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Resumo

As organizações muitas vezes enfrentam a limitação de ter uma pequena quantidade de
dados rotulados para calibrar e refinar os seus modelos de linguagem (LM, do inglês lan-
guage models) em contextos específicos. Esta escassez de dados anotados traduz-se num
desafio significativo para o desenvolvimento e melhoria do LM, uma vez que a qualidade
e a quantidade dos dados são fatores críticos no desempenho e generalização do modelo.
Por outro lado, a aquisição ou criação de dados rotulados caracteriza-se pela sua elevada
exigência em termos de tempo e recursos financeiros; este processo complicado e caro
pode representar uma barreira significativa para as organizações, limitando a sua capa-
cidade de implementar soluções eficazes de aprendizagem de máquina adaptadas às suas
necessidades específicas. A literatura demonstra que problemas semelhantes foram re-
solvidos por meio de ajuste fino auto-supervisionado, utilizando diferentes abordagens de
pré-treinamento. Todavia, até o nosso conhecimento, inexistia a descrição e a avaliação de
protocolos desse tipo de treinamento para LMs em português. Dessa forma, nesta disser-
tação propomos como adaptar o protocolo de pré-treinamento do LM em português BER-
Timbau para um procedimento de ajuste fino auto-supervisionado, acompanhado de uma
avaliação de como este procedimento pode afetar a generalização e tarefas downstream
quando se tem dados não rotulados. Realizamos vários experimentos com três conjuntos
de dados de diferentes contextos, nos quais descongelamos diferentes números de camadas
no modelo e utilizamos diferentes ajustes na taxa de aprendizagem, determinando assim
um regime de treinamento ideal para o protocolo de ajuste fino auto-supervisionado. Os
resultados utilizando análise de sentimentos como tarefa downstream, com dados rotula-
dos dos mesmos conjuntos de dados, indicaram que descongelar apenas a última camada
já traz bons resultados, o que permitiria usuários com recursos computacionais limitados
obterem ótimos resultados com o método. Além disso, foi destacada a eficácia do ajuste
fino auto-supervisionado em conjuntos de dados maiores, sugerindo o seu potencial para
pesquisas futuras em LMs pré-treinados mais avançados.



Abstract

Organizations often face the limitation of having a small amount of labeled data to cal-
ibrate and refine their language models (LMs) in specific contexts. This scarcity of an-
notated data translates into a significant challenge for the development and improvement
of LMs, since the quality and quantity of data are critical factors in the performance and
generalization of the model. On the other hand, the acquisition or creation of labeled
data is characterized by its high demand in terms of time and financial resources; this
complicated and expensive process can represent a significant barrier for organizations,
limiting their ability to implement effective machine learning solutions tailored to their
specific needs. The literature shows that similar problems have been solved through self-
supervised fine-tuning using different pre-training approaches. However, to our knowledge,
there was no description and evaluation of such training protocols for LMs in Portuguese.
Thus, in this dissertation, we propose how to adapt the BERTimbau Portuguese LM
pre-training protocol to a self-supervised fine-tuning procedure, accompanied by an eval-
uation of how this procedure can affect generalization and downstream tasks when using
unlabeled data. We performed several experiments with three datasets from different
contexts, in which we unfroze different numbers of layers in the model and used different
learning rate settings, thus determining an optimal training regime for the self-supervised
fine-tuning protocol. The results using sentiment analysis as a downstream task, with
labeled data from the same datasets, indicated that unfreezing only the last layer already
yields good results, which allows users with limited computational resources to obtain
excellent results with the method. Furthermore, the effectiveness of self-supervised fine-
tuning on larger datasets was highlighted, suggesting its potential for future research in
more advanced pre-trained LMs.

Keywords: Self-supervised learning, Fine-tuning, Artificial intelligence, Sentiment
analysis, Natural language processing, Transfer learning, Domain adaptation.
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Chapter 1

Introduction

In recent decades, the artificial intelligence (AI) field has witnessed remarkable techno-
logical advancements that influence numerous facets of modern life. AI is now deeply in-
tegrated into everyday applications, ranging from recommendation systems on streaming
platforms to the development of autonomous vehicles, fundamentally reshaping interac-
tions with both the digital and physical world. Central to many of these advancements
is machine learning (ML), a subset of AI that enables systems to autonomously identify
patterns and execute tasks without explicit programming. ML has demonstrated effec-
tiveness across various domains, including email classification for spam detection [41] and
multi-task transfer learning for predicting entity modifiers in clinical text processing [1].

Supervised learning (SL) has long been a fundamental tool for training models in
specific domains or tasks within the ML paradigm. In SL, models are trained using a
labeled data set, where each training example is associated with a label indicating the
desired output. This technique has proven to be highly effective in solving classification
and regression problems, allowing models to learn to generalize patterns from labeled
examples. For instance, in sentiment analysis, supervised learning can successfully classify
simple cases, such as identifying a positive sentiment in a review like “I loved the product!”.
However, it struggles with more complex cases, such as detecting sarcasm in a review like
“Oh great, another feature that doesn’t work!” or interpreting mixed sentiments within
the same sentence, as in “The design is stunning, but the battery life is disappointing”.

However, despite its successes, SL faces a fundamental challenge: the scarcity and cost
of acquiring labeled data. In real-world applications, having a few labeled data is the only
resource available. This is related to the limited availability of experts, a lack of data sets
with wide diversity, or situations where large amounts of unlabeled data are generated but
manual labeling is impractical [54]. For example, labeling sentences for sarcasm detection
in sentiment analysis requires human annotators with advanced linguistic skills, which
increases both the time and cost of data preparation.

The scarcity of labeled data has led to the development of transfer learning, a tech-
nique that allows leveraging limited labeled data and unlabeled data to improve model
performance. Regarding language models, the transfer learning is often achieved in two
ways: first, a pretrained language model trained on a large generic unlabeled dataset is
used in a self-supervised approach to learn useful feature representations from the data.
In the second stage, the labeled data is used to fine tune the pretrained model. The SL
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step exposes the model to the domain of the specific context of the subsequent task being
addressed, often improving the model’s performance in solving the problem.

Although traditional transfer learning often works well even when there are only a few
labeled examples [83], the improvements in language model performance on the down-
stream task usually rely on collecting more labeled examples, so we can say that the more
labeled data we have, the better the result. Traditional transfer learning will not give
optimal results for a problem with a small amount of labeled data for the downstream
task. However, it is often costly for companies to obtain and label data.

Therefore, an alternative approach involves the use of transfer learning. This strategy
entails leveraging a language model pre-trained on vast amounts of generic, unlabeled
data, followed by self-supervised fine-tuning with domain-specific unlabeled data. The
objective is to enable the model to specialize in the domain of interest. Subsequently, the
model can be applied to downstream tasks using the limited available labeled data from the
same domain, hence achieving better results [43, 29, 79]. This approach offers several key
advantages, including reduced dependence on labeled data, which lowers data acquisition
costs. Furthermore, by utilizing a larger volume of unlabeled data, models can learn richer
and more generalizable representations, often resulting in improved performance across
various tasks.

Although there are currently a number of self-supervised fine-tuning techniques pro-
posed in the literature [25, 29, 43], to the best of our knowledge there is no systematic
investigation of the application of a self-supervised fune tuning protocol for Portuguese
language for domain adaptation in areas such as information technology or e-commerce.
For example, in the context of e-commerce, this approach could help models analyze cus-
tomer feedback, from straightforward comments like “Fast delivery and great service!” to
more nuanced and challenging cases, such as detecting sarcastic remarks like “Oh, another
’premium’ product that breaks in a week”. Therefore, to address such study would be a
timely endeavor.

1.1 The Proposed Approach

Our proposed approach to addressing the domain specialization problem with few labeled
data by exploring unstructured textual data, for specific domains such as e-commerce in
Portuguese language, is to perform self-supervised fine-tuning of a pretrained language
model on general Portuguese textual data to give it domain-specific knowledge, also in
Portuguese, and then test its performance on a downstream task with a small amount of
labeled data. To this end, we use BERTimbau [78], a language model based on BERT [15],
trained on a Portuguese corpus. BERTimbau is the model to which we perform a self-
supervised fine-tuning using the B2W [65], UTLC-apps and UTLC-movies [77] datasets;
which are datasets from different domains in Brazilian Portuguese.

Self-supervised fine-tuning involves retraining a pre-trained model with data from a
specific domain using pretext tasks; in the case of BERTimbau, it was used masked
language modeling (MLM) and next sentence prediction (NSP). The MLM task masks a
percentage of words in a sentence and requires the model to predict them, which helps
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the model better understand the sentence’s context. On the other hand, the NSP task
takes two sentences as input and determines whether they are related, teaching the model
to understand coherence and logical sequence in sentences. This self-supervised fine-
tuning stage would be essential for adapting the model to its general knowledge to a more
specialized context, thereby enhancing its generalization capacity and accuracy in tasks
specific to that domain [27]. Once self-supervised fine-tuning is complete, the model is
ready to be applied to specific downstream tasks. This type of task allows to explore
and validate the improvements obtained during training, demonstrating how adapting
the model to a specialized domain can bring significant gains in practical applications.

As the downstream task of our proposal, we defined to use multiclass sentiment analy-
sis. This task significantly extends traditional sentiment analysis by allowing the classifi-
cation of texts into more than two categories. This capability is crucial in many contexts,
such as the entertainment industry, where understanding the diversity of opinions ex-
pressed about a film may require identifying specific emotions beyond the merely positive
or negative ones. Similarly, understanding the full range of opinions on a topic in social
network analysis is critical to informed decision-making. For this reason, this downstream
task not only allows for a more detailed and accurate assessment of emotions in texts,
but also highlights the importance of capturing the complexity and subtlety of human
opinions in diverse contexts.

By applying the retrained model on a downstream task with labeled data from the
same domain, we would expect an increase in task performance due to the improvement
obtained from the previous stages. More specifically, having been fine-tuned on domain-
specific data, the model would be better prepared to handle the complexities and nuances
of the task, resulting in a substantial improvement in performance and accuracy. There-
fore, this approach would ensure that the model not only has an understanding of general
language, but also exceptional adaptability to domain specificity, thus achieving optimal
results with a relatively smaller amount of labeled data.

1.2 Research Questions

The research questions (RQs) that we aim to answer are:

RQ 1 How can the pretraining protocol of BERTimbau be adapted for a self-supervised
fine-tuning procedure on this model?

RQ 2 How does using unlabeled data in a specific domain in the proposed self-supervised
fine-tuning approach impact BERTimbau’s downstream performance and its gener-
alization ability?

RQ 3 In which scenarios (e.g., data availability, type of domain) is it suitable to use that
self-supervised fine-tuning approach?

1.3 Outline of this Dissertation

After this Introduction, the remainder of this Masters’ dissertation is organized as follows:
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In Chapter 2, we present the fundamental concepts necessary for a comprehensive
understanding of the topics addressed in this dissertation. This includes definitions and
conceptual frameworks that form the basis of our research.

In Chapter 3, we conduct a comprehensive analysis of the current state of the literature
in relation to our research proposal. This review critically examines existing studies,
identifying gaps and opportunities that our work seeks to address.

In Chapter 4, we explain in detail the methodology adopted to answer the proposed re-
search questions. We describe the research design, data collection, and analysis techniques
used, ensuring a rigorous approach in our research.

In Chapter 5, we analyze the results obtained from our experiments. We interpret these
findings in the context of the research questions by assessing the validity and implications
of the results and their possible limitations.

And finally in Chapter 6, we present our conclusions and discuss possible directions
for future works. This chapter summarizes the main contributions of our research and
suggests areas where further research could be fruitful.
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Chapter 2

Fundamental Concepts

This chapter presents a comprehensive theoretical framework, intended to establish the
context necessary for understanding the following chapters. We begin by providing an
overview of the fundamental principles of artificial intelligence (AI) and its subfields rel-
evant to this work, including machine learning, natural language processing, and how
transformer-based models learn in a self-supervised manner. In the sequence, we will
present some fundamentals of natural language processing (NLP), including sentiment
analysis and language models. Finally, we will present some concepts of learning a trans-
former model, describing transfer learning, fine-tuning and self-supervised fine-tuning.

2.1 Machine Learning

Machine learning (ML) is a subfield of Artificial Intelligence (AI) that focuses on devel-
oping algorithms and models that allow computers to learn patterns and perform specific
tasks without requiring explicit programming. According to Mitchell (1997) [50], machine
learning is defined as “the study of algorithms that automatically improve their perfor-
mance through experience”. This definition highlights the fundamental aspect of machine
learning: the ability of systems to learn and adapt from data, rather than relying exclu-
sively on predefined rules.

One of the most successful approaches in ML is the Deep Neural Networks. As noted by
Goodfellow et al.(2016) [20], deep neural networks are machine learning models composed
of multiple layers of interconnected nodes, which can learn hierarchical representations
of input data. These models have performed exceptionally in various tasks, from image
recognition to machine translation. We will detail them further in the following section.

2.1.1 Deep Neural Networks (Deep Learning)

Neural networks are computational models inspired by the functioning of the human brain.
They have proven to be powerful tools for AI applications. Over time, neural networks
have evolved from their early simple forms to more complex and sophisticated models
driven by advanced algorithms and access to large data sets.

One of the early milestones in the development of neural networks is the perceptron,
proposed by Rosenblatt (1958) [69]. The perceptron is a supervised learning model that
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can be used for binary classification, and its ability to learn from data made it one of the
first machine learning models.

Over time, neural networks have evolved into more complex models such as Multilayer
Perceptron [71], Hopfield Networks [26], Time Delay Neural Networks [82], and Echo State
Networks [30], among others. More recently, neural networks have experienced a renais-
sance with the advent of deep neural networks. As noted by Goodfellow et al.(2016) [20],
deep neural networks are capable of learning hierarchical representations of data, making
them ideal for natural language processing tasks, speech recognition, and many other
applications.

Deep Learning is then a subfield of ML that focuses on training deep neural networks to
learn hierarchical representations of data [20]. Unlike traditional ML models, deep neural
networks comprise multiple layers of interconnected nodes, allowing them to capture and
learn complex patterns and abstractions from input data.

We have, for instance, the Convolutional neural networks (CNN) and recurrent neu-
ral networks (RNN). According to LeCun et al. (2015) [40], CNNs have proven to be
especially effective in computer vision tasks such as object recognition and image segmen-
tation. On the other hand, RNNs, as Hochreiter and Schmidhuber (1997) [24] point out,
are ideal for processing data sequences, such as text or time series.

One of the distinguishing features of Deep Learning is its ability to automatically learn
relevant data features from large data sets. As noted by LeCun et al. (2015) [40], “Deep
Learning has proven to be especially effective in tasks where large amounts of data are
available for training”. This has led to significant advances in various areas, including
image recognition, natural language processing, and computer vision.

2.1.2 Transformers

Transformers are a neural network architecture designed to handle sequential and con-
textual data, introduced by Vaswani et al. (2017) [80] in the seminal paper “Attention
is All You Need”. This architecture revolutionized the field of natural language process-
ing (NLP) by overcoming the limitations of previous recurrent models, such as recurrent
neural networks (RNNs) and long short-term memory networks (LSTMs), by implement-
ing the self-attention mechanism, allowing to capture long-range dependencies in data
sequences more efficiently [80].

The main innovation of Transformers lies in their attention mechanism, which allows
the model to focus on different parts of the input sequence dynamically. This approach
eliminates the need to process sequential data in a strictly ordered manner, as is the case
with RNNs and LSTMs, allowing for more efficient parallelism and significantly reducing
training time. In particular, the multi-head self-attention mechanism allows the model to
capture different types of contextual relationships at multiple levels of granularity [80].

The Transformers architecture consists of an encoder and a decoder, each one with a
series of layers. Each encoding layer takes an input sequence and applies self-attention
mechanisms and fully connected feed-forward layers. In contrast, each decoding layer
incorporates attention mechanisms to both the input and the output generated up to that
point, facilitating the translation of sequences [80]. This modular and scalable structure
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2.1.3 BERT (Bidirectional Encoder Representations from Trans-

formers)

BERT, or Bidirectional Encoder Representations from Transformers, is a pretrained lan-
guage model developed by Devlin et al. (2018) [15] that has marked a significant milestone
in the field of natural language processing (NLP). BERT is distinguished by its ability to
understand the context of a word in both directions, forward and backward, within a text
sequence. This bidirectionality is one of the key innovations that allows BERT to capture
complex contextual relationships and significantly improve performance on various NLP
tasks [15].

The BERT model is based on the Transformer architecture, specifically on the encoder
part. Unlike unidirectional language models, which only consider the context of a word
from one direction, BERT uses a bidirectional attention approach that allows for a deeper
and more complete understanding of the context [80]. This capability is achieved through
pretraining on masked language modeling (MLM) and next-sentence prediction (NSP)
tasks. BERT pretraining is performed on large unlabeled text corpora, such as Wikipedia
and the BookCorpus, allowing the model to learn general linguistic representations. Once
pretrained, BERT can be fine tuned for specific tasks, such as text classification, named
entity extraction, question answering, among others. Such fine-tuning can be achieved by
adding a final task-specific layer and performing additional training on labeled data [15].

Since its introduction, BERT has inspired a number of spin-off models and improve-
ments, such as RoBERTa, ALBERT [39], DistilBERT [72], BERTimbau [78], among oth-
ers, which seek to optimize its efficiency and generalization capabilities further. These
models have adopted various strategies to reduce computational requirements and im-
prove performance on specific tasks while maintaining BERT’s fundamental architecture.
BERT represents a revolutionary advance in the field of NLP, providing a powerful and
flexible framework for understanding and generating natural language. Its ability to cap-
ture bi-directional contexts and its success in various applications have cemented it as an
essential tool in the research and development of natural language technologies.

2.2 Natural Language Processing

Natural Language Processing (NLP) is an interdisciplinary field that sits at the inter-
section of computational linguistics, artificial intelligence, and data science. Its primary
goal is to enable computers to understand, interpret, and generate human language ef-
fectively [32]. NLP has evolved significantly since its inception, driven by advances in
algorithms, machine learning models, and the availability of large data sets.

The origin of NLP dates back to the early days of computing, with the first attempts to
develop programs that could understand and generate human language. One of the early
milestones was the ELIZA program, developed by Joseph Weizenbaum in the 1960s [85],
which simulates a therapeutic conversation using simple word-matching patterns. Al-
though rudimentary compared to today’s systems, ELIZA laid the groundwork for future
research in the field of NLP. Since then, NLP has seen significant advances in various
areas, driven by the exponential growth of digital data and the development of machine
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learning techniques.
NLP encompasses various tasks and applications that allow machines to interact with

human language in diverse ways. These tasks include sentiment analysis, text classifi-
cation, machine translation, text summarization, named entity recognition, and natural
language generation. Sentiment analysis, in particular, has evolved to include advanced
techniques such as multiclass sentiment analysis, which goes beyond simple categories of
positive, negative, or neutral, allowing for the identification of a broader range of emo-
tions, like anger, happiness, sadness, fear, excitement, and others [66]. This capability
is crucial for applications in areas such as customer service, where it is important to un-
derstand emotional nuances to improve the user experience, or in social media analysis,
where understanding the diversity of opinions can influence strategic decision-making.

In summary, NLP has come a long way from its rudimentary beginnings, evolving into
a robust and multifaceted field that takes advantage of advances in artificial intelligence
and machine learning. As technology advances and digital data expands, NLP is likely to
play an increasingly crucial role in various applications, from human-computer interaction
to automating complex text analysis tasks. The ability to understand and generate human
language not only improves operational efficiency, but also opens up new possibilities for
innovation across multiple disciplines.

2.2.1 Sentiment Analysis

Sentiment analysis or opinion mining is the computational study of people’s opinions,
feelings, emotions, and attitudes toward entities such as products, services, issues, events,
topics, and their attributes; as such, sentiment analysis can capture public sentiment
about a particular entity to create actionable knowledge through it [44]. This field has
gained increasing importance with the proliferation of digital platforms that generate vast
volumes of textual data on a daily basis, such as product reviews, online forums, and social
media [60].

Traditionally, sentiment analysis has been approached using a binary framework, such
as that by Pang and Lee (2005) [56], who developed a binary classification approach
to categorize reviews into positive or negative opinions. This method is notable for its
simplicity and effectiveness in identifying polarities in short, highly subjective texts and
was one of the first to apply machine learning techniques to differentiate between two
classes of sentiments.

Furthermore, studies have been conducted on social media data, such as the work
of Go et al. (2009) [18], who used emoticons to automatically label tweets as positive
or negative, thus training a binary sentiment analysis model. This methodology allowed
leveraging large volumes of unlabeled data, resulting in robust performance in predicting
binary polarities on microblogging platforms.

Binary sentiment analysis has also been applied in domains such as restaurant reviews.
Zahoor et al. (2022) conducted a comparative study of various classification techniques
to identify positive and negative polarities in customer reviews, showing that the use
of machine learning-based approaches offers a high degree of accuracy [90]. This study
highlights the effectiveness of supervised classifiers in capturing binary polarity in texts
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containing direct consumer opinions.
While the binary approach to sentiment analysis is suitable in many cases, it is often

insufficient to capture the full complexity of human emotions. This methodology may not
adequately reflect emotional diversity in contexts where opinions are more nuanced. This
has led to the development of more advanced techniques, such as multiclass sentiment
analysis.

Multiclass sentiment analysis provides a richer representation of emotions by classi-
fying opinions on a scale that can include multiple categories, such as negative, neutral,
and positive, as discussed by Zhang et al. (2018) in their article, where they provide an
extensive review of sentiment analysis techniques, focusing on the use of deep learning
showing state-of-the-art results for various sentiment analysis tasks, highlighting mod-
els that allow classifying opinions into more than two classes, such as positive, negative,
neutral, among others [91].

This multiclass approach provides a more nuanced assessment of the sentiments ex-
pressed in texts, which is especially useful in applications that require a detailed under-
standing of user opinions. For example, in the realm of product reviews, a scale of 1 to 5
not only indicates whether a review is positive or negative, but also captures the inten-
sity of the sentiment, ranging from very negative to very positive. A similar analysis is
presented by Keith et al. (2019) [51] in their paper, where they make a significant contri-
bution to multiclass sentiment analysis in the context of scientific article reviews. Keith
facilitates the identification of inconsistencies between written evaluations and scores given
by reviewers, using a 5-point scale (“very negative”, “negative”, “neutral”, “positive” and
“very positive”) and supervised classification methods.

Despite its advantages, multiclass sentiment analysis faces several challenges. One of
the most significant problems is the inherent ambiguity of natural language, where con-
text and language subtleties can make it difficult to categorize sentiments accurately [57].
Emotional expressions in texts can be subtle and contextual, confusing the task of clas-
sification into multiple categories [48]. Furthermore, labeling textual data for training
machine learning models is an expensive and laborious task, and human-labeled data can
introduce biases that affect model quality.

Multiclass sentiment analysis represents a crucial advancement in the field of NLP,
providing more detailed and accurate tools for understanding human emotions expressed
in texts. Despite the challenges inherent to this task, recent advances in language models
and machine learning techniques offer promising solutions to improve the accuracy of
multiclass sentiment analysis and expand its applications in diverse contexts.

2.2.2 Language Models

Language models are machine learning-based systems designed to understand, generate,
and manipulate natural language text [80]. These models learn a language’s structure
and statistical properties from large amounts of textual data, using advanced artificial
intelligence techniques such as deep neural networks. The main purpose of these models
is to predict the probability of a sequence of words given its preceding history, thus
allowing the generation of coherent and contextually relevant text [88].
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The evolution of language models has been significant, from early approaches such as
n-gram models, which use strings of n-words to predict the next word in a sequence [32],
to more sophisticated techniques based on recurrent neural networks (RNNs) [24] and
convolutional neural networks (CNNs) [35]. A notable advance in the field of language
models has been the introduction of attention networks, which have revolutionized the
way long-term dependencies in text are handled [33]. Attention mechanisms allow the
model to assess the importance of different text parts when generating or interpreting
a sequence, improving the context modeling ability and the coherence of the generated
text [80].

In addition, pre-training on large text corpora and fine-tuning on specific tasks have
significantly improved the effectiveness of language models. This approach allows models
to generate contextually rich representations of words and phrases, improving accuracy
and performance in various practical natural language processing applications such as
machine translation, text summarization, sentiment analysis, and question answering [27].

In summary, modern language models represent a dynamic and rapidly evolving area
of research, with applications ranging from text understanding and generation to the
automation of complex text analysis tasks. The combination of large amounts of data,
advanced machine learning techniques, and innovative architectures has allowed these
models to reach unprecedented levels of performance, positioning them as essential tools
in the field of natural language processing.

2.3 Learning a Transformer-Based Model

2.3.1 Self-Supervised Learning

Self-supervised learning (SSL) is an approach in which models are trained explicitly with
automatically generated labels. This method allows for the use of large-scale datasets
without human annotation, resulting in effective feature learning that can be transferred to
multiple tasks in diverse areas [31], including natural language processing, audio analysis,
and other machine learning applications.

Gui et al. (2023) mention in their article the most commonly addressed pipeline in
SSL, in which a pretext task is defined that the model must solve. During this phase,
pseudo labels are automatically generated from the unlabeled data, allowing the model
to learn useful representations without human annotation [22]. Once the model has been
trained on this pretext task, the learned features can be transferred to specific natural
language processing (NLP) tasks, such as text classification, sentiment analysis or machine
translation, which are commonly called downstream tasks. This transfer process is carried
out by fine-tuning a labeled dataset.

One of the earliest applications of SSL is in data representation, where models learn to
extract useful features from data without the need for explicit labels. As noted by Chen
et al.(2020), self-supervised learning has proven to be especially effective in creating text
and image representations, where models can learn relevant semantic and visual features
from large amounts of unlabeled data [10].

Self-supervised learning has also been applied in recommender systems, as highlighted
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in the study by Yu et al. (2022), where the progress of research in self-supervised recom-
mendations is analyzed, achieving key findings in self-supervised signal selection demon-
strating significant improvements in recommendation quality [89]. It is also applied to
graph data [47], video processing [73], and adversarial pretraining of self-supervised deep
networks [61], among others.

Another approach to SSL is the use of pretrained language models. According to
Brown et al.(2020) [6], pretrained language models, such as BERT [15] and GPT [62],
have demonstrated good performance on a variety of natural language processing tasks,
such as machine translation, text generation, and sentiment analysis. These models are
trained on large corpora of unlabeled text, allowing them to capture the structure and
context of language effectively.

More recent models have also demonstrated remarkable advances in text generation
and language understanding without relying on extensive manual annotations. For ex-
ample, GPT-4 has scaled text generation capabilities to even higher levels, overcoming
limitations seen in earlier versions such as GPT-3 [6]. These types of models have paved
the way for advanced applications in machine translation, text summarization, and con-
tent generation, standing out for their ability to handle complex tasks effectively and
efficiently.

Self-supervised learning with language models has revolutionized the field of natural
language processing by allowing machines to learn from large amounts of unlabeled textual
data autonomously. This approach has democratized access to advanced linguistic models,
significantly improving accuracy and robustness in various practical applications. As
research advances, language models are expected to continue to evolve to address more
complex challenges and provide innovative solutions in the realm of human language and
artificial intelligence.

2.3.2 Fine Tuning

Fine-tuning is a process in which a pre-trained model, which has already been trained on a
general task or with unlabeled data, is fine-tuned to a specific task using a labeled dataset.
This fine-tuning process involves modifying the model’s weights through supervised or self-
supervised learning on the target task, allowing the model to generalize better to that
specific task. Unlike training a model from scratch, fine-tuning starts from already trained
parameters, taking advantage of the richness of previously learned features and patterns,
reducing the time and resources required to achieve good performance [19].

One of the first uses of fine-tuning in natural language processing was documented by
Howard and Ruder (2018), who showed that fine-tuning pre-trained language models has
become established as a standard practice to customize these models to specific tasks,
such as text classification or information extraction, showing its effectiveness in a wide
variety of domains [27].

Over time, fine-tuning has evolved into more up-to-date approaches, such as incre-
mental fine-tuning and layered fine-tuning. According to Raffel et al. (2019), incremental
fine-tuning involves initially training only the top layers of a pretrained model before
gradually fine-tuning all layers of the model on the specific task [64]. This approach can
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be useful to avoid overfitting on small datasets.
More recently, fine-tuning has seen significant advances with the development of con-

tinuous adaptive learning techniques. As highlighted by Liu et al. (2019), continuous
adaptive learning enables the constant updating of a pretrained model as new data is
received, making it easier to maintain model performance in changing and real-time en-
vironments [45].

Furthermore, the application of self-supervised fine-tuning, an advanced variant of
this technique that focuses on fine-tuning pretrained models using large unlabeled data
corpora, is observed. This approach allows models to absorb general linguistic and con-
textual knowledge during initial pretraining and then adapt more efficiently to specific
tasks with smaller data sets or particular domains. In summary, fine-tuning has evolved
from its initial application in natural language processing to become a fundamental tool
in machine learning. This approach has not only facilitated significant advances in model
accuracy, but has also paved the way for future innovations in the personalization and
continuous optimization of language-based artificial intelligence systems.

2.3.3 Transfer Learning

Transfer learning is an advanced technique in the field of machine learning that allows
a pretrained model to be reused in a task or domain different from the one for which it
was originally developed. This approach is based on the premise that knowledge acquired
during training on a specific task can be transferred and leveraged to improve performance
on another related task, especially when the data available for the new task is limited [55].

One of the most prominent applications of transfer learning is in natural language
processing. In this context, pretrained language models, such as BERT and GPT, are
initially trained on large corpora of unlabeled text to learn rich and generalized linguis-
tic representations, as shown in Figure 2.2. These models are then fine-tuned for specific
tasks, such as text classification, sentiment analysis, machine translation, and text genera-
tion, thereby achieving significant performance improvements compared to models trained
from scratch [27].

Transfer learning can be classified into several categories, depending on the relationship
between the tasks and the domains involved. Among the most common are inductive
transfer learning, transductive transfer learning, and self-supervised transfer learning.
Inductive transfer learning is applied when the source and target tasks are different but
related, while transductive transfer learning is used when the tasks are the same but the
domains differ. On the other hand, self-supervised transfer learning refers to the transfer
of knowledge in contexts where labels for the target tasks are not available [84].

The benefits of transfer learning are numerous. First, it allows the use of large amounts
of unlabeled data, facilitating the training of more robust and generalizable models. Sec-
ond, it reduces the time and computational resources required for training since it starts
from a pretrained model that has already captured many linguistic patterns and struc-
tures. Finally, transfer learning has proven to be especially useful in scenarios where
labeled data is scarce or expensive to obtain, allowing high performance levels to be
achieved with reduced data sets [70].
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Chapter 3

Related Works

In this chapter, we present and discuss works reported in the literature that are related
to this Master’s dissertation. Firstly, we detail the methodology adopted for the selection
of the most relevant and appropriate scientific articles for this dissertation. Adopting a
good methodology not only ensures the quality and relevance of the sources used but
also provides a structured framework for the critical review of the existing literature.
Subsequently, a comparison of the most important language models in Portuguese will be
presented, highlighting their main characteristics. Finally, the various ways in which self-
supervised fine-tuning has been implemented in the literature will be explored, providing
a detailed analysis of its effectiveness and usefulness in different contexts.

3.1 Systematic Review Method

To carry out the literature review, we used the PRISMA methodology (Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses) which brings many benefits
to this dissertation [53]. PRISMA provides a structured and transparent approach to
the selection, evaluation and synthesis of relevant studies, ensuring the thoroughness and
rigor of the review process. By following the PRISMA guidelines, the reproducibility and
credibility of the research is improved, making it easier for other researchers to replicate
the study and verify its findings. In addition, the use of the PRISMA flowchart allows
each stage of the paper selection process to be clearly and concisely documented, from the
identification of studies to final inclusion, which adds an additional level of transparency
and accuracy. These aspects are crucial for a dissertation, as they strengthen the valid-
ity and reliability of the research, contributing significantly to the academic quality and
impact of the work.

PRISMA guidelines were followed to conduct the literature review, and the corre-
sponding flowchart is presented in Figure 3.1. The search was carried out in the indexers
Scopus, ACM Digital Library and Elsevier Science Direct.

First, based on our research questions, we compiled a list of possible sets of keywords
that could help us identify the most relevant and representative papers for our dissertation.
The sets of keywords are as follows:

• Domain adaptation: We selected this keyword because of the need to adapt the
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domain to a specific field.

• Low-resource languages: These keywords were chosen because the Brazilian Por-
tuguese language has a limited amount of resources compared to other languages.

• Downstream task: This was chosen because our dissertation needs to be evaluated
on a specific task in order to compare metrics.

• Unsupervised OR self-supervised: We selected these keywords because both
are used interchangeably in the literature to refer to the same methodology.

• Text mining: These keywords were selected because we aim to extract valuable
information from large volumes of unstructured textual data for further analysis.

• Sentiment analysis OR recommender systems: These keywords were chosen
because they are the tasks in which we plan to perform the analysis of the obtained
model.

To ensure the timeliness and relevance of our dissertation, we limited our search to pa-
pers published between the years 2019 and 2024. Combining our keywords, we generated
the following query (example for Scopus):

• ( "domain adaptation" OR "low-resource languages" OR "downstream

task" ) AND ( "unsupervised" OR "self-supervised" ) AND "text min-

ing" AND ( "sentiment analysis" OR "recommender systems" ) AND

PUBYEAR > 2018 AND PUBYEAR < 2025

By entering our set of keywords into the selected indexers, we collected a total of 853
papers: 575 from Scopus, 125 from ACM Digital Library, and 153 from Elsevier Science
Direct. We then compiled a list of all papers titles to identify and remove duplicates,
resulting in the removal of 127 duplicate papers.

We then thoroughly reviewed the titles of the remaining papers, paying particular
attention to those that were relevant to our dissertation, which allowed us to exclude an
additional 384 papers. This reduced the set to 342 papers. We then evaluated the ab-
stracts and conclusions of these 342 papers, excluding 189 that did not meet our relevance
criteria, leaving a total of 153 papers.

Of these 153 articles, we conducted a thorough reading of the content to determine
their specific usefulness in the context of our dissertation, excluding 99 articles and leaving
us with 54 articles. During the detailed review we identified and added some additional
articles that had not been initially mapped but were found to be relevant, adding 21
articles. At the end of the entire process we were left with a total of 75 articles that form
the basis of our literature review.

3.2 Language Models in Portuguese

In the field of natural language processing (NLP), there is a notable disparity in the
availability and development of language models for different languages. In particular,
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of performing tasks such as summary generation, abstract question answering, and text
translation. In contrast, the BERTimbau model, an adaptation of BERT, is trained on
the same dataset of PTT5, but is a more suitable model for tasks that require text under-
standing and information extraction, such as sentiment analysis, document classification,
and information retrieval [78]. While PTT5 focuses on text generation, BERTimbau
specializes in textual understanding and analysis, providing valuable tools for various
applications in Portuguese natural language processing.

From our basic comparative analysis carried out in the previous paragraphs on Por-
tuguese models derived from BERT, GPT and T5, we can conclude that a BERT-based
model is shown to be the most suitable for the task of sentiment analysis. This is due to
BERT’s ability to capture contextual relationships in text sequences, which is essential to
correctly interpret emotions and opinions expressed in natural language. The GPT and
T5 models, although powerful in various applications, particularly excel in areas such as
text generation and translation.

PetroBERT is a BERT-based model adapted to the oil and gas exploration domain
in Brazilian Portuguese [68]. In this article, Rodrigues et al. (2022) make comparisons
between the monolingual pretrained model BERTimbau, and the multilingual pretrained
model mBERT [59], adapted to a specific domain. Two PetroBERT models were trained,
one starting from the weights of the BERTimbau model and the other starting from the
weights of the mBERT model. The results showed that PetroBERT, initialized from
BERTimbau, outperformed the model initialized from mBERT on several specific tasks.
It can be seen from the paper that it is better to initialize the weights from a monolingual
pretrained model compared to a multilingual one. This observation has been supported
in other studies [14, 49, 81, 2, 8], which have also found advantages in using monolingual
models over multilingual ones for specific natural language processing tasks [68].

There is also the LegalBERT model, specialized in the legal domain of Brazilian Por-
tuguese [75]. This model trains two variants: one from scratch and another starting from
the pretrained weights of BERTimbau. Both variants achieve superior results compared
to general models such as the BERTimbau Base and show similar performance to each
other. From these results it can be inferred that, in certain scenarios, starting with a
general pretrained model in the same language of the specific domain can offer results as
optimal as a model trained from scratch in that domain. This suggests that the reuse
of pre-trained models in the same language is not only feasible, but also efficient, avoid-
ing the need for a complete training from scratch and taking advantage of the wealth of
knowledge already present in the pre-trained models.

It is worth remembering that our proposal was formulated in mid-2022, and since
then new language models specific to the Portuguese language have emerged. However,
we have continuously monitored these updates to ensure the relevance and timeliness of
our research. Among recent models, BERTabaporu stands out, trained specifically for the
Twitter domain, managing to outperform the results of BERTimbau in this specific context
of Brazilian Portuguese social networks [12]. Written texts on Twitter have different
characteristics compared to texts from more elaborate opinions or comments. These
differences can be seen mainly in the use of a more informal and abbreviated language,
as well as in the presence of hashtags, mentions and emojis.
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Another notable model is ALBERTina, which improves the results of BERTimbau
Large in several tasks [67]. ALBERTina incorporates improvements in deinterlaced at-
tention and the mask decoder, features inherited from DeBERTa [23], which optimizes its
performance in certain applications. However, ALBERTina is only available in a Large
version, which implies a greater demand for parameters and computational resources for
its training.

In addition, language models with significantly more parameters, designed for gen-
eral domains in Brazilian Portuguese, have emerged, such as Sabiá [58] and TeenyTinyL-
lama [11], based on the LLaMA architecture. These models represent significant advances
in the processing and understanding of natural language in Portuguese, offering new op-
portunities for the development of more sophisticated and accurate applications.

In Table 3.1, we provide a summary of the language models in Portuguese discussed
in this chapter.

Table 3.1: A number of language models in Portuguese that exist in the literature; we
highlight the model that best fits our proposal.

Come from
BERT

General
domain

Less than
110M

BioBERTpt
PetroBERT
LegalBERT

GPT-2-Bio-Pt

PTT5 small

PTT5 base
PTT5 large

BERTimbau Base

BERTimbau Large
ALBERTina

BERTabaporu Base

BERTabaporu Large

Sabiá 6B
Sabiá 7B
Sabiá 65B
TTL-160m
TTL-460m

3.3 Self-Supervised Fine-Tuning Approaches

The use of pretrained models for domain-specific specialization using a variety of unlabeled
data has been widely documented in the literature. In particular, the BERT pretrained
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model has been a model of considerable interest and has been the subject of numerous
studies due to its innovative approach to address the domain adaptation challenge [15].
The domain adaptation solution largely relies on two essential components: the vocabulary
and the pretrained model.

The vocabulary, which constitutes the set of tokens used by the model to process
and understand text, plays a crucial role in BERT’s ability to handle terms specific to
a particular domain. Adapting the vocabulary to include tokens that are frequent and
relevant in the new domain can significantly improve the model’s performance in specific
tasks, allowing for a more precise understanding of the context and semantics of the
domain [3].

On the other hand, the pretrained model provides general knowledge derived from
its initial training, reflected in the values of its weights. However, this benefit is only
exploitable if the same vocabulary is used. Changing the vocabulary or making varia-
tions to it may result in incompatibilities, which could require additional components or,
alternatively, a new training from scratch.

Taking into account the above-mentioned information, the literature presents several
domain-specific pretrained models that create a new specific vocabulary and train BERT
from scratch, such as SciBERT [3] for the scientific domain, PubMedBERT [21] for the
biomedical domain, FinBERT [87] for the financial domain, Legal-BERT [9] for the le-
gal domain, and IndoBERT [37] for the Indonesian language. Self-supervised training
allows these models to better capture domain particularities and to obtain better results
in specific tasks, demonstrating the effectiveness of a specialized vocabulary combined
with from-scratch pre-training. However, the main drawback of these models is the high
computational cost and the large amount of data required for their training. Beltagy et

al. (2019) [3] conclude that, although it is useful to have one’s own vocabulary, the model
benefits more from training with the domain-specific corpus.

An alternative approach in the literature is represented in the exBERT [79] model,
which, like IndoBERTweet [36], generates a new vocabulary for a specific domain. How-
ever, unlike other approaches, they only select the new words and add them to the original
vocabulary of the pre-trained model, avoiding inconsistencies in the integration of the new
vocabulary with the model architecture; thus combining the robustness of the original vo-
cabulary with the specificity of the new vocabulary [38]. Hong et al. (2021) [25] describes
in their scientific article a method to achieve this increase in vocabulary, which is used in
some studies by other authors. These models are not trained from scratch, but continue
the pre-training from the already established weights, achieving an efficient and effective
integration of new terminologies without sacrificing the stability of the base model. The
disadvantage of this approache is that increasing the vocabulary size impacts performance
and increases the time to convergence. As pointed out by Yang et al. (2023) [86], these
models not only demand large volumes of domain-specific data to achieve optimal perfor-
mance, but also require considerable computational power during the pre-training phase.
Furthermore, this approach may lead to redundancy in memory usage, which adds an
additional layer of complexity in managing computing resources.

Other approaches mentioned in the literature include the BioBERT [43] models for
the biomedical domain and ClinicalBERT [29] for clinical annotations. These models use
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the weights and vocabulary of the base model, BERT, to perform self-supervised fine-
tuning in a specific domain. This allows them to benefit from the knowledge already
learned by the base model, while retaining their flexibility and versatility in general tasks.
By not requiring vocabulary expansion, they can handle new words from the domain by
splitting them into existing subwords. During fine-tuning, the model adjusts its weights
to improve the internal representations of these combinations in the context of the new
domain, resulting in greater efficiency in terms of training time and use of computational
resources. This will be the approach used in our proposal due to the characteristics
mentioned.

So far, none of the mentioned models have implemented a layer-freezing approach.
However, Lee et al. [42] demonstrated that by freezing only a quarter of the final
layers of a transforming model, it is possible to achieve up to 90% of the quality of the
original model. Inspired by these findings, our proposal aims to empirically evaluate the
applicability of this approach in the context of our specific problem. To do so, we will
perform a detailed analysis of the progressive unfreezing of each of the layers of the model,
identifying those that are most relevant to the target task. These selected layers will then
be used to develop the analyses that support our approach.

In Table 3.2, we provide a summary of the approaches for model domain adaptation
that were discussed in this chapter.

Based on the analysis performed, BERT-based models have proven to be outstanding
tools for sentiment analysis, particularly when using pre-trained monolingual Portuguese
variants, such as BERTimbau. These solutions offer significant advantages over multilin-
gual models, both in accuracy and adaptability to the linguistic domain. Although recent
models have introduced improvements in general tasks, their high computational require-
ments make it difficult to align them with the efficiency goals raised in this research.
Inspired by the benefits of selectively freezing layers during fine-tuning, our proposal is
based on a pragmatic and efficient approach. This includes not only the use of BERTim-
bau with self-supervised fine-tuning, but also the empirical evaluation of progressive layer
freezing and unfreezing strategies to optimize the balance between accuracy and efficiency.
This strategy leverages the pre-existing knowledge of the model, identifies the most rele-
vant layers for the target task, and minimizes costs associated with training from scratch,
thus achieving an optimal balance aligned with the current challenges of natural language
processing in Portuguese.
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Table 3.2: The different approaches available in the literature for adapting models to
specific domains are presented, as well as which approach we are applying in our proposal,
adding specific requirements of our problem and also our contribution.

Vocabulary
Pretrained

model
weights

Portuguese
language

Unfreeze
only some of
the layers

Legal-BERT
PTT5

BERTimbau
ALBERTina

BERTabaporu
Sabiá
TTL

Own

SciBERT
PubMedBERT

FinBERT
IndoBERT
KB-BERT

Own

exBERT,
IndoBERTweet

Inherits +
Extended

PetroBERT,
BioBERTpt,

GPT-2-Bio-Pt
Inherits

ClinicalBERT,
Clinical KB-BERT

Inherits

Our proposal Inherits



36

Chapter 4

Methodology

The establishment of the retraining protocol for self-supervised fine-tuning of the BERTim-
bau model, proposed in this Master’s project, was based on a detailed analysis of the hy-
perparameters, focusing on the learning rate and the number of unfrozen layers, depending
on the size and context of the data sets.

Starting from the BERTimbau Base model, trained on a general domain in Brazil-
ian Portuguese, the domain adaptation was carried out using three data sets of different
sizes and contexts. These sets were mostly divided for retraining using self-supervised
fine-tuning, which requires unlabeled data, and a smaller portion was used for the down-
stream task that uses labeled data. During the self-supervised fine-tuning process, various
configurations were tested, adjusting the number of unfrozen layers and the learning rate.
Finally, the fine-tuned model was evaluated on a multiclass sentiment analysis downstream
task using cross-validation, to validate the effectiveness of the implemented adaptations.

This approach aims to show how effective the self-supervised fine-tuning technique is.
It also illustrates the model’s ability to adapt and generalize across different sizes and
domains, based on the number of unfrozen layers and the learning rate used.

The pipeline for evaluating the proposed strategy is presented in Figure 4.1. In the
following, we describe the data sets, the adopted pre-trained language model, the details
of the self-supervised fine-tuning procedure, the downstream task and the evaluation
metrics.

4.1 Data Sets

An exhaustive search was conducted on the Internet for public data sets in Brazilian
Portuguese, covering various domains and sizes, containing labeled data for the task of
multiclass sentiment analysis. This search was motivated by the lack of labeled data to
be evaluated, in the final stage of our proposal, and seeking to compare our results to
other existing models.

We chose to collect data sets from different contexts in order to demonstrate the ver-
satility and effectiveness of our methodology in varied contexts. The diversity of contexts
ensures that our proposal is not limited to a single field of application, but can be adapted
and still provide optimal results in a different context. This strategy is essential to support
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created especially for the polarity classification of online reviews, using the “likes”
counter on each review, which allowed them to infer a usefulness option. The authors
previously anonymized and preprocessed the datasets. There are two UTL-Corpus
datasets, the utlc-apps (285.1 MB) for technology reviews and the utlc-movies

for movies reviews (1.1 GB).

The main properties of those two data sets are shown in Tables 4.1 and 4.2.

Table 4.1: Context, size and characteristics of each data set that we use in this dissertation.

Context Size
Number

of records

Number

of words

Target

features
Classes

B2W e-commerce 67.03MB 132 k 3,5 M rating 5

UTLC-apps
smartphone
applications

285.1MB 1040 k 14,9 M rating 5

UTLC-movies movies 1.1 GB 1488 k 62,5 M rating 5

The datasets underwent a rigorous preprocessing process. Initially, records with empty
or undefined data (e.g. NaN) were removed, ensuring that only complete and useful entries
were retained for analysis. In addition, duplicate records were identified and removed to
avoid redundancies and ensure data integrity. This step was crucial to ensure data quality
and consistency, thus allowing a solid and reliable basis for training and evaluating the
models.

Table 4.2: Preprocessing performed on the data sets we used and the number of records
remaining at the end of this process.

Initial number

of records

empty or undefined

records

duplicate

records

Final number

of record

B2W 132.373 3.275 2.305 126,793
UTLCapps 1.039.535 0 221.359 818.176
UTLCmovies 1.487.449 0 80.120 1.407.329

For the purposes of our investigation, we proceeded to split each of the datasets in a
strategic manner. We allocated 90% of the total data to carry out self-supervised fine-
tuning, ensuring that the model is trained exhaustively and robustly on a large sample of
data. The remaining 10% was reserved for the downstream task, in order to evaluate the
model’s performance in a practical and realistic context (Figure 4.1(a)). This split allows
us to validate the effectiveness of our proposal, ensuring that the model not only fits the
training data well, but also generalizes adequately to unseen data, thus demonstrating its
applicability and efficiency in the multiclass classification task.

4.2 Pre-trained Language Model

In the realm of natural language processing, BERT has proven to be a crucial tool for
transfer learning. Its ability to bidirectionally understand context has allowed models
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pre-trained on large corpora of unlabeled data to efficiently adapt to specific tasks with
smaller, labeled datasets. This feature is particularly relevant in scenarios where the
availability of labeled data is limited, allowing researchers to leverage large volumes of
unlabeled text to pre-train robust and versatile models. BERT’s pre-training method-
ology, followed by fine-tuning on specific tasks, has demonstrated exceptional results,
setting a new standard in the field.

In the Brazilian Portuguese domain, BERTimbau emerges as a specialized adaptation
of BERT. BERTimbau was trained using a large corpus of Brazilian Portuguese text,
allowing it to effectively capture the specific linguistic peculiarities and structures of this
language. This adaptation is essential to improve performance in Portuguese natural
language processing (NLP) applications, given that models originally trained in other
languages may not adequately capture the particularities of Brazilian Portuguese [81].

Using BERTimbau on natural language processing tasks for Brazilian Portuguese has
shown that models pre-trained in the same language of the specific domain deliver signif-
icantly better results compared to multilingual models. This methodology of specializing
the pre-trained model through self-supervised transfer learning allows for a more accurate
understanding of the text, which is crucial for applications such as sentiment analysis,
document classification, and information retrieval in Portuguese.

4.3 Self-Supervised Fine-Tuning Approach

The goal at this stage is to perform self-supervised fine-tuning starting from the weights of
the pre-trained language model BERTimbau Base. The choice to perform self-supervised
fine-tuning was carefully substantiated based on the scope defined for this dissertation and
the tools available at the start of the project (May 2022). During this period, emerging
options such as LoRA (Low-Rank Adaptation) [28] were not yet widely disseminated in the
literature or in mature implementations, limiting their consideration as a viable alternative
at that time. On the other hand, contextual learning-based approaches (such as prompt-
tuning or in-context learning) were also considered, but did not fully align with the goal of
this dissertation. Furthermore, large-scale language model (LLM) architectures, although
promising, present significantly higher computational and implementation costs, which
exceeded the resources and scope of this research.

To initiate the self-supervised fine-tuning approach, it was necessary to define a dataset
partitioning strategy, dividing the unlabeled data into subsets for training and validation.
As shown in Figure 4.1(b), the input 90% of unlabeled data was divided as follows: 80%
for training and 20% of the data for validation step. This division was determined by
pilots studies, which evalutated the impact of different split ratios on the B2W data set
(Appendix A, Tables A.1, A.2 and A.3).

To perform self-supervised fine-tuning on the pre-trained model, prediction heads are
added using the BertForpre-training class of the Hugging Face transformers library,
which are responsible for performing the two pretext tasks: masked language model
(MLM) and next sentence prediction (NSP). In the MLM task, a probability of 0.15
was used to randomly mask words within the text, allowing the model to learn to predict
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the masked words based on the surrounding context. For the NSP task, a probability of
0.50 was applied for the next sentence to be the real one, meaning that when sentence
pairs are created, there is a 50% chance that the second sentence in the pair is the sentence
that actually follows the first one; in the other 50% of the cases, the second sentence is
randomly selected from somewhere else in the corpus, and has no logical or sequential
relationship with the first sentence. This serves to challenge the model to understand co-
herence and continuity between sentences. This is data taken from the training performed
by BERT.

We used the BERTimbau tokenizer, which contains a vocabulary of 29,794 tokens,
through the BertTokenizer class. The maximum number of input tokens was set to 512
to ensure that the model can handle long text sequences without losing crucial information.
The batch size was set to 64 for both training and validation, balancing the computational
load and efficiency of the training process.

To optimize the training process, the “Early Stopping” technique was implemented
with a patience of 5 and a tolerance of 0.001, allowing a maximum of 40 epochs. This
technique is vital to prevent overfitting of the model by stopping training when validation
performance stops improving significantly. Furthermore, all experiments were carried out
with a fixed seed of 42 to ensure reproducibility and consistency of results.

At this stage, experiments were conducted by varying the learning rate (1e-4, 1e-
5, 1e-6) with a decay rate of 0.01 and a thorough empirical analysis of the progressive
unfreezing of the model layers was carried out, with the aim of identifying configurations
that would optimize the results for our task. As a result of this process, the four most
relevant unfreezing strategies were selected, based on their positive impact on the model
performance: unfreezing all layers, the last four layers, the last two layers, and only the
last layer. These adjustments were made to assess the impact of each factor on model
performance, providing essential insights for optimization.

4.4 Downstream Task

We chose multiclass sentiment analysis (Figure 4.1(c)) due to its higher complexity com-
pared to binary classification, presenting a significant challenge to assess the robustness
of our model. To address this task, we performed data balancing using undersampling,
which involves reducing the amount of data in the largest classes until it equals the num-
ber of instances in the smallest class. This process was performed randomly to select the
data to preserve, and then we shuffled all the data to ensure an equal distribution between
the classes.

We used the model obtained in the self-supervised fine-tuning stage, freezing all its
layers to keep the weights intact and avoid changes during the training of the downstream
task. To this model we added a classification layer with five outputs, corresponding to
the number of classes in our dataset.

For the multiclass sentiment analysis, we employed the AdamW optimizer, known for
its efficiency and ability to handle large models. The loss function used was the multi-
nomial cross entropy, which is suitable for multiclass classification tasks. The maximum



41

number of input tokens was set to 512 to ensure that the model could process long text
sequences. The learning rate was set to 1e-4, and the batch size was 16, balancing the
computational load and training efficiency. The model was trained for 10 epochs, with a
fixed seed of 42 to ensure reproducibility of the results.

In addition, cross validation was implemented with 10-fold. This technique is crucial
to evaluate the model performance more robustly, by splitting the dataset into 10 parts
and using each of them as a validation set while training the others. This not only
helps mitigate the risk of overfitting, but also provides a more accurate and generalizable
assessment of the model performance on different data subsets.

4.5 Evaluation Metrics

The evaluation of models is critical to ensure their effectiveness and generalization. Select-
ing appropriate metrics is essential, especially when working with multiclass classification
tasks and employing cross-validation techniques to obtain a robust evaluation.

In this research, we used three main metrics to evaluate the performance of our mod-
els: “Weighted Accuracy”, “Balanced Accuracy” and “Weighted F1”. These metrics were
selected for their ability to offer a comprehensive and detailed view of the model’s behav-
ior, addressing different aspects of accuracy and balance in classification.

The choice of these metrics allows us to obtain a more complete and accurate eval-
uation of the model’s performance, considering both the distribution of the classes and
the model’s ability to generalize in different scenarios. In the following sections, each of
these metrics will be detailed, highlighting their definition, calculation and relevance in
the context of this research. It will be discussed how each metric contributes to a com-
plete evaluation of the model’s performance, allowing a more detailed understanding of
its behavior in the task of multiclass sentiment analysis addressed in this study.

4.5.1 Balanced Accuracy

Balanced Accuracy is a key evaluation metric in multiclass sentiment analysis problems,
especially useful when faced with imbalanced data sets. Unlike simple accuracy, which
can be biased towards the most prevalent classes, balanced accuracy provides a fairer and
more representative measure of model performance by considering performance across all
classes equally.

For multiclass classification problems, balanced accuracy is defined as the average of
the sensitivities (recalls) of each class. The general formula for balanced accuracy in the
multiclass context is:

Balanced Accuracy =
1

N

N∑

i=1

TPi

TPi + FNi

, (4.1)

where N is the number of classes, TPi is the number of true positives for class i, and FNi

is the number of false negatives for class i. Each class is considered positive in turn, while
the rest of the classes are considered negative.
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Balanced accuracy is particularly relevant in scenarios where classes are imbalanced.
In such cases, a model may show high simple accuracy in mostly predicting the dominant
class, but fail to correctly identify instances of the minority classes. Balanced accuracy
addresses this problem by evaluating the model equally across all classes, better reflecting
its actual performance.

In the literature, balanced accuracy has been widely recommended for evaluating
models on imbalanced datasets. For example, Brodersen et al. (2010) argue that balanced
accuracy is a suitable metric for comparing classifiers in the presence of class imbalance
and cross-validation, providing an unbiased measure of model performance [5]. Likewise,
the work of Kelleher et al. (2015) on the evaluation of machine learning algorithms
highlights the importance of using metrics that consider class imbalance, such as balanced
accuracy, to obtain a more accurate evaluation of the model [34].

In the context of our research, we have chosen to use balanced accuracy due to its
ability to provide a fair and equitable evaluation of the model’s performance across all
classes, regardless of their distribution. Since we work with multiclass classification tasks
and our classes are balanced, balanced accuracy ensures that the model’s performance is
assessed uniformly across all classes. This choice is crucial to validate the effectiveness
of our approach and ensure that our model is robust and generalizable to different class
distributions.

4.5.2 Weighted F1

The Weighted F1 is a widely used evaluation metric for multiclass classification problems.
This metric is especially useful when a balanced measure of model performance is desired,
considering both the precision and recall of each class. Unlike the macro F1 score, which
treats all classes equally, the Weighted F1 weights the F1 score of each class based on
the proportion of instances of that class in the dataset. This ensures that more frequent
classes have a greater impact on the Weighted F1 score, more accurately reflecting the
model’s performance in scenarios with balanced classes.

The F1 score for a class is defined as the harmonic mean of the precision and recall of
that class. Precision is the fraction of relevant instances among the retrieved instances,
while recall is the fraction of relevant instances that have been retrieved out of the total
number of relevant instances. Mathematically, the F1 score for class i is expressed as:

F1i = 2 ·
Precisioni · Recalli
Precisioni + Recalli

, (4.2)

where Precisioni is the precision for class i and Recalli is the recall for class i. Precision
and Recall are calculated as follows:

Precisioni =
TPi

TPi + FPi

(4.3a)

Recalli =
TPi

TPi + FNi

. (4.3b)

Here, TPi is the number of true positives, FPi is the number of false positives, and FNi
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is the number of false negatives for class i.
The Weighted F1 score is calculated as the weighted average of the F1 scores for each

class, where the weights are the proportions of instances of each class in the dataset. This
is expressed mathematically as:

Weighted F1 =

N∑

i=1

wi · F1i, (4.4)

where wi is the proportion of class i in the dataset, defined as:

wi =
Ni

N
, (4.5)

where Ni is the number of instances of class i and N is the total number of instances in
the dataset.

In the context of our research, we have decided to use the Weighted F1 metric due to
its ability to provide a balanced and fair assessment of model performance across classes.
Even though our classes are balanced, the Weighted F1 allows us to accurately measure
model performance in multiclass classification problems, where each class has equal im-
portance. Furthermore, this metric is especially relevant in cross-validation scenarios,
where a consistent assessment across different folds of the dataset is needed.

The academic literature supports using the Weighted F1 in multiclass classification
problems. In the study by Opitz and Burst (2019) titled “Macro F1 and Macro F1” they
emphasize how weighted metrics can provide a more balanced and representative view of
model performance on multiclass datasets [52].

Implementing the Weighted F1 score involves correctly calculating the precision and
recall for each class, and then averaging the F1 scores of each class by weighting them by
the proportion of instances of that class in the dataset. In our approach, we have ensured
that this calculation is performed accurately and consistently across all cross-validation
folds, thus ensuring a robust and reliable model evaluation.

4.5.3 Weighted Accuracy

Weighted Accuracy is a crucial metric in evaluating multiclass classification models, espe-
cially in scenarios where classes are imbalanced. This metric considers the proportion of
each class in the dataset, providing a more representative measure of model performance
than simple accuracy, which can be biased towards more prevalent classes. Weighted
Accuracy is calculated by assigning a weight to the accuracy of each class, proportional
to the number of instances of that class in the dataset. The general formula for weighted
accuracy is:

Weighted Accuracy =

N∑

i=1

wi · Accuracy
i
, (4.6)

where N is the number of classes, wi is the weight of class i (usually the proportion of
class i in the dataset), and Accuracy

i
is the accuracy of class i.

The weighted accuracy metric is widely used in research and practical applications. In
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the field of natural language processing (NLP), for example, the study by Sokolova and
Lapalme (2009) highlights the importance of using weighted metrics to evaluate classifiers
on imbalanced datasets [76]. Likewise, the work by Fernández-Delgado et al. (2014) shows
that weighted accuracy is essential to compare the performance of different classifiers on
multiple datasets with varying class distributions [16].

In the context of our research, we have decided to use weighted accuracy due to the
multiclass nature of our tasks and the balance of classes in our data sets. Although we took
the trouble to balance our classes, weighted accuracy is still valuable because it ensures
that the model’s performance is evaluated fairly and comprehensively across all classes.
This choice allows us to avoid potential bias if some classes, although balanced in number,
present different difficulty levels for the model. Furthermore, by using weighted accuracy,
we can provide a more robust and detailed assessment of our model’s performance on each
individual class, which is crucial to ensure the validity and generalizability of our results.

When implementing weighted accuracy, it is crucial to ensure that the weights are
correctly calculated based on the distribution of classes in the dataset. Furthermore,
it is important to maintain consistency in weighting across the different folds in cross-
validation scenarios to ensure a fair and representative model evaluation.

4.6 Computational Resources

For the execution of these experiments, a server equipped with an NVIDIA A100 GPU and
80 GB of memory was used, provided by the Artificial Intelligence Laboratory (Recod)
of the Institute of Computing, University of Campinas. That advanced infrastructure
was essential to handle the intensive computational demands of model training, ensuring
efficient and accurate results and allowing effective exploration of complex configurations.

The experiments were conducted in a Jupyter Notebook environment, using Python
3.12 as the primary programming language. Various libraries and tools were employed to
facilitate data handling, model training, evaluation, and visualization. The main libraries
used include:

• Torch: For implementing and training deep learning models.

• Transformers: To utilize and fine-tune pre-trained language models such as BERTim-
bau.

• Datasets: For efficient dataset loading and preprocessing.

• Scikit-learn: For implementing machine learning utilities and evaluation metrics.

• Permetrics: For computing advanced metrics during the evaluation phase.

• Pandas: For data manipulation and analysis.

• Matplotlib: To generate visualizations for exploratory data analysis and result
presentation.
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The server ran on a Linux-based operating system, which ensured compatibility and
stability for executing the experiments and managing the computational resources effec-
tively. This combination of hardware and software allowed the experiments to be con-
ducted efficiently, addressing the challenges of training computationally intensive models
while maintaining reproducibility and scalability.

4.7 Source Codes

All the source code, scripts, and resources developed for this research are available in
an open-source repository hosted on GitHub. This repository contains the implementa-
tion of the self-supervised fine-tuning protocol, data processing scripts, and experimental
configurations used throughout this dissertation.

The repository can be accessed at the following link: https://github.com/pantro/

self-supervised-fine-tuning-for-portuguese-language-models

The structure of the repository is as follows:

• data/: Instructions and links to datasets used in this research.

• notebooks/: Jupyter notebooks for exploratory data analysis, fine-tuning, and eval-
uation.

The repository is released under the MIT License, which allows others to reuse,
modify, and distribute the code in accordance with the terms specified in the license.

We encourage researchers and practitioners to explore and build upon this work to
further advance Portuguese language modeling.
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Chapter 5

Results and Discussion

The results of this Master’s dissertation were obtained through the rigorous evaluation
of several tests designed to address our research questions. First, we performed a general
experiment to understand the performance of self-supervised fine-tuning in various sce-
narios. For this purpose, three data sets belonging to different domains and of different
sizes were used, a percentage of which were used for the self-supervised fine-tuning process
and another percentage for the downstream task. The results obtained in this experiment
were compared with those of a general Portuguese model, such as BERTimbau Base,
which served as our baseline.

To carry out self-supervised fine-tuning, we decided to vary the number of unfrozen
model layers and the learning rate used in training. This way, we evaluated the influence
of these hyperparameters on the final results. As for the unfrozen layers, four differ-
ent configurations were tested: all layers, the last four, the last two, and the last layer
unfrozen. Three different values were tested for the learning rate: 1e-4, 1e-5, and 1e-6.

This comprehensive approach ensures that the model is tested in multiple contexts,
providing a more holistic view of the classification results. In addition, comparing the
results with the BERTimbau Base model enables a more precise evaluation of the effec-
tiveness of domain adaptation and the impact of fine-tuning hyperparameters on model
performance. This methodological approach is crucial for comprehensively assessing the
model’s capabilities in specific natural language processing tasks. The variation in do-
mains and dataset sizes used in the experiment provides a robust and detailed evaluation,
ensuring that the results are both representative and generalizable across different con-
texts and applications [78].

On Table 5.1, we present results from learning rate exploration obtained for all datasets.
Our main findings in the B2W data set can be summarized as follows:

• The best results were obtained by unfreezing all layers and using the learning rate
1e-5. We can also see that for this dataset, regardless of how many layers we unfreeze
in the model, we get the best results with the learning rate equal to 1e-5;

• When using the learning rate of 1e-4, regardless of the number of layers unfrozen,
there is not much variation of the metrics compared to the baseline;

• We observe that when using the smallest LR 1e-6, the results get worse as fewer
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Table 5.1: Results obtained when performing the downstream task of multiclass senti-
ment analysis using the various models that were subjected to self-supervised fine-tuning.
The tested configurations included different combinations of unfrozen layers and differ-
ent learning rate values. The datasets used were B2W, UTLC-apss, and UTLC-movies,
which cover a variety of domains and sizes. The balanced accuracy (B_Acc), weighted
F1 (W_F1) , and weighted accuracy (W_Acc) metrics were used to evaluate the models’
performance. In addition, a column with the results of the BERTimbau Base model,
subjected to the same downstream task, was included as a baseline.

Multiclass sentiment analysis (10% data of total)
BERT
imbau

SSL with ALL
layers unfreeze

SSL with 4
layers unfreeze

SSL with 2
layers unfreeze

SSL with 1
layers unfreeze

(baseline) 1e-4 1e-5 1e-6 1e-4 1e-5 1e-6 1e-4 1e-5 1e-6 1e-4 1e-5 1e-6

B2W
B_Acc 0.432 0.429 0.476 0.458 0.412 0.457 0.450 0.435 0.451 0.408 0.427 0.466 0.389
W_F1 0.422 0.419 0.459 0.443 0.391 0.437 0.431 0.422 0.431 0.431 0.407 0.447 0.372
W_Acc 0.773 0.772 0.790 0.783 0.765 0.783 0.780 0.774 0.781 0.763 0.771 0.786 0.756

UTLC-apps
B_Acc 0.409 0.409 0.442 0.452 0.385 0.444 0.424 0.429 0.430 0.397 0.434 0.433 0.395
W_F1 0.395 0.383 0.426 0.436 0.364 0.427 0.406 0.412 0.406 0.378 0.421 0.412 0.376
W_Acc 0.764 0.764 0.777 0.781 0.754 0.778 0.770 0.771 0.772 0.759 0.774 0.773 0.758

UTLC-movies
B_Acc 0.364 0.385 0.409 0.419 0.378 0.400 0.398 0.402 0.424 0.383 0.409 0.414 0.364
W_F1 0.350 0.363 0.394 0.404 0.361 0.386 0.383 0.388 0.407 0.367 0.398 0.399 0.349
W_Acc 0.746 0.754 0.763 0.768 0.751 0.760 0.759 0.761 0.770 0.753 0.764 0.766 0.745

layers of the model are unfrozen.

On the other hand, our main findings for the UTLC-apps dataset (Table 5.1) are:

• The best results are obtained by unfreezing all the layers and using the LR 1e-6;

• Similar to the previous dataset (B2W) if we choose a very small LR (1e-6) the results
get worse as we unfreeze fewer layers of the model. For instance, with LR equal to
1e-6 and unfreezing all the layers, we get the best result, but the worst result is if
we only unfreeze the last layer;

• With LR 1e-5 in any of the cases, regardless of the number of layers unfrozen, we
get better results than the baseline;

• Despite not being the best result in this dataset, unfreezing only the last layer with
the higher learning rate 1e-4 returns higher results than the baseline.

Finally, our main findings for the UTLC-movies data set (Table 5.1) are:

• The best results for this dataset are when the last 2 layers are unfrozen and the
learning rate is 1e-5;

• All the cases outperformed the baseline, except for the model that unfrozen the last
layer, and the LR is 1e-6. This behavior did not occur in previous datasets;
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• The LR 1e-5 is again the most suitable choice, when unfrozen some of the layers but
not all. The best result, when unfrozen all is with the smallest LR, equal to 1e-6;

• It is true that the fewer layers you unfreeze, for a LR 1e-6, the worse results you get.
In other words, the smaller the LR, the better to thaw as many layers as possible.

Looking at Table 5.1 as a whole, we can convey the following observations:

• We observe that we can reach higher results than the baseline by unfreezing only
the last layer in the datasets and with an adequate learning rate;

• We can observe that using a learning rate (LR) of 1e-5 for self-supervised fine-tuning
yields better results than the baseline, regardless of the number of unfrozen model
layers;

• Reviewing the table, we can see that as the dataset size increases, the difference
in percentage points between the baseline results and the best results of the self-
supervised fine-tuning model also increases.

• We can observe that for all data sets, it is true that if we have fewer unfreezing
layers and use a small LR such as 1e-6, the results get worse.

In the sequence, we focused on the best hyperparameter choices (number of unfreeze
layers, learning rate) for each of the three datasets. In Table 5.2, we can observe only
the best results of combining the number of unfreeze layers and the learning rate for
those three data sets used; each value is with its standard deviation to see how dispersed
these data are to the mean. On the other hand, Figures 5.1, 5.2, and 5.3 show how
all the models that underwent self-supervised fine-tuning with the three data sets used
outperformed our general domain baseline. In the upper right corner of each figure there
is an enlarged box that highlights in greater detail the differences between the results.
This box allows a more precise visualization of the improvements achieved, facilitating
comparison and highlighting the advantages of our proposal.
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Table 5.2: Summary of results taking into account the best hyperparameters for each
data set. The best results are obtained by combining the number of unfreeze layers of the
model and a certain learning rate for each data set. The standard deviation highlights
the variability of the evaluated metrics for the different data sets and hyperparameters
applied.

Multiclass sentiment analysis

BERTimbau

(baseline)

SSL with ALL

layers unfreeze

SSL with last 4

layers unfreeze

SSL with last 2

layers unfreeze

SSL with last

layer unfreeze

B2W

(LR=1e-5) (LR=1e-5) (LR=1e-5) (LR=1e-5)
B_Acc 0.432 ± 017 0.476 ± 0.024 0.457 ± 0.020 0.451 ± 0.016 0.466 ± 0.014
W_F1 0.422 ± 018 0.459 ± 0.026 0.437 ± 0.021 0.431 ± 0.017 0.447 ± 0.014
W_Acc 0.773 ± 007 0.790 ± 0.010 0.783 ± 0.008 0.781 ± 0.007 0.786 ± 0.006

UTLC-apps

(LR=1e-6) (LR=1e-5) (LR=1e-5) (LR=1e-4)
B_Acc 0.409 ± 0.009 0.452 ± 0.010 0.444 ± 0.005 0.430 ± 0.010 0.434 ± 0.012
W_F1 0.395 ± 0.010 0.436 ± 0.010 0.427 ± 0.004 0.406 ± 0.011 0.421 ± 0.012
W_Acc 0.764 ± 0.004 0.781 ± 0.004 0.778 ± 0.002 0.772 ± 0.004 0.774 ± 0.005

UTLC-movies

(LR=1e-5) (LR=1e-5) (LR=1e-5) (LR=1e-5)
B_Acc 0.364 ± 0.004 0.419 ± 0.008 0.400 ± 0.010 0.424 ± 0.012 0.414 ± 0.009
W_F1 0.350 ± 0.004 0.404 ± 0.009 0.386 ± 0.010 0.407 ± 0.013 0.399 ± 0.010
W_Acc 0.746 ± 0.001 0.768 ± 0.003 0.760 ± 0.004 0.770 ± 0.005 0.766 ± 0.004
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Chapter 6

Conclusions

This chapter covers this Master’s dissertation main contributions, limitations, and poten-
tial future work. We aimed to expand the existing knowledge base and offer practical and
applicable approaches for researchers and practitioners in natural language processing.
This will help to encourage ongoing development and innovation in this important field.

6.1 Main Contributions of this Work

1. Using compact models: An important contribution of this work lies in the choice
and use of a relatively small model such as BERTimbau to address the problem of
multiclass sentiment analysis in Brazilian Portuguese. Compact models offer signif-
icant advantages in terms of efficiency and adaptability, making them particularly
suitable for specific tasks where the complexity of larger models is not required. In
this sense, choosing a smaller model facilitates adaptation to specific domains, im-
proves interpretability, and reduces the risk of overfitting when working with more
limited or highly specialized datasets. Furthermore, these models represent a more
scalable and sustainable solution, especially in scenarios where efficiency in inference
time and the possibility of deployment on resource-limited devices are key factors.
This research highlights the relevance of compact models as an effective strategy
to address specific linguistic problems, underlining their potential as a fundamental
tool in the development of lightweight and specialized solutions in natural language
processing (NLP).

2. Expanding the literature on self-supervised fine-tuning: This dissertation contributed
by exploring the self-supervised fine-tuning approach in depth. This technique has
received less attention than the more commonly used supervised fine-tuning ap-
proach. This research opens up new avenues for future exploration and applications
in natural language processing by providing a detailed and thorough analysis of this
technique for data sets in a low-resource language (Portuguese);

3. Demonstrating effectiveness in specific contexts: This research showed the efficacy of
self-supervised fine-tuning in particular contexts, focusing on sentiment analysis in
Brazilian Portuguese. The experiments showed that this approach can significantly
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improve the performance of language models in specific contexts, offering a viable
and effective alternative to traditional techniques;

4. Comparative analysis of self-supervised fine-tuning configurations: This work in-
cludes a detailed comparative study of different fine-tuning configurations, includ-
ing varying unfreeze layers and using various learning rates. These analyses help
to identify best practices and optimal parameters to maximize the performance of
language models on specific tasks;

5. Release of source code for self-supervised fine-tuning: A relevant contribution of
this project is releasing the source code used for self-supervised fine-tuning of the
BERTimbau language model. By making the code available, we facilitate the repli-
cation of the experiments and provide a valuable tool for other researchers. This
transparency and accessibility promote collaboration and advancement in the field,
allowing others to apply these techniques to similar problems and develop new so-
lutions based on the findings of this work.

6.2 Answers to the Research Questions

After accomplishing this research, we revisit the research questions (RQs) to answer them:

RQ 1 How to adapt the pretraining protocol of BERTimbau for a self-supervised fine-
tuning procedure on that model?

Answer: From the literature review, we identified several approaches to adapt the
pre-training protocol for a self-supervised fine-tuning procedure. In this discussion,
we choose to use the vocabulary already established for the Portuguese language
(provided by the BERTimbau model), because this choice avoids the increase in
computational complexity that would result from the expansion of the vocabulary.
This decision translates into greater efficiency, both in terms of training time and
non-use of computing resources. Additionally, the use of a pre-trained model, such
as BERTimbau, allows us to take advantage of the previously acquired knowledge
of the base model, preserving its flexibility and generalization capacity for a wide
range of tasks, without the need to initiate zero training. In our adaptation, we
perform self-supervised fine tuning by unfreezing different numbers of litters and
varying learner taxa (LR). The results indicate that defrosting only the last litter
is not enough to achieve satisfactory performance, or that it is particularly relevant
in environments with limited computing resources.

RQ 2 How does using unlabeled data in a specific domain in the proposed self-supervised
fine-tuning approach impact BERTimbau’s downstream performance and its gener-
alization ability?

Answer: The experiments carried out will allow us to verify that the use of un-
labeled data in a specific domain, within the self-supervised fine-tuning procedure,
contributes significantly to improving performance in downstream tasks. In the
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specific case of this dissertation, we apply to the downstream task of multiclass
sentiment analysis. When we analyzed not only the validation metrics, but also the
confusion matrices, it was possible to observe a clear improvement in the results.
Specifically, we note that, as the use of self-supervised fine tuning, the main diago-
nal of the confusion matrix – which reflects the successes of the model – presents a
greater concentration of values, in comparison with the scenario in which the self-
supervised training does not I was used. This demonstrates that this approach does
not only improve the precision of the model in subsequent tasks, but also positively
impacts its generalization capacity. The form and use of unlabeled data in a spe-
cific domain showed an effective strategy to enhance the performance of the model,
standing out as a promising solution for environments with a shortage of labeled
data.

RQ 3 In which scenarios (e.g., data availability, type of domain) is it suitable to use that
self-supervised fine-tuning approach?

Answer:

• Amount of data: We have observed that the more unlabeled data available,
the better the results obtained. However, even with a moderate amount of un-
labeled data, self-supervised fine-tuning can provide significant improvements
in model performance.

• Computational capacity: Although the best results were obtained by unfreez-
ing all layers of the model, we found that unfreezing just one layer during
self-supervised fine-tuning already resulted in satisfactory performance. This
strategy is particularly advantageous for organizations with limited computa-
tional resources, as it reduces the processing demand.

• Learning rate (LR): A critical point identified is the inversely proportional
relationship between the number of unfrozen layers and the ideal value of the
learning rate. When choosing to unfreeze only one layer, it is not recommended
to use a very small learning rate, as this may harm the training.

• Recommended LR: The learning rate that showed best results in most experi-
ments was 1e-5, being a robust choice for different scenarios.

6.3 Limitations

During the development of this study, we faced some limitations that impacted both the
scope and depth of the experiments conducted:

• Constraints on computational resources and experimental repetitions: During the
project’s duration, one of the primary challenges was the significant computational
cost associated with performing multiple experimental repetitions to ensure the
robustness and validity of our results. The need for extensive experimentation,
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combined with the time constraints inherent in the research timeline, required care-
ful optimization of training pipelines and resource allocation to maximize efficiency
without compromising the quality of the findings.

• Limitation in the availability of labeled datasets: Another important limitation was
the lack of labeled datasets for multiclass sentiment analysis in Brazilian Portuguese.
The availability of such data is crucial to assess the generalization and performance
of our proposal in specific linguistic contexts.

6.4 Possibilities for Future Works

To strengthen and extend the findings of this research, we propose several directions for
future work:

• Evaluation with larger and state-of-the-art (SOTA) models: Testing with larger,
state-of-the-art models will allow us to verify whether our proposal for self-supervised
fine-tuning and varying the number of unfreeze layers is equally effective on models
of higher capacity and complexity, which could provide even better performance on
various natural language processing tasks.

• Incorporating explainability techniques: Adding explainability methods to our pro-
posal to understand how our model is learning and making decisions. Interpretabil-
ity is crucial for applications where model transparency is essential and would help
identify the reasons behind the model’s predictions, allowing for better validation
and confidence in its use.

• Application of the methodology to real-world problems: Initially, we intended to
apply our methodology using data of a company that sponsored this dissertation.
However, due to amount of data and time constraints, carrying out this activity was
not possible until the end of this dissertation. Therefore, it is proposed as future
work to develop this test, which will allow validation of the applicability of our
methodology in a real business environment and will contribute to solving practical
problems.

In summary, these future works will expand the scope and applicability of our proposal
and contribute to the advancement of knowledge in machine learning and natural language
processing.

6.5 Final Remarks

This research has focused on the development and evaluation of advanced self-supervised
fine-tuning techniques applied to natural language models, specifically in the context of
multiclass sentiment analysis in Brazilian Portuguese. Throughout this study, we have ex-
plored multiple configurations to improve the performance of pretrained models in specific
domains.
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First, it has been shown that the self-supervised fine-tuning technique can significantly
improve the ability of language models to adapt to new domains, depending on the number
of unfrozen layers and the appropriate learning rate (LR). This finding underlines the
importance of carefully selecting these hyperparameters to maximize the effectiveness of
the model in specific tasks.

A key finding from Table 5.1 is that unfreezing only the last layer of the model across
the three datasets used in our experiments (B2W, UTLC-apps, UTLC-movies) and ap-
plying an appropriate learning rate yields better results than the baseline. This approach
reduces the computational cost during training and enables researchers with limited re-
sources to achieve robust performance without unfreezing all model layers. Additionally,
the statistical test confirms that self-supervised fine-tuning with only the last layer un-
frozen produces significantly better results compared to the general model. This outcome
supports the hypothesis that self-supervised fine-tuning can be effectively tailored to spe-
cific domains, even when employing simplified model configurations.

We also observed that using a very small learning rate, like 1e-6, is not advisable
when unfreezing only one layer. Our results show that this value is inversely proportional
to the number of unfrozen layers, resulting in suboptimal performance. Regardless of
the number of unfrozen layers, the learning rate of 1e-5 proved to be a robust choice,
consistently providing better results than those obtained with a general model.

Table 5.1 also reveals that as the dataset size increases, the performance metrics of
the general model tend to decrease. In contrast, the difference in performance between
the self-supervised fine-tuning and baseline models increases. This finding suggests that
self-supervised fine-tuning is particularly beneficial for larger datasets, although further
testing would be needed to confirm this observation.

The confusion matrices of the Figures 5.4, 5.5, and 5.6 show that self-supervised
fine-tuning models significantly improve data classification, concentrating more values on
the main diagonal and showing better differentiation between classes. This evidences
the effectiveness of the fine-tuning process in improving the model’s performance in the
multiclass sentiment analysis task.

Finally, this project has raised new directions for future research, including applying
our methodology to larger and more modern models, integrating explainability techniques,
and validating in real business environments. These future works will not only broaden
the scope of our research but also contribute to the development of more accurate and
efficient natural language models.
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Appendix A

Split Ratio Experiments

These additional experiments were performed in order to evaluate the impact of the
amount of data on the final results and to obtain a rough reference on the amount of data
needed to achieve good results. To do so, two partitions of the B2W dataset were used,
corresponding to 50% and 20% of the total data used in the self-supervised training.

Table A.1: Results obtained when training the model with different configurations of
unfrozen layers (all layers, last 4, last 2, and only the last one), varying the learning rate
(1e-4, 1e-5, 1e-6), and using only 50% of the total data used in the initial self-supervised
training with the B2W dataset. The model resulting from this process was applied to a
downstream multiclass sentiment analysis task, evaluated by cross-validation, using the
Balanced Accuracy, Weighted F1, and Weighted Accuracy metrics. Highlighting in green
the column with the best results.

Multiclass sentiment analysis for B2W
SSL with ALL
layers defreeze

SSL with 4
layers defreeze

SSL with 2
layers defreeze

SSL with 1
layers defreezeBERT

imbau 1e-4 1e-5 1e-6 1e-4 1e-5 1e-6 1e-4 1e-5 1e-6 1e-4 1e-5 1e-6
B_Acc 0.432 0.454 0.447 0.441 0.435 0.450 0.445 0.387 0.436 0.393 0.438 0.436 0.381
W_F1 0.422 0.438 0.434 0.426 0.421 0.432 0.429 0.372 0.410 0.379 0.418 0.413 0.366
W_Acc 0.773 0.781 0.779 0.776 0.774 0.780 0.778 0.755 0.774 0.757 0.775 0.775 0.752

Table A.2: Results obtained when training the model with different configurations of
unfrozen layers (all layers, last 4, last 2, and only the last one), varying the learning rate
(1e-4, 1e-5, 1e-6), and using only 20% of the total data used in the initial self-supervised
training with the B2W dataset. The model resulting from this process was applied to a
downstream multiclass sentiment analysis task, evaluated by cross-validation, using the
Balanced Accuracy, Weighted F1, and Weighted Accuracy metrics. Highlighting in green
the column with the best results.

Multiclass sentiment analysis for B2W
SSL with ALL
layers defreeze

SSL with 4
layers defreeze

SSL with 2
layers defreeze

SSL with 1
layers defreezeBERT

imbau (1e-4) (1e-5) (1e-6) (1e-4) (1e-5) (1e-6) (1e-4) (1e-5) (1e-6) (1e-4) (1e-5) (1e-6)
B_Acc 0.432 0.445 0.442 0.441 0.462 0.440 0.437 0.400 0.416 0.372 0.425 0.420 0.362
W_F1 0.422 0.433 0.431 0.428 0.450 0.421 0.420 0.378 0.396 0.359 0.407 0.403 0.350
W_Acc 0.773 0.778 0.777 0.776 0.785 0.776 0.775 0.760 0.766 0.749 0.770 0.768 0.745
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Table A.3: Results of the BERTimbau model (our baseline model), the best result ob-
tained with 100% of the training data in self-supervised fine-tuning, the best result with
50% of the training data in self-supervised fine-tuning, and the best result with 20% of the
training data in self-supervised fine-tuning. These results show that it is possible to ob-
tain remarkable performance using only 50% of the data, while by reducing the amount to
20%, the results start to approach the baseline model’s performance, indicating a decrease
in improvement.

Multiclass sentiment analysis for B2W
100% dataset
SSL with ALL
layers defreeze

50% dataset
SSL with ALL
layers defreeze

20% dataset
SSL with 4

layers defreeze
BERTimbau

1e-5 1e-4 1e-4
B_Acc 0.432 0.456 0.454 0.435
W_F1 0.422 0.459 0.438 0.421
W_Acc 0.773 0.790 0.781 0.774


