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Abstract

Bell nonlocality, one of the most remarkable features of quantum mechanics, funda-
mentally challenges the classical notion of local causality by revealing strong forms of
correlations between space-like separated systems. This phenomenon is not only central
to the foundational understanding of quantum theory but also emerged as a critical
resource for quantum information science, particularly in areas such as cryptographic
protocols. Despite its significance, the quantum theory presents an intrinsic apparent
limitation on the strength of its achievable nonlocality, which, currently, is not entirely
understood in terms of an operational physical description. The present thesis addresses
open questions concerning quantum Bell nonlocality, particularly its role in multipartite
systems and its interplay with communication tasks. A key focus is on device-independent
principles, which aim to characterize quantum correlations by ruling out implausible
consequences identified in certain superstrong nonlocal correlations. The principle of In-
formation Causality (IC) is central to this investigation, offering a compelling framework
for understanding quantum limits on nonlocality. While quantum correlations inher-
ently respect IC, the principle’s original formulation has been shown to be insufficient
for scenarios involving multiple parties. This work advances the field by employing a
systematic framework establishing more suitable operational multipartite formulations
for IC. Furthermore, the thesis explores the connection between IC and the monogamy
of Bell inequality violations, demonstrating how the multipartite framework naturally
recovers this property and ensuring implications for device-independent quantum key
distribution. The thesis proceeds with the following structure: (i) reviews the founda-
tional background of Bell nonlocality; (ii) examines its role in quantum communication;
(iii) reviews the literature about IC and introduces the multipartite IC formulation;
and finally (iv) discusses its implications for monogamy relations and cryptographic
applications.



Resumo

A não-localidade de Bell, uma das características mais notáveis da mecânica quântica,
desafia fundamentalmente a noção clássica de causalidade local ao revelar fortes formas
de correlações entre sistemas separados espacialmente. Esse fenômeno não é apenas
central para a compreensão dos fundamentos da teoria quântica, mas também emergiu
como um recurso crucial para a ciência da informação quântica, especialmente em áreas
como protocolos criptográficos. Apesar de sua importância, a teoria quântica apresenta
uma aparente limitação intrínseca em suas correlações não-locais, que, atualmente,
não é completamente compreendida em termos de uma descrição física operacional. A
presente tese aborda questões em aberto relacionadas a não-localidade de Bell quântica,
em particular seu papel em sistemas multipartidos e sua relação com tarefas de comu-
nicação. Um foco central está nos princípios independentes de dispositivos, que buscam
caracterizar correlações quânticas ao eliminar consequências implausíveis identificadas
em certas correlações não-locais super-fortes. O princípio da Causalidade da Informação
(IC) ocupa uma posição central nesta investigação, oferecendo um quadro promis-
sor para compreender os limites quânticos da não-localidade. Embora as correlações
quânticas respeitem intrinsecamente IC, a formulação original do princípio mostrou-se
insuficiente para cenários envolvendo múltiplas partes. Este trabalho avança o campo
ao empregar uma abordagem sistemática que estabelece formulações operacionais
multipartidas mais adequadas para IC. Ademais, a tese explora a conexão entre IC e a
monogamia de violações de desigualdades de Bell, demonstrando como a versão multipartida
naturalmente recupera essa propriedade, o que resulta em implicações em distribuição
de chaves quânticas seguras em um contexto independente de dispositivos. A tese
segue a seguinte estrutura: (i) revisa os fundamentos conceituais da não-localidade de
Bell; (ii) analisa seu papel em tarefas de comunicação quântica; (iii) revisa a literatura
sobre IC e introduz novas formulações multipartidas de IC; e, por fim, (iv) discute
suas implicações para relações de monogamia e aplicações criptográficas.
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Introduction

Quantum mechanics has long been recognized as one of the most profound and
successful scientific theories of the 20th century. Its predictive power and experimental
confirmation have revolutionized our understanding of the microscopic world. Among
the theory’s distinctive features is a strong form of correlation, which is attested thanks
to the work of John S. Bell in 1964 [1]. More specifically, Bell theoretically demonstrated
that under a set of reasonable assumptions, any physical theory relying on the classi-
cal hypothesis of local causality would fail to reproduce certain statistical correlations
predicted by quantum mechanics. Such incompatibility, as quantified by violations of
Bell inequalities, is commonly referred to as Bell nonlocality, and has been systemati-
cally subjected to rigorous experimental scrutiny over the decades [2, 3, 4, 5, 6, 7, 8].
Bell nonlocality is originally related to the intense early foundational debate on the
interpretation of the inherently probabilistic nature of quantum theory, such as Einstein,
Podolsky, and Rosen paradox (EPR) [9, 10]. The significance of these achievements was
recognized with the 2022 Nobel Prize in Physics to Alain Aspect, John F. Clauser, and
Anton Zeilinger for their pioneering contributions to this field.

Beyond the remarkable contribution to the scientific understanding of nature, Bell
nonlocality has been identified as an essential resource underpinning quantum advan-
tages in important information processing tasks to quantum information science. These
include applications in security in cryptographic protocols [11], and even enhancements
in communication performance, such as communication complexity problems [12]. These
advancements have driven scientists to explore whether nonlocality could serve as
a fundamental axiom of quantum mechanics. In fact, despite the recognized success of
quantum theory, since its early years, some physicists, such as John von Neumann
[13], have been committed to identifying what the primitive physical notions from
which such mathematical formalism emerge1 [14]. Thus, is Bell nonlocality the defining
characteristic of quantum mechanics?

In 1994 [15], Sandu Popescu and Daniel Rohrlich have theoretically demonstrated
a hypothetical even stronger form of correlations, fulfilling the requirements of the
Bell-type experiment but exceeding the limits of quantum correlations. The latter is
captured by the so-called Tsirelson’s bound on quantum violations of Bell inequalities
[16]. The result negatively answers the original question; however, their pioneering
work offers an alternative framework that embeds the quest for primitive physical
notions of quantum theory. i.e., do all nonlocal correlations beyond the quantum boundary
have a correspondence in nature? In this sense, whether coherent reasons exist for certain
nonlocal correlations remaining unobserved in experiments, this fact would naturally
provide new insights regarding the laws of quantum mechanics by describing the
quantum nonlocality boundary. Indeed, the close significance of Bell nonlocality in
information processing tasks was shown to lead to implausible consequences for such
a superstrong form of nonlocality [17]. This question defines a promising research
direction, often referred to as device-independent principles2. Some examples are Non-
trivial communication complexity [17, 18], Macroscopic locality [19], and Information causality
[20].

The principle of Information causality (IC) stands out as one of the most compelling
1 As it happens with Special Relativity, for example.
2 The name will be clarified in the main text
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candidates for explaining the quantum boundary on nonlocality. Introduced in [20],
the principle proposes a suggestive limitation on communication scenarios involving a
sender and a receiver. Essentially, IC asserts that the accessible information to a receiver
cannot exceed the information effectively transmitted by the sender. While quantum
correlations inherently comply with IC, the principle, notably, rules out all of those
nonlocal correlations surpassing the Tsirelson bound for maximal quantum violations of
Bell inequalities [20]. Nonetheless, whether IC excludes all stronger-than-quantum cor-
relations remains unclear [21], mainly for the particular challenge of properly defining
IC operationally. Subsequent refinements [22, 23] have improved precision but were
shown insufficient to characterize quantum correlations fully. Recent advancements, in
particular, suggest that quantum correlations require multipartite formulated principles
[24]. This fact is also supported by later developments demonstrating the limitation
of the original bipartite formulation for IC in excluding certain superstrong nonlocal
correlations involving three parties systems [25].

The present thesis builds upon this investigative framework, addressing key chal-
lenges characterizing quantum correlations through device-independent principles.
Specifically, we first investigate the role of Bell nonlocality as a resource for infor-
mation processing and address more suitable approaches to witness the strength of
nonlocal correlations in communication instances, such as the Random Access Codes
[26, 27, 28]. In light of this, we extend the study of the implausible consequences of cer-
tain nonlocal correlations in communication scenarios involving multiple parties, using
the lens of the Information Causality principle [29]. We employ a general geometric
information-theoretical framework [22] and systematically investigate novel multipar-
tite operational descriptions for IC statement. On the other hand, while it remains open
whether IC may fully single out the set of quantum correlations, mainly because of the
high computational complexity, we alternatively proceed to investigate the interplay
of properties ensured by IC and the ones observed in quantum mechanics. In this
direction, we demonstrate that IC recovers the strong form of the so-called monogamy
of Bell inequalities violations [30]. i.e., we have demonstrated that the introduced opera-
tional forms identifying IC-statement ensure that two parties achieving the maximum
quantum violation cannot establish any correlation with any other possible extra part.
Interestingly, the solid cryptographic significance of such monogamous relation enables
stating a clear connection of IC principle and secrecy for cryptographic keys without
addressing the mathematical formalism of quantum theory. More importantly, in this
case, IC ensures security of cryptographic quantum key distribution, even when con-
sidering hypothetical eavesdropping that could potentially breakthrough the laws of
quantum mechanics [30].

The thesis is organized as follows:
Chapter 1 introduces the crucial background of the thesis. It provides a conceptual

overview of Bell’s nonlocality in quantum information science. It discusses critical
milestones in theoretical investigations, culminating in recognizing Bell nonlocality’s
key role in understanding quantum theory predictions.

Chapter 2 discusses Bell’s nonlocality within the communication paradigm, focusing
on its utility as a resource in different information processing tasks. This Chapter re-
views the device-independent framework, emphasizing its significance in cryptographic
protocols, random access codes, and communication complexity problems. Additionally,
the Chapter addresses the potential of supra-quantum nonlocal correlations leading to
physical implausibilities.



Introduction 14

Chapter 3 delves into the information causality principle. The Chapter reviews the
original formulation of IC and its subsequent refinements, addressing its successes
and limitations. It also introduces a novel multipartite formulation of IC, leveraging
advanced geometric tools such as Shannon’s entropic cone, and examines its potential in
excluding certain supra-quantum correlations, contrasting with the original bipartite
frameworks.

Chapter 4 establishes a connection between IC and the monogamy of Bell inequal-
ity violations. This Chapter first addresses some misunderstandings in the literature,
demonstrating that the original bipartite framework cannot recover such monogamy
relations. Then, it shows how the novel multipartite framework reveals monogamy
relations. It also discusses the implications of these findings for practical applications,
such as secure device-independent quantum key distribution.

In summary, the thesis addresses open questions on the understanding of quantum
correlations within the Bell nonlocality paradigm, laying the groundwork for future
advancements in more complex scenarios. The chapters are followed by the appendix
section, where some concepts and theoretical proofs are better developed.
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Chapter 1

Preliminaries

Although quantum theory is the most accurate physical theory ever developed for
measuring physical quantities, understanding why the quantum world behaves as it
does continues to drive numerous scientific investigations. In this context, a relevant
question arises: Is it possible to establish quantum theory through fundamental physical
postulates, similar to the approach used in special relativity? Answering this question
is notably challenging. Specifically, might these mathematical objects, such as Hilbert
spaces or quantum states, be interpreted merely as a predictive tool within the quantum
theory, or do they represent a physical attribute of the object it describes? In this context,
it becomes convenient to conduct this analysis from a generalized standpoint, avoiding
any assumptions about the system. This approach, known as device-independent (DI)
analysis, is further elaborated upon in [31, 32, 33].

The DI framework identifies physical properties exclusively from experimental data.
Thus, an experiment can be seen as a black box, as receiving an input, x, representing the
choice of measurement available to an observer in the lab, and returning a result, a, cor-
responding to possible experimental results. In such a setting, the most comprehensive
description is achieved through probability distributions, specifically the conditional
probabilities of possible results a given the possible measurements x, denoted as p(a|x).
Thus, in a scenario with m possible measurements, each yielding r potential outcomes,
a complete description must encompass all probability distributions of potential out-
comes for each measurement choice, p(a|x). These probabilities can then be organized
into a vector, where each distribution corresponds to a component within a vector space
of dimension d = rm,

p =
(

p(a1|x1), p(a2|x1), . . . , p(ar|x1), p(a1|x2), . . . , p(ar|xm)
)

P R
d. (1.1)

We refer to the vector p as the behavior of the black box in Fig.1.
More generally, we are interested in the possibly observed statistics in experiments

that parallelly happen in different spatially separated laboratories. In the device-
independent framework, each of the n laboratories is represented by distinct black

x

a

Figure 1 – Black box.
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boxes (Fig.1), and the scenario is frequently specified by the tuple (n, m, r). The vector,
p, specifies the experiment whose components are joint probability distributions of
the outcomes, conditional on each possible measurement choice in each laboratory,
p(a, b, . . . |x, y, . . .). Fig.2 illustrates the case n = 2. For simplicity, we will discuss the
forthcoming concepts considering the bipartite case; however, these ideas can be readily
generalized to any number of parties n. Once these are probability distributions, the
components of p must satisfy the normalization conditions

ÿ

a,b

p(a, b|x, y) = 1 and

non-negativity p(a, b|x, y) ě 0. Geometrically, these constraints define a region in R
d to

which p belongs, defined by the set of behaviors p that meet the probabilistic require-
ments,

P =

$

&

%

p P R
d | p(a, b|x, y) ě 0 @a, b, x, y;

ÿ

a,b

p(a, b|x, y) = 1 @x, y

,

.

-

. (1.2)

In this context, mentioning some terminologies from convex geometry becomes
helpful. The appendix A briefly introduces some fundamental concepts that are part of
the DI framework vocabulary. For further details, we address Ref. [34].

Historically, we say that operations in the first laboratory are performed by Alice
and in the second by Bob. In general, when parties perform such an experiment, the
probability distribution p(a, b|x, y) generally cannot be obtained through the marginal
descriptions of Alice and Bob,

p(a, b|x, y) ‰ pA(a|x)pB(b|y).

This implies that their experiment outcomes are not statistically independent of each
other. In fact, the most general marginal description that each laboratory can individu-
ally write is of the form,

pA(a|x, y) =
ÿ

b

p(a, b|x, y), (1.3a)

pB(b|x, y) =
ÿ

a

p(a, b|x, y), (1.3b)

It evaluates the probability of obtaining a result of a given the choice of measurement

x

a

y

b

Figure 2 – Bipartite Bell scenario.
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of x while also accounting for a possible choice made by Bob in his laboratory. It can
be achieved through signaling from Bob to Alice, similarly to pB(b|x, y). Interestingly,
however, if parties may freely communicate along the experiment, they can produce
any statistics belonging to the set of correlations P , independently of the physical
systems that the parties manipulate. It can be easily seen from Bayes’ rule in the form
p(a, b|x, y) = p(a|x, y)p(b|x, y, a). Consequently, in this context, we require that such
experiments be arranged so that no information leakage happens from one laboratory
to another. Such requirement geometrically constraints the set of possible correlations
P , which defines the set of nonsignaling correlations. Scenarios where no-communicating
laboratories conduct parallel experiments are commonly referred to as Bell-type experi-
ments or simply Bell scenarios due to the seminal work of John S. Bell in 1964 [1]. A Bell
scenario is defined by the number of parties n, each capable of performing m possible
measurements, for each of which r possible outcomes can be obtained.

1.1 No-signaling correlations

The core idea behind the device-independent approach is to identify the possible
statistics observed in a Bell experiment, depending on different physical systems that
parties can manipulate in their laboratory. It is convenient, therefore, to assume that their
experiment arrangement prevents any possible signaling among the labs. Consequently,
any observed correlation in the experiment results cannot yield from the possible
communication from one laboratory to another. This crucial extra assumption is called
the nonsignaling principle. Physically, it might be ensured when the systems operated
by Alice and Bob in Fig.2 are spacelike separated, preventing communication between
the two parties, at least until the experiment concludes. This argument can be further
formalized using special relativity theory. A measurement event in a given laboratory is
represented by x|a (y|b) and defined as Alice’s (Bob’s) action that begins with the choice
of measurement x (y) and ends with obtaining outcome a (b). Two measurement events,
x|a and y|b, are said to be spacelike separated if neither event intersects the light cone of
the other. A sketch of the spacetime diagram for this case is shown in Fig.3. Under this
assumption, there is no possibility of subluminal communication between Alice and
Bob during the experiment, ensuring that the observed correlations do not arise from
any information exchange between the parties.

This nonsignaling assumption restricts the black boxes’ behavior p. Alice’s marginal
description in Eq.(1.3), for example, under nonsignaling constraint, cannot depend
on the choices made by Bob in his laboratory and vice versa. Thus, the non-signaling
principle translates as the following constraints on the marginal descriptions:

pA(a|x, y) = pA(a|x), @ x, y, a; (1.4a)
pB(b|x, y) = pB(b|y), @ x, y, b. (1.4b)

Consequently, a behavior p in a Bell scenario with n ě 2 is said to be non-signaling
when respecting the constraints (1.4). In terms of the components of p, the nonsignaling
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Figure 3 – Spacelike separated measurement events of Alice and Bob.

constraints are read as:
ÿ

b

p(a, b|x, y) =
ÿ

b

p(a, b|x, y1), @ a, x, y, y1; (1.5a)

ÿ

a

p(a, b|x, y) =
ÿ

a

p(a, b|x1, y), @ b, y, x, x1. (1.5b)

Geometrically, the non-signaling constraints define a region for p in R
d, given by

PNS =

#

p P P

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

b

p(a, b|x, y) =
ÿ

b

p(a, b|x, y1), @ a, x, y, y1,

ÿ

a

p(a, b|x, y) =
ÿ

a

p(a, b|x1, y), @ b, y, x, x1

+

.

(1.6)

It is straightforward to show that the set PNS is convex. For two behaviors p1, p2 P PNS,
with their convex combination p = αp1 + (1 ´ α)p2, marginalizing over a yields,

ÿ

a

p(a, b|x, y) = α
ÿ

a

p1(a, b|x, y) + (1 ´ α)
ÿ

a

p2(a, b|x, y);

= αp1B(b|y) + (1 ´ α)p2B(b|y) = pB(b|y).

Marginalizing over b gives pA(a|x). Thus, p P PNS, confirming that the set (1.6) is
convex. Moreover, by definition (A.7), PNS is a polytope, commonly referred to as the
non-signaling polytope.

1.2 Local correlations

By arranging space-like separated laboratories in a Bell experiment, the parties
physically ensure their possibly observed correlations cannot yield from communication
among the labs. However, there still might be the case that such correlation is a result
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Figure 4 – Representation of a common hidden variable for Alice and Bob’s measure-
ment events.

of unobserved factors that somehow affect and correlate the experiments. Consider
a scenario where Alice and Bob each toss a coin within their respective laboratories
as an illustrative example. In this setup, the experiment begins with a machine that
produces pairs of coins and distributes one to each participant. The parties have no
prior knowledge regarding the machine’s operation. However, they observe a strong
correlation in their outcomes after tossing the coins across multiple rounds. In every
round, their results are identical, such that they consistently record (coinA, coinB) =
(heads, heads) or (tails, tails). Upon meticulous analysis of their devices, Alice and Bob
discover that the coins are biased. Moreover, they identify that the machine consistently
outputs pairs of coins with identical biases —half the time biased towards heads and
the other half towards tails. Consequently, the apparent correlation is fully explained
when the machine’s behavior is taken into account. Thus, it becomes crucial to identify
whether the performed experiment is possibly affected by aspects that are not initially
accounted for or are even unobservable. Once their experimental arrangement ensures
nonsignaling among the labs, any possible causally local explanation for the observed
correlation might be condensed in terms of an extra variable λ. Back to the space-time
diagram, we may understand causally local explanations as those following a sequence of
causal factors with no superluminal signals. Consequently, λ relies on the common light
cone of both experiments (Fig.4). Thus, whether all pre-factors of such joint observation
can be recognized in λ, the joint description may factorize as,

p(a, b|x, y, λ) = pA(a|x, λ)pB(b|y, λ). (1.7)

In this sense, it means that variable λ identifies the reason for observing the experimen-
tal result a, and any residual indeterminacies concerning the results have no relation
with what happens in Bob’s laboratory, such that the joint distribution factorizes. Conse-
quently, whether there exists a probability distribution p(a, b, λ|x, y), fulfilling the local
factorization condition (1.7), from which the observed experimental statistics p(a, b|x, y)
can be obtained as

p(a, b|x, y) =

ż

Λ

p(λ)pA(a|x, λ)pB(b|y, λ)dλ, (1.8)
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we say that p(a, b|x, y) is compatible with common past pre-stated correlation model,
and it is said a local correlation. Historically, in this case, p(a, b|x, y) is said as admitting a
local-hidden-variable model (1.8). Naturally, experiments specified by p(a, b|x, y), which
do not admit the local model (1.8) are said nonlocal correlations. Notice that the local
model (1.8) implicitly accounts that Alice and Bob can freely make their measurement
choices, i.e., p(x, y|λ) = p(x, y), which equivalently means p(λ|x, y) = p(λ).

Geometrically, the locality hypothesis in (1.8) constraints the permitted region for p

in R
d. Consider, for example the simplest case where a, b, x, y P t0, 1u and the following

quantity is considered,

E(x, y) = p(a = b|x, y) ´ p(a ‰ b|x, y). (1.9)

If a given behavior admits a hidden variable model, the probabilities in (1.9) can be
decomposed as in (1.8),

p(a = b|x, y) =

ż

λ
p(λ)[pA(a = 0|x, λ)pB(b = 0|y, λ) + pA(a = 1|x, λ)pB(b = 1|y, λ)]dλ;

(1.10a)

p(a ‰ b|x, y) =

ż

λ
p(λ)[pA(a = 0|x, λ)pB(b = 1|y, λ) + pA(a = 1|x, λ)pB(b = 0|y, λ)]dλ.

(1.10b)

Since p(a = b|x, y) = p(0, 0|x, y) + p(1, 1|x, y) and p(a ‰ b|x, y) = p(1, 0|x, y) +
p(0, 1|x, y), we consider the following quantity:

E(0, 0) + E(0, 1) + E(1, 0) ´ E(1, 1) = βCHSH. (1.11)

Following (1.9) and (1.10), we have:

βCHSH =

2
ż

Λ

p(λ)

(

[2pA(a = 0|x = 0, λ) ´ 1][pB(b = 0|y = 0, λ) + pB(b = 0|y = 1, λ) ´ 1]+

+ [pA(a = 0|x = 1, λ) ´ 1][pB(b = 0|y = 0, λ) ´ pB(b = 0|y = 1, λ)]

)

.

(1.12)
Since all probabilistic terms fall within the interval [0, 1], the terms in the brackets can
vary between [´1, 1]. Consequently, the maximum value the expression in parentheses
can attain is 1, implying that the expression in (1.11) is bounded above:

βCHSH ď 2. (1.13)

This inequality is known as the CHSH inequality due to the seminal work [2]. It entails a
necessary and sufficient condition for a given behavior p to satisfy the locality condition
in (1.8). Each Bell scenario entails a finite number of inequalities that must be satisfied for
a given behavior to be considered local. Such inequalities are known as Bell inequalities

and define the region of local behaviors in R
d:

PL =
!

p P P | aT
i p ď βi i = 1, 2, ..., n

)

. (1.14)
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In this case, aT
i p ď βi represents the possible Bell inequalities within this scenario,

which is specified by the vector of real coeficients, aT
i , and bounds, βi. By definition

(1.8), the set of local behaviors PL is convex, and as (A.7), it is also a convex polytope,
referred to as the local polytope.

It is straightforward to show that local behaviors naturally address the nonsignaling
condition (1.5). In fact, marginalizing (1.8) over b and using the normalization condition,
we obtain (1.4a),

pA(a|x, y) =
ÿ

b

ż

Λ

p(λ)pA(a|x, λ)pB(b|y, λ)dλ

=

ż

Λ

p(λ)pA(a|x, λ)

(

ÿ

b

pB(b|y, λ)

)

dλ

=

ż

Λ

p(λ)pA(a|x, λ)dλ = pA(a|x).

(1.15)

Similarly, marginalizing (1.8) over a yields (1.4b). In this context, Alice and Bob’s
marginal descriptions of their outputs a and b depend only on their respective choices
x and y, as in (1.4). On the other hand, the converse is not true. As it should become
clear in the next subsection, there are non-signaling correlations that do not admit a
local model as (1.8). Thus, it becomes evident that the set of local behaviors is contained
within the non-signaling polytope, i.e., PL Ă PNS.

1.3 Polytope (2,2,2)

As detailed in (A.8), a polytope can alternatively be defined as the convex hull of a
finite number of points. In this approach, a polytope P can be fully characterized by its
extremal points1, since any point within P can be obtained as a convex combination of
these. Particularly for subsequent discussions, non-signaling extreme behaviors within
the Bell scenario (2, 2, 2) are of particular interest.

Given the description of a polytope in terms of linear constraints, as in (1.6) and
(1.14), existing algorithms such as PANDA [35] can identify all vertices of a polytope.
For the bipartite, non-signaling polytope in (1.6) with two inputs and two outputs, there
are 24 vertices. Among these, 16 correspond to deterministic local behaviors that are
also extreme points of the local polytope in (1.14), and the remaining 8 correspond to
nonlocal behaviors. These behaviors are comprehensively characterized in [36]. The 16
local vertices are those for which the components can be expressed as:

p
µνστ
L (a, b|x, y) =

#

1 if a = µx ‘ ν, b = σy ‘ τ,
0 otherwise,

(1.16)

where µ, ν, σ, τ P t0, 1u. The 8 nonlocal extreme points are those for which the compo-
nents can be written as follows:
1 That is, the vertices of the polytope.
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p
µνσ
NL (a, b|x, y) =

#

1/2 if a ‘ b = x ¨ y ‘ µx ‘ νy ‘ σ,
0 otherwise,

(1.17)

where µ, ν, σ P t0, 1u. These are referred to as PR boxes after the work of Sandu Popescu
and Daniel Rohrlich [15]. The violation of the CHSH inequality might immediately
witness their nonlocal nature (1.13), which achieves the value βCHSH = 4.

1.4 Quantum correlations

As detailed in Appendix B, in quantum mechanics, given a state ρ and a set of POVM
elements tMa|xu associated with the results a of a measurement process, the probability
of obtaining an outcome a given measurement x is determined by the Born rule:

p(a|x) = Tr
(

ρMa|x

)

. (1.18)

When considering Bell scenarios, the joint probability distributions p(a, b|x, y) for
the bipartite case reads as:

p(a, b|x, y) = Tr
(

ρMa|x b Mb|y

)

. (1.19)

Here, ρ represents a composite quantum state shared between the parties, where each
party measurement procedure is described in terms of the measurement operator set,
tMa|xu, for each result a when Alice measures x, and tMb|yu for each result b when
Bob measures y. Consequently, Ma|x b Mb|y forms the joint measurement elements,
which, as we have discussed in the Appendix B, can be projective measurements or
POVMs. The behaviors, p, with components, p(a, b|x, y), that can be described via Born’s
rule (1.19), are referred to as quantum behaviors. In this sense, there exists a quantum
state, ρ, and measurement operators, Ma|x, and Mb|y, such that Born’s rule recovers
the probability p(a, b|x, y). Thus, Born’s rule delineates a region in R

d for behaviors
achievable by quantum theory, namely the set of quantum correlations, PQ. The set PQ is
convex [37, 38, 39]; however, it is not a polytope, as it cannot be characterized by the
convex hull of a finite set of points [40].

By marginalizing equation (1.19), one can recover equation (1.4), since:

pA(a|x, y) =
ÿ

b

p(a, b|x, y) =
ÿ

b

Tr
(

ρMa|x b Mb|y

)

= Tr
(

ρMa|x b ✶
)

= pA(a|x); (1.20a)

pB(b|x, y) =
ÿ

a

p(a, b|x, y) =
ÿ

a

Tr
(

ρMa|x b Mb|y

)

= Tr
(

ρ✶b Mb|y

)

= pB(b|y). (1.20b)

Consequently, quantum correlations in Bell experiments are also non-signaling. How-
ever, fulfilling the non-signaling condition alone does not suffice to classify a behavior as
quantum; as shown in [15], there exist non-signaling correlations that quantum theory
cannot reproduce according to Born’s rule (1.19), i.e., PQ Ă PNS. More importantly,
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however, as established by the seminal Bell’s theorem in 1964 [1], there are quantum
correlations as (1.19) that no local model as (1.8) can replicate. This fact becomes evi-
dent in the bipartite Bell scenario with dichotomic inputs and outputs. In the quantum
case, Alice and Bob share a bipartite quantum system, upon which they each perform
projective measurements associated to dichotomic observables namely A0, A1 for Alice
and B0, B1 for Bob. With a and b as the eigenvalues of Alice’s and Bob’s measurement
operators, the expected value of the joint measurement operator can be expressed in
terms of the bipartite behavior as follows:

xAx b Bxy =
ÿ

a,b

ab p(a, b|x, y). (1.21)

By choosing operators Ax and By with spectrum t´1, 1u, we obtain:

xAx b Bxy = p(´1, ´1|x, y) + p(1, 1|x, y) ´ p(1, ´1|x, y) ´ p(´1, 1|x, y). (1.22)

Consequently, xAx b Bxy = E(x, y) in (1.9), yielding the CHSH inequality in terms of
operators Ax and By:

xA0 b B0y + xA0 b B1y + xA1 b B0y ´ xA1 b B1y = βCHSH ď 2. (1.23)

Since the CHSH inequality provides a necessary and sufficient condition for a behavior
to satisfy the locality assumption in (1.8), a violation of this criterion implies that the
behavior is necessarily non-local. Suppose Alice and Bob share the following quantum
state:

|φ+y = |00y + |11y?
2

, (1.24)

and measurements are performed using the following observables:

A0 = σx, A1 = σz;

B0 =
σx + σz?

2
, B1 =

σx ´ σz?
2

.
(1.25)

By evaluating the expected values in the inequality (1.23), we obtain:

βCHSH = 2
?

2. (1.26)

That is referred to as Tsirelson’s bound, which is the maximum achievable value for
quantum mechanics of the CHSH inequality [16]. Therefore, this behavior derived from
quantum theory violates Bell’s inequality (1.23) and thus cannot be explained by any
local model (1.8). Consequently, we may write the following hierarchy among the sets of
correlations PL Ă PQ Ă PNS, which we depict in Fig.5. It is important to stress the close
connection between the Bell nonlocality phenomenon and entanglement of quantum
states. In fact, separable states, (B.7), in the form ρAB =

ÿ

i

p(i)ρi
A b ρi

B are always com-

patible with the local model (1.8). Hence, entanglement becomes necessary for violating
Bell’s inequalities through quantum mechanics. On the other hand, entanglement is
not a sufficient condition to observe Bell inequality violations. i.e., despite any pure
entangled state violating a Bell inequality [41, 42], there are mixed entangled states
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Figure 5 – A pictorial representation illustrating the hierarchy among the sets of non-
signaling, quantum, and local behaviors.

which do not violate any Bell inequality [42].

1.5 Multiple parties scenarios

As previously mentioned, the notions of nonsignaling (1.5), quantum (1.19), and
local (1.19) correlations for multipartite scenarios follow a straight generalization of
the presented bipartite definitions. For systematic studies on multipartite scenarios we
address to the Ref. [43, 44]. In fact, the local model (1.8) may be written as,

p(a, b, ¨ ¨ ¨ , c|x, y, ¨ ¨ ¨ , z) =

ż

Λ

p(λ)pA(a|x, λ)pB(b|y, λ) ¨ ¨ ¨ pC(c|z, λ)dλ. (1.27)

Nevertheless, the geometrical structure of the set of correlations in this case exhibits a
significant increase of complexity even for the most straightforward cases [45, 46]. In
fact, the Bell scenario with three parties and dichotomic inputs and outputs, for example,
presents 53856 Bell inequalities bounding the local set, while the bipartite equivalent
exhibits only 24. Because of the symmetry under the possible relabelings, they can be
separated into 46 equivalence classes. It included the previous CHSH inequality (1.13)
from the simpler scenario, but also new features as inequalities never violated with
quantum correlations [47]. The presence of CHSH in this bigger scenario stresses the
fact that even when only two of the three parties are nonlocally correlated, and the third
remaining one completely uncorrelated, the produced statistics will be incompatible
with the multipartite local model (1.27). This observation motivated the introduction
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of the genuinely multipartite nonlocality notion [48], which addresses the problem of
identifying nonlocality, which is a result of correlations including all parties. In the case
of three parties, we say the correlation p(a, b, c|x, y, z) is genuinely multipartite nonlocal
whether it does not admit a model as,

p(a, b, c|x, y, z) = q1

ż

p (λ1) pA (a|x, λ1) pBC (b, c|y, z, λ1) dλ1

+ q2

ż

p (λ2) pB (b|y, λ2) pAC (a, c|x, z, λ2) dλ2 (1.28)

+ ¨ ¨ ¨

+ q3

ż

p (λ3) pC (c|z, λ3) pAB (a, b|x, y, λ3) dλ3.

One example of Bell inequality witnessing nonlocal feature according to this definition
is the commonly referred to Svetlichny’s inequality [48], which is written for three parties
with dichotomic inputs and outputs scenario as

S3 ”
ÿ

xyz

(´1)xy+xz+yzE(x, y, z) ď 4,

where E(x, y, z) =
ÿ

a,b,c

(´1)a+b+c p(a, b, c|x, y, z). The maximum quantum violation in

this case is S3 = 4
?

2, which might be achieved with the GHZ state [49] for three qubits,
with suitable measurements,

|GHZy3 =
1?
2
(|000y + |111y) . (1.29)

Naturally, the set of nonsignaling correlations also follows such an increase in com-
plexity. The tripartite dichotomic scenario is fully characterized by 53856 extremal
points, which are grouped in 46 classes of equivalence, each of them respectively associ-
ated with the maximum permitted nonsignaling value of each of the Bell inequalities
of the local polytope [44]. Three of them present genuinely tripartite nonlocality by
violating Svetlichny’s inequality (1.29), and are of the form:

pXYZ(a, b, c|x, y, z) =

#

1/4 if a ‘ b ‘ c = xyz;
0 else;

(1.30)

p(X+Y)Z(a, b, c|x, y, z) =

#

1/4 if a ‘ b ‘ c = xz ‘ yz;
0 else;

(1.31)

pXY+YZ+XZ(a, b, c|x, y, z) =

#

1/4 if a ‘ b ‘ c = xy ‘ yz ‘ xz;
0 else;

(1.32)

The extremal (1.32) achieves the maximum nonsignaling value for (1.29) of S3 = 8.
Despite the evident richer structure of the multiple parties scenarios, most nonlocal
extremal points may also be understood in terms of the bipartite PR box correlation
(1.17). The correlations (1.30), (1.31), and (1.31) can always be simulated when parties
can share copies of PR boxes among the parties [36]. In fact, the same reference shows
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that in any bipartite scenario, all extremal nonsignaling correlations can be achieved by
sufficient copies of PR boxes and local operations. Such property also follows a wide
range of correlations in multipartite scenarios. However, there are those correlations
that are not accomplished with such strategy [50]. In the tripartite dichotomic scenario,
for example, one of the 46 classes may not be simulated in terms of PR boxes, which we
may write as the correlation p(a, b, c|x, y, z) fulfilling the property [44],

a0 ‘ b1 = 0,
b0 ‘ c1 = 0,
c0 ‘ a1 = 0, (1.33)

a0 ‘ b0 ‘ c0 = 0,
a1 ‘ b1 ‘ c1 = 1.

In the subsequent Chapters, we shall discuss how these multipartite correlations
are closely related to enhancement in communication task performance when nonlocal
correlations assist parties.

1.6 Discussion

Bell nonlocality is historically closely related to the search of physicists for a better
understanding of the intrinsic probabilistic feature of quantum mechanics. In the earliest,
while some people argued in favor of some incompleteness on the theory [9], which
could explain why we are not able to predict with certainty the result of quantum
experiments, others already suggested that quantum mechanics expresses intrinsic
characteristics of certain physical systems. i.e., there exist indeterminacy in nature [10].
The long debate could only be discussed in terms of experimental scrutiny after the
work of John S. Bell in 1964 [1]. In fact, under some reasonable set of assumptions, the
so-called Bell’s theorem, (1.26), shows that quantum theory predicts a strong form of
correlation, which the statistics could never be explained in terms of extra local-hidden-
variables as (1.8). Experimental arrangements specifically addressing Bell’s theorem
were further developed [2, 3], followed by even more sophisticated setups addressing
certain experimental loopholes [4, 5]. The first loophole-free Bell test was only recently
demonstrated in 2015 with the series of papers [6, 7, 8]. It is important to mention that
the main characters, Alain Aspect, John F. Clauser, and Anton Zeilinger, involved with
such experimental demonstration, received The Nobel Prize in Physics in 2022 “for
experiments with entangled photons, establishing the violation of Bell inequalities and
pioneering quantum information science.”

As we shall discuss in the next Chapter, however, beyond the foundational dis-
cussion around the interpretation of quantum theory predictions, later developments
demonstrated that Bell nonlocality is closely related to the advantage of applications of
quantum resources over the classical ones. Some examples are self-testing of quantum
states [51], security on cryptographic protocols [11], and enhancement of performance in
communication complexity problems [12]. In this sense, we may ask whether nonlocality
is the distinctive feature that identifies quantum theory, from which its mathematical
formalism could emerge. Equivalently, may quantum nonlocality be considered an
Axiom? That question was negatively answered by Sandu Popescu and Daniel Rohrlich
in 1994 [15]. In fact, as we discussed, there exists a limit on quantum nonlocality (Eq.
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(1.26)), and there are nonlocal correlations fulfilling all assumptions from Bell scenarios
that could never be reproduced by following the quantum mechanics laws. Thus, the
question about the features making sense of quantum theory’s laws might be slightly
rephrased, and we may ask whether all nonlocal correlations have a correspondence in
nature. In this direction, if there are consistent reasons for certain nonlocal correlations
to be never experimentally observed, we may ’make sense’ of quantum mechanics laws
by rationalizing the limit on quantum mechanics nonlocality. This query is precisely the
research line that asks for device-independent principles. Some examples are the principle
of Non-trivial communication complexity [17, 18], Macroscopic locality [19], and Information
causality [20]. The latter is of particular relevance for the present thesis.

The next Chapter is devoted to discussing the close relationship between Bell’s
nonlocality and its advantages in communication problems.
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Chapter 2

Device-Independent approach and
communication problems

Bell nonlocality is, in fact, one of the cornerstones of quantum information science
since it has been identified as an important tool related to quantum advantage in infor-
mation processing problems [11, 12, 51]. Interestingly, one of the most exciting features
that motivate employing Bell tests in such context is its device-independent design [52].
In the context of cryptographic key distribution, for example, while standard quantum
frameworks, such as BB84 protocol [53, 54], become unsafe in the DI approach, Ekert91
protocol [11] incorporates Bell test. It avoids the need for keys to leave the laboratories,
and Bell’s theorem ensures the key has no pre-existence prior to the measurements,
ensuring the key security. Further developments have shown an even closer connection
between nonlocality and cryptography security, where the degree of nonlocality implies
security enhancement for the so-called CHSH protocol [52]. Interestingly, at the same
time, nonlocality has been studied as a resource enhancing communication performance
[12, 28, 20]. In this Chapter, we review some of the main literature relating nonlocality
as a resource for communication and present some contributions advancing to bigger
and more general scenarios.

2.1 Device-independent quantum key distribution

The challenge of hiding secret messages is far from new, as it has long been cen-
tral to safeguarding critical information such as state or military secrets. Nowadays,
much of our online activity is secured by cryptographic protocols, like the widely used
Rivest–Shamir–Adleman cryptosystem (RSA) [55]. Nonetheless, current cryptographic
schemes demand continuous vigilance, as advancements that could potentially com-
promise these systems are always a concern. In fact, while one of the standard current
cryptographic systems (RSA) is based on the inefficiency of current computational
technology in solving specific mathematical problems, quantum computation offers,
in principle, alternative ways to efficiently solve it (say, the prime number factoring
problem [56]). Given the uncertainty about the adversary’s computational power, al-
ternative ways of designing cryptographic schemes based on the laws of physics have
been developed, regardless of the computational power of an intercepting part.

The crucial part of modern cryptographic strategies relies on distributing safe crypto-
graphic keys among the parties. For instance, the one-time pad encryption scheme, first
proposed by Vernam cipher in 1920 [57], was proven information-theoretically secure by
Shannon in 1949 [58]. In this scheme, the message is represented as a bit string M, while
the two communicating parties, Alice and Bob, share identical bit-string cryptographic
keys, SA and SB, where M, SA, SB P t0, 1un. The encryption strategy relies on chiper
the message by binary adding with the key as Ci = Mi ‘ SAi. Thus, Shannon proved
that even though the adversary has complete access to the ciphertext, C, it provides no
information about the original message under certain assumptions for the keys. For our
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purpose, we will focus only on one crucial requirement: the adversaries must have no
access to the keys. Equivalently, we are interested in the problem of how the parties
may secretly distribute cryptographic keys.

In general terms, we may understand any mechanism hiding the communicated
message by key. Here, we reduce our scope to bit-string keys. Thus, Alice and Bob must
generate precisely the same key in two separate places, ideally avoiding information
leakage to an eventual eavesdropper. Remarkably, quantum mechanics predicts several
helpful phenomena in this context, such as inherent randomness and the no-cloning theorem.
Indeed, the first quantum key distribution protocol was proposed by Charles Bennett and
Gilles Brassard in 1984, the so-called BB84 protocol [53], which encodes classical bits
into qubits. Essentially, the protocol takes advantage of the fact that quantum states
cannot be cloned [59] or measured without disturbance. Thus, by transmitting keys
through quantum states, parties can always detect any information leakage caused
by potential eavesdroppers. Subsequent developments include the Ekert 91 protocol
[11], Entanglement-based BB84 [54], and Six-state protocol [60], quickly followed by the
primary experimental demonstrations of QKD [61, 62, 63, 64, 65]

Although the QKD framework is, undoubtedly, a milestone for quantum information
science - where the laws of quantum mechanics play a crucial role in security assurance -
standard QKD protocols rely on the precise characterization of the devices. For example,
the Entanglement-based BB84 protocol [54] assumes that Alice and Bob initially share
a maximally entangled EPR pair. However, as later demonstrated in Ref. [52], when
no hypotheses are made on the dimension of the state, the BB84 protocol statistics
can be achieved by separable states, for which no security can be certified. In this
direction, despite the often natural assumption about the full control of the physical
systems by experimentalists, this level of control is particularly challenging in quantum
mechanics [66, 67, 68]. Consequently, it becomes important to question whether security
may be extracted for scenarios involving untrusted devices. i.e., device-independent (DI)
scenarios.

The first DI proposal for cryptographic key distribution was the Ekert 91 protocol [11],
which insightfully explores Bell’s theorem. While the standard QKD approaches address
interference from potential eavesdroppers, Ekert’s protocol enables the keys to remain
within the laboratories during the experiment. Moreover, through Bell’s theorem, the
protocol certifies that the keys have no causal relations with any variable prior to the
experiment, consequently ensuring that no information about them is accessible before
the experiment. To do so, in Ekert’s setup, Alice and Bob share a maximally entangled
pair of qubits |Ψ´yAB = (|01yAB ´ |10yAB)/

?
2 and, in each run of the experiment,

perform the respective measurements, Ax, and By, specified as:

A1 = σz, B1 = σz,

A2 = σx, B2 =
1?
2
(σz ´ σx), (2.1)

A3 =
1?
2
(σz + σx), B3 =

1?
2
(σz + σx).

In rounds where they measure measurement settings, (A1, B1) and (A3, B3), Alice and
Bob observe perfectly anti-correlated results. In the other rounds—(A1, B3), (A1, B2), (A2
, B3), and (A2, B2)—they test the CHSH inequality (1.13). Violating this inequality as-
sures that the outputs do not pre-exist and that the results are indeed anti-correlated
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for measurements in identical directions, providing a secure basis for establishing the
secret key. Later developments have discussed that security for Ekert’s protocol actually
relies on entanglement witnessed by Bell inequalities [54, 69], and did not offer any
new insight beyond BB84 protocol. In fact, the maximum CHSH violation achieving
S = 2

?
2 certifies Alice and Bob share the maximally entangled state |Ψ´yAB [51], which

necessarily cannot be entangled with any other part. More interestingly, however, the
Ekert 91 protocol works without any extra hypothesis about sources and devices and
requires solely the Bell inequality violation. This fact highlights the DI feature of the
protocol, stating a major difference with respect to the standard QKD ones.

For Ekert 91, Bell’s nonlocality ensures the quantum nature of sources and devices.
Nevertheless, the DIQKD framework goes one step further and asks whether security
can be proved only from Bell’s theorem, independent of quantum theory’s formal
structure [52, 70]. The DIQKD scenario can be formalized as follows: in their respective
laboratories, Alice and Bob control parts of a composite system on which measurements
will be performed. The shared systems might be communicated between the parties
prior, or, in the worst case, might even be distributed by an eavesdropper, Eve, since
no assumptions are made about the devices. Once the subsystems are received, the
laboratories are assumed to be entirely closed, and no information leakage occurs
during the experiments. In this case, the statistics of Alice and Bob are specified by
correlations from a Bell scenario p(a, b|x, y), and, by construction, respects the no-
signaling conditions (1.4). The lists with the experiment outputs, a and b, build up the
raw key. According to Ekert’s intuition, if p(a, b|x, y) violates a Bell inequality, a and b
are not known by the potential distributing part, Eve, since it did not pre-exist before
the measurements. Consequently, in the DI framework, no security can be extracted
for correlations compatible with the description in terms of local classical model (1.8),
p(a, b|x, y) =

ÿ

λ

pλ p(a|x, λ)p(b|y, λ). Otherwise, Eve may simply keep a copy of λ,

having a complete description of the keys.
The first scheme providing secrecy based on physical principle was proposed in Ref.

[71], where security is proven assuming only the no-signaling principle. As previously
mentioned, there are no-signaling correlations never achieved by quantum theory
[15]. Interestingly, however, even assuming eavesdroppers who could hypothetically
break the laws of quantum mechanics, secrecy can be extracted as long as the parties
cannot signal superluminally. Subsequent works immediately followed the steps of
[71], extending the theoretical framework to prove DI security in different contexts
[52, 70, 72, 73]. Ref. [52], in particular, introduced the so-called CHSH protocol, which,
as the name suggests, relies on the violation of CHSH inequality (1.13). In that context,
the parties have a, b, x and y P t0, 1u, aiming to optimize the CHSH violation, which we
may re-write as:

β(A,B) ” 1
4

ÿ

x,y
p(a ‘ b = xy|x, y) ď 3

4
. (2.2)

Thus, the parties can establish the keys with the outcomes a and b. After the measure-
ments, Bob publicly announces his measurement choices y, enabling Alice to adjust the
key by flipping a Ñ a ‘ 1 when x = y = 1, and simply retaining the data otherwise.
Notice that when parties share a PR-box, β(A,B) = 1, ensuring that their keys perfectly
agree.
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To prove security, the authors describe the optimal Eve individual attack specified by
the tripartite distribution p(a, b, e|x, y, z), where the cardinality of inputs and outputs
for Eve does not necessarily need to be restricted. In this case, we may assume the
correlations between Alice and Bob are distributed by Eve,

p(a, b|x, y) =
ÿ

e

p(a, b, e|x, y, z)

=
ÿ

e

p(e|z)p(a, b|x, y, z, e), (2.3)

and her optimal strategy is preparing the extremal points associated with the marginal
bipartite scenario involving Alice and Bob [70]. Aware of Alice and Bob’s intent to
implement the CHSH protocol, Eve’s most effective strategy is preparing those extremal
points that maximize the CHSH value (2.2) between Alice and Bob. When Eve sends
deterministic correlations, she has complete knowledge of Alice and Bob’s data. In
contrast, she has no information about their outcomes when preparing a PR-box1. Thus,
Eve’s strategy is specified by:

p(a, b|x, y) =
ÿ

ea,eb

p(ea, eb)pea,eb
(a, b|x, y), (2.4)

where ea, eb P t0, 1, 2u specify the extremal points, pea,eb
(a, b|x, y), which are:

L1 = ta = αx ‘ β, b = γy ‘ δ|α = γ, δ = β ‘ γu;
L2 = ta = αx ‘ β, b = γy ‘ δ|α = γ ‘ 1, δ = βu;
L3 = ta ‘ b = xyu, (2.5)

where α, β, γ, δ P 0, 1. A critical result from [52] demonstrates that with this protocol,
without loss of generality, Eve can choose p(ea, eb) as a convex mixture of a uniform
distribution among the deterministic points and a PR-box. Thus, p(a, b|x, y) can be
expressed as:

p(a, b|x, y) =
pNL

2
δa‘b,xy + pL

ÿ

(ea,eb)‰(2,2)

1
8

δa,Dea (x)δb,Feb
(y), (2.6)

where pNL controls Alice and Bob nonlocality, and respects pNL + pL = 1. The deter-
ministics functions Dea and Feb

denote conviniently the distributions in (2.5).
The foundational Csiszár-Körner theorem guarantees security [75], which establishes

that Alice and Bob can always distill a secret cryptographic key against an individual
eavesdropper attack whenever their data admit an advantage in terms of Shannon’s
mutual information, i.e.,

I(A : B) ą I(E : B), (2.7)

1 As we shall see in the next chapters, PR-box correlations imply no correlation with any other part [74].
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where,

I(A : B) ”
ÿ

aPA,bPB

p(a, b) log
(

p(a, b)

p(a)p(b)

)

. (2.8)

In other words, whenever the mutual information between Alice and Bob’s set of keys
exceeds that between Bob’s keys and Eve’s set of decodings, Alice and Bob can securely
establish cryptographic keys. Therefore, based on the strategy described by Eq. (2.6),
whenever the parties are limited by no-signaling principle, security is always ensured
by condition (2.7) as pNL Á 0.318. Even more importantly, the quantum achievable
value for (2.6) is pNL À 0.414 [52]. Consequently, even when Alice and Bob are limited
to producing correlations described by quantum mechanics, they can guarantee security
against a no-signaling Eve, which is not necessarily limited by quantum physics. This
result naturally prompts whether DI secrecy may always be extracted for arbitrarily
small Bell inequality violations. In fact, by improving the analysis with classical pre and
postprocessing protocols, such as advantage distillation [76], privacy can be ensured as
long as pNL Á 0.093 [70]. DI security against no-signaling collective attacks was later
proved [72, 73], as well as, more recently, security proof for arbitrarily small nonlocality
[77], and experimental implementation [78, 79].

As briefly highlighted in this subsection, the DI framework has initiated an advan-
tageous program where the theoretical proof does not rely on assumptions about the
sources and measurement apparatus. Interestingly, the no-signaling principle permits
supra-quantum correlations, meaning that DIQKD security proofs could remain valid
even after a hypothetical breakthrough in quantum mechanics laws. As we will dis-
cuss in the last Chapter of the present thesis, alternative DI principles ensure secrecy
independently of quantum formalism [30]. Remarkably, since DI security relies on
Bell inequalities violations, one significant challenge for practical DIQKD is highly
connected to the current technological barrier to efficiently accomplishing loophole-free
Bell tests, such as [6, 7, 8].

2.2 Nonlocality-assisted communication

As briefly introduced in the previous section, quantum mechanics allows for expres-
sive enhancements in the context of cryptographic key distribution. Beyond QKD, quan-
tum resources may also improve communication itself. In particular, despite Holevo’s
bound stating that a quantum bit encodes at most the same amount of information as a
classical bit [80], dense coding, for instance, doubles the capacity of parties sending infor-
mation when they dispose of entanglement and communicate through quantum states
[81]. Moreover, sending quantum states instead of classical ones also allows communica-
tion advantage when the scenario addresses a particular task, such as the random access
codes (RAC) [82, 26, 83]. Interestingly, all cases where quantum resources are available
admit an advantage with respect to the classical counterpart. Say, classical communication

assisted by quantum correlations2 [84, 85], quantum communication [68, 67], or even quantum
communication assisted by quantum correlations [81, 54, 86]. The interconversion among
these different kinds of resources is still far from completely clear. However, recent
developments have introduced computational tools allowing a more systematic analysis
2 Frequently referred to as Entanglement-assisted communication.
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Alice

Bob

X

A

Λ/ρAB/µNS

B

Y

Figure 6 – Communication scenario where x P [nX] = 0, 1, ¨ ¨ ¨ , nX ´ 1, y P [nY] =
0, 1, ¨ ¨ ¨ , nY ´ 1, and b P [nB] = 0, 1, ¨ ¨ ¨ , nB ´ 1. The symbol a represents the
classical systems sent by the transmitting part, and λ/ρAB/µNS represents
the possible systems correlating the parties.

[86, 87]. For instance, in Ref. [88], we describe an equivalence between the classical and
quantum communication scenario whenever the parties dispose of entanglement as
a free resource. In this case, everything possible by sending d´dimensional quantum
systems is reproduced by sending two d´dimensional classical systems. Intuitively,
entanglement phenomena play a crucial role in communication, similar to the Bell and
QKD scenarios. In fact, while there are entangled states useless for communication,
as long as parties may access higher-dimensional entangled states, it always provides
communication advantage [88].

More generally, a communication scenario might be formalized as instances of a
prepare and measure (PM) scenario. In this case, a sender (Alice) prepares a system to
be communicated based on an input x P [nX] := t0, ¨ ¨ ¨ , nX ´ 1u, and a receiver (Bob)
who will measure the received systems based on an input y P [nY]. The experiment
is fully described by the conditional probability distributions p(b|x, y), where b P [nB]
denotes the receiver’s measurement outputs. The communication scenario is specified
by the tuple (nX, nY, nB) and is depicted in Fig.6 for the possible different cases where
parties are correlated by classical (Λ), quantum (ρAB), or even more general no-signaling
resources (µNS). In spite of the several mentioned possibilities, for this thesis, we will
limit our discussion to classical communication scenarios. Analogously to Bell scenarios,
the classical model reads as [68],

p(b|x, y) =
ÿ

a

ÿ

λ

p(λ)p(a|x, λ)p(b|a, y, λ), (2.9)

where, a P [nA] The set of correlations admitting the classical model (2.9) is also a
polytope; consequently, its characterization is equivalently written in terms of Bell-type
inequalities [68],

ÿ

b,x,y

Cb,x,y p(b|x, y) ď βC, (2.10)

which are obtained via facet enumeration algorithms (PANDA being an example of
[35]). In this case, we may read this set of inequalities as characterizing the boundaries of
the communication performance achievable by the resource Λ. In turn, the correlations



Chapter 2. Device-Independent approach and communication problems 34

achieved by quantum resources are described as [86, 87],

p(b|x, y) =
ÿ

a

Tr[ρAB(Ma|x b Nb|a,y)], where ρAB P L(CD b C
D), (2.11)

In fact, there are quantum correlations as (2.11) that do not admit a classical model
(2.9), which is witnessed by the violation of the Bell-type inequality (2.10). Quantum
bounds on the classicality witnesses (2.10) may efficiently be achieved through semidef-
inite programming optimization methods, which we refer to as βQ [86]. Not surpris-
ingly, just as in Bell scenarios, correlations assisted with more general no-signaling
resources may lead to even stronger nonclassicality, surpassing the quantum violations
of (2.10) [17, 28, 20]. Consequently, we may generically define correlations assisted by
no-signaling resources µNS as probabilities distribution p(b|x, y) for which there exists
a correspondent (nX, nY ¨ nY1 ; nA, nB)-Bell scenario specified by pBell(a, b|x, y, y1), such
that

p(b|x, y) =
ÿ

a

pBell(a, b|x, y, y1 = a). (2.12)

Beyond witnessing the advantageous implications of nonclassical resources, likewise
the standard Bell inequalities, the inequalities (2.10) define different communication
tasks, which are closely related to several information processing problems, such as
semi-device independent dimension certification [68, 89], self-testing states [90, 91], as well
as semi-device independent cryptographic keys distribution [92]. Of particular relevance,
one class of the Bell-type inequalities (2.10) addresses the random access codes tasks
[82, 26, 83], which has special significance for the present thesis.

2.2.1 Random Access Codes

Formally, a random access code (RAC) addresses a communication task where the
input for the sending part is a n-dit string of size n, x = x0, x1, ..., xn´1, while the
receiving part needs to decode the message in order to access one of the n initial dits
randomly [26, 27]. Thereby, Alice encodes her input-dits into a message of m dits, such
that m ă n, and y P 0, 1, ..., n ´ 1 indicates to Bob which dit he should attempt to guess.
In the literature, a RAC scenario is frequently denoted by n ÞÑ m. The figure of merit, in
this case, is the success probability:

ps ” 1
ndn

n
ÿ

i

p(xi = by|x, y = i), (2.13)

which sets up one Bell-type inequality (2.10). When parties are limited to d = 2 and
classical resources, their success probability (2.13) is limited by [93]:

ps ď 1
2

(

1 +
m

n

)

. (2.14)

Interestingly, for the particular (nX = 4, nY = 2, nB = 2) PM scenario, the RAC success
probability precisely defines one of the facets of the classical polytope defined from (2.9)
[92].

As mentioned for the general PM scenarios, quantum communication is advanta-
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geous over classical one in RAC task [27, 93, 94]. Particularly significant, however, is that
even when Alice and Bob are limited to classical communication, sharing nonclassical
correlations significantly enhances their performance. For the n ÞÑ 1 binary RAC where
d = 2, for instance, entanglement-assisted correlations as (2.11) surpasses the classical
bound (2.14) up to the optimal value of [85]:

ps ď 1
2

(

1 +
1?
n

)

. (2.15)

Remarkably, the entanglement-assisted RAC bound (2.15) also surpasses the optimal
performances of RAC with quantum communication [85].

When parties may access even more general no-signaling correlations as (2.12), how-
ever, Alice and Bob may outperform the classical and quantum bounds up to the alge-
braic bound ps = 1, then trivializing RAC tasks. To illustrate, consider first the simplest
non-trivial 2 ÞÑ 1 binary RAC, where Alice and Bob dispose of a PR-box (1.17). Here we
distinguish variables from the Bell scenario as a1, b1, x1, y1 P t0, 1u, then a1 ‘ b1 = x1 ¨ y1.
The optimal protocol in this case consists of Alice using as input x1 = x0 ‘ x1 in her part
of the no-signaling resource and coding the message a = a1 ‘ x0. Thus, Bob can perfectly
decode the message by inputting on his part, y1 = y, and producing b = a ‘ b1 as an
outcome. In this case, the PR-box property ensures by = xy, which naturally saturates
the success probability (2.13) as ps = 1. In fact, a straight interconversion exists between
nonlocality and advantage in RAC. For example, achieving ps = 1 for the 2 ÞÑ 1 binary
RAC means that parties necessarily share a PR-box [28, 95]. Remarkably, in the case of
dits, there always exists a nonlocal correlation trivializing the 2 ÞÑ 1 RAC [96]. Interest-
ingly, the strong consequences of nonlocal correlations also appear in different other
information processing problems. For example, the communication complexity prob-
lems also become trivial employing PR boxes [97, 17]. We shall devote our attention in
the subsequent subsection to discussing the implausibility of such strong consequences
of extremal nonlocal correlations, which compose one of the building blocks for the
developments of device-independent operational principles [18, 20].

More recent developments have investigated which classes of nonlocal correlations
accomplish this straight interconversion, showing that for binary variables, (n ´ 1)
identical copies of PR-boxes are necessary and sufficient to trivialize any 2n ÞÑ 1 RAC
[98]. Consequently, in this case, we may write:

ps ď 1. (2.16)

To prove this equivalence, the authors recursively concatenate the (2n ´ 1) 2 ÞÑ 1 proto-
cols. Such procedures have been explored in different contexts, such as the entanglement-
assisted RACs [85], (2.15), and in the DI principles [20, 29]. For further details, we ad-
dress the reader to Chapter 3, where we provide a detailed multipartite generalization
to the concatenation procedure from which the standard one follows as a particular
case.

This section will address a more straightforward strategy, configuring a more suitable
use of PR boxes. In fact, despite the significance of the interconversion between RAC
and nonlocal correlations, the inherent structure of the RAC task limits the potentiality
of the communication power of those correlations. This becomes clear considering a
simple 3 ÞÑ 1 binary RAC example, where the parties execute the protocol specified in
Fig.7. In this case, they dispose of two PR-boxes, which we distinguish with the upper
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Alice

Bob

x0x1x2

a = x0 ‘ a0 ‘ a1

a0 ‘ b0 = (x0 ‘ x1) ¨ y0

a1 ‘ b1 = (x0 ‘ x2) ¨ y1

b = a ‘ b0 ‘ b1

y

Figure 7 – Encoding strategy for 3 ÞÑ 1 binary RAC, where parties share two PR boxes
specified as aj ‘ bj = xj ¨ yj. Alice encodes the initial bits in the box, as
xj = x0 ‘ xj+1, and builds up the message a = x0 ‘ a0 ‘ a1. Bob’s decoding
strategy consists of producing the output b = a ‘ b0 ‘ b1.

indexes, i.e., aj ‘ bj = xj ¨ yj, which yields the output function:

by0y1 = (x0 ‘ x1)y
0 ‘ (x0 ‘ x2)y

1 ‘ x0. (2.17)

Notice that for the cases where Bob inputs on his boxes (y0y1) = (00), (10), (01), He
perfectly recovers one of the initial bits, thus winning the RAC task with certainty.
Nevertheless, the boxes inputs (y0y1) allow for even more potentiality since Bob can
even choose to access a function of the initial bits b11 = x0 ‘ x1 ‘ x2. The success
probability (2.13) never captures the last case. The straight extension of the protocol can
always trivialize any n ÞÑ 1 binary RAC by using n ´ 1 PR-boxes with the following
strategy:

xi = xi+1 ‘ x0 @ i P t0, ¨ ¨ ¨ , n ´ 2u;

a = x0 ‘
n´2
à

j

aj;

b = a ‘
n´2
à

j

bj;

#

yj = 0 @j if y = 0;

yj = δj,y if y ě 1.

(2.18)

Similarly to the particular case, (2.17), the strategy (2.18) provides the potential access
to Bob to the multiple functions of the initial bits as,

by0y1,¨¨¨ ,yn´1 =

(

n´2
à

i=0
(x0 ‘ xi+1)y

i

)

‘ x0, (2.19)

which are never accessed when parties are limited to winning the RAC task. In this case,
it is necessary to address a more general figure of merit than (2.13), which we may read
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as

ps ” 1
ndn

n
ÿ

i

p( f j(x0, ¨ ¨ ¨ , xn´1) = by|x0, ¨ ¨ ¨ , xn´1, y = i), (2.20)

where f j(x0, ¨ ¨ ¨ , xn´1) : t0, 1un ÞÑ t0, 1u addresses to the different boolean functions of
the initial bit string.

The RAC task is originally closely related to relevant problems as finite automata
machine in the context of computation [82, 99, 26, 27]. However, as we shall see, this con-
venient slight change of perspective better highlights the weirdness of certain nonlocal
correlations, which enables significant advances in our understanding of the correlations
observed in nature [29, 30, 23]. Remarkably, recent developments have investigated
slight modifications of RAC tasks with different application contexts [100, 101, 102, 103].
Ref. [101], for example, systematically studies the generalized version of the RAC task
in (2.20) for several different instances, such as classical, quantum, and supra-quantum
regime. Of particular relevance, the authors investigate the success probability of Bob
rightly computing the value of a given boolean function, f j(x0, ¨ ¨ ¨ , xk´1), for any subset
of k bits from the initial bit-string (where k ď n). Especially meaningful, in the latter case,
for all functions f j, it is always possible to trivialize the task (2.20) using n ÞÑ 1 RAC,
with the support of PR-boxes [101]. In this direction, notice that whether PR-boxes are a
free resource available to the parties, the protocol (2.18) allows the parties parallelly win
with certainty all the generalized tasks in (2.20) in the same round, by sending a single
bit of message. In fact, (2.18) allows ps = 1 in n ÞÑ 1 for all integer n. Consequently, if
Alice has initially n bits, there exists a double exponential, but finite, number of boolean
functions of n variables, which may be directly encoded in a 22n ÞÑ 1 with strategy
(2.18).

The slight modification on the RACs task in (2.20) highlights the similarities of RACs
and its cousin communication task, the communication complexity problems.

2.2.2 Communication complexity problems

The Comunication complexity (CC) scenario can be stated as the problem of determin-
ing the minimum amount of information that parties need to exchange to correctly
compute the value of a function that jointly depends on the parties’ initial set of data.
In the particular case of two parties, Alice and Bob have initially their respective set of
data, x P t0, 1un and y P t0, 1un, and need to compute the joint function f (x, y), where
for integers n and m we have f : t0, 1un ˆ t0, 1un ÞÑ t0, 1um. Hence, while RACs address
multiple potential computations in each round, the parties focus on rightly performing
a particular computation in the CC scenario. Similarly to RACs, CC problems are closely
related to several applications in computer science, such as finite automata machines,
Turing machines, and decision tree computation, for which we address Ref. [104, 105] for
further detail. Quantum mechanics may offer an advantage in CC problems, first shown
by considering parties sending quantum states [106] and later sharing entangled states
[107]. Moreover, nonlocality is closely related to advantage on the CC problem since
violating Bell inequalities was shown to be a necessary and sufficient condition for
quantum strategies outperforming classical ones [12, 108].

More specifically, different functions f imply different communication complexities.
For example, there is no quantum CC advantage when parties need to compute the
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inner product function f (x, y) =
à

n´1
j=0 xjyj, even when they may explore an unlimited

amount of entangled qubits [109]. In this case, parties have necessarily to communicate
n bits. Nevertheless, when parties may access PR-boxes, aj ‘ bj = xj ¨ yj, the task may
be trivially solved with a single bit message [97, 17]. Indeed, Alice and Bob can encode
each of their n bits into n different PR-boxes, as xj = xj and yj = yj. Thus, Alice may
simply signal to Bob, a =

à

n´1
j=0 aj, enabling him to decode as

b =

(

n´1
à

j=0
aj

)

‘
(

n´1
à

j=0
bj

)

,

=
n´1
à

j=0

(

aj ‘ bj
)

,

=
n´1
à

j=0
xj ¨ yj. (2.21)

Interestingly, however, any boolean function f : t0, 1un ˆ t0, 1un ÞÑ t0, 1u may be written
as a sum of products of a finite number of polynomials, Pj(x) and Qj(y). i.e., f (x, y) =
à

jPj(x) ¨ Qj(y). Consequently, with the support of a finite number of PR-boxes, Alice
and Bob can compute the value of any function f (x, y) with a single bit message [17].
i.e., when PR boxes support parties, the communication complexity problem becomes
trivial. The result is straightforwardly extended to multipartite scenarios when parties
may access the multipartite equivalent correlation, such as (1.30).

As stressed by Wim van Dam in the original work [17], the result presents no ap-
parent conflict with any physical notion. Nevertheless, the task trivialization for any
possible distributed function strongly opposes the current comprehension that certain
problems are inherently more computationally demanding than others. Similarly to
the concept of different complexity classes in computer science, a similar notion emerges
within the context of CC [110]. In fact, CC problems are closely related to the depth of
circuits problems [105]. Consequently, we may interpret the result (2.21) as an implausible
consequence of supposing the existence of PR box correlations in nature. Building upon
this perspective, further developments have shown that CCP is also trivialized for a
substantial variety of nonlocal correlations beyond the quantum boundaries [18]. As pre-
viously observed, quantum theory presents limited nonlocality (1.26). In this sense, such
implausible consequence in (2.21) offers a rational explanation for certain super-strong
nonlocal correlations to be possibly never observed in nature. This approach is followed
in other DI principle proposals. Of particular relevance, in the subsequent Chapters, we
shall deeply investigate one such proposal, the so-called Information Causality principle
[20], which identifies implausible consequences for all nonlocal correlation beyond the
Tsirelson’s bound (1.26).
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Chapter 3

Information causality in multiple parties
scenarios

One of the most significant device-independent (DI) principles presenting substantial
advancements in the direction of singling out the set of quantum correlations from the
more nonlocal ones is the information causality principle (IC) [20]. The principle estab-
lishes a reasonable limitation on communication scenarios composed of a sender and a
receiver, which, as will soon become clarified, aims to prevent implausible consequences
arising from the hypothetical existence of some supra-quantum resources.

In simple terms, the amount of available information to the receiver concerning the
sender’s initial data cannot exceed the amount of information effectively transmitted
by the sender. Quantum correlations are known to always respect IC, whereas the
principle prohibits many stronger-than-quantum correlations [20, 21]. Perhaps the most
remarkable achievement of IC is the recovery of the Tsirelson’s bound (Ref. [16]) on the
maximum quantum violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality.
However, it remains unclear whether all stronger-than-quantum correlations violate it.

Despite its intuitive appeal, one of the main challenges lies in providing an opera-
tional mathematical formulation of the principle. A sufficient criterion for the violation
of IC was introduced in Ref. [20], but it has since proven the existence of non-quantum
correlations never violating the principle [21]. Since then, other techniques have been
developed, establishing refined criteria for IC [22, 23, 23]; but, so far, none of them have
proven robust enough to precisely characterize the set of quantum correlations, even in
the simplest scenario.

Further developments have revealed that any informational principle describing
the quantum correlations set must be genuinely multipartite [24]. This observation is
complemented by the latter findings, showing that the bipartite formulation of the
original IC proposal is insufficient to exclude specifics extremal tripartite stronger-than-
quantum correlations [25]. Hence, it emerges the necessity for a genuinely multipartite
formulation of IC, in order to be a valid and precise operational principle for quantum
theory.

In this chapter, we review the primitives and the current literature concerning the
IC principle and present our recent advancements for a novel multipartite reformula-
tion for IC (published in [29]). In that regard, we explore the general Shannon’s entropic
cone approach — a sophisticated geometric approach widely applied in classical infor-
mation theory but still underexplored in quantum information science. Significantly,
the covered developments compose a crucial part of the results presented in the subse-
quent chapter (summarized in [30]), where we bridge foundational discussions of DI
principles with practical applications, such as cryptographic key distributions.
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3.1 IC statement

As extensively discussed in Chapter 1, a close relation exists between nonlocality
and advantage in communication tasks. Remarkably, we have shown that when parties
can access PR boxes as a free resource, they can trivialize RAC tasks, even in the more
general form where the receiving part aims to access some post-processed information
from the initial data sent. Similar to other proposals, the implausibility of this result lies
in its subtle interpretation. Achieving a success probability of p = 1 implies that, even
after receiving the message, the receiver (Bob) has potential access to the entire data
set of the sender (Alice). Indeed, by construction, the choice of which part of the data
set to access depends solely on Bob’s input, y, independent of Alice’s message. Hence,
the Information Causality (IC) principle regards the causal effect of Alice’s transmitted
message on the final available information of Bob about her set of data x. Before
Alice’s transmission, Bob has no access to x, which is changed by the communicated
message. Therefore, IC postulates that the message causal effect on the receiver potential
information cannot exceed the own message amount of encoded information1. In other
words, the amount of information that the message itself contains limits the influence
a message has. With this in mind, we are ready to present the formal statement of IC,
first introduced in [20]:

“Bob’s potentially available information gain about the initial n bits of
Alice, considering all their possible local as well as pre-established shared
resources, cannot be greater than the number of bits m, sent by Alice.”

Equivalently, as later clarified by the authors in [111], it is implicitly assumed that
the communication occurs through a single use of a classical channel with a capacity
of m bits. As we will explore in the subsequent sections and chapters, this subtlety in
the definition is crucial to the recent significant advancements in our understanding of
IC [112, 29, 23, 113, 30]. Therefore, we rephrase the original statement in the following
more precise form:

“The available information gain of the receiver about the initial data of
the sender, considering all their possible local as well as pre-established
shared resources, cannot be greater than the ammount of effectively
received information, through a single use of a classical channel of
capacity C.”

3.2 Bipartite operational criteria for IC

One of the primary challenges related to IC lies in establishing well-defined opera-
tional criteria that can effectively capture all violations of the IC statement. To address
1 For the sake of clarity, this counter-intuitive feature is best illustrated by a simple example. Consider

Alice, who wishes to send the synopsis of a book containing n pages via e-mail instead of sending bits
to Bob. For unspecified reasons, her e-mail service limits her to sending information equivalent to
a single page. In this case, aside from bothering Bob with n separate e-mails, her best strategy is to
condense portions of the book into one page. The RAC example with p = 1 is analogous to Bob being
able to choose which part of the entire book to read, even after receiving only Alice’s e-mail.
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this, it is necessary first to formally define the IC scenario, as described in [20], where
we follow the second statement outlined in the previous section. In this scenario, the
sender, Alice (A), receives bit string, x ” tX1, . . . , Xnu P t0, 1un, of length n, sampled
uniformly at random. A then encodes x into a classical message M of m bits, where
m ă n. This message M is transmitted through a noisy classical channel with capacity
C ď m, resulting in Bob, B, effectively receiving M1. B, in turn, decodes the message
M1 to produce a guess Gi about a randomly selected bit of Xi from A data, where
i P t1, . . . , nu. To perform the task, A and B may utilize a composite system, ρAB, which
states a no-signaling correlation between them.

The desired informational measure to compute Bob’s available information should
account for Alice’s initial data, x, as well as all Bob’s local resources, the received
message, M1, and his part of the shared system, ρB. That is, I(x : M1, ρB). The natural
quantity capturing this is the standard mutual information measure. However, its form
is theory-dependent2. Regardless of the particular form of I, the authors in [20] present
the following set of properties, which are sufficient for any underlying theory to respect
IC:

1. Consistency: Whenever the random variables denote classical systems, I reduces
to the classical mutual information;

2. Data processing: I(A : B1) ď I(A : B) when B ÝÑ B1.
i.e., local operations on B cannot increase its knowledge about A;

3. Chain-rule: I(A : B|D) = I(A : B, D) ´ I(A : D);

4. Symmetry: I(A : B) = I(B : A);

5. Non-negativity: I(A : B) ě 0.

Naturally, these five conditions together imply the IC statement [20]:

I(x : M1, ρB) ď C ď m. (3.1)

We leave the formal proof for the upper bound on I(x : M1, ρB) to the subsequent
sections, where we discuss the extension to multipartite scenarios [29].

In both classical and quantum cases, the mutual information measures do satisfy the
five axioms, and consequently, IC always holds for systems described by quantum and
classical theory. The scenario can be described in terms of quantum theory, where Alice’s
data set is written as orthogonal states |~xy P H2n

, and now ρAB describes a quantum
state. Initially, this state is given by,





1
2n

ÿ

~xPt0,1un

|~xyx~x|



b ρAB,

and quantum measurement tEM|~xuM specify the encoding protocol of Alice. Besides, it
is important to stress the generality of the result, which implies that IC always holds
2 For instance, in both classical and quantum cases, this is accomplished using mutual information mea-

sures, in terms of Shannon and von Neumann entropies, respectively. However, the only assumption
made about ρAB is that it respects the no-signaling condition.
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for every theory satisfying the five presented properties. Notably, further research has
revealed that the five required properties can be reduced to only two [114]. While the
rationale for adopting these specific properties is subject to debate, subsequent works
have proposed physically motivated entropy measures that respect them [115] and have
identified which classes of general probabilistic theories are consistent with IC [116].
Nevertheless, whether other probabilistic theories with correspondence in nature satisfy
these conditions beyond quantum and classical ones is unclear.

Alternatively, instead of asking about the physical appeal of IC in nature, one
might ask whether the principle uniquely identifies the set of quantum correlations. To
address this, it is worth noting that, by construction, everything in the IC scenario is
classical except for the shared resource. By further analyzing the five required properties
alongside (3.1), the authors in [20] derived the following necessary condition for IC in
the case of uncorrelated initial bits3:

n
ÿ

i=1

I(Xi : Gi) ď C ď |m|, (3.2)

which is a theory-independent criterion. The particular form of (3.2), in terms of noisy
communication, first appeared in [112] and has the formal proof provided in [29]. As
we will further demonstrate, this formulation indeed represents the most appropriate
way of expressing IC criteria.

3.3 Information-theoretic implications of quantum causal

structures

As previously mentioned, further developments have been trying to investigate
appropriate operational informational criteria for IC [115, 116]. Remarkably, the frame-
work introduced in [22] offers a general method to derive information-theoretic criteria
for a given set of quantum variables when they are assumed to follow certain causal rela-
tions among them. In Appendix C, we provide a detailed description of the approach. In
a nutshell, the method is described by the three-step algorithm: (i) Characterizing the Shan-
non’s cone. It consits of enumerating all elementary inequalities that entropies of n vari-
ables must respect (they are strong subadditivity H(A, C)+ H(B, C) ě H(A, B, C)+ H(C)
and weak monotonicity H(A, B) + H(A, C) ě H(B) + H(C)). (ii) Causal description. Speci-
fying all causal relations in terms of conditional mutual information (i.e., I(A : B|C) = 0)
and data processing inequalities. (iii) Marginalization. Removing from the description
all entropic terms involving not jointly observable variables. Ultimately, the algorithm
provides a set of entropic inequalities, which summarizes all information-theoretic
criteria for the n causal-related variables. In that sense, information principles such as
information causality are nothing else than entropic constraints arising from imposing
a quantum description on a given causal structure.

The geometric-entropic framework is a typical standard computational instrument
in the context of standard information theory [117]. Interestingly, it has a wide range of
applications in several science research fields, for example, Bayesian statistics [118], or
3 In Section 3.5, we generalize the theoretical proof to multipartite scenarios. Since the results in this

section follow as a special case of the multipartite scenario, the formal proof is addressed in subsequent
sections.
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Figure 8 – Causal structure for the standard IC scenario.

even collective social behavior [119]. The approach has recently received attention in
the quantum information field by the broad developments in the context of marginal
problems [120, 121, 122, 22, 123, 124], which are closely related to Bell nonlocality [125]
and Contextuality paradigms [126]. Indeed, the geometric treatment in the classical
scenario provides general nonclassicality witnesses, equivalent to those provided by
standard Bell inequalities violation [125]. In the context of quantum causality, in turn,
the pioneering work of Ref. [22] generalizes the entropic framework for sets of ran-
dom variables, including quantum systems, with remarkable applications to quantum
networks scenarios [22, 127, 128]. Moreover, recent attempts have even extended the
formalism to analyze causal relations in the context of generalized probabilistic theories.

In particular, Ref. [22] provides the general entropic description to the IC sce-
nario for the noiseless case (i.e., M = M1), whose quantum causal structure is de-
picted in Fig.8. Assuming n = 2, for simplicity, the set of random variables follows as
tX1, X2, M, G1, G2, ρA,Bu. In this case, the only relevant causal relation is:

I(X1, X2 : ρ) = 0, (3.3a)

which states the independence between the initial bits of A and the correlating resource.
The remaining causal relations are encoded in terms of data processing inequalities.
Following Appendix C, and denoting, respectively, A and B subsystems by ρA and ρB,
the sets of jointly observable variables is written as

S1 = tX1, X2, ρA, ρBu,
S2 = tX1, X2, M, ρBu,
S3 = tX1, X2, M, G1u,
S4 = tX1, X2, M, G2u.

(3.4)

This fact implies that the only relevant data processing inequalities are of the form:

I(X1, X2, ρB : ρA) ě I(X1, X2, ρB : M1), (3.5a)
I(X1, X2 : ρA, ρB) ě I(X1, X2, : M1, Gj). (3.5b)

By performing the Fourier-Motzkin elimination for the most general marginal scenario,
M = ttX1, X2, M, G1u, tX1, X2, M, G1uu, it achieves a set of 176 non-equivalent entropic
inequalities, capturing all possibly derivable criteria within the communication IC sce-
nario in Fig.8, holding for quantum theory. Of particular relevance, the authors present
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the following criterion as the most general criterion for IC when n = 2:

I(X1 : M, G1) + I(X2 : M, G2) + I(X1 : X2|M, G2) ď H(M) + I(X1 : X2), (3.6)

from which (3.2) follows as a particular case for the noiseless scenario. Interestingly, by
following the five properties mentioned in the previous section, the authors provide a
general form of (3.6) for an arbitrary number of bits,

n
ÿ

i=1

I(Xi : Gi, M) +
n

ÿ

i=2

I(X1 : Xi|Gi, M)

ď H(M) +
n

ÿ

i=2

H(Xi) ´ H(X1, ..., Xn).

(3.7)

By the same arguments as (3.2), Eq. (3.7) establishes a necessary condition for IC that
always holds for quantum mechanics. Note that, differently from (3.2), (3.7) accounts for
possible correlations within the initial bits, and the first term considers a more general
decoding strategy available to Bob. Additionally, here we introduce a simple refinement
of (3.7) to noisy communication scenarios, which, as we will see further, implies the
following most robust information criterion for IC in bipartite scenarios:

n
ÿ

i=1

I(Xi : Gi, M1) +
n

ÿ

i=2

I(X1 : Xi|Gi, M1)

ď C +
n

ÿ

i=2

H(Xi) ´ H(X1, ..., Xn).

(3.8)

To see that, first, we only need to recall the chain rule and data processing inequality,
leading to the respective relations:

I(X1 : Xi|Gi, M1) = I(X1 : Xi, Gi, M1) ´ I(X1 : Gi, M1), (3.9a)
I(X1 : Xi, Gi, M1) ď I(X1 : Xi, ρB, M1), (3.9b)

I(Xi : Gi, M1) ď I(Xi : ρB, M1). (3.9c)

It allows us to rewrite the left-hand side of (3.7) as:

n
ÿ

i=1

I(Xi : Gi, M1) +
n

ÿ

i=2

I(X1 : Xi|Gi, M1) ď I(X1 : ρB, M1) +
n

ÿ

i=2

I(X1 : Xi, ρB, M1).

(3.10)
By employing chain-rule once more on I(X1 : Xi, ρB, M1), we return to the original
shape in (3.7), but in the theory-dependent form,

n
ÿ

i=1

I(Xi : Gi, M1)+
n

ÿ

i=2

I(X1 : Xi|Gi, M1) ď
n

ÿ

i=1

I(Xi : ρB, M1) +
n

ÿ

i=2

I(X1 : Xi|ρB, M1).

(3.11)
Assuming the quantum case, we may write the conditional mutual information term
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explicitly,

I(X1 : Xi|ρB, M1) = H(X1, ρB, M1) + H(Xi, ρB, M1) ´ H(X1, Xi, ρB, M1) ´ H(ρB, M1),
(3.12)

It allows us to explore the following entropic relation provided in [22], which is also
required in the formal proof of (3.7):

H(X1, Xi, ρB, M1) ě H(X1, ¨ ¨ ¨ , Xn, ρB, M1) + (n ´ 1)H(X1, ρB, M1). (3.13)

Thus, with (3.12) and (3.13) we have in (3.11),

n
ÿ

i=1

I(Xi : Gi, M1) +
n

ÿ

i=2

I(X1 : Xi|Gi, M1) ď

n
ÿ

i=1

I(Xi : ρB, M1) +
n

ÿ

i=2

[H(Xi, ρB, M1) ´ H(ρB, M1)]

´ H(X1, ¨ ¨ ¨ , Xn, ρB, M1), (3.14)

that can be simplified by invoking the non-negativity of entropic information measure
as follows:

n
ÿ

i=1

I(Xi : Gi, M1) +
n

ÿ

i=2

I(X1 : Xi|Gi, M1) ď

n
ÿ

i=1

I(Xi : ρB, M1) +
n

ÿ

i=1

H(Xi) ´ H(X1, ¨ ¨ ¨ , Xn), (3.15)

At this point, we may simply recall the first mentioned result in the context of the
original paper in Eq. (3.1), where we finally achieve the theory-independent criterion
in (3.8).

Notice, however, that the term addressing the initial bits follows from an upper
bound on the conditional term I(X1 : Xi|Gi, M1). Therefore, for completely uncorrelated
initial bits, (3.8) simplifies to:

n
ÿ

i=1

I(Xi : Gi, M1) ď C. (3.16)

All current attempts in the literature are limited to this case, and we shall see in the next
section that (3.8) sets up the most robust current bipartite criterion, sufficient to witness
IC violations.

Remarkably, Ref. [128] characterizes the same scenario exploring non-Shannon-
type inequalities. Their computation yields 265 inequalities, among which only 52 are
achieved without non-Shannon extra constraints. The non-Shannon-type inequalities
significantly enhance the characterization of Shannon’s cone. However, the significance
of the new set of inequalities still requires a more profound analysis.
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3.4 Current understanding of IC

As extensively discussed in the previous section, there are compelling reasons to
believe that IC should hold in Nature. In the present section, we discuss the conse-
quences of assuming IC by showing which kinds of correlations are forbidden under
the current information-theoretic criteria. In Section 3.1, we motivated the IC state-
ment by highlighting the implications of Popescu-Rohrlich (PR) boxes in the context
of Random Access Codes (RACs). Specifically, the protocol (2.18) from subsection 2.2.1
trivializes the RAC n ÞÑ 1 using PR boxes, and clearly violates the original criterion (3.2),
i.e., I(X1 : G1) = ¨ ¨ ¨ = I(X2n : G2n) = 1. More interestingly, however, in Ref. [20] the
authors demonstrate for the noiseless case that such a protocol achieves a violation of
the inequality (3.2) whenever their correlations respect E2

I + E2
I I ą 1, where Ej = 2Pj ´ 1

is defined in terms of the conditional probabilities p(a, b|x, y) as

PI =
1
2
[p(a ‘ b = 0|0, 0) + p(a ‘ b = 0|1, 0)]; (3.17a)

PI I =
1
2
[p(a ‘ b = 0|0, 1) + p(a ‘ b = 1|1, 1)]. (3.17b)

Consequently, it defines another necessary condition for IC to hold for non-signaling
correlations, which is given by [20]:

E2
I + E2

I I ď 1. (3.18)

In the Appendix F we provide a ganeralized formal proof of (3.18) in multipartite
scenarios, which naturally includes the proof for the bipartite case. This constraint, (3.18),
is equivalent to the bipartite quadratic Bell inequality, the so-called Uffink’s inequality
[129]. Interestingly, however, as will be demonstrated further, this equivalence does not
hold in multipartite scenarios.

Of particular relevance, this mapping from the IC inequality (3.2) to Uffink’s inequal-
ity (3.18) establishes the most significant result related to IC. Indeed, it proves that
any correlation beyond Tsirelson’s limit for the Clauser-Horne-Shimony-Holt (CHSH)
inequality [2] will violate the information causality principle and thus witness its in-
compatibility with quantum theory. More precisely, as proven by Tsirelson [16], the
classically valid CHSH inequality

CHSH = 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 ´ 〈A1B1〉 ď 2, (3.19)

achieves a maximum value in quantum theory of CHSHQ = 2
?

2. A PR box leads
to CHSHNS = 4. A direct analysis of (3.18) shows that any distribution achieving
CHSH ą CHSHQ violates Uffink’s inequality [20] and thus has its post-quantum nature
witnessed by the IC principle.

Later developments have also compared IC with other DI principles, showing IC as
the proposal that better approximates the set of quantum correlations. Ref. [96], in
particular, compares IC to the macroscopic locality principle introduced in Ref. [19]. In
this case, they introduce the RACs protocol for d dimensional variables (see Section
2.2.1), generalizing the concatenation procedure from [20], to investigate the following
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Figure 9 – Results from [96]. Critical E for which (3.2) ceases to be violated, as a function
of n, and for different values of d (d = 2 circles, d = 5 squares, d = 10 dia-
monds). The solid line corresponds to 1/

?
2, which, according to numerical

calculations under numerical precision, coincides with macroscopic locality
bound for d ď 5.

isotropic box,

PE(a, b|x, y) ” EPRd(a, b|x, y) + (1 ´ E)
1
d2 , (3.20)

where E controls the nonlocal behavior of PE, and PRd denotes the PR-box version to
(d2dd)-Bell scenarios,

PRd(a, b|x, y) ”
#

1/d if x ¨ y = (b ´ a)modd

0 otherwise.
(3.21)

The results of this study are summarized in Fig.9 that shows the critical values of E as a
function of the number of copies n, for which the correlation (3.20) respects the criterion
(3.2) in the noiseless communication scenario. In accordance with the original result for
the simplest scenario, d = 2, when n increases, E asymptotically approximates to the
quantum boundary, ET = 1/

?
2 « 0.707, which also coincides with the bound implied

the macroscopic locality. For d ą 2, however, ET no longer defines the maximum value
for quantum correlations [96]. At the same time, it continues to determine the range for
isotropic correlations respecting macroscopic locality 4. Naturally, the authors prove the
inequivalence between IC and macroscopic locality by showing that if the correlations
observed in nature are all those satisfying the macroscopic locality principle, IC would
be violated.

In the same direction, further proposals introduce a physically motivated slight
modification on the definitions of the quantum correlations that outer approximate
quantum set, named almost quantum set [130]. Remarkably, the almost quantum set can
be efficiently characterized by means of semidefinite programming techniques, and,
for bipartite scenarios, the almost quantum set coincides with the set Q1+AB of the
4 It might be computationally verified through the Q1 set [19], via the NPA hierarchy [40], introduced

in the Appendix E.
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developments have improved (3.18) boundary by employing nonlocality distillation
procedures [133], which, however, was not sufficient to close the gap between the
criterion (3.18) and the quantum set. In particular, more recent developments have
shown that certain device-independent (DI) principles fail to identify the quantum
set in specific regions of the no-signaling polytope, named as quantum voids [134, 135].
These are regions where the quantum edge coincides with the boundary of the classical
polytope.

Alternatively, while looking for a suitable communication protocol consists of a
high-complexity problem, as previously discussed, latter refinements propose more
suitable criteria to better witness IC violation [115, 116, 22, 23]. Notably, Chaves et
al., in Ref. [22] introduces a systematic general framework to derive more suitable
criteria, such as (3.6). In this regard, recent studies demonstrate that incorporating
noisy communication into the IC scenario provides more suitable information criteria,
significantly reducing the complexity of detecting IC violation. Indeed, Ref. [112]
shows that the noisy criterion (3.2), for the simplest scenarios with only two initial bits
for Alice, enhances every bound on no-signaling correlations achieved through the
concatenation procedure. Specifically, this approach recovers Tsirelson’s bound and
improves the critical values in Fig.9. This is accomplished by assessing criterion (3.2) for
different noisy communication channels. In this sense, evaluating scenarios with poor
transmission channels enables more efficient witnessing of the nonlocality assistance
on the communication, and consequently IC violation. In fact, all results of Ref. [112]
are achieved by taking the limit6 C Ñ 0. This effect is illustrated in Fig.10, where the
boundary verified by (3.18) is completely recovered through the noisy criterion (3.2) for
n = 2. Interestingly, here we show that (3.8) provides even stronger constraints. Fig 10,
presents (3.8) for the simplest case with two initial bits for Alice, and we verify that the
new inequality is significantly more powerful than the multiple copies criterion (3.18),
and the original (3.2), across the entire region (3.22).

Despite remaining unclear whether IC may fully distinguish the set of quantum
correlations, the noisy framework has already enabled significant advancements on the
IC understanding [136, 23, 113, 30]. More fundamentally, Ref. [136] shows that IC of-
fers some meaning for the composition rule of quantum mechanics when evaluated in
the context of general probabilistic theories. Moreover, as we shall see in the next Chap-
ter, IC also recovers the monogamy of Bell inequalities violation implied by quantum
theory [30], which states straight connections of IC with security on cryptographic key
distribution. Interestingly, recent discoveries also propose efficient IC-based techniques
to obtain polynomial inequalities approximating the set of quantum correlations for
arbitrary Bell scenarios [137, 113]. Naturally, the recent breakthrough of the noisy frame-
work suggests the potential for further enhancement by combining the concatenation
protocol and noisy communication frameworks. However, our current preliminary
analyses show no improvement in this direction.

Due to the inherently bipartite structure of IC formulation, it is essential to stress that
further developments show that, in order to describe the whole set of quantum nonlocal
correlations correctly, quantum mechanics requires an intrinsic multipartite structure to
information principles [24]. More specifically, consider correlations from a Bell scenario
with three parties specified by p(a, b, c|x, y, z). To test whether the correlation satisfies
any bipartite operational principles, p(a, b, c|x, y, z) must be locally post-processed into
6 Obviously, it necessarily requires C ą 0.
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an effectively bipartite correlation p̃(a1, b1|x1, y1). This process, commonly referred to as
wiring in the literature, is crucial for such an analysis. In this context, Ref. [24] proves
the existence of tripartite supra-quantum correlations for which the wiring procedure
invariably results in a classical bipartite effective correlation p̃(a1, b1|x1, y1). Consequently,
no bipartite formulated principle can witness such a post-quantumness as the case of
IC and non-trivial communication complexity [18]. This finding is further supported
by subsequent research, which identifies classes of extremal tripartite correlations
that exceed quantum limits but do not violate any bipartite principle via wiring [25].
Interestingly, this conclusion aligns with more recent works showing that no bipartite
nonlocal causal theory can explain quantum mechanics correlations [138]. Thus, the
need for multipartite formulations of the information causality principle becomes
evident. This observation sets the stage for the next section, where we explore whether
IC can rule out implausible consequences arising from multipartite correlations beyond
the quantum set.

3.5 Multipartite IC

Our first goal is to introduce a natural generalization of the bipartite IC framework
to accommodate the multipartite scenario. For that, we will closely follow the previ-
ously mentioned informational-geometric approach (see Appendix C). Specifically, we
consider a particular class of quantum causal structures that naturally generalize the
known bipartite scenario: Consider N parts, among which N ´ 1 are senders in pos-
session of their respective bit-strings xk = (Xk

1, Xk
2, ¨ ¨ ¨ , Xk

n), where k P t1, 2, ¨ ¨ ¨ , N ´ 1u.
Each sender encodes a classical message Mk of size |Mk| ă n to the Nth-part, the re-
ceiver who has to compute one out of n possible bits functions f j(X1

j , X2
j , ¨ ¨ ¨ , XN´1

j ),
by producing the guess Gj, where j P t1, ¨ ¨ ¨ , nu. The receiver, in turn, receives M1 =

(M1
1, M1

2, ¨ ¨ ¨ , M1
N´1), which denotes all messages reaching after passing through a clas-

sical noisy channel of capacity Ck ď |Mk|. This scenario is illustrated as a directed acyclic

Figure 11 – Quantum causal structure, described as a DAG, associated with the multi-
partite information causality scenario. ǫi over the arrow of the message Mi

denotes the effect of the classical noisy channel through which the respective
message is sent.



Chapter 3. Information causality in multiple parties scenarios 51

graph (DAG) in Fig. 11, where ǫk denotes the effect of the noisy channel through which
the respective message is sent.

For the sake of completeness, the IC statement may be straightly extended for this
multipartite scenario as follows:

“The receiver’s available information about the initial bits of each N ´ 1
senders, considering all their possible local as well as pre-established
shared resources, cannot be greater than the number of effectively re-
ceived bits through a single use of a classical channel of capacity Ck.”

Nevertheless, as it will become evident shortly, the same extension does not happen for
the operational bipartite criteria presented in Section 3.2.

To illustrate, consider the tripartite scenario, such that Alice and Bob have just two
initial uncorrelated bits and that the communication task of Charlie is to compute two
specific functions f1 = x1

1 ‘ x2
1 and f2 = x1

2 ‘ x2
2. The communication task is trivialized

when the parties share the following extremal tripartite non-signaling (post-quantum)

Alice

x1 ⊕ x2

a

Bob

y1 ⊕ y2

b

Charlie

z

c

mx = x1 ⊕ a my = y1 ⊕ b

gj = mx ⊕my ⊕ c

Figure 12 – The communication protocol is performed by Alice, Bob, and Charlie, who
share a non-signaling resource. Alice (Bob) receives initially two bits tx1, x2u
(ty1, y2u) and perform her local measurements as x = x1 ‘ x2 (y = y1 ‘ y2).
After obtaining her outputs a (b), encodes the message as mx = a ‘ x1
(my = b ‘ y1). Charlie inputs on his side z = 0 if he wants to compute f1,
and z = 1 if he wants to compute f2. After receiving the messages, Charlie
computes his guess by following gj = mx ‘ my ‘ c.
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correlation [44],

p(a, b, c|x, y, z) =

#

1/4 if a ‘ b ‘ c = xz ‘ yz;
0 else,

(3.23)

where a, b, c, x, y, z P t0, 1u. The parties perform the protocol detailed in Fig. 12 to achieve
it. Charlie can always perfectly compute each function in each run since g1 = x1

1 ‘ x2
1

and g2 = x1
2 ‘ x2

2. In other words, similar to the usual IC scenario, Charlie has potential
access to the four bits of Alice and Bob but receives only two bits of information
communicated by them. Note, however, that all the bipartite criteria fail to witness
such a clear violation of the principle. For example, by simply applying (3.2) for the
respective bipartitions Alice and Charlie and Bob and Charlie, this protocol yields for
all informational terms I(Xk

i : Gj) = 0, which implies no violation of (3.2). This fact,
together with the previously mentioned requirements for multipartite formulation of
informational principles [24, 25], motivates the search for more suitable operational
criteria for IC.

As detailed in the Appendix C, the entropic-geometric approach introduced in
[22] offers a general framework to derive information-theoretic constraints, given the
causal relations among the variables. Thus, we employ such a method in order to
derive suitable constraints for the multipartite scenario in Fig.11. Analogous to the
discussions in Section 3.3, it is imperative to consider all causal relations defining
the quantum causal structure in Fig.11. For simplicity, consider N = 3, n = 2, and
the noiseless case where Mk = M1

k (we will see soon that we might easily extend to
the noisy case). In this scenario, we identify the following set of random variables:
tX1

1, X1
2, X2

1, X2
2, M1, M2, G1, G2, ρu, for which the causal relations translate as:

I(X1
1, X1

2, X2
1, X2

2 : ρ) = 0, (3.24a)

I(X1
1 : X2

1, X2
2) = 0, (3.24b)

I(X1
2 : X2

1, X2
2) = 0. (3.24c)

In the first constraint, we assume the independence among the sender’s initial bits
and the resource correlating the parties. In addition, (3.24a) together with (3.24b) and
(3.24c) state that, initially, the senders are the only parties accessing their data7. In a
fully classical context, the additional conditional independence completing the causal
structure characterization is I(X1

1, X1
2, X2

1, X2
2 : G0, G1|M1, M2, ρ) = 0. However, in the

quantum case, Charlie’s guesses, Gj, may lack a joint description with his subsystem,
ρC = TrAB(ρ), thereby preventing its inclusion. Hence, we must encode the remaining
causal relations regarding the data processing inequalities. Denoting, respectively, Alice
7 i.e., Alice and Bob sets of data have no correlation.
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and Bob subsystems by ρA and ρB, the sets of jointly observable variables is written as

S1 = tX1
1, X1

2, X2
1, X2

2, ρA, ρB, ρCu,

S2 = tX1
1, X1

2, X2
1, X2

2, M1, ρB, ρCu,

S3 = tX1
1, X1

2, X2
1, X2

2, M2, ρA, ρCu, (3.25)

S4 = tX1
1, X1

2, X2
1, X2

2, M1, M2, ρCu,

S5 = tX1
1, X1

2, X2
1, X2

2, M1, M2, G1u,

S6 = tX1
1, X1

2, X2
1, X2

2, M1, M2, G2u.

This formulation implies that the only relevant data processing inequalities are of the
forms:

I(X1
1, X1

2, X2
1, X2

2, ρB, ρC : ρA) ě I(X1
1, X1

2, X2
1, X2

2, ρB, ρC : M1), (3.26a)

I(X1
1, X1

2, X2
1, X2

2, ρA, ρC : ρB) ě I(X1
1, X1

2, X2
1, X2

2, ρA, ρC : M2), (3.26b)

I(X1
1, X1

2, X2
1, X2

2, ρC : ρA, ρB) ě I(X1
1, X1

2, X2
1, X2

2, ρC : M1, M2), (3.26c)

I(X1
1, X1

2, X2
1, X2

2 : ρA, ρB, ρC) ě I(X1
1, X1

2, X2
1, X2

2, ρC : M1, M2, Gj). (3.26d)

By performing the Fourier-Motzkin elimination for the most general marginal scenario,
M = ttX1

1, X1
2, X2

1, X2
2, M1, M2, G1u, tX1

1, X1
2, X2

1, X2
2, M1, M2, G1uu, the procedure yields

several entropic inequalities, capturing the most general form of the informational and
causal constraints within the communication scenario, holding for quantum theory.
Of particular relevance, the following criterion achieved by this procedure reflects the
supra-quantum feature provided by the correlation (3.23) in the protocol of Fig.11:

I = I(X1
1 : X2

1, G1) + I(X1
2 : X2

2, G2) + I(X2
1 : X1

1, G1) + I(X2
2 : X1

2, G2) ď H(M1, M2).
(3.27)

Indeed, (3.23) maximally violates (3.27), since in this case I = 4, while H(M1, M2) = 2.
For computational details concerning (3.27), the reader is referred to the Appendix D.

3.5.1 Analytical generalization

It is noteworthy that the Eq. (3.27) can be generalized to scenarios with an arbi-
trary number of parties N, bits n, and noisy communication specified by Ck. In that
case, we analyze the quantity I(xk : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c), measuring the
knowledge of the entire network about the data set of the part k. The main foundational
components of this proof are identical to the original axioms assumed in [20]:

1. Consistency: Whenever the random variables denote classical systems, I reduces
to the classical mutual information;

2. Data processing:

I(A : B1) ď I(A : B), when B ÝÑ B1; (3.28)
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3. Chain-rule:

I(A : B|D) = I(A : B, D) ´ I(A : D); (3.29)

4. Symmetry: I(A : B) = I(B : A);

5. Non-negativity: I(A : B) ě 0.

In that sense, analogously to [20], the parameter I is independent of any underlying
physical theory. Similarly to Bell inequalities, I depends only on the party’s classical
variables. Therefore, without the need to specify the form of I, it holds for every
informational measure holding the five mentioned properties8:

N´1
ÿ

k=1

n
ÿ

i=1

I(Xk
i : X1

i , . . . , Xk´1
i , Xk+1

i , . . . , XN´1
i , M1, Gi)

ď
N´1
ÿ

k=1

Ck +
N´1
ÿ

k=1

n
ÿ

i=1

I(Xk
i+1, . . . , Xk

n : Xk
i ), (3.30)

Proof. By applying the chain rule (3.29) two times, we obtain:

I(xk : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c)

= I(Xk
1 : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c)

+ I(Xk
2, ¨ ¨ ¨ , Xk

n : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c|Xk
1), (3.31)

= I(Xk
1 : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c)

+ I(Xk
2, ¨ ¨ ¨ , Xk

n : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c, Xk
1)

´ I(Xk
2, ¨ ¨ ¨ , Xk

n : Xk
1). (3.32)

From the data processing (3.28), we have

I(Xk
2, ¨ ¨ ¨ , Xk

n : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c, Xk
1) ě

I(Xk
2, ¨ ¨ ¨ , Xk

n : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c). (3.33)

Furthermore, by applying the chain rule in the first term in the right-hand side of (3.31),
and using strong subadditivity, I(A : B|C) ě 0, we obtain:

I(Xk
1 : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c)

= I(Xk
1 : X1

2, ¨ ¨ ¨ , X1
n|X1

1, x2, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c)

+ I(Xk
1 : X1

1, x2, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c)

ě I(Xk
1 : X1

1, x2, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c). (3.34)

8 It is important to stress the result of [114], showing the set of five axioms might be reduced to only
two.
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Therefore, revisiting Eq. (3.31), we write:

I(xk : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c)

ě I(Xk
1 : X1

1, x2, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c)

+ I(Xk
2, ¨ ¨ ¨ , Xk

n : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c)

´ I(Xk
2, ¨ ¨ ¨ , Xk

n : Xk
1). (3.35)

Similarly to (3.34), we can employ the chain rule and strong subadditivity N ´ 3 times
in the first right-hand side term in (3.35) in order to highlight only the first bit Xk

1 of
each bit-string xk:

I(xk : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c)

ě I(Xk
1 : X1

1, X2
1, ¨ ¨ ¨ , Xk´1

1 , Xk+1
1 , ¨ ¨ ¨ , XN´1

1 , M1, c)

+ I(Xk
2, ¨ ¨ ¨ , Xk

n : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c)

´ I(Xk
2, ¨ ¨ ¨ , Xk

n : Xk
1). (3.36)

Notice that the right-hand side third term in (3.36), apart of Xk
1 from the bit-string xk, is

precisely I(xk : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c). Therefore, by performing the same
steps n ´ 1 times, we achieve:

I(xk : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c)

ě
n

ÿ

i

I(Xk
i : X1

i , X2
i , ¨ ¨ ¨ , Xk´1

i , Xk+1
i , ¨ ¨ ¨ , XN´1

i , M1, c) ´
n

ÿ

i

I(Xk
i+1, ¨ ¨ ¨ , Xk

n : Xk
i ). (3.37)

Given that M1 are classical variables, we use the data processing inequality (3.28) to
refine the above inequality as,

I(xk : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c)

ě
n

ÿ

i=1

I(Xk
i : X1

i , X2
i , ¨ ¨ ¨ , Xk´1

i , Xk+1
i , ¨ ¨ ¨ , XN´1

i , M1, Gi) ´
n

ÿ

i=1

I(Xk
i+1, ¨ ¨ ¨ , Xk

n : Xk
i ).

(3.38)

The next step is then decomposing M1 into M1
1, ¨ ¨ ¨ , M1

k, ¨ ¨ ¨ , M1
N´1, and deriving the

upper bound for I(xk : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1, c) by applying the chain rule.
In this case,

I(xk : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1
1, ¨ ¨ ¨ , M1

k, ¨ ¨ ¨ , M1
N´1, c) (3.39)

= I(xk : M1
k|x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1

1, ¨ ¨ ¨ , M1
k´1, M1

k+1, ¨ ¨ ¨ , M1
N´1, c)

+ I(xk : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1
1, ¨ ¨ ¨ , M1

k´1, M1
k+1, ¨ ¨ ¨ , M1

N´1, c).

The second term on the right-hand side vanishes due to the no-signaling assumption.
Applying the chain rule to the remaining term and using the non-negativity of mutual
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information I(A : B) ě 0, we get

I(xk : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1
1, ¨ ¨ ¨ , M1

k, ¨ ¨ ¨ , M1
N´1, c)

ď I(M1
k : x1, ¨ ¨ ¨ , xk, ¨ ¨ ¨ , xN´1, M1

1, ¨ ¨ ¨ , M1
k´1, M1

k+1, ¨ ¨ ¨ , M1
N´1, c). (3.40)

Applying the data processing inequality (3.28) again, we know that including Mk on
the right-hand side can only increase the mutual information,

I(xk : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1
1, ¨ ¨ ¨ , M1

k, ¨ ¨ ¨ , M1
N´1, c)

ď I(M1
k : x1, ¨ ¨ ¨ , xk, ¨ ¨ ¨ , xN´1, M1

1, ¨ ¨ ¨ , M1
k´1, M1

k+1, ¨ ¨ ¨ , M1
N´1, c, Mk). (3.41)

From the causal structure depicted in Figure 11, it is clear that Mk shields M1
k from all

other variables V, such that I(M1
k : V|Mk) = I(M1

k : V, Mk) ´ I(M1
k : Mk) = 0. Thus,

we simplify the inequality (3.41) as,

I(xk : x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xN´1, M1
1, ¨ ¨ ¨ , M1

k, ¨ ¨ ¨ , M1
N´1, c)

ď I(M1
k : Mk) = Ck. (3.42)

Finally, by combining (3.38) and (3.42), and subsequently summing over all k, we
derive a necessary condition (3.30) ensuring IC:

N´1
ÿ

k=1

n
ÿ

i=1

I(Xk
i : X1

i , . . . , Xk´1
i , Xk+1

i , . . . , XN´1
i , M1, Gi)

ď
N´1
ÿ

k=1

Ck +
N´1
ÿ

k=1

n
ÿ

i=1

I(Xk
i+1, . . . , Xk

n : Xk
i ).

The derived criterion (3.30) holds for any number of parties N, for an arbitrary
number of bits n, with communication through a classical channels characterized by the
capacities Ck. Notice that (3.30) builds up a more stringent constraint than (3.27), even
when N = 3, n = 2 with noiseless communication (Mk = M1

k), since it includes the
message into account for the receiver’s available information. Nevertheless, naturally,
(3.27) trivially follows from (3.30) as I(A : B, C) ě I(A : B). Moreover, it is important
to stress that criterion (3.30) is written in the most general form for IC, wherein the
upper bound on the receiver’s available information includes noisy communication
description. In this case, a given resource explored by the parties violates IC whenever
there exists a protocol and noisy communication channels characterized by Ck, such
that (3.30) is violated. Indeed, previous developments in Ref. [112] have shown that
such framework consists of the strongest form of IC in bounding the set of no-signaling
correlations, and we shall see in the next section that such claim also holds for the
multipartite case.

The multipartite formulation expressed in (3.30) can be violated by the multipartite
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extension of the post-quantum correlation (3.23), given by

p(a1, a2, ¨ ¨ ¨ , aN|x1, x2, ¨ ¨ ¨ , xN) =

$

’

&

’

%

1/2N´1 if
N

à

k=1
ak =

N´1
à

k=1
xkxN;

0 else.

(3.43)

Considering n = 2, f j = X1
j ‘ X2

j ‘ ¨ ¨ ¨ ‘ XN´1
j , alongside the direct extension of the

protocol described in Fig. 12 for the multipartite case, we see that the communication
task is trivialized, implying the maximal violation of the multipartite IC inequality
(3.30).

3.5.2 Concatenation procedure

As previously discussed, the first proposal for the information causality criterion,
(3.2), witnessed the post-quantum nature of all non-signaling correlations beyond
Tsirelson’s bound [20]. For that, however, it was essential to consider a concatenation
procedure involving many copies of the correlation under test. Here, we show how
such concatenation can be constructed for the tripartite scenario and generalize it to
arbitrary multipartite scenarios.

Similarly to the bipartite scenario, the success probability for the protocol in Fig.(12)
can be connected to the probability of the resource shared between the parts, more
specifically to the probability p(a ‘ b ‘ c = xz ‘ yz|x, y, z). The probabilities of Charlie
correctly computing the values of x1 ‘ y1 and x2 ‘ y2 are, respectively,

PI =
1
4
[p(a ‘ b ‘ c = 0|0, 0, 0)

+p(a ‘ b ‘ c = 0|0, 1, 0) (3.44a)
+p(a ‘ b ‘ c = 0|1, 0, 0)
+p(a ‘ b ‘ c = 0|1, 1, 0)];

PI I =
1
4
[p(a ‘ b ‘ c = 0|0, 0, 1) (3.44b)

+p(a ‘ b ‘ c = 1|0, 1, 1)
+p(a ‘ b ‘ c = 1|1, 0, 1)
+p(a ‘ b ‘ c = 0|1, 1, 1)].

In the particular case where the parties share the correlation described by (3.23), we
obtain PI = PI I = 1.

In Fig. 13, we specify the concatenation procedure for the tripartite communication
protocol of Fig. 12. In this case, Alice and Bob initially receive the respective bit-strings x

and y of length n = 2K and share 2K ´ 1 identical copies of binary-input/binary-output
non-signaling boxes with Charlie. The success probability that Charlie produces a guess
gj correctly is given by (see appendix F)

p(gj = xj ‘ yj) =
1
2
(1 + EK´r

I Er
I I), (3.45)
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Alice

k = 2

x1 ⊕ x2

a2
1

x3 ⊕ x4

a2
2

k = 1

x1 ⊕ a2
1
⊕ x3 ⊕ a2

2

a1
1

y1 ⊕ b2
1
⊕ y3 ⊕ b2

2

b1
1

y3 ⊕ y4

b2
2

y1 ⊕ y2

b2
1

Bob

z1
1

c1
1

z2
1

c2
1

z2
2

c2
2

Charlie

Figure 13 – Concatenation performed by Alice, Bob, and Charlie of the protocol in
Fig.12. Alice and Bob initially receive n = 2K bits and Charlie receives a K-
bitstring tz1, z2, ..., zKu, which indicates which pair xj ‘ yj he is interested in,

j =
K

ÿ

l=1

zl2
l´1. Thus, Alice and Bob encode their bits in pairs, following the

protocol in Fig.12. In this case, instead of sending each respective message,
they encode pairs of these in other identical NS boxes with the same strategy.
So, both Alice and Bob perform this procedure until one message remains.
Alice and Bob are then allowed to send these one-bit messages to Charlie,
who receives the message, and to each NS box, performs the decoding
protocol just as Fig.12. In a given concatenation level k, Charlie recovers
the sum of Alice and Bob’s messages previously encoded in the current
box, which is associated with a subsequent higher level k + 1 NS-box. The
picture shows a particular case with n = 4, where ak

i , bk
i , and ck

i represent
the output of the box i in the level k to Alice, Bob, and Charlie, respectively.
In the level k = 1, Charlie recovers the messages associated with the box
i = 1 of the level k = 2 and can recover x3 ‘ y3 or x4 ‘ y4, depending on z2

2.

where r denotes the number of times that Charlie measures z = 1 in the K levels of the
concatenation code displayed in Fig.13 and Ei = 2Pi ´ 1 (see Eq.(3.44)). By considering
this success probability, we show in Appendix F.1 that IC is always violated when
E2

I + E2
I I ą 1. In other words, when combined with a concatenation procedure and

multiple copies of the behavior under test, the tripartite information causality inequality
(3.27) leads to a generalization of the bipartite inequality (3.18), given by

E2
I + E2

I I ď 1. (3.46)

Analogous to (3.27), the multiple copies criterion (3.46) is maximally violated by the
behavior (3.23) since, for this case, EI = EI I = 1. Moreover, for isotropic correlations
described by a visibility parameter E and such that EI = EI I = E, the tripartite multiple
copies inequality is violated when E ą 1/

?
2, which is the same bound obtained by [20]

for the bipartite scenario. However, for the tripartite scenario, the Navascués-Pironio-
Acin (NPA) hierarchy [40] implies that for any E ě 1/2 the corresponding correlation
will have a post-quantum nature. That is, the tripartite information causality, at least
with the specific concatenation considered here, cannot recover the quantum bound.

As previously mentioned, the bipartite version of (3.46) is precisely the quadratic
inequality obtained by Uffink [129]. However, for more than two parts, such equivalence
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no longer holds. For the tripartite scenario, the Uffink inequality reads as

(C001 + C010 + C100 ´ C111)
2 + (C110 + C101 + C011 ´ C000)

2 ď 16, (3.47)

where Cxyz =
ÿ

a,b,c

(´1)a+b+c p(a, b, c|x, y, z). Indeed, it is impossible to alternate between

the inequalities (3.46) and (3.47) merely by changing labels. Even more importantly,
as we will show in the next section, there are post-quantum correlations violating the
multiple copies inequality (3.46) that do not violate the tripartite Uffink inequality
(3.47) (as well as all the inequalities that are obtained from it by relabelling of parties,
measurements, and outcomes). Interestingly, it has been recently introduced in Ref.
[139] a broadly applicable framework that proves self-test in multipartite scenarios. In
particular, they prove that the maximum quantum bound for the multipartite version
of the Uffink inequality (3.47) is only achieved when parties share a N ě 3 qubit GHZ
state |GHZNy = (|0ybN + eiφN |1ybN)/

?
2 and performing maximally anti-commuting

projective measurements for each qubit, Aj = σx and Aj = σy. Therefore, a natural
promising avenue for further research may involve investigating the quadratic multiple
copies inequality (3.46) within the framework of self-testing.

3.5.3 Numerical Tests

More importantly, to understand the strength of the criteria derived, we considered
the following slice of the non-signaling set,

p(a, b, c|x, y, z) = γp45 + ǫpD + (1 ´ γ ´ ǫ)pW , (3.48)

where γ, ǫ P [0, 1], p45(a, b, c|x, y, z) is the distribution we defined in section 3.5 in (3.23),
pD(a, b, c|x, y, z) = δa,0δb,0δc,0 and pW(a, b, c|x, y, z) = 1/8. Thus, we obtained Fig. 14,
which highlights that (3.46) excludes an even broader range of supra-quantum correla-
tion than (3.27). In addition, despite the gap between the quantum set and the presented
criteria, we enforced that the derived bound follows from the particular communication
protocol depicted in Fig.13. Therefore, it does not preclude the possibility of identify-
ing more suitable protocols that could single out the quantum set for this slice of the
non-signaling set or rule out post-quantum extremal correlations.

Fig.14 also presents the edge implied by (3.30) for the same slice in (3.48) for N = 3
parties, n = 2 initial bits. In this case, we considered that all communication is made
through a binary symmetric channel that flips the bit with probability ǫ. In this case, we
followed the results from [112] to obtain the curve and considered ǫ Ñ 1/2. The results
clearly indicate that our multiple copies criterion as expressed in (3.46) is in complete
agreement with the noisy channel approach, even when applied to the simplest binary
symmetric noisy channel. The codes related to the Fig. 14 are available in [140].

In the context of the tripartite scenario involving binary-input/binary-output, there
exist 53856 non-signaling extremal correlations that are classified into 46 different
equivalence classes, among which 45 are supra-quantum ones [44]. A significant result
from [25] states that class 4 of these could never have its post-quantumness detected
by principles with a strict bipartite formulation, just as those in (3.2) and (3.7). Thus,
we also checked the ability of (3.46) to exclude correlations from class 4, and even
more generally, we tested all the 45 supra-quantum extremal distributions of the non-
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3.6 Discussion

This Chapter introduces a novel multipartite communication task in which the
previous IC formulation fails to detect nonlocal advantage. By employing the quantum
causal structure formalism, we have proposed a new criterion ensuring IC in such a new
context and proved its truthfulness for the whole set of quantum correlations for any
number of parts. Furthermore, we have demonstrated that our model accommodates the
concatenation approach from [20], enabling us to derive even stronger constraints for
the multipartite non-signaling correlations set. In that case, our multipartite inequality
has proven to be stronger than the multipartite Uffink’s inequality from [129], which
contrasts with the earlier bipartite result from Ref. [20]. In addition, our findings align
with the recent noisy channel approach from [112], which allows a broad range of
analyses for such a multipartite context.

Although the present multipartite criteria do not specifically single out class 4 correla-
tions defined in [44], we emphasize that our results are limited by one specific protocol,
which is optimal to Eq.(3.43). However, it only ensures that it is optimal for some non-
signaling correlations. Thus, searching for better protocols for different correlations
may yield more substantial results, representing one of the main interesting further
directions. Furthermore, the analysis of non-dichotomy scenarios, or cases where the
sender’s initial bits are correlated, may also produce interesting results, as previously
analyzed in [96]. Moreover, our findings pave the way for a new class of non-sequential
multipartite RACs, where multiple parts exchange messages with the task of computing
a boolean function of the senders’ initial bits. The figure of merit, in this case, is to
calculate the success probability concerning the receiver to accurately compute such
a function. Thus, investigating these new thresholds for such a probability of success
may have important implications for quantum information processing.
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Chapter 4

Monogamy of nonlocality from
Information causality

4.1 Monogamy of CHSH inequalities

Consider the simplest non-trivial Bell inequality, the Clauser-Horne-Shimony-Holt
(CHSH) inequality, in the dichotomous input-output Bell scenario, expressed as follows:

β(A,B) =
1
4

ÿ

x,y
p(a ‘ b = xy|x, y) ď 3

4
. (4.1)

Here, we denote the parties as A and B. For the input and output variables we have a,
b, x, y P t0, 1u and the symbol ‘ denotes sum modulo 2. The value 3/4 corresponds to
the maximum classical bound, which can be violated by quantum and more general
no-signaling correlations. While the maximum violation of (4.1) attainable through

quantum theory, referred to as Tsirelson’s bound [16], is βQ =
1
2
(1 +

1?
2
) « 0.8535,

no-signaling principle allows correlations achieving βNS = 1. Correlations violating
Bell inequalities exhibit several nonclassical features, with several practical applications
in information processing problems [11, 142, 17, 71, 52]. However, even at theoretical
level, nonlocality cannot be considered a free resource. Indeed, when multiple parties
are included, monogamy relations emerge.

In essence, monogamy of nonlocality asserts that if two parties, A and B, share non-
local correlations, the amount of nonlocality that either of them may share with a
potential third party, E , is limited. An example of this is the monogamy relation of
CHSH inequalities implied by the no-signaling condition (1.5) [74, 143] :

β(A,B) + β(B, E) ď 3
2

. (4.2)

Correlations that satisfy (4.2) are not necessarily no-signaling [144], but all no-signaling
correlations do respect it. It is important to note, however, that even though (4.2) is
weaker than no-signaling condition, when β(A,B) = βNS = 1, it implies that B (and
A) must be completely uncorrelated with the third party E , such that, β(B, E) = 1/2.
Interestingly, Ref. [74] presents a general form of the NS-monogamy relation for general
Bell’s inequalities, encompassing arbitrary number of parties, measurement settings,
and outcomes.

Of particular importance, within the realm of quantum mechanics, is the following
quadratic relation established in [145]:

(

β(A,B) ´ 1
2

)2

+

(

β(B, E) ´ 1
2

)2

ď 1
8

. (4.3)

This relation is tighter than the no-signaling one, and, similarly, when A,B observe the
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maximum quantum value of β(A,B) = βQ = (1 + 1/
?

2)/2, then β(B, E) must be 1/2.
In more general terms, monogamy of nonlocality implies that if the two parties

A,B observe nonlocal correlations, such that β(A,B) ą 3/4, then the strength of their
correlations with E , as measured by the value of the CHSH functional β(B, E) (or
β(A, E)) remains limited. Thus, we might read monogamy relations in the following
form [144]:

β(B, E) ď f M
T (β(A,B)) , (4.4)

where f M
T : [1/2, 1] Ñ [0, 1] is the function describing the monogamy implied by a

specific principle T, such as IC. While (4.3) holds for quantum theory, we are interested
in whether a non-trivial 1 monogamy relation of the form (4.4) can be derived via a DI
physical principle, without invoking the abstract Hilbert space formalism. As we shall
see, monogamy relations of the form (4.4) are cryptographically significant as they can
be used to ensure security in DIQKD protocols, against adversaries restricted by the
nonlocal theory T [144].

4.2 Optimal CHSH values under the IC constraint

In Chapter 3 we introduced how information-theoretic constraints bound the set of
correlations in Bell scenarios. In this section we discuss how those constraints, such
as IC, relate to simultaneous violations of Bell inequalities. The monogamy relations
between the values of two Bell inequalities, say β(A,B) and β(B, E), as implied by
IC, can be framed as a maximization problem. Specifically, we seek to determine the
maximum value for β(B, E), as permitted by a given information-theoretic criterion2,
given a specific value of β(A,B).

As previously discussed, all current formulations of IC are highly dependent on
the specific protocol in use. In this regard, to test (3.2) for example, it is necessary to
specify the protocol and the resources available to the involved parties. This require-
ment introduces significant complexity to the analysis. In principle, it suggests that
we may need to assess (3.2) across the entire non-signaling polytope 3 to determine
whether IC can imply some monogamy relation such as (4.4), or even recover quan-
tum monogamy, as expressed in (4.3). Nevertheless, as we show in [30], it is enough
to analyze a significantly smaller region of NS set, which we state as the following
lemma:

Lemma 1. To find the maximum CHSH value between B and E , β(B, E), permitted by
information causality, when A and B witness a CHSH value, β(A,B), it suffices to consider
tripartite no-signaling correlations p(a, b, e|x, y, z) of the form,

p(a, b, e|x, y, z) = α
1
4

δa‘b,xy + γ
1
4

δe‘b,zy + (1 ´ α ´ γ)1/8, (4.5)

where α, γ P [0, 1], and α + γ ď 1.

1 i.e., tighter than (4.2).
2 Such as those outlined in Chapter 3
3 The convex polytope of tripartite no-signaling correlations has 53856 extremal points [44].
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Indeed, this parametrization encompasses all aspects associated with (4.2) and (4.3).
As a result, the problem is reduced to find the optimal value of γ, as implied by any
formulation of IC that satisfies the data processing relation, for a given value of α. Thus,
analyzing (4.5) is sufficient to address the monogamy relations implied by IC.

Proof. Consider a tripartite Bell scenario, where parties A,B, E have binary input-
output x, y, z, a, b, e P t0, 1u. In this context, we observe that the Bell expressions
β(A,B) and β(B, E) are individually maximized by their respective PR-boxes PRAB b
LE and PRBE b LA. Here, LA and LE denote some local distributions for A and E , re-
spectively, such that:

pPRABbLE
(a, b, e|x, y, z) =

1
2

δa‘b,xy ¨ pLE
(e|z), (4.6)

pPRBEbLA
(a, b, e|x, y, z) =

1
2

δb‘e,yz ¨ pLA
(a|x). (4.7)

The product structure of these correlations follows from the corresponding NS -
monogamy relation (4.2), which states that tripartite distributions must factorize when-
ever any two of the three parties share a PR-box. Moreover, in this Bell scenario, no
other extremal nonlocal tripartite no-signaling box achieves the maximal violation
of the CHSH inequalities (see Table 4 in Ref. [44]). Hence, any of those contribu-
tions, but PR-box, can be effectively ignored. Consequently, without loss generality,

we can restrict our analysis to correlations P
(α,γ)
ABE given by a convex combination of

correlations PRAB b LE and PRBE b LA and a white noise distribution WABE , where
pWABE

(a, b, e|x, y, z) = 1/8, @a, b, e, x, y, z, such that,

P
(α,γ)
ABE = αPRAB b LE + γPRBE b LA + (1 ´ α ´ γ)WABE (4.8)

where α, γ ě 0, α + γ ď 1. Consequently, the optimal CHSH values, β(A,B) and
β(B, E), for a given pair (α, γ) in (4.8) are determined by a combination of marginal
local functions LA and LE .

We recall that our objective is to achieve optimal CHSH values, under Shannon’s
mutual information functional constraints, denoted by I(P) ď m, where P is the joint
probability distribution of all observed variables in the DAG (see section 3.4 of Chapter
3), and m is a number specified by marginals of P describing the communication. It is
evident that P is protocol-dependent, based on the communication strategy employed
by the parties. However, we consistently assume a particular protocol in all cases, which

renders the functional depending only on the correlation P
(α,γ)
ABE , i.e., I(P(α,γ)

ABE )
4, and

m is then a fixed number. Particular examples of such constraints were discussed in
the previous Chapter in terms of information-theoretic constraints in Eq. (3.2),(3.8),
(3.30). Indeed, such additional constraint implies a particular form for the marginal
distributions LA and LE in Eq. (4.8). To illustrate this, consider that the distribution

P̄
(α,γ)
ABE , which is obtained from the original P

(α,γ)
ABE , by flipping all outputs. In this case

4 The precise mathematical notation for I(P(α,γ)ABE) should account for the fixed protocol under
consideration; however, for simplicity, we have omitted this index, as the same protocol is assumed
for each functional throughout this work.
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we have:

P̄
(α,γ)
ABE = αPRAB b L̄E + γPRBE b L̄A + (1 ´ α ´ γ)W̄ABE , (4.9)

where

pL̄E
(e|z) = pLE

(e ‘ 1|z),
pL̄A

(a|x) = pLA
(a ‘ 1|x), (4.10)

pW̄ABE
(a, b, e|x, y, z) = pWABE

(a ‘ 1, b ‘ 1, e ‘ 1|x, y, z).

Note, however, that the values of the CHSH expressions, β(A,B) and β(B, E) remain
unaltered when all outcomes are simultaneously flipped, and they depend solely on
the coefficients (α, γ). In parallel, flipping the outputs constitutes a simple local post-
processing operation, which, according the data processing inequality (3.28) implies:

I(P̄
(α,γ)
ABE ) ď I(P

(α,γ)
ABE ). (4.11)

Accordingly, as the upper bounds on I depends exclusively on the fixed communication

protocol, the interconversion between P̄
(α,γ)
ABE and P

(α,γ)
ABE does not produce a violation

of the information-theoretic constraints. Hence, from the convexity of Shannon’s mutual

information, the convex combination of P̄
(α,γ)
ABE and P

(α,γ)
ABE also satisfies the bounds on the

mutual information functional, I . Specifically:

I
(

δP
(α,γ)
ABE + (1 ´ δ)P̄

(α,γ)
ABE

)

ď δI
(

P
(α,γ)
ABE

)

+ (1 ´ δ)I
(

P̄
(α,γ)
ABE

)

, (4.12)

where δ P [0, 1]. In particular, for δ = 1/2 we have

P
˚(α,γ)
ABE ” P

(α,γ)
ABE + P̄

(α,γ)
ABE

2
= αPRAB b WE + γPRBE b WA + (1 ´ α ´ γ)WABE , (4.13)

where WA and WE are uniform distribution, and the components of P
˚(α,γ)
ABE are written

explicitly in (4.5). Here, we used the following facts

1
2
(LA + L̄A) = WB,

1
2
(LE + L̄E ) = WE ,

WABE = W̄ABE

Notice that, since the values of the CHSH expressions, β(A,B) and β(B, E) are the

same for P
(α,γ)
ABE and P̄

(α,γ)
ABE , the same applies to P

˚(α,γ)
ABE . Moreover, the form of (4.13) is

independent of the marginals LA and LE . Consequently, since P
(α,γ)
ABE in Eq. (4.8) has

marginals that achieve the maximum CHSH values in β(A,B) and β(B, E), as allowed
by some information-theoretic constraint, we can always transform this distribution

to P
˚(α,γ)
ABE , maintaining the same CHSH values, without producing violations of the

information-theoretic constraints of interest. Therefore, P
˚(α,γ)
ABE is sufficient to determine

the maximum CHSH value between B and E , β(B, E), as permitted by information
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causality in the forms in Eq. (3.2),(3.8), (3.30), when A and B witness a CHSH value,
β(A,B). This concludes the proof.

4.3 Bipartite IC does not imply any monogamy of nonlo-

cality

As it is clear from Chapter 3, the original IC formulation has an inherent bipartite
structure (see DAG in Fig. 8). Such particular feature adds extra problems to apply
the approach to Bell’s scenarios involving no more than two parties. For the tripartite
scenario, for example, the correlation p(a, b, e|x, y, z) must be locally post-processed
into an effectively bipartite correlation pe f f (a1, b1|x1, y1). Such a processing is typically
referred to as wiring, and Fig.15 depicts such a procedure. The parties are assumed to
dispose of the tripartite resource and two of them form a composite box (for instance A
and B1 ” (B, E)), where they can signal to build their effective in/output. A wiring is
then specified by the choice of bipartition and by the functions

x = F1(x1), a1 =F2(a), (4.14)

y = F3(y
1, z, e), z =F4(y

1), b1 = F5(b, e),

where, Fi : t0, 1un Ñ t0, 1u, @i P t1, 2, 3, 4, 5u. Thus, we say that p(a, b, e|x, y, z) violates
IC if there exists some wiring procedure that produces an effective pe f f (a1, b1|x1, y1) that
violates some of the bipartite criteria (3.2),(3.8). Indeed, such approaches have been
explored in many works studying IC and multipartite Bell scenarios [25, 24, 146]. Of
particular relevance, the authors of [147, 148, 149] claimed having derived the quantum
monogamy property in (4.3) from bipartite formulation from IC, by employing the

Figure 15 – Wiring procedure that takes tripartite correlations p(a, b, e|x, y, z) and pro-
duces a bipartite effective one pe f f (a1, b1|x1, y1).
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4.4 Monogamy from tripartite IC

For multipartite IC, we considered the simplest tripartite scenario, previously pre-
sented in Fig.11. In this case, n = 2, the parties perform the protocol introduced in
Section 3.5, communicating independently through a binary symmetric channel. The
classical channels are specified by ǫ1, ǫ2 P [0, 1], which denote the flipping probability of
each message, respectively, i.e. p(M1

1 = M1 ‘ 1|M1) = ǫ1 and p(M1
2 = M2 ‘ 1|M1) = ǫ2.

For this particular scenario, the criterion in (3.30) translates into

I(X1
1 : X2

1, M1
1, M1

2, G1) + I(X1
2 : X2

2, M1
1, M1

2, G2)

+ I(X2
1 : X1

1, M1
1, M1

2, G1) + I(X2
2 : X1

2, M1
1, M1

2, G2)

ď 2 ´ h(1 ´ ǫ1) ´ h(1 ´ ǫ2), (4.15)

where h(p) = ´p log p ´ (1 ´ p) log(1 ´ p). Fig.16 illustrates our main result, where
tripartite IC imposes a non-trivial bound on β(A, E). Despite Eq. (4.15) does not
fully recover quantum monogamy as in Eq. (4.3), it does imply a monogamy relation
similar to (4.4). Specifically, the criterion (4.15) entails tighter bounds on β(B, E) than
no-signaling monogamy relations for the range β(A,B) P [0.8333, βQ]. Notably, when
A and B maximally violate the CHSH inequality with β(A,B) = βQ, (4.15) is violated
for all distribution p(a, b, e|x, y, z) giving β(B, E) ą 1/2, up to computational precision.
Consequently, when A and B witness the maximum quantum violation of the CHSH
inequality (β(A,B) = βQ), information causality imposes that B must be entirely
uncorrelated with any third party E , such that the CHSH value between B and E must
be β(B, E) = 1/2, thereby recovering the quantum monogamy (4.3).

To build up the boundary in Fig.16, for each pair (α, γ), we examined violations of
(4.15) for different values of ǫ1 and ǫ2 within the whole range [0, 1]. The codes related
to Fig.16 are publicly available in [150]. It is noteworthy that, as with all other results
associated with IC, the bounds depicted in Fig. 16 are highly dependent on the specific
protocol in Fig.12. Consequently, it remains an unsolved question whether the tripartite
formulation for IC can fully capture quantum monogamy, as expressed in (4.3), for
alternative protocols or diverse noisy channels. Nevertheless, as we demonstrate in
the next section, the bound imposed by (4.15) is enough to guarantee the information
theoretic security of DIQKD protocols.

4.5 Security in QKD protocol from IC

In addition to its foundational significance in recovering key properties of quantum
mechanics, such as monogamy of Bell inequalities violations, our findings reveal that
IC also holds cryptographic relevance. This is due to the close relation of monogamy
relations, such as (4.4), and security of device-independent quantum key distribution
(DIQKD) protocols. Indeed, as we shall see, a specific nonlocal theory T that enforces
a monogamy relation as (4.4), ensures security against adversaries constrained by the
theory T [144].



Chapter 4. Monogamy of nonlocality from Information causality 69

4.5.1 Security and guessing probability

In that context, we focus on the CHSH-based protocol, where the parties share a large
number of states and conduct an experiment, aimed at optimizing the violation of the
CHSH inequality (4.1), and the key is established from the outcomes a and b P t0, 1u
from the Bell experiment. For the agreement procedure, Bob then publicly announces
his measurement choice y to Alice, and they agree on the key by flipping a Ñ a ‘ 1
when x = y = 1 while retaining the data otherwise. This protocol has been proven
secure against no-signaling individual attacks in [52], and even collective attacks [73].
Several other developments have still been explored in this context, such as the recent
security proof for arbitrarily small nonlocality [77], and experimental implementation
[78, 79]. As previously discussed in Chapter 3, in turn, IC generalizes the concept
of no-signaling to scenarios with communication. Thus, a natural question is to ask
whether IC can also imply security on cryptographic key distribution protocols, or
even if it may enhance the security obtained from the no-signaling principle.

A foundational result regarding quantum key distribution (QKD) security was pre-
sented in [75], establishing that A and B can always distill a secret cryptographic key
against an eavesdropper E , when they have an advantage in terms of mutual informa-
tion, i.e.,

I(A : B) ą I(E : B). (4.16)

In other words, whenever the mutual information between A and B set of keys exceeds
that between B keys and E ’s set of decodings, A and B can securely establish crypto-
graphic keys. Thus, in order to infer security from the monogamy result presented in
the last section, we need first relate the security criterion (4.16) with the respective Bell
inequality violations (see [144, 151]). As we will soon clarify, in the CHSH protocol, Bell
inequalities violations are closely related to guessing probabilities of A and E5. In that
regard, we may simply re-write (4.16) in terms of Shannon’s entropy:

H(B) ´ h(PA) ą H(B) ´
ÿ

ε

p(ε)h (p(b = 0|ε)) . (4.17)

Here, h(¨) is the binary entropy, and PA denotes the probability of A correctly guessing
B’s outcome. On the left-hand side we invoke Fano’s inequality [152] and the fact that
A and B have binary outcomes, i.e. I(A : B) ě H(B)´ h(PA). Note, therefore, that (4.17)
is only a sufficient condition to ensure (4.16). On the right-hand side, we express the
conditional entropy H(B|E) explicitly in terms of probability distribution. As previously
emphasized in [151], we remember that, in principle, the cardinality of E ’s output might
be non-binary. Indeed, in the DIQKD scenario, Eve is bounded solely by DI principles,
but no boundaries are assumed for her computational power. In the worst case, E may
have even a more precise description of B’s outputs b, provided by her outputs ε, i.e.,
the distribution p(b|ε). Consequently, E ’s best strategy for guessing B’s output, when
receiving the outcome ε, is:

gε = arg
(

max
b

p(b|ε)
)

, (4.18)

5 i.e., the sake of completeness, "guessing probabilities" refer to the success probability of one party
producing a correct guess of the other party’s output.
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where,

p(gε) = max
b

p(b|ε). (4.19)

Therefore, E ’s guessing probability, PE, is expressed as the weighted sum:

PE =
ÿ

ε

p(ε)p(gε). (4.20)

Hence, Eq. (4.17) can be rewritten. Since h (p(b = 0|ε)) = h (p(b = 1|ε)), from (4.19),
we may write h (p(b = 0|ε)) = h (p(gε)). Thus, Eq. (4.17) reduces to:

h(PA) ă
ÿ

ε

p(ε)h (p(gε)) . (4.21)

The maximum value of h(p(gε)) is achieved when p(gε) = 1/2. Let p denote the sum
of all p(gε) such that p(gε) = 1/2 by p. We then have:

p ď
ÿ

ε

p(ε)h(p(gε)). (4.22)

Similarly, for (4.20), denoting the sum of all p(gε) taking the value 1 by q, we have
PE ě p/2 + q. From normalization, p + q ď 1, and if follows that for PE, we can write:

PE ě 1 ´ p
1
2

. (4.23)

Consequently, (4.21), (4.22), and (4.23) together provide a sufficient condition to satisfy
(4.16), yielding a security criterion in terms of the guessing probabilities of A and E :

PE ă 1 ´ 1
2

h(PA). (4.24)

4.5.2 Security from IC

At this point, we are ready to relate guessing probability and Bell functionals from
Eq. (4.1) with guessing probabilities. From the CHSH protocol, B’s output is equal to
b = a ‘ xy with probability β(A,B). Since A has access to B’s inputs y, she can guess
B’s output with success probability PA of:

PA = β(A,B). (4.25)

In the case of E , to maximize PE, she intercepts B’s input y and explores it to produce
a correct guess about B’s output. More generally, E may also have her own input
z, producing the guess g y1,z, where y1 represents possible incorrect eavesdropping
by E . In the ideal case, y1 = y. Her guessing strategy is then specified by p(gy1,z) =
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max
b

p(b|y1, z)6, where

PE =
ÿ

y1,z

= p(gy1,z)p(y1, z) ď max
y1,z

(p(gy1,z)). (4.26)

Thus, we now ask what CHSH values, β(E ,B), E can achieve, through such a mecha-
nism. In this case, we denote by e and z, the respective E ’s input and output in the Bell
experiment. Since, in a Bell experiment, Edoes not have access to B’s inputs, her best
strategy consists of simply producing a guess as the most likely gy1,z. That is,

G = arg
(

max
y1,z

p(gy1,z)

)

. (4.27)

In this scenario, E aims to maximize p(e ‘ b = yz). Therefore, when G takes the values
g0,0, g0,1, and g1,0, her best strategy is to output e = G. Conversely, when G = g1,1, she
outputs e = G ‘ 1. In this case, the correlations in the CHSH functional, β(E ,B), may
relate to p(gy,z). For instance, when G = g0,0 we have:

p(e ‘ b = 0|y = 0, z = 0) = p(gy1=0,z=0), (4.28a)

p(e ‘ b = 0|y = 0, z = 1) = p(gy1=0,z=0), (4.28b)

p(e ‘ b = 0|y = 1, z = 0) = p(gy1=0,z=0), (4.28c)

p(e ‘ b = 1|y = 1, z = 1) = 1 ´ p(gy1=0,z=0), (4.28d)

which together with (4.26), leads to,

β(E ,B) =
1
4
(1 + 2p(gy1=0,z=0)) ě 1

4
(1 + 2PE). (4.29)

It is straightforward to verify that (4.29) is general, as it holds for all G in (4.27).
With this treatment, we can finally connect the monogamy of Bell inequality viola-

tions with secrecy in cryptographic protocols. Indeed from the general monogamy in
Eq. (4.4), we can rewrite (4.29) as:

PE ď 2 f M
T (β(A,B)) ´ 1

2
. (4.30)

Thus, by combining (4.24), (4.25), and (4.30), we derive a sufficient condition for the
Csiszár and Körner security criterion in (4.16):

h (β(A,B)) ă 3 ´ 4 f M
T (β(A,B)) . (4.31)

This condition imposes threshold values of β(A,B) sufficient for security, which can
be determined by examining the specific form of f M

T in (4.31), for a given nonlocal
theory T. For instance, correlations that satisfy the no-signaling condition obey the
linear monogamy relation (4.2). In this case, the threshold value of β(A,B) for secure
DIQKD, with no-signaling monogamy (4.2), via (4.31), turns out to be « 0.881, which is
not realizable with quantum theory [153].

6 More precisely, p(gy1,z) =
ÿ

ε

p(ε)p(gε,y1,z) =
ÿ

ε

p(ε)max
b

(

p(b|ε, y1, z)
)

.
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Of particular relevance, however, for the quantum quadratic monogamy relation
(4.3) applied to (4.31), the threshold value of β(A,B), for secure DIQKD is « 0.841

[153]. In contrast to the quantum bound, β(A,B) = βQ =
1
2
(1 +

1?
2
), A and B can

establish a secret key, based only on the quantum monogamy (4.3). It is important to
note, however, that the parties being constrained by (4.3) do not necessarily imply they
are restricted to quantum mechanics. Therefore, by assuming (4.3), and by means of
a quantum mechanics experiment, A and B ensure security even against potentially
supra-quantum attacks.

While (4.3) holds within quantum theory, our interest lies in whether the monogamy
relation derived from IC principle may ensure security through the criterion (4.31). As
presented in Section 4.4, IC implies bounds of the form (4.4), which are tighter than (4.2).
In Fig. 16, the solid gray line represents the security constraint (4.31). In fact, tripartite
formulation of IC (Eq. (4.15)) ensures (4.31) for β(A,B) ě 0.8471. Consequently, we
conclude that IC ensures security for DIQKD protocols, whenever A and B witness the
CHSH value in the realizable range of quantum correlations, β(A,B) P [0.8471, βQ].

As extensively discussed in prior sections of the present thesis, it remains an open
question whether IC may completely single out the set of quantum correlations. This
fact highlights the significance of the cryptographic security based on the tripartite IC.
In that case, we have that through an experiment bounded by quantum mechanics,
Alice and Bob ensure security against a potentially supra-quantum eavesdropping. Con-
sequently, regardless of whether IC fully characterizes the set of quantum correlations,
the theoretical security proof based on the IC principle holds, even in the face of a
hypothetical breakthrough beyond quantum mechanics.

Interestingly, concerning the bipartite formulation of IC, it is straight to conclude that
there are no means to guarantee security from (4.31). Under computational precision,
there exists no bound on β(B, E) imposed by bipartite ICfor β(A,B) ď βQ. Conse-
quently, there is no CHSH value in the helm of quantum mechanics, β(A,B) ď βQ, for
which bipartite IC ensures (4.31).

4.6 Discussion

We establish a clear connection between the concept of information causality (IC)
and the monogamy of Bell inequality violations. In that context, we first describe Eq.
(4.5) as the region on the NS polytope wherein all optimal values of Bell inequalities,
subject to the IC constraint, are found. This result is particularly significant, as it applies
not only to IC-related expressions but also to any informational function that respects
the data processing inequality. Thus, we demonstrate that in the standard IC bipartite
scenario (for the standard protocol) no monogamy relation between CHSH expressions
can be derived. This consequence stands in contrast to our main finding, where we
introduce a novel multipartite IC framework that reveals the existence of a monogamy
relation. As a noteworthy consequence of these results, we prove that IC guarantees
security against non-signaling attacks for DIQKD protocols.

The presented framework opens up several promising avenues for further research.
The result that identifies the optimal slice for analyzing Bell functional values under
the IC constraint has so far only been applied to the CHSH expression (Eq.(4.1)). It
remains unclear, however, whether one can extend this result to encompass other Bell
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inequalities. It is also worth observing the protocol-dependent structure inherent in
every result within the context of IC. In this regard, a critical open question is whether
the gap between IC and quantum monogamy, as illustrated in Fig.16, could be nar-
rowed by assigning different encoding and decoding protocols to the parties. If so, the
security proof for DIQKD could be significantly strengthened, leading to improved
threshold values for security. Furthermore, our analysis has focused exclusively on the
noisy binary symmetric channel, which leaves open the possibility of considering differ-
ent more suitable channels, depending on the specific context. Naturally, expanding
the investigation to address alternative types of eavesdropping, such as collective or
coherent attacks, represents a natural and important extension of this work. Finally,
as monogamy relations are also closely tied to quantum random number generation
certification (QRNG), another compelling direction for future research would be to
investigate the potential connection between IC and QRNG in detail.
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Chapter 5

Final remarks

In this thesis, we have investigated fundamental questions at the intersection of
quantum mechanics, nonlocality, and communication. By investigating Bell nonlocality
and its significance in information processing, this work advances the understanding of
quantum correlations. In particular, it addresses significant open problems in literature
by introducing novel frameworks and formulating new operational criteria for the
Information Causality principle. These contributions shed light on the interplay between
nonlocality and communication, offering insights into quantum correlations and their
limitations. Within this context, a central focus of this thesis was the development
of a multipartite framework for IC, which approaches the limitations of its original
bipartite formulation. In this regard, we employ the systematic Shannon’s entropic cone
framework [22]. These findings are particularly significant, as they enable the derivation
of more substantial constraints on the non-signaling correlations set, surpassing the
previously established multipartite inequalities [129]. This result aligns with recent de-
velopments on noisy channel approaches [112], suggesting broader applicability of our
findings to multipartite contexts. Additionally, we investigated the connection between
IC and the monogamy of Bell inequality violations. While the bipartite framework of
IC fails to recover monogamy relations, we demonstrated that the introduced multi-
partite framework naturally ensures such monogamy properties, recovering the strong
form of monogamy relation implied within quantum theory. This result has implications
in device-independent quantum key distribution, as it establishes IC as a fundamental
principle guaranteeing security against non-signaling attacks. The ability to link IC to
monogamy relations also opens promising avenues for exploring its implications in
related areas, such as quantum random number generation certification (QRNG) and
other cryptographic applications.

As it happens with all known formulations for IC, the protocol-dependent struc-
ture of the principle leaves open the possibility of more suitable protocols that better
highlight IC violation. For instance, while the proposed multipartite criteria provide
robust constraints, they are optimal only for specific protocols and certain classes of
non-signaling correlations. Identifying alternative communication tasks for which other
classes of non-signaling correlation are optimal could also significantly improve the
presented results. In the context of monogamous relations and IC, the current work
primarily addresses the CHSH expression and the noisy binary symmetric channel,
leaving open the possibility of exploring alternative Bell inequalities and channels.
Extending the security results to more complex forms of eavesdropping, such as collec-
tive or coherent attacks, is naturally an interesting further direction. Addressing these
extensions could refine the security proofs for DIQKD protocols and improve threshold
values for practical implementations.

Lastly, the broader question of whether IC or related device-independent principles
can fully characterize the set of quantum correlations remains unresolved. Nevertheless,
the introduced monogamous relation via IC highlights the practical significance of
the principle. i.e., whether IC fits as a holding principle of nature, parties may always
ensure security by means of an experiment with quantum systems without introducing
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the Hilbert spaces formalism of quantum theory. Consequently, even if in the future
we negatively answer whether IC fully singles out the set of quantum correlations,
the theoretical proofs still hold, which would ensure security even in the hypothetical
scenario where the eavesdropper could breakthrough the laws of quantum mechanics.
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In this case, each component of p clearly satisfies the positivity condition. For a given
component of p, we obtain p(a|x) = αp1(a|x) + (1 ´ α)p2(a|x). Summing over all
possible outcomes a and using the normalization of p1 and p2, we have

ÿ

a

p(a|x) =
ÿ

a

[αp1(a|x) + (1 ´ α)p2(a|x)] ,

= α
ÿ

a

p1(a|x) + (1 ´ α)
ÿ

a

p2(a|x),

= α + (1 ´ α) = 1.

Thus, p P P confirms that the set of behaviors in Eq.(1.2) is convex. Furthermore,
since the number of linear constraints defining P depends on the number of possible
measurements and outcomes, by definition in Eq.(A.8), we conclude that the set in
Eq.(1.2) is a polytope.
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Chapter B

Notions of quantum theory used in this
thesis

In this chapter, we will provide a concise overview of essential concepts within
quantum theory that will be fundamental for the discussions in the subsequent chapters.
For further details, the reader may refer to the references [154, 155, 156], which serve as
the basis for this discussion.

B.1 A few definitions

As is well known, quantum theory is a probabilistic framework built upon mathe-
matical postulates that facilitate the formulation of predictions. Although the theory
does not delineate the physical laws governing the quantum realm, it associates mathe-
matical objects with critical concepts necessary for physical description, such as state,
measurement, interaction, and evolution.

In this work, we examine the non-local aspects of quantum theory, which typically
considers only the two most fundamental elements: state and measurement.

The first postulate of quantum theory describes the state. It associates a physical
system of interest with a Hilbert space in which an operator acting within this complex
vector space fully describes the system’s state.

Definition 1. Quantum state1: It is an operator ρ that acts on the Hilbert space H and satisfies
the following properties:

(i) ρ ě 0;

(ii) Tr ρ = 1.

The operator ρ can be expressed in terms of the following convex combination:

ρ =
ÿ

i

pi|ψiyxψi|, (B.1)

where |ψiyxψi| are projectors, |ψiy is a normalized vector belonging to H, and pi satisfies
ÿ

i

pi = 1 and pi ě 0. States described by a single projector, ρ = |ψyxψ|, are known as

pure states, while those represented in equation (B.1) are referred to as mixed states.
From this foundation, we can advance to another area of interest within the quantum

formulation, namely measurement. The measurement postulate establishes a connection
between another class of operators acting in H and the execution of an experiment
involving the physical system in question. In a laboratory setting, the experimental
procedure can be read as implementing a measurement choice x followed by acquiring
1 Or density operator.



APPENDIX B. Notions of quantum theory used in this thesis 95

a result a. Accordingly, in the framework of quantum theory, each result a is associated
with an operator Ma|x, such that given the state ρ and Ma|x, one can determine the
probability of obtaining the outcome a in a realization of the experiment. Thus, we
define quantum measurement as follows:

Definition 2. Quantum measurement: It is defined by a set of m operators associated with m
possible outcomes a, tMa|xu, acting in H, such that:

(i) Ma|x ě 0 @ a;

(ii)
ÿ

a

Ma|x = ✶.

Operators Ma|x that satisfy the above properties are known as elements of a POVM2

and the complete set tMa|xu is referred to as a POVM. In particular, there exists a class
of POVMs, commonly referred to as projective measurements,

Definition 3. Projective measurement: It is defined by a set of m operators associated with m
possible outcomes a, tΠa|xu, acting in H, which are orthogonal projectors, satisfying:

(i) Πa|xΠa1|x = δa,a1Πa|x;

(ii)
ÿ

a

Πa|x = ✶.

With such elements in hand, quantum theory allows us to obtain the probability
distribution associated with the possible outcomes. Therefore, in a measurement process
described by the POVM tMa|xu, where the physical system is described by the state ρ,
the probability of obtaining a result a when the measurement x is performed is given by
the Born rule:

p(a|x) = Tr(Ma|xρ). (B.2)

B.2 Composite Systems

Typically, we may wish to describe quantum systems with multiple degrees of
freedom or even a system comprising more than one physical system. In such cases, the
Hilbert space associated with the global system is given by the tensor product of the
Hilbert spaces of the subsystems. In the bipartite case, the global Hilbert space HAB is
given by:

HAB = HA b HB, (B.3)

and for extension to larger systems, one simply adds the respective Hilbert space using
the tensor product. In this context, definition 1 remains valid, and any operator ρAB in
HAB that is positive and has unit trace is a permitted quantum state for the system.
2 Acronym for ’positive operator-valued measure’.
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In this scenario, if each subsystem A and B admits respective measurement choices x
and y, with possible outcomes a and b, the jointly associated measurement operators de-
fined in 2 are given by tMa|x b Mb|yu, with Ma|x acting in HA and Mb|y acting in HB. The
Born rule for the joint probability of obtaining outcomes a and b, when measurements x
and y are performed, is then given by:

p(a, b|x, y) = Tr(Ma|x b Mb|y ρAB). (B.4)

Furthermore, when dealing with multipartite systems, the description of only a
portion of the known global system is given by the reduced state:

Definition 4. The reduced state of a bipartite state ρAB for system A is given by:

ρA = TrB ρAB, (B.5)

and similarly for subsystem B. The operator ρA acts in HA and follows definition 1, thereby
referred to as the quantum state of the system A.

Once the statistics regarding the outcomes of each subsystem can be obtained from
ρA, when we wish to disregard subsystem B completely, the reduced state provides the
optimal marginal description concerning subsystem A, and vice versa. Nevertheless,
an important characteristic of quantum systems is that even when in possession of the
marginal descriptions of each subsystem, it is not always possible to reconstruct the
state of the global system; that is to say, in general,

ρAB ‰ ρA b ρB. (B.6)

States allowing the factorized form, ρA b ρB, are attributed to a description of completely
uncorrelated systems. However, the expression in (B.6) may not merely stem from the
existence of correlations between the subsystems. To illustrate this, let us consider
a scenario in which the states ρi

A and ρi
B are prepared by two devices, where i P

t1, 2, ..., nu. Suppose a source randomly generates the indices i with probability p(i)
and communicates this information to both subsystems A and B. In that case, the
preparation of the states may be correlated such that the description of the global state
is represented by3

ρAB =
ÿ

i

p(i)ρi
A b ρi

B. (B.7)

States that conform to such a description are referred to as separable states.
Nevertheless, as we will further explore, quantum theory permits composite states

ρAB that cannot be accounted for by classical correlations. States that do not allow the
decomposition in (B.7) are designated as entangled states.

3 It is important to note that this representation is more general than ρAB = ρA b ρB.
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Chapter C

Informational-theoretic constraints for
quantum causal structures

Generally, in information theory, we typically use information measures to investi-
gate correlations, uncertainties, and information regarding random variables. These
quantities, in turn, respect information-theoretic constraints. In classical information
theory, these constraints can be summarized in terms of the non-negativity of Shannon
information measures. i.e., for any set of 3 variables X, Y, and Z [117]:

H(X) ě 0; (C.1a)
H(X, Y) ě 0; (C.1b)
H(X|Z) ě 0; (C.1c)
I(X : Y) ě 0; (C.1d)

I(X : Y|Z) ě 0. (C.1e)

These inequalities represent all possible insights obtainable through classical informa-
tion theory regarding a set of random variables. This set of inequalities is referred to as
the basic inequalities. It constitutes the fundamental set of information inequalities from
which all Shannon-type inequalities can be derived [117]. For a set of n random variables,
X1, X2, ..., Xn, to incorporate all restrictions implied by the basic inequalities, (C.1), it
suffices to consider the set of elemental inequalities1 defined by:

H(Xi|XN´i) ě 0, where i P N; (C.2a)
I(Xi : Xj|XK) ě 0, where i ‰ j e K Ă N ´ ti, ju. (C.2b)

The set in (C.2) is indeed minimal and significantly reduces the number of inequalities
to consider. The proof is found in Section 14.6 in [117]. The number of elementary
inequalities m in (C.2), for a set of n random variables, is given by:

m = n +

(

n
2

)

2n´2. (C.3)

Geometrically, for a set of random variables S = X1, ..., Xn, one can associate the
vector H P ❘2n´1, whose components are joint entropies for all possible subsets of S.
For example, for S = X1, X2, we have:

H =





H(X1)
H(X2)

H(X1, X2)



 .

A vector H is called entropic if there exists a joint probability distribution, p(x1, ..., xn),
that allows obtaining H. This notion enables the definition of a region in R

2n´1, in which
1 From which all basic inequalities can be derived.
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entropic vectors lie:
Γ

˚
n = tH P R

2n´1|H is entropicu.

Shannon information measures can always be expressed in what is known as their
canonical form, in terms of joint entropies, i.e.,

1. H(A) ě 0;

2. H(A|B) = H(A, B) ´ H(B) ě 0;

3. I(A : B|C) = H(A, C) + H(B, C) ´ H(A, B, C) ´ H(C) ě 0.

Thus, in this geometric perspective, elementary inequalities (C.2) can be written as
G ¨ H ě 0, where H is the entropic vector and G is a matrix whose rows represent each
of the inequalities, with elements corresponding to the respective coefficients for each
component of the entropic vector. In this manner, the basic inequalities define a region
in the non-negative orthant of R

2n´1 known as the Shannon cone,

Γn = tH P R
2n´1|G ¨ H ě 0u.

Since the entropy functions of n random variables respect the basic inequalities, Γ
˚
n

is contained within Γn. Therefore, the basic inequalities serve as a necessary but not
sufficient condition for a vector H P R

2n´1 to be entropic, thus:

Γ
˚
n Ă Γn.

Moreover, the relationships among the random variables of interest S = X1, ..., Xn

can also be represented geometrically. For instance, if the variables Xi and Xj are
independent, then p(xi, xj) = p(xi)p(xj) implies that

H(Xi, Xj) = H(Xi) + H(Xj). (C.4)

Consequently, independence between the two variables forms a hyperplane, I¨H = 0,
which restricts the entropic vector in R

2n´1. More generally, the variables S = X1, ..., Xn

follow causal relationships that define the causal structure of S and must be considered
in the geometric description. A causal structure is described by the relation:

p(x1, x2, ..., xn) =
ź

j

p(xj|paj), (C.5)

where the set PAj is referred to as the Markovian parents of Xj and includes all variables
in S that exert some causal influence over Xj. Similar to (C.4), causal relationships
define hyperplanes, I¨H = 0, in R

2n´1, thereby constraining the entropic vector H. The
region defined by the intersection of all hyperplanes defined by the causal relationships,
I ¨ H = 0, and the Shannon cone defines the restricted Shannon cone, Γn X LC, which is
a polytope:

Γn X LC = tH P R
2n´1|G ¨ H ě 0, I ¨ H = 0u.

In general, not all variables can be observed simultaneously for a given set of random
variables S = X1, ..., Xn. In this case, the marginal scenario of S is a collection of subsets,
M = M1, ..., M|M|, in which Mi Ď S for which one has access to the probability
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distribution p(xMi). In the context of the entropic-geometric description, obtaining the
marginal scenario of a set of variables entails excluding components of the entropic
vector that cannot be part of the problem’s description. This is equivalent to projecting
the Shannon cone (or restricted Shannon cone) onto the subspace of observable variables.
Computationally, this projection is achieved via the Fourier-Motzkin algorithm, which
eliminates variables from a set of inequalities [157]. In this way, we obtain the entropic
description of causal structures:

ΓM = ΠM(Γn X LC). (C.6)
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Chapter D

Computational details

In this appendix, we discuss the computational details for deriving the criterion in
(3.27) within the tripartite scenario. The scenario under consideration involves 9 random
variables, resulting in an entropic vector with 29 = 512 components. This dimensionality
makes direct elimination via the Fourier-Motzkin method impractical, as the problem
scales doubly exponentially. An alternative approach to circumvent this issue is to
consider a restricted set of inequalities for elimination—specifically, those capable of
detecting the non-classicality of the protocol illustrated in Fig.12. For this purpose, we
need to examine the entropy of the message from the proposed communication task.

As shown, the protocol utilizing the non-classical resource in (3.23) accomplishes the
task with an entropy of H(Mx, My) = 2. However, a message with entropy H(Mx, My) =
4 would be required in a setting with only classical resources. This observation allows
us to reduce the number of inequalities that define the restricted Shannon cone Γn X LC

for this problem. The approach involves randomly removing an inequality from the set
and then running a linear program to minimize H(Mx, My), subject to the remaining
constraints in Γn X LC and also constrained by the equality conditions for all compo-
nents of the entropic vector implied by the protocol with box (3.23), except for those
involving Mx and My since our objective is to minimize H(Mx, My). If the minimized
result in this procedure exceeds H(Mx, My) = 2, the initially removed inequality does
not restrict H(Mx, My) to be below 2. It thus does not detect the non-classicality of the
protocol with (3.23), allowing it to be excluded. Conversely, the removed inequality
is retained if minimization yields a result less than or equal to H(Mx, My) = 2. This
process is repeated until no further inequalities can be excluded.

Through this method, we obtain a significantly reduced set of inequalities, allowing
for Fourier-Motzkin elimination in the marginal scenario M = ttX0, X1, Y0, Y1, Mx, My

, G0u, tX0, X1, Y0, Y1, Mx, My, G1uu. Following elimination, we derive a set of inequalities
that, by construction, are violated by the protocol shown in Fig.12. This procedure can
be repeated to obtain diverse non-trivial constraints, thus achieving the criterion in
(3.27).
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Chapter E

NPA hierarchy

In this section, we discuss a convergent hierarchy of semidefinite programs that
model approximations of the set of quantum behaviors.

This method, known as the NPA hierarchy, is named after the original work of Miguel
Navascues, Stefano Pironio, and Antonio Acin in 2008 [40]. In essence, the method
explores the following lemma:

Lemma 2. Let F = F1, F2, . . . , Fn be a set of linear operators acting on a Hilbert space H. For
any state ρ on H, the Hermitian matrix Γ(ρ,F ) is positive semidefinite (Γ ľ 0), with entries
given by

Γij = Tr(ρF:
i Fj). (E.1)

Now, consider the following set of linear operators, F1 =
!

✶, Ma|x
a,x, Mb|y

b,y
)

, and a
bipartite Bell scenario, as discussed in Chapter 1, in which Alice and Bob’s measurement
processes are represented by the POVMs tMa|xua,x and tMb|yub,y, respectively. In this

context, given F1 and the state ρ, we can calculate the entries of the matrix Γ
(1) using

(E.1).
As discussed in Chapter 1, in this scenario, quantum behaviors are those components

that can be derived using the Born rule, p(a, b|x, y) = Tr
(

ρMa|x b Mb|y

)

, defining the
set of quantum behaviors PQ. An alternative way to define the quantum set is to assume
that the behavior components are given by

p(a, b|x, y) = Tr
(

ρM1
a|x M1

b|y

)

, (E.2)

where ρ, M1
a|x, and M1

b|y P HA b HB, imposing commutativity between all measure-
ments of Alice M1

a|x and all measurements of Bob M1
b|y. The set of behaviors that can

be obtained according to (E.2) is denoted by PQ1 . It is clear that PQ Ď PQ1 , since
when M1

a|x = Ma|x b ✶ and M1
b|y = ✶b Mb|y, we retrieve the Born rule (1.19), with the

joint measurement operators given by Ma|x b Mb|y, while still preserving the condition
[M1

a|x, M1
b|y] = 0. The equivalence between the two sets PQ and PQ1 was an open ques-

tion for several decades and became known as the Tsirelson problem [158, 159]. Only
recently was a proof discovered showing that these sets are not equivalent [160]. Con-
sequently, under the definition given by (E.2), it becomes evident that some elements
Γi,j will correspond to components of the behavior vector p in the device-independent
approach, that is,

Γ
(1)
i,j = Tr(ρMa|x Mb|y) = p(a, b|x, y). (E.3)

In other cases, however, we may encounter indeterminate terms,

Γ
(1)
i,j = Tr(ρMa|x Ma1|x1). (E.4)

Lemma 2 ensures that if the behavior p is quantum, then values exist for the indetermi-
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nate entries (E.4) such that Γ
(1) is positive semidefinite. Therefore, Γ

(1)
ľ 0 constitutes

a necessary condition for a behavior p to belong to the set PQ1 . Behaviors satisfying
Γ
(1)

ľ 0 define a set PQ1 , which defines an approximation of the set PQ1 and, conse-
quently, is also an approximation of the quantum set PQ, that is,

PQ Ď PQ1 . (E.5)

PQ1 constitutes the first level of the NPA hierarchy. The second level of the hierarchy is
reached by considering the following set of operators, F2 = F1 Y ttMa|x Ma1|x1u, tMb|y

Mb1|y1u, tMa|x Mb|yuu. The behaviors p for which Γ
(2)

ľ 0 define the set PQ2 , such that

PQ Ď PQ2 Ď PQ1 . (E.6)

At the n-th level of the hierarchy, the matrix Γ
(n) yields the set of behaviors PQn

such
that Γ

(n)
ľ 0. Thus,

PQ Ď PQn
Ď ¨ ¨ ¨ Ď PQ1 . (E.7)

A crucial important result from [40] is that, in the limit as n Ñ 8, we have

lim
nÑ8

PQn
= PQ1 . (E.8)
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Chapter F

Concatenation in a multipartite
communication task

Here we extend the tripartite communication task from section 3.5 to a general
multipartite scenario. Thus, consider N parts, among which N ´ 1 are senders that
initially have their respective bit-strings xk = (Xk

1, Xk
2, ¨ ¨ ¨ , Xk

n), where k P t1, 2, ¨ ¨ ¨ , N ´
1u. Each sender encodes a classical message Mk of size m ă n to the Nth-part, the
receiver. This last one needs rightly compute one of n possible initial bits functions
f j(X1

j , X2
j , ¨ ¨ ¨ , XN´1

j ), by producing the guess Gj, where j P t1, ¨ ¨ ¨ , nu. Just as in the
main text, in addition to the classical messages, non-signaling correlations are allowed
among all N parts.

Now consider a little more particular case, where n = 2 and f j = X1
j ‘ X2

j ‘ ¨ ¨ ¨ ‘
XN´1

j . Just as in the previously described tripartite scenario, we find such a particular
multipartite communication task is trivialized by a generalization of the correlation
(3.23) for the (N, 2, 2) Bell scenario, i.e.

p(a1, a2, ¨ ¨ ¨ , aN|x1, x2, ¨ ¨ ¨ , xN) =

$

’

&

’

%

1/2N´1 if
N

à

k=1
ak =

N´1
à

k=1
xkxN;

0 else.

(F.1)

where ak and xk respectively denote the output and input of the part k. To see this,
consider that the N parts perform the strategy depicted in Fig.12. That is, each sender
performs the encoding xk = Xk

1 ‘ Xk
2 and Mk = Xk

1 ‘ ak, and the receiver computes the

guess Gj =
N´1
à

k=1
Mk ‘ aN. In this case, by considering (3.43) we find

Gj =
N´1
à

k=1
(Xk

1 ‘ ak) ‘ aN;

=

(

N´1
à

k=1
Xk

1

)

‘
(

N
à

k=1
ak

)

=

(

N´1
à

k=1
Xk

1

)

‘
(

N´1
à

k=1
xkxN

)

=

(

N´1
à

k=1
Xk

1

)

‘
(

N´1
à

k=1
(Xk

1 ‘ Xk
2)xN

)

. (F.2)

Therefore, if the receiver chooses his measurement as xN = j, when j = 0 we have
G0 = X1

1 ‘ X2
1 ‘ ¨ ¨ ¨ ‘ XN´1

1 , and for j = 1 we obtain G1 = X1
2 ‘ X2

2 ‘ ¨ ¨ ¨ ‘ XN´1
2 . i.e.,

the receiver always computes the functions perfectly and trivializes the communication
task. It is clear that the task success is related to the probability of the non-signaling
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boxes working just as (3.43), i.e., p(a0 ‘ a1 ‘ ¨ ¨ ¨ ‘ aN´1 = x0xN´1 ‘ x1xN´1 ‘ ¨ ¨ ¨ ‘
xN´2xN´1|x0, x1, ¨ ¨ ¨ , xN´1). Thus, the probabilities that the receiver computes the func-
tion values f1 and f2 correctly are, respectively, given by

PI =
1

2N´1

[

ÿ

x1,...,xN´1

p

(

N
à

k=1
ak =

N´1
à

k=1
xkxN|x1, ..., xN´1, xN = 0

)]

; (F.3a)

PI I =
1

2N´1

[

ÿ

x1,...,xN´1

p

(

N
à

k=1
ak =

N´1
à

k=1
xkxN|x1, ..., xN´1, xN = 1

)]

. (F.3b)

When the parts share (3.43), we have PI = PI I = 1. However, by introducing a parameter
E P [0, 1], we can investigate other non-signaling behaviors by means of the following
probability of success:

p

(

N
à

k=1
ak =

N´1
à

k=1
xkxN

)

=
1
2
(1 + E). (F.4)

The perfect correlations of behavior (3.43) are retrieved when E = 1, and uniform
probabilities are retrieved when E = 0.

From this example, one can see that the concatenation approach, depicted in Fig.
13, can also be employed in this multipartite scenario. This is due to the fact that, to

complete the task, it is sufficient for the receiver to know only
N´1
à

k=1
Mk, instead of each

message Mk. For instance, when n = 4, the senders can divide their bits into two
pairs and perform the encoding just as in the previous strategy. Now, if instead of
sending their respective messages, M0

k and M1
k , the parts encode them in a third NS-box

(3.43) by employing (F.2), the receiver is able to recover perfectly one of the functions
N´1
à

k=1
Mi=0,1

k . This allows the parts to perform the same decoding one more time, resulting

in perfect access by the receiver to one of the functions f0 = X1
0 ‘ X2

0 ‘ ¨ ¨ ¨ ‘ XN´1
0 ,

f1 = X1
1 ‘ X2

1 ‘ ¨ ¨ ¨ ‘ XN´1
1 , f2 = X1

2 ‘ X2
2 ‘ ¨ ¨ ¨ ‘ XN´1

2 , or f3 = X1
3 ‘ X2

3 ‘ ¨ ¨ ¨ ‘ XN´1
3 .

In the most general scenario, the receivers have, initially, n = 2K bits, share n ´ 1
perfect copies of the non-signaling resource (3.43), and the senders and the receiver
perform the strategy just as depicted in Fig. 13. Here, for each part k, we denote the
output and input of the box i of the level l by ai,l

k and xi,l
k , respectively. Thus, we may

write the guess produced by the receiver as:

Gj =

(

N´1
à

k=0
Mk

)

‘
(

K´1
à

l=0
a

il ,l
N

)

, (F.5)

where the box il is defined in terms of the box measured in the previous level, il =
2il´1 + zl + 1, when l ě 1. In this case, the receiver performs measurements in K

boxes, one in each level, among which (K ´ r) are to zi,l
N = 0 and r to zi,l

N = 1, where
r = z0 + z1 + ¨ ¨ ¨ + zK´1. Just as in the single copy scenario, the task success is directly
related to the probability that the n ´ 1 non-signaling boxes behave as (3.43), i.e., (F.4).
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Thus, when E ă 1, for each box, there exists a probability that the receiver output ai,l
N´1

is wrong and the property
N´1
à

k=1
ai,l

k =
N´2
à

k=1
xi,l

k xi,l
N does not hold. However, if an even

number of mistakes is produced in the outputs of the receiver, then they all cancel
each other and the produced guess with (F.5) will be correct. Therefore, the success
probability for the multipartite task with concatenation is equal to the probability that
the receiver produces an even number of wrong outputs, i.e.:

p

(

Gj =
N´2
à

k=0
Xk

j

)

= Q
(K´r)
even (PI) ¨ Q

(r)
even(PI I) + Q

(K´r)
odd (PI) ¨ Q

(r)
odd(PI I), (F.6)

where PI and PI I are defined in (F.3) and Q
(s)
even(P) and Q

(s)
odd(P) are given by

Qs
even(P) =

t s
2 u

ÿ

j=0

(

s

2j

)

(1 ´ P)2jPs´2j =
1
2
(1 + (2P ´ 1)s); (F.7a)

Qs
odd(P) =

t s´1
2 u

ÿ

j=0

(

s

2j + 1

)

(1 ´ P)2j+1Ps´2j´1 =
1
2
(1 ´ (2P ´ 1)s). (F.7b)

These describe the probabilities of the receiver producing an even and an odd number
of mistakes, respectively, after s measurements; P denotes the probability of obtaining
the right output in a NS-box.

By inserting (F.7) in (F.6) and considering the bias from (F.4) in the probabilities from
(F.3), we find the communication task success probability

p

(

Gj =
N´2
à

k=0
Xk

j

)

=
1
2
(1 + EK´r

I Er
I I), (F.8)

where Ei = 2Pi ´ 1.

F.1 Multiple copies inequality

Here we prove the multipartite generalization of the multiple copies criterion (3.46),
firstly derived in Ref. [20] for a strict bipartite scenario.

First of all, we need to prove a simplified lower bound for (3.30). So, rewriting the
left-hand side summation argument in (3.30), we have

I(Xk
i : X1

i , ¨ ¨ ¨ , Xk´1
i , Xk+1

i , ¨ ¨ ¨ ,XN´1
i , Gi) = (F.9)

H(Xk
i ) ´ H(Xk

i |X1
i , X2

i ¨ ¨ ¨ , Xk´1
i , Xk+1

i , ¨ ¨ ¨ , XN´1
i , Gi)

=1 ´ H(Xk
i ‘ X1

i |X1
i , X2

i , ¨ ¨ ¨ , Xk´1
i , Xk+1

i , ¨ ¨ ¨ , XN´1
i , Gi)

ě1 ´ H(Xk
i ‘ X1

i |X2
i , ¨ ¨ ¨ , Xk´1

i , Xk+1
i , ¨ ¨ ¨ , XN´1

i , Gi).
(F.10)

Here, we particularized to the case where every bit Xk
i is associated with a uniform
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distribution, H(Xk
i ) = 1. Further, we considered the fact that H(A|B, C) = H(A ‘

B|B, C), because knowing B results in the same uncertainty about A and A ‘ B, and
H(A ‘ B|B, C) ě H(A ‘ B|C), i.e., to remove the conditioning in B does not increase
the uncertainty of A ‘ B. This same argument can be applied N ´ 2 times in order to
move every conditioned random variable in the right-hand side of (F.10):

I(Xk
i : X1

i , ¨ ¨ ¨ , Xk´1
i , Xk+1

i , ¨ ¨ ¨ , XN´1
i , Gi) ě 1 ´ H(X1

i ‘ X2
i ‘ ¨ ¨ ¨ ‘ XN´1

i ‘ Gi). (F.11)

However, from the communication task, when X1
i ‘ X2

i ‘ ¨ ¨ ¨ ‘ XN´1
i ‘ Gi = 0, we

necessarily have Gi = X1
i ‘ X2

i ‘ ¨ ¨ ¨ ‘ XN´1
i . Thus, the probability p(X1

i ‘ X2
i ‘ ¨ ¨ ¨ ‘

XN´1
i ‘ Gi = 0) is exactly the success probability of the receiver, p(Gi = X1

i ‘ X2
i ‘ ¨ ¨ ¨ ‘

XN´1
i ), while p(X1

i ‘ X2
i ‘ ¨ ¨ ¨ ‘ XN´1

i ‘ Gi = 1) is the complementary part. Therefore,
the right-hand side term from (F.11) can be written in terms of the binary entropy, which
in (3.30) finally yields:

(N ´ 1)
n

ÿ

i

(1 ´ h(p(Gi = X1
i ‘ X2

i ‘ ¨ ¨ ¨ ‘ XN´1
i ))) ď I ď H(M1, ¨ ¨ ¨ , MN´1). (F.12)

Notice that we considered the fact that the left-hand side has no dependence on the
index k. Furthermore, the rightmost term in (3.30) does not appear in (F.12), because we
are assuming a uniform distribution for every initial bit Xk

i .
At this point, we particularize our description to the concatenation strategy earlier

described in appendix F. Here we rewrite the left-hand side summation in (F.12) in
terms of the number of instances r where the receiver performed measurement xn

k
j = 1,

and substitute the concatenation success probability (F.8):

(N ´ 1)
n

ÿ

i

(1 ´ h(p(Gi = X1
i ‘ X2

i ‘ ¨ ¨ ¨ ‘ XN´1
i ))) = (F.13)

(N ´ 1)
K

ÿ

r

(

K

r

)

[

1 ´ h

(

1 + EK´r
I Er

I I

2

)]

ě (N ´ 1)
2 ln 2

K
ÿ

r

(

K

r

)

(E2
I )

N´r(E2
I I)

r

=
(N ´ 1)

2 ln 2
(E2

I + E2
I I)

K, (F.14)

where we considered 1 ´ h

(

1 + y

2

)

ě y2

2 ln 2
and Ei = 2Pi ´ 1, from (F.3). After perform-

ing such encoding, each sender sends only a single bit message. Thus, H(M1, ¨ ¨ ¨ , MN´1)
in (F.12) is always fixed in N ´ 1, necessarily. Therefore, with (F.12) and (F.14), we find
that when E2

I + E2
I I ą 1, the new proposed criterion (3.30) can always be violated by

some concatenation protocol with K levels. Thus, we finally conclude the proof for the
previously mentioned criterion in (3.46):

E2
I + E2

I I ď 1. (F.15)
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