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Resumo

A Internet tornou-se uma parte integrante de nossas vidas, conectando quase todos glo-
balmente. Essa vasta conectividade permite que informações falsas se espalhem rapida-
mente, potencialmente prejudicando a reputação de indivíduos, empresas e até mesmo
nações. Dado o impacto significativo da desinformação, a verificação automatizada de
fatos tornou-se uma área crítica de pesquisa. No entanto, as soluções de verificação auto-
matizada de fatos têm gerado preocupações entre verificadores humanos, que geralmente
não confiam nas decisões baseadas em máquinas. Além disso, muitos algoritmos apresen-
taram problemas comuns à inteligência artificial: eles não são explicáveis, podem aprender
características espúrias e, às vezes, não conseguem generalizar. Apesar desses desafios, os
verificadores humanos de fatos, sozinhos, não conseguem acompanhar o volume cada vez
maior de dados gerados diariamente, tornando a assistência da máquina essencial. Por-
tanto, esta tese visa preencher a lacuna entre verificadores humanos de fatos e algoritmos
automatizados, para que possam se complementar e alcançar eficiência e explicabilidade.
Em termos de eficiência, desenvolvemos métodos para a detecção de desinformação com
agrupamento e sumarização de textos, reduzindo drasticamente a redundância de dados
brutos de redes sociais. Também exploramos o uso eficiente de dados selecionando poucos
dados anotados ou gerando dados sintéticos com poucas amostras para ajuste fino do
modelo. No campo da explicabilidade, introduzimos a resposta a perguntas no processo
de verificação de fatos, o que pode identificar o local do erro de uma alegação. Além
disso, para lidar com a falta de dados anotados de explicação, realizamos um estudo em
larga escala sobre auto-racionalização (a tarefa de gerar uma previsão de rótulo e uma
explicação em texto livre juntas) em cenários fora de distribuição (OOD). Para a falta
de explicações de referência, propusemos uma métrica independente de referência para a
avaliação da explicação. No estudo, mostramos que os modelos podem aprender a partir
de um subconjunto muito pequeno de dados e generalizar de forma comparável aos mode-
los ajustados em todos os dados de treinamento. Também mostramos que, para a geração
de explicações, a qualidade dos dados é um fator-chave para obter melhores explicações
fora de distribuição. Avançando ainda mais na explicabilidade, investigamos a melhoria
da auto-racionalização para conjuntos de dados de verificação de fatos do mundo real. Ao
encontrar um conjunto de dados com mais de três classes, a auto-racionalização falha em
novas classes. Assim, propusemos um novo método adaptativo de rótulo em duas etapas,
que superou os métodos de ponta (como o GPT-4) em dois conjuntos de dados realistas de
verificação de fatos. Esperamos que o trabalho desenvolvido nesta tese tenha um impacto
positivo na implementação da verificação automatizada de fatos no mundo real.



Abstract

The Internet has become an integral part of our lives, connecting almost everyone globally.
This vast connectivity allows false information to spread rapidly, potentially damaging
the reputation of individuals, companies, and even nations. Given the significant impact
of misinformation, automated fact-checking has become a critical area of research. How-
ever, automated fact-checking solutions have led to concerns from human fact-checkers,
who generally do not trust machine-based decisions. Moreover, many algorithms have
shown artificial intelligence problems: they are not explainable, can learn spurious fea-
tures, and cannot generalize sometimes. Despite these challenges, human fact-checkers
alone cannot keep pace with the ever-increasing volume of data generated each day, mak-
ing machine assistance essential. Therefore, this thesis aims to bridge the gap between
human fact-checkers and automated algorithms, so they can complement each other to
achieve efficiency and explainability. In terms of efficiency, we developed methods for
misinformation detection with text clustering and summarization, drastically reducing
redundancy from raw social media data. We also explored efficient usage of data by se-
lecting few annotated data or generating synthetic few-shot data for model fine-tuning. On
the explainability front, we introduced question answering into the fact-checking pipeline,
which can pinpoint the error location of a claim. In addition, to address the lack of anno-
tated explanation data, we performed a large scale study on self-rationalization (the task
of generating a label prediction and free-text explanation together) in out-of-distribution
(OOD) scenarios. For the lack of reference explanations, we proposed a reference-free
metric for the explanation evaluation. In the study, we showed that models can learn
from a very small subset of data, and generalize comparably to models fine-tuned on the
entire training data. We also showed that, for explanation generation, the quality of data
is a key factor in having better OOD explanations. Further advancing explainability, we
investigated improving self-rationalization for real-world fact-checking datasets. When
encountering a dataset with more than three classes, self-rationalization fails to perform
on new classes. Thus, we proposed a new two-step label-adaptive method, which outper-
formed state-of-the-art methods (such as GPT-4) on two realistic fact-checking datasets.
We hope the work developed in this thesis will positively impact the deployment of auto-
mated fact-checking in the real world.
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Chapter 1

Introduction

With the prevalence of high-speed Internet, we live in the Digital Age where it has been

easier than ever to gain and share information online. According to Digital Brazil 2024,

around 87% of the Brazilian population uses the Internet, and the number of social media

users takes up 66.3% of the population [1]. However, this surge in connectivity has led

to a decline in trust: only 43% of Brazilians trust the news they consume online, even

though 90% of the news is delivered through online platforms [2].

This huge gap in trust is largely due to the rampant spread of misinformation. In

traditional media, journalists were the gatekeepers of news. Today, anyone can spread

information with a single click, amplifying small ideas into significant movements. While

social media has empowered voices and created financial opportunities, it has also been

weaponized to spread falsehoods and create chaos.

Since the 2016 election of President Trump, “Fake News” has been a buzzword [3].

However, does “Fake News” literally mean a fake piece of news? In an article written by

Claire Wardle, she says the term fake news has failed to cover our reality, in which most

content people read is not fake or fabricated, and most of this cannot be described as

“news”. Instead, she and her group in First Draft1 prefer to use the term “Information

Disorder” [4], and based on two aspects — falseness and intention to harm — it can be

further divided into:

• misinformation: False information shared without harmful intent.

• disinformation: False information deliberately shared with the intent to cause harm.

• malinformation: Information that is true but used maliciously to cause harm.

In this thesis, we focus on detecting false information (dis-/mis-information) through

fact-checking, regardless of the intent2.

In many cases, misinformation can cause a significant negative impact. For example,

in Brazil, propaganda spread by official authorities towards ineffective scientific treat-

ments (such as hydroxychloroquine [5]) put at risk patients’ (already debilitated) health,

drowning the public health system into chaos. Recently, misinformation about the Rus-

sian Invasion of Ukraine has also been on a rampage, intending to spread fear or hatred

1https://firstdraftnews.org
2We use the term misinformation throughout this thesis, regardless of the intent.
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better integrated with journalists’ jobs, which gives us more opportunities to collaborate

with human fact-checkers directly; and 3) fact-checking usually deals with short claims,

making it easier to identify factual inaccuracies compared to evaluating entire articles.

Many researchers have studied developing automated fact-checking methods. However,

according to a recent survey [9], human fact-checkers do not trust the results from auto-

mated solutions. The reason is that automated methods are error-prone, and incorrect

fact-checking could seriously damage organizations’ reputations. However, fact-checkers

cannot debunk every single post manually, as massive numbers of messages are posted

on social media every second [10]. Guided by the literature and fact-checker collabo-

rators, this thesis aims to bridge the gap between human fact-checkers and automated

fact-checking solutions.

1.1 Research Objective

This thesis has two main goals: a) reducing human fact-checkers’ effort in the fact-checking

process; b) producing transparent or explainable fact-checking results to gain trust from

fact-checkers.

1.2 Research Questions

To achieve the two main goals, this thesis is guided by the following research questions:

Fact-checking Efficiency

• RQ1: Given a large amount of raw text data, how can we speed up the fact-checking

process to reduce fact-checkers’ workload?

• RQ2: How do we use data efficiently to use less annotated data for model learning?

Fact-checking explainability

• RQ3: How can we modify the fact-checking process to make it more transparent to

human fact-checkers?

• RQ4: In the absence of annotations, how can we leverage a different dataset to

generate explanations for an unknown target dataset?

• RQ5: How do we evaluate generated explanations without any reference data?

• RQ6: How does our method work on real-world fact-checking datasets?

1.3 Main Contributions

Figure 1.2 summarizes the main contributions of this thesis, organized by our two main

goals and four chapters.





19

many fact-checking websites, such as Agência Lupa3, Aos Fatos4, among others). At the

same time, most automated methods only produce a simple prediction. To help increase

trust between human fact-checkers and automated solutions, this thesis provided two

approaches for more explainable fact-checking.

Our first approach proposed to integrate question answering (QA) in the fact-

checking process (Chapter 3). In detail, we proposed generating questions and answers

from claims and answering the same questions from evidence. We also proposed an

answer comparison model with an attention mechanism attached to each question. De-

spite promising results, there are some limitations of the question-answering approach: 1)

Repetitive questions were generated from a claim, and some were of poor quality; more

diverse questions are needed to improve them; 2) Current evidence is short, but real-

world evidence is much longer; 3) To show that our generated questions and answers are

accurate, we need to incorporate human-in-the-loop for QA quality evaluation.

To deal with these issues, Chapters 4 and 5 explored using self-rationalization meth-

ods to generate free-text explanations. Free-text explanations are useful as they are

expressive and easy to understand. Despite their benefits, existing datasets often lack an-

notated explanation data, particularly in contexts such as fact-checking and hallucination

detection, making it hard for training an explainable model.

In Chapter 4, we started by studying how to leverage existing explanation datasets

to learn self-rationalization and evaluate models’ out-of-distribution (OOD) performance

(Chapter 4). We performed prompt-based fine-tuning with the T5-large and OLMo-7B

and evaluated on 19 diverse OOD datasets across three tasks: natural language inference,

fact-checking, and hallucination detection of abstractive summarization. We addressed

the lack of reference explanations for evaluation by studying the effectiveness of the Ac-

ceptability score with a human evaluation, and comparing it against three LLM-based

reference-free metrics.

Chapter 5 investigated how self-rationalization can be utilized on more realistic fact-

checking datasets. In the OOD evaluation of self-rationalization, our fact-checking datasets

(e.g., FEVER [11]) usually label claim veracity with three classes: SUPPORT, REFUTE,

and NEI (not enough information), which is comparable to NLI labels (entailment, con-

tradiction, and neutral). However, many real-world fact-checking datasets usually have

different labeling schemes with the number of classes varying from 2-27 classes [12]. As

the labeling scheme shifts from NLI tasks, directly applying self-rationalization with

models pre-trained on NLI datasets performs poorly for fact-checking. Therefore, we

proposed a label-adaptive learning approach to learn self-rationalization in two steps, al-

lowing our model to adapt to a new domain more effectively than fine-tuning end-to-end

self-rationalization directly.

3https://piaui.folha.uol.com.br/lupa/
4https://www.aosfatos.org
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1.4 Thesis Organization

We organize the thesis as a compilation of articles published (or submitted for peer-

review), with each chapter corresponding to one work. In total, we present four papers,

three published in International Conferences and one submitted to a journal, under a

second-around review. Chapter 2 introduces the clustering and summarization pipeline

for reducing the amount of raw social media data for fact-checkers to process. Chap-

ter 3 describes our approach for introducing question-answering into the fact-checking

pipeline for more explainable fact-checking. Chapter 4 presents our large scale study

on self-rationalization’s Out-of-Distribution ability on 19 datasets. Chapter 5 describes

our proposed method for adapting self-rationalization on realistic fact-checking datasets.

Finally, Chapter 6 discusses the contributions by answering each research question and

presents the limitations and potential future directions.
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Chapter 2

Scalable fact-checking with

human-in-the-loop

As misinformation becomes a growing concern to the public, news fact-checking organi-

zations are also proliferating. However, the generation and spreading speed of the former

is much faster than the latter. To fight misinformation, automated fact verification has

received most attention in the literature. However, human fact-checkers often do not trust

results from automated solutions [9]. The reason is that automated methods are error-

prone, and incorrect fact-checking could seriously damage fact-checking organizations’

reputations. Instead, what fact-checkers seek from automated methods is to scale-up

manual fact-checking’s speed. Indeed this is essential in fact-checking, as every day, bil-

lions of messages are posted on social media 1 and misinformation is ever increasing.

Till now, most researchers have tried to handle this issue by checking if a post is worth-

checking [13] to reduce the number of claims. However, this may not be enough as social

media messages are noisy, and check-worthiness detection needs manual labeling which is

bias prone.

To achieve our first goal of speeding up the fact-checking process, we developed an

unsupervised method to reduce the number of claims fact-checkers receive. We notice

that posts from social media overlap extensively; most of them are slight modifications or

paraphrases of other posts. To exploit this observation, this work proposes to assist hu-

man fact-checkers by grouping semantically similar claims together and summarize them

into single key claims. The grouping stage consists of separating posts into distinct claims.

The summarization stage aims at reducing redundancy and formulating an informative

and representative claim. This is the first work that addresses grouping and summariz-

ing semantically similar messages together to scale up fact-checking, to the best of our

knowledge. The contributions of this work are summarized as follows:

1. We propose a novel pipeline to filter redundancy in short messages and generate

informative claims.

2. We propose a graph-based approach for the pipeline, combining community de-

tection and graph-based extractive summarization that utilizes tweets metadata.

1https://tinyurl.com/nt4pxa6a



22

Experimental results show that the graph-based methods obtain the best perfor-

mance.

3. We generate a graph of summaries to verify the clustering and summarization meth-

ods; the graph shows that the summaries are well-separated.

4. We brings humans back to the loop by assessing claims worthiness with a fact-

checker specialist.

This work was published and presented at the International Workshop on Information

Forensics and Security (WIFS 2021): © 2021 IEEE. Reprinted, with permission, from

“Jing Yang, Didier Vega-Oliveros, Taís Seibt and Anderson Rocha. Scalable Fact-checking

with Human-in-the-Loop. IEEE International Workshop on Information Forensics and

Security (WIFS), 2021.”

2.1 Related Work

In this section, we review related work in increasing efficiency: claim check-worthiness

detection and social media short message summarization.

2.1.1 Check-worthiness Detection

Check-worthiness detection is related to our work and serves a similar purpose — to

reduce the number of claims to be checked. Currently, most check-worthiness detec-

tion work focus on checking claims related to political debates. The well-known Claim-

Buster [14] extracts, ranks, and identifies essential factual claims from presidential debates

sentences. CheckThat! Lab. [13] has hosted since 2018 an open detection task of check-

worthy claims. The goal is to give check-worthiness scores to a list of sentences. The

Prise de Fer’s team [15] proposed a hybrid model with various sentence representations,

including both syntactic and semantic features. The Copenhagen team [16] extracted

sentence features by a Recurrent Neural Network (RNN) with Gated-Recurrent Units

(GRU) memory units. They used contrastive sampling to select sentence pairs further

trained for check-worthiness prediction. Our goal differs from check-worthiness detection;

rather than predicting if a claim is check-worthy we provide human experts meaningful

summarized claims to facilitate the arduous fact-checking task.

2.1.2 Social media message summarization

Social media post summarization brings another branch of related works. These studies

are usually related to event/disaster discovery. For example, Rudra et al. [17] reported a

framework to summarize messages from Twitter. Their method comprises two stages. The

first selects essential tweets from the whole set. The second combines selected tweets and

generates a new message by maximizing tweets’ informativeness and avoiding redundancy.

Another example is the systematic review of summarization on tweets for emergency
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therefore we leverage Sentence-Transformers2[20] for short messages embeddings as input

for clustering.

There are different ways to perform aggregation or clustering. A standard cluster-

ing method is k-Means. However, it is not suitable in our case as each short message

embedding has a dimension of at least 512, which makes k-Means relatively slow and,

most importantly, it requires us to pre-define a specific number of clusters. Therefore,

we adopt and compare two methods: Agglomerative clustering3 and Leiden community

detection[21] as they do not require the establishment of the number of clusters before-

hand.

Agglomerative clustering Hierarchical clustering groups feature points based on their

dissimilarity. The method starts with each point as a cluster and merging two clusters into

one if their dissimilarity value is below a decision cutoff. This method is helpful because

the number of clusters is unknown; we can control the decision cutoff to have smaller or

larger clusters. First, we calculate a similarity matrix S of short message embeddings for

the initial dissimilarity values, then provide 1 − S as the dissimilarity matrix. For the

linkage criteria determining how the dissimilarity is calculated between two clusters, we

choose the average dissimilarity between any two points in the two clusters.

Leiden community detection Leiden community detection is a graph-based cluster-

ing method that finds the best community partition in a graph [21]. It improves the

convergence time of the Louvain algorithm with a smaller computational footprint, pro-

viding partitions focused on the micro-patterns of the communities that maximize the

graph modularity. Formally, the graph G(N,L) is formed by the set of nodes N repre-

senting each short message; and the set of links L, which represent the similarity weight

between nodes. The construction process from the short message embedding to the graph

calculates the similarity matrix among the vectors and then applies the ǫ-neighborhood

method [22].

For both methods, we use the cosine similarity to compute the similarity matrix of all

post representations. As both methods require a decision cutoff for similarities, we denote

the threshold δ and ǫ = δ as the ǫ-graph construction parameter.

2.2.2 Short message Summarization

For each cluster, our goal is to summarize its short messages to generate a claim. We

leverage two types of summarization.

Extractive summarization For extractive summarization, we aim to select a repre-

sentative short message from each cluster. In particular, we construct an ǫ-graph for each

cluster and use centrality measures to rank the short messages in the cluster and select

the most central one as the summary. The idea of using centrality measures is that central

nodes are usually the more influential or representative in the graph [23]. We adopted two

2https://tinyurl.com/w4de7tvv
3https://tinyurl.com/vr3p25w3
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methods: the Degree Centrality (DG) and the Multi-Centrality Index (MCI) [23]. The

DG counts the total number of input/output connections of the nodes, and nodes with

the highest DG centrality are known as hubs. The MCI considers multiple measures for

finding the most relevant message in the cluster. In this work, we consider the Degree,

PageRank, and Betweenness centrality, along with the number of reposts and likes of each

message, for calculating the MCI.

Abstractive summarization For the abstractive summarization, we use two state-of-

the-art transformer-based language models: BART[24] and T5[25] to generate a summary.

The challenge of these two models is that the models’ maximum input length is not long

enough to fit all short messages in some clusters. Before feeding all the messages to the

summary process, we remove duplicates and near-duplicates from each cluster to deal with

this problem. We perform the agglomerative clustering with a higher similarity threshold

within each cluster. Afterward, we have more sub-clusters in each cluster, and each sub-

cluster contains only messages that are duplicates and near-duplicates. We randomly

select one message from each sub-cluster as messages in the same sub-cluster can be

treated as equivalent.

2.3 Evaluation and Analysis

In this section, we first describe our data collection and processing; then we present the

results for clustering and summarization, respectively. After that, we show the human

evaluation of the representativeness of the generated claims (summaries) by a journalist.

Finally, we present examples of generated summaries and a visualization graph showing

the similarity of the summaries.

2.3.1 Dataset

For the evaluation of our proposed pipeline, we adopt MM-COVID[26], a fake news de-

tection dataset. Each news article in this dataset is accompanied by social media context:

tweets, retweets, and replies. Here, we only use tweets content, as retweets are duplicates

of tweets, and replies can be less related to the claim itself. We choose this dataset be-

cause we can use its labels for evaluation, as each news piece has a claim summarizing

the news content. This news summary can be treated as the ground-truth for our short

messages summary. We emphasize that although the dataset was proposed for supervised

learning on text classification, we only use the labels for evaluation, i.e., our methods

perform unsupervised learning all the time4.

Through Twitter API5, we collected 92,070 tweets associated with 2,227 news articles

(around 12% tweets were removed from Twitter at the time of collection). Out of all

tweets, 48,074 tweets (52.2%) associated with 1,092 news articles are in English. In

this work, we consider only English tweets, but our pipeline can be easily adapted to

other languages as long as trained language models are available. After collecting all the

4Our code is available at: https://github.com/jingyng/scalable-fact-checking
5https://developer.twitter.com/en/docs/twitter-api
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tweets, we pre-processed them by removing duplicated tweets (those with the same id),

user mentions, URLs, hashtags, and emojis.

One challenge of using this dataset for evaluation is that there are some mismatches

between news claims and tweets content, i.e., a tweet associated with one news piece is

not related to its news content. We show one example here:

News claim: Coronavirus is caused by 5G.;

Tweet content: Recently, we have also had some misinterpret some CDC data

related to deaths from COVID-19. Without a doubt, we know coronavirus has caused

more than 400 deaths in Utah and over 177,000 in the United States.

The example shows a tweet content not related to the news claim. This hinders us

from using news claims as gold summaries for a tweet cluster. Therefore, we remove

tweets less relevant to a news claim based on a relevance decision cutoff θ. This step

is only necessary to evaluate summarization and does not need to be performed in real

cases.

For calculating the relevance between tweets and their news summary, we rely upon

BERTscore[27], as it has shown better performance than cosine similarity in [28]. We use

the default model (roberta-large) and normalize the score6. After calculating the relevance

between tweets and news summaries, we remove all tweets irrelevant to its news summary,

with the threshold θ = 0.1. We also filter out messages with less than 4 words, given that

they do not contain meaningful information. After this process, we have 28,818 remaining

tweets associated with 959 news original articles.

2.3.2 Clustering Evaluation

As we do not have ground-truth cluster labels, we rely upon the Silhouette coefficient

metric7 to evaluate the clustering results. This metric ranges from -1 to 1, with a higher

value indicating a better-defined cluster with less overlap among clusters. To compare the

clustering results, we consider two factors: embedding models and clustering methods.

Comparison of embedding models

A good embedding model is essential in clustering; it should map semantically similar

messages closer in their feature representation space. To compare different embedding

models, we set the decision cuttoff δ = 0.85 and the clustering method to be Leiden

community detection. Table 2.1 shows the results.

The clustering performance varies but all embedding models (except for cardiffnlp/twitter-

roberta-base) lead to reasonable performances. Surprisingly, embedding model cardiffnlp/twitter-

roberta-base only resulted in one big cluster, although it was pre-trained with tweets. All

other models comprise about 700 clusters, less than the number of news, 959 indicating

that some news claims are similar to each other.

6https://github.com/Tiiiger/bert_score
7https://tinyurl.com/3xfvsbck
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Embedding model # of clusters Silh. Coef.

paraphrase-distilroberta-base-v2 701 0.76
paraphrase-mpnet-base-v2 677 0.73
paraphrase-MiniLM-L6-v2 707 0.75
nli-mpnet-base-v2 739 0.79
nli-roberta-base-v2 705 0.79
digitalepidemiologylab/covid-twitter-bert-v2 732 0.76
cardiffnlp/twitter-roberta-base 1 –

Table 2.1: Clustering results comparison between different embedding methods.

Figure 2.2: Clustering results varying the similarity threshold δ.

Comparison of clustering methods

As previously mentioned, we compare two clustering methods: Agglomerative clustering

and Leiden community detection. As a comparison, we also consider the original posts

clustering separated by news (i.e., each news corresponds to one cluster of posts). In

Figure 2.2, we vary similarity threshold δ to compare clustering performance. We fixed the

embedding model nli-roberta-base-v2 as it performed best (see Table 2.1). The Silhouette

coefficient increases when δ increases. When δ is close to 1, Agglomerative clustering

and Leiden clustering methods yield about the same results because when δ is high they

are only grouping near-duplicated tweets together. This indicates that the Silhouette

coefficient can only partially evaluate clustering results, as we want to cluster posts that

are semantically similar to each other, not just posts that contain similar words.

Distribution of news in clusters

To check if the method is indeed clustering posts related to one news claim, we analyze

news in each cluster. The percentage of clusters with only one associated news claim for

agglomerative and Leiden are 95.15% and 93.34%, respectively. We randomly examine
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one cluster with more than one associated news piece (agglomerative method) to see if

the news claims are similar. One example of news claims in a cluster is the following:

• U.S. President Donald Trump or presidential candidate Joe Biden referred to the

novel coronavirus pandemic as a time when “people are dying that have never died

before.”

• Donald Trump said about coronavirus, “People are dying who have never died be-

fore.”

• Referring to the ongoing COVID-19 pandemic, U.S. President Donald Trump said,

“People are dying today that have never died before.”

The three news claims are indeed related to one claim. This also explains why the

number of clusters (agglomerative: 804, Leiden: 705) is less than the number of news

articles (959).

2.3.3 Summarization Evaluation

After aggregating the posts, we perform the summarization. For the quantitative evalua-

tion of summarization results, we use the F1-score of ROUGE-1, ROUGE-2, and ROUGE-

L metrics8. ROUGE scores are common metrics for text summarization tasks. Given

generated and reference summary pairs, ROUGE-1 and ROUGE-2 measure the overlap

of unigram and bigram, respectively, and ROUGE-L measures the Longest Common Sub-

sequence (LCS) between them. We use BERTscore to measure the semantic similarity

between the generated and ground-truth summary pairs. For the informativeness of sum-

maries, we use the average summary length.

Comparison of summarization methods

We combine two clustering methods (agglomerative clustering and Leiden community

detection) and four summarization methods (BART, T5, DG, and MCI). We set the

similarity threshold δ = 0.85 for both clustering methods (Table 2.2). We consider news

summaries to be ground-truth summaries as the tweets mention these news articles.

Table 2.2 shows that extractive summarization (DG and MCI) ouperforms abstractive

summarization (BART and T5). This means most content are repetitions of news con-

tent, so the extractive summaries can be precisely the same as news summaries. However,

models for the abstractive summaries try to generate fluent sentences by combining mul-

tiple different posts thus are longer and overlap less with news summaries. In terms of the

abstractive approach, the average summary lengths for Leiden clusters are longer than

the agglomerative ones. This is because in Leiden each cluster contain more posts, thus

has in total fewer (around 100 less clusters) but bigger clusters. Therefore, we consider

the Leiden method more suitable as it reduces redundancy without losing information,

even though the scores of Agglomerative are slightly higher. Therefore, we conclude that

our graph-based method performs the best among all combination of methods.

8https://tinyurl.com/3e5t8tpz
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Summarization
Method

ROUGE-1 ROUGE-2 ROUGE-L
BERT-
score

Average
Summary
Length

Agglomerative+BART 0.53 0.41 0.49 0.91 22.03
Agglomerative+T5 0.51 0.39 0.47 0.90 23.99
Agglomerative+DG 0.59 0.48 0.56 0.92 21.44
Agglomerative+MCI 0.59 0.48 0.56 0.92 21.49
Leiden+BART 0.50 0.38 0.47 0.91 23.44
Leiden+T5 0.48 0.36 0.44 0.89 26.17
Leiden+DG 0.59 0.48 0.55 0.92 21.48
Leiden+MCI 0.58 0.47 0.55 0.92 21.53

Note: Average news summary length for Agglomerative and Leiden are 15.20 and
15.99 respectively. Number of clusters for Agglomerative and Leiden are 804 and 705,
respectively.

Table 2.2: Summarization performance comparing different summarization methods

Table 2.3 shows an example of summaries for qualitatively illustration of the summa-

rization process for Leiden clustering. All summaries essentially reduced the redundancy

of posts, and capture the central claim of the tweets.

Analysis of the graph of summaries

To validate the robustness of our clustering and summarization methods, we construct a

graph of summaries to see if there are similar summaries. We take the summaries gen-

erated from Leiden+BART and perform a Leiden community detection with similarity

threshold of 0.75, then visualize the communities in the graph. We show the graph in

Figure 2.3. In this graph, there are 609 communities. We can see that it is a sparse graph;

most communities contain only a single node, indicating the clustering and summarization

effectiveness.

To further check if the summaries in the same community are similar, we show two

examples of all the summaries in a community for communities 1 and 2 (communities are

sorted in descending order with the number of summaries) in Table 2.4. We can see that

the summaries in one community are similar to each other and related to similar topics,

but they are not related to one specific claim. Therefore we conclude that our clustering

and summarization find reasonable and useful claims and a further reduction would risk

losing information.

2.3.4 Human-in-the-Loop

We invite fact-checker journalists to evaluate the summarization methods, evaluating the

four proposed methods. We also include the news summary (ground-truth summary) in

the comparison. We asked the specialist to give a score ranging from 1-5 (one means the

summary is not representative for the posts in the cluster, and five means the summary is

very representative for the posts). We randomly select 50 clusters for each summarization
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Original tweets from a cluster (11 out of 241 tweets after removing duplicates and near-duplicates)

1. Reupping this fact check –&gt; How false hope spread about hydroxychloroquine to treat covid-19 — and the

consequences that followed.

2. How Trump’s false hope spread about hydroxychloroquine to treat covid-19 — and the consequences that

followed - The Washington Post.

3. Coronavirus: How false hope spread about hydroxychloroquine to treat covid-19 - and the consequences that

followed.

4. How false hope spread about hydroxychloroquine to treat covid-19 — and the consequences that followed.

Four Pinocchios given by the WP.

5. Well done for "How false hope spread about hydroxychloroquine to treat covid-19 – and the consequences that

followed" - highlighted in Journalism Matters survey on Excellence in Reporting Coronavirus.

6. How false hope spread about hydroxychloroquine to treat covid-19 — and the consequences that followed. Dr.

Trump’s medicine show: Why is he pushing an unproven drug? Follow the money.

7. For all you MAGA supporters who keep pushing the lie: "How false hope spread about hydroxychloroquine

to treat covid-19 — and the consequences that followed."

8. Trump is making baseless, irresponsible medical recommendations based on rumor and social media idiocy.

Analysis | How false hope spread about hydroxychloroquine to treat covid-19 — and the consequences that

followed.

9. "How false hope spread about hydroxychloroquine to treat covid-19 — and the consequences that followed" -

an excellent and important Fact Checker that explains how social media gave this dangerous info undeserved

oxygen.

10. Trump and his enablers pushing dangerous and unproven medical advice as if they are doctors. Should be a

law against this. How false hope spread about hydroxychloroquine to treat covid-19 — and the consequences

that followed.

11. The only thing fake is you. Fake President How false hope spread about hydroxychloroquine to treat covid-19

— and the consequences that followed.

BART summarization
How false hope spread about hydroxychloroquine to treat covid-19 – and the consequences that followed. Four

Pinocchios given by the WP.

T5 summarization
"how false hope spread about hydroxychloroquine to treat covid-19 – and the consequences that followed" "why is he

pushing an unproven drug? follow the money" "trump is making baseless, irresponsible medical recommendations

based on rumor"

DG summarization
How false hope spread about hydroxychloroquine to treat covid-19 — and the consequences that followed - msnNOW

MCI summarization
Is mystery How false hope spread about hydroxychloroquine to treat covid-19 — and the consequences that followed

News Summary (Gold)
President Trump has repeatedly touted the anti-malarial medications hydroxychloroquine and chloroquine as the

much-needed solution to COVID-19

Table 2.3: An example of four summarization results on tweets in one cluster



31

All summaries in Community 1

1. What’s a coronavirus superspreader?

2. How does the coronavirus work?

3. People with coronavirus may be most infectious in the first week of symptoms. SARS CoV2 COVID19.

4. COVID-19: Information on symptoms, transmission – Mayo Clinic News Network. Covid19 Corona

Virus CoronavirusUSA: Terms to know.

5. GI Symptoms and Coronavirus (COVID-19) from. GI Symptoms of CO VID-19 from.

6. Coronavirus: How does the Covid-19 alert level system work?

7. What are the early symptoms of coronavirus (COVID-19)?

8. People with coronavirus may be most infectious in the first week of symptoms. That could lend more

weight to the argument in favor of wearing a mask while in public.

9. Here are answers to key questions about the virus, including how to protect yourself and what to

expect. What questions do you have about the new coronavirus?

10. Get an answer about the coronavirus, how does it kill, truth about masks, do they work, are pets

safe, do HVAC systems spread the coronavirus, do quarantines work, what about cures, vaccines,

treatment, how long will this coronavirus last, and more.

All summaries in Community 2

1. COVID-19 can be spread by people who do not have symptoms and do not know that they are

infected. CDC recommends that you wear masks in public settings around people who don’t live in

your household and when you can’t stay 6 feet away from others.

2. New Evidence Shows Wearing Face Mask Can Help Coronavirus Enter the Brain and Pose More

Health Risk, Warn Expert. He stresses that only ill people should wear face masks.

3. The CDC recommends wearing a cloth face mask in public to help slow the spread of coronavirus.

But the evidence for the efficacy of surgical or homemade masks is limited, and masks aren’t the

most important protection.

4. Dr. Russell Blaylock warns that not only do face masks fail to protect the healthy from getting sick,

they also create serious health risks to the wearer.

5. The CDC does not recommend that asymptomatic, healthy people wear a facemask to protect them-

selves from respiratory diseases. Facemasks should be used by people who show symptoms of COVID-

19 to help prevent the spread of the disease to others.

6. The CDC does not recommend that people who are healthy wear facemasks. It does recommend that

those who are not healthy wear them.

Table 2.4: Examples of all BART summaries in a community of graph of summaries
(community 1 and community 2)
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Figure 2.3: The communities from the graph of summaries generated by BART. Each
connected component is a community.

method; the clustering method is Leiden. We average the scores along 50 clusters, and

the average scores for DG, MCI, T5, BART, and news summaries are: 4.96, 4.96, 4.92,

4.90, and 4.68 respectively.

We can see that overall all summarization methods have an average score higher than

4, which means they are highly representative. Extractive methods’ scores are slightly

higher than abstractive ones as the latter sometimes bring additional comments, which

are often wrong or are prejudiced. Surprisingly, the news summary, which we treat as

ground-truth, has the lowest average score according to human evaluation. Specifically,

some summaries received low scores because they do not offer sufficient information to

obtain the claim in question or related to a similar but different claim.

2.4 Final Remarks

While automated fact-checking solutions are not near ready for deployment in real-world

scenarios, it is key important to assist human checkers to improve speed and comprehen-

sive inspection. Our approach fills the gap between manual and automated fact-checking

through a two-step pipeline: grouping similar messages together and summarizing them

into one claim, which a human will then check. We test our pipeline by combining two

clustering and four summarization methods. The results show that the framework can

largely reduce the number of original social media posts in more than 97% — from 28,818

tweets to 700 summary claims — and deliver more informative claims that enrich the

knowledge about the clustered messages for the fact-checking process.
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Chapter 3

Explainable Fact-checking Through

Question Answering

In previous chapter, our work addressed fact-checking efficiency by reducing the amount

of claims fact-checkers deal with. This step is before the actual fact-checking process.

This chapter focuses on the second goal on building trust between machines and humans

using such technology.

Explainable fact verification is key for modern automated fact-checking. Recent fact-

checking datasets usually contain annotated explanations [29, 30] to address its impor-

tance. However, research on explainable fact-checking methods mainly focuses on text

summarization [31, 29, 32] and, in such cases, explanations as summaries are not represen-

tative of real-world fact-checking explanations as they are not comparing the differences

between claim and evidence to make conclusions.

Inspired by the QA works in checking factual consistency of documents and their

summaries, we believe it is suitable for the fact-checking task, where we assess if claims are

factually consistent with retrieved evidence. Therefore, we propose to leverage automated

QA protocols and integrate them into the traditional fact-checking pipeline. As a result,

we can provide explainable fact-checking results through question answering. The answer

comparison model will predict a label and pinpoint the wrong part of a claim by showing

which questions are more important for the decision. In this way, human fact-checkers

can easily interpret the results and correct them if necessary. Our work differs from prior

works [33, 34] because we not only generate question-answer pairs but also fully integrate

QA protocols in the fact-checking pipeline to automatically compare answers and predict

their labels. We compare the proposed method with several baselines, achieving state-of-

the-art results but with the critical feature of adding explainability to the fact-checking

process. We summarize our contributions as follows.

• We propose a novel pipeline for using question answering as a proxy for explainable

fact-checking;

• We introduce an answer comparison model with an attention mechanism on ques-

tions to learn their importance on the claims.

This work was published and presented at IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP 2022): © 2022 IEEE. Reprinted, with permission,
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from “Jing Yang, Didier Vega-Oliveros, Taís Seibt and Anderson Rocha. Explainable

Fact-checking through Question Answering. IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2022.”

3.1 Related Work

One popular line of work to increase trust for fact-checking is to generate textual expla-

nations for the predicted results. Atanasova et al. [31] first proposed a pioneer work to

generate explanations. They performed an optimization to learn together veracity predic-

tion and explanation extraction from evidence. Subsequently, Kotonya et al. [29] proposed

a joint extractive and abstractive text summarization method for explanation generation.

The authors also published a survey specifically about generating fact-checking explana-

tions [35].

Although generating explanations can provide more precise evidence to understand

fact-checking decisions, existing systems lack a way to evaluate the explanations properly.

Especially for explanations based on abstractive document summarization, researchers

have shown that such models have problems of hallucination [36, 37], generating sum-

maries factually inconsistent with their original document. To deal with this issue, several

works have been proposed [38, 39, 40]. In particular, Pagnoni et al. [41] summarized dif-

ferent types of errors some models make and metrics used to evaluate them. Among these

evaluation metrics, leveraging question answering (QA) as a proxy has been the focus of

some work [39, 40]. The idea is to rely upon a question answering mechanism as an evalu-

ation for the faithfulness of summaries. Wang et al. [40] extracted answers and questions

from summaries and fine-tuned a QA model to generate answers from the documents;

the answers from the document and its summary for the same questions are compared to

determine the actual consistency of the summary. Recently, Nan et al. [42] proposed an

improved method than [40], where instead of generating answers for both the summary

and document, they model the likelihood of the summary and document conditioned on

question-answer pairs generated from the summaries. Through this, the likelihood metric

becomes suitable as a training objective to improve the factual consistency of summaries.

A few works have been proposed to leverage QA to help in fact-checking. For example,

in PathQG [33], Wang et al. generated questions from facts. They accomplished this task

in two steps: first, they identified facts from an input text to build a knowledge graph (KG)

and then generated an ordered sequence as a query path; second, they utilized a seq2seq

model to learn to generate questions based on the query path. The human evaluation

showed that their model could generate informative questions. In another work, Fan et

al. [34] generated question-answer pairs as a type of brief, along with passage brief and

entity brief, and provided them to the human fact-checkers, aiming at improving their

checking efficiency.
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3.2 Proposed Methodology

We introduce question answering (QA) in the fact-checking process. Despite previous

mentions of using QA for fact-checking, no previous work has explored integrating QA

protocols in its pipeline. Our proposed solution is described as follows:

1) Given a claim C, generate multiple questions Q1,· · · , Qn and answers AC
1
, · · · , AC

n

from it;

2) Retrieve and re-rank evidence E based on the claim (and possibly questions);

3) For each question generated from 1), ask retrieved evidence for answers AE
1
, · · · , AE

n

respectively;

4) Compare the answer pairs (AC
i , A

E
i ) and transform the result into a label of SUP-

PORTS or REFUTES.

Our proposed pipeline leads to more explainability as we break down the fact-checking

process into more steps, allowing a more fine-grained analysis of each part of the pro-

cess (e.g., question generation, question answering, or answer comparison). In addition,

through answer generation from claims and evidence, we vastly reduce the information

(from claims and their evidence to only answer pairs) fed to the final classification model.

Thus, the model learns from more direct and precise inputs.

To focus on how question answering empowers explainability, we use gold evidence

instead of retrieved evidence. It means that for step 2), we take the gold evidence directly

instead of retrieving them to focus on evaluating the other three stages of the problem.

Future work will be dedicated to the retrieval by itself. Therefore, we focus on steps 1),

3), and 4) of the pipeline. Next, we detail the proposed methodology steps.

3.2.1 Question and Answer Generation

To generate questions from a text, answers for the text are usually provided first to

generate more relevant questions [39, 40]. Answers are usually extracted based on named

entities and noun phrases; then, questions are generated given the claim and answers.

They can also be generated in parallel with questions [42]. We adopt the approach to

generate questions and answers from claims simultaneously [42]. In particular, we follow

the instruction of [42] to fine-tune the BART-large model to generate question-answer

pairs (Q1, A
C
1
), · · · , (Qn, A

C
n ) from a given claim C. Using beam search, 64 question-

answer pairs are generated, then pairs are removed if the claim does not contain the

answers. For answers of evidence E, we utilize a pre-trained extractive QA model to

answer the questions generated previously from the claim. The model generates multiple

answers, and we choose the one with the highest score (the most likely answer).

3.2.2 Answer Pair Comparison

For answer comparison, the token-level F1 score is usually used to measure similarity be-

tween answer pairs; however, it does not work when the two answers have non-overlapping
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take part in selecting the most relevant answers, assigning higher weights to them.

3.3 Experimental Setup

This section presents the dataset used in our experiment, the implementation details and

the baselines for comparison.

3.3.1 Dataset

We adopt the Fool-Me-Twice (FM2) dataset [44], which comprises 12,968 claims and their

associated evidence. FM2 is a recently published dataset collected through a multi-player

game. In the game, one player generates a claim and tries to fool other players. The

others have to decide if the claim is true or false based on evidence retrieved by the game

before a timer runs out. The game’s setting makes this dataset challenging as the players

are motivated to generate claims hard to verify. FM2 is a more difficult and less biased

dataset than the seminal dataset FEVER [11], in which a model can exploit specific words

from the claim [45] to achieve reasonable accuracy (79.1% for two classes). In contrast,

FM2 is shown not to have biases, a classification based only on claims resulted in low

prediction accuracy (61.9%).

3.3.2 Implementation details

For question-answer pairs generation, we follow the code provided in [34] to fine-tune a

BART-large model based on XSUM and CNNDM datasets1. For answer generation for

evidence, we use the FARM framework from deepset2 to generate answers from evidence,

and the question-answering model is deepset/electra-base-squad2. For answer comparison,

we use microsoft/mpnet-base model for encoding all input representation, as it has shown

to perform well in question answering tasks [46]. As the question generation model does

not output the same number of questions for every claim, we selected the first ten questions

if the claim has more than 10; if the number of questions is less than 10, we repeat the first

question until 10. We choose this quantity of questions because the average number of

questions for each claim is 11.5. The hyperparameters for training the answer comparison

models are: number of epochs = 5, batch size =32, learning rate = 2e-5, which is the

standard for fine-tuning a masked language model, and maximum token length = 32.

For statistical significance, we run each experiment 5 times and report the average and

standard deviation. As the dataset is well-balanced, we use macro average accuracy as

the evaluation metric.

3.3.3 Baselines

We set questions and answers for the baselines to be the same, only varying different

answer comparison methods.

1https://bit.ly/3iBZyqR
2https://github.com/deepset-ai/FARM
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• Blackbox method: we compare our results with the original proposed method in

[44]. We refer to it as the blackbox method as they concatenate claim and evidence for

the prediction without providing interpretability. We used the code provided by the

authors3 and ran it five times to have an average result.

• QUALS score: it is an automatic metric for checking factual consistency [42]. It does

not generate answers for evidence. Instead, it calculates the likelihood of the evidence

given the question-answer pair from the claim, compromising explainability.

• Token level F1-score: a standard metric for question-answer tasks. It counts words

overlap between two answers.

• BERTscore: a common metric for measuring the similarity of two sentences. We use

the default model roberta-large.

• Cosine similarity: a metric also used for measuring sentence similarity. We use

sentence transformer all-mpnet-base-v2 to embed the answers and calculate the cosine

similarities between the embeddings.

Only the blackbox method requires training. The others are metrics to evaluate the

answer pairs. These metrics calculate a score representing similarity for each answer pair,

except for QUALS that outputs a score for all answers of the same claim. As each claim

has several questions, we compute the average score for the claim and provide a threshold

to convert the score to a binary label.

3.4 Results and Analysis

In this section, we first present our results in comparison with the baselines. Then, we

analysis the effectiveness of our method with the attention visualization and an abla-

tion study.

3.4.1 Comparison with baselines

We show the results with different baselines in Table 3.1. For the metric-based methods,

we do a binary search to find the highest accuracy on the development set for the threshold

selection.

The results show that training an answer comparison model specifically for the fact-

checking task improves accuracy compared with the methods without training. Our

attention-based method achieves slightly lower accuracy than the blackbox method. How-

ever, our method is more suitable for real-world applications than the blackbox one be-

cause: 1) our method essentially reduces the input needed for prediction while remaining

almost the same accuracy, 2) we enable error analysis for fact-checking with several steps,

and 3) our model additionally provides more explainability by learning the importance of

each question.

3https://bit.ly/2ZO6CtR
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Methods Dev Acc Test Acc

Blackbox (No X-AI) 76.17±1.23 74.58±1.66
QUALS (th=-1.2) 56.12 56.01
BERTscore (th=0.843) 58.68 62.32
cosine sim (th=0.305) 61.16 62.75
F1-score (th=0.06) 64.07 63.77
Attention C-Q-AA (ours, X-AI) 75.44±0.52 73.43±0.83

th: threshold

Table 3.1: Fact-checking label accuracy of different methods. ‘X-AI’ denotes Explainabil-
ity capabilities.

3.4.2 Attention visualization

To illustrate how attention helps explainability, we show an example of our generated

questions with attention weights and their answers from claim and evidence in Fig. 3.2.

The question with the highest weight is bold, and the second-highest underlined. Although

some answers are incorrect and there are non-matching answer pairs, the model can attend

more on the questions and answers more relevant to the factuality of the claim, showing

our approach’s potential. We also see that because the claim is short, most questions are

repetitive.

3.4.3 Ablation study

We carry out an ablation study to show if our attention mechanism improves performance

compared with simple classification. Thus we remove the attention layer of our proposed

attention model, the network structure is shown in Fig. 3.3. Specifically, to use all available

questions, we concatenate all questions and all answers: so the model has two inputs

〈CLS〉 C 〈SEP〉 Q1Q2 · · · Qn, and 〈CLS〉 AC
1
AC

2
· · · AC

n 〈SEP〉 AE
1
AE

2
· · · AE

n (note here

n can be different for different claims). As the inputs are concatenated, the maximum

token length here is 128. Then through the embedding model, each input is transformed

into a feature vector, and the two vectors are concatenated to be fed into the classification

layer.

To study the effect of different components of our proposed model, we design the

inputs as follows:

• C: only claims 〈CLS〉 C;

• Q: only concatenated questions 〈CLS〉 Q1Q2 · · ·Qn;

• AA: only answer pairs 〈CLS〉 AC
1
AC

2
· · · AC

n 〈SEP〉 AE
1
AE

2
· · ·AE

n ;

• Q-AA: concatenated questions 〈CLS〉Q1Q2 · · ·Qn and answer pairs 〈CLS〉 AC
1
AC

2
· · ·AC

n

〈SEP〉AE
1
AE

2
· · ·AE

n ;

• CQ-AA: our full model without attention (shown in Fig. 3.3).
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3.6 Final Remarks

In this chapter, we proposed a novel pipeline for using QA as a proxy for fact-checking.

Based on this pipeline, we proposed an answer comparison model with an attached atten-

tion mechanism, which learns to attend critical questions with interpretability capabilities.

Our ablation study showed that the model can achieve near state-of-the-art performance

with only information from answer pairs. Thus, using QA, we can encourage the model to

learn from more precise evidence; this can aid fact-checkers in better understanding mod-

els’ decisions. Then, when necessary, they can compare the answers and make decisions

for themselves.
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Chapter 4

Self-Rationalization in the Wild:

Large-scale Out-of-Distribution

Evaluation of NLI related tasks

In the previous chapter, we proposed adding QA pairs to provide more explainable fact-

checking results. Due to the lack of annotated QA pairs, we faced challenges in learning

how to generate good questions and properly evaluate the generated questions. In ad-

dition, due to separate models for question generation, question answering, and answer

comparison, an error from one model can aggregate to the next, causing inaccurate re-

sults. Thus we focus on a more straightforward approach – self-rationalization, generating

free-text explanations along with the predictions.

Generating textual explanations has been a major focus in machine learning and

NLP [48, 49, 50], as the explanations are expressive and do not require readers to have

model-level knowledge to understand. One popular line of work is self-rationalization [51,

52], in which a model jointly generates the task label and a free-text explanation for the

predicted label. Compared with highlighting words and phrases [53], free-text explana-

tions can express unstated knowledge and common-sense in easily understandable forms.

However, datasets containing annotated free-text explanations are rare due to expensive

annotations.

A few datasets for free-text explanation generation [54, 55, 56, 57, 58] exist, with

e-SNLI [54] being one of the seminal datasets in the NLI area. Based on SNLI [59],

the dataset focuses on reasoning over fine-grained nuances of common-sense knowledge.

However, datasets containing longer or more domain-specific text, such as fact-checking

on real-world claims, lack annotated explanations [60, 61]. This poses severe challenges

for (i) training and (ii) evaluating self-rationalizing models on these tasks. No large

scale analysis exists to understand how well self-rationalization models can transfer from

existing data to unknown datasets.

We fill the gap by learning self-rationalization from established sources with anno-

tated explanations and evaluating its generalization performance on 19 out-of-distribution

(OOD) datasets over three related tasks (see evaluation setup in Figure 4.1): NLI, fact-

checking (FC) and hallucination detection of abstractive summarization (HDAS). NLI

focuses on textual entailment within a controlled context, FC extends to reason over real-
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accepted in the Transactions of the Association for Computational Linguistics (TACL)1,

a renown open-source journal in the fields of Computational Linguistics and Natural

Language Processing.

4.1 Related Work

This section presents the related work related to free-text explanation generation and its

evaluation, and few-shot sample selection methods.

4.1.1 Free-text explanation generation and evaluation

Self-rationalization has been a popular approach for generating free-text explanations [51,

52, 67, 68, 69]. Wiegreffe et al. [51] shows that joint learning of label prediction and expla-

nation generation results in explanations more aligned with predicted labels. Marasovic

et al. [52] addressed the scarcity of annotated explanation data by using prompt-based fine-

tuning on a few examples, though their evaluation was limited to in-distribution datasets.

Few works have studied how such models can generalize to OOD. Zhou and Tan [70]

studied how learning with few-shot instances with template-based explanations influences

OOD generalization. Their OOD dataset (e-HANS) is limited with constructed templates

based on the HANS dataset [71]. Ross et al. [67] studied the effect of self-rationalization

on reducing models’ reliance on spurious cues in out-of-domain datasets, and they showed

that self-rationalization improves models robustness when fine-tuning data size is small.

Yordanov et al. [72] studied the setup where the target dataset has few annotated free-text

explanations but abundant labels. Their approach is limited to target datasets in which

free-text explanations exist. In contrast to the above OOD evaluations, we focus on the

OOD evaluation of self-rationalization for 19 diverse datasets, and our evaluation does

not rely on reference explanations.

Reliable evaluation is crucial for explanation generation. Traditional metrics that mea-

sure text overlap with references have shown low correlation with human judgments [73],

and reference explanations are not always available. Recent works, like TigerScore [74],

Auto-J [75], and Themis [76], use LLMs as evaluators. These metrics rely on detailed

instructions specifying evaluation aspects (e.g., relevance, accuracy, coherence) and for-

matted inputs for the task. The trained metric then generates a rating along with a textual

analysis. To test their suitability for the explanation generated with self-rationalization,

in this work, we study their correlations with human judgments.

4.1.2 Few-shot sample selection

Recent studies show that fine-tuning with smaller, high-quality datasets can outperform

larger datasets [77, 78]. Li et al. [77] proposed to use a relatively small language model

to evaluate and select a few instances for instruction-tuning on larger models. To select

data to perform well in transfer learning, Xia et al. [78] proposed data selection for

1Copyright for TACL papers is held by the Association for Computational Linguistics, and articles
are distributed under Creative Commons License CC-BY.
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instruction-tuning on a target-specific domain. They show that training with 5% of the

data outperforms training with the full dataset. The main constraint is that the validation

set needs to be from the target domains. Chen and Mueller [79] proposed to improve

data quality by estimating their model’s confidence, and for the low-quality data, they

either filter or correct them. Most methods for sample selection are designed to perform

well on in-distribution or known target domains, and the goal is for better classification

performance. In contrast, our work focuses on selecting data that should help OOD

performance on both label prediction and explanation generation.

4.2 Learning to Self-rationalize

Figure 4.1 shows our out-of-distribution (OOD) evaluation pipeline. We first (a) fine-tune

a language model on a source dataset to learn self-rationalization. Specifically, we require

a fully annotated source dataset S, in which each instance contains input xs = (hi, pi)

and output ys = (li, ei), where hi, pi represent a hypothesis and premise pair, li and ei
represent the annotated label and explanation. We select m representative instances per

class from S for fine-tuning by following a sample selection process. Our sample selection

method deliberately restrains from using data from the OOD datasets, preserving them

untouched. Finally, we fine-tune a language model to generate a label and explanation. In

(b), we evaluate the fine-tuned model performance on OOD datasets (Section 4.3). Given

an OOD dataset O, with instances xo = (hj, pj), where hj, pj represents a new hypothesis

and premise pair, the fine-tuned model generates the label (l̂j) and explanation (êj).

4.2.1 Source dataset

To learn self-rationalization for NLI-related tasks, we select two large source datasets that

contain explanations: (a) e-SNLI [54], derived from the NLI dataset SNLI [59] by adding

human annotated explanations. (b) e-FEVER [80], originated from the fact-checking

dataset FEVER [11] with GPT-3 generated synthetic explanations. To improve data

quality, we heuristically filter out incorrect explanations from the dataset (around 14% of

samples are removed from the training set) following the rules below:

• The explanation is: “The relevant information about the claim is lacking in the

context.” but the label is not NEI (NOT ENOUGH INFO).

• The explanation repeats the claim, and the label is not SUPPORTS.

We selected these two datasets as they are representative for our OOD datasets and

have abundant explanations.

4.2.2 Acceptability-based sample selection

Inspired by Schiller et al. [81], we examine how varying the size and quality of fine-tuning

data (source dataset) affects OOD performance. Since self-rationalization includes joint

label prediction and explanation generation, we propose our method considering both the

label and explanation quality:
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Data filtering with acceptability score To improve explanation quality, we filter

the fine-tuning data using the acceptability model from Wiegreffe et al. [66]. This model,

trained on SNLI data, predicts whether a generated explanation is acceptable based on

human judgment. We remove samples with acceptability scores (the predicted probability

for the label “acceptable”) below a 0.3 threshold.

Data selection For data quality estimation in label prediction, we adapt two meth-

ods from the literature: (1) ambiguous: Following Swayamdipta et al. [82], we select

samples with high ambiguity, which has been shown to improve OOD generalization.

Ambiguity is measured as the distance between an instance’s predicted label probability

and the mean of all predicted label probabilities using the pre-fine-tuning model (details

in Appendix A.1.2). (2) FastVote-k [83]: A graph-based method to select diverse and

representative samples. We use the recommended k = 150.

With the combined two steps (data filtering + selection), we denote the sample meth-

ods as accept-ambiguous and accept-FastVote-k .

4.2.3 Fine-tuning on source datasets

For fine-tuning T5-Large, we use the standard NLI template from [52], which has been

shown to give the best results for e-SNLI dataset with T5. The encoder and decoder

prompts are (also shown in Figure 4.1) :

Input: explain nli hypothesis: [hypothesis] premise: [premise]
Output: [label] "explanation: " [explanation]

For fine-tuning OLMo-7B, as the model is relative large, we choose parameter-efficient

tuning with LoRA [84] using the following instruction [85]. The response is in a JSON

format to facilitate extraction of labels and explanations:

### Premise: [premise] Hypothesis: [hypothesis]
### Response: {"relationship": [label], "explanation": [explanation]}

For the number of shots, we compare 1, 2, 4, 8, 16, 32, 64, and 128 shots. To ensure

robustness, we create five subsets from each source dataset, with 5,000 randomly selected

samples per subset (with no overlap between subsets). We apply the sample selection

methods from Section 4.2.2 to each subset and report the average results (see Appendix

A.1.2 for additional fine-tuning details). In total, we fine-tuned 402 T5 models and 302

OLMo models2.

Baselines We compare the few-shot fine-tuned models with two full-set fine-tuned mod-

els on e-SNLI and e-FEVER, respectively. In addition, we include the random sample

2For T5: 2 source datasets ×5 subsets ×8#shots ×5 sampling methods +2 full-shot models. For
OLMo, we discard 1 and 2 shots as our primary results show that models fail to learn with too few
examples.
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selection baseline to compare few-shot sample selection methods.

4.3 OOD Self-rationalization

In this section, we introduce part (b) of the pipeline in Figure 4.1. For all fine-tuned

models, we perform inference on all OOD datasets.

4.3.1 Out-of-Distribution datasets

For a comprehensive evaluation, we collect datasets that resemble the NLI task and di-

vide them into three categories: NLI, Fact-checking (FC), and Hallucination Detection

of Abstractive Summarization (HDAS). Table 4.1 lists the OOD datasets used (see Ap-

pendix A.1.1 for dataset details and pre-processing). To ensure no data contamination

in our OOD evaluation, we specifically excluded datasets used for supervised fine-tuning

of T5 [25]. OLMo model was pre-trained on Dolma [86] corpus, which contains data from

diverse sources but is not fine-tuned with curated NLI datasets.

OOD dataset Size #L. Domain
#words
(Hyp.)

#words
(Pre.)

IAA

SICK [87] 4,906 3 news, image captions 10 10 0.84O

AddOneRTE [88] 387 2 news, image captions, forums, literature 13 12 0.77O

JOCI [89] 39,092 3 image captions, commonsense stories 6 14 0.54C

MPE [90] 1,000 3 image captions 4 48 0.70O

DNC [91] 60,036 2 events, named entities, puns, sentiments 5 19 -
HANS [71] 30,000 2 template-based (synthetic) 6 9 -
WNLI [92] 71 2 fiction books 7 21 -
Glue Diagnostics [92] 1,104 3 news, Reddit, Wikipedia, academic papers 16 16 0.73F

N
L
I

ConjNLI [93] 623 3 Wikipedia 13 13 0.83C

Snopes Stance [60] 1651 3 Snopes (fact-checking platform) 16 126 0.70C

SciFact [94] 300 3 biomedicine, scientific articles 13 247 0.75C

Climate-FEVER [95] 1,381 3 climate change, Google searches 20 136 0.33K

VitaminC [96] 55,197 3 Wikipedia, COVID-19 13 28 0.71F

COVID-FACT [61] 4,086 2 Reddit, COVID-19 12 73 0.50C

F
C

FM2 [44] 1,380 2 Wikipedia 14 32 -

FactCC [38] 503 2 news (CNN/DailyMail), rule-based 14 644 0.75C

QAGs CNNDM [40] 714 2 news (CNN/DailyMail), BART-based 16 318 0.51K

QAGs XSUM [40] 239 2 news (XSUM), BART-based 18 351 0.34KH
D

A
S

XSUM Hallucination [37] 1,869 2 news (XSUM), 7 different models 19 361 0.92O

Table 4.1: OOD datasets categories and details. NLI: yellow, FC: pink, and HDAS:
blue. Hyp.: hypothesis, Pre.: premise, #words: number of words in average, IAA: inter-
annotator agreement (numbers are from the original papers). L.: labels, C: Cohen’s
kappa, F : Fleiss’s kappa, K: Krippendorff’s alpha, O: other metrics, -: unspecified. The
sizes are reported on test/dev split; if the split is not provided, we report and evaluate on
the entire dataset.

NLI NLI datasets access models’ ability to infer relationships between sentences, with

challenges ranging from compositional meaning [87], adjective-noun composition [88],

common-sense inference [89], to multiple premise entailment [90]. DNC [91] expands the

challenge by incorporating diverse semantic phenomena into the NLI format. HANS [71]
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and WNLI [92] are two adversarial datasets designed to reveal models’ underlying heuris-

tic biases. Glue Diagnostics [92] and ConjNLI [93] further diversify the NLI task, testing

models against a wide array of linguistic challenges and over conjunctive sentences.

FC FC datasets aim to evaluate the veracity of claims against evidence from various

sources, including fact-checking platforms [60], scientific articles [94], Wikipedia [96, 44],

and information related to climate change and COVID-19 [95, 61]. The domain-specific

nature of some datasets, such as SciFact’s focus on biomedicine and Climate FEVER’s

on climate change, requires models to be domain-aware and handle evidence with varying

granularity. FC datasets challenge models to evaluate the truthfulness of claims in real-

world scenarios with applied NLI techniques. For all FC datasets, we use gold evidence,

considering that retrieved evidence may change the gold label of the claim).

HDAS HDAS datasets encompass a variety of model-generated summaries, reflecting

the evolving landscape of automatic text generation and its implications for information

integrity. FactCC [38] challenges models to identify inaccuracies in summaries generated

through five rule-based transformations. QAGS CNN and QAGS XSUM [40], derived

from CNN/DailyMail and XSUM datasets, consist of summaries generated by the BART

model [24]. XSUM Hallucination [37] contains factuality annotated summaries generated

by seven models.

In comparison, the three tasks vary in objective, domain, and text length. NLI targets

logical relationships between sentences, requiring models to handle linguistic subtleties

and logic-based reasoning in a controlled textual context. FC focuses on real-world ap-

plicability, requiring external information and complex reasoning between sentences and

documents. HDAS addresses the problems of automatic document summarization. Re-

garding text length, FC datasets typically have longer premises than NLI, with HDAS

having the longest. Together, these datasets present a challenging NLI-related OOD

scenario.

4.3.2 Inference on OOD datasets

During OOD inference, a fine-tuned model may not generate a label and explanation fol-

lowing the output template, due to poor generalizability. To address this, for T5 models,

we take the first token to represent the predicted label. For label mapping, we focus on

probabilities of tokens corresponding to our target labels: “entailment”, “contradiction”,

“neutral”, disregarding others3. The label is then determined based on the highest proba-

bility among these three tokens. For datasets that only include two classes (“entailment”

and “non-entailment”), we merge the “contradiction” and “neutral” labels into the “non-

entailment” label. Explanation extraction involves processing the entire token sequence.

We search for the pattern “explanation: ” to identify explanations. If absent, we treat

all text after the first word as the explanation. For OLMo models, as we instruction-

3except for “entailment”, as this word contains three word tokens: “en”, “tail” and “ment”, we take the
token number of “en”.
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Acronym Source Model #Shots Selection

TFev
64,AFk e-FEVER T5 64 accept-FastVote-k

TFev
128,R e-FEVER T5 128 random

TFev
128,Fk e-FEVER T5 128 FastVote-k

TFev
128,AFk e-FEVER T5 128 accept-FastVote-k

TFev
Full e-FEVER T5 Full -

TSn
64,Fk e-SNLI T5 64 FastVote-k

TSn
64,AFk e-SNLI T5 64 accept-FastVote-k

TSn
Full e-SNLI T5 Full -

OFev
16,AFk e-FEVER OLMo 16 accept-FastVote-k

OFev
128,AFk e-FEVER OLMo 128 accept-FastVote-k

OFev
Full e-FEVER OLMo Full -

OSn
128,AFk e-SNLI OLMo 128 accept-FastVote-k

OSn
Full e-SNLI OLMo Full -

Table 4.2: Selected models for human evaluation for the models T5 and OLMo. The left
most column shows the acronym of the models, which will be used throughout the rest of
the paper.

OOD F1 score. For e-SNLI, T5 and OLMo models reach similar performances at 128

shots, but the trends are the opposite. For e-FEVER, T5 models’ performance tends to

stabilize after just 2-shots, while OLMo models’ performance continues to increase and

eventually outperform T5 models.

Sample Selection As depicted in Figure 4.2, no sample selection method consistently

outperforms others in label prediction. For T5, selection methods perform similarly,

especially with e-SNLI, though “accept-ambiguous” is slightly better with e-FEVER. For

OLMo, “FastVote-k ” excels with e-SNLI, while “random” selection outperforms others

with e-FEVER (after 32 shots), nearly matching full-shot performance. Surprisingly,

“FastVote-k ” and “ambiguous” do not surpass the random baseline, possibly due to outliers

and training instability when using small numbers of samples [97, 83].

4.5 OOD Explanation Quality Evaluation

We evaluate the generated explanations using both human evaluation and reference-free

automatic metrics, and analyze the correlation between them.

4.5.1 Human evaluation setup

Conducting a human study is challenging due to the extensive number of models and OOD

datasets. Thus, we select three OOD datasets (SICK, VitaminC, XSUM Hallucination)

representing NLI, FC, and HDAS, respectively. To study the impact of fine-tuning factors

on OOD explanations, we select models that demonstrated high and comparable F1 scores
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averaged across the three OOD datasets (see Figure A.2 in Appendix A.2 with the se-

lected models highlighted). Table 4.2 lists the 13 selected mode details, with first column

provides models’ acronyms for across reference later (examples of generated explanations

by the selected models can be found in Table A.1, A.2 and A.3 in Appendix A.1.6).

For instance selection, following Marasovic et al. [52], we shuffle each dataset and se-

lect the first 15 correctly predicted instances per class and model. This results in 1560

instances, including those with identical hypothesis-premise pairs but different model-

generated explanations. Each instance is evaluated by three different workers, and each

worker evaluate 10 instances, requiring in total 468 crowd-workers4. Evaluators are shown

the hypothesis-premise pair, its relationship (gold label), and the generated explanation

and then asked to answer two questions (see the evaluation page in Figure A.1 of Ap-

pendix A.1.4).

• Given the Hypothesis and Premise, does the Explanation justify the given Relation-

ship (Single-selection)? Options: Yes, Weakly Yes, Weakly No and No.

• What are the shortcomings of the Explanation (Multi-selection)? Options: Does not

make sense, Insufficient justification, Irrelevant to the task, Too trivial (only repeat-

ing one of the sentences), Contains hallucinated content (not present the premise)

and None (only if the previous answer is Yes).

We calculate the average score of each instance from 3 evaluators by assigning the

weight to the selected answers as follows [52, 72]: Yes: 1, Weakly Yes: 2/3, Weakly No:

1/3 and No: 0.

We use the Prolific platform for recruiting workers, and the open-source POTATO

annotation tool [98] for the evaluation interface.

4.5.2 Evaluation with reference-free metrics

We propose to use the Acceptability score5 [66] as a reference-free metric, considering

it is designed for accessing NLI explanations. We choose the largest size of the model

variance: T5-11B. The model assigns a score between 0 and 1. We compare this metric

against the state-of-the-art NLG reference-free evaluation metrics:

• Auto-J [75]: trained with LLaMA-2-13B-chat model to evaluate LLM-generated

responses. The metric generates an explanation for its judgment and a final integer

rating from 1 to 10.

• TigerScore [74]: trained with LLaMA-2 on MetricInstruct dataset. We choose the

larger size of the metric: TIGERScore-13B. It generates a breakdown error analysis

and a final error score from 0 to -infinity (the smaller, the better).

4To select eligible participants, our screening requires participants to have at least an undergraduate
degree, and primary language as English, with an approval rate above 99%. For high-quality evaluation,
we inserted 2 attentions questions to filter out low-quality evaluations (an evaluation is rejected if the
worker failed on both attention checks, or failed on one and contains invalid answers through our manual
checking).

5In this paper, when mentioning the acceptability filter (T5-Large), we start with lowercase “a”, and
the Acceptability metric (T5-11B) capital “A”.
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Dataset Auto-J TigerScore Themis Accept.

SICK -0.011 -0.220 0.400 0.466
VitaminC 0.163 -0.263 0.394 0.469
XSUM H. 0.223 -0.216 0.326 0.475

All 0.123 -0.219 0.387 0.484

Table 4.3: Spearman’s correlation between human scores and automatic scores in different
OOD datasets. All correlation coefficients are significant with ρ < 0.001, except for Auto-
J on SICK.

• Themis [76]: trained with Llama-3-8B based on their constructed dataset NLG-

Eval. It offers flexible aspect-based evaluations across different tasks. We tested

three aspects—relevance, coherence, and consistency—and selected relevance due

to its highest correlation with human judgments. The metric outputs an evaluation

analysis and provides a scale rating from 1 to 5.

For all reference-free metrics, we calculate the scores for all samples in the datasets,

given ground truth inputs (hypothesis, premise, and gold label). Appendix A.1.5 presents

the instructions of the evaluation models.

4.5.3 Correlation between human evaluation and automatic eval-

uation metrics

Table 4.3 shows the Spearman’s correlation6 between human and reference-free metrics

for the three OOD datasets. The Acceptability score (T5-11B) has the highest correlation

with human evaluation for all datasets, followed by Themis, and Auto-J has the lowest.

The highest correlations on all three datasets demonstrate the usability of the Acceptabil-

ity score as a reference-free metric for the explanation evaluation of NLI-related tasks.

4.5.4 Evaluation results on selected models and instances

Dataset Human Themis Accept.

SICK 0.655 2.185 0.437
VitaminC 0.621 2.183 0.363
XSUM H. 0.567 1.633 0.202

All 0.620 2.046 0.350

Table 4.4: Human scores and automatic scores in different OOD datasets.

The average scores of human evaluations in the three OOD datasets are shown in

Table 4.4. The scores show that SICK has the highest explanation scores, with VitaminC

6We choose Spearman over Pearson correlation as Pearson correlation assumes variables to be contin-
uous and from a normal distribution.
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slightly lower than SICK’s, and XSUM Hallucination the lowest, agreed by humans and

two automatic metrics. This may be due to the extremely long premise/document in

the XSUM dataset, making it difficult for the model to generate good explanations. For

shortcomings of explanations, see the detailed results in Figure A.3 in Appendix A.2).

Table 4.5 shows the evaluation results on the 13 selected models. We include Accept-

ability and Themis scores as they have moderate correlations with humans. In addition,

we show the average Acceptability score on all 19 datasets for overall results. We discuss

the evaluation results regarding each factor in the following.

Model Human Themis Accept. (3) Accept. (19)

TFev
64,AFk 0.631 2.058 0.317 0.250

TFev
128,R 0.623 1.983 0.276 0.206

TFev
128,Fk 0.589 1.867 0.216 0.201

TFev
128,AFk 0.611 2.092 0.328 0.256

TFev
Full 0.653 1.958 0.309 0.191

TSn
64,Fk 0.621 2.133 0.369 0.259

TSn
64,AFk 0.679 2.367 0.418 0.281

TSn
Full 0.678 2.050 0.519 0.343

OFev
16,AFk 0.631 2.417 0.423 0.305

OFev
128,AFk 0.639 2.250 0.384 0.307

OFev
Full 0.656 1.917 0.311 0.219

OSn
128,AFk 0.643 2.300 0.491 0.303

OSn
Full 0.408 1.208 0.194 0.111

Table 4.5: Evaluation results on OOD datasets of the 13 selected models. 3 means on the
three selected datasets, 19 means all datasets. Models are grouped by base models and
source datasets.

T5 vs OLMo As shown in Table 4.5, the difference between the two base models is

most pronounced with e-SNLI full-shot. T5 fine-tuned on full shot e-SNLI (TSn
Full) provides

the best explanations (besides TSn
64,AFk), whereas OLMo on full-shot e-SNLI (OSn

Full) gen-

erates the worse explanations. This may be due to catastrophic forgetting in the OLMo

model when fine-tuned on too many e-SNLI samples, as its few-shot version produces

explanations comparable to those of the T5 model.

e-SNLI vs e-FEVER Most e-SNLI models outperform e-FEVER in explanation qual-

ity (under the same model type and number of shots), except for OLMO full-shot. This

could be attributed to the higher quality of explanations in the e-SNLI source dataset,

while e-FEVER explanations are generated by GPT-3 (see more detailed comparison in

Section 4.7.2).

Few vs Full Overall, few-shot models achieved similar human scores to their full-shot

counterparts, except for the OLMo full-shot e-SNLI model. Although full-shot models
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showed slightly higher human scores, reference-free metrics favored the explanations gen-

erated by few-shot models, particularly for e-FEVER models.

Sample Selection As shown in Table 4.5, using the acceptability filter (“accept-FastVote-

k ”) improves explanation quality compared with the same sample selection without the

filter (“FastVote-k ”); however, TFev
128,AFk is not better than random selection (TFev

128,R) ac-

cording to humans. Nevertheless, based on the scores from the two reference-free metrics,

using the acceptability filter improves generated explanation quality (see more detailed

discussion in Section 4.7.2).

4.6 Self-Rationalization in the Wild: Overall OOD Per-

formance

A good self-rationalization model should perform well both on label prediction and ex-

planation generation. Thus, we first evaluate the generated explanations from a large

number of models using the Acceptability score (for all instances, we use the gold labels

for calculating the Acceptability score). Due to computational constraints, we limit the

number of shots to 4, 16, 64, 128, and full, with data selected from the first subset (the

Acceptability scores across different number of shots and sample selections can be found

in Figure A.4 of Appendix A.2). We then show models’ overall performance considering

both the F1 and Acceptability score. Finally, we select the best-performing models to

demonstrate overall performance on the 19 OOD datasets.

4.6.1 Relationship between label prediction performance and ex-

planation quality

Figure 4.3 shows the distribution of models under different fine-tuning factors, with the

x-axis showing the Acceptability score and the y-axis the macro F1 score (scores are

averaged over all datasets). We select the best models based on the Pareto fronts7.

As depicted in Figure 4.3, higher Acceptability scores are usually associated with bet-

ter F1 scores. Regarding each factor, we see that 1) OLMo models’ OOD performances

are less stable than T5 models’ but achieve better results with higher numbers of shots;

2) Sample selection methods with the acceptability filter have higher Acceptability scores;

3) Comparing the source datasets, fine-tuning on e-SNLI in general achieve higher Ac-

ceptability scores while on e-FEVER yield better F1 scores (see more discussions on the

impact of each factor in Section 4.7).

Regarding the best-performing models that consider both labels and explanations,

two models are selected based on the Pareto front: OFev
128,AFk (OLMo, 128 shots, accept-

Fastvote-k, e-FEVER) and TSn
Full (T5, full-shot, e-SNLI). The first achieves the highest

F1 score, while the second has the best Acceptability score, with both models performing

competitively on the other metric.

7For each point if no other point is strictly higher in both scores, the point is part of the Pareto front.
See definition in https://en.wikipedia.org/wiki/Pareto_front.
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Macro F1 score Acceptability score

Dataset TSn
Full TFev

Full OSn
128,AFk OFev

128,AFk TSn
Full TFev

Full OSn
128,AFk OFev

128,AFk

SICK 58.5 78.8 55.4 65.1 53.0 18.5 47.5 40.2
AddOneRTE 72.3 75.6 65.0 72.0 44.5 9.3 44.9 39.4
JOCI 52.5 41.8 49.2 53.7 51.9 12.4 43.6 41.6
MPE 68.7 37.7 62.4 60.7 49.8 6.4 45.8 39.2
DNC 60.1 66.9 53.4 58.5 35.1 10.0 25.8 32.8
HANS 58.2 43.3 51.7 65.9 38.6 27.6 24.0 27.8
WNLI 35.0 32.4 42.1 55.1 29.9 22.7 31.7 28.0
Glue Diagnostics 57.9 59.3 57.7 61.3 47.9 29.0 42.7 41.9
Conj 62.6 65.4 58.1 56.9 48.7 30.4 41.4 38.7
Snopes Stance 36.8 44.1 45.7 58.4 20.1 9.9 18.1 20.1
SciFACT 60.7 62.5 56.2 70.0 25.7 17.6 22.5 25.8
Climate FEVER 46.9 47.5 42.4 51.3 20.9 12.8 18.4 20.8
VitaminC 55.8 58.8 55.3 56.5 40.3 29.8 39.2 37.2
COVID-Fact 63.3 65.9 55.3 69.8 28.1 12.2 19.8 23.5
FM2 70.2 71.7 76.0 79.3 38.4 24.1 39.0 38.1
FactCC 56.4 59.6 56.0 65.2 16.8 27.6 19.1 24.6
QAGS CNN 51.8 59.3 60.0 72.5 20.2 26.4 19.0 25.8
QAGS XSUM 55.0 59.3 61.4 72.6 24.0 15.9 19.0 23.0
XSUM H. 47.9 50.4 55.8 56.9 17.3 11.6 17.6 15.1
Avg NLI 58.4 55.7 55.0 61.0 44.4 18.5 38.6 36.6
Avg FC 55.6 58.4 55.2 64.2 28.9 17.7 26.2 27.6
Avg HDAS 52.8 57.1 58.3 66.8 19.6 22.4 17.9 22.1
Avg All 56.3 56.9 55.7 63.2 34.3 19.1 30.3 30.7

Table 4.6: Macro F1 and Acceptability Scores on each OOD Dataset on the best models
(OFev

128,AFk and TSn
Full) and the different source dataset counterpart (TFev

Full and OSn
128,AFk).

The best score is bold, and second-best is underlined.

4.7 Discussions

This section explains the reasons for our earlier findings. First, we discuss how fine-tuning

data and the model affect label prediction and explanation generation. Then, we analyze

the relationship between label prediction performance and Acceptability score across the

three OOD tasks.

4.7.1 Impact of fine-tuning dataset and base model on OOD label

prediction

Source dataset Generally, OOD label prediction performance is better with models

fine-tuned on the e-FEVER dataset. To explore the reasons, we show the F1 score per

class for both ID and OOD test datasets (including cross-source and 9 OOD three-label

datasets) in Table 4.7, based on OSn
128,AFk and OFev

128,AFk models. OSn
128,AFk (e-SNLI) model

has a better ID performance (0.86) but generalizes poorly to OOD (0.54), whereas OFev
128,AFk

(e-FEVER) model has a worse ID (0.69) but better OOD performance (0.59). For both

source datasets, models perform better on e-SNLI test set than e-FEVER test set, indi-

cating that e-FEVER is a harder dataset to learn. In addition, fine-tuning on e-FEVER

helped improving performance on harder classes (“Neural (NEI)”) and “Entailment (Sup-
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ports)”.

Source Test Set E. N. C. A.

e-
S
N

L
I ID (Sn) 86.56 79.62 91.76 85.98

OOD (Fev) 78.17 38.65 68.82 61.88

OOD (9) 59.26 49.56 51.97 53.60

e-
F
E

V
E

R ID (Fev) 83.22 48.07 76.39 69.23

OOD (Sn) 89.04 78.18 86.63 84.61

OOD (9) 69.17 56.64 52.12 59.31

Table 4.7: F1 score performance on different test sets, contrasting the two source datasets.
E.: entailment, N.: neutral, C.: contradiction, A.: average F1 score. Fev: e-FEVER, Sn:
e-SNLI.

Base model We observed that T5 models’ OOD label prediction performances are

much more stable than OLMo. We believe it is due to two reasons: (1) T5 was fine-tuned

for the supervised text-to-text language modeling objective [25] including NLI datasets,

and FC and HDAS are relatively similar tasks. Since we formatted the claims/summaries

and evidence/documents as hypothesis/premise pairs, T5 can perform relatively well with

very few shots. On the downside, the model did not improve with more fine-tuning data

(especially with e-SNLI). In contrast, although OLMo models started with low perfor-

mance, they eventually outperformed T5 with increased number fine-tuning samples. (2)

The prompt for fine-tuning T5 matches the one used during its original supervised fine-

tuning on NLI datasets, so T5 models do not need to adapt to the format for predicting

NLI labels. In contrast, OLMo models perform poorly with few samples due to output

formatting issues (expected in JSON format with specific keys for labels and explana-

tions).

4.7.2 Impact of fine-tuning data on OOD explanation quality

Source Dataset We observed that models fine-tuned on e-SNLI generally have higher

OOD Acceptability scores (when having similar F1 scores). To understand the effect of

fine-tuning data on OOD explanations, Table 4.8 compares the two source datasets based

on input length (hypothesis, premise, and explanations), average Acceptability scores of

the original data (128 shots), and Acceptability and F1 scores for ID and OOD test sets.

The results, based on OSn
128,AFk and OFev

128,AFk, show that the input length has a large impact

on the ID Acceptability score, but the impact on OOD is minor (as it should depend on

OOD input length). Despite lower OOD F1 scores, OSn
128,AFk (e-SNLI) model has similar

OOD Acceptability scores to OFev
128,AFk (e-FEVER) model. This could be because part of

the SNLI dataset was used to train the Acceptability model. Nevertheless, Acceptability

score is more impacted by models’ label prediction performance, as reflected by the F1

Scores.
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Source
Input
Length

Source
Accept.

ID
Accept.

OOD
Accept.

ID
F1

OOD
F1

e-SNLI 38 0.671 0.565 0.262 82.8 54.3
e-FEVER 118 0.394 0.367 0.263 58.9 59.9

Table 4.8: Performance comparison across the two source datasets.

Data Filtering Our acceptability-based (T5-Large) filtering model had only slight im-

pacts on label prediction but improved explanation quality, according to the Acceptability

score. One hypothesis is that since the Acceptability score metric (T5-11b) is a larger

version of the filter model (only differing in size), the metric may favor explanations

generated from models fine-tuned on acceptability-filtered samples. To investigate this,

we conducted an experiment using the Themis metric as the filter for selecting sam-

ples (called "Themis-FastVote-k"), filtering out samples with ratings below 3 (on a 1-5

scale). The experiment is based on the OLMo best model (OFev
128,AFk), and the results are

shown in Table 4.9. The Acceptability score with “Themis-FastVote-k ”(0.303) is similar to

“accept-FastVote-k ”(0.307), despite having a lower F1 score. This suggests that using the

acceptability filter does not cause the Acceptability metric to overestimate explanations

generated from the filtered data.

Selection Accept. Themis F1

Themis-FastVote-k 0.303 3.027 58.24
accept-FastVote-k 0.307 2.774 63.24

Table 4.9: Evaluation results using Themis as a filter and as Acceptability a metric (T5-
11B), compared to using acceptability as a filter (T5-Large) and Themis as a metric.

4.7.3 Relationship between label prediction performance and Ac-

ceptability score

In Figure 4.3, we observed a positive correlation between F1 and Acceptability scores

across models. We analyze on the best e-SNLI and e-FEVER models to further explore

the relationship between label prediction performance and the Acceptability score within

a model. We calculated the average balanced accuracy (used instead of F1 to account

for varying class counts across datasets) for each task within different Acceptability score

ranges, shown in Figure 4.4. Among the three tasks, most HDAS samples have Accept-

ability scores below 0.3, while FC and NLI samples are distributed more evenly, indicating

lower explanation quality in HDAS. When comparing source datasets, the e-SNLI model

shows a steeper accuracy curve, suggesting that lower Acceptability scores often corre-

spond to incorrect predictions of the model. In both models, the Acceptability score

is positively linked to label prediction performance, especially in the lower score ranges

(below 0.6).
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Chapter 5

Label-Adaptive Self-Rationalization for

Fact Verification and Explanation

Generation

Self-rationalization, whereby models are trained to produce predictions and natural lan-

guage explanations jointly, is a mainstream explainable approach for Natural Language

Inference (NLI) tasks. In the previous chapter, we investigated how learning from existing

annotated datasets generalizes to NLI-related OOD datasets, including six fact-checking

ones. Our results showed that self-rationalization in its typical formulation is conditional

to the target dataset labels being part of the language model pre/training [52, 99].

As an example, consider Figure 5.1. It depicts different methods performances on

a recently released fact-checking dataset AVeriTec [30]. This dataset comprises four la-

bels, besides the typical 3-class label (Support, Not Enougn Info (NEI), Refute), it in-

cludes a new one for “Conflict (Conflicting Evidence)”. When performing zero-shot on

the T5-3B (green bars), a model pre-trained with NLI datasets (fact verification is often

considered similar to NLI) shows reasonable results on the “Support” and “Refute” classes

but performs poorly on “NEI”, and completely fails on the new “Conflict” class. Self-

rationalization fine-tuned on T5-3B, depicted by the blue bars in Figure reffig:motivation,

fails to learn the new class, resulting in low veracity prediction performance.

This problem is significant because most fact-checking datasets (e.g., FEVER [11])

usually label claim veracity with three classes: SUPPORT, REFUTE, and NEI (not

enough information), which is comparable to NLI labels (entailment, contradiction, and

neutral). However, many real-world fact-checking datasets usually have different labeling

schemes with the number of classes varying from 2-27 classes [12] in some cases. As the

labeling scheme shifts from NLI tasks, directly applying self-rationalization with models

pre-trained on NLI datasets performs poorly for fact checking.

In this context, we propose a label-adaptive self-rationalization approach to tackle

the challenge of the labeling shift for fact verification/checking. We first fine-tune a

pre-trained model to learn the classification task with different labels; then, we fine-

tune it again with labels and explanations to learn the self-rationalization task (expla-

nations). Our results show that the 2-step formulation significantly outperforms direct

self-rationalization learning by more than 20 percentage points (on the AVeriTec dataset)
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5.2.1 Label-Adaptive Self-rationalization Learning

Our proposed approach is illustrated in Figure 5.2. It comprises two steps: in Step-1, the

model learns to adapt to the new class with only provided labels; in Step-2, the model

learns the self-rationalization task with labels and added explanations. We describe the

details as follows:

Given a dataset D = (C,E, L,Expl), with each sample si = {ci, ei, li, expli}, ci, ei, li, expli
represent a claim, evidence, label, and explanation, respectively, we perform two steps.

Step-1: Label Adaptation. We first adapt and fine-tune the T5 model to generate

the veracity label li. Given the input xi = {ci, ei}, we follow the same standard prompt

template that was used to pre-train T5 for the NLI task (“claims” and “evidence” are

mapped to “hypothesis” and “premise” as T5 is more familiar with these words), as shown

in first row of Figure 5.2.

Step-2: Self-Rationalization. After fine-tuning the model with the veracity pre-

diction task, we now add gold explanation expli to fine-tune the resulting T5 model again

after Step-1. Shown in second row of Figure 5.2, we change the encoder prompt to

add the word “explain”, and for the decoder prompt, a separation word “explanation”,

inspired by [99].

To simulate a realistic scenario with limited annotated explanations, we employ large

language models (LLMs) to generate few-shot synthetic explanations. Specifically, we

evaluate this task using GPT-3.5-turbo-0125, GPT-4-turbo, and Llama-3-8B-Instruct.

We use the same prompt for generating the explanations with the three models, as

shown below:

System: You are a fact-checking assistant. You should not simply repeat the claim or evidence, your

answer should be concise and short.

User: Given the evidence {evidence}, and claim {claim}. Please explain why the claim is {ground

truth label}.

5.2.2 Data Processing and Label Mapping

We perform experiments on two datasets with explanation annotations: AVeriTeC [30]

and PubHealth [29]. We adopt these datasets as they better represent real-world fact-

checking scenarios with 4-class annotations.

AVeriTeC: The dataset comprises claims from 50 fact-checking organizations. It is

unique in the way that the evidence in AVeriTeC is composed of questions and answers

extracted from retrieval of online websites. To facilitate training, we concatenate the ques-

tions and answers as follows. Given a piece of evidence e = {q1(a1, a2, · · · , ai), · · · , qk(a1, a2, · · · , aj)},

we format it as “Question 1 : q1 Answer 1 : {a1 a2 · · · ai} · · ·Question k : qk Answer k :

{a1 a2 · · · aj}”. The justifications are human-annotated to reason over a claim’s given

questions and answers.

PubHealth: The datasets contain claims from the health (biomedical) domain that

are extracted from fact-checking and news review websites. The evidence consists of the

full text from fact-checking articles or news reviews, with an average length exceeding 600

words, significantly longer than AVeriTeC’s average of 120 words. Explanations for claim

veracity are provided through fact-checking justifications or news summaries.
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AVeriTeC PubHealth GPT/Llama T5

Supported TRUE true entailment

Not enough
evidence

UNPROVEN
not enough
information

neutral

Refuted FALSE false contradiction

Conflicting evidence
/cherry-picking

MIXTURE
partially true
and false

mixture

Table 5.1: Label mapping scheme.

Dataset AVeriTec (Train / Dev) PubHealth (Train / Dev / Test)

entailment 848 / 122 5,078 / 629 / 599
neutral 282 / 35 291 / 41 / 45
contradiction 1,742 / 305 3,001 / 380 / 388
mixture 195 / 38 1,434 / 164 / 201

#words C 17 / 17 14 / 13 / 14
#words E 113 / 122 714 / 708 / 718

Table 5.2: Dataset details by each class.

We map the textual labels for different models as shown in Table 5.1. Specifically for

T5, we align the labels with the NLI task naming scheme used during pre-training. For

the “Conflicting evidence” label in AVeriTeC, we equate it to the “MIXTURE’ ’ class in

PubHealth, which is “partially true and false” for GPT/Llama models.

The data statistics for each dataset are shown in Table 5.2; we removed instances that

contain empty claims. Both datasets have very imbalanced classes, with less data with

“NEI (not enough evidence)” and “mixture” classes.

5.3 Experimental setup

This section describes the implementation details, evaluation metrics, and baselines used

in our experiments.

5.3.1 Implementation Details

In each fine-tuning experiment, we select the best model from the last epoch without

using a validation set. For AVeriTec, we use a batch size of 4 and a max input length of

512. For PubHealth, due to the length of the evidence, we use a batch size of 2 and a

max input length of 1024. All experiments are based on NVIDIA A100 GPUs. For GPT-4

zero-shot baseline, we set the temperature to be 0.7, with a max output length of 200.

5.3.2 Evaluation Metrics

To evaluate the veracity prediction and explanation quality, we first extract the label

and explanation from the generated text using the separator “explanation: ”. For
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veracity prediction, we assess performance based on accuracy and macro F1 score. For

explanations, we use both reference-based metrics (ROUGE scores and METEOR) and

reference-free metrics. The latter is crucial in realistic scenarios where the test dataset

lacks reference explanations for comparison. Specifically, we use the following reference-

free metrics:

• Auto-J [104]: The metric is a model based on LLaMA-2-13B-chat by fine-tuning on

judgments of LLM-generated responses with diverse user queries. It supports both

single and pair-wise evaluations. We use it for single reference-free evaluations. The

evaluation output comprises textual analysis and an overall quality rating between

1-10.

• TigerScore [105]: Another trained model-based metric that provides explainable

evaluations for text generation tasks by following instructions. It outputs an overall

error score ranging from 0 to -infinity, along with a textual analysis detailing the

location and type of each detected error. We use the TIGERScore-13B model in our

evaluation.

For the reference-free metrics, the input must be formatted using instruction-based

prompts. Our instructions are similar to those used for generating synthetic explanations

with LLMs. We evaluate the explanations based on ground truth labels.

5.3.3 Baselines

We compare our two-step approach (denoted as 2-R, with R denoting Rationalization)

with the following baselines:

1. 0-L: zero-shot T5-3B baseline. As NLI datasets were used for T5 pre-training, we

formatted veracity prediction as an NLI task and prompted T5-3B to generate pre-

dictions. L denotes Label prediction.

2. 1-R: Compared to 2-R, this baseline model is directly fine-tuned with labels and

explanations without first fine-tuning for the veracity prediction task.

3. 1-L: veracity prediction model fine-tuned with labels only (Step-1 model). The

model cannot generate explanations, thus is not included for explanation compari-

son.

4. Baseline approach by Schlichtkrull [30]. They have separate models for predicting

veracity and generating explanations on the AVeriTec dataset, with the best results

obtained with BERT-Large and BART-Large.

5. Baseline approach by Kotonya [29]. They also have separate models for the two

tasks; on the PubHealth dataset, the best results are based on SCIBERT and BERT

models.
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6. Zarharan et al. [85]: They studied different LLMs’ performance on the PubHealth

dataset. All their models are based on summarized evidence to reduce the evidence

length, using GPT-3.5-turbo for the summarization. The best results were achieved

with parameter-efficient-fine-tuning (PEFT) on the Mixtral-7B model.

7. GPT-4. We conduct zero-shot prompting on GPT-4-turbo for the AVeriTec dataset.

As reported in [85], GPT-4’s performance on the PubHealth dataset is directly re-

ported in our work. We prompt the model to generate the output in JSON format

to obtain the predicted veracity label and explanation, as illustrated below.

System: You are a helpful assistant designed to output JSON, formatted as “answer”:,

“reason:”.

User: Based on the evidence, determine if the claim is true, false, not enough informa-

tion to confirm, or partially true and false.

Evidence: [evidence]

Claim: [claim]

Options: - true - not enough information - false - partially true and false

Please provide your reason.

We directly refer to the numbers reported in the respective paper for baseline results.

For explanation evaluation, Zarharan et al. [85] made their results publicly available, so

we ran all evaluation metrics based on their released explanations.

5.4 Results and Discussions

We present results on veracity prediction and explanation generation in comparison with

baselines; and the results of fine-tuning on few-shot synthetic LLM-explanations.

5.4.1 Veracity Prediction Performance

Table 5.3 shows the veracity prediction results on different baseline models and our 2-R

model. As expected, 0-L (zero-shot on T5-3B) cannot predict the class “mixture” for either

dataset. For AVeriTeC, our 2-R model is comparable with GPT-4, with the best accuracy

of 85.2%, while being a much smaller model. For PubHealth, the 1-L model achieved

the best performance, while 2-R model slightly dropped (2%) on Macro F1 after learning

to generate explanations. Both outperform the larger baseline models (Mixtral-7B and

GPT-4). For both datasets, the 2-R model improved performance (Macro F1) by more

than 10 percentage points compared with the 1-R model, showing that letting models

learn the veracity task first greatly helps the model to adapt to the new domain with

new classes. Specifically, the 1-R model struggled with predicting classes “neutral ” and

“mixture”, but with our label-adaptive approach (2-R), the model was able to improve

predictions on these classes significantly.
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Model S N R M F1 Acc.

A
V

er
iT

eC

BERT-Large[30] 48.0 59.0 74.0 15.0 49.0 49.0

GPT-4 83.5 65.9 91.5 45.5 71.6 83.0

0-L 64.8 22.2 78.1 0.0 40.5 62.0

1-R 74.7 15.4 86.9 0.0 44.2 76.2

1-L 87.5 59.0 89.3 29.5 66.3 83.4

2-R 89.2 65.6 90.1 32.7 69.4 85.2

P
u
b
H

ea
lt

h

SCIBERT[29] - - - - 70.5 69.7

Mistral-7B[85] 92.7 48.6 82.1 57.1 70.1 81.8

GPT-4[85] 80.6 18.2 73.0 42.0 53.4 69.6

0-L 65.0 2.8 42.9 0.0 27.7 48.7

1-R 91.2 26.9 79.8 38.9 59.2 79.1

1-L 93.4 60.5 84.2 58.2 74.1 83.7

2-R 93.2 57.5 83.4 55.1 72.3 83.1

Table 5.3: Performance comparison on veracity prediction

5.4.2 Generated Explanation Quality

We show the evaluation of generated explanation quality in Table 5.4. For both datasets,

GPT-4 generated explanations have the best scores on the reference-free metrics, indicat-

ing the reasoning abilities of GPT-4, although it has a tendency to be verbose (having

the longest explanations on average). Our 2-R approach has the highest ROUGE scores,

outperforming the baselines. For the AVeriTec dataset, the 2-R model generates better

explanations than the 1-R model, as agreed by all metrics. For the PubHealth dataset,

the scores for the two models are very similar, and both have the highest ROUGEs and

METEOR scores. In general, the results show that fine-tuned models generate explana-

tions that are better aligned with reference explanations, as the training data follow a

similar pattern.

Overall, our 2-R approach achieves the highest veracity prediction performance and

the best reference-based scores for explanations, outperforming LLMs and other state-of-

the-art baselines.

5.4.3 Results from Synthetic Few-shot Explanations

To demonstrate the potential of our two-step approach in data-scarce scenarios, we test

Step-2 with few-shot fine-tuning. We select 16 samples per class (64 samples total) to

prompt an LLM to generate synthetic explanations. These samples and their generated

explanations are then used to fine-tune the 1-L model. For robust results, we select

few-shot samples with three different random seeds and report the results in average and

standard deviation. The results for veracity prediction and explanation generation are

shown in Table 5.5 and 5.6.

The veracity prediction results show that Step-2 with very few amount of data

still achieve much better performance than end-to-end self-rationalization model (1-R),

and perform comparably to the 2-R with full dataset fine-tuning. In terms of explana-
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Model AJ↑ Tiger↓ ROUGEs METEOR #W

A
V

er
iT

eC

BART-Large[30] - - - .28 -

GPT-4 4.99 0.64 25 / 9 / 19 .31 60

1-R 3.45 2.06 27 / 10 /23 .24 18

2-R (Ours) 3.61 1.87 29 / 12 / 25 .26 18

Reference 3.54 1.48 - - 22

P
u
b
H

ea
lt

h

BERT[29] - - 32 / 13 / 27 - -

Mistral-7B[85] 3.99 1.88 36 / 15 / 26 .29 73

GPT-4[85] 4.80 0.53 26 / 8 / 17 .24 75

1-R 3.63 2.34 43 / 24 / 34 .37 59

2-R (Ours) 3.62 2.50 43 / 24 / 35 .37 59

Reference 3.70 1.23 - - 76

Table 5.4: Explanation evaluation with reference-free and reference-based metrics. #W
means the average number of words in the explanations. Reference means gold explana-
tion.

tion quality, the reference-free metrics indicate that the best explanations are from the

2-R(GPT-3.5), with a similar Auto-J score compared to the best, and the lowest Tiger-

Score among few-shot models.

Surprisingly, the 2-R(GPT-4) model performs worse than both 2-R(GPT-3.5) and

2-R(Llama-3-8B), in contrast to Table 5.4, where GPT-4 model generated explanations

are much better. We hypothesize that when generated text is long (2-R(GPT-4) model

explanations are almost twice as long compared with the rest), it is more detailed but

also more likely to contain errors.

We show an example of explanations generated by different models from the PubHealth

dataset in Figure 5.7). We see that as the explanation becomes longer, models tend to

hallucinate and makes more errors. In this sense, GPT-3.5 and Llama-3-8B generated

explanations are better for having shorter explanations and thus less likely to make errors.

This gap is particularly captured by TigerScore (Table 5.4), which measures the number

of errors in the explanations.

5.5 Final Remarks

We proposed an effective two-step approach for joint fact-verification and explanation gen-

eration with self-rationalization. Our results show that having a label prediction step sig-

nificantly helped the model to adapt to new classes and perform better. Our method with

T5-3B outperformed larger models, including Mixtral-7B and GPT-4. We further utilized

LLMs to generate few-shot synthetic explanations to fine-tune our T5-3B model, and it

outperformed end-to-end self-rationalization models fine-tuned on the entire dataset. We

also show that T5-3B models struggle with generating longer explanations when learning

from GPT-4 explanations.



70

Expl. Source S N R M F1
A
V

er
iT

eC
2-R(GPT-4) 83.1±2.0 52.9±3.9 86.4±0.7 29.8±4.3 63.1±1.1

2-R(GPT-3.5) 86.2±2.3 61.0±1.6 85.3±2.2 35.1±3.3 66.9±1.0

2-R(Llama-3-8B) 83.0±5.2 58.1±5.7 85.9±0.4 35.0±4.2 65.5±2.1

2-R (orig.) 86.5±2.8 58.3±4.1 87.2±0.7 30.6±2.6 65.6±1.0

1-R (orig., Full) 74.7 15.4 86.9 0.0 44.2

2-R (orig., Full) 89.2 65.6 90.1 32.7 69.4

P
u
b
H

ea
lt

h

2-R(GPT-4) 86.9±1.0 38.6±2.0 75.8±1.6 54.4±1.1 63.9±1.2

2-R(GPT-3.5) 87.5±1.5 42.9±2.3 76.3±1.6 55.5±1.6 65.5±1.0

2-R(Llama-3-8B) 88.9±1.1 46.1±3.0 78.6±2.6 54.3±2.2 67.0±1.4

2-R (orig.) 86.1±0.5 46.7±2.4 78.1±2.3 51.9±0.3 65.7±1.1

1-R (orig., Full) 91.2 26.9 79.8 38.9 59.2

2-R (orig., Full) 93.2 57.5 83.4 55.1 72.3

Table 5.5: Veracity prediction results with few-shot Step-2 fine-tuning under different
LLM-based synthetic explanations. All models are based on T5-3B. Orig. means original
annotated explanations. Full means entire dataset fine-tuning, otherwise few-shot fine-
tuning.

Expl. Source Auto-J↑ Tiger↓ ROGUE-1 / 2 / L METEOR #W.

A
V

er
iT

eC

2-R(GPT-4) 4.51±0.04 4.35±0.45 21±0.7 / 8±0.3 / 16±0.4 .29±0.0 84±5

2-R(GPT-3.5) 4.42±0.10 2.49±0.25 27±0.2 / 10±0.0 / 20±0.1 .30±0.0 45±1

2-R(Llama-3-8B) 4.31±0.13 2.90±0.65 27±1.2 / 11±0.6 / 20±0.9 .29±0.0 45±4

2-R (orig.) 3.38±0.06 2.70±0.15 25±0.7 / 8±0.4 / 20±0.5 .22±0.0 22±3

1-R (orig., Full) 3.45 2.06 27 / 10 /23 .24 18

2-R (orig., Full) 3.61 1.87 29 / 12 / 25 .26 18

Reference 3.54 1.48 - - 22

P
u
b
H

ea
lt

h

2-R(GPT-4) 4.47±0.03 4.27±0.30 24±0.3 / 7±0.0 / 16±0.1 .25±0.0 119±3

2-R(GPT-3.5) 4.39±0.01 2.34±0.23 27±0.3 / 9±0.2 / 18±0.2 .24±0.0 68±5

2-R(Llama-3-8B) 4.29±0.03 2.89±0.11 27±0.5 / 8±0.2 / 18±0.3 .23±0.0 58±2

2-R (orig.) 3.65±0.03 2.84±0.26 31±0.6 / 12±1.0 / 22±0.9 .25±0.0 56±5

1-R (orig., Full) 3.63 2.34 43 / 24 / 34 .37 59

2-R (orig., Full) 3.62 2.50 43 / 24 / 35 .37 59

Reference 3.70 1.23 - - 76

Table 5.6: Explanation evaluation results with Step-2 few-shot fine-tuning under different
LLM-based synthetic explanations. All models are based on T5-3B.
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Claim (Mixture)
The Westmoreland News ran a KKK ad on the front page of their newspaper in April 2018.
Evidence (unimportant parts are omitted due to its length)
On 25 April 2018, the front page story of Virginia’s Westmoreland News described the disturbing occurrence of KKK
recruitment flyers in front home homes in Colonial Beach, VA [...] In a move that has generated significant online controversy,
the Westmoreland News reproduced a full, un-redacted version of that ad in their story, leading some to brand it has free
advertising for the KKK. As reported by Newsweek and local CBS affiliate WTVR, many readers of the paper were outraged:
They posted the whole flyer as if they were giving them free advertising,” Colonial Beach resident Betty Tate Thompson
told WTVR. “It even had the number on flyer to contact the head of the KKK. Which I thought was totally ridiculous.”
[...] Plott said the editor called him back with an explanation. “She explained that she wanted to put it in to show people
that those of us in Colonial Beach who may think there’s not racism; there is and I think she didn’t expect for this to
blow up the way it did and with this outcome,” explained Plott. While the ad was reproduced in full, The Westmoreland
News did post a disclaimer on the story with this text: Westmoreland News in no way condones or supports the content
or message of this flyer, nor does it condone or support any branch of the Loyal White Knights, or the KKK. Decisions
on how to report the occurrence of KKK flyers in the media have not been made consistently in the past. [...] In each of
those cases, it should be noted, the flyer was reproduced as an obvious photograph of a paper document. The front page
image used by the Westmoreland Times, however, could be confused for a paid advertisement. Because that was not the
case here, however, we rank the claim that the newspaper “ran an ad” for the KKK as a mixture.
GPT-4

The context refers to an occurrence in April 2018 where the Westmoreland News reproduced a KKK recruitment ad on its
front page. The controversy discussed was about the decision to run this ad, which was perceived as free advertising for the
KKK. Therefore, the claim is supported by the context.
1-R (orig., Full)
What’s true: The Westmoreland News reproduced a full, un-redacted version of a KKK recruitment flyer in their front page
story. What’s false: The newspaper did not pay for the ad.
2-R (orig., Full)
What’s true: The Westmoreland News reproduced a full, un-redacted version of a KKK recruitment flyer in their front page
story. What’s false: The newspaper did not run an ad for the KKK.
2-R(GPT-4)

The claim that the Westmoreland News ran a KKK ad on the front page of their newspaper in April 2018 is mixture because
the evidence provided does not conclusively establish that the newspaper provided free advertising for the KKK. While the
publication did reproduce a full, un-redacted version of the KKK ad in their story, the inclusion of the contact information
and phone numbers on the flyer raised concerns among readers and sparked outrage on social media. Additionally, the
editorial decision to run the ad in its entirety was made after significant discussion and debate amongst community members
and law enforcement, who objected to the inclusion of such explicit recruitment materials in a news story. Therefore, the
claim cannot be fully confirmed as it is made with certainty.
2-R(GPT-3.5)

The claim that The Westmoreland News ran a KKK ad on the front page of their newspaper in April 2018 is partially true
because the newspaper included a full, un-redacted version of the ad in their report on the occurrence of KKK recruitment
flyers in Colonial Beach, VA. The claim is false because the newspaper did not explicitly state that it was running an ad
for the KKK, and the claim is also false because the editor provided a disclaimer on the article.
2-R(Llama-3-8B)

The claim is partially true because the Westmoreland News did reproduce a full, un-redacted version of the KKK ad in
their story, which generated significant online controversy. While the newspaper did not explicitly endorse the KKK, it did
state that it did not condone or support the group’s message or message of racism. Additionally, the claim is partially
false because the newspaper did not provide sufficient evidence to prove the claim.
Reference (Gold)
What’s true: The Westmoreland News did publish a copy of a KKK flyer in full on their front page as part of their reporting
on KKK flyers being distributed in the region. What’s false: The document was not run as an ad in the paper, but was
intended to be an illustration for their coverage of the KKK.

Table 5.7: An example of generated explanations from different models on PubHealth
dataset. In the evidence and explanations, the accurate and relevant text is highlighted
in color blue, while the inaccurate or hallucinated text is highlighted in red. Best viewed
in color.
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Chapter 6

Conclusions and Future Work

Misinformation has long been a persistent societal challenge, but the digital age has sig-

nificantly amplified its scale and speed. The rise of Artificial Intelligence, particularly in

language models, has further complicated the issue. These models, now capable of gen-

erating highly persuasive and realistic false content at extraordinary speed, make it in-

creasingly difficult to distinguish truth from deception. However, the same advancements

driving these challenges also present opportunities. Over the past few years, language

models have grown remarkably in scale and capability, achieving impressive zero-shot

performance. This progress has shifted our research efforts from designing smaller models

to fine-tuning and prompting larger ones, unlocking their potential as tools to combat

misinformation. By leveraging these models responsibly, we can develop innovative ap-

proaches to identify and mitigate the spread of false information while promoting truth

and transparency.

Fact-checking is a crucial process in journalism for combating disinformation. While

fully automated fact-checking solutions are not yet ready for real-world implementation,

they can play a significant role in supporting human fact-checkers by enhancing the speed

and thoroughness of the verification process. This collaborative approach is essential for

improving the efficiency and effectiveness of combating misinformation. In this thesis, we

focused on two goals: fact-checking efficiency and explainability.

For fact-checking efficiency, we proposed speeding up fact-checking process by group-

ing similar text messages together and summarizing them into one claim to reduce redun-

dancy. Additionally, we explored few-shot learning techniques to minimize the amount

of human-annotated training data required. Our research examined various numbers of

fine-tuning samples, sampling methods, and the use of synthetic few-shot data for model

fine-tuning.

For explainability, we explored using QA and self-rationalization methods for generat-

ing explainable fact-checking outputs. Our method was the first one proposed to address

explainable fact-checking using QA. With self-rationalization, we performed a large-scale

evaluation on 19 datasets containing diverse synthetic and real-world claims. Our thor-

ough evaluation considered four different evaluation metrics and human evaluation with

468 crowd-workers.

In the remaining of the chapter, we revisit each research questions posed in Chapter 1

and present the insights we gained throughout our research journey. Finally, we discuss
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the limitations of our research and potential future directions.

6.1 Revisiting the Research Questions

In advancing automated fact-checking, this thesis focused on two primary goals, guided

by the research questions introduced in Chapter 1, Section 1.2. In light of the challenges,

proposed solutions, results, and findings, we now revisit each question to demonstrate

how they have been addressed.

6.1.1 RQ1: Given a large amount of raw text data, how can we

speed up the fact-checking process to reduce fact-checkers’

workload?

To address this research question, Chapter 2 focused on finding claims from raw data

from social media (X.com) by grouping similar messages to summarize them into claims.

Specifically, we first clean a set of social media posts (e.g., tweets) and build a graph of all

posts based on their semantics. Then, we perform two clustering methods to group the

messages for further claim summarization. Our results reduced 28,818 raw messages into

700 summary claims, effectively speeding up the claim discovery process of fact-checking.

6.1.2 RQ2: How do we use data efficiently to use less annotated

data for model learning?

Annotating data specifically for writing tasks is challenging as it requires significantly more

time and supervision than classification tasks. To address this issue, works usually need

to use a small amount of annotated data for learning. In Chapters 4 and 5, we explored

few-shot learning for generating fact-checking explanations, with various numbers of fine-

tuning samples and methods for selecting high-quality samples. Our results (Chapter 4)

showed that with up to 128 shots, models have comparable performances to a full training

set (e.g., with half a million samples in the e-SNLI source dataset). We also explored

generating synthetic explanations using LLMs for learning self-rationalization (Chapter 5),

and showed that the model learned from the synthetic explanations can outperform the

full-shot end-to-end self-rationalization model with human annotated explanations.

6.1.3 RQ3: How can we modify the fact-checking process to make

it more transparent to human fact-checkers?

To increase fact-checking explainability, Chapter 3 addresses this by integrating question

answering into the fact-checking pipeline. In particular, we proposed to generate questions

and answers from claims and extract answers from the same questions from evidence. For

answer pairs comparison, we proposed a model with attention mechanism attached to

each question. With this, we break down the fact verification into several steps, aiding

explainability as it allows more detailed analysis of each individual step.
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6.1.4 RQ4: In the absence of annotations, how can we leverage

a different dataset to generate explanations for the target

dataset?

Our question answering approach for explainable outputs nevertheless has some limita-

tions. When using multiple models for one solution, each model can aggregate the error,

making the final results drastically wrong. Additionally, the attention model selected

question and answer pairs may not always be correct and relevant. To address the is-

sues with QA, we studied another approach: self-rationalization. In self-rationalization, a

model jointly generates the task label and a free-text explanation for the predicted label.

This allows one model to perform two tasks: label prediction and explanation genera-

tion. The main challenge of self-rationalization is the lack of annotated explanations. To

handle this issue, Chapter 4 investigated how learning from existing explanation datasets

generalizes to diverse datasets. Our results show that with few annotated explanations,

models can effectively perform self-rationalization on some OOD datasets, compared to

full dataset fine-tuned models.

6.1.5 RQ5: How do we evaluate generated explanations without

any reference data?

Language generation tasks face evaluation challenges as metrics for evaluation usually re-

quire reference text for comparison. To make matters worse, traditional reference metrics

such as BLEU and ROUGEs have been shown to correlate poorly with humans [73]. Thus,

we investigated using the Acceptability score as our reference-free metric (Chapter 4). To

further validate the effectiveness of the metric, we performed a human evaluation with

468 crowd-workers and showed that the Acceptability score had the highest correlation

with humans, compared to three other state-of-the-art metrics.

6.1.6 RQ6: How does our method work on real-world fact-checking

datasets?

In our self-rationalization OOD evaluation, the fact-checking datasets are commonly used

three-class datasets. To work on more realistic fact-checking datasets, we extended self-

rationalization to fact verification with four-class labels (Chapter 5). In detail, we pro-

posed a two-step label adaptive approach: first, we fine-tuned a model to learn veracity

prediction with annotated labels (step-1 model); then, we fine-tuned the step-1 model

again to learn self-rationalization. This approach allows the model to adapt to a new do-

main more effectively than directly fine-tuning end-to-end self-rationalization. Our results

show that our label-adaptive approach improves veracity prediction by more than ten per-

centage points (Macro F1) on both the PubHealth and AVeriTec datasets, outperforming

the GPT-4 model. Our label-adaptive self-rationalization approach presents a promising

direction for future research on real-world explainable fact-checking with different labeling

schemes.
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6.2 Limitations and Future Work

Lack of annotated data The scarcity of annotated data has posed significant chal-

lenges for both model training and result evaluation. In the initial work on grouping

and summarization for claim generation (Chapter 2), there was an absence of reliable

ground-truth labels for clustering and oracle summaries for summarization evaluation.

The second study (Chapter 3), which focused on generating questions and answers for ex-

plainable fact-checking, similarly lacked ground-truth data to assess the effectiveness of the

generation methods. To address the shortage of annotated explanations, Chapters 4 and

5 explored the use of a limited set of annotated explanations to learn self-rationalization

for explanation generation. Chapter 5 also investigated reference-free evaluation metrics,

a necessary step given the high cost and time demands of human evaluation. Future work

could delve deeper into learning from synthetically generated data for model fine-tuning.

Our findings indicated that many data points in a dataset are highly similar in terms of

content and style, allowing for effective learning with less data. With up to 128 exam-

ples, we observed performance comparable to or even exceeding that of full-shot models;

additional examples may further enhance results, a direction we suggest for future inves-

tigation. Moreover, future research could explore unsupervised evaluation metrics based

on large language models (LLMs) as an alternative to human evaluation.

Instructions for model fine-tuning/prompting When using a generative model for

classification, the naming of labels is an important factor that affects performance, as

different models may have their own way of formatting the labels during pretraining. 2)

We use the same instructions for different LLM models (Chapter 5), but there may be

other instructions that help them generate more accurate explanations. Future work may

focus on studying what models/instructions can generate better synthetic explanations

for smaller models to learn from.

Reliability of evaluation metrics LLMs can generate fluent and plausible text, but

also tend to generate long and creative content. When evaluating these models, current

metrics mainly focus on the plausibility of the generated text. However, it is also impor-

tant to consider other aspects such as consistency, coherence, and factuality. In our study,

the highest correlation between reference-free metrics and humans is 0.484 (Chapter 4),

which is moderate but not high enough to trust it completely. Future work may focus on

designing better evaluation criteria to thoroughly investigate what kind of explanations

users prefer or require.

Out-of-Distribution performance In our OOD evaluation study, we found that e-

FEVER appeared to be a more challenging source dataset than e-SNLI (Chapter 4), as

its model demonstrated worse ID but better OOD performance. Thus, future work may

explore fine-tuning on harder tasks for better OOD generalization. Another promising

direction is improving the explanations in the source datasets, with better ways of selecting

good quality explanations or re-writing better few-shot explanations with LLMs.
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Evidence retrieval In all our datasets, we used gold evidence instead of evidence

retrieval to focus on fact verification. Future work can add the retrieval step to the pipeline

instead of using gold evidence, as the retrieval is also a crucial part of fact-checking.

Datasets limited to English Since our selected datasets are sourced from English-

only data, our methods are limited to English. Testing the approach to multilingual

models and datasets is also a promising endeavor.

6.3 Research Outcomes

Finally, we list all the papers published, accepted or submitted during this Ph.D. research,

in a reverse chronological order.

1. Jing Yang, Max Glockner, Anderson Rocha and Iryna Gurevych. Self-Rationalization

in the Wild: A Large Scale Out-of-Distribution Evaluation on NLI-related tasks.

Acceptedin Transactions of the Association for Computational Linguistics (TACL),

2024.

2. Jing Yang and Anderson Rocha. Take It Easy: Label-Adaptive Self-Rationalization

for Fact Verification and Explanation Generation. To appear in IEEE International

Workshop on Information Forensics and Security (WIFS), 2024.

3. Jing Yang, José Nascimento, Gabriel Bertocco, Antonio Theophilo, Rafael Padilha,

Aurea Soriano-Vargas, Fernanda A Andaló and Anderson Rocha. AI Knows What

You Did Last Summer: Applications in Digital Forensics. In the Book Chapter of

Computer Vision: Challenges, Trends, and Opportunities, pages 82–108, 2024.

4. João Phillipe Cardenuto, Jing Yang, Rafael Padilha, Renjie Wan, Daniel Mor-

eira, Haoliang Li, Shiqi Wang, Fernanda Andaló, Sébastien Marcel and Anderson

Rocha. The Age of Synthetic Realities: Challenges and Opportunities. APSIPA

Transactions on Signal and Information Processing, pages 1–62, 2023.

5. José Nascimento∗, João Phillipe Cardenuto∗, Jing Yang∗ and Anderson Rocha.

Few-shot Learning for Multi-modal Social Media Event Filtering. IEEE Interna-

tional Workshop on Information Forensics and Security (WIFS), 2022. ∗ Equal

contribution.

6. Jing Yang, Didier Vega-Oliveros, Taís Seibt and Anderson Rocha. Explainable

Fact-checking through Question Answering. IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 2022.

7. Jing Yang, Didier Vega-Oliveros, Taís Seibt and Anderson Rocha. Scalable Fact-

checking with Human-in-the-Loop. IEEE International Workshop on Information

Forensics and Security (WIFS), 2021.
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8. Rafael Padilha, Antônio Theóphilo, Fernanda A. Andaló, Didier A. Vega-Oliveros,

João P. Cardenuto, Gabriel Bertocco, José Nascimento, Jing Yang and Anderson

Rocha. A Inteligência Artificial e os desafios da Ciência Forense Digital no século

XXI. Estudos Avançados 35, pages 113-138, 2021.
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Appendix A

Experimental Details for

Self-Rationalization Fine-tuning

In the following, we describe more experimental details and supplementary results related

to Chapter 4.

A.1 Category 1: Additional details

A.1.1 Data pre-processing

For the following datasets, we applied pre-processing as defined below:

AddOneRTE [88] We convert the mean human scores into two classes entailed (when

the score is no less than 4) and not_entailment (when the score is no greater than 3,

anything between 3 and 4 are removed), following the literature convention [106].

Ordinal Common-sense Inference (JOCI) [89] We follow Karimi Mahabadi et al.

[106] by mapping the labels very likely to entailment ; likely, plausible and technically

possible to neutral ; and impossible to contradiction.

Multiple Premise Entailment (MPE) [90] We concatenate the premise sentences

together to form one premise paragraph.

SciFact [94] The dataset does not have public available labels for test set, thus we use

the dev set. We do not perform evidence retrieval and use the cited document abstracts

as evidence.

Climate FEVER [95] We use the paragraph-level evidence labels.

FactCC [38] We map label factual as entailment and non-factual to not_entailment.

QAGS CNN [40] We aggregate with majority voting from the provided human anno-

tations.
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QAGS XSUM [40] We aggregate with majority voting from the provided human

annotations.

XSUM Hallucination [37] We aggregate with majority voting from the provided

human annotations.

A.1.2 Ambiguous sample selection method

We input the (hi, pi) to the T5-large model, and take the probability of the first most

likely output token, since the first token represent the classification label. We denote the

probability as pi. To select ambiguous samples, we calculate a mean probability score

pmean as follows:
pmean = (pmax + pmin)/2 (A.1)

where pmax and pmin represents the highest and lowest probability score among all sample

scores respectively. Then we re-calculate the score based on its absolute distance with

pmean:

p′i = |(pi − pmean)| (A.2)

with the absolute distance, we re-rank the samples from low to high to select the most

ambiguous ones. The lowest value represents the most ambiguous sample and the highest

the least ambiguous.

A.1.3 Additional implementation details

For T5-Large model fine-tuning, we perform a hyper-parameter search over the learning

rate for each number of shots for each source dataset separately, with random sample

selection from the first subset. We select the learning rate based on the highest perfor-

mance on the in-distribution validation set within 50 epochs. The performance is based

on the summation of label accuracy and explanation BERTscore [107]. The same hyper-

parameters are used for all sample selection methods, which share the same m and source

dataset for fine-tuning. To calculate the labels’ accuracy and explanations’ BERTscore,

we divide the output sequence into the label and explanation. With the template format,

T5 learns to generate a text label, followed by a separation pattern, “explanation:”, and

then the explanation tokens. Thus, we take the token before the separation pattern as

the text label and after as the explanation. During hyper-parameter search, we test these

learning rates: 3e-7, 3e-6, 3e-5, and 3e-4. For the validation set in fine-tuning, we ran-

domly select 300 samples in the original validation set as the in-distribution set, as the

original one is too large; thus, validation takes much longer. We follow the same settings

as FEB [52] for the validation instances; for the ones with more than one explanation

annotated, we merge them into one sequence separated by [SEP] token.

For OLMo-7B fine-tuning with LoRA, we follow recommended hyperparameters stud-

ied in Zarharan et al. [85]: LoRA r and alpha values are both 16, the learning rate is 2e-4,

and the optimizer is “paged_adamw_32bit”. We fine-tune all few-shot models with 50

epochs and use the models from the last epoch. For full-shot fine-tuning, the number of

epochs is ten instead of 50.
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The sentence-transformer model used in embedding the input for the Fast-Vote-k

method is paraphrase-mpnet-base-v2.

A.1.4 Human evaluation interface

The evaluation interface is shown in Figure A.1, including the task instruction, some

examples, and the evaluation page.

A.1.5 Input template for explanation evaluation with the reference-

free metrics

• Acceptability score

premise: [premise] hypothesis: [hypothesis] answer: [gold label] explanation:

[explanation]

• TigerScore and Auto-J

Given a hypothesis and its premise, please explain why the hypothesis is entailment,

neutral, or contradiction.

Hypothesis: [hypothesis], Premise: [premise].
Please explain why the hypothesis is [gold label].

• Themis (relevance aspect, input in JSON format)

{“task”: “Controllable Generation”, “aspect”: “Coherence: Given the explanation for the
relationship between the hypothesis and premise pair, how much does the generated
explanation make sense?”, “source_des”: “Hypothesis and Premise Pair”, “source”: “Hy-
pothesis: [hypothesis], Premise: [premise], please explain why the Hypothesis is [gold
label].”, “target_des’‘: “Explanation”, “target”: [explanation]}

A.1.6 Generated explanations by different models and their eval-

uation scores
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Hypothesis (contradiction)
A person in a blue jacket is jumping onto a tall cement wall

Premise

The man is performing a large jump

TFev
64,AFk Human: 0.444, Accept.: 0.027

not all men wear a blue jacket.

TFev
128,R Human: 0.556, Accept.: 0.450

A man performing a large jump is not necessarily in a blue jacket and jumping onto a tall cement
wall.

TFev
128,Fk Human: 0.889, Accept.: 0.036

"the relevant information about the claim is lacking in the context."

TFev
128,AFk Human: 1.0, Accept.: 0.494

The man is not necessarily wearing a blue jacket and the jump is not necessarily onto a tall wall.

TFev
Full Human: 0.222, Accept.: 0.036

"the relevant information about the claim is lacking in the context."

TSn
64,Fk Human: 0.556, Accept.: 0.520

the man is performing a large jump onto a tall cement wall.

TSn
64,AFk Human: 1.0, Accept.: 0.394

the man is performing a large jump onto a tall cement wall does not indicate that he is in a blue
jacket.

TSn
Full Human: 1.0, Accept.: 0.842

a large jump does not imply that the man is jumping onto a tall cement wall.

OFev
16,AFk Human: 0.778, Accept.: 0.036

"the relevant information about the claim is lacking in the context."

OFev
128,AFk Human: 0.889, Accept.: 0.473

A person in a blue jacket is performing a large jump onto a tall cement wall

OFev
Full Human: 0.667, Accept.: 0.285

The man is performing a large jump, however it does not say what kind of jacket he is wearing.

OSn
128,AFk Human: 0.778, Accept.: 0.536

a man in a blue jacket is performing a large jump onto a tall cement wall.

OSn
Full Human: 0.667, Accept.: 0.805

The man is performing a large jump, but it does not say whether he is jumping onto a tall cement
wall.

Table A.1: An example of generated explanations by the 13 selected models for human
evaluation, with the instance randomly selected from the SICK dataset (all models have
the correct prediction).
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Hypothesis (entailment)
Guns N ’ Roses is an American hard rock band.

Premise

Guns N ’ Roses, often abbreviated as GnR, is an American hard rock band from Los Angeles
formed in 1985.

TFev
64,AFk Human: 0.889, Accept.: 0.588

guns n roses is an american hard rock band.

TFev
128,R Human: 1.0, Accept.: 0.510

guns n’roses is an american hard rock band from los angeles formed in 1985.

TFev
128,Fk Human: 0.333, Accept.: 0.174

guns n’roses is an american hard rock band, however it does not say whether it is a rock band.

TFev
128,AFk Human: 0.778, Accept.: 0.527

guns n roses is an american hard rock band from los angeles formed in 1985.

TFev
Full Human: 1.0, Accept.: 0.556

guns n’roses is an american hard rock band from los angeles formed in 1985.

TSn
64,Fk Human: 0.778, Accept.: 0.498

the band was formed in 1985.

TSn
64,AFk Human: 0.889, Accept.: 0.573

the band is from Los Angeles and formed in 1985.

TSn
Full Human: 1.0, Accept.: 0.302

guns n’roses is an american hard rock band is a rephrasing of guns n’roses, often abbreviated as
gnr, is an american hard rock band

OFev
16,AFk Human: 1.0, Accept.: 0.603

Guns N’Roses is an American hard rock band, formed in Los Angeles in 1985.

OFev
128,AFk Human: 0.889, Accept.: 0.556

Guns N’Roses is an American hard rock band from Los Angeles formed in 1985.

OFev
Full Human: 1.0, Accept.: 0.556

Guns N’Roses is an American hard rock band from Los Angeles formed in 1985.

OSn
128,AFk Human: 0.889, Accept.: 0.618

Guns N’Roses is a hard rock band.

OSn
Full Human: 0.111, Accept.: 0.088

Guns is hard to form a hard hard hard hard.

Table A.2: An example of generated explanations by the 13 selected models for human
evaluation, with the instance randomly selected from the VitaminC dataset (all models
have the correct prediction).
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Hypothesis (entailment)
a hospital trust is being investigated by the health watchdog over its finances.

Premise
Monitor is looking into the financial sustainability of Southend University Hospital Foundation Trust “on behalf of patients”,
the NHS regulator said. Finances became a concern when a planned £7.8m deficit grew, for which Monitor could see no
recovery plan. The hospital blamed the larger-than-anticipated deficit on growth in demand and increased staff recruitment.
Hospital chairman Alan Tobias OBE, said: “The overspend is a result of vital investment in services and more staff to ensure
high standards of patient care as well as the rise in attendances. "We welcome this review to clearly demonstrate to Monitor

- as well as patients and stakeholders - our future financial plans are both robust and sustainable.” The hospital has pledged

to cut the deficit while maintaining “high quality care for local people” and said it was committed to returning to a surplus

within three years. Monitor said its investigation will look into the state of the hospital trustś finances, assess the strength

of its financial management and explore ways of improving its sustainability, on behalf of patients across the region. The

investigation will also examine how the trust works with other local health and care organisations to respond to the financial

challenges it faces. Katherine Cawley, regional director at Monitor, said: “People are relying on Southend to provide them

with quality healthcare now and in the future, and we are concerned that this may be at risk because of the trustś poor

financial performance. "We have launched this investigation to find out more about the financial situation at the trust and

to establish what can be done to improve things.”

TFev
64,AFk

Human: 0.667, Accept.: 0.267

monitor is looking into the financial sustainability of southend university hospital foundation trust “on behalf of patients”.

TFev
128,R Human: 0.889, Accept.: 0.276

Monitor is looking into the financial sustainability of Southend University Hospital Foundation Trust ‘on behalf of patients’.

TFev
128,Fk

Human: 1.0, Accept.: 0.310

southend university hospital foundation trust is being investigated by monitor over its finances.

TFev
128,AFk

Human: 0.889, Accept.: 0.319

a hospital trust is being investigated by monitor over its finances.

TFev
Full

Human: 0.889, Accept.: 0.266

monitor is investigating the financial sustainability of southend university hospital foundation trust “on behalf of patients”.

TSn
64,Fk

Human: 0.778, Accept.: 0.240

the health watchdog is looking into the financial sustainability of Southend University Hospital Foundation Trust “on behalf

of patients”

TSn
64,AFk

Human: 1.0, Accept.: 0.263

monitor is looking into the financial sustainability of southend university hospital foundation trust “on behalf of patients”

TSn
Full

Human: 0.778, Accept.: 0.219

monitor is the health watchdog.

OFev
16,AFk

Human: 1.0, Accept.: 0.262

a hospital trust is being investigated by the health watchdog over its finances.

OFev
128,AFk

Human: 1.0, Accept.: 0.302

The hospital trust is being investigated by the health watchdog over its finances.

OFev
Full

Human: 0.889, Accept.: 0.310

southend university hospital foundation trust is being investigated by monitor over its finances.

OSn
128,AFk

Human: 1.0, Accept.: 0.358

Monitor is looking into the financial sustainability of Southend University Hospital Foundation Trust “on behalf of pa-

tients”,“explanation”:“The hospital trust’s poor financial performance is being investigated by the health watchdog over its

finances.

OSn
Full

Human: 0.444, Accept.: 0.151

The financial services watch the financial policy of the financial and financial management to the financial services to the

financial services.

Table A.3: An example of generated explanations by the 13 selected models for human
evaluation, with the instance randomly selected from the XSUM Hallucination dataset
(all models have the correct prediction).
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Dataset TSn
Full TFev

Full OSn
128,AFk OFev

128,AFk MAJ SOTA

SICK 57.1 82.4 53.7 64.2 56.9 90.3 [108]
AddOneRTE 88.6 88.4 81.9 85.5 85.3 92.2 [88]
JOCI 53.6 61.5 47.1 57.9 57.9 62.6 [109]
MPE 71.0 41.6 65.6 60.2 42.4 70.2 [110]
DNC 60.8 68.3 55.2 62.1 50.3 69.0 [111]
HANS 63.7 54.9 59.3 68.6 50.0 79.1 [112]
WNLI 45.1 43.7 49.3 56.3 56.3 85.6 [25]
Glue Diagnostics 60.1 61.9 58.2 62.7 41.7 57.0M [113]
Conj 62.6 66.9 58.3 57.3 45.1 72.7 [114]

Snopes Stance 36.6 60.3 45.4 61.1 45.9 59.6F1 [60]
SciFACT 65.3 67.7 54.3 70.0 41.3 91.4F1 [94]
Climate FEVER 47.9 49.5 43.5 51.3 47.4 75.0 [115]
VitaminC 59.8 63.0 58.4 61.0 50.1 91.1 [116]
COVID-Fact 66.5 74.3 65.1 76.3 68.3 83.5 [61]
FM2 71.7 73.2 76.6 79.7 50.7 88.5 [117]

FactCC 88.3 89.3 68.6 79.1 87.7 91.3BA [118]
QAGS CNN 75.6 78.2 62.9 76.8 74.4 81.3 [119]
QAGS XSUM 60.3 62.8 61.5 72.8 51.5 77.4 [119]
XSUM H. 58.9 62.4 82.9 80.0 90.1 66.4BA [118]

Table A.4: Comparison of accuracy on the 19 OOD datasets with different models. MAJ:
majority voting baseline, SOTA: state-of-the-art, M: Matthews coefficient, F1: F1 score,
BA: balanced accuracy.
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Appendix B

Copyright Notices








