrado, as condições internas durante o dia foram 

calibradas inserindo o padrão de ocupação a partir dos dados coletados e observados nos 

dois períodos de medição. Para o período antes da pandemia, a simulação considerou: 

(a) os ventiladores, a iluminação e o projetor ligados durante os períodos de aula (das 

7h30min às 12h30min e das 13h30min às 16h30min); 

(b) a ocupação em período integral com 40 pessoas (Tabela 3.1); e 

(c) as janelas e a porta da sala abertas durante os períodos de aula.  

Para o período durante a pandemia, a simulação considerou: 

(a) os ventiladores desligados durante todo o tempo e a iluminação e o projetor ligados 

durante os períodos de aula (das 8h às 11h30min); 

(b) a ocupação apenas no período da manhã com 20 pessoas (Tabela 3.1); e 

(c) as janelas e a porta da sala abertas durante o dia todo (das 8h às 17h). 

Para as duas simulações, o MAE foi calculado novamente para observar a diferença geral, 

sendo utilizados o erro médio normalizado (Normalised Mean Bias Error – NMBE) e o 

coeficiente de variação da raiz quadrada do erro médio (Coefficient of Variation of Root Mean 

Square Error – CV(RMSE)) para avaliar a precisão do modelo de calibração. Em ambos os 

modelos, o MAE ficou abaixo de 1 ºC e o NMBE e o CV(RMSE) ficaram abaixo dos valores 

de referência estabelecidos na ASHRAE Guideline 14 (ANSI/ASHRAE, 2002), que são de 

10% e 30%, respectivamente (Tabela 3.6). 

Tabela 3.6 – Precisão da calibração 

Simulação MAE (ºC) NMBE (%) CV(RMSE) (%) 
Antes da pandemia 0,35 1,25 7,30 
Durante a pandemia 0,85 -3,42 6,42 

3.2.2.3 Cenários simulados 

Dois parâmetros variáveis foram definidos para a elaboração dos cenários de simulação: a 

taxa de ocupação (número de ocupantes da sala de aula), tendo em vista que uma das 

estratégias utilizadas pelas escolas durante a pandemia foi a redução do número de alunos 

em sala de aula; e a taxa de renovação do ar ambiente (número de renovações de ar por 

hora) para analisar a necessidade de modificação do projeto de ventilação natural da sala de 

aula. Ambos os parâmetros têm por objetivo avaliar o impacto nos resultados da concentração 

de CO2 e da temperatura operativa no ambiente interno. Para a simulação dos cenários, foi 

utilizado o modelo calibrado com o período de ocupação de aula integral, das 7h30min às 

12h30min e das 13h30min às 16h30min. 
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Os cenários propostos para variação na taxa de ocupação (Tabela 3.7) foram definidos com 

base no Plano São Paulo (SÃO PAULO, 2021), que estabelece um percentual de ocupação 

das salas de aula para cada fase da pandemia: 35% na fase laranja (TO35), 70% na fase 

amarela (TO70) e 100% na fase verde (TO100), sendo a fase verde representativa da 

ocupação do ambiente antes da pandemia. A ocupação máxima (100%) considerou a turma 

completa de 45 alunos. 

Os cenários propostos para variação na taxa de renovação do ar ambiente seguiram os níveis 

de ventilação recomendados pela NBR 16401-3 (ABNT, 2008) para salas de aula (Tabela 

3.7), que estabelece a vazão mínima de ar exterior para promover a renovação do ar interior 

e manter a concentração de poluentes do ar em níveis aceitáveis. Apesar de a norma tratar 

de instalações de ar-condicionado, o uso dos valores propostos foi julgado adequado para o 

intuito deste estudo, uma vez que inexistem dados normativos brasileiros de taxa de 

renovação do ar para ambientes naturalmente ventilados. 

A norma propõe três níveis de vazão eficaz de ar exterior: mínimo (N1), intermediário (N2) e 

superior (N3), em que existem evidências de redução de reclamações e manifestações 

alérgicas. Para a área útil ocupada pelas pessoas (Az), foi considerada a área da sala de aula 

de 49 m² em todos os cenários. Os valores de vazão foram introduzidos nas simulações por 

meio do grupo Zone Airflow do EnergyPlus. 

Tabela 3.7 – Cenários propostos, variando a taxa de ocupação e a vazão eficaz de ar exterior (Vef) 

Variáveis Cenários 
N1 

TO35 
N1 

TO70 
N1 

TO100 
N2 

TO35 
N2 

TO70 
N2 

TO100 
N3 

TO35 
N3 

TO70 
N3 

TO100 
Fp (L/s.pessoa)* 5 (N1) 6,3 (N2) 7,5 (N3) 
TO (%)** 35 70 100 35 70 100 35 70 100 
Pz (pessoas) 16 31 45 16 31 45 16 31 45 
Fa (L/s.m²)* 0,6 (N1) 0,8 (N2) 0,9 (N3) 
Vef (L/s) 109,4 184,4 254,4 140 234,5 322,7 164,1 276,6 381,6 
Nota: Fp = vazão por pessoa; TO = taxa de ocupação; Pz = número máximo de pessoas na zona; Fa = vazão por área útil 
ocupada; e Vef = vazão eficaz de ar exterior. 

*valores para salas de aula de acordo com a NBR 16401-3 (ABNT, 2008). 
**valores propostos no Plano São Paulo (SÃO PAULO, 2021).  

O arquivo climático da cidade de Campinas no formato Typical Meteorological Year (TMY) 

anos 2003-2017 (LABORATÓRIO..., 2018) foi utilizado para simular tanto os cenários 

propostos como o modelo calibrado com a ocupação de antes e durante a pandemia de Covid-

19. 
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3.2.2.4 Análise de resultados 

Os resultados das simulações foram analisados em termos de concentração de CO2 (ppm), 

número de renovações do ar por hora (h−1) e temperatura operativa interna (°C) do modelo de 

referência (calibração) e dos cenários propostos. 

Uma avaliação do risco de disseminação do vírus SARS-CoV-2 foi realizada para cada cenário 

proposto, considerando a presença de uma pessoa infectada na sala de aula e o período final 

do dia letivo, ou seja, a pior situação, uma vez que a probabilidade de infecção aumenta ao 

longo do período de exposição. A probabilidade de infecção foi estimada utilizando a 

ferramenta on-line Covid-19 Aerosol Transmission Estimator, versão 3.5.8, de 10 de 

novembro de 2021 (JIMENEZ; PENG, 2021). Essa ferramenta é atualizada constantemente, 

uma vez que novas informações sobre a Covid-19 são descobertas a cada dia, e estima 

apenas a transmissão do vírus pelo ar com base no modelo de Wells-Riley, calibrado para o 

contexto da pandemia de Covid-19. 

Como dado de entrada para a fração da população imune, foram consideradas a cobertura 

vacinal da população com faixa etária de 15 a 17 anos, de 28,8% no dia 29 de novembro de 

2021 (CAMPINAS, 2021), e a eficácia da vacina Pfizer (vacina oferecida à população dessa 

faixa etária), de 95% na prevenção de infecções, resultando no valor de 27,4%. Para a taxa 

de emissão quanta, que varia conforme a atividade, foi utilizado o valor de 9,4 quanta/h 

(pessoa sentada e falando) (JIMENEZ; PENG, 2021). Ainda, para cada cenário, o número de 

pessoas variou de acordo com a ocupação proposta, e a temperatura operativa interna e a 

taxa de renovação do ar variaram de acordo com os resultados das simulações. Foi também 

estimada a probabilidade de infecção para cada cenário variando a filtragem da máscara: sem 

máscara (0%), com máscara de pano (30%) e com máscara N95/PFF2 (90%) (JIMENEZ; 

PENG, 2021). 

Os valores de temperatura operativa interna obtidos nas simulações e de temperatura do ar 

externa obtidos do arquivo climático foram utilizados para analisar o conforto térmico dos 

ocupantes com base no modelo adaptativo da ASHRAE 55 (ASHRAE, 2020b), considerando 

os limites de aceitabilidade de 80%, por meio do cálculo do percentual de horas ocupadas em 

conforto térmico (PHOCT). Os resultados dessa análise foram comparados com a 

probabilidade de infecção a fim de identificar o cenário que contribui simultaneamente para a 

redução do risco de disseminação do vírus SARS-CoV-2 e para o conforto térmico dos 

usuários, proporcionando condições internas mais satisfatórias. 
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3.3 Resultados e discussão 

Os resultados da concentração de CO2 no ambiente estão apresentados para um dia letivo 

representativo. A simulação representativa das condições de medição antes da pandemia 

resultou em alta concentração de CO2, atingindo valores muito próximos do máximo de 1.000 

ppm recomendado pela Anvisa (2003) nos períodos de ocupação (Figura 3.5). No período 

durante a pandemia, com a redução do número de ocupantes em 45%, a concentração de 

CO2 reduziu cerca de 30% em relação ao período anterior, atingindo picos de 

aproximadamente 700 ppm durante o período de ocupação (Figura 3.5).  

 
Figura 3.5 – Concentração de CO2 durante um dia letivo representativo dos períodos de medição 

Com relação aos cenários propostos, aqueles com vazão eficaz de ar exterior de acordo com 

o nível mínimo (N1) proposto pela NBR 16401-3 (ABNT, 2008) apresentaram concentração 

de CO2 acima do nível recomendado de até 1.000 ppm (ANVISA, 2003). Ainda, a maioria dos 

cenários apresentou uma concentração de CO2 elevada durante o período de ocupação, 

acima de 850 ppm, o que demonstra a necessidade de uma ventilação acima dos níveis 

indicados na NBR 16401-3 (ABNT, 2008) para manter níveis recomendáveis para o contexto 

da pandemia (HOU; KATAL; WANG, 2021) (Figura 3.6). 

 
Figura 3.6 – Predição da concentração de CO2 durante um dia letivo representativo nos cenários propostos 
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A mudança nos valores de vazão eficaz teve maior impacto nos resultados de concentração 

de CO2 no ambiente do que na variação no número de ocupantes, sendo os resultados dos 

cenários do nível mínimo (N1) aproximadamente 13% superiores aos resultados dos cenários 

do nível intermediário (N2) e aproximadamente 20% superiores aos resultados dos cenários 

do nível superior (N3). O cenário N3 TO35 apresentou a maior redução da concentração de 

CO2 em comparação com os outros cenários com a mesma taxa de ocupação: em relação ao 

cenário N1 TO35, a redução foi de aproximadamente 35% (350 ppm) e, em relação ao cenário 

N2 TO35, a redução foi de 25% (220 ppm). 

A alteração na taxa de ocupação provocou uma diferença mais significativa entre os cenários 

com 35% e 70% de ocupação, principalmente para o nível superior (N3) de vazão eficaz, nos 

quais a redução do número de ocupantes resultou em mais de 25% de redução da 

concentração de CO2 (210 ppm). A diferença na concentração de CO2 foi menor entre os 

cenários com 70% e 100% de ocupação – os quais possuem uma taxa de variação de 

ocupação menor do que os cenários anteriores, de aproximadamente 3% (entre 25 ppm e 35 

ppm). 

Como nas simulações dos cenários hipotéticos considerou-se uma taxa fixa de renovação do 

ar (vazão eficaz) para cada cenário, a variação entre valores máximos e mínimos dentro de 

cada cenário foi pequena (Tabela 3.8). Maior flutuabilidade nos resultados ao longo do dia 

podem ser observados nas simulações representativas do monitoramento antes e durante a 

pandemia, o que reflete melhor a realidade (Tabela 3.8). Adicionalmente, a redução no 

número de ocupantes no período durante a pandemia resultou em valores de temperatura 

interna menores, diminuindo a diferença entre as temperaturas externa e interna e, 

consequentemente, a taxa de renovação de ar por efeito chaminé e a média da taxa de 

renovação de ar (dado de saída da simulação), quando comparada ao resultado do período 

anterior à pandemia (Tabela 3.8).  

Tabela 3.8 – Predição da renovação de ar por hora no período de ocupação (h−1) 

 N1 
TO35 

N1 
TO70 

N1 
TO100 

N2 
TO35 

N2 
TO70 

N2 
TO100 

N3 
TO35 

N3 
TO70 

N3 
TO100 

Antes da 
pandemia 

Durante a 
pandemia 

Média 2,76 4,64 6,40 3,52 5,89 8,10 6,60 6,94 9,57 7,07 5,15 
Desvio padrão 0,02 0,03 0,04 0,02 0,03 0,04 0,03 0,04 0,05 1,21 1,27 
Média máxima 2,78 4,68 6,46 3,55 5,94 8,17 6,65 6,99 9,65 8,12 6,96 
Média mínima 2,74 4,61 6,35 3,50 5,85 8,05 6,57 6,89 9,50 5,26 3,70 

Comparando os resultados de média máxima e mínima das condições de medição antes e 

durante a pandemia com os cenários propostos (Figuras 3.5 e 3.6 e Tabela 3.8), é possível 

observar que a sala analisada apresentou resultados equivalentes aos níveis intermediário 

(N2) ou superior (N3) na NBR 16401-3 (ABNT, 2008), já que o número de renovações de ar 
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durante os períodos de medição, antes e durante a pandemia, se manteve próximo aos 

valores desses cenários. Os resultados do período anterior à pandemia se aproximaram aos 

do cenário N2 TO100, que tem aproximadamente a mesma ocupação do ambiente real. Já os 

resultados do período durante a pandemia apresentaram menor concentração de CO2, 

próxima de 700 ppm, aproximando-se dos resultados do cenário N3 TO35, com número 

semelhante de ocupantes.  

Os resultados demonstram que a sala de aula analisada está com valores médios de 

ventilação adequados, de acordo com os padrões propostos pela NBR 16401-3 (ABNT, 2008) 

para ambos os casos analisados, antes e durante a pandemia. No entanto, tanto o cenário 

antes da pandemia como todos os cenários hipotéticos com 70% e 100% de ocupação 

resultaram em taxas de concentração de CO2 elevadas durante o período de ocupação da 

sala, o que indicaria a necessidade de aumento do valor de vazão de ar por pessoa, em 

relação ao indicado pela NBR 16401-3 (ABNT, 2008), de forma a auxiliar na obtenção de uma 

melhor qualidade do ar interior na sala de aula. 

O cálculo da probabilidade de infecção mostra que as taxas de renovação de ar e a ocupação 

influenciam nos resultados quando os usuários estão sem máscara (6,2% de variação entre 

o melhor e o pior cenários) ou usando máscara de pano (2,28% de variação entre o melhor e 

o pior cenários) (Tabela 3.9). A probabilidade de infecção varia pouco entre os cenários com 

o uso da máscara N95/PFF2, ficando sempre abaixo de 1% – valor considerado satisfatório 

por estudos anteriores (PARK et al., 2021). Entretanto, considerando-se as observações 

realizadas in loco, sabe-se que a situação mais comum na sala de aula monitorada é o uso 

da máscara de pano. Neste caso, apenas o cenário N3 TO35 apresenta, ao final do período 

letivo, probabilidade de infecção próxima ao recomendável pela literatura. 

Tabela 3.9 – Predição da probabilidade de infecção para cada cenário proposto ao final do dia letivo (maior 
período de exposição), considerando diferentes filtragens de máscaras 

 N1 
TO35 

N1 
TO70 

N1 
TO100 

N2 
TO35 

N2 
TO70 

N2 
TO100 

N3 
TO35 

N3 
TO70 

N3 
TO100 

Sem máscara (0%) 6,23% 8,40% 9,43% 5,27% 6,98% 8,18% 3,23% 5,29% 5,86% 
Máscara de pano (30%) 2,26% 3,06% 3,43% 1,90% 2,52% 2,97% 1,15% 1,90% 2,10% 
N95/PFF2 (90%) 0,07% 0,09% 0,10% 0,06% 0,07% 0,09% 0,03% 0,05% 0,06% 

Ainda considerando apenas o uso da máscara de pano, embora no início do período letivo 

todos os cenários apresentem probabilidade de infecção e concentração de CO2 abaixo de 

1% e de 700 ppm, respectivamente, ao longo do dia, a diferença entre os resultados dos 

cenários torna-se maior, evidenciando, em especial, o cenário N3 TO35 pelos baixos valores 

e, em oposição, os cenários N1 TO70 e N1 TO100 pelos valores acima de 1.000 ppm (Figura 

3.7). 
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Figura 3.7 – Relação entre a probabilidade de infecção (máscara de pano) e a concentração de CO2 nos 

cenários propostos 

Em relação ao conforto térmico, os cenários com maiores concentrações de CO2 (cenários 

N1 TO70 e N1 TO100) apresentam também maiores valores de temperatura operativa interna 

e, consequentemente, menos tempo em conforto térmico (PHOCT = 25%) (Figura 3.8). A 

mesma relação pode ser observada para o cenário com menor concentração de CO2 (N3 

TO35), que, apesar de cumprir os valores recomendados de concentração de CO2 (1.000 

ppm, segundo a Anvisa (2003)) e, na maior parte do tempo, de probabilidade de infecção 

(abaixo de 1%, de acordo com Park et al. (2021)), ainda assim apresenta condições 

inadequadas de conforto térmico na maior parte do tempo (PHOCT = 40%, considerando-se 

apenas a semana representativa). Ainda, as concentrações de CO2 menores em cada cenário 

(Figura 3.8) acontecem no início das aulas, às 8h e às 14h, e vão aumentando ao longo do 

período de ocupação, conforme mostra a Figura 3.8. 

Na Figura 3.9, pode-se observar que a taxa de renovação de ar altera pouco os resultados de 

temperatura operativa interna, havendo uma redução de 1%, em média, do N1 para o N2 e 

do N2 para o N3. A taxa de ocupação, por sua vez, provocou alterações mais significativas 

nos resultados de temperatura operativa interna apenas se comparados os cenários de 35% 

de ocupação com os demais, sendo o cenário N3 TO35 o que apresenta os melhores 

resultados. 
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Figura 3.8 – Relação entre concentração de CO2 e temperatura operativa interna para os cenários propostos 

(semana representativa – 24/02 a 03/03) 

 
Figura 3.9 – Relação entre taxa de renovação de ar e temperatura operativa interna para os cenários propostos 

(semana representativa) 

3.4 Conclusão 

A pandemia de Covid-19 suscitou uma discussão mundial sobre as condições adequadas de 

QAI para o funcionamento de escolas, de forma a minimizar o risco de transmissão do vírus 

SARS-CoV-2 em ambientes fechados e com altas taxas de ocupação. As principais 

estratégias adotadas até o momento incluíram a redução do número de ocupantes, a redução 

do período letivo em sala de aula e estratégias para o aumento da renovação do ar ambiente, 

como manter sempre as portas e as janelas das salas de aula abertas.  

Neste estudo, um modelo de simulação calibrado foi utilizado para simular nove cenários 

alterando as taxas de ar externo e de ocupação de uma sala de aula, a fim de verificar os 

impactos na QAI, em termos de concentração de CO2 e probabilidade de infecção; e no 

conforto térmico, em termos de temperatura operativa interna. Como objeto de estudo, foi 

selecionada uma sala de aula de uma escola da FDE com dimensões, projeto de esquadrias 
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e estratégia de ventilação (ventilação natural unilateral) representativas das escolas públicas 

do estado de São Paulo.  

Dentre os cenários analisados, o cenário N3 TO35 apresentou os menores valores de taxa de 

concentração de CO2, probabilidade de infecção e horas de desconforto térmico. Se 

comparado ao pior cenário (cenário N1 TO100), o cenário N3 TO35 apresentou redução de 

aproximadamente 42% na concentração de CO2 ambiente e de 33% na probabilidade de 

infecção e um aumento no PHOCT de 60%, considerando o período analisado. Conclui-se 

que a redução no número de ocupantes associada a uma taxa adequada de renovação do ar 

são estratégias efetivas para a redução da concentração de CO2 no ambiente interno e, 

consequentemente, para a redução do risco de transmissão de doenças respiratórias como a 

Covid-19. 

Adicionalmente, os resultados das simulações dos cenários hipotéticos mostraram que as 

medidas implementadas durante a pandemia (abertura das janelas e das portas e redução do 

número de usuários) poderiam auxiliar na redução da concentração de CO2 e da probabilidade 

de infecção, além de melhorar o conforto térmico da sala de aula analisada. A diferença 

desses resultados com os obtidos nos estudos conduzidos na Espanha (ALONSO et al., 2021; 

MONGE-BARRIO et al., 2022) indica, também, a necessidade de investigação desses 

parâmetros para cada clima e contexto específicos.  

As medidas adotadas pelas escolas devem ser analisadas de forma a equilibrar potenciais 

benefícios e riscos aos ocupantes. A redução de 100% para 70% da ocupação, proposta na 

fase amarela do Plano São Paulo (SÃO PAULO, 2021), por exemplo, não trouxe grandes 

benefícios em relação à concentração de CO2 e à probabilidade de infecção para o ambiente 

estudado, o que indica a provável necessidade de adoção de medidas mais eficazes de 

renovação do ar ambiente para possibilitar a manutenção de maior número de alunos em sala 

de aula, caso a máscara de pano seja adotada. Neste caso, as concentrações de CO2 

elevadas e a probabilidade de infecção maior do que 1% demonstram que, para manter uma 

QAI satisfatória, se faz necessária uma ventilação acima dos níveis indicados na NBR 16401-

3 (ABNT, 2008), em especial com relação à taxa de vazão indicada por pessoa.  

É importante ressaltar, no entanto, que a generalização deste estudo é limitada, visto que se 

trata de apenas um estudo de caso, considerando, portanto, apenas um clima, um projeto 

escolar com características arquitetônicas específicas e um cenário de taxa de infecção (uma 

pessoa infectada dentro da sala de aula em questão). O estudo aqui apresentado, contudo, 

pode ser utilizado como base metodológica para replicação a outras situações. Sugere-se, 
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nesse sentido, a análise de possíveis implicações no projeto arquitetônico de salas de aula 

advindas de mudanças nas taxas de renovação de ar por pessoa e por área do ambiente, 

como dimensionamento e posicionamento de esquadrias para ventilação natural, 

dimensionamento das salas de aula (área de piso e pé-direito), entre outros fatores. Sugere-

se, também, a análise de outros aspectos relacionados à QAI, como a presença de materiais 

particulados e de compostos orgânicos voláteis, além da investigação de estratégias que, 

associadas à ventilação natural, poderiam melhorar a QAI, como o uso de filtros e 

purificadores de ar. 
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4 Window operation behaviour: generalized linear models  

 This chapter is the transcription of the following paper: 

Investigation of window operation behaviour in naturally ventilated classrooms 
during the COVID-19 pandemic 
Authored by Paula Brumer Franceschini, Marcel Schweiker and Leticia Oliveira Neves 

Published in the Proceedings of 18th Healthy Buildings Europe Conference and 

presented on 12th June 2023. 

Abstract 

The COVID-19 pandemic has once again emphasized indoor air quality (IAQ) as a 

fundamental path for preventing airborne virus transmission, especially in indoor environments 

with increased ventilation needs due to high occupancy and long exposure time, such as 

school classrooms. In naturally ventilated classrooms, thermal and IAQ conditions are mainly 

affected by window operation. Therefore, this study addresses the window operation 

behaviour, the thermal conditions and the perceived IAQ in naturally ventilated classrooms in 

a humid subtropical climate during the COVID-19 pandemic. Window operation and 

environmental variables of classrooms were monitored in three school buildings. Generalized 

linear models were developed to establish correlations between window status, indoor 

conditions and COVID-19 restrictive measures. Thermal conditions and IAQ were adequate 

most of the time in all classrooms. Indoor operative temperature, relative humidity, CO2 

concentration and COVID-19 restrictions were identified as drivers for window status in all 

schools. Yet, the results suggest that occupant behaviour is context dependent. Indeed, the 

school with the highest number of ‘closed’ status presented higher CO2 concentrations and 

more differences in seasonal behaviour. The other two schools presented a behaviour pattern 

more correlated with the COVID-19 restrictions, a higher number of ‘open’ status and more 

cold discomfort hours. 
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4.1 Introduction  

Occupant behaviour is defined as the interaction of occupants with building systems with the 

goal of achieving thermal, visual or acoustic comfort (DELZENDEH et al., 2017) or a sufficient 

indoor air quality (IAQ). If efficient, this interaction allows occupants to adapt the indoor 

environment to their needs (e.g., window, blinds, lighting and air-conditioning operation) or 

themselves to the environment (e.g., clothing adjustment and drinking hot or cold beverage). 

In naturally ventilated buildings with manually operable windows, the IAQ is mainly affected by 

occupant behaviour (YAN et al., 2017). In this context, the window fulfils a “multi-purpose 

function”, since the occupants’ decision to open or close the window depends on a balance 

between IAQ, thermal, visual and acoustic parameters (ZHANG; BARRETT, 2012).  

To date, studies on occupant behaviour in naturally ventilated buildings have primarily been 

conducted in oceanic climates and in residential and office environments and, more recently, 

in school buildings. Assessing occupant behaviour in naturally ventilated school buildings can 

lead to guidelines towards improving IAQ and its influence on students’ health, well-being and 

learning process (BELAFI et al., 2018). Previous studies have demonstrated that naturally 

ventilated classrooms often fail to achieve recommended levels of ventilation, thus providing 

poor IAQ (DUTTON; SHAO, 2010). Therefore, the window operation has been the most 

investigated occupant behaviour parameter in the literature for naturally ventilated school 

buildings (BELAFI et al., 2018; HERACLEOUS; MICHAEL, 2019; KORSAVI; JONES; 

FUERTES, 2022b; STAZI; NASPI; D’ORAZIO, 2017a). Other behaviours addressed in schools 

included lighting (SIMANIC et al., 2020), blinds operation (PISTORE et al., 2019; SIMANIC et 

al., 2020) and clothing adjustment (PISTORE et al., 2019). The students were mainly identified 

as passive users towards discomfort, with the teacher being the main active occupant 

(PISTORE et al., 2019). Nevertheless, the results from previous research studies showed 

differences in behavioural triggers among school buildings and seasons. For example, Belafi 

et al. (2018) investigated window operation in two classrooms and identified habits and time-

dependent actions as triggers for occupant behaviour in one classroom, while in the other 

classroom behaviour was driven by indoor and outdoor temperatures. These differences 

demonstrate that rules and habits can vary between and within different schools, climates and 

cultures and, therefore, occupant behaviour must be investigated for each situation (BELAFI 

et al., 2018). 

The IAQ in school buildings became even more relevant in 2020, due to the COVID-19 

pandemic. Recent studies highlighted the association between indoor environments, 

especially those with poor ventilation, high occupancy and high exposure time, such as school 

buildings; and risk of infection, showing that the SARS-CoV-2 reproduction rate 
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(contagiousness) can increase three to four times in these spaces when compared to outdoor 

environments (HOU; KATAL; WANG, 2021).  

Recent studies investigated the impact of the COVID-19 pandemic on classrooms’ indoor 

environmental quality (IEQ) and on the infection risk regarding ventilation and occupancy rates, 

window opening behaviour and the use of masks (HOU; KATAL; WANG, 2021; PARK et al., 

2021; ZIVELONGHI; LAI, 2021). It is well known that occupant behaviour and daily routine in 

schools have been affected by COVID-19 response measures (FELL et al., 2020). However, 

since COVID-19 impacts and restrictions were different in each place, the potential changes 

on actions’ drivers may be different and not comparable between and within countries (FELL 

et al., 2020). 

Most school buildings located in tropical and subtropical climates, including most of the 

Brazilian public school buildings, are fully or partially naturally ventilated (WORLD HEALTH 

ORGANIZATION, 2015). Publications regarding occupant behaviour in naturally ventilated 

school buildings are fare recent (from the last five years, mainly), confirming it as a relatively 

new subject. So far, few studies were conducted in tropical or subtropical climates and 

addressed the COVID-19 pandemic impact on occupant behaviour. Taking this research gap 

into consideration, this study addresses the window operation behaviour, the indoor thermal 

conditions and the perceived IAQ in naturally ventilated classrooms in a humid subtropical 

climate during the COVID-19 pandemic. 

4.2 Methods 

This paper is based on a case study and supported by field research and statistical analysis. 

The field research included physical monitoring and was performed on a set of classrooms of 

three public-school buildings located in the state of Sao Paulo, Brazil (Figure 4.1). The schools 

were selected from a database of 130 public-school buildings built in the state of Sao Paulo in 

the last fifteen years. All the schools in this database have a standardized design, with 

classrooms of same floor area and window design. Thus, the selection of schools for this study 

was based on their location and willingness to participate in this research, in order to enable 

the data collection. School A is an elementary school (ages 6-15) built in 2015 and located in 

the city of Campinas. Schools B and C are located in the city of Sao Paulo, the first is an 

elementary school (ages 6-11) built in 2014 and the latter is a high school (ages 15-18) built in 

2012. Both cities are characterized by a humid subtropical climate – Cfa (Köppen climatic 

classification). 
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Figure 4.1 – Monitored classrooms 

4.2.1 Field research  

The physical monitoring was conducted during four rounds in each classroom at two-month 

intervals within the range of one year (from August 2021 to August 2022), in order to cover all 

seasons of the year. 

Indoor environmental variables were monitored in a 10-minute time-step by dataloggers placed 

inside a typical classroom of each selected school. The dataloggers, Testo 175-T2 with hot 

sphere probe, used to monitor air temperature (Tin: range -35 °C to 55 °C ± 0.5 °C) and globe 

temperature (Tg: range -25 °C to 80 °C ± 0.2 °C), and Testo 160 IAQ, used to monitor relative 

humidity (RH: range 0 to 100% ±2%) and CO2 concentration (range 0 to 5000 ppm ± 100 ppm 

+ 3 % of reading), were placed away from the windows at about 1.1 m above the floor (seated 

person) according to ISO 7726 (International Organization for Standardization, 1998). The 

mean radiant temperature (Tmr) and the indoor operative temperature (Top) were calculated 

using the air temperature and the globe temperature measurements. The number of occupants 

was monitored through the attendance list provided by each classroom’s teacher. The manual 

operation of windows was monitored by using an Onset Hobo State with binary output (closed 

= 0/ open = 1). Outdoor environmental variables (air temperature – Tout, relative humidity – 

RHout, precipitation, wind speed and wind direction) measurements were acquired from the 

nearest weather station (3.5 to 8 km distant), to enable comparisons between indoor and 

outdoor conditions. 

During the physical monitoring, restrictive occupancy measures due to the COVID-19 

pandemic were observed. Therefore, the monitoring period was divided into three restrictive 

measures levels (Table 4.1). 

Table 4.1 – COVID-19 restrictive measures levels 

Restrictive measures Levels 
High Intermediate Low 

Reduced number of occupants x   
Reduced exposure time x   
Windows and doors opened during occupancy x x  
Mandatory use of masks x x x 
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Questionnaires (Appendix A) were applied with the classroom teachers in order to describe 

the students’ routine and behaviour related to the environmental comfort and sanitary protocols 

arising from the pandemic. 

4.2.2 Dataset and statistical analysis  

The data collected during the physical monitoring phase was merged into a common dataset, 

by associating window status (open/closed) with time of the day and environmental variables.  

As a first step of analysis, the R programming language (R CORE TEAM, 2022) was used to 

create representative plots of the collected data. The indoor operative temperature 

acceptability limits (considering 80% of occupant satisfaction) was analysed according to the 

ASHRAE 55 adaptive model for naturally conditioned spaces (ASHRAE, 2020b), considering 

an interval between 21 °C and 28 °C. Also, relative humidity levels above 40% and below 60% 

were considered satisfactory (CIBSE, 2020). The Steady State CO2 method (ALLEN et al., 

2020) (Equation 1) was used to set IAQ thresholds to analyse the monitored indoor CO2 

concentration levels, according to target levels of outdoor air flow rate (air changes per hour – 

ACH) (Table 4.2). The calculation considered a classroom volume of 142.8 m³, an average 

number of occupants of 24 persons and a default outdoor CO2 concentration level of 400 ppm.  

Equation 4.1 

𝐶𝑠𝑠 =  
𝐶𝑂2 𝑔𝑒𝑛.𝑟𝑎𝑡𝑒 + 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑜𝑙. 𝑓𝑙𝑜𝑤 ∗ 𝐶𝑂2 𝑜𝑢𝑡 ∗ 1 ∗ 10−6

𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑜𝑙. 𝑓𝑙𝑜𝑤
1 ∗ 10−6

 

Where:  

Css = steady state CO2 concentration (ppm) 

CO2 gen. rate = CO2 generation rate (ppm) 

target vol. flow = target volumetric flow (ACH) 

CO2 out = outdoor CO2 concentration (ppm) 

Table 4.2 – IAQ thresholds 

IAQ level Predicted outdoor 
air flow rate (ACH) 

Corresponding CO2 
concentration range (ppm) 

Ideal ≥ 6 < 823 
Excellent 5 – < 6 823 – < 907 
Good 4 – < 5 907 – < 1034 
Bare minimum 3 – < 4 1034 – < 1245 
Low < 3 ≥ 1245 

 

The second step consisted of applying generalized linear models (logistic regression) to 

assess the influence of the recorded parameters on the window status, considering a binary 

operation state (all windows closed = 0/ at least one window open = 1). A specific window 

operation model was created for each school classroom, in order to compare the window 

operation drivers between them. Indoor operative temperature, relative humidity and CO2 
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concentration were included as predictors, since they were pointed out as window operation 

triggers in previous studies (BELAFI et al., 2018; HERACLEOUS; MICHAEL, 2019; KORSAVI; 

JONES; FUERTES, 2022b; STAZI; NASPI; D’ORAZIO, 2017a). A categorical variable related 

to the COVID-19 restrictive measures levels (Table 4.1) was also included as a predictor, in 

order to analyse the impact of the protocols on the window operation behaviour. Reciprocal 

transformation was applied to the CO2 concentration data in order to reduce skewness. The 

continuous variables were normalized and the imbalanced data was treated by using the 

random walk over-sampling approach, an oversampling technique that generates synthetic 

instances so that mean and deviation of numerical variables remain close to the original ones. 

Goodness-of-fit (GOF) estimators (deviance, chi-square probability, area under the ROC curve 

– AUC) and R2 statistics (McFadden's and Nagelkerke's) were employed to evaluate the level 

of statistical significance of each parameter (at .05 significance level) and the strength of the 

correlations, respectively. The statistical analyses were carried out in software R version 4.2.2 

(R CORE TEAM, 2022). 

4.3 Results and Discussion 

4.3.1 Dataset and questionnaire analysis 

The three monitored school classrooms showed similar environmental conditions (Table 4.3), 

meeting the required values for indoor operative temperature (according to the ASHRAE 55 

adaptive model) and CO2 concentration (according to the Steady State CO2 method), on 

average, 69% and 92.7% of the time, respectively. 

Table 4.3 – Summary of recorded parameters during the occupied period. 

Variable School A (n = 1170) School B (n = 1489) School C (n = 1142) 
Mean SD Range Mean SD Range Mean SD Range 

Top (°C) 24.5 4.1 14.1 – 32.1 23.7 3.4 16.4 – 31.1 24.0 2.4 16.3 – 29.1 
Tout (°C) 23.0 5.9 6.8 – 33.0 22.2 5.0 10.9 – 33.4 25.2 4.9 10.4 – 35.6 
CO2 (ppm) 540 107 359 – 1162 595 112 362 – 975 676 186 333 – 1682 
RH (%) 53.1 10.0 27.0 – 74.0 62.1 11.1 30.0 – 80.3 63.6 8.8 30.0 – 87.0 
RHout (%) 59.1 16.7 26.0 – 89.0 73.1 20.7 22.9 – 99.9 61.8 18.4 16.0 – 96.0 

The indoor CO2 concentration (Figure 4.2) was ideal (below 823 ppm) in 97.5%, 95.8% and 

83.7% of the time in schools A, B and C, respectively, suggesting that the air change rate was 

adequate in the measured classrooms (above 6 ACH). Yet, there were few outliers in school 

C (0.02%) above 1245 ppm, which represents poor IAQ conditions (less than 3 ACH). Indeed, 

school C presented higher CO2 concentration during all COVID-19 restrictive levels (Figure 

4.3). 
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Figure 4.2 – Indoor CO2 concentration during occupied period. 

 

Figure 4.3 – Cumulative indoor CO2 concentration during occupied period. 

The indoor operative temperature interquartile range (Figure 4.4) was within the comfort zone 

limits for all schools, as the classrooms thermal conditions were adequate on 59%, 61.8% and 

87.6% of the time in schools A, B and C, respectively. However, classrooms from schools A 

and B presented cold discomfort hours 20.1% and 25.2% of the time and hot discomfort hours 

20.9% and 13% of the time, respectively. School C, despite having higher values of CO2 

concentration (which indicates lower values of ACH), presented better thermal conditions than 

the formers, especially during the period with high restrictive measures regarding the COVID-

19 pandemic (Figure 4.5). 

 
Figure 4.4 – Indoor operative temperature and outdoor air temperature during occupied period. 
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Figure 4.5 – Cumulative indoor operative temperature during occupied period. 

The indoor relative humidity (Figure 4.6) was satisfactory 63.4%, 29.3% and 28.2% of the time 

in schools A, B and C, respectively. Schools B and C presented high humidity levels most of 

the time. 

 
Figure 4.6 - Indoor and outdoor relative humidity during occupied period. 

Figure 4.7 shows the frequencies of each window status (open/closed) during school days 

(excluding weekends and holidays), presented according to the levels of COVID-19 restrictive 

measures. The windows remained open in 71%, 98% and 76% of the time during the occupied 

periods in schools A, B and C, respectively. In schools A and C the window status during 

occupied periods varied between the restriction levels (especially between the high and 

intermediate levels), while in school B the windows remained open during most of the occupied 

period, for all restriction levels. A remarkable difference from school B, acknowledged through 

the questionnaires’ responses, consists in the fact that only teachers and staff were allowed to 

operate the windows, whereas in schools A and C the students were also allowed to operate 

them. In school C the ‘closed’ status was more frequent in the higher restriction level, which 

could be associated to the lower indoor operative temperatures (Figure 4.3) and a possible 

breach of protocol by the students, which were the main active occupants in terms of window 

operation. 
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Figure 4.7 – Window status during school days and COVID-19 restrictive measures levels. 

Additional analysis of the data revealed that differences in seasonal behaviour were more 

evident in school C, in which the highest frequency of ‘open’ status coincided with the hottest 

season of the year (‘intermediate’ restriction level) regardless of the established protocols. In 

opposition, the COVID-19 restrictive measures were strictly followed mainly by school B, 

regardless of the weather conditions. A higher number of observations of window ‘open’ status 

was observed as the COVID-19 restrictive measures were reduced. Windows remained closed 

for longer periods when the outdoor air temperature was lower. Indeed, the cold season 

coincided with the period with fewer restrictive measures. 

4.3.2 Window status modelling results 

Table 4.4 reports the outcomes from the generalized linear model of each school. The models 

were selected according to the lowest Akaike information criterion (AIC) value. The outcomes 

suggest that window status (open/closed) is related to the indoor environmental variables and 

is also highly influenced by the COVID-19 restrictive measures, however some drivers varied 

between schools. In schools A (model X² (18) = 443, p < .001) and C (model X² (16) = 821, p 

< .001) all single predictor variables included in the model were significant (p-value < .05), 

while in school B (model X² (19) = 1270, p < .001) the categorical variable COVID-19 

restrictions intermediate level was not significant.  

The area under ROC curve (AUC), used as goodness-of-fit (GOF) estimator, and R² statistics 

are provided in Table 4.5. Predictions of window status are significant in all models. Yet, GOF 

estimators and R² statistics for school C are of better statistical quality.  
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Table 4.4 – Regression parameters for logistic models. 

Model School A School B School C 
Correlations Estimate  SD p-value Estimate  SD p-value Estimate  SD p-value 
Intercept 0.94 0.21 <.001* 4.85 0.95 <.001* -1.00 0.12 <.001* 
COVID-19 restrictions 
(int./ low) 

-2.43/ 
-0.89 

0.64/ 
0.25 

<.001*/ 
<.001* 

10.67/ -
4.33 

6.10/ 
0.96 

.080/ 
<.001* 

6.71/ 2.59 0.86/ 
0.23 

<.001*/ 
<.001* 

RH -2.06 0.38 <.001* 2.68 1.09 .014* -0.64 0.24 .008* 
Top -4.60 0.63 <.001* -0.49 0.07 <.001* -0.63 0.15 <.001* 
CO2 1.44 0.23 <.001* 5.06 1.07 <.001* 0.47 0.12 <.001* 
COVID-19 restrictions 
(int./ low):RH 

3.41/ 2.86 0.56/ 
0.41 

<.001*/ 
<.001* 

-26.70/ -
3.01 

13.26/ 
1.10 

.043*/ 
.006* 

2.74/ 
-0.36 

0.52/ 
0.33 

<.001*/ 
.274 

COVID-19 restrictions 
(int./ low):Top 

5.57/ 5.74 0.78/ 
0.64 

<.001*/ 
<.001* 

NI NI NI NI NI NI 

COVID-19 restrictions 
(int./ low):CO2 

-1.21/ 
-2.50 

0.31/ 
0.27 

<.001*/ 
<.001* 

-17.18/ -
6.68 

6.75/ 
1.08 

.010*/ 
<.001* 

NI NI NI 

RH:Top -0.53 0.14 <.001* -6.89 2.07 <.001* -4.55 0.61 <.001* 
RH:CO2 -1.49 0.29 <.001* 5.00 1.33 <.001* -2.16 0.35 <.001* 
Top:CO2 NI NI NI 7.96 1.04 <.001* NI NI NI 
COVID-19 restrictions 
(int./ low):RH: Top 

NI NI NI 5.67/ 4.93 14.93/ 
2.08 

.704/ 

.018* 
3.73/ 3.84 0.65/ 

0.65 
<.001*/ 
<.001* 

COVID-19 restrictions 
(int./ low):RH:CO2 

1.47/ 2.49 0.41/ 
0.35 

<.001*/ 
<.001* 

6.17/ 
-3.49 

11.78/ 
1.35 

.600/ 

.009* 
1.40/ 2.11 0.50/ 

0.37 
<.001*/ 
.005* 

COVID-19 restrictions 
(int./ low):Top:CO2 

NI NI NI -5.52/ 
-7.59 

7.10/ 
1.05 

.437/ 
<.001* 

NI NI NI 

RH:Top:CO2 1.43 0.31 <.001* 1.58 0.15 <.001* -3.48 0.67 <.001* 
COVID-19 restrictions 
(int./ low):RH:Top :CO2 

-2.01/ 
-1.95 

0.51/ 
0.39 

<.001*/ 
<.001* 

NI NI NI 3.59/ 2.83 0.74/ 
0.69 

<.001*/ 
<.001* 

Caption: * statistically significant values; NI = interactions not included in the model. 
Note: variables have been normalized before the statistical analysis 

Table 4.5 – Goodness-of-fit (GOF) estimator and R2 statistics for each model. 

Model AUC McFadden's R² Nagelkerke's R² 
School A 0.80 0.25 0.39 
School B 0.68 0.39 0.56 
School C 0.92 0.42 0.59 

The indoor operative temperature was a significant predictor for window status in all schools, 

which is in line with current literature (BELAFI et al., 2018; DUTTON; SHAO, 2010; STAZI; 

NASPI; D’ORAZIO, 2017a). The correlation between CO2 concentration and window status 

was also statistically significant in all schools, which was observed in other studies (DUTTON; 

SHAO, 2010; HERACLEOUS; MICHAEL, 2019), but differs from the results found by Stazi et 

al. (2017a). 

The interaction between the COVID-19 restrictive measures levels and indoor operative 

temperature was statistically relevant for school A only (Table 4.4). In fact, as shown in Figure 

4.7, windows remained fully open mainly during the ‘high’ restriction level, and the operation 

during the other two levels was more affected by indoor operative temperature fluctuations. 

The interaction between restrictive measures levels and indoor CO2 concentration was 

statistically relevant for schools A and B. For these schools, the withdrawal of the requirement 

to open windows at the ‘low’ restriction level led to an increase in the ‘closed’ window status 

and, consequently, an increase in the CO2 concentration. School C did not show a behaviour 

pattern that correlates with the restrictive measures. 
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The differences among the schools, which was also observed by Belafi et. al. (2018), could be 

explained by differences in social behaviour, which were corroborated by the answers to the 

questionnaires given by the teachers. This result reinforces the need to investigate window 

operation behaviour in each context, considering rules and habits variations. 

4.4 Conclusion 

The aim of this study was to investigate the window operation behaviour, the indoor thermal 

conditions, and the perceived IAQ in naturally ventilated classrooms in a humid subtropical 

climate during the COVID-19 pandemic. Physical monitoring of environmental variables and 

occupant investigation were conducted in three Brazilian public-school buildings and 

generalized linear models were developed to assess the influence of the recorded parameters 

on window status (open/ closed). 

Indoor operative temperature, relative humidity and CO2 concentration were identified as 

triggers for window operation in all schools. Besides having similar indoor dimensions and 

layout, the differences between the school classrooms suggest that occupant behaviour is 

context dependent, being highly influenced by rules and habits, as confirmed by the outcomes 

from the generalized linear models and the questionnaires responses. 

The reduced number of a closed status observed during this study show that the COVID-19 

pandemic has influenced occupant behaviour through the protocols established in this period, 

mainly for schools A and B. Nevertheless, differences in seasonal behaviour were more 

evident in school C, regardless of the established protocols. These findings provide a first aid 

regarding the impacts of the pandemic on window operation behaviour of naturally ventilated 

school classrooms and, consequently, on its indoor environmental conditions.  

Previous studies regarding window operation in school buildings were conducted before the 

COVID-19 pandemic (BELAFI et al., 2018; DUTTON; SHAO, 2010; HERACLEOUS; 

MICHAEL, 2019; STAZI; NASPI; D’ORAZIO, 2017a) and, thus, were not influenced by 

restrictive measures. Therefore, our results differ from previous research studies regarding the 

reduced number of ‘closed’ status observed during occupied periods, which is a consequence 

of the protocols imposed by the COVID-19 pandemic. 
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5 Occupant behaviour: generalized linear mixed models  

 This chapter is the transcription of the following paper: 

Predictive modelling of multi-domain factors on window, door, and fan status in 
naturally ventilated school classrooms  
Authored by Paula Brumer Franceschini, Marcel Schweiker and Leticia Oliveira Neves 

Published in Building and Environment (ISSN: 0360-1323), volume 264, in 2024, and 

catalogued through the DOI: 10.1016/j.buildenv.2024.111912. 

Abstract 

Most studies regarding the investigation of occupant behaviour (OB) in school classrooms 

addressed the environmental influence on window operation solely and were conducted in 

oceanic climates. This study aimed to identify and quantify the influence of multi-domain factors 

(including thermal, indoor air quality, contextual and multi-behaviour domains) on window, 

door, and fan status in naturally ventilated school classrooms in a humid subtropical climate, 

in order to predict OB. Environmental variables, manual operation of windows, doors and fans, 

and occupancy rate were monitored and questionnaires were applied in a set of classrooms 

of three public school buildings in the state of São Paulo, Brazil, during four rounds at two-

month intervals, resulting in a comprehensive year-long study. During part of the physical 

monitoring, restrictive occupancy measures due to the COVID-19 pandemic were observed. 

Generalized Linear Mixed Models were applied to assess the influence of the recorded 

parameters on the window, door, and fan status and to generate OB predictive models. Results 

showed that indoor environmental variables influenced window, door, and fan status in school 

classrooms, with few exceptions. Yet, the models including school routines, social norms and 

teachers’ behaviour as predictors led to the highest accuracy. This suggests that, while a more 

complex model with additional predictors can provide more accurate predictions of OB, it also 

becomes more context-dependent and less generalizable. The trade-off between model 

complexity and generalizability is an important consideration in this research study, and it 
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highlights the nuanced relationship between multi-domain factors affecting occupant behaviour 

in school buildings. 

Keywords: occupant behaviour, school building, natural ventilation, multi-domain, field 

monitoring. 

5.1 Introduction 

Occupant behaviour (OB) largely impacts a building's performance across various aspects, 

including indoor conditions, usability, functionality and energy consumption (O’BRIEN; 

TAHMASEBI, 2023). Occupants interact with buildings’ controls and interfaces, in order to 

adapt the environment to their needs (e.g., window, blinds, lighting and air-conditioning 

operation) or to adapt themselves to the environment (e.g., clothing adjustment and drinking 

hot or cold beverages), aiming to maintain their comfort and preferences (DELZENDEH et al., 

2017; HONG et al., 2016b). They usually respond in different ways to the built environment, 

since there are many influential factors, such as external (environmental, time-related, 

contextual) and internal factors (physiological, psychological, social), to the decision-making 

process (SCHWEIKER et al., 2018; YAN et al., 2017).  

Studying OB in buildings presents challenges due to its inherent complexity and dynamic 

nature, due to issues related to privacy that hinder data collection, and due to substantial costs 

associated with obtaining various sensors to monitor OB (DONG et al., 2022). As a result of 

OB uncertainty and unpredictability, this parameter is often oversimplified in building 

performance simulation (BPS), potentially contributing to a performance gap between 

predicted and actual building performance (MAHDAVI et al., 2021; SHI et al., 2019; WANG; 

HONG; JIA, 2018). Indeed, for a long time in BPS tools, OB representation was limited to 

occupants’ presence in fixed and scheduled patterns, which do not reflect reality 

(DELZENDEH et al., 2017). In response to these challenges, occupant modelling has garnered 

attention from researchers and practitioners, driven by the potential to reduce the performance 

gap, the increasing interest in occupant well-being and the advancements in computational 

and simulation capabilities (O’BRIEN; TAHMASEBI, 2023). 

Over the last decade, more than 500 papers have been published on OB, providing data on 

occupancy, including occupant presence and movement, as well as occupants' actions, such 

as window and door operation, blinds or solar shading adjustment, thermostat or air-

conditioning setting (DONG et al., 2022). These studies have led to the development of OB 

models and aimed at predicting and representing human behaviour in BPS, optimizing building 



89 

 

 

design, reducing the performance gap, enhancing comfort, identifying adaptive opportunities, 

and fostering strategies for healthier indoor spaces (O’BRIEN; TAHMASEBI, 2023). However, 

despite OB being influenced by many factors simultaneously, most studies in this area consider 

the influence of environmental factors on OB solely (SCHWEIKER et al., 2020). Schweiker et 

al. (2020) identified 97 records (64 publications) on behavioural multi-domain studies, most of 

them applying field studies approaches and being conducted in office and residential settings 

located in Europe (37 records), Asia (14 records), North America (8 records) and Oceania (2 

records). No studies identified in this literature review were undertaken in school buildings and 

few were conducted in tropical or subtropical climates. 

School buildings present unique challenges, distinct from offices, residential buildings, and 

other educational buildings like universities, since primary and secondary schools are occupied 

mainly by children, in specific periods of the year and with different daily timetables, more 

group rules and less freedom of action (BELAFI et al., 2018). We identified six studies in the 

literature which developed OB predictive models for school buildings, using linear or logistic 

regression analysis to assess the influence of the predictors on OB (Table 5.1). These studies 

were conducted mainly in oceanic climate (DUTTON; SHAO, 2010; HEEBØLL; WARGOCKI; 

TOFTUM, 2018; KORSAVI; JONES; FUERTES, 2022a, 2022b), according to the Köppen 

classification, and window operation was the most addressed OB. All mentioned studies 

investigated the physical domain, including thermal and/ or air quality variables as predictors. 

The contextual domain was represented only by the hour of the day in most of these studies 

and one study applied a multi-behavioural approach by analysing the blind status as a predictor 

for light operation (Table 5.1).  

Table 5.1 – Predictors investigated in existing occupant behaviour models for school classrooms. 

Occupant 
behaviour Model Predictors 

Tin Top RH V CO2 P Rs As Tout RHout h CB 
Window operation Dutton & Shao (2010) •    • • •  •  •  

Stazi et al. (2017a) •    •    •  •  
Belafi et al. (2018) •    •    •  •  
Heebøll et al. (2018) •    •      •  
Korsavi et al. (2022b)  • • • •    • •   

Door operation Heebøll et al. (2018) •    •      •  
Lights operation Korsavi et al. (2022a)        •    • 
Blinds adjustment Korsavi et al. (2022a)  •     • • •    
Caption: Tin = Indoor air temperature (°C); Top = Indoor operative temperature (°C); RH = relative humidity (%); V = wind speed 
(m/s); CO2 = CO2 concentration (ppm); P = vapour pressure (Hpa); Rs = solar radiation (W/m²); As = solar altitude (°); Tout = outdoor 
air temperature (°C); RHout = outdoor relative humidity (%); h = Hour of the day (h); CB = closed blinds (%). 

The results derived from the OB models identified in Table 5.1 reveal differences in behavioural 

triggers among school buildings and seasons. For instance, regarding window operation, Belafi 
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et al. (2018) observed that habits and time-dependent actions were the main occupant 

behaviour drivers in one monitored classroom, whereas indoor and outdoor temperatures were 

the main drivers in another one – both classrooms from the same elementary school building. 

Similarly, Stazi et al. (2017) identified indoor and outdoor temperatures, daily routine and habits 

as primary triggers for window operation, with a weak relationship with CO2 concentration. In 

contrast, Dutton and Shao (2010) found a significant correlation between window opening and 

CO2 concentration. They also noted differences among seasons, such as indoor air 

temperature influencing window closing during unheated periods and outdoor temperature 

influencing window closing during heated periods. Korsavi et al. (2022b) discovered significant 

statistical differences in the median window opening area (WOA) between seasons, with 

higher WOA during summer (5 m²) and lower WOA during winter (0.8 m²). Heebøll et al. (2018) 

noted disparities in window and door operations based on different ventilation systems 

(mechanical ventilation system, automatic window opening and exhaust fan) in classrooms. 

Furthermore, Korsavi et al. (2022a) found differences in blind operation between seasons, 

influenced by contextual, occupant-related and building-related factors, with solar altitude and 

operative temperature affecting blind operation during non-heating seasons and solar altitude 

and solar radiation influencing blind operation during heating seasons. In the same research 

study, solar radiation and blind occlusion were identified as drivers for light operation 

(KORSAVI; JONES; FUERTES, 2022a). 

As identified by Schweiker et al. (2020) and corroborated by the studies presented in Table 1 

within the context of school buildings, there is a lack of behavioural multi-domain studies in 

tropical or subtropical climates. Most school buildings located in these climates are partially or 

fully naturally ventilated, with manually operable windows, which reinforces the occupant’s role 

over their environment’s performance (YAN et al., 2017). For example, in the state of São 

Paulo, Brazil, all public-school buildings maintained by the Foundation for Education 

Development (Fundação para o Desenvolvimento da Educação, FDE) have manually operable 

windows to provide natural ventilation, and most of them also have manually operable fans. 

Natural ventilation influences not only the classroom’s thermal performance, but also impacts 

its indoor air quality (IAQ) (STABILE et al., 2017) and, consequently, on students’ health and 

learning process (PEREIRA et al., 2017). The IAQ became particularly relevant in 2020, during 

the COVID-19 pandemic, due to its importance in helping prevent airborne virus transmission 

in indoor environments (FRANCO, 2020), especially in high occupancy environments, such as 

school buildings (LIPINSKI et al., 2020).  

Given this scenario, this study aimed to identify and quantify the influence of multi-domain 

factors (including thermal, indoor air quality, contextual and multi-behaviour domains) on 
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window, door, and fan status in naturally ventilated school classrooms in a humid subtropical 

climate, in order to improve the ability to predict occupant behaviour. 

5.2 Method 

The research method was based on a case study and supported by field research and 

statistical analysis. The method was developed in four main steps, which are presented in 

Figure 5.1. 

  
Figure 5.1 – Research framework. 

5.2.1 School buildings’ data collection 

A comprehensive data collection was carried out, encompassing public schools built by the 

Foundation for Education Development (FDE) over the past fifteen years in the state of São 

Paulo, Brazil. This dataset1 included information on 66 school buildings, effectively 

representing half of the public-school buildings constructed in the state of São Paulo within this 

time frame. 

Envelope design and construction characteristics from the architectural design of the 66 school 

buildings were collected, organized and classified in five main groups: (i) building general 

information (Brazilian bioclimatic zone, construction year, built area, number of floors, number 

of classrooms, azimuth angle of long axis of building, ground floor shape plan, width-to-length 

ratio); (ii) classrooms characteristics (solar orientation, position in the building, floor-to-ceiling 

height, floor-to-floor height); (iii) external and internal walls and roof thermal properties (solar 

absorptance, U-factor, thermal capacity); (iv) classrooms’ outdoor façade (glazing U-factor, 

glazing solar heat gain coefficient, natural ventilation strategy, window sill height, window 

frame height, percentage of operable window frame, window opening factor, window-to-wall 

 

1 The dataset is available at https://doi.org/10.25824/redu/Z4BWFL  

https://doi.org/10.25824/redu/Z4BWFL
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ratio); (v) shading device (type, material, perforation, horizontal distance between shading 

device and window, vertical shadow angle, horizontal shadow angle).  

The number of classrooms from the schools’ dataset varied between 6 and 27 in each school 

(mean = 13), and the number of floors varied between 2 and 5 (mean = 4). The classrooms’ 

architectural design is standardized, with dimensions of 6.9 m x 6.9 m (floor area = 47.6 m²) 

and a floor-to-ceiling height varying between 2.75 m to 3.19 m (mean = 2.96 m). Most of the 

classrooms have large operable windows in the main façade and operable windows facing the 

corridor (except for two schools). The façade windows have a window-to-wall ratio (WWR) 

varying between 8% and 73% (mean = 67, standard deviation = 9) and an operable window 

frame (OWF) varying between 16% and 100% (mean = 63, standard deviation = 11), while the 

corridor windows have a WWR varying between 9% and 70% (mean = 22, standard deviation 

= 8) and an OWF varying between 25% and 100% (mean = 63, standard deviation = 25). The 

categorical variables statistical analysis is presented in Table 5.2. 

Table 5.2 – Categorical variables analysis, based on the dataset of 66 FDE schools. 

Variable Categories  Frequency Selected school 
building 

Ground shape plan 

Rectangular 91% Schools A, B and C 
U-shape 5% - 
H-shape 2% - 
O-shape 2% - 

Classrooms solar orientation 

N-S 35% Schools A and C 
NW-SE 27% - 
NE-SW 20% - 
E-W 18% School B 

Classrooms’ position in the 
building 

Middle floor 38% School C 
Middle and top floors 23% School B 
Top floor 21% School A 
Bottom and top floors 6% - 
Bottom, middle, and top floors 2% - 

Natural ventilation strategy 
Single sided ventilation 85% Schools B and C 
Cross ventilation 15% School A 

Three schools were thoughtfully chosen from the dataset for the monitoring phase. The 

selection criteria ensured that the chosen school buildings were comparable to one another 

and representative of the broader dataset (Table 2). Furthermore, the school location and the 

willingness to participate in the research study were also considered. 

5.2.2 Field campaign 

The physical monitoring was conducted in a set of classrooms within three public school 

buildings chosen from the dataset, which are situated in the cities of Campinas and São Paulo 

(Table 5.3). These cities share a common humid subtropical climate (Cfa), as per the Köppen 

classification, characterized by hot summers and mild winters. The physical monitoring 
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spanned four rounds, each taking place at two-month intervals, resulting in a comprehensive 

year-long study period from August 2021 to August 2022 (Table 5.4). Although the 

measurement periods are not the same for all schools, the total measured time frame ensured 

coverage of all seasons throughout the year. 

Table 5.3 – Monitored school buildings. 

Variable School A School B School C 

School general 
information 

Location Campinas, Brazil São Paulo, Brazil São Paulo, Brazil 
Construction year 2015 2014 2012 
Built area (m²) 3201 4945 2742 
Number of classrooms 10 27 12 
Students’ age (years old) 6 – 15 6 – 11 15 – 18 

Monitored 
classroom 

Students’ age (years old) 10 – 15 9 – 11 15 – 18 
Position in the building Top floor Middle floor and top floor Middle floor 
Natural ventilation strategy Cross ventilation Single-sided ventilation Single-sided ventilation 
Solar orientation North East South 

Table 5.4 – Monitoring period. 

 Aug/21 Sep/21 Oct/21 Nov/21 Dec/21 Jan/22 Feb/22 Mar/22 Apr/22 May/22 Jun/22 Jul/22 Aug/22 
School A •    SB* SB* •   •  WB*  
School B  •  • SB* SB*  •   • WB*  
School C   • • SB* SB*   •   WB* • 
*SB = Summer break; WB = Winter break. 

The school classrooms are naturally ventilated, with manually operable windows and fans. The 

fans, windows and door locations in each classroom are presented in the classrooms’ 

perspectives (Figures 5.2 to 5.4), with the operable frames from the windows marked in red. 

The selection of the monitored classrooms considered the occupancy (i.e., classrooms 

occupied during a large period of the day), the teachers’ availability to participate in the 

research and the students’ capacity to complete questionnaires, taking into account their 

reading and interpretation skills. The selected classrooms were occupied during the morning 

and afternoon with one short break in each period plus a lunch break. The classrooms from 

schools A and B were occupied by one group during the morning and another group during 

the afternoon. The classrooms from School C were occupied by multiple groups during both 

periods. 
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Figure 5.2 – Pictures of the school and the monitored classroom, floor plan and classroom perspective 
(School A). 

 

Figure 5.3 – Pictures of the school and the monitored classroom, floor plan and classroom perspective 
(School B). 
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Figure 5.4 – Pictures of the school and the monitored classroom, floor plan and classroom perspective 

(School C). 

Indoor environmental variables (air temperature, globe temperature, relative humidity, CO2 

concentration) were monitored in a 10-minute time-step by dataloggers placed inside the 

selected classrooms. The dataloggers were placed away from the windows at a height of 1.1 

meters. The status of windows and doors (open/ closed) and fans (on/ off) was also monitored 

by using binary state sensors. Since there is more than one operable window in each 

classroom, a binary approach was adopted, marking 0 when all windows were closed and 1 

when at least one window was open.  The number of occupants was monitored through the 

attendance list provided by each classroom’s teacher. Outdoor environmental variables 

measurements (air temperature, relative humidity, precipitation, wind speed and wind 

direction) were acquired from the nearest weather station (3.5 to 8 km distant), to enable 

comparisons between indoor and outdoor conditions. 

During part of the physical monitoring – from August 2021 to February 2022 – restrictive 

occupancy measures due to the COVID-19 pandemic were observed, such as a reduced 

number of occupants, reduced occupancy period, mandatory use of masks and the necessity 

to keep windows and doors open and the fan off during occupancy (Table 5.5). As a result, a 

binary variable was incorporated into the data collection, distinguishing between periods with 

and without COVID-19 restrictive measures. The schools in Brazil reopened after the COVID-

19 vaccines were made available for adults (starting in January 2021) and for children above 

12 years old (starting in June 2021). The vaccination in children below 12 years old began in 

January 2022, coinciding with the removal of COVID-19 restrictive measures in schools. 
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Table 5.5 – COVID-19 restrictive measures. 

 
Number of occupants Occupancy period 

With COVID-19 
restrictions 

(08/21 to 02/22) 

Without COVID-
19 restrictions 
(03/22 to 08/22) 

With COVID-19 restrictions  
- reduced period - 

(08/21 to 02/22) 

Without COVID-19 restrictions 
- regular period - 
(03/22 to 08/22) 

School A 3 – 28 26 – 31 7 h – 9:20h/ 13 h – 15:20 h 7 h – 11:20 h/ 12:20 h – 16 h 
School B 7 – 28 24 – 36 7 h – 11 h/ 13:30h – 17:30 h 7 h – 11:50 h/ 13h – 17:50 h 
School C 14 – 31 11 – 36  7:00 h – 11:30 h/ 13:00h – 16:30 h* 
*School C maintained the regular period also during the period with COVID-19 restrictions. 

Questionnaires were applied to students to analyse occupant satisfaction levels related to 

environmental comfort, clothing and building design (Appendix B). In addition, questionnaires 

were applied to teachers in order to describe the students’ routine and behaviour related to the 

environmental comfort and sanitary protocols arising from the pandemic (Appendix A). A total 

of 113 students, aged between 9 and 18 years old (comprising 23% from School A, 73% from 

School B, and 4% from School C), participated in the questionnaire surveys. Responses were 

also obtained from three teachers, with one teacher representing each of the three schools in 

the study. 

5.2.3 Predictive modelling 

The questions raised through the analysis of the collected data provided support for the 

development of predictive models. The models were developed using the R programming 

language, version 4.3.1 (R Core Team, 2023). Data pre-processing included the following:  

• CO2 concentration data was subjected to a reciprocal transformation to reduce skewness 

(see Appendix C in supplementary material). 

• Continuous variables were normalized.  

• The dataset was randomly split into 80% (training dataset) and 20% (test dataset) in order 

to perform cross-validation of the developed models, by assessing their accuracy across 

different samples (FIELD; MILES; FIELD, 2012).  

• The imbalanced data regarding window, door, and fan status was balanced by using the 

random walk over-sampling approach. This technique generates synthetic instances, 

ensuring that the mean and standard deviation of numerical variables remain close to the 

original data (MARKOVIC, 2020).  

In order to assess the behavioural diversity and considering the monitored schools as a 

variable of a random nature, the logistic regression was applied in the training dataset by using 

the Generalized Linear Mixed Model function. Therefore, occupant behaviour prediction was 

assessed through the investigation of the influence of the recorded parameters on the window, 

door, and fan status, considering a binary operation state (closed/ off = 0 or open/ on = 1) 
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The models were developed based on four hypotheses, which were formulated in light of 

previous research findings (Table 5.6). The variables included as predictors represented the 

indoor environmental variables (indoor operative temperature, relative humidity and CO2 

concentration), the school routine (weekday, hours of the day and occupancy period), teacher 

behaviour, window, door, and fan status and the restrictions imposed due to the COVID-19 

pandemic (occupancy rate and periods with and without COVID-19 restrictions). One model 

was developed for each system (window, door, and fan) and each hypothesis, resulting in a 

total of 12 models (4 models per system). Also, a fifth model was developed for each system 

(windows, door and fans) including all the significant predictors from models 1 to 4, resulting 

in a total of 15 models (5 models per system) (Table 5.6). 

Table 5.6 – Proposed models and predictors. 

Model Hypothesis Research context Domains Predictors 

1 

Indoor environmental conditions 
influence window, door, and fan 
status in school classrooms. 

Previous studies investigated 
indoor environmental variables 
as predictors for window and 
door status (Table 1). This 
hypothesis aims to confirm or 
refute the published results, with 
a focus on our case study. 

Physical (thermal 
and IAQ) 

Indoor operative 
temperature, 
relative humidity, 
CO2 
concentration 

2 

The school routine and the teacher’s 
behaviour had a greater influence 
than the indoor thermal conditions on 
window, door, and fan status in school 
classrooms. 

During the monitoring period, we 
identified differences in window, 
door, and fan status related to 
school routine and teachers’ 
behaviour. 

Physical (thermal 
and IAQ) and 
contextual 

Model 1 + 
weekday, hour of 
the day, 
occupancy 
period, teacher 

3 

In school classrooms, window, door, 
and fan status are predictor variables 
for each other. 

The data collected during the 
monitoring period suggests that 
windows, doors, and fans status 
impact each other. 

Physical (thermal 
and IAQ) and 
multi-behavioural 

Model 1 + 
window, door, 
and/or fan status 

4 

The restrictions imposed by the 
pandemic (social norms) had a 
greater influence than the indoor 
thermal conditions on window, door, 
and fan status in school classrooms. 

The teachers demonstrated 
awareness of and compliance 
with COVID-19 pandemic 
restrictions. 

Physical (thermal 
and IAQ) and 
contextual 

Model 1 + 
occupancy rate + 
COVID-19 
restrictions 

5 

Indoor environmental conditions, 
school routine and the restrictions 
imposed by the pandemic (multi-
domain factors) are predictors of 
window, door, and fan status in school 
classrooms. 

Creating a general model based 
on merging the previous models. 

Physical (thermal 
and IAQ), 
contextual and 
multi-behavioural 

Models 1 + 2 + 3 
+ 4 

 

A base model included all the predictors listed in Table 5.6. Subsequently, the dredge function 

was applied to categorize the models based on Akaike's information criterion (AIC), selecting 

the models with smaller AIC values, as they represent a better fit of the data. The selected 

models were analysed considering the predictors’ standardized coefficients, which indicate 

their individual contribution to the model (i.e., to what degree each predictor affects the 

outcome and if the relationship is positive or negative); their confidence intervals, which 

indicate to what extent these values would vary across different samples; and their p-values, 
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which indicate whether the predictor is making a significant contribution to the model or not, 

considering a .05 significance level (FIELD; MILES; FIELD, 2012). As the standardized 

coefficients were all measured in standard deviation units and, thus, not dependent on the 

units of measurement of the variables, they are directly comparable, providing better insight 

into the importance, also called effect size, of a predictor in the model (FIELD; MILES; FIELD, 

2012) (see Appendix D in supplementary material). The Akaike's information criterion (AIC) 

was employed to compare the models, considering a difference in AIC, ∆AIC, greater than 2 as 

a good improvement of the model.  

5.2.4 Algorithm’s validation 

The validation procedure for each model was conducted using the test dataset to generate 

confusion matrices, showing the relationship between predicted and actual results (GERALDI, 

2021; MO et al., 2019). The confusion matrix consists of true positive (TP), true negative (TN), 

false positive (FP) and false negative (FN) values. These values were used to calculate the 

model’s prediction accuracy, which indicates the proportion of correct predictions and is 

defined as (TP + TN)/ (TP + FP + TN + FN); the model’s precision (or positive predictive value), 

which is related to the positively predicted outcomes and all the positively predicted results and 

is calculated by TP / (TP + FP); the model’s recall (or sensitivity), which is the proportion of 

predicted true positive results and all true positive results and is defined as TP / (TP + FN); 

and the model’s F1-score, which is the harmonic mean between the precision and the recall 

and makes the models more comparable, being defined as 2TP / (2TP + FP + TN + FN) (Li et 

al., 2019; Mo et al., 2019). The Area Under the Receiver Operating Characteristic curve 

(AUROC Curve, or AUC) was also calculated, which graphically represents the TP and the FP 

rates at various threshold settings obtained from the predictions on real data (BELAFI et al., 

2018). Its index ranges between 0.5 (no correlation at all) and 1 (exact predictions), but values 

above 0.7 are generally considered satisfactory (HALDI; ROBINSON, 2009). 

5.3 Results 

5.3.1 Descriptive statistics of environmental conditions and operational states 

Table 5.7 shows descriptive statistics of the indoor and outdoor variables during the whole 

occupied period, when the windows and door were closed and the fan was off (window, door, 

and fan (WDF) status = 0) and when the windows and door were open and the fan was on 

(WDF status = 1). The indoor conditions during other scenarios are presented in the 

supplementary material (Appendix E). The indoor conditions were satisfactory most of the time 

in all classrooms, meeting the required values for indoor operative temperature according to 
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the ASHRAE 55 adaptive thermal comfort model (80% acceptability) (ASHRAE, 2020b) on 

average 69% of the time. The adaptive comfort temperature range varied depending on the 

month and school location (São Paulo or Campinas). The lower temperature range considered 

in this study was between 19.8 ºC and 26.8 °C and the upper range was between 21.8º C and 

28.8 ºC. The indoor CO2 concentration met ideal levels on average 92.7% of the time, 

according to the limits suggested by Allen et al. (2020). Periods of WDF status = 1 had in 

comparison to periods with WDF status = 0 on average higher outdoor and indoor operative 

temperatures, indoor relative humidity and CO2 concentration.  

Table 5.7 – Descriptive statistics of indoor and outdoor conditions during the occupied period. 

Variable All occupied period (n = 3800) WDF* status = 0 (n = 68) WDF status = 1 (n = 503) 
Mean SD Range Mean SD Range Mean SD Range 

Top (°C) 24.0 3.4 14.1 – 32.1 22.9 4.5 15.8 – 31.7 23.8 4.3 16.4 – 32.1 
Tout (°C) 23.4 5.4 6.8 – 35.6 21.2 6.1 8.5 – 31.8 24.4 5.3 10.4 – 35.5 
RH (%) 59.8 11.1 27.0 – 87.0  57.6 7.9 32.0 – 72.0 62.1 9.0 37.0 – 87.0 
RHout (%) 65.4 19.9 16.0 – 100.0 64.5 15.6 32.0 – 99.0 63.4 15.9 20.3 – 99.9 
CO2 (ppm) 602.3 147.1 333.0 – 1682.0  580.3 127.4 393.0 – 948.0  633.7 156.8 333 – 1682  
*WDF = Window, door, and fan 

Table 5.8 shows the frequency of window, door, and fan status during the occupied period. 

The most prevalent scenario observed was both the windows and door open while the fan 

remained off. In contrast, the less common situation involved both the windows and door 

closed, with the fan turned on. In addition, some associations were observed. For instance, 

the fan was on predominantly when the window was open, probably due to higher outdoor 

temperatures (Figure D1 in Appendix E). In this context, the temperature could be a trigger for 

occupants to use all available resources (i.e., window and fan) aiming to reduce thermal 

discomfort due to heat. These results suggest that one status can influence the others and 

these correlations should be further investigated. 

Table 5.8 – Window, door, and fan (WDF) status frequency. 

 
Fan 

 
Off (0) On (1) 

Window 
Closed (0) 

68 (2%) 27 (1%) Closed (0) 

Door 
466 (12%) 80 (2%) Open (1) 

Open (1) 
287 (8%) 171 (5%) Closed (0) 

2198 (58%) 503 (13%) Open (1) 

Figure 5.5 illustrates the frequency of open/on or closed/off status for windows, doors, and 

fans, according to each teacher. Results show different behaviours, especially for windows 

and fans. The difference was less evident for the door operation since the door remained open 

most of the time during all lessons. This prompts the question of the extent to which teachers 

exert influence over the status of windows, doors and fans, and whether this influence holds 

greater significance compared to indoor environmental conditions. 
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(a) 

 

(b) 

 

(c) 

 

Figure 5.5 – Teachers and (a) window, (b) door, and (c) fan status during the occupied period. 

The answers to the questionnaires showed that 46% of the participants were satisfied with the 

classroom thermal conditions, with a mean indoor operative temperature of 26.2 ºC, while 42% 

reported feeling hot, with a mean indoor operative temperature of 27.8 ºC, and 12% reported 

feeling cold, with a mean indoor operative temperature of 23.6 ºC.  

When questioned about window operation, 80% of the students declared that they did not open 

or close the window during the day that the questionnaire was applied. Those who did operate 

the windows cited indoor thermal conditions as their primary motivation, such as ventilating the 

classroom or addressing discomfort due to heat. The hour of the day they declared as most 

usual to open the windows was upon arriving in the classroom. In addition, the students that 

operated the windows on that day were predominantly from schools A and C, which is 

explained by the teachers’ responses to the questionnaires: in school B, only teachers and 

staff were allowed to operate the windows, whereas in schools A and C – where classrooms 
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are occupied by older students than the monitored classrooms from school B – the students 

were also allowed to operate them.  

A small percentage of students (2%) reported operating the fans during the days that the 

questionnaires were applied, and their main motivation was also the indoor thermal conditions. 

All students who reported operating the fans were from schools A and C, which strengthens 

the notion that teacher behaviour or students' age may influence occupant behaviour in this 

regard. In the case of the fan operation, the accessibility could also be an obstacle for the 

students, since they could not reach the switches without the use of a ladder or chair. All 

teachers reported that they often turn on the fans upon students’ request, as well as other 

times of the day, based on their own decisions. This behaviour contrasts with students’ 

approach to the windows, as they can reach and operate the windows themselves. This could 

explain the limited use of fans, as shown in Figure 5c. These findings reinforce the necessity 

of exploring predictors beyond environmental variables for determining window, door, and fan 

status, such as teachers' behaviour and school routine. 

All teachers reported being conscious of and adhering to the COVID-19 pandemic restrictions 

during the initial phase of the monitoring period. This observation is partly supported by the 

collected data (Figure 5.6), particularly concerning door and fan status. During the occupied 

period with restrictions, the door was open 90% of the occupied time and the fan was off 87% 

of the time, suggesting that most of the time the guidelines were followed in these classrooms, 

whereas during the period without restrictions, the door was open 81% of the occupied time 

and the fan was off 71% of the time. The window remained open for longer periods during the 

occupied period without restrictions (86%) than during the occupied period with restrictions 

(80%), indicating a potential impact from other factors, such as indoor thermal conditions. Yet, 

the window, door and fan status in both periods were similar, with a predominance of open 

status for windows and doors and off status for fans. This suggests that, just after the COVID-

19 restrictions were lifted, occupant behaviour changed very little. However, it is important to 

highlight that the habits and concerns raised during the pandemic may have continued even 

after restrictions were lifted. 
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5.3.2 Predictive modelling  

• Hypothesis 1: Indoor conditions influence window, door, and fan status in school 

classrooms.  

Environmental variables were, so far, the most investigated predictors for occupant behaviour 

in school buildings, as presented in Table 5.1. Our models from hypothesis 1 (Table 5.9) reveal 

that indoor operative temperature, relative humidity and CO2 concentration are significant 

predictors of the status of windows and doors, confirming that indoor conditions influence their 

status in school classrooms. The fan status, though, was influenced only by relative humidity 

and CO2 concentration, since indoor operative temperature presented a small effect on the 

AIC and, therefore, was not included in this model. 

Relative humidity and CO2 concentration presented a negative relationship with window status, 

indicating that as relative humidity and CO2 concentration increase, the likelihood of the 

window being open decreases. The same pattern is observed between CO2 concentration and 

door status. The other predictors exhibit a positive correlation with window, door, and fan 

status. The relative humidity has a stronger influence over the window status than the other 

predictors, as indicated by the standardized coefficients, but still similar to CO2 concentration 

and indoor operative temperature, while the CO2 concentration has a stronger influence over 

the door and fan status. The two predictors with stronger influence in each model are 

represented in Figure 5.7, which also shows the positive or negative correlations. 

Table 5.9 – Models for window, door, and fan status – hypothesis 1. 

 Window (AIC = 6670.7) Door (AIC = 7210.8) Fan (AIC = 6468.4) 
 Std. Coef. 95% CI p-value Std. Coef. 95% CI p-value Std. Coef. 95% CI p-value 
Top 0.04 [0.01, 0.07] 0.00* 0.16 [0.13, 0.19] 0.00* NI NI NI 
RH -0.05 [-0.08, -0.01] 0.01* 0.07 [0.04, 0.10] 0.00* 0.12 [0.09, 0.15] 0.00* 
CO2 -0.04 [-0.07, -0.02] 0.00* -0.17 [-0.20, -0.14] 0.00* 0.25 [0.22, 0.28] 0.00* 
Caption: * statistically significant values; NI = interactions not included in the model; AIC = Akaike's information criterion. 
 
 

(a) (b) (c) 

 
 

  
 

Notes: COVID restrictions 0 (without restrictions) and 1 (with restrictions). 

Figure 5.6 – COVID-19 restrictions and (a) window, (b) door, and (c) fan status during the occupied period. 



103 

 

 

(a) Window status (b) Door status (c) Fan status 

   
   
Note: scale -2 to 2 represents normalized values. Actual ranges: Top 14.1 ºC – 32.1 ºC; RH 27% - 87%; CO2 333 ppm – 
1682 ppm. 

Figure 5.7 – Models’ prediction based on environmental variables, showing the predictors with higher 
effect size. 

• Hypothesis 2: The school routine and the teacher’s behaviour had a greater influence 

than the indoor thermal conditions on window, door, and fan status in school 

classrooms. 

Consistent with the findings from hypothesis 1, the indoor environmental variables were also 

identified as significant predictors for window, door, and fan status in models from hypothesis 

2, except for CO2 concentration for window status and indoor operative temperature for fan 

status (Table 5.10). The negative and positive relationships between these predictors and 

window, door, and fan status remained consistent with the previous models. However, it is 

important to note that the effect sizes of these predictors changed with the inclusion of other 

variables in the models. In models from hypothesis 2, the indoor operative temperature had a 

stronger influence on window and door status, while relative humidity had a stronger impact 

on fan status. 

Based on the collected data, we reinforce here the influence of the teacher, particularly on 

window and fan status. Indeed, most of the teachers were identified as significant predictors 

(Table 5.10). The variables weekday and hour of the day, which represent the school routine, 

were also identified as significant predictors in all models. The occupancy period, though, was 

not included in the window model due to its small effect on the AIC. The hour of the day 

exhibited a negative correlation with window and door status, suggesting that the likelihood of 

the window and door being open decreases with time (Figure 5.8). This could be related to the 

school routine, since windows and doors tend to be opened mainly during arrival times and 

closed mainly during departure times, regardless of the environmental conditions. In contrast, 

the hour of the day exhibited a positive correlation with fan status, indicating that the fan was 

more frequently operated during the afternoon.  
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Table 5.10 – Models for window, door, and fan status – hypothesis 2. 

 Window (AIC = 5557.5) Door (AIC = 5757.6) Fan (AIC = 5174.3) 
 Std. 

Coef. 95% CI p-value Std. 
Coef. 95% CI p-value Std. 

Coef. 95% CI p-value 

Top 0.07 [0.05, 0.10] 0.00* 0.19 [0.16, 0.21] 0.00* 0.02 [-0.01, 0.05] 0.13 
RH -0.05 [-0.08, -0.02] 0.00* 0.04 [0.01, 0.07] 0.00* 0.17 [0.14, 0.20] 0.00* 
CO2 -0.02 [-0.05, 0.00] 0.10 -0.12 [-0.15, -0.10] 0.00* 0.16 [0.13, 0.19] 0.00* 
TeacherA2 -0.10 [-0.24, 0.04] 0.15 -0.23 [-0.39, -0.07] 0.01* 0.08 [-0.07, 0.23] 0.32 
Teacher A3 -0.11 [-0.29, 0.06] 0.21 -0.63 [-0.84, -0.43] 0.00* 0.41 [0.23, 0.59] 0.00* 
TeacherA4 -0.43 [-0.56, -0.30] 0.00* -0.31 [-0.47, -0.16] 0.00* 0.03 [-0.13, 0.19] 0.71 
TeacherA5 -0.06 [-0.21, 0.09] 0.41 -0.51 [-0.66, -0.36] 0.00* 0.05 [-0.12, 0.22] 0.55 
TeacherA6 -0.27 [-0.49, -0.05] 0.02* -1.33 [-1.46, -1.19] 0.00* 0.80 [0.64, 0.95] 0.00* 
TeacherB1 0.77 [0.53, 1.00] 0.00* -0.34 [-0.48, -0.19] 0.00* 0.06 [-0.09, 0.21] 0.46 
TeacherC1 -0.57 [-0.82, -0.32] 0.00* -1.25 [-1.42, -1.07] 0.00* 0.75 [0.57, 0.93] 0.00* 
TeacherC2 -0.77 [-1.03, -0.52] 0.00* -1.54 [-1.72, -1.37] 0.00* 1.14 [0.96, 1.32] 0.00* 
TeacherC3 -0.42 [-0.68, -0.17] 0.00* -1.55 [-1.72, -1.38] 0.00* 0.88 [0.70, 1.06] 0.00* 
TeacherC4 -0.78 [-1.07, -0.50] 0.00* -1.94 [-2.13, -1.76] 0.00* 1.52 [1.32, 1.73] 0.00* 
TeacherC5 -0.15 [-0.42, 0.11] 0.26 -1.70 [-1.88, -1.52] 0.00* 1.12 [0.93, 1.31] 0.00* 
TeacherC6 -1.22 [-1.60, -0.84] 0.00* -1.79 [-2.08, -1.49] 0.00* 1.24 [0.86, 1.62] 0.00* 
Tuesday 0.35 [0.27, 0.42] 0.00* 0.24 [0.16, 0.31] 0.00* -0.35 [-0.42, -0.28] 0.00* 
Wednesday 0.22 [0.14, 0.29] 0.00* 0.23 [0.15, 0.31] 0.00* -0.62 [-0.70, -0.54] 0.00* 
Thursday 0.05 [-0.02, 0.13] 0.17 0.26 [0.19, 0.34] 0.00* -0.77 [-0.85, -0.69] 0.00* 
Friday 0.18 [0.09, 0.26] 0.00* 0.38 [0.30, 0.47] 0.00* -0.90 [-0.98, -0.81] 0.00* 
Hour of the day -0.12 [-0.15, -0.09] 0.00* -0.17 [-0.19, -0.14] 0.00* 0.10 [0.07, 0.13] 0.00* 
Occupancy period NI NI NI 0.06 [0.04, 0.09] 0.00* -0.04 [-0.07, -0.02] 0.00* 
Caption: *statistically significant values; NI = interactions not included in the model; AIC = Akaike's information criterion. 

 

The variables representing school routine and teacher behaviour had a more significant 

influence on window, door, and fan status, in terms of effect size, if compared to the indoor 

thermal conditions. However, there were exceptions to this trend. For instance, the hour of the 

day was less influential on the fan status than the relative humidity and the CO2 concentration. 

Additionally, specific teachers had either less importance or no influence at all on window and 

fan status, when compared to indoor thermal conditions.  

(a) Window status (b) Door status (c) Fan status 

   
Note: scale -2 to 2 represents normalized values. Actual ranges: Top 14.1 ºC – 32.1 ºC; RH 27% - 87%; Hour of the day 
7 h – 17:50 h. 

Figure 5.8 – Models’ prediction based on the hour of the day and environmental variables, showing the 
predictors with higher effect size. 
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• Hypothesis 3: In school classrooms, window, door, and fan status are predictor 

variables for each other. 

By including window, door or fan status as predictors, the indoor operative temperature for 

window status and the relative humidity for door status did not present a notable impact on 

occupant behaviour (Table 5.11), unlike the models from hypotheses 1 and 2. The negative 

correlation between relative humidity, CO2 concentration and window status, as well as 

between CO2 concentration and door status, remained consistent, as observed in the previous 

models. 

The door and fan status were significant predictors for the window status, as well as the window 

and door for the fan status. The window status was the only significant predictor for the door 

status. These correlations were positive for the window and door status models (Figure 5.9), 

indicating that the probability of the window being open was higher when the door was open 

and the fan was on and the probability of the door being open was higher when the window 

was open. On the contrary, the correlations between window and door status with fan status 

were negative. This implies that the likelihood of the fan being on when the door and window 

were closed was higher than when they were open.  

Table 5.11 – Models for window, door, and fan status – hypothesis 3. 

 Window (AIC = 5882.5) Door (AIC = 6538.6) Fan (AIC = 5342.6) 
 Std. Coef. 95% CI p-value Std. Coef. 95% CI p-value Std. Coef. 95% CI p-value 
Top NI NI NI 0.14 [0.11, 0.17] 0.00* 0.02 [-0.21, 0.19] 0.00* 
RH -0.07 [-0.10, -0.04] 0.00* 0.07 [0.04, 0.10] 0.12 0.12 [0.09, 0.15] 0.00* 
CO2 -0.04 [-0.07, -0.02] 0.00* -0.15 [-0.18, -0.12] 0.00* 0.16 [0.13, 0.19] 0.00* 
Window status NI NI NI 0.35 [0.32, 0.37] 0.00* -0.16 [-0.19, -0.14] 0.00* 
Door status 0.32 [0.29, 0.34] 0.00* NI NI NI -0.39 [-0.41, -0.36] 0.00* 
Fan status 0.19 [0.16, 0.21] 0.00* -0.02 [-0.05, 0.00] 0.06 NI NI NI 
Caption: *statistically significant values; NI = interactions not included in the model; AIC = Akaike's information criterion. 
 

(a) Window status (b) Door status (c) Fan status 

   
Notes: scale -2 to 2 represents normalized values. Actual ranges: RH 27% - 87%; CO2 333 ppm – 1682 ppm. Window, 
door, and fan status 0 (closed/ off) and 1 (open/ on). 

Figure 5. 9 – Models’ prediction based on window, door or fan status and environmental variables, 
showing the predictors with higher effect size. 
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• Hypothesis 4: The restrictions imposed by the pandemic (social norms) had a greater 

influence than the indoor thermal conditions on window, door, and fan status in school 

classrooms. 

The addition of COVID-19 restrictions as predictor variables resulted in the indoor operative 

temperature not being a significant predictor for the window status and the relative humidity 

not being a significant predictor for the door status (Table 5.12). The other environmental 

variables remained significant predictors for window, door, and fan status, maintaining the 

same positive or negative correlations as before. 

Given that part of the data was collected during the COVID-19 pandemic (Table 5.4), the 

inclusion of these predictors (variations in occupancy rate and COVID-19 restrictions, which 

were mandatory use of masks and the necessity to keep windows and doors open and fans 

off during occupancy) in the models is a unique and novel aspect, compared to studies 

conducted prior to the pandemic. The impacts of the restrictions imposed by the pandemic on 

the window, door, and fan status appeared to be of a greater influence than indoor thermal 

conditions. Therefore, these variables emerged as significant predictors in all models, as 

expected, since it includes general recommendations that the users were adhering to, except 

for the interaction between CO2 concentration and occupancy rate in the door status model. 

The COVID-19 restrictions exhibited a positive correlation with window and door status, 

indicating that, during the period with restrictions, the likelihood of the window and door being 

open was higher (Figure 5.10). The fan status showed an opposite trend: during the period 

with restrictions, the likelihood of the fan being on was lower. These findings are in line with 

the analysis of the collected data (Figure 5.6) and the protocols imposed by the COVID-19 

pandemic, as they suggest that during the period with restrictions, windows and doors should 

remain open, while the fan should remain off.  

Table 5.12 – Models for window, door, and fan status – hypothesis 4. 

 Window (AIC = 5824.6) Door (AIC = 6586.9) Fan (AIC = 5809.3) 
 Std. 

Coef. 95% CI p-value Std. 
Coef. 95% CI p-value Std. 

Coef. 95% CI p-value 

Top NI NI NI 0.05 [0.02, 0.08] 0.00* 0.06 [0.04, 0.09] 0.00* 
RH -0.08 [-0.11, -0.05] 0.00* 0.11 [0.08, 0.14] 0.10 0.05 [0.02, 0.08] 0.00* 
CO2 -0.10 [-0.13, -0.07] 0.00* -0.11 [-0.14, -0.08] 0.00* 0.13 [0.10, 0.16] 0.00* 
COVID restrictions 0.62 [0.56, 0.68] 0.00* 0.84 [0.78, 0.91] 0.00* -0.72 [-0.78, -0.65] 0.00* 
Occupancy rate 0.42 [0.17, 0.22] 0.00* 0.11 [0.08, 0.14] 0.00* 0.05 [0.01, 0.08] 0.00* 
CO2:Occupancy** 0.19 [0.17, 0.22] 0.00* NI NI NI -0.03 [-0.06, -0.01] 0.02* 
Caption: *statistically significant values; **the use of colon between predictors refers to an interaction between two 
variables; NI = interactions not included in the model; AIC = Akaike's information criterion. 
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(a) Window status (b) Door status (c) Fan status 

   
Notes: scale -2 to 2 represents normalized values. Actual range: CO2 333 ppm – 1682 ppm. COVID restrictions 0 (without 
restrictions) and 1 (with restrictions). 

Figure 5.10 – Models’ prediction based on COVID-19 restrictions and environmental variables, showing 
the predictors with higher effect size. 

• Hypothesis 5: indoor environmental conditions, school routine and the restrictions 

imposed by the pandemic are predictors of window, door, and fan status in school 

classrooms. 

A fifth model was created for window, door, and fan status including all significant variables 

from the previous models, in order to predict occupant behaviour more accurately in school 

classrooms (Table 5.13), given the current research scenario (naturally ventilated school 

classrooms situated in a humid subtropical climate). 

The predictive model for window status revealed that the variables relative humidity, CO2 

concentration, COVID-19 restrictions, teacher behaviour, school routine and door and fan 

status are significant predictors, corroborating the results of the previous models. The variables 

relative humidity, CO2 concentration and hour of the day presented a negative correlation with 

window status, indicating that, as their values increased, the likelihood of the window being 

open decreased (Figure 5.11a). The other significant predictors had a positive correlation with 

the window status, suggesting that the period with the restrictions imposed by the COVID-19 

pandemic, a higher number of occupants, the door open and the fan on increase the chance 

of the window being open (Figure 5.11b). In contrast, the variables indoor operative 

temperature and occupancy period were not identified as significant predictors for window 

status.  
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Table 5.13 – Models for window, door, and fan status – hypothesis 5. 

 Window (AIC = 4483.5) Door (AIC = 4927.7) Fan (AIC = 4119.4) 
 Std. 

Coef. 95% CI p-value Std. 
Coef. 95% CI p-value Std. 

Coef. 95% CI p-value 

Top NI NI NI 0.08 [0.06, 0.11] 0.00* 0.10 [0.08, 0.13] 0.00* 
RH -0.09 [-0.12, -0.07] 0.00* 0.10 [0.07, 0.13] 0.00* 0.09 [0.06, 0.11] 0.00* 
CO2 -0.05 [-0.08, -0.03] 0.00* -0.05 [-0.08, -0.02] 0.00* 0.03 [0.00, 0.06] 0.02* 
COVID restrictions 0.43 [0.38, 0.49] 0.00* 0.60 [0.54, 0.65] 0.00* -0.42 [-0.48, -0.37] 0.00* 
Occupancy rate 0.26 [0.23, 0.29] 0.00* 0.00 [-0.02, 0.04] 0.37 0.07 [0.05, 0.10] 0.00* 
CO2:Occupancy** 0.12 [0.10, 0.14] 0.00* -0.07 [-0.09, -0.05] 0.00* NI NI NI 
TeacherA2 -0.06 [-0.18, 0.07] 0.36 -0.14 [-0.29, 0.01] 0.06 -0.05 [-0.19, 0.08] 0.44 
TeacherA3 -0.13 [-0.29, 0.03] 0.12 -0.53 [-0.71, -0.34] 0.00* 0.26 [0.10, 0.42] 0.00* 
TeacherA4 -0.43 [-0.54, -0.31] 0.00* -0.04 [-0.19, 0.10] 0.58 -0.16 [-0.30, -0.02] 0.03* 
TeacherA5 -0.11 [-0.24, 0.03] 0.12 -0.38 [-0.53, -0.24] 0.00* -0.15 [-0.30, 0.00] 0.06 
TeacherA6 -0.23 [-0.42, -0.03] 0.02* -1.17 [-1.29, -1.04] 0.00* 0.63 [0.49, 0.77] 0.00* 
TeacherB1 0.57 [0.36, 0.79] 0.00* -0.34 [-0.48, -0.21] 0.00* 0.09 [-0.04, 0.23] 0.19 
TeacherC1 -0.47 [-0.70, -0.25] 0.00* -1.14 [-1.30, -0.97] 0.00* 0.59 [0.43, 0.75] 0.00* 
TeacherC2 -0.54 [-0.77, -0.31] 0.00* -1.34 [-1.50, -1.18] 0.00* 0.85 [0.69, 1.02] 0.00* 
TeacherC3 -0.23 [-0.46, 0.00] 0.05 -1.38 [-1.54, -1.23] 0.00* 0.64 [0.48, 0.80] 0.00* 
TeacherC4 -0.56 [-0.81, -0.30] 0.00* -1.64 [-1.81, -1.47] 0.00* 1.02 [0.84, 1.20] 0.00* 
TeacherC5 -0.04 [-0.28, 0.20] 0.76 -1.56 [-1.72, -1.40] 0.00* 0.77 [0.60, 0.94] 0.00* 
TeacherC6 -0.94 [-1.28, -0.60] 0.00* -1.53 [-1.80, -1.26] 0.00* 0.94 [0.60, 1.28] 0.00* 
Tuesday 0.22 [0.15, 0.29] 0.00* 0.17 [0.10, 0.24] 0.00* -0.27 [-0.34, -0.21] 0.00* 
Wednesday 0.20 [0.13, 0.26] 0.00* 0.14 [0.07, 0.21] 0.00* -0.45 [-0.52, -0.38] 0.00* 
Thursday 0.08 [0.01, 0.15] 0.03* 0.19 [0.12, 0.26] 0.00* -0.60 [-0.67, -0.53] 0.00* 
Friday 0.16 [0.08, 0.24] 0.00* 0.31 [0.23, 0.39] 0.00* -0.70 [-0.78, -0.62] 0.00* 
Hour of the day -0.11 [-0.13, -0.08] 0.00* -0.08 [-0.11, -0.05] 0.00* NI NI NI 
Occupancy period NI NI NI 0.03 [0.01, 0.05] 0.01* NI NI NI 
Window status NI NI NI 0.22 [0.20, 0.24] 0.00* -0.11 [-0.13, -0.09] 0.00* 
Door status 0.21 [0.19, 0.23] 0.00* NI NI NI -0.26 [-0.28, 0.23] 0.00* 
Fan status 0.17 [0.15, 0.20] 0.00* 0.04 [0.02, 0.06] 0.00* NI NI NI 
Caption: *statistically significant values; **the use of colon between predictors refers to an interaction between two 
variables; NI = interactions not included in the model; AIC = Akaike's information criterion. 

 

The predictive model for door status showed that the indoor environmental variables, the 

COVID-19 restrictions, the teachers’ behaviour, the school routine and the window and fan 

status were significant predictors. This differs from the results of the predictive models for door 

status from hypotheses 1 to 4, where relative humidity and fan status did not emerge as 

significant predictors and, specifically for hypothesis 4, occupancy rate emerged as a 

significant predictor. This suggests that other factors in the model may be playing a more 

dominant role in influencing the door status. Similar to the predictive model for window status, 

the CO2 concentration, the hour of the day and the teachers’ behaviour had a negative 

correlation with door status, while the correlations between indoor operative temperature, 

relative humidity, COVID-19 restrictions, weekdays, window and fan status were positive 

(Figure 5.12). 

The predictive model for fan status had similar significant predictors as the model for window 

status, except for the hour of the day. Nevertheless, the correlations between predictors and 

fan status were opposite to what was observed in the predictive models for window and door 
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(Figure 5.13). This suggests that, as the indoor environmental variables’ values increase, the 

probability of the fan being on also increases. On the other hand, the COVID-19 restrictions 

and the open door and windows decrease the probability of the fan being on. 

(a) Significant predictor with a negative 
correlation with window status 

(b) Significant predictor with a positive 
correlation with window status 

  
Notes: scale -2 to 2 represents normalized values. Actual ranges: RH 27% - 87%; CO2 333 ppm – 1682 ppm; Hour of the 
day 7 h – 17:50 h; Occupancy 3 – 36 occupants. Window, door, and fan status 0 (closed/ off) and 1 (open/ on). COVID 
restrictions 0 (without restrictions) and 1 (with restrictions). 

Figure 5.11 – Window status models’ prediction, showing the predictors with higher effect size 

(a) Significant predictor with a negative 
correlation with door status 

(b) Significant predictor with a positive 
correlation with door status 

  
Notes: scale -2 to 2 represents normalized values. Actual ranges: Top 14.1 ºC – 32.1 ºC; RH 27% - 87%; Hour of the day 
(hour_min) 7 h – 17:50 h. COVID restrictions 0 (without restrictions) and 1 (with restrictions). 

Figure 5.12 – Door status models’ prediction, showing the predictors with higher effect size. 
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(a) Significant predictor with a negative 
correlation with fan status 

(b) Significant predictor with a positive 
correlation with fan status 

  
Notes: scale -2 to 2 represents normalized values. Actual ranges: Top 14.1 ºC – 32.1 ºC; RH 27% - 87%; CO2 333 ppm 
– 1682 ppm. Window, door, and fan status 0 (closed/ off) and 1 (open/ on). COVID restrictions 0 (without restrictions) and 
1 (with restrictions). 

Figure 5.13 – Fan status models’ prediction, showing the predictors with higher effect size. 

5.3.3 Algorithm’s validation 

The models for window and door status predicted more open (1) than closed status (0) (Tables 

5.14 and 5.15), while the models for fan status predicted more off (0) than on status (1) (Table 

5.16), with an accuracy greater than 0.5 for all models. This means that more than 50% of the 

predictions were correct in all models – specifically 72%, 79% and 74% for window, door, and 

fan models of hypothesis 5, which is a positive outcome for assessing occupant behaviour. 

The F1-score, which incorporates both precision and recall in its calculation, demonstrated 

satisfactory values for window and door models. However, the F1-score for the fan status 

models was lower, below 0.3 for all models. This occurred because these three indexes (F1-

score, precision and recall) consider the true positive values, and these models predicted more 

negative values, or off status (0). 

Most window and fan status models presented values for AUC above 0.7, which is considered 

satisfactory. Despite only the model for door status from hypothesis 2 presenting an AUC of 

0.7, models from hypotheses 4 and 5 came very close to this threshold. In general, models 

from hypothesis 5 presented higher values of AUC, followed by models from hypotheses 2 and 

4, which reinforces the importance of school routine, teachers’ behaviour and social norms 

(COVID-19 restrictions) as predictors for window, door, and fan status. 

The comparison between the models from hypothesis 1, which include fewer predictors (only 

environmental variables), and the models from hypothesis 5, which include all significant 

predictors from the other models (multi-domain variables), reveals that window, door and fan 

models from hypothesis 1 are less accurate, with less than 70% of correct predictions. This 

result suggests that by including variables from multiple domains to the models, they better 
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describe the obtained data from reality, but also became more context-dependent. Thus, the 

models get less generalizable, especially if we consider the contextual domain, such as school 

routine and teachers’ behaviour. Therefore, the trade-off between a more accurate or a more 

general model should be further investigated, in order to evaluate the models’ applicability. 

Table 5.14 – Prediction performance and AUC for window models. 

Models 
Confusion Matrix 

AUC 
Pred. (0) Pred. (1) Precision Recall Accuracy F1-score 

Model 1 268 515 0.89 0.69 0.67 0.74 0.71 
Model 2 331 452 0.94 0.65 0.67 0.70 0.75 
Model 3 244 539 0.87 0.71 0.67 0.75 0.69 
Model 4 281 502 0.90 0.69 0.67 0.73 0.72 
Model 5 231 552 0.90 0.75 0.72 0.78 0.76 

 
Table 5.15 – Prediction performance and AUC for door models. 

Models 
Confusion Matrix 

AUC 
Pred. (0) Pred. (1) Precision Recall Accuracy F1-score 

Model 1 335 448 0.92 0.61 0.62 0.69 0.66 
Model 2 229 554 0.92 0.76 0.74 0.79 0.70 
Model 3 173 610 0.88 0.79 0.73 0.81 0.63 
Model 4 333 450 0.91 0.61 0.62 0.69 0.68 
Model 5 165 618 0.91 0.83 0.79 0.83 0.69 

 
Table 5.16 – Prediction performance and AUC for fan models. 

Models 
Confusion Matrix 

AUC 
Pred. (0) Pred. (1) Precision Recall Accuracy F1-score 

Model 1 434 349 0.33 0.67 0.63 0.25 0.69 
Model 2 566 217 0.41 0.52 0.73 0.20 0.72 
Model 3 625 158 0.35 0.32 0.72 0.13 0.67 
Model 4 427 356 0.29 0.61 0.59 0.23 0.72 
Model 5 613 170 0.41 0.41 0.74 0.16 0.76 

The metrics analysed during the algorithm’s validation were compared to those of existing 

models (Table 5.17), showing that the values from the models in this study, particularly from 

model 5, are satisfactory and similar to literature. 

Table 5.17 – Comparison of prediction performance and AUC of existing models in the literature. 

Reference Context Model Accuracy F1-score AUC 
Present study School Window 0.67 – 0.72 0.70 – 0.78 0.69 – 0.76 

Door 0.62 – 0.79 0.69 – 0.83 0.63 – 0.70 
Fan 0.59 – 0.74 0.13 – 0.25 0.69 – 0.76 

Stazi et al. (2017a) School Window - - 0.51 – 0.72 
Belafi et al. (2018) School Window - - 0.50 – 0.68 
Markovic et al. (2018) Office Window 0.86 – 0.89 0.53 – 0.65 - 
Mo et al. (2019) Residential Window 0.59 – 0.82 0.55 – 0.82 - 
Jia et al. (2019) Office Window  0.77 0.49 - 
  Door 0.81 0.87 - 
  Blinds 0.74 0.83 - 
Grassi et al. (2022) Office Window 0.72 0.13 0.78 

Air-Conditioning 0.83 0.23 0.84 
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5.4 Discussion 

Environmental variables (physical domain) were the most investigated predictors in literature 

for occupant behaviour in school buildings. Taking this into account, the findings from the first 

and second models are aligned with prior research studies, indicating that indoor operative 

temperature serves as a predictor for window status (BELAFI et al., 2018; DUTTON; SHAO, 

2010; KORSAVI; JONES; FUERTES, 2022b; STAZI; NASPI; D’ORAZIO, 2017a). Yet, when 

other domains were included in models 3, 4 and 5, this association was not maintained. Korsavi 

et al. (2022b) identified a negative correlation between relative humidity and window status, 

which is in line with our results, showing that high indoor humidity indicates that windows are 

closed. The association between CO2 concentration and window status, identified in almost all 

models of this study, with exception of model 2, was significant in only one study from current 

literature (DUTTON; SHAO, 2010), with weak correlations reported in other studies (KORSAVI; 

JONES; FUERTES, 2022b; STAZI; NASPI; D’ORAZIO, 2017a). We identified a negative 

correlation between CO2 concentration and window status in our models, suggesting that, as 

for relative humidity, high CO2 concentration indicates that windows are closed. No correlation 

was found between indoor environmental variables and door status in the study conducted by 

Heebøll et al. (2018), which differs from our results.  

Time-dependent actions, daily routines and teacher behaviour (contextual domain) were 

identified as predictors for window and door status in previous studies in school classrooms 

(BELAFI et al., 2018; HEEBØLL; WARGOCKI; TOFTUM, 2018; KORSAVI; JONES; 

FUERTES, 2022b; STAZI; NASPI; D’ORAZIO, 2017a), aligning with the outcomes of this 

study. The hour of the day, especially the arrival and departure periods, was identified as a 

predictor for window status in three studies (BELAFI et al., 2018; KORSAVI; JONES; 

FUERTES, 2022b; STAZI; NASPI; D’ORAZIO, 2017a). These findings align with the results of 

the present study, which observed a negative correlation between the hour of the day and 

window status, suggesting that as the hour increases (i.e., approaching departure time), the 

likelihood of the window being open decreases. This might be because occupants closed the 

windows before leaving the classroom. Heebøll et al. (2018) also identified the hour of the day 

as a trigger for door status and, despite not including teacher behaviour as a predictor in their 

model, they suggest that the differences found in door status between classrooms could be 

due to a particular teacher behaviour. 

No studies regarding the relation between variables related to the school routine and fan status 

were identified in the literature. Yet, our study revealed a positive correlation between hour of 

the day and fan status, suggesting that the fan was more operated during the afternoon. This 
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finding could be also related to the indoor operative temperature, that also presented a positive 

correlation with fan status, as temperatures tend to be higher in the afternoon. In addition, fan 

status presented a positive correlation with CO2 concentration in all models (i.e., an increase 

in CO2 concentration can lead to increased use of fans), which could be related to the sensation 

of stale air, that might trigger occupants to turn on the fan. Yet, it should be further investigated 

in future studies. 

Our results suggest that one status can impact others (multi-behavioural domain). However, 

the actions could be often taken at the same time, influenced by the same environmental 

predictor, requiring further investigation to confirm our findings. Nevertheless, no research 

studies were found correlating window, door, and fan status in the context of school 

classrooms, which is a novelty of this study. 

The inclusion of predictors related to the COVID-19 pandemic (variations in occupancy rate 

and COVID-19 restrictions) in the models (contextual domain) is also a unique and novel 

aspect, compared to studies conducted prior to the pandemic. No studies including restrictions 

or other social norms as predictor variables for occupant behaviour in school classrooms were 

found in literature, as presented in Table 5.1. These findings reinforce the importance of social 

norms in indoor environments with high density, such as school classrooms. Indeed, scenarios 

such as the COVID-19 pandemic, in which such norms became more pronounced, require a 

review of predictive models since they can effectively change occupant behaviour, impacting 

on indoor conditions. In addition, cultural factors also play a significant role on occupant 

behaviour, for example, in the context of the COVID-19 pandemic, on how much people adhere 

or not to the imposed restrictions, thus requiring further investigation considering other 

locations. 

The models from hypothesis 5 presented improved predictions of occupant behaviour, as 

confirmed by the algorithm validation, by including multi-domain factors as predictors for 

window, door and fan status. These models could be applied in future studies as reference 

models. Yet, while more complex models with additional predictors can provide more accurate 

predictions of occupant behaviour, they also become more context-dependent and less 

generalizable. Given the significant influence of school routine, teachers’ behaviour and social 

norms (COVID-19 restrictions) on window, door, and fan status, further research is warranted. 

Expanding the scope to include more case studies would contribute to a more comprehensive 

understanding of these dynamics. 
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5.4.1 Limitations 

This study has some limitations primarily associated with the field campaign phase, which is a 

common challenge in studies involving monitoring campaigns. These limitations include: 

(i) Sample size: the restricted number of monitoring equipment required a limited 

number of monitored classrooms, resulting in a sample of three schools. Larger 

sample sizes are often preferred to develop more precise models, as they provide 

more data to train the models effectively. 

(ii) Measurement lengths: due to equipment constraints, classrooms were not 

monitored simultaneously. Instead, the monitoring campaign was split into four 

rounds to cover all the seasons in each classroom (Table 5.4). This sequential 

monitoring may introduce variability based on time of the year. 

(iii) Occupancy data: the absence of equipment to monitor occupancy required the use 

of attendance lists provided by each teacher, which may not be as reliable as data 

obtained from dedicated occupancy monitoring equipment, potentially introducing 

some level of uncertainty into the analysis. 

(iv) Internal factors: the study did not consider internal factors such as psychological 

and physiological variables that could potentially be included as predictors in the 

models. This omission was due to the complexity of monitoring these factors. 

(v) Lack of measured data on OB before the COVID-19 pandemic: since we do not 

have data from these schools before the restrictions, we could not analyse the 

changes in OB by comparing it before and after the pandemic. 

Despite these limitations, the study offers valuable insights and a foundation for future research 

in the field of occupant behaviour and its impact on school buildings’ performance. 

5.5 Conclusions 

This study aimed to identify and quantify the influence of multi-domain factors (including 

thermal, indoor air quality, contextual and multi-behaviour domains) on window, door, and fan 

status in naturally ventilated school classrooms in a humid subtropical climate, in order to 

predict occupant behaviour. The novelties of this research study were the investigation of door 

and fan together with the window status, which can significantly influence indoor environmental 

conditions; the inclusion of time-related and contextual factors as predictor variables, which 

were less explored in previous studies; and the comparison between periods with and without 

restrictions imposed by the COVID-19 pandemic, which highlighted the interference of social 

norms on occupant behaviour. 
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In general, the indoor environmental variables (indoor operative temperature, relative humidity 

and CO2 concentration) influenced window, door, and fan operation in school classrooms, 

confirming findings from previous studies (BELAFI et al., 2018; DUTTON; SHAO, 2010; STAZI; 

NASPI; D’ORAZIO, 2017a). Yet, we showed that other predictors could have a greater 

influence on occupant behaviour, such as the teachers’ behaviour and the COVID-19 

restrictions, indicating the relevance of investigating the contextual domain in behavioural 

studies. Indeed, the models including school routines, social norms and teachers’ behaviour 

as predictors were the ones with better results during the validation phase. This suggests that, 

while more complex models with additional predictors can provide more accurate predictions 

of occupant behaviour, they also become more context-dependent and less generalizable. 

Also, the inclusion or exclusion of variables in the models led to some differences in the 

significance of predictors. The trade-off between model complexity and generalizability is an 

important consideration in this research study, and it highlights the nuanced relationship 

between various factors affecting occupant behaviour in school buildings. 

This study provides a more comprehensive understanding of occupant behaviour from a multi-

domain approach and its impact on environmental conditions in school classrooms. The 

presented results hold the potential to advance our understanding of occupant behaviour in 

school buildings and its implications for building performance. Future studies could further 

enhance the sample size by collecting data from other school classrooms, investigating 

teachers’ and students’ behaviour in different contexts (e.g., different climates, types of 

classrooms, students of different ages). This could lead to the development of more 

generalizable predictive models, as well as suggestions and recommendations for 

performance-based design and operation of classrooms.  
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6 Model implementation 

This chapter is part of a paper currently in development in collaboration with Prof. Dr. Leticia 

Oliveira Neves and Prof. Dr. Marcel Schweiker. It presents preliminary results of the 

implementation of a window status predictive model on building performance simulation.  

Thermal comfort and perceived indoor air quality optimization with respect to 
occupant behaviour in naturally ventilated school buildings 

Abstract 

School classrooms often present poor indoor air quality (IAQ) conditions, especially if naturally 

ventilated, when the building’s thermal and IAQ performance is directly associated to the 

occupant behaviour regarding window operation. Therefore, research efforts have been 

directed at understanding which parameters are the main triggers for occupants’ actions 

towards window operation, pointing out thermal comfort parameters as the main action 

triggers, while IAQ (CO2 concentration) remains a secondary restriction. Since March 2020, 

the COVID-19 pandemic not just renewed but also emphasized the interest and urgency on 

investigating deficient IAQ and thermal comfort conditions in classrooms. Yet, most of the 

published research studies have been carried out considering isolated objectives. Giving this 

scenario, this paper aims at filling this research gap, regarding the need to develop a 

comprehensive study of the relationship between thermal comfort and perceived IAQ and their 

association with occupant behaviour, considering a simultaneous multi-input and output 

parameters interaction. Therefore, we analysed potential conflicts between thermal comfort 

and IAQ, with regard to triggers for manual operation of windows in naturally ventilated 

classrooms, and identified optimal situations of balance between both drivers. The 

methodological approach included statistical analysis, development of an occupant behaviour 

predictive model, building performance simulation and multi-objective optimization. The 

findings reveal variations of up to 42.5% in CO2 levels and 9% in discomfort hours between 

actual and optimized occupant behaviours. This suggests that adjusting occupant behaviour 

can significantly improve indoor conditions, leading to enhanced thermal comfort and air 
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quality. The results also indicate that optimal window operation and occupancy strategies differ 

among schools, highlighting the need for context-specific analyses. Tailoring these strategies 

to each setting is crucial for improving classroom design and operational efficiency. 

Keywords: occupant behaviour, school building, thermal comfort, indoor air quality, multi-

objective optimization. 

6.1 Introduction 

Occupant behaviour (OB) is defined as the actions building users may (or may not) take to 

modify the indoor environment (HOES et al., 2009). The prediction accuracy of building 

performance simulations (BPS) has been greatly associated to occupant behaviour modelling, 

which led to an increasing attention to the topic specially in the last ten years (AHMED et al., 

2023). Researchers have been developing behavioural models with the aim of accurately 

predicting human behaviour in BPS (BELAFI et al., 2018; CHATZIDIAKOU; MUMOVIC; 

SUMMERFIELD, 2015; MADUREIRA et al., 2016; STAZI; NASPI; D’ORAZIO, 2017a). 

Deterministic models with fixed rules and, more recently, stochastic dynamic models have both 

been adopted in the abovementioned studies, aiming to estimate the human behaviour in a 

more realistic way. Logistic regression is one of the most adopted methods, since it provides 

good approximations with occupants' behaviours (BELAFI et al., 2018). 

The main building typologies under investigation are, usually, offices and residential buildings, 

while research studies concerning school buildings are less frequent and more recent (BELAFI 

et al., 2018; HEEBØLL; WARGOCKI; TOFTUM, 2018; KORSAVI; JONES; FUERTES, 2022b; 

LOURENÇO; PINHEIRO; HEITOR, 2014; MADUREIRA et al., 2016; STAZI; NASPI; 

D’ORAZIO, 2017a). Nevertheless, this typology has its particularities, such as the classroom’s 

management, which is often dictated by the teacher, its high occupation density and excessive 

internal gains, with direct implications on occupants’ health and well-being. In addition, 

classrooms usually present poor thermal comfort and indoor air quality2 (IAQ) conditions, in 

special if naturally ventilated (De Giuli et al., 2012; Pereira et al., 2014), which emphasizes the 

relevance of this research topic. Thus, one of the key behaviour types investigated in the 

current literature is related to the ventilation strategy (mechanical and/or natural ventilation), 

since it impacts directly on thermal comfort, IAQ and energy consumption.  

 

2 According to EPA (2021): “Indoor Air Quality (IAQ) refers to the air quality within and around buildings and 
structures, especially as it relates to the health and comfort of building occupants.” 
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In regions where natural ventilation is an effective strategy for the cooling season, such as 

Brazil and Southern European countries, for example, classrooms are usually naturally 

ventilated, with manual operation of windows (DUARTE; GLÓRIA GOMES; MORET 

RODRIGUES, 2017). In this case, the building’s thermal and IAQ performance is directly 

associated to the outdoor environmental conditions; to the architectural design, especially the 

building envelope; and to the occupant behaviour regarding window and door operation, which 

can represent up to 87% of the total air change rates (Iwashita and Akasaka, 1997). Natural 

ventilation can be an effective strategy to reduce energy consumption and improve IAQ 

(HERACLEOUS; MICHAEL, 2019) provided that, among other factors, an optimal operation of 

windows is achieved. 

Research efforts have been directed at understanding which parameters are the main triggers 

for occupants’ actions towards window operation. Results from several field studies and 

surveys regarding occupant behaviour models for naturally ventilated school buildings point 

out thermal comfort parameters as the main action triggers regarding window operation, while 

IAQ (CO2 concentrations) remains as a secondary restriction (Stazi et al., 2017a; Stazi et al., 

2017b). Indeed, correlations between occupant behaviour and CO2 concentrations were 

proven to be weak, which means that users’ actions are not driven by this stimulus because of 

their unawareness of indoor CO2 concentrations (STAZI; NASPI; D’ORAZIO, 2017a). 

Research studies also point out noise problems (Madureira et al., 2016), improper direct solar 

radiation on seated users (BERNARDI; KOWALTOWSKI, 2006) and daily routine, such as 

arrivals and breaks (BELAFI et al., 2018; STAZI; NASPI; D’ORAZIO, 2017a) as triggers for 

window operation. In fact, in terms of occupant behaviour, in school environments nonphysical 

behavioural patterns should also be investigated, since social rules and habits can override 

thermal stimuli (BELAFI et al., 2018; STAZI; NASPI; D’ORAZIO, 2017a). Suggestions for future 

studies include analysing occupant behaviour in different seasons and climates to support 

building use practices (BELAFI et al., 2018) and further investigating health risks 

(MADUREIRA et al., 2016). 

Still, the IAQ is an important problem in school classrooms, since high indoor CO2 levels and 

other pollutants might impact human health and well-being (BELAFI et al., 2018; STAZI et al., 

2017; STAZI; NASPI; D’ORAZIO, 2017a). The IAQ is a globally relevant issue in school 

classrooms, since several research studies reported poor indoor ventilation rates and high CO2 

levels, in special in naturally ventilated rooms (Mendell and Heath, 2005; Stazi et al., 2017b). 

Since March 2020, the COVID-19 pandemic not just renewed but also emphasized the interest 

and urgency on investigating deficient IAQ and thermal comfort conditions in school 

classrooms (ALONSO et al., 2021). Research studies have confirmed airborne transmission 
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(respiratory droplets and aerosols) as one of the major transmission routes of SARS-CoV-2, 

which increases the possibility of transmission of COVID-19 in indoor environments with high 

occupancy rates, such as classrooms (MORAWSKA et al., 2020; NOORIMOTLAGH et al., 

2021). The problem can become even more serious in naturally ventilated classrooms that rely 

only on occupants to achieve good IAQ conditions through manual operation of windows 

(ALONSO et al., 2021). 

Several research studies have shown the importance of air renewal to dilute contaminants 

and, consequently, to reduce airborne infection risks, both in naturally and mechanically 

ventilated environments (PARK et al., 2021; QIAN et al., 2021). The indoor CO2 levels may be 

used as an index to estimate the ventilation rate and, therefore, the airborne transmission of 

diseases (BHAGAT et al., 2020; HOU; KATAL; WANG, 2021). Hence, its concentration rate is 

widely used as an indicator of IAQ (CHATZIDIAKOU; MUMOVIC; SUMMERFIELD, 2015). As 

a result, the current pandemic brought into discussion which CO2 levels and ventilation rates 

thresholds would be adequate to reduce the probability of infection in school classrooms, since 

recommendations from standards could not be enough to prevent airborne transmission (HOU; 

KATAL; WANG, 2021). Yet, there are no generic conclusions when the subject is the adequate 

ventilation rate threshold to prevent the airborne transmission of COVID-19, since it depends 

on several parameters such as occupancy density, room size, exposure time/duration, indoor 

heat sources, humidity, etc. (ASCIONE et al., 2021; HOU; KATAL; WANG, 2021; SUN; ZHAI, 

2020; ZIVELONGHI; LAI, 2021). In the case of fully naturally ventilated environments, the 

performance is also associated to the local climate, the building design (opening sizes and 

relative positions) and the occupant behaviour (PARK et al., 2021; QIAN et al., 2021). 

Seasonal variation is also an important variable, since occupants tend to leave windows closed 

when outdoor temperatures are low (DENG; ZOU; LAU, 2021; ZIVELONGHI; LAI, 2021). Yet, 

most of the published research studies have been carried out considering isolated objectives 

solely (ARJMANDI et al., 2021). 

Giving this scenario, this research study aims to analyse potential conflicts between thermal 

comfort and perceived indoor air quality, with regard to triggers for manual operation of 

windows in naturally ventilated classrooms, and to identify optimal situations of balance 

between both drivers to support building use practices focused on occupant-centric building 

operation. 
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6.2 Method 

This research method is based on a case study and supported by field research, statistical 

analysis, and building performance simulation. The method was developed in three main 

steps, which are presented in Figure 6.1. 

 

Figure 6.1 – Research method. 

6.2.1 Data collection (pre-processing) 

• School buildings’ data collection 

A comprehensive data collection was carried out, encompassing public schools built by the 

Foundation for Education Development (FDE) over the past fifteen years in the state of São 

Paulo, Brazil. This dataset3 included information on 66 school buildings, effectively 

representing half of the public-school buildings constructed in the state of São Paulo within this 

time frame. All the schools in this database have a standardized design, with classrooms of 

the same floor area and window design. The school classrooms are naturally ventilated, with 

large operable windows in the main façade and operable windows facing the corridor. 

• Field campaign 

The physical monitoring was performed on a set of classrooms of three public-school buildings 

thoughtfully chosen from the dataset (Figure 6.2). The selection criteria ensured that the 

selected school buildings were comparable to one another and representative of the broader 

dataset. Furthermore, the school location and the willingness to participate in the research 

study were also considered. School A is an elementary school (ages 6-15) built in 2015 and 

located in the city of Campinas. Schools B and C are in the city of Sao Paulo, the first is an 

 

3 The dataset is available at https://doi.org/10.25824/redu/Z4BWFL  

https://doi.org/10.25824/redu/Z4BWFL
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elementary school (ages 6-11) built in 2014 and the latter is a high school (ages 15-18) built in 

2012. Both cities are characterized by a humid subtropical climate – Cfa (Köppen climatic 

classification). The selected classrooms are occupied during the morning and afternoon with 

one short break in each period plus a lunch break. 

  
Figure 6.2 – Monitored classrooms.  

The physical monitoring was conducted during four rounds in each classroom at two-month 

intervals within the range of one year (from August 2021 to August 2022). Besides the 

measurement periods not being the same for all schools, the total measured time frame 

ensured coverage of all seasons throughout the year. Indoor environmental variables were 

monitored in a 10-minute time-step by dataloggers placed inside a typical classroom of each 

selected school. The dataloggers, Testo 175-T2 with hot sphere probe, used to monitor air 

temperature (Tin: range -35 °C to 55 °C ± 0.5 °C) and globe temperature (Tg: range -25 °C to 

80 °C ± 0.2 °C), and Testo 160 IAQ, used to monitor relative humidity (RH: range 0 to 100% 

±2%) and CO2 concentration (range 0 to 5000 ppm ± 100 ppm + 3 % of reading), were placed 

away from the windows at about 1.1 m above the floor (seated person) according to ISO 7726 

(International Organization for Standardization, 1998). The mean radiant temperature (Tmr) 

and the indoor operative temperature (Top) were calculated using the air temperature and the 

globe temperature measurements. The number of occupants was monitored through the 

attendance list provided by each classroom’s teacher. The manual operation of windows was 

monitored by using an Onset Hobo State with binary output (closed = 0/ open = 1). Outdoor 

environmental variables (air temperature – Tout, relative humidity – RHout, precipitation, wind 

speed and wind direction) measurements were acquired from the nearest weather station (3.5 

to 8 km distant), to enable comparisons between indoor and outdoor conditions. 

During part of the physical monitoring – from August 2021 to February 2022, restrictive 

occupancy measures due to the COVID-19 pandemic were observed. Therefore, the 

monitoring period was divided into two sets – with and without restrictive measures. The 

restrictive measures consisted of reduced number of occupants in the classroom, reduced 

occupancy period, necessity to keep windows and doors opened during the whole occupancy 

period, mandatory use of masks. 
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6.2.2 OB model development (processing) 

• Predictive modelling 

The data collected during the physical monitoring phase was merged into a common dataset, 

by associating window status (open/closed) with time of the day and environmental variables. 

The R programming language (R Core Team, 2022) was used to create representative plots 

of the collected data and to develop a predictive model of window status. The dataset was 

randomly split into two subsets: one to generate the models, using 80% of the dataset (train 

dataset), and another one to evaluate the models, using 20% of the dataset (test dataset). 

Binary logistic regression was chosen as the statistical method to analyse the sample and to 

create the model, since it is a stochastic model widely used to estimate window operation 

behaviour, by assuming a probabilistic relationship with previously selected predictor variables 

(CARLUCCI et al., 2020). A window status predictive model was developed by applying the 

generalized linear mixed model (GLMM) function in the training dataset, considering the 

monitored schools as a variable of random nature, to assess the influence of the recorded 

parameters on the window status, which was defined as a binary operation state (all windows 

closed = 0, at least one window open = 1). 

Indoor operative temperature, indoor relative humidity, indoor CO2 concentration and number 

of occupants were tested as possible predictor variables. The outdoor weather variables air 

temperature, relative humidity and CO2 concentration were not considered to avoid 

multicollinearity, which may bias the regression model. Also, a categorical variable related to 

the COVID-19 restrictive measures was included as a predictor variable, in order to analyse 

the impact of the protocols on the window status, considering two COVID-19 restriction 

categories: “yes” when windows and doors should remain open during occupancy) and “no” 

(when windows and doors could be freely operated). In addition, the interaction between the 

environmental variables (indoor operative temperature, indoor relative humidity and indoor 

CO2 concentration) and the interaction between occupancy and COVID-19 restrictions were 

tested as predictors in the model. The variables and interactions that were not significant as 

predictors for window status (p-value > 0.05) were excluded from the model. 

• Algorithms’ validation 

The model was evaluated by using the test dataset to generate a confusion matrix, showing 

the relationship between predicted and actual results. The confusion matrix consists of true 

positive, true negative, false positive and false negative values. The Area Under the Receiver 
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Operating Characteristic curve (AUROC Curve, or AUC) was generated through the 

comparison between the train and the test datasets and was used to analyse the performance 

of the model. Its index ranges between 0.5 (no correlation at all) and 1 (exact predictions), but 

values above 0.7 are generally considered satisfactory (HALDI; ROBINSON, 2009). 

6.2.3 OB model implementation (post-processing) 

• BPS model calibration 

The schools’ geometries and their surroundings were modelled in the plug-in Euclid (Figure 

6.3). Information from field measurements, in situ observation and the architectural design 

documentation were used as input data in the software EnergyPlus for envelope (Tables 6.1 

and 6.2), internal heat gains (Table 6.3) and operation schedules. The Kusuda Achenbach 

correlation was used to calculate undisturbed ground temperatures, in order to simulate heat 

transfer through the ground (ELI et al., 2019). The multizone AirflowNetwork (AFN) model was 

used to model natural ventilation. The discharge coefficient (Cd) was set to the standard value 

of 0.6 (Flourentzou, Van Der Maas & Roulet, 1998). The CpSimulator tool, which is based on 

computational fluid dynamic (CFD), was used to predict the wind pressure coefficients, in order 

to correctly predict the surroundings interference over the building’s natural ventilation 

performance. The CpSimulator tool uses OpenFOAM as the background software to solve 

steady Reynolds-averaged Navier–Stokes (RANS) equations using turbulence models for 

specific atmospheric boundary layer (ABL) applications (BRE; GIMENEZ, 2022). The 

boundary conditions of the ABL log-law profile were set as: reference aerodynamic roughness 

length (zref) equal to 450 m; aerodynamic roughness length of the building’s terrain (z0) equal 

to 0.25 m; reference mean wind velocity at building height (Vref) equal to 40 m/s; mean wind 

velocity (V) equal to 21.14 m/s. The wind pressure coefficients were calculated according to 

Equation 6.1. 

𝐶𝑃 =
𝑝 −  𝑝0

0.5. 𝑉𝑟𝑒𝑓
2 Eq. 6.1 

Where: 𝑝0 
 = 0 m2/s2 
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(a) School A model  
 

 

(b) School B model 

 

(c) School C model  
 

 
 

Figure 6.3 – Building simulation models geometry. 
 

Table 6.1 – Thermal properties of envelope construction. 

School Item Description 
U-factor 
(W/m². 

K) 

Thermal 
capacity 

(kJ/m². K) 

Solar 
absorptanc

e (α) 

Solar heat gain 
coefficient 

(SHGC) 

School A 

Walls Concrete block 190x190x390 mm  1.6 202 0.19 - 
Windows Clear glazing 3 mm 5.7 - - 0.87 

Floor Concrete slab 150 mm + plaster + 
ceramic tiles 2.7 243 - - 

Roof 

Galvanized steel roofing + air 
chamber + concrete capping + 
concrete slab 150 mm+ air chamber 
+ mineral acoustic ceiling 

1.1 164 0.25 - 

School B 

Walls Concrete block 190x190x390 mm 2.2 202 0.65 - 
Windows Clear glazing 3 mm 6.3 - - 0.87 

Floor Concrete slab 150 mm + plaster + 
ceramic tiles 2.7 243 - - 

Roof 
Galvanized steel roofing + air 
chamber + concrete capping + 
concrete slab 150 mm 

1.7 140 0.25 - 

School 
C 

Walls Concrete block 190x190x390 mm 2.2 202 0.27 - 
Windows Clear glazing 3 mm 6.3 - - 0.87 

Floor Concrete slab 150 mm + plaster + 
ceramic tiles 2.7 243 - - 

Roof 
Sandwich roofing + air chamber + 
concrete slab 210 mm + air 
chamber + mineral acoustic ceiling 

0.6 515 0.25 - 

 
Table 6.2 – Window and door frames. 

School Item Description 
Window 
opening 

factor 

School 
A 

Door 90 cm x 210 cm 1.0 

Façade window 20 pivot windows and 8 fixed glazing windows – 180 cm x 210 cm / 
window sill 80 cm (4 units) 

0.4 

Hallway 
window 4 pivot windows – 180 cm x 80 cm / window sill 220 cm (4 units) 0.6 

Schools 
B and C 

Door 90 cm x 210 cm 1.0 

Façade window 20 pivot windows and 8 fixed glazing windows – 180 cm x 210 cm / 
window sill 80 cm (4 units) 

0.4 

Hallway 
window 

6 pivot windows and 4 fixed glazing windows– 180 cm x 80 cm / window 
sill 220 cm (4 units) 

0.4 

 
 

 



125 

 

 

Table 6.3 – Internal loads. 

Item Description Total loads 
Occupancy 1.7 m²/person during school period (7 h to 16 h) 108 W/person 
Equipment 2 fans – 150 W/unit 300 W 
Electric lights 6 lamps with 2 fluorescent bulbs each– 40 W/unit 480 W 

The BPS models were calibrated through the software EnergyPlus using measured indoor air 

temperature and mean radiant temperature data from the field measurements. Data collected 

at night (i.e. without the influence of solar radiation and internal thermal loads) was used in the 

calibration to minimise uncertainties. During this period, internal conditions are primarily 

influenced by changes in outdoor air temperatures, through conduction heat transfer through 

the wall, the window and the infiltration (NEVES et al., 2020). Outdoor variables (air 

temperature, relative humidity, wind speed and direction and precipitation index) for the same 

measurement period were obtained from the nearest weather station (3.5 to 8 km distant). 

Data were converted to EnergyPlus Weather File (epw) format using Weather Converter 

version 8.1.0, an EnergyPlus auxiliary program. 

The Mean Absolute Error (MAE), the Normalised Mean Bias Error (NMBE) and the Coefficient 

Variation of Root Mean Square Error (CV RMSE) were used to verify the accuracy of the 

models, according to ASHRAE guideline 14 (ASHRAE, 2002). In all models, the MAE was 

below 1 ºC and the NMBE and the CV RMSE were below the ASHRAE 14 thresholds, which 

are 10% and 30%, respectively (Table 6.4).  

Table 6.4 – Calibration results. 

Model MAE (ºC) NMBE (%) CV RMSE (%) 
School A 0.95 -3.06 5.31 
School B 0.84 -2.82 5.52 
School C 0.85 -3.62 3.60 

 

• OB model implementation in BPS 

The occupant behaviour predictive model regarding window operation was implemented in 

EnergyPlus, in order to reproduce the real occupant behaviour, i.e., perform an annual 

simulation considering the window operation schedule based on real occupant behaviour. The 

occupant behaviour model implementation was based on the methodology provided by Gunay, 

O’Brien and Beausoleil-Morrison (2016), which is based on an EnergyPlus Energy 

Management System (EMS) script. In the beginning of each runtime, the inputs from the 

behaviour models are generated from a normal distribution, based on values of mean ± 

standard deviation. Then, the adaptive state for the window status (open/ closed) is computed 

via the logistic function previously developed (Equation 6.2), generating a random number 
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sampled from a uniform distribution (0 = closed, 1 = open). This number is then compared to 

the likelihood estimated from Equation 2. 

𝑃(𝑌) =
e(log 𝑜𝑑𝑑𝑠)

1 + e(𝑙𝑜𝑔 𝑜𝑑𝑑𝑠)
=

𝑒(𝑏0+𝑏1𝑋1𝑖+𝑏2𝑋2𝑖+...𝑏𝑛𝑋𝑛𝑖)

1 + 𝑒(𝑏0+𝑏1𝑋1𝑖+𝑏2𝑋2𝑖+...𝑏𝑛𝑋𝑛𝑖)
 Eq. 6.2 

Where: P(Y) is the probability of Y occurring, b0 is the Y intercept, bn is the regression coefficient, Xn is the value of the predictor 

variable, e is the base of natural logarithms. 

The implementation of the occupant behaviour models was divided into two simulation sets, 

according to the COVID restrictive measures categorical variable (“yes” when windows and 

doors should remain open during occupancy and “no” when windows and doors could be freely 

operated), since they characterize variations in the logistic regression function.  

• Multi-objective optimization 

The multi-objective optimization (MOO) was chosen as the method to create optimized 

solutions in terms of thermal comfort and IAQ, since it is an interesting method to deal with 

conflicting design criteria, as an approach to realistic scenarios (NGUYEN; REITER; RIGO, 

2014). The Non-Dominated Sorting Genetic Algorithm (NSGA-II) was chosen to develop this 

research study, since it is the most common algorithm implemented to solve multi-objective 

problems (EVINS, 2013) and it has been successfully implemented in similar studies 

(MOKHTARI; JAHANGIR, 2021). The NSGA-II is based on the evolution of a population of 

individuals (chromosomes) through genetic-inspired operations (such as crossover, mutation 

and selection), each representing a solution for the optimization problem (AMASYALI; EL-

GOHARY, 2021). 

The MOO problem intends to simultaneously maximize the thermal comfort conditions inside 

the classroom, in accordance with the adaptive model of ASHRAE 55-2020, and also maximize 

IAQ inside the classroom, in accordance with satisfactory levels of CO2 concentration. 

Therefore, we selected, as objective functions, minimizing the number of exceedance hours 

per year (calculated according to year the ASHRAE 55-2020 adaptive thermal comfort model) 

and minimizing the average annual indoor CO2 concentration. Both objective functions were 

configured in EnergyPlus through the Output: Table: Annual and Output: Table: Summary 

Reports objects.  

The deterministic scenarios were created based on a combination of the number of occupants 

inside the classroom and the window state (open/ closed) and considering the goal of 

optimizing thermal comfort and IAQ conditions in the classroom. For the number of occupants, 

minimum and maximum values were defined, as well as a range of variation. For the window 
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state, deterministic rules were set based on optimized thermal comfort conditions (based on 

the adaptive thermal comfort limits for naturally ventilated spaces from ASHRAE 55-2020) or 

optimized IAQ conditions (based on the reference values of CO2 concentration for school 

buildings set by guidelines and protocols published during the pandemic (REHVA, 2021; 

CIBSE, 2021; UBA, 2021)). The EMS application was used to set the window state scenarios. 

For the scenarios regarding CO2 concentration, a hysteresis operation was adopted as a 

control strategy, i.e., a deadband of 100 ppm was set so the window state would not change 

when CO2 concentration levels fall within it. The deterministic scenarios are presented on 

Table 6.5. 

Table 6.5 – Deterministic scenarios for multi-objective optimization. 

Decision variables Deterministic scenarios 

Number of occupants 
Minimum = 6 (5 students + teacher) 
Maximum = 31 (30 students + teacher, which represents current reality) 
Range of variation = 5 

Window state 

Always open during occupancy 
Always open during occupancy + Night time ventilation during weekdays 
Open during occupancy AND when Top > adaptive comfort 80% minimum acceptability 
limit (ASHRAE 55-2020) 
Open during occupancy AND when Top > adaptive comfort 80% minimum acceptability 
limit (ASHRAE 55-2020) + Night time ventilation during weekdays 
Open during occupancy AND when Top > adaptive comfort 90% minimum acceptability 
limit (ASHRAE 55-2020) 
Open during occupancy AND when Top > adaptive comfort 90% minimum acceptability 
limit (ASHRAE 55-2020) + Night time ventilation during weekdays 
Open during occupancy AND when CO2 levels are above 700 ppm + deadband 100 
ppm (REHVA, 2021; CIBSE, 2021; UBA, 2021) 
Open during occupancy AND when CO2 levels are above 700 ppm + deadband 100 
ppm (REHVA, 2021; CIBSE, 2021; UBA, 2021) + Night time ventilation during 
weekdays 
Open during occupancy AND when CO2 levels are above 800 ppm + deadband 100 
ppm (REHVA, 2021; CIBSE, 2021; UBA, 2021) 
Open during occupancy AND when CO2 levels are above 800 ppm + deadband 100 
ppm (REHVA, 2021; CIBSE, 2021; UBA, 2021) + Night time ventilation during 
weekdays 

The optimization procedure was developed within the software R, through the packages eplusr 

and epluspar. The former establishes the communication between R and EnergyPlus, 

conducting data-driven analytics by using EnergyPlus as the background simulation engine 

(JIA; CHONG, 2021). The latter is an extension of the eplusr package that conducts specific 

parametric analyses on EnergyPlus models, including MOO using the NSGA-II algorithm (JIA; 

CHONG, 2021).  The simulation job was set to run and evaluate one hundred generations 

containing 20 individuals per generation, resulting in a total of 2000 annual energy simulations. 

Then, the Pareto set was extracted and the Pareto front of discomfort hours and total carbon 

emissions was generated. 

• Comparison between real occupant behaviour and optimized theoretical scenarios 
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Results from occupant behaviour predictive model implementation in BPS were compared 

against optimized scenarios, created through a deterministic approach, aiming to find out if 

occupants are operating windows near optimal conditions, considering thermal comfort and 

IAQ; and also how could window operation be improved, considering the classrooms’ current 

architectural design. 

6.3 Preliminary results and discussion 

6.3.1 Field research descriptive statistics  

The summary of the environmental conditions monitored during the occupied period in the 

school classrooms is presented in Table 6.6. The indoor CO2 concentration presented similar 

values in schools A and B, while school C presented higher CO2 concentration during all 

monitoring period (Figure 6.4a). The indoor relative humidity was between 40% and 60% 

(CIBSE, 2020) 63.4%, 29.3% and 28.2% of the time in schools A, B and C, respectively. 

Indeed, Schools B and C presented high humidity levels most of the time (Figure 6.4b). The 

indoor operative temperature was adequate on 59%, 61.8% and 87.6% of the time in schools 

A, B and C, respectively, according to the adaptive model of ASHRAE 55-2020 (Figure 6.4c). 

However, classrooms from schools A and B presented cold discomfort hours 20.1% and 25.2% 

of the time and hot discomfort hours 20.9% and 13% of the time, respectively. School C, 

despite having higher values of CO2 concentration, presented better thermal conditions than 

the formers. 

Table 6.6 – Summary of recorded parameters during the occupied period. 

Variable School A (n = 1170) School B (n = 1489) School C (n = 1142) 
Mean SD Range Mean SD Range Mean SD Range 

Top (°C) 24.5 4.1 14.1 – 32.1 23.7 3.4 16.4 – 31.1 24.0 2.4 16.3 – 29.1 
Tout (°C) 23.0 5.9 6.8 – 33.0 22.2 5.0 10.9 – 33.4 25.2 4.9 10.4 – 35.6 
CO2 (ppm) 540 107 359 – 1162 595 112 362 – 975 676 186 333 – 1682 
RH (%) 53.1 10.0 27.0 – 74.0 62.1 11.1 30.0 – 80.3 63.6 8.8 30.0 – 87.0 
RHout (%) 59.1 16.7 26.0 – 89.0 73.1 20.7 22.9 – 99.9 61.8 18.4 16.0 – 96.0 
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(a) Indoor CO2 concentration

 

(b) Indoor relative humidity 

 

(c) Indoor operative temperature 

 
Figure 6.4 – Cumulative indoor environmental variables during occupied period. 

The window remained open most of the time in all schools during the periods with and without 

COVID-19 restrictive measures (Figure 6.5). Yet, in School C, unlike in Schools A and B, the 

window remained open longer during the period without restrictions. This suggests that, in this 

school, the window status was influenced more by environmental factors than by the 

restrictions. In School B, the windows remained opened almost all the time, with little difference 

between both periods. 

 

Figure 6.5 – Window status during occupied period with and without COVID-19 restrictions (field campaign 
results). 

Figures 6.6 to 6.8 present the frequency of window status throughout the day. In School A, the 

windows were mostly open during the morning, particularly in the middle of the period, 

indicating that occupants tended to operate the windows more when arriving at or leaving the 

classroom. In the afternoon, the windows were primarily open during the first half and in the 

end of the period. In School B, the windows remained open throughout the day, except at the 

end of the afternoon, suggesting that occupants closed the windows when leaving the 

classroom. In School C, the windows remained open most of the day, particularly at the end 

of the morning and afternoon periods, suggesting that the windows were likely left open during 

unoccupied times to ventilate the classroom. 
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Figure 6.6 – Window status during the day – School A. 

 

 
Figure 6.7 – Window status during the day – School B. 

 

 
Figure 6.8 – Window status during the day – School C. 

6.3.2 Occupant behaviour predictive model 

Table 6.7 reports the outcomes from the window status model. The model presents a negative 

correlation between CO2 concentration and window status, suggesting that higher CO2 levels 

are associated with closed windows. This finding aligns with a study by Dutton and Shao 

(2010), but contrasts with other studies (KORSAVI; JONES; FUERTES, 2022b; STAZI; NASPI; 

D’ORAZIO, 2017a). Indoor operative temperature and relative humidity were not significant for 

window status and, consequently, were excluded from the model. This results differs from 

current literature, which found these variables significant predictors for window status in school 

classrooms (BELAFI et al., 2018; DUTTON; SHAO, 2010; KORSAVI; JONES; FUERTES, 

2022b; STAZI; NASPI; D’ORAZIO, 2017a). Yet, while indoor operative temperature and 

relative humidity alone were not significant, their interactions with CO2 concentration were 

found to be significant predictors for window status. COVID-19 restrictions exhibited a negative 
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correlation with window status, suggesting that windows were less likely to be open during 

periods of restrictions. Despite the fact that this finding aligns with results from window status 

in School C, it is surprising, as it contrasts with the protocols implemented during the COVID-

19 pandemic. Occupancy and its interaction with COVID-19 restrictions were not significant 

predictors for window status and were therefore excluded from the model. 

Table 6.7 – Regression parameters for window status model. 

 Estimate Standard Error p-value 
Intercept 0.9041588 0.07650470 0.0000* 
CO2 -0.0032530 0.00047187 0.0000* 
COVID-19 restrictions -0.0359068 0.01555586 0.0211* 
CO2:Top ** 0.0001233 0.00001772 0.0000* 
CO2:RH ** 0.0000480 0.00000722 0.0000* 
CO2:Top:RH ** -0.0000019 0.00000029 0.0000* 
Caption: * statistically significant values; **the use of colon between predictors refers to an interaction between variables. 
 
The model value for AUC resulted in 0.75, which is considered satisfactory. Additionally, the 

confusion matrix results showed that the model predicted more open (n = 667) than closed 

status (n = 116), with 85% of correct predictions. 

6.3.3 Model’s implementation  

The model's implementation in the building performance simulation (BPS) was conducted for 

an entire year, utilizing a treated weather file specific to each city. As a result, the simulation 

outcomes cannot be directly compared to the results from the field research, which focused on 

shorter periods of the year and relied on environmental data collected without statistical 

treatment. 

Despite the window status being influenced by the COVID-19 restrictions, the results for 

window status with and without restrictions were very similar in all schools (Figures 6.9). This 

suggests that COVID-19 restrictions had a lower impact on window status compared to other 

factors included in the model. Furthermore, the simulation indicated a higher frequency of open 

windows during the period without restrictions, which was expected based on the model's 

negative correlation between COVID-19 restrictions and window status. The simulation results 

also showed very similar window status outcomes for all schools.  
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Figure 6.9 – Results for window status during occupied period with and without COVID-19 restrictions (BPS 

implementation results). 

School A presented lower CO2 concentration compared to the other schools (Figure 6.10a). 

Schools B and C had similar CO2 concentration results, with School C exceeding 2000 ppm. 

School A presented lower indoor operative temperature most of the time when compared to 

the other schools, but at times it reached higher temperatures (Figure 6.10b). Schools B and 

C also presented similar results for indoor operative temperature. The similar results for 

Schools B and C could be related to the use of the same weather file in the simulation, as both 

schools are located in the same city. This could be seen as a limitation of the study, since 

outdoor variables can vary significantly across different areas, especially in large cities like 

São Paulo. 

(a) Indoor CO2 concentration 

 

(b) Indoor operative temperature 

 
Figure 6.10 – Cumulative indoor environmental variables during occupied period. 

The results from the model implementation suggest that the OB model predicts window status 

in a generalized manner, using data collected from all schools. This approach could be useful 

for designing new school buildings by factoring in occupant behaviour to improve predictions 

of building performance. Yet, for building renovations, it is recommended to use data from the 

specific existing school to develop a tailored model for more accurate predictions of building 

performance, highlighting the relevance of contextual factors. 
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6.3.4 Comparison between real occupant behaviour and optimized theoretical scenarios 

Figures 6.11 to 6.13 show the results for discomfort time (ASHRAE, 2020b) and levels of CO2 

concentration, comparing optimized theoretical scenarios with real occupant behaviour across 

the three school buildings. The mustard yellow points represent the population, or candidate 

solutions, based on the deterministic scenarios outlined in Table 6.5. The blue points indicate 

the Pareto front, which comprises a set of optimal trade-off solutions, considering our objective 

functions: minimizing the number of exceedance hours per year and minimizing the average 

annual indoor CO2 concentration. The red and green points represent the real occupant 

behaviour with and without the COVID-19 restrictive measures, respectively. 

As expected, the real occupant behaviour under COVID-19 restrictive measures (red point) 

and without such restrictions (green point) presented similar results in each school, as the 

window status was also very similar, as shown in Figure 6.9.  

The Pareto front for School A (Figure 6.11) indicates that the scenario achieving the optimal 

balance between both objective functions was the one with minimal occupancy (6 persons) 

and windows open during occupancy when the indoor operative temperature exceeded the 

adaptive comfort 80% minimum acceptability limit (resulting in CO2 levels of 452 ppm and 973 

hours of discomfort). In comparison, real occupant behaviour resulted in CO2 levels that were 

approximately 21% higher and 9% more hours of discomfort.  

In School B (Figure 6.12), the optimal scenario also involved minimal occupancy (6 persons) 

with windows always open during occupancy, resulting in CO2 levels of 450 ppm and 1,091 

hours of discomfort. Compared to this optimized scenario, real occupant behaviour led to CO2 

levels that were 19% higher and 4.5% more hours of discomfort. 

In School C (Figure 6.13), the optimal solution involved an occupancy of 11 persons with 

windows always open during occupancy, resulting in CO2 levels of 469 ppm and 1,030 hours 

of discomfort. In comparison to this optimized scenario, real occupant behaviour led to CO2 

levels that were 42.5% higher and 6% more hours of discomfort. 
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 Figure 6.11 – Optimized theoretical scenarios and real occupant behaviour for School A. 

 

 
Figure 6.12 – Optimized theoretical scenarios and real occupant behaviour for School B. 

 

 
Figure 6.13 – Optimized theoretical scenarios and real occupant behaviour for School C. 

Therefore, regarding window status, the optimized scenario for School A suggests that 

windows should be opened based on the indoor operative temperature thresholds. In contrast, 

for Schools B and C, the windows should remain open during occupancy. As for occupancy, 

the optimized solutions for Schools A and B involved a minimum occupancy of 6 persons, while 

in School C, the best scenario indicated an occupancy of 11 persons. These findings highlight 

an important consideration for managing indoor environments, especially in the context of 

future pandemics. 

When comparing these optimized scenarios with actual occupant behaviour, the real behaviour 

resulted in less favourable indoor conditions, especially concerning CO2 levels – although 
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satisfactory CO2 levels and discomfort times under 1150 hours were achieved. This indicates 

that window operation and occupant density significantly influence classroom health, 

suggesting that adjustments in occupant behaviour could further improve indoor conditions, 

enhancing both thermal comfort and perceived air quality. 

6.4 Conclusions 

This study aimed to analyse potential conflicts between thermal comfort and perceived indoor 

air quality, with regard to triggers for manual operation of windows in naturally ventilated 

classrooms, and to identify optimal situations of balance between both drivers to support 

building use practices focused on occupant-centric building operation. The data collected in 

three school buildings was used to develop a window status predictive model and to calibrate 

one BPS model for each school. The window status predictive model was implemented in the 

simulation, reproducing the real occupant behaviour for the entire year. Multi-objective 

optimization was applied to identify optimal situations of balance between thermal comfort and 

perceived indoor air quality. Results from the simulations considering the real occupant 

behaviour and the multi-objective optimization were compared to find out if occupants are 

operating windows near optimal conditions and to identify how could window operation be 

improved, considering the classrooms’ current architectural design. 

CO2 concentration and its interactions with indoor operative temperature and relative humidity 

in addition to the COVID-19 restrictions were identified as significant predictors in our model. 

The results from the model implementation suggest that the OB model predicts window status 

in a generalized manner, utilizing data collected from all schools. While this generalized 

approach may be useful for designing new school buildings by incorporating occupant 

behaviour into performance predictions, it is recommended that renovations rely on data 

specific to the existing school to develop a tailored model, ensuring more accurate predictions 

of building performance. 

The results from the multi-objective optimization reveal that the optimal strategies vary by 

school. For window operation, School A benefits from adjusting window openings based on 

indoor temperature thresholds, while Schools B and C perform better with windows 

consistently open during occupancy. In terms of occupancy, the recommendation is a minimum 

of 6 persons in Schools A and B, and 11 persons in School C. These strategies underscore a 

critical consideration for managing indoor environments, particularly in the context of future 

pandemics, where the relationship between classroom size and occupant density and the 

recommendations for window operation should be carefully reviewed. It is worth highlighting 
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that, since the optimal strategies varied between schools, the recommendations should be 

evaluated according to each specific context. 

The real occupant behaviour resulted in worse outcomes compared to the optimized scenarios, 

with significant differences in CO2 levels, especially in School C (42.5% higher), and discomfort 

times, particularly in School A (9% higher). This suggests that occupant behaviour concerning 

window operation and occupancy directly impacts thermal comfort and perceived indoor air 

quality. Additionally, there is an opportunity to enhance indoor conditions by modifying 

occupant behaviour. 

This study provides valuable insights into how occupant behaviour regarding window operation 

and occupancy affects indoor conditions in school classrooms. The findings highlight 

significant variations in indoor air quality (CO2 levels) and thermal comfort (discomfort hours) 

between real and optimized occupant behaviours, suggesting that adjusting occupant 

behaviour could improve indoor conditions. Additionally, the optimized scenarios offer practical 

recommendations for enhancing classroom design and operational strategies. Future research 

should explore other behaviours in school classrooms, such as door and fan operation, to 

identify optimal strategies for these elements as well, further improving indoor environmental 

conditions.
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7 General Discussion 

Occupant behaviour (OB) models have been developed to predict and represent human 

actions in building performance simulations, to optimize building design and reduce the 

performance gap. Three main steps to represent the OB modelling approach were identified 

in the literature, which were used to structure this research: the data collection (pre-processing, 

step 1), the OB model development and evaluation (processing, step 2) and the OB model 

implementation in building performance simulation (post-processing, step 3). While data 

collection (step 1) is widely adopted as a research method in school buildings, the second and 

third steps have been less thoroughly explored in studies conducted in this context. This 

indicates that OB modelling is still in its early stages for school buildings, representing an 

important research gap. Table 7.1 summarizes the objectives addressed, the methods 

employed, and the main contributions of each chapter in this thesis. 

The literature review, presented in Chapter 2, highlights several key aspects of occupant 

behaviour in school buildings. Teachers were identified as the primary active occupants 

responsible for making environmental adjustments, with decision-making processes largely 

driven by collective needs and school rules. Environmental factors, particularly indoor and 

outdoor air temperatures, were the most frequently studied drivers in this context. Additionally, 

most studies tend to focus on a single behaviour, such as window or light operation, and a 

specific scope, such as energy consumption, indoor environmental quality, indoor air quality, 

or thermal and visual comfort. However, in practice, occupant behaviours are interconnected 

and can have both positive and negative impacts on various aspects of building performance. 

Furthermore, the COVID-19 pandemic introduced restrictive measures in school buildings 

(e.g., opening windows and doors and reducing the number of occupants), directly affecting 

occupant behaviour, making it essential to investigate which are the behaviour changes, their 

actions’ drivers and their impacts on the built environment. 

In this context, a first analysis of the impact of the restrictions implemented during the COVID-

19 pandemic on the built environment is presented in Chapter 3. The results suggest that the 

restrictive measures can help to reduce the CO2 concentration and the probability of infection, 

in addition to improving the thermal comfort of the analysed classroom. Yet, the measures 
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adopted by schools must be analysed for each specific climate and context in order to balance 

potential benefits and risks to occupants. Due to their impact on the built environment, COVID-

19 restrictive measures were included as a predictor variable in the models developed in this 

research aiming to investigate their influence on occupant behaviour. 

The OB modelling approach was applied in Chapters 4, 5 and 6. To address the research 

gaps identified in the literature, the data collected in three school buildings included multi-

domain factors, considering not only environmental variables (such as thermal and indoor air 

quality factors) but also contextual and multi-behaviour domains. Data collection (step 1), 

particularly related to occupant investigation, usually presents challenges due to OB 

complexity and uncertainty, ethical issues, and the requirement of specific monitoring 

equipment, as identified in the literature review and described in this research as limitations. 

The data collected was used to develop OB predictive models (step 2), with different objectives 

in each chapter. In Chapter 4, three window status predictive models, one for each school, 

were developed using the generalized linear model (GLM) to analyse the differences in 

behaviour between schools. Indoor operative temperature, relative humidity, CO2 

concentration and COVID-19 restrictions were identified as triggers for window operation in all 

schools. Yet, the outcomes indicate that occupant behaviour varies between schools, 

suggesting that behaviour is context-dependent and strongly influenced by rules and habits, 

as confirmed by the questionnaire responses. 

In Chapter 5, window, door and fan status predictive models were developed using the 

generalized linear mixed model (GLMM), considering the monitored schools as a variable of a 

random nature and testing multi-domain variables as possible predictors. The analysis 

identified indoor environmental variables, such as operative temperature, relative humidity, 

and CO2 concentration, as significant predictors for window, door, and fan status in almost all 

models. However, other factors like teachers' behaviour and COVID-19 restrictions emerged 

as potentially more influential on occupant behaviour and the models that included these 

predictors demonstrated better performance during the validation phase, underscoring the 

importance of considering the contextual domain in behavioural studies.  

In Chapter 6, one window status predictive model was developed using the generalized linear 

mixed model (GLMM), considering the monitored schools as a variable of a random nature, 

aiming to represent OB in the BPS through an entire year to analyse potential conflicts between 

thermal comfort and perceived indoor air quality. Indoor environmental variables (CO2 

concentration, indoor operative temperature and relative humidity) were tested as predictors 
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for window status in addition to the COVID-19 restrictions. CO2 concentration and its 

interactions with indoor operative temperature and relative humidity, and the COVID-19 

restrictions were identified as significant predictors in this model. 

Overall, the OB predictive models indicated that context-related factors (e.g., teachers’ 

behaviour and COVID-19 restrictions) had a greater influence on window, door, and fan status 

than environmental variables in school classrooms. This finding is likely unique to school 

buildings, where decision-making processes are primarily driven by collective needs and 

school rules, differing from other contexts such as office and residential buildings. However, 

the inclusion or exclusion of certain variables in the models resulted in differences in the 

significance of predictors, raising questions about which variables should be included when 

developing an OB model. While models with additional predictors offered more accurate 

predictions, they also became more context-dependent and less generalizable. Therefore, the 

inclusion of predictors should consider the objective of the research. This trade-off between 

model complexity and generalizability is a key consideration in this research, highlighting the 

nuanced relationship between various factors influencing occupant behaviour in school 

buildings. 

Chapter 6 also presents the OB model implementation (step 3). The window status predictive 

model was implemented in building performance simulations to predict occupant behaviour 

related to window operation throughout the entire year in each school. The implementation 

results suggest that the OB model predicts window status in a generalized manner, as the 

outcomes were similar across the three schools. This similarity arises because a single model 

was developed using data collected from all schools. An alternative approach would be to 

develop one model for each school by applying the Generalized Linear Model (GLM).  While 

this generalized approach can be valuable for designing new school buildings by incorporating 

occupant behaviour into performance predictions, it is recommended that renovations utilize 

data specific to the existing school to develop a tailored model, ensuring more accurate 

predictions of building performance. However, it is important to note that such a tailored model 

would benefit only the specific school for which it was developed. Therefore, once more the 

research’s objective should be considered when choosing the approach to develop OB 

models. 

Results from real occupant behaviour regarding thermal comfort (discomfort hours) and 

perceived indoor air quality (CO2 levels), extracted from the building performance simulations, 

were compared to optimized scenarios in Chapter 6. The parameters analysed in the multi-

objective optimization included those considered in the COVID-19 restrictive measures: 
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window operation and occupancy. The optimal strategies varied between schools. For window 

operation, school A benefits from adjusting window openings based on indoor temperature 

thresholds, while schools B and C perform better with windows consistently open during 

occupancy. In terms of occupancy, the recommendation is a minimum of 6 persons in schools 

A and B, and 11 persons in school C. The real occupant behaviour resulted in worse outcomes 

compared to the optimized scenarios, with significant differences in CO2 levels, especially in 

school C (42.5% higher), and discomfort times, particularly in school A (9% higher).  

This study highlights the significant influence of occupant behaviour on thermal comfort and 

indoor air quality within school environments. By comparing real occupant behaviour with 

optimized scenarios, it is evident that targeted adjustments to window operation and 

occupancy levels can substantially improve indoor conditions. The variation in optimal 

strategies across different schools emphasizes the need for context-specific approaches when 

designing and managing classroom environments. 

Furthermore, these findings are particularly relevant in the context of future pandemics, where 

maintaining healthy indoor air quality and comfortable thermal conditions is crucial. The 

optimized scenarios not only offer actionable recommendations for enhancing classroom 

design and operation but also underscore the importance of revisiting occupant behaviour and 

building strategies to ensure the well-being of occupants. Ultimately, this research provides 

valuable insights that can inform both new school designs and renovations, helping to create 

safer and more comfortable learning environments. 
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Table 7.1 – Summary of analyses across chapters. 

Chapter Main objective of the paper Thesis objectives 
addressed in each chapter* 

Methods OB modelling approach Main contributions 
Data 

collection 
(step 1) 

Model 
development 

(step 2) 

Model 
implementation 

(step 3) 

 
MO SO1 SO2 SO3 SO4 

2 
Addressing the knowledge gap on occupant behaviour 
modelling for naturally ventilated school buildings and 
understanding the potential changes on actions' drivers 
due to the COVID-19 pandemic. 

 • •   Systematic 
literature review    Identification of knowledge and 

research gaps. 

3 

Evaluating the thermal comfort and IAQ conditions of a 
naturally ventilated classroom, in order to identify 
scenarios that contribute, simultaneously, to the 
reduction of the risk of dissemination of the SARS-CoV-2 
virus and to the maintenance of thermal comfort for 
users. 

  •  • 
Field research and 
building 
performance 
simulation (BPS) 

•   

Analysis of the impact of the 
COVID-19 restrictive measures on 
the risk of dissemination of the 
virus and on thermal comfort. 

4 
Addressing the window operation behaviour, the thermal 
conditions and the perceived IAQ in naturally ventilated 
classrooms in a humid subtropical climate during the 
COVID-19 pandemic. 

•  • •  
Field research and 
statistical analysis 
(generalized linear 
models - GLM) 

• •  

Identification of predictors for 
window status and differences in 
occupant behaviour between 
schools. 

5 

Identifying and quantifying the influence of multi-domain 
factors (including thermal, indoor air quality, contextual 
and multi-behaviour domains) on window, door, and fan 
status in naturally ventilated school classrooms in a 
humid subtropical climate, in order to predict occupant 
behaviour. 

•  • •  
Field research and 
statistical analysis 
(generalized linear 
mixed models - 
GLMM) 

• •  
Identification of predictors for 
window, door and fan status, 
considering multi-domain factors. 

6 

Analysing potential conflicts between thermal comfort 
and perceived indoor air quality, with regard to triggers 
for manual operation of windows in naturally ventilated 
classrooms, and identifying optimal situations of balance 
between both drivers to support building use practices 
focused on occupant-centric building operation. 

•  • • • 
Field research, 
statistical analysis 
(GLMM), BPS and 
multi-objective 
optimization 

• • • 

Recommendations for window 
operation and occupancy for 
school classrooms based on 
optimal situations of balance 
between thermal comfort and 
perceived indoor air quality. 

*Main objective (MO): Identify and quantify the influence of multi-domain factors (including thermal, indoor air quality, contextual and multi-behaviour domains) on window, door, and fan status 
in naturally ventilated school classrooms in a humid subtropical climate, in order to improve the ability to predict occupant behaviour. 
Specific objective 1 (SO1): Identifying and analysing existing occupant behaviour models for naturally ventilated and mixed-mode school buildings. 
Specific objective 2 (SO2): Investigating potential impacts on occupant behaviour due to restrictions implemented during the COVID-19 pandemic in school buildings. 
Specific objective 3 (SO3): Developing predictive occupant behaviour models based on the collected data. 
Specific objective 4 (SO4): Analysing potential conflicts between thermal comfort and indoor air quality and identifying optimal situations of balance between both drivers. 
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8 Conclusion 

The main objective of this thesis was to identify and quantify the influence of multi-domain 

factors (including thermal, indoor air quality, contextual and multi-behaviour domains) on 

window, door, and fan status in naturally ventilated school classrooms in a humid subtropical 

climate, in order to improve the ability to predict occupant behaviour (OB). The thesis is 

structured into five main chapters, each addressing specific objectives as well as the main 

objective. This research confirms the hypothesis that including multi-domain factors in OB 

models can enhance the prediction of occupant behaviour in building performance simulations 

(BPS) of school classrooms. However, the results also suggest that more complex models with 

additional predictors become more context-dependent and less generalizable. The trade-off 

between model complexity and generalizability is an important consideration in this thesis. 

The first specific objective (SO1) – identifying and analysing existing occupant behaviour 

models for naturally ventilated and mixed-mode school buildings – is addressed in Chapter 2. 

A unique aspect of occupant investigation in school buildings is recognizing the teacher as the 

primary active occupant responsible for environmental adjustments, with decision-making 

processes largely based on collective needs and school rules. Despite this, environmental 

factors, particularly indoor and outdoor air temperatures, remain the most studied drivers. This 

finding underscores the need to investigate additional domains beyond the physical 

(environmental factors) that influence occupant behaviour in school buildings, especially the 

contextual domain, such as teachers' behaviour and collective actions, thus supporting the 

main objective of this thesis. 

Furthermore, although all the reviewed studies on school buildings considered the correlation 

between occupant behaviour and drivers in their methodology, only 46% actually presented 

the resultant OB model, and few studies implemented the OB model in BPS tools. These 

studies typically focus on a single aspect, such as energy consumption, indoor environmental 

quality, indoor air quality (IAQ), or thermal or visual comfort. However, occupant behaviour can 

impact various aspects of building performance both negatively and positively, needing a 

simultaneous analysis of multi-input and output parameters interaction.  
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The second specific objective (SO2) – investigating potential impacts on occupant behaviour 

due to restrictions implemented during the COVID-19 pandemic in school buildings – is 

addressed in chapters 2 to 6. The outcomes from the literature review, presented in Chapter 

2, support the need to investigate the behaviour changes, their actions’ drivers and their 

impacts on the built environment due to the restrictions implemented during the COVID-19 

pandemic. The restrictions, which are related to occupant behaviour (opening windows and 

doors and reducing the number of occupants), can help to reduce the CO2 concentration and 

the probability of infection, in addition to improving the thermal comfort in naturally ventilated 

school classrooms, as shown in Chapter 3. Yet, the measures adopted by schools must be 

analysed for each specific climate and context in order to balance potential benefits and risks 

to occupants. 

In this context, the restrictions implemented during the COVID-19 pandemic were included as 

a predictor in the occupant behaviour predictive models developed in Chapters 4, 5 and 6. 

These restrictions showed statistical significance for the status of windows, doors, and fans in 

all models, indicating their impact on occupant behaviour.  Yet, the results from the real 

occupant behaviour, simulated over a year in Chapter 6, revealed little variance when 

comparing the periods with and without the COVID-19 restrictions. This suggests that, 

although the restrictive measures were identified as a predictor of occupant behaviour, the 

actual changes in behaviour might not be as significant as anticipated. 

The third specific objective (SO3) – developing predictive occupant behaviour models based 

on the collected data – is addressed in chapters 4, 5 and 6. In Chapter 4, that presents one 

window status predictive model for each school, indoor operative temperature, relative 

humidity, CO2 concentration and the restrictions imposed during the COVID-19 pandemic were 

identified as triggers for window operation in all schools. In addition, the differences between 

the school classrooms suggest that occupant behaviour is context dependent, being highly 

influenced by rules and habits. 

The results presented in Chapter 5 highlighted that predictors such as the teachers’ behaviour 

and the COVID-19 restrictions could have a greater influence on occupant behaviour than 

environmental variables, indicating the relevance of investigating other domains in behavioural 

studies. Also, the models including additional predictors were the ones with better results 

during the validation phase, suggesting that, while more complex models can provide more 

accurate predictions of occupant behaviour, they also become more context-dependent and 

less generalizable. 
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The model implementation, in Chapter 6, indicates that the developed OB model predicts 

window status in a generalized manner, as the outcomes were similar across the three schools. 

This generalized approach can be valuable for designing new school buildings by incorporating 

occupant behaviour into performance predictions. Yet, for building renovations a specific 

model using only data specific to the existing school should ensure more accurate predictions 

of building performance.  

The fourth specific objective (SO4) – analysing potential conflicts between thermal comfort 

and indoor air quality – is addressed in chapters 3 and 6. Chapter 6 also identifies optimal 

situations of balance between both drivers. The indoor conditions were analysed considering 

occupant behaviours related to the restrictions imposed during the COVID-19 pandemic: 

window operation and occupancy. The results from both chapters confirm that occupant 

behaviour impacts significantly thermal and indoor air quality conditions. In Chapter 3, a 

comparison between the best and the worst simulated scenarios revealed a reduction of 42% 

in the concentration of CO2 and 33% in the infection probability and an increase of 60% in 

comfort hours. In Chapter 6, the findings highlight variations of up to 42.5% in CO2 levels and 

up to 9% discomfort hours between real and optimized occupant behaviours. These significant 

differences between scenarios indicate the opportunity to enhance indoor conditions by 

adjusting occupant behaviour. 

The optimal situations of balance between thermal comfort and indoor air quality, presented in 

Chapter 6, indicate that the optimal strategies vary by school, highlighting the need for 

recommendations to be evaluated according to each specific context. The optimized scenarios 

provide practical recommendations for improving classroom design and operational strategies. 

These findings underscore a critical consideration for managing indoor environments, 

particularly in the context of future pandemics, where the relationship between classroom size 

and occupant density and the recommendations for window operation should be reviewed.  

8.1 Main contributions to science and society 

This thesis addresses a significant gap in the literature by providing data on occupant 

behaviour in naturally ventilated school classrooms situated in a humid subtropical climate. 

The findings underscore the complexity of occupant behaviour, which is influenced by multiple 

factors and presents many challenges for investigation. Consequently, the results contribute 

to the debate on the uncertainty of addressing occupancy models in building performance 

simulations, allowing standards for integrating occupant models in building design to better 

reflect reality. 
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Furthermore, occupant behaviour has a direct impact on indoor environmental conditions, 

particularly in buildings where occupants can interact with the building systems, such as those 

with manually operable windows. The results of this research offer insights for designers and 

architects on how to design school buildings that promote the interaction between occupants 

and buildings’ systems to contribute to a comfortable and healthy environment. In this context, 

the data provided by this research supports the development of more occupant-friendly 

spaces, emphasizing systems that are accessible and easy to interact with. 

The outcomes also benefit the schools that participated in this research by providing them with 

reports on the collected data, key findings regarding the developed occupant behaviour models 

and suggestions for operating windows, doors and fans. In addition, a general report provided 

to the Foundation for Education Development (FDE) will contribute to the design and operation 

of public-school buildings in the state of Sao Paulo. 

8.2 Limitations and future research 

 
The limitations of this study include: 

(i) Monitoring equipment – Due to the restricted number of monitoring equipment, the 

schools were not monitored simultaneously. Instead, the monitoring campaign was 

split into four rounds to cover all the seasons in each classroom. This sequential 

monitoring may introduce variability based on time of the year. Also, the absence 

of equipment to monitor occupancy required the use of attendance lists provided 

by each teacher, which may not be as reliable as data obtained from dedicated 

occupancy monitoring equipment, potentially introducing some level of uncertainty 

into the analysis. 

(ii) Sample size – Also due to the restricted number of equipment, the sample was 

limited to three schools. Larger sample sizes are often preferred to develop more 

precise models, as they provide more data to train the models effectively. 

(iii) Internal factors – The study did not consider internal factors such as psychological 

and physiological variables that could potentially be included as predictors in the 

models. This omission was due to the complexity of investigating and monitoring 

these factors. 

Future studies could further enhance the sample size by collecting data from other school 

classrooms in different contexts (e.g., different climates, types of classrooms, students of 

different ages) and investigate a broader range of factors that can influence occupant 



146 

 

 

behaviour, such as internal (e.g., psychological and physiological variables) and contextual 

(e.g., school routine and rules) factors. 
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APPENDICES 

Appendix A: Teachers’ questionnaire (Appendix of Chapters 4 and 5) 

QUESTIONÁRIO 
 

Turno(s) em que dá aula:  Manhã    Tarde   Data: ____/____/____ Hora:______   
 

1. O que você está vestindo hoje? 
 Short/ Bermuda   Camiseta manga curta  Sandália/ Chinelo 
 Saia    Camiseta manga longa  Tênis 
 Calça comprida   Malha/ jaqueta   Sapato/ Bota 

 

2. Neste momento, a sala está:  
 Muito quente   Nem quente nem fria   Muito fria 
 Pouco quente       Pouco fria 
 

3. Neste momento, como você gostaria que a sua sala estivesse?  
 Mais quente   Como já está    Mais fria 
 

4. Neste momento, o vento que está entrando pela janela na sala:  
 Está agradável   A janela está fechada    
 Não incomoda   Incomoda     

 

5. Neste momento, em relação ao quadro negro, o sol/ a claridade que está entrando pela 
janela: 

 Está agradável     Atrapalha 
 Não atrapalha     Não está entrando sol/claridade  

 
6. Em geral, quem opera as janelas, as persianas/cortinas (se houver) e os ventiladores 

dentro da sala de aula? 
 Apenas os professores ou outros funcionários 
 Apenas os alunos 
 Quase sempre os professores ou outros funcionários 
 Quase sempre os alunos 
 Qualquer pessoa (professores ou alunos) 
 

7. Os alunos costumam solicitar para abrir ou fechar a janela? 
 Sim, com muita frequência   Sim, raramente   
 Sim, às vezes     Não 

 

8. Os alunos costumam solicitar para ligar ou desligar o ventilador? 
 Sim, com muita frequência   Sim, raramente   
 Sim, às vezes     Não 
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9. Os alunos costumam solicitar para ligar ou desligar a luz? 
 Sim, com muita frequência   Sim, raramente   
 Sim, às vezes     Não 
 

10. Os alunos costumam solicitar para abrir ou fechar a persiana/cortina? 
 Sim, com muita frequência   Sim, raramente   
 Sim, às vezes     Não 
 Não há persiana/cortina na sala de aula 

 

11. Quanto tempo a janela da sala permaneceu aberta hoje, durante a aula? 
 Apenas no início da aula 
 Apenas no fim da aula 
 Durante todo o horário de aula 
 A janela permaneceu fechada durante toda a aula 
 

12. Quem abriu a janela da sala hoje? 
 Eu      
 Outro funcionário 
 Aluno      
 Não sei, a janela já estava aberta quando eu cheguei 
 A janela não foi aberta hoje 
 

13. Quem fechou a janela da sala hoje? 
 Eu      
 Outro funcionário 
 Aluno      
 A janela não foi fechada (está aberta) 
 A janela permaneceu fechada durante toda a aula 
 

14. No caso de você ter aberto ou fechado a janela da sala hoje, qual foi a motivação? 
(Apenas responder se respondeu EU nas questões 12 e/ou 13) 

 Porque tinha cheiro ruim 
 Para ventilar a sala de aula 
 Por causa da chuva 
 Porque estava muito quente 
 Porque estava muito frio 
 Outro motivo: ___________________________ 

 

15. Quem ligou o ventilador da sala hoje? 
 Eu      
 Outro funcionário 
 Aluno 
 Não sei, já estava ligado quando eu cheguei      
 O ventilador não foi ligado hoje 

 

16. Quem desligou o ventilador da sala hoje? 
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 Eu      
 Outro funcionário 
 Aluno 
 O ventilador não foi desligado ainda (está ligado)     
 O ventilador permaneceu desligado durante toda a aula 
 

17. No caso de você ter ligado ou desligado o ventilador da sala hoje, qual foi a 
motivação? (Apenas responder se respondeu EU nas questões 15 e/ou 16) 

 Para ventilar a sala de aula 
 Porque estava muito quente 
 Porque estava muito frio 
 Outro motivo: ___________________________ 
 

18. Quem ligou a luz da sala hoje? 
 Eu      
 Outro funcionário 
 Aluno 
 Não sei, a luz já estava ligada quando cheguei     
 A luz não foi ligada hoje 

 

19. Quem desligou a luz da sala hoje? 
 Eu      
 Outro funcionário 
 Aluno 
 A luz não foi desligada ainda (está ligada)     
 A luz permaneceu desligada durante toda a aula 
 

20. No caso de você ter ligado ou desligado a luz da sala hoje, qual foi a motivação? 
(Apenas responder se respondeu EU nas questões 18 e/ou 19) 

 Para enxergar melhor o quadro negro 
 Para enxergar melhor a minha mesa 
 Outro motivo: ___________________________ 

 
Caso haja persiana/ cortina na sala de aula: 

21. Quem abriu a persiana/ cortina da sala hoje? 
 Eu      
 Outro funcionário 
 Aluno 
 Não sei, a persiana/ cortina já estava aberta quando cheguei    
 A persiana/ cortina não foi aberta hoje 

 

22. Quem fechou a persiana/ cortina da sala hoje? 
 Eu      
 Outro funcionário 
 Aluno 
 A persiana/ cortina não foi fechada hoje (está aberta)    
 A persiana/ cortina permaneceu fechada durante toda a aula 
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23. No caso de você ter aberto ou fechado a persiana da sala hoje, qual foi a motivação? 
(Apenas responder se respondeu EU nas questões 21 e/ou 22) 

 Para enxergar melhor o quadro negro 
 Para enxergar melhor a minha mesa 
 Outro motivo: ___________________________ 

 
Em relação às mudanças na escola devido à pandemia do COVID-19: 

24. Quais as recomendações da escola para o uso de máscara? 
 É obrigatório em todos os ambientes fechados 
 É obrigatório em todos os ambientes da escola (fechados e abertos)  
 É obrigatório apenas na sala de aula  
 Não é obrigatório 
 Outra: ________________________ 
 Não fizeram nenhuma recomendação 

 

25. Quais as estratégias adotadas por você (ou recomendadas pela direção da escola) para 
uso da sala de aula, em função da pandemia? (pode marcar mais de uma alternativa) 

 Deixar a janela sempre aberta   Não abrir a janela   
 Deixar a porta sempre aberta   Não deixar a porta aberta 
 Deixar o ventilador sempre ligado   Não ligar o ventilador  
 Outra: ______________________________________________ 
 A direção da escola não fez nenhuma recomendação 
 Não mudei de comportamento em relação a antes da pandemia 
 
26. O número de alunos em sala de aula: 
 Diminuiu    Permaneceu o mesmo   Aumentou 
 
27. O tempo de permanência dos alunos em sala de aula: 
 Diminuiu    Permaneceu o mesmo   Aumentou 
 
28. Caso o tempo em sala de aula tenha reduzido, qual a alternativa para suprir o número 

de aulas necessárias? 
 Uso de espaços ao ar livre dentro da escola 
 Atividades remotas 
 Outro: ______________________________________________ 
 
29. A posição dos móveis em sala de aula: 
 Mudou    Permaneceu igual 
 
 
 
 
 
30. Você notou alguma mudança no comportamento dos alunos em relação ao ambiente 

da sala de aula? 
______________________________________________________________________________
______________________________________________________________________________
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______________________________________________________________________________
__________________________________________________ 
31. Por favor, descreva outras mudanças que você notou e não foram mencionadas: 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
__________________________________________________ 
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Appendix B: Students’ questionnaire (Appendix of Chapter 5) 

QUESTIONÁRIO 
 
NOME: _________________________ IDADE: ____ SEXO:    FEMININO   MASCULINO  
DATA: ____/____/____ HORA:______ TURMA:________TURNO:  MANHÃ       TARDE  
 

 

1. O QUE VOCÊ ESTÁ VESTINDO HOJE? 
 SHORT/ BERMUDA  CAMISETA MANGA CURTA  SANDÁLIA/ CHINELO 
 SAIA    CAMISETA MANGA LONGA  TÊNIS 
 CALÇA COMPRIDA  MALHA/ JAQUETA   SAPATO/ BOTA 

 
2. NESTE MOMENTO, A SUA SALA ESTÁ:  
 MUITO QUENTE   NEM QUENTE, NEM FRIA  MUITO FRIA 
 POUCO QUENTE      POUCO FRIA 
 
3. NESTE MOMENTO, COMO VOCÊ GOSTARIA QUE A SUA SALA ESTIVESSE?  
 MAIS QUENTE   COMO JÁ ESTÁ    MAIS FRIA 
 
4. NESTE MOMENTO, O VENTO QUE ESTÁ ENTRANDO PELA JANELA NA SALA:  
 ESTÁ AGRADÁVEL    A JANELA ESTÁ FECHADA  
 NÃO ATRAPALHA    ATRAPALHA 
   
5. NESTE MOMENTO, EM RELAÇÃO À SUA MESA, O SOL/ A CLARIDADE QUE ESTÁ 

ENTRANDO PELA JANELA:  
 ESTÁ AGRADÁVEL   NÃO ESTÁ ENTRANDO SOL/CLARIDADE  
 NÃO ATRAPALHA   ATRAPALHA 
  
6. NESTE MOMENTO, EM RELAÇÃO AO QUADRO/ LOUSA, O SOL/ A CLARIDADE QUE 

ESTÁ ENTRANDO PELA JANELA: 
 ESTÁ AGRADÁVEL   NÃO ESTÁ ENTRANDO SOL/CLARIDADE 
 NÃO ATRAPALHA   ATRAPALHA  
 
7. VOCÊ ABRIU A JANELA DA SALA DE AULA HOJE?  
 SIM, QUANDO EU CHEGUEI NA SALA   SIM, DURANTE A AULA  
 SIM, QUANDO EU SAÍ DA SALA    NÃO  
  
8. VOCÊ FECHOU A JANELA DA SALA DE AULA HOJE?  
 SIM, QUANDO EU CHEGUEI NA SALA   SIM, DURANTE A AULA  
 SIM, QUANDO EU SAÍ DA SALA    NÃO  
  
9. POR QUE VOCÊ ABRIU/ FECHOU A JANELA DA SALA DE AULA HOJE? 

(APENAS RESPONDER SE RESPONDEU SIM NAS QUESTÕES 7 E/ OU 8) 

 PORQUE TINHA CHEIRO RUIM 
 PARA VENTILAR A SALA DE AULA 
 POR CAUSA DA CHUVA 
 PORQUE ESTAVA MUITO QUENTE 
 PORQUE ESTAVA MUITO FRIO 
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 OUTRO MOTIVO: ___________________________ 
 
10. VOCÊ LIGOU O VENTILADOR DA SALA DE AULA HOJE? 
 SIM, QUANDO EU CHEGUEI NA SALA   SIM, DURANTE A AULA  
 SIM, QUANDO EU SAÍ DA SALA    NÃO 
 
11. VOCÊ DESLIGOU O VENTILADOR DA SALA DE AULA HOJE? 
 SIM, QUANDO EU CHEGUEI NA SALA   SIM, DURANTE A AULA  
 SIM, QUANDO EU SAÍ DA SALA    NÃO 
 
12. POR QUE VOCÊ LIGOU/ DESLIGOU O VENTILADOR DA SALA DE AULA HOJE? 

(APENAS RESPONDER SE RESPONDEU SIM NAS QUESTÕES 10 E/ OU 11) 

 PARA VENTILAR A SALA DE AULA 
 PORQUE ESTAVA MUITO QUENTE 
 PORQUE ESTAVA MUITO FRIO 
 OUTRO MOTIVO: ___________________________ 
 
13. VOCÊ LIGOU A LUZ DA SALA DE AULA HOJE? 
 SIM, QUANDO EU CHEGUEI NA SALA   SIM, DURANTE A AULA  
 SIM, QUANDO EU SAÍ DA SALA    NÃO 
 
14. VOCÊ DESLIGOU A LUZ DA SALA DE AULA HOJE? 
 SIM, QUANDO EU CHEGUEI NA SALA   SIM, DURANTE A AULA  
 SIM, QUANDO EU SAÍ DA SALA    NÃO 
 
15. POR QUE VOCÊ LIGOU/ DESLIGOU A LUZ DA SALA DE AULA HOJE? 

(APENAS RESPONDER SE RESPONDEU SIM NAS QUESTÕES 13 E/ OU 14) 

 PARA ENXERGAR MELHOR O QUADRO/ LOUSA 
 PARA ENXERGAR MELHOR A MINHA MESA 
 OUTRO MOTIVO: ___________________________ 
 

CASO HAJA PERSIANA/ CORTINA NA SALA DE AULA: 
16. VOCÊ ABRIU A PERSIANA/ CORTINA DA SALA DE AULA HOJE? 
 SIM, QUANDO EU CHEGUEI NA SALA   SIM, DURANTE A AULA  
 SIM, QUANDO EU SAÍ DA SALA    NÃO 
 
17. VOCÊ FECHOU A PERSIANA/ CORTINA DA SALA DE AULA HOJE? 
 SIM, QUANDO EU CHEGUEI NA SALA   SIM, DURANTE A AULA  
 SIM, QUANDO EU SAÍ DA SALA    NÃO 
 
18. POR QUE VOCÊ ABRIU/ FECHOU A PERSIANA/CORTINA DA SALA DE AULA HOJE? 

(APENAS RESPONDER SE RESPONDEU SIM NAS QUESTÕES 16 E/ OU 17) 
 

 PARA ENXERGAR MELHOR O QUADRO/ LOUSA 
 PARA ENXERGAR MELHOR A MINHA MESA 
 OUTRO MOTIVO: ___________________________ 
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Appendix C: CO2 concentration transformation (Appendix of Chapter 5) 

CO2 concentration data was subjected to a reciprocal transformation to reduce skewness. 

Original distribution Transformed distribution 
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Appendix D: Models’ residual analysis (Appendix of Chapter 5) 

(a) Model 1 for window 

 
(b) Model 2 for window 

 
(c) Model 3 for window 

 
 

(d) Model 4 for window 
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(e) Model 5 for window 

 
 

(f) Model 1 for door 

 
(g) Model 2 for door 
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(h) Model 3 for door 

 
(i) Model 4 for door 

 
 

(j) Model 5 for door 
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(k) Model 1 for fan 

 
(l) Model 2 for fan 

 
 

(m) Model 3 for fan 
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(n) Model 4 for fan 

 
(o) Model 5 for fan 
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Appendix E: Indoor conditions, window, door and fan status during occupied period 

(Appendix of Chapter 5) 

A. Window status 
(0 = closed / 1 = open) 

B. Door status 
(0 = closed / 1 = open) 

 C. Fan status 
(0 = off / 1 = on) 

 
A1. Window status and 
temperature 

 
B1. Door status and temperature 

  
C1. Fan status and temperature 

  

 

 
    

 
A2. Window status and relative 
humidity 

 
B2. Door status and relative 
humidity 

  
C2. Fan status and relative 
humidity 

  

 

 
    

 
A3. Window status and CO2 
concentration 

 
B3. Door status and CO2 
concentration 

  
C3. Fan status and CO2 
concentration 

  

 

 
    
    

 

 

 

 

 

D1. Window (W)/ Door (D)/ Fan (F) status and temperature 
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D2. Window (W)/ Door (D)/ Fan (F) status and relative humidity 

 

D3. Window (W)/ Door (D)/ Fan (F) status and CO2 concentration 
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Appendix F: Permission for published journal papers (Chapters 2 and 5) 

Chapters 2 and 5 have been formally published via Elsevier (journals Energy and Buildings 

and Building and Environment). Elsevier permits the inclusion of published papers in an 

author's thesis, as outlined in their guidelines: 

"Authors are allowed to incorporate their articles, either in full or in part, within a thesis or 

dissertation for non-commercial purposes." 

For further details, please refer to Elsevier's guidelines, accessible at the following link: 

https://www.elsevier.com/about/policies-and-standards/copyright/permissions#  

https://www.elsevier.com/about/policies-and-standards/copyright/permissions
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