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Resumo

O modelo de Keller-Segel é um sistema de equações diferenciais parciais que descreve a
quimiotaxia, movimento de organismos em resposta a gradientes químicos, crucial em muitos
processos biológicos. Este trabalho estende o modelo clássico incorporando difusão anômala,
especificamente superdifusão, através do uso do Laplaciano fracionário. Essa modificação cap-
tura efeitos difusivos não locais observados em experimentos, especialmente em ambientes
com alvos esparsos.

A primeira parte desta tese analisa um sistema de Keller-Segel fracionário duplamente
parabólico, com Laplacianos fracionários modelando tanto a difusão celular quanto a química,
usando expoentes diferentes. A boa colocação local de soluções brandas é estabelecida, e, sob
certas condições, a boa colocação global é demonstrada. O estudo também explora o compor-
tamento assintótico de das soluções.

A segunda parte estende o modelo de Keller-Segel, incluindo processos adicionais, como
escoamento oceânico e reações biológicas, enfatizando o papel da quimiotaxia na sustentação
de reações no contexto da difusão anômala da densidade celular. O modelo é particularmente
motivado pela desova por dispersão em organismos aquáticos. Este estudo foi realizado du-
rante o estágio de pesquisa na Duke University, sob a supervisão do Prof. Dr. Kiselev.

Palavras-chave: Modelo de Keller-Segel; Quimiotaxia; Laplaciano Fracionário; Difusão
anômala; Soluções brandas; Reações biológicas.



Abstract

The Keller-Segel model is a system of partial differential equations that describes chemo-
taxis, the movement of organisms in response to chemical gradients, which is crucial in many
biological processes. This work extends the classical model by incorporating anomalous diffu-
sion, specifically superdiffusion, through the use of the fractional Laplacian. This modification
captures nonlocal diffusive effects observed in experimental settings, particularly in environ-
ments with sparse targets.

The first part of this thesis analyzes a doubly parabolic fractional Keller-Segel system,
with fractional Laplacians modeling both cellular and chemical diffusion using different expo-
nents. Local well-posedness is established, and global well-posedness is shown under certain
conditions. The study also explores the asymptotic behavior of solutions.

The second part extends the Keller-Segel model by including additional processes such as
fluid flow and biological reactions, emphasizing the role of chemotaxis in sustaining reactions
within the context of anomalous diffusion of cell density. The model is particularly motivated
by broadcast spawning in aquatic organisms. This study was carried out during the research
internship conducted at Duke University, under the supervision of Prof. Dr. Kiselev.

Keywords: Keller-Segel Model; Chemotaxis; Fractional Laplacian; Anomalous diffusion;
Mild solutions; Biological reactions.



Index of Notation

Notation used only in the section in which it is introduced is largely omitted from this
list.

𝐴𝑇 Transpose of a matrix 𝐴.
𝐶0(ℝ𝑑) Space of continuous functions that tend to zero at infinity.
det𝐴 Determinant of a matrix 𝐴.
Γ Gamma function.
(−Δ)−1 Inverse of Laplace operator in ℝ𝑑 .
⌈𝑥⌉ The smallest integer greater than or equal to 𝑥 .
(ℝ𝑑) Schwartz space.
𝜕𝜂 𝜕𝜂 = ( 𝜕

𝜕𝑥1 )
𝜂1 ⋯(

𝜕
𝜕𝑥𝑑)

𝜂𝑑
, for 𝜂 = (𝜂1,… , 𝜂𝑑) a multi-index.1

|𝛼| |𝛼| = ∑𝑛
1 𝛼𝑗 , for 𝜂 = (𝜂1,… , 𝜂𝑑) a multi-index.

𝛼! 𝛼! = ∏𝑛
1 𝛼𝑗 !, for 𝜂 = (𝜂1,… , 𝜂𝑑) a multi-index.

𝜉 𝜂 𝜉 𝜂 = ∏𝑑
𝑗=1 𝜉

𝜂𝑗
𝑗 , for 𝜉 = (𝜉1,… , 𝜉𝑑) ∈ ℝ𝑑 .

1 A multi-index is an ordered 𝑑-tuple of nonnegative integers.
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Introduction

Research Problem and Relevance of the Study

This thesis is centered around the analysis of nonlinear nonlocal parabolic equationsmod-

eling the evolution of the density of mutually interacting particles. These equations incorpo-

rate inertial-type nonlinearities and anomalous diffusive terms that describe nonlocal interac-

tions. A prototype of this model can be given by

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝜕𝑡𝜌 = −(−Δ)𝛼/2𝜌 − 𝜒∇ ⋅ (𝜌(𝑐)) + 𝐹(𝜌) 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,

𝜏𝜕𝑡𝑐 = −𝜅(−Δ)𝛽/2𝑐 + 𝐺(𝜌, 𝑐) 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,
(1)

where 𝜌 = 𝜌(𝑥, 𝑡) and 𝑐 = 𝑐(𝑥, 𝑡) are the unknown,  is an integral operator, 𝐹 = 𝐹(𝜌) and

𝐺 = 𝐺(𝜌, 𝑐) are functions of the unknown, and the diffusion in both equations is given by a

fractional power of the Laplacian operator.

For appropriate choices of the functions , 𝐹 , and 𝐺, these nonlinear partial differential

equations become the ones representing models in physics, mathematical biology, fluid me-

chanics, chemistry, engineering, and social science. The shared mathematical structures in

different models, stemming from the similarity in their dynamics, enable the use of the same

mathematical techniques across a wide range of distinct physical contexts.

A notable example of such a system can be found in the Keller-Segel models, widely

studied in mathematical biology to describe chemotaxis. In these models, cells with density 𝜌

move in response to chemical gradients, represented as (𝑐) = ∇𝑐. When 𝐺(𝜌, 𝑐) = 𝜁𝜌 − 𝛾𝑐,

the model captures the dynamics of a chemoattractant with density 𝑐, which is secreted by the

cells themselves at a rate 𝜁 > 0 while degrades at a rate 𝛾 ≥ 0 due to chemical reactions. The

inclusion of a damping term, such as 𝐹(𝜌) = 𝜌(𝑎 − 𝑏𝜌), 𝑎, 𝑏 > 0, enables the capture of birth

and death processes, where the coefficient 𝑎 represents the intrinsic growth rate of cells and 𝑏

measures its intraspecific competition.
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Chemotaxis systems describe two contrasting processes: the diffusion of cells driven by

their randommotion, and their directed movement toward regions with higher concentrations

of a chemical. The latter may lead to the aggregation of cells (chemotactic collapse), which is

viewed as a finite-time blow-up of solutions [15, 23]. For instance, in the case of the classical

parabolic-elliptic Keller-Segel model given by (1) with 𝛼 = 𝛽 = 2, 𝐹 = 0, 𝐺(𝜌, 𝑐) = 𝜌, and

𝜏 = 0, the integral operator  becomes a function only of 𝜌 and 𝑥 , i. e., (𝜌) = 𝐶𝐾 ∗ 𝜌, where

𝐾(𝑥) = 𝑥 |𝑥 |−2−𝑑+𝛽 and 𝐶 > 0 is a constant. Since |𝐾(𝑥)| is a radially symmetric, nonincreasing

function of 𝑟 = |𝑥 |, equation (1) has a nonlinear drift term that concentrates the distribution of

particles, acting in the opposite direction of the diffusive term. Therefore, a competition arises

between the nonlinear transport and the linear dissipative terms [12]. For this system, in the

one-dimensional case, standard diffusion is strong enough to ensure the global existence of

solution; however, for 𝑑 ≥ 2, there is a balance between diffusion and aggregation, and the

existence of global solution depends on the size of the initial condition in a suitable norm.

Hence, it is mathematically intriguing to determine the minimal diffusion strength required to

outweigh chemotactic forces so that the global existence of regular solutions is ensured [23].

For 𝛼 < 2, the anomalous diffusion processes introduce challenges, such as nonlocality

and weaker dissipation effects (compared to the classical one, 𝛼 = 2), making the system more

susceptible to blow-ups in finite time [25, 33]. These issues demand a deeper investigation

into the interplay between nonlocality, diffusion strength, and chemotactic forces. This thesis

seeks to address these challenges by analyzing generalized Keller-Segel models with fractional

diffusion, aiming to establish conditions for local and global well-posedness of solutions.

Moreover, in classical models, 𝛼 = 𝛽 = 2, local diffusion dynamics are assumed, which

correspond to cellular motion governed by Brownian diffusion. However, in real-world phe-

nomena, cellular populations often exhibit nonlocal interactions, particularly in situations

when chemoattractants, food, or other targets are sparse or rare in the environment. In such

cases, Lévy walk – a form of anomalous diffusion – provides a more precise description of

cellular interactions [33, 34]. Furthermore, the nonlocal nature of fractional Laplacians intro-

duces rich mathematical structures that mirror the long-range interactions observed in these

systems. Therefore, the study of fractional diffusion equations is not only mathematically

interesting but also practically relevant due to their wide applicability in modeling complex

systems. In biological contexts, for example, the bacterium Escherichia coli has an exploratory

behavior like anomalous diffusion in an environment with fluctuating levels of a type of pro-
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tein, while themyxamoebaeDictyostelium discoideum displays this behavior in nutrient-scarce

environments. Beyond biology, these equations also find applications in modeling turbulence

in fluid dynamics, energy dissipation in fractional viscoelastic materials, and decision-making

processes in social systems. Superdiffusion type of behavior can also be observed in chaotic

transport in turbulent flows [68, 74, 79], which can justify the use of fractional Laplacian in

both equations of model (1).

This research bridges gaps in the understanding of how nonlocality influences solution

behaviors, particularly in terms of regularity and asymptotic properties. By addressing the

challenges posed by nonlocal fractional diffusion, this thesis contributes to the theoretical

understanding of nonlinear partial differential equations and their applications. To the best

of our knowledge, despite significant advancements, the fundamental question of global and

local well-posedness for the fully parabolic-parabolic fractional Keller-Segel system (model

(1) with 𝐹 = 0 and 𝐺(𝜌, 𝑐) = 𝜁𝜌 − 𝛾𝑐) in ℝ𝑑 , involving distinct exponents 𝛼 and 𝛽, remained

unresolved before this thesis. In Chapter 3, we thoroughly investigate this specific system.

Structure of the Thesis

Here we outline the structure of the thesis and provide a roadmap for the topics that are

addressed in subsequent chapters. The thesis is organized into four chapters, supplemented

by two appendices. Its structure aims to provide a solid theoretical foundation and insights,

contributing to the understanding of the mathematical model for chemotaxis in scenarios of

fractional diffusion. Each chapter addresses a distinct aspect of the research, as outlined below.

Chapter 1 presents the context and motivates the research problems addressed in this

thesis. It includes an overview of various chemotaxis models and fractional diffusion pro-

cesses, highlighting key mathematical results from the literature and some tools to analyze

them. As the chapter provides a background to equip the readers with an understanding of

foundational topics, its key aspects are referenced throughout the outline that follows.

Chapter 2 offers a detailed review of the mathematical tools and concepts required to

approach a fractional Keller-Segel system. In this chapter, we reformulate the system under

analysis into an equivalent integral equation, the mild solution, constructed using Duhamel’s

and the contraction mapping principles. The connection to Fixed-Point Theorems arises as
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this integral form is treated as a fixed-point problem in a suitable Banach space, leading to the

establishment of the existence and uniqueness of the mild solution. Next, key properties and

estimates involving the kernel functions 𝐾𝛼
𝑡 and 𝐾𝛼 , defined in (1.17) and (1.19) respectively,

are established, setting the stage for the application of fixed-point theorems. Finally, some

properties of the solution are discussed, with further exploration in later chapters. Overall,

this chapter lays the groundwork for the rigorous treatment of the fractional Keller-Segel

model and its extensions, explored in detail in Chapter 3 and Chapter 4.

Chapter 3 focuses on the generalized fractional Keller-Segel model (1.5), providing re-

sults on the existence and uniqueness of the mild solution to this system. The discussion

on the local well-posedness of solutions in Lebesgue space is displayed in Section 3.2, while

their global-in-time existence and uniqueness are covered in Section 3.3. Additionally, in Sec-

tion 3.5, results regarding local existence in weighted spaces are presented. Each of these

sections begins by establishing estimates that demonstrate the fulfillment of the contraction

mapping principles’ premises. Specifically, in Theorem 3.4 (Local existence of solutions),

local well-posedness for initial conditions 𝜌0 ∈ 𝐿𝑝(ℝ𝑑) and ∇𝑐0 ∈ 𝐿℘(ℝ𝑑) is proven for spe-

cific values of 𝑝 and ℘, with 𝑝, ℘ ≥ 1, ensuring that the mild solution (𝜌,∇𝑐) exists in [0, 𝑇 ],

for 𝑇 = 𝑇 (‖𝜌0‖𝐿𝑝 , ‖∇𝑐0‖𝐿𝑟 ), in which 𝜌 ∈ 𝐶([0, 𝑇 ], 𝐿𝑝(ℝ𝑑)), ∇𝑐 ∈ 𝐶([0, 𝑇 ], 𝐿𝑟(ℝ𝑑)), for certain

values of 𝑟 . Likewise, in Theorem 3.12 (Global in time solutions), global well-posedness

is proven under smallness assumptions in Lebesgue norms for initial data, 𝜌0 ∈ 𝐿𝑝1(ℝ𝑑) and

∇𝑐0 ∈ 𝐿𝑝2(ℝ𝑑), for certain values of 𝑝1 and 𝑝2, where the mild solution (𝜌,∇𝑐) is such that

𝜌 ∈ 𝐶([0, 𝑇 ], 𝐿𝑝(ℝ𝑑)) and ∇𝑐 ∈ 𝐶([0, 𝑇 ], 𝐿𝑟(ℝ𝑑)) for certain values of 𝑝 and 𝑟 . These parameters

(𝑝, 𝑟 , ℘, 𝑝1 and 𝑝2) defining the Lebesgue spaces depend on the values of 𝛼 and 𝛽, and the

inequality 𝛼 ≠ 𝛽 adds complexity to the problem by preventing certain simplifications pos-

sible for the case 𝛼 = 𝛽 or for the parabolic-elliptic case (see also Section 1.5). The number

of parameters and conditions to ensure the boundedness of the mild solution is larger than in

the classical case. Additionally, we examine the asymptotic behavior of solutions, which offers

insights into the long-term evolution of the system. Subsequently, in this section, we explore

further results and some implications arising from the theorem of global-in-time existence.

Next, in Section 3.4, we establish conditions under which the solutions remain nonnegative,

thereby ensuring the biological relevance of the model. The chapter concludes by addressing

local well-posedness in weighted spaces, proving the stability of the system in spaces that

account for fractional diffusion.
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Chapter 4 focuses on the interaction between chemotaxis and biological reactions, by

studying an extension of the parabolic-elliptic fractional Keller-Segel system that incorpo-

rates a reaction term into the chemotaxis model (for example and context on this type of

system, refer to Section 1.7). This extension enables the analysis of how chemotactic move-

ment influences biological processes such as broadcast spawning – a reproductive strategy

used by many aquatic invertebrates. Local well-posedness (Theorem 4.3) is established via

the fixed-point theorem, similar to the analysis in Chapter 3, as implied by Lemma 4.2, and

global well-posedness (Theorem 4.9) by constraining the growth of the solution norms

in a specific space, which is achieved through a bound on the 𝐿∞(ℝ𝑑) norm of the solution

(Lemma 4.6). The control on the 𝐿∞(ℝ𝑑) norm arises from the balance between the chemo-

tactic term, responsible for population aggregation and possible singularities formation, and

the reaction term (see Section 1.2), which prevents the solution from losing regularity in finite

time. Thus, the time existence of the solution is extended through iterative applications of

local results. The chapter’s main focus is the analyses of how chemotaxis enhances biologi-

cal responses, particularly overall reaction rates, in systems where organisms or cells display

superdiffusion behavior (see Section 1.3.1 for a discussion of superdiffusion in biological pro-

cesses). By comparing environments with and without chemotaxis, insights are gained into

the role of directed movement in enhancing biological reactions. To achieve this, bounds for

the 𝐿1(ℝ𝑑) norm of the solution 𝜌, which describes the fraction of unfertilized eggs (𝑚(𝑡)), are

established in both chemotactic and chemotactic-free environments. These bounds indicate

the effectiveness of chemotaxis in ensuring a higher fertilization rate, a crucial metric in re-

productive biology. The results in this chapter pave the way for further investigations into

chemotaxis in more complex reaction environments.

The results in Chapters 3 and 4 represent new contributions to the study of chemotaxis

with fractional diffusion. In Chapter 3, the rigorous analysis of the generalized fractional

Keller-Segel model provides novel findings on well-posedness, especially for the case of frac-

tional diffusion with different exponents, a topic not extensively covered in prior research. In

Chapter 4, the analyses provided reveal original insights into the interplay between chemo-

taxis and biological processes in environments characterized by superdiffusion. These con-

tributions advance the mathematical understanding of chemotaxis models involving the frac-

tional Laplacian, offering new perspectives on the behavior of such systems.
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Appendix A presents key mathematical properties of the Fractional Laplacian, an oper-

ator that extends the classical one and accounts for nonlocal interactions, crucial for modeling

superdiffusion (see Section 1.3).

Appendix B is dedicated to the study of the parameters defining Lebesgue spaces in

Theorems 3.4 and 3.12. In this appendix, the existence of these parameters is established, and

it is demonstrated that the constraints they satisfy are precisely the conditions required for

applying H𝑜̈lder’s inequality, as well as some other key estimates fromChapter 2 that allows us

to use the Fixed Point Theorem and to prove estimates for the solution established in Chapter 3.
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Chapter 1

Literature Review

In this chapter, we begin by introducing the foundational concepts that underpin this

thesis, focusing on chemotaxis, mathematical models of chemotaxis, and fractional diffusion

processes. The chapter offers a detailed review of relevant mathematical results, including

key advancements related to the Keller-Segel model and its fractional variations. The back-

ground provided here aims to equip the reader with a solid understanding of these models and

their implications in biological systems, particularly in the context of anomalous diffusion. If

the reader is already familiar with these preliminary aspects, it is possible to skip directly to

Chapter 2.

1.1 Chemotaxis

Organisms and cells don’t move randomly, rather, their movement is influenced by ex-

ternal stimulants/signals that determine both the direction and distance of their motion. This

controlled movement, known as taxis, plays a critical role in various aspects of an organism’s

behavior, such as finding food, avoiding predators, and attracting mates. Essentially, organ-

isms and cells sense their environment and respond to it [3]. Taxis can be triggered by different

types of stimuli, each eliciting a specific response: phototaxis (light), chemotaxis (chemicals),

thermotaxis (temperature changes), electrotaxis (electric fields or galvanotaxis), and gravitaxis

(gravity). Among these, chemotaxis is particularly significant, as it involves the movement of

cells in response to chemical signals.

Chemotaxis is the process by which cells detect and move along concentration gradi-

ents of specific chemicals, allowing organisms to position themselves optimally within their

environments. For example, male moths follow pheromone gradients released by females to
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locate mates, while fruit flies navigate toward attractive odors when searching for food and

away from repellent substances. In this regard, the process is called positive chemotaxis when

the movement is directed toward a higher concentration of a chemical substance. Conversely,

movement toward a lower concentration is known as negative chemotaxis. The chemicals that

induce these movements are called chemoattractants and repellents, respectively [3, 41, 66].

Beyond these examples, chemotaxis plays a crucial role in cellular communication, in-

fluencing how cells arrange and organize themselves. It is fundamental in coordinating cell

migration during organogenesis in embryonic development and tissue homeostasis in adults.

In multicellular organisms, chemotaxis is fundamental at all stages of the life cycle: During

fertilization, sperm cells are drawn to chemical substances released from the egg’s outer layer.

Throughout embryonic development, chemotaxis is crucial in organizing cell positioning, fun-

damental for processes such as gastrulation and patterning of the nervous system. In immune

responses, chemotaxis guides immune cell migration to sites of inflammation and fibroblasts

into wounded regions to initiate healing. Chemotaxis also plays a significant role in cancer

progression. Solid tumors release chemical signals, such as Vascular Endothelial Growth Fac-

tors (VEGFs), that induce chemotactic responses within the body. This triggers angiogenesis,

the development of a capillary network directed toward the tumor, which enhances the tu-

mor’s blood supply and supports its growth [40, 41, 66].

1.2 Mathematical Models of Chemotaxis

The mathematical modeling of chemotaxis in cellular systems has its origins in the pi-

oneering works of Keller and Segel (1970) [45] and Patlak (1953) [65], with the Keller-Segel

model standing out as the most extensively studied one. This model consists of a system of

partial differential equations describing the chemically induced movement of cells (or organ-

ism) density 𝜌 towards increasing concentrations of a chemical substance, a chemoattractant,

of density 𝑐. In its general form, the Keller-Segel model can be expressed as [3, 40]:
⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝜕𝑡𝜌 = ∇ ⋅ (𝜙(𝜌, 𝑐)∇𝜌 − 𝜓(𝜌, 𝑐)∇𝑐) + 𝑓 (𝜌, 𝑐) 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,

𝜏𝜕𝑡𝑐 = 𝜅Δ𝑐 + 𝑔(𝜌, 𝑐) − ℎ(𝜌, 𝑐)𝑐 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,

𝜌(𝑡 = 0) = 𝜌0, 𝑐(𝑡 = 0) = 𝑐0 𝑥 ∈ ℝ𝑑 .

(1.1)
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where 𝜙 = 𝜙(𝜌, 𝑐) describes cell diffusivity (also referred to as motility), 𝜓 = 𝜓(𝜌, 𝑐) represents

the chemotactic sensitivity (determining the intensity of the chemotactic flux in response to

the chemical gradient), 𝑓 = 𝑓 (𝜌, 𝑐) accounts for the growth and death of cells. The parameter 𝜅

is the diffusion coefficient of the chemoattractant, while 𝑔 = 𝑔(𝜌, 𝑐) and ℎ = ℎ(𝜌, 𝑐) are kinetic

functions describing the production and degradation of the chemical signal, respectively.

This system of equations is classified as a parabolic-parabolic system when both 𝜏 > 0

and 𝜅 > 0. Depending on the properties of the chemoattractant, the system can be simplified.

For chemoattractants with rapid diffusion, the system reduces to a parabolic-elliptic system

(when 𝜏 = 0 and 𝜅 > 0). Alternatively, for non-diffusive or slowly diffusing chemoattractants,

it simplifies to a parabolic-hyperbolic (or parabolic-ODE) system (when 𝜏 > 0 and 𝜅 = 0) [3].

1.2.1 The Minimal Model

TheminimalKeller-Segelmodel, as named byChildress and Percus [28], is the simplest

and most classical model used to describe the collective motion of cells in response to chemical

signals [66]. This model is a simplified version of system (1.1), where the functions 𝜙, 𝜓, 𝑓 , 𝑔

and ℎ are linear. Specifically, 𝜓(𝜌, 𝑐) = 𝜒𝜌 with 𝜒 > 0, 𝑓 (𝜌, 𝑐) = 0, 𝑔(𝜌, 𝑐) = 𝜁𝜌 with 𝜁 > 0,

and ℎ(𝜌, 𝑐) = 𝛾 with 𝛾 ≥ 0 (which is biologically relevant when 𝛾 > 0). The model can thus be

expressed as:
⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝜕𝑡𝜌 = Δ𝜌 − 𝜒∇ ⋅ (𝜌∇𝑐) 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,

𝜏𝜕𝑡𝑐 = 𝜅Δ𝑐 + 𝜁𝜌 − 𝛾𝑐 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,

𝜌(𝑡 = 0) = 𝜌0, 𝑐(𝑡 = 0) = 𝑐0 𝑥 ∈ ℝ𝑑 .

(1.2)

As the biological background of (1.2) suggests, the solution to this system remains non-

negative, provided that the initial data is nonnegative and sufficiently regular. Moreover, since

this model does not account for birth or death processes, it focuses solely on cell motion, the

total number of cells, given by the 𝐿1(ℝ𝑑) norm of 𝜌, is conserved over time: ‖𝜌0‖𝐿1 = ‖𝜌(⋅, 𝑡)‖𝐿1

[3, 31, 41, 66, 75].

The Minimal Keller-Segel Model is a foundational framework for more complex chemo-

taxis models [3]. It is also a paradigm for studying pattern formation in various cellular pro-

cesses, including meiosis, embryogenesis, angiogenesis, Balo disease, and bio-convection. Ad-

ditionally, it can be viewed as an initial step towards comprehending the evolutionary transi-

tion from unicellular organisms to more complex structures [17].
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This model has been extensively studied in mathematical biology due to its rich math-

ematical structure and its ability to capture essential features of biological systems [3]. The

model’s qualitative behavior includes phenomena such as finite-time blow-up solutions and

pattern formation, where cells exhibit strong density variations in their spatial distribution, as

positive chemotaxis leads to cell aggregation, resulting in high-density clusters.

The model mainly describes the tendency of cells to aggregate in response to a chemical

signal, where the aggregation, modeled by the term ∇ ⋅ (𝜒𝜌∇𝑐), is balanced by cell diffusion.

The boundedness of a solution indicates that the power of diffusion is stronger than that of

chemotaxis. Conversely, aggregation can manifest mathematically as a finite-time blow-up,

where cell density 𝜌 becomes unbounded in finite time. Such a phenomenon to occur requires a

certain threshold number of individuals. For example, in some species of myxamoebae, such as

Dictyostelium discoideum (Dd), experimental observations show that aggregation occurs only

if the total number of myxamoebae exceeds a certain threshold; otherwise, the cells continue

to spread [3, 17, 41, 66].

1.2.2 Literature Review of Key Mathematical Results for the Classical
Keller-Segel Model

System (1.2) is also referred to as the Classical Parabolic-Parabolic Keller-Segel Model, or

simply the Keller-Segel model. A parabolic-elliptic version of this model arises, as mentioned

before, from the assumption that the production and diffusion of the chemical occur much

faster than other time scales in the problem (𝜅 ∼ 𝜁 ≫ 𝜏). Under this condition, the second

equation in (1.2) simplifies to an elliptic equation. Consequently, this model reduces to a single

equation, as the gradient of the chemical concentration can be expressed as a function of

𝜌 [8, 46, 48]. Specifically, by setting 𝜏 = 0 and 𝜅 = 𝜁 = 1, the second equation of (1.2)

leads ∇𝑐(𝑥, 𝑡) = ∇ (−Δ + 𝛾𝐼 )−1 𝜌(𝑥, 𝑡), which further reduces to ∇𝑐(𝑥, 𝑡) = ∇ (−Δ)−1 𝜌(𝑥, 𝑡)when

𝛾 = 0. This leads to the following form of the classical parabolic-elliptic Keller-Segel Model:
⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝜕𝑡𝜌 = Δ𝜌 − 𝜒∇ ⋅ (𝜌∇ (−Δ + 𝛾𝐼 )−1 𝜌) 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,

𝜌(𝑥, 0) = 𝜌0(𝑥) 𝑥 ∈ ℝ𝑑 .
(1.3)

Below, we summarize key mathematical results for the parabolic-elliptic and parabolic-

parabolic Keller-Segel models on the domain ℝ𝑑 . The global existence of solutions for these
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systems is influenced by the parameters 𝜏, 𝜅, 𝛾 , and 𝜒 , as the competition between diffusion

and chemotaxis drives the possibility of blow-up. Therefore, to focus on the core dynamics,

we retain the parameter 𝛾 in systems (1.2) and (1.3), while normalizing all other biological and

chemical constants to 1.

∙ The parabolic-elliptic Keller-Segel model with 𝛾 = 0 exhibits the following behavior:

- In one dimension, this system has globally smooth and unique solutions that remain uni-

formly bounded for all 𝑡 ≥ 0 [3, 41].

- In two dimensions, solutions exist globally in time if the total mass 𝑚0 = ‖𝜌0‖𝐿1 satisfies

𝑚0 < 8𝜋/𝜒 . If 𝑚0 > 8𝜋/𝜒 , the solution blows up in finite time, meaning the solution

becomes unbounded, i. e., at the blow-up time 𝑇 > 0, lim sup
𝑡→𝑇

‖𝜌(⋅, 𝑡)‖𝐿∞ = ∞ [18]. For

bounded domain see [60, 61, 63].

- For 𝑑 ≥ 2, the Keller-Segel system is critical in 𝐿𝑑/2(ℝ𝑑), meaning that a small initial con-

dition in 𝐿𝑑/2(ℝ𝑑) ensures global well-posedness in time, whereas a large mass leads to

blow-up. There exists a unique local-in-time mild solution where 𝜌 ∈ 𝐶([0, 𝑇 ), 𝐿𝑝(ℝ𝑑)) for

every 𝜌0 ∈ 𝐿𝑝(ℝ𝑑) with 𝑝 > 𝑑/2. Additionally, there is a constant 𝐶, small enough, such

that when (𝜒 ∫ℝ𝑑
|𝑥 |2
2 𝜌0(𝑥)d𝑥)

𝑑−2
𝑑
≤ 𝐶 𝜒𝑚0 there is no global smooth solution, with enough

decay in x at infinity, to the system [5, 66].

∙ The parabolic-parabolic Keller-Segel system is characterized by the following features:

- In one dimension, it has a global solution in time that converges to a stationary solution

as 𝑡 → ∞ [41].

- In dimension two:

◦ Mizoguchi [59] proved that if 𝑚0 < 8𝜋/𝜒 , then for 𝜌0 ∈ 𝐿1(ℝ2) ∩𝐿∞(ℝ2) and 𝑐0 ∈ 𝐿1(ℝ2) ∩

𝐻 1(ℝ2), the solution exists globally in time. For the critical case 𝑚0 = 8𝜋/𝜒 , the solution

may either exist globally or blow up, depending on additional conditions on the initial

data.

◦ Mizoguchi [59] pointed out that the meaning of “critical” mass, which separates global

existence and blow-up, differs between the parabolic-parabolic and parabolic-elliptic sys-

tems. According to the author, 8𝜋/𝜒 is the critical mass in the sense that all solutions to

the parabolic-parabolic system with 𝑚0 < 8𝜋/𝜒 exist globally in time, while there exists

a solution with 𝑚0 > 8𝜋/𝜒 that blows up in finite time.



Chapter 1. Literature Review 23

◦ Biler et al. [10] constructed a forward self-similar nonnegative solutions and prove that,

in some cases, such solutions exist globally even when their total mass is above 8𝜋/𝜒 ,

contrasting with the parabolic-elliptic case.

◦ We highlight the contributions of Biler [6], Calvez et al. [27], and Nagai [62] in the

context of earlier results. For example, Nagai [62] established global existence for masses

smaller than 4𝜋/𝜒 , provided the initial conditions (𝜌0, 𝑐0) ∈ 𝐿1(ℝ2) ∩ 𝐿∞(ℝ2).

- In dimensions 𝑑 ≥ 3, Corrias et al. [30] proved global existence when the initial density

is small in 𝐿𝑞(ℝ𝑑) with 𝑞 > 𝑑/2, and the initial chemical gradient is small in 𝐿𝑑(ℝ𝑑). This

solution vanishes as the heat equation for large times and exhibits a regularizing effect of

hypercontractivity type.

- Biler et al. [7] proved that global solutions of the parabolic-parabolic Keller–Segel system

in ℝ2, 𝑑 ≥ 2, can be obtained from initial data of arbitrary size, given that parameter 𝜏 in

(1.2) is large enough.

Remark 1.1. Below, we highlight some key aspects of the Keller-Segel system’s behavior and the

correspondingmathematical results, which will be revisited and analyzed throughout this chapter.

(a) Threshold Values: Arumugam et al. [3] emphasized that the threshold values for global

existence and blow-up of solutions are well-established only for the classical parabolic-elliptic

and parabolic-parabolic Keller-Segel models.

(b) Impact of 𝛾 : Triebel [75] pointed out that while the value of 𝛾 (whether 𝛾 > 0 or 𝛾 = 0)
does not affect significantly the behavior of the parabolic-parabolic classical Keller-Segel model,

it has a significant impact on the parabolic-elliptic version.

(c) The parabolic-elliptic Keller-Segel system with 𝛾 > 0: Biler et al. [9] proved the

existence of a unique global-in-time solution for the classical parabolic-elliptic Keller-Segel (1.3)
in two dimensions, even for 𝑚0 > 8𝜋/𝜒 , if 𝛾 is sufficiently large. Their results show that for

any initial condition 𝜌0 ∈ 𝐿1(ℝ2), there exists 𝛾(𝜌0) > 0 such that for all 𝛾 ≥ 𝛾(𝜌0) the solution
remains global-in-time. Thus, for each 𝜌0 (not necessarily nonnegative) and 𝛾 large enough

depending 𝜌0 ∈ 𝐿1(ℝ2) equation (1.3) has no critical value of mass which leads to a blow-up of

solutions. On the other hand, if 𝑚0 > 8𝜋/𝜒 and 0 ≤ 𝛾 << 1, the solutions blow up in a finite

time.

(d) Blow-up solution for parabolic-elliptic Keller-Segelmodel: The viral argument used

to demonstrate blow-up in the classical parabolic-elliptic Keller-Segel system involves studying

the evolution of the second-order moment,𝑚2(𝑡) = ∫ℝ𝑑
|𝑥 |2
2 𝜌(𝑥, 𝑡) 𝑑𝑥 , showing that𝑚2(𝑡) vanishes

at some time 𝑇 > 0, leading to a contradiction. Biler et al. [9] formulated a criteria for blow-

up of nonnegative solutions based on the local concentration of the initial data, which does
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not require supplementary properties of 𝜌0 such as the argument using moment that assumes

𝜌0 ∈ 𝐿1(ℝ𝑑 , (1 + |𝑥 |2)d𝑥).

1.2.3 Chemotactic Collapse in Keller-Segel Systems

The potential for chemotactic equations to produce singular solutions was first proposed

byNanjundiah (1973) and later examined by Childress and Percus (Childress and Percus (1981);

Childress (1984)). Nanjundiah [64] suggested that aggregation proceeds to the formation of

𝛿−functions in cell density – a phenomenon later termed "chemotactic collapse" by Childress

et al. [28]. Childress et al. [28] argued that although this outcome might seem to contradict

the diffusive nature of the model, the fact that chemotaxis has some features of “negative

diffusion” suggests the possibility of singular behavior. They showed that the chemotactic

collapse cannot occur in the case of one-dimensional and further argued the possibility that,

in a two-dimensional system, a threshold number of cells is required for such a collapse. The

physical mechanism behind these singularities is that the generation of attractants is increased

by the concentration of cells, which in turn further increases the cells’ density [3, 21].

As mentioned, in one-dimensional systems, solutions to the minimal model remain glob-

ally bounded over time, as diffusion dominates aggregation, preventing blow-up. However,

in higher dimensions, the balance between diffusion and aggregation becomes more delicate,

with the global behavior of solutions depending on the initial conditions [19].

The fact that solutions in one dimension always exist globally in time crucially affects

the types of patterns that can form in higher-dimensional biological systems. For instance, in

two-dimensional systems, while a collapse to an infinite-density point can occur, a collapse

can’t result in an infinite-density line due to the inherent restriction of one-dimensional col-

lapse. Correspondingly, in a three-dimensional system, collapse to infinite-density lines and

points can occur, but a collapse to an infinite-density sheet is mathematically impossible. Con-

sequently, in a three-dimensional system, a mass of cells cannot collapse to a two-dimensional

plane in finite time, whereas a two-dimensional collapse (a cylindrical mass of cells contract-

ing to a line) and a three-dimensional collapse (a spherical mass of cells contracting to a point)

are admissible [21, 33].

However, this is not the general case, since one-dimensional collapse was shown exper-

imentally. Escudero [33] mentioned an in vitro experiment with mesenchymal cells, where a
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two-dimensional system of these cells chemotactically aggregated into one-dimensional struc-

tures. This discrepancy is attributed to the unrealistic nature of diffusion in the Keller-Segel

model for mesenchymal cells. In reality, these cells exhibit a sort of nonlocal diffusion, better

modeled by the operator Δ/(1 − Δ), defined via its Fourier transform as

̂

(
Δ

1 − Δ
𝑓)(𝜉) =

−𝜉 2

1 + 𝜉2
̂𝑓 (𝜉), ∀𝜉 ∈ ℝ2,

instead of the standard Laplacian. Carrying out this substitution, it was proven that the result-

ing nonlocal Keller-Segel system experiences blow-up in one dimension for a sufficiently large

initial condition, allowing the type of chemotactic aggregation observed in the experiments.

Inspired by these findings, Escudero [33] modified the Keller-Segel system to model sit-

uations where cellular dispersion is better described by a fractional Laplacian operator Λ𝛼 =

(−Δ)𝛼/2 for 1 < 𝛼 < 2, defined via its Fourier transform as

(̂Λ𝛼𝑓 )(𝜉) = ̂
[(−Δ)𝛼/2 𝑢](𝜉) = (2𝜋 |𝜉 |)𝛼 𝑓 (𝜉), ∀𝜉 ∈ ℝ𝑑 , (1.4)

for 𝛼 > 0. The study investigated whether Escherichia coli colonies could also undergo one-

dimensional collapse. He emphasized that the cellular motion’s diffusive nature is one of the

Keller-Segel model’s strongest assumptions, which does not hold in many biological contexts.

Next, we explored the mathematical description of some anomalous diffusion processes.

1.3 Anomalous Diffusion Process

The diffusion equation is a partial differential equation that models density fluctuations

in a material undergoing diffusion. The classical diffusion equation is expressed as 𝜕𝑡𝑢 = 𝜅Δ𝑢

(also known as the heat equation), where 𝑢 represents the density of the diffusing material

and 𝜅 is the diffusion coefficient, assumed to be independent of 𝑢. In this context of classical

diffusion, the Laplace operator (Laplacian) Δ = 𝜕2𝑥1 +⋯+ 𝜕2𝑥𝑑 in a 𝑑-dimensional domain, along

with the first-order time derivative 𝜕𝑡 , are employed under the assumption of Gaussian process

for the particle motion. At the microscopic level, this corresponds to the Brownian motion

of individual particles, characterized by diffusion with a mean free path, or flight (the longest

straight-line trajectory a particle follows without changing direction or pausing), and a mean

pause time between flights. Furthermore, the mean squared displacement (MSD), which is a

measure of the average displacement of a given object from the origin, is a linear function
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of time, i. e., ⟨𝑥2(𝑡)⟩ ∼ 𝐾𝜗𝑡𝜗, with 𝜗 = 1. Einstein first demonstrated that the probability of a

particle being at a certain distance from its initial position after a given time follows a Gaussian

distribution.

However, numerous studies have shown that anomalous diffusion models under certain

circumstances provide a superior fit to experimental data. In these types of diffusion, the

MSD grows differently from that in Gaussian processes: in a subdiffusion process (or disper-

sive, slow diffusion process), the MSD grows slower following a power-law with an exponent

0 < 𝜗 < 1; in a superdiffusion process (or fast diffusion process), the MSD grows faster, fol-

lowing a power-law with an exponent 𝜗 > 1. At a macroscopic level, these behaviors are

typically captured by fractional differential equations, incorporating fractional derivatives in

time and/or space.

Subdiffusion processes can be described, at the microscopic level, by a continuous-time

random walk (CTRW), where particles experience random waiting times between jumps

that follow a heavy-tailed distribution. This results in periods of delay between movements,

effectively slowing down the diffusion process, causing a cloud of particles to spread more

slowly than in classical diffusion. These behaviors are captured and described by differential

equations featuring a fractional derivative in time. A typical equation is 𝜕𝛼𝑡 𝑢 = Δ𝑢, for 0 < 𝛼 <

1, where 𝜕𝛼𝑡 is the Caputo fractional derivative given by 𝜕𝛼𝑡 𝑢(𝑥, 𝑡) = 1
Γ(1−𝛽) ∫

𝑡
0

𝜕𝑢(𝑥,𝜂)
𝜕𝜂

d𝜂
(𝑡−𝜂)𝛼 . This

fractional derivative can describe processes featuring history dependencies, such as materials

with memory (e.g. viscoelastic materials), and heterogeneous media.

On the other hand, the superdiffusion process can be described at a microscopic level

by Lévy flights or Lévy walk, where the length of particle jumps (flights) follow a heavy-

tailed distribution, reflecting the long-range interactions among particles (a super-diffusive

nature). This dynamic results in a scenario where occasional large jumps dominate the more

common smaller jumps, leading to a more rapid spread of particles. At a macroscopic level,

these processes are described by differential equations with a fractional derivative in space,

such as 𝜕𝑡𝑢 = (−Δ)𝛼𝑢 for 0 < 𝛼 < 1, where (−Δ)𝛼 is the fractional laplacian given by

(−Δ)𝛼𝑢(𝑥) = 4𝛼Γ(𝑑/2+𝛼)
𝜋𝑑/2 |Γ(−𝛼)| lim𝜀→0 ∫ℝ𝑑⧵𝐵𝜀(0)

𝑢(𝑥)−𝑢(𝑦)
|𝑥−𝑦 |𝑑+2𝛼 d𝑦 (see Appendix A). This fractional derivative

can describe long-range interactions of particle motions at a microscopic level.

These fractional derivatives are integro-differential operators, and thus nonlocal - it does

not act through pointwise differentiation, but rather through integration with respect to a sin-
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gular kernel. This nonlocality complicates the mathematical and numerical analysis, raising

questions about the influence of the inherent nonlocal physics of anomalous diffusion pro-

cesses on solution behavior, including uniqueness and stability.

The detailed mathematical treatment of these processes, including the introduction of

fractional derivatives, is covered in the works [39, 44, 57], which provide a comprehensive

framework for understanding the unique behaviors and challenges posed by anomalous dif-

fusion. Additionally, the works of [34, 68] further support the concepts presented in this text,

upon which much of this discussion is based.

1.3.1 Superdiffusion Process in Biology

According to Burczak et al. [25], since the 1990s, substantial theoretical and empirical

evidence has emerged to support the replacement of classical diffusion (modeled by −Δ = Λ2)

with a fractional one (modeled by Λ𝛼 = (−Δ)𝛼/2, 0 < 𝛼 < 2) in Keller-Segel equations. In

a biological context, Lévy walk (superdiffusion) is frequently adopted as an efficient search

method for organisms, especially when navigating sparse or rare resources like chemoattrac-

tants or food. The non-negligible probability for long positional jumps in the Lévy walk pro-

cess corresponds in that context that cells/organisms persist in a single direction of motion

for a substantially longer time than in typical random walks [25, 33, 34].

To illustrate this, we describe two systems highlighted by [34], where organisms are sug-

gested to exhibit Lévy walk behavior in their chemotactic responses. For more detailed in-

formation, see [34]. Moreover, to explore additional biological examples where organisms

exhibit chemotactic responses characterized by Lévy walk behavior we refer to [25, 34] and

the references therein.

∙ Escherichia coli (E. Coli): This bacterium swims due to their flagellums that act as a propel-

lor when rotated counterclockwise, resulting in straight runs. When the flagella bundle sepa-

rates due to clockwise rotation, the bacterium undergoes a tumble, reorienting itself without

significant displacement. The direction of rotation is controlled by chemical signals binding

to membrane-bound receptors, inducing signaling to the flagellum’s rotational machinery. As

a result, the bacterium moves along straight lines, suddenly stops to choose a new direction,

and then continues moving in this new direction [3, 52, 66].
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Experimental and theoretical studies suggest that E. coli switches from local (Brownian) to

nonlocal (Lévy) search strategies, influenced by the activity of CheR, a cytoplasmic signaling

protein regulating receptor activity. Fluctuating CheR levels lead to power-law distribution

in E. coli’s running behavior, emphasizing Lévy walk characteristics, while constant CheR

levels lead to a Brownian motion. Simulations showed that for the case of fluctuating CheR,

the dynamic adaptation enables bacteria to locate food sources more efficiently by balancing

short and long runs [34].

∙ Dictyostelium Discoideum (Dd): This species of myxamoebae grows by cell division as

long as sufficient nourishment is available. When the food resources are exhausted, they

spread over their available domain. After a while, some cells – the founder cell – begin to emit

a chemical signal that attracts other cells towards a higher concentration of this signal. These

recruited cells, in turn, release the same signal, leading to aggregation at multiple collection

points or centers (it is worth noting that Keller et al. [45] aimed to describe this aggregation

process in cellular slime molds like Dd).

At the end of this aggregation process, a multicellular organism, known as a slug, is

formed. This slug then migrates toward environmental attractants such as light, heat, and

humidity. Subsequently, the slug differentiates into distinct cell types – prestalk and prespore

cells – and ultimately forms a fruiting body, a multicellular structure, that releases spores into

the environment. These spores can be blown away by the wind to colonize new areas, al-

lowing the survival of the population afterward, and restarting the life cycle as unicellular

myxamoebae [17, 41, 45].

In addition to its life cycle transitions, chemotaxis is a crucial mechanism for Dd to find

food during its unicellular phase. For instance, chemotaxis to folic acid enables Dd to locate

bacteria that secrete folate. Studies revealed that the mean squared displacement of Dd can

be characterized by a power-law distribution, implying the suitability of the Lévy walk model

to describe the movement of these organisms in a nutrient-depleted environment. The cells

alter their strategy from making very localized searches to expanding their search area by

persistently moving in a single direction. This behavior suggests that cells explore larger

regions not by increasing their speed but by exhibiting a bias towards very long runs.

We now turn our attention to mathematical chemotaxis models within the context of

anomalous diffusion dynamics. Specifically, starting from the minimal model, we modify both
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equations in (1.2) by replacing the Laplacian with a fractional Laplacian, resulting in the fol-

lowing system with 𝛼 ∈ (1, 2] and 𝛽 ∈ (1, 𝑑]:
⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝜕𝑡𝜌 = −Λ𝛼𝜌 − ∇ ⋅ (𝜌∇𝑐) 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,

𝜏𝜕𝑡𝑐 = −Λ𝛽𝑐 + 𝜌 − 𝛾𝑐 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,

𝜌(𝑡 = 0) = 𝜌0, 𝑐(𝑡 = 0) = 𝑐0 𝑥 ∈ ℝ𝑑 ,

(1.5)

where all constants are normalized to 1, except for the parameters 𝜏 and 𝛾 . We refer to (1.5) as

the Fractional Keller-Segel Model.

The parabolic-elliptic version of this model is obtained by setting 𝜏 = 0 in (1.5), simplify-

ing the system to:
⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝜕𝑡𝜌 = −Λ𝛼𝜌 − ∇ ⋅ (𝜌∇𝑐) 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,

Λ𝛽𝑐 = 𝜌 − 𝛾𝑐 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,

𝜌(𝑡 = 0) = 𝜌0, 𝑥 ∈ ℝ𝑑 ,

(1.6a)

or to one equation, which includes the case of no chemoattractant consumption effect 𝛾 = 0,
⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝜕𝑡𝜌 = −Λ𝛼𝜌 − ∇ ⋅ (𝜌∇ ((−Δ)𝛽/2 + 𝛾𝐼)
−1
𝜌) 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,

𝜌(𝑥, 0) = 𝜌0(𝑥) 𝑥 ∈ ℝ𝑑 .
(1.6b)

Before exploring the key mathematical results available in the literature for this model,

we first review some essential mathematical tools that aid in understanding this system.

1.4 Partial Differential Equations and Fourier Analysis

Fourier analysis is a powerful tool for converting linear partial differential equations into

simpler equations, allowing one to find a formal integral formulation for it. In this section,

we briefly discuss and present some applications of Fourier analysis to the theory of partial

differential equations that will be used in the next chapter. We start by defining the Fourier

transform and the convolution between two functions.

Definition 1.2 (Fourier transform). If 𝑢 ∈ 𝐿1 (ℝ𝑑), we define its Fourier transform, 𝑢(𝜉) =
𝑢̂(𝜉), and its inverse Fourier transform, −1𝑢(𝜉) = 𝑢̌(𝜉), respectively, as

𝑢̂(𝜉) ∶= ∫
ℝ𝑑
𝑒−2𝜋𝑖𝑥 ⋅𝜉𝑢(𝑥) d𝑥, (1.7)
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and

𝑢̌(𝜉) ∶= ∫
ℝ𝑑
𝑒2𝜋𝑖𝑥 ⋅𝜉𝑢(𝑥) d𝑥, (1.8)

for 𝜉 ∈ ℝ𝑑 . Note that, since ||𝑒
±2𝜋𝑖𝑥 ⋅𝜉 || = 1 and 𝑢 ∈ 𝐿1 (ℝ𝑑), these integrals converge for each 𝜉 ∈ ℝ𝑑 .

Definition 1.3 (convolution). Let 𝑢 and 𝑣 be measurable functions from ℝ𝑑 to ℝ𝑚. The convo-

lution of 𝑢 and 𝑣 is the function 𝑢 ∗ 𝑣 defined as

𝑢 ∗ 𝑣(𝑥) = ∫
ℝ𝑑
𝑢(𝑥 − 𝑦) ⋅ 𝑣(𝑦) d𝑦

where 𝑢(𝑥 − 𝑦) ⋅ 𝑣(𝑦) is the inner product between 𝑢(𝑥 − 𝑦) and 𝑣(𝑦) in ℝ𝑚.

1.4.1 Applications

Fourier analysis is often used to obtain solutions or perform theoretical analysis of partial

differential equations. It converts differentiation into multiplication, and, with the inverse

Fourier transform, it converts multiplication into convolution between functions, as stated in

the next theorem.

Theorem 1.4 (Properties of Fourier transform). Assume 𝑢, 𝑣 ∈ (ℝ𝑑). Then

(i) 𝐷𝜍𝑢 = (2𝜋𝑖𝜉)𝜍𝑢̂ for each multi-index ;

(ii) (𝑢 ∗ 𝑣)∧ = 𝑢̂𝑣̂;

(iii) 𝑢 = (𝑢̂) .̌

Therefore, by applying the Fourier Transform to both sides of a partial differential equa-

tion, it can be transformed into an algebraic equation or an ordinary differential equation.

This transformation allows us to derive its integral representation, expressed as convolutions

between a function and the fundamental solution of the partial differential equation. For ex-

ample, by applying Theorem 1.4, we can construct the fundamental solution to several classical

differential equations, such as the Poisson equation, the heat equation, the wave equation, and

others [35, 36]. Note that, from Theorem 1.4, (̂−Δ𝑢)(𝜉) = 4𝜋2|𝜉 |2𝑢(𝜉) holds for all 𝜉 ∈ ℝ𝑑 and

𝑢 ∈ (ℝ𝑑). Similarly, the Fractional Laplacian Λ𝛼 = (−Δ)𝛼/2 can be defined naturally via the

Fourier transform as (1.4).

Remark 1.5. Consider the parabolic-elliptic fractional Keller-Segel model (1.6) with 𝛾 = 0 and
𝛽 = 2. In this case, the second equation simplifies to the Poisson equation −Δ𝑐 = 𝜌, which has

a well-known solution expressed as the convolution of 𝜌 with the fundamental solution Φ. The
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fundamental solution, also referred to as the Green function, is defined as follows:

Φ(𝑥) ∶=

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

|𝑥 | if 𝑑 = 1,

− 1
2𝜋 ln |𝑥 | if 𝑑 = 2,

1
𝑑(𝑑−2)𝜔(𝑑)

1
|𝑥 |𝑑−2 if 𝑑 ≥ 3,

(1.9)

for 𝑥 ≠ 0, where 𝜔𝑑 = 𝜋𝑑/2
Γ(𝑑/2+1) represents the volume of the unit ball in ℝ𝑑 .

Since 𝑐 does not appear directly in the first equation of (1.6a), it is customary to consider ∇𝑐
instead, which can be expressed (assuming the integral exists) as

∇𝑐(𝑥, 𝑡) = ∫
ℝ𝑑
∇Φ(𝑥 − 𝑦)𝜌(𝑦, 𝑡)d𝑦 = (∇Φ ∗ 𝜌)(𝑥, 𝑡), (1.10)

where ∇Φ is given by

∇Φ(𝑥) = −
1
𝑑𝜔𝑑

𝑥
|𝑥 |𝑑

. (1.11)

Therefore, this parabolic-elliptic fractional model reduces to the single parabolic equation:
{
𝜕𝑡𝜌 = −Λ𝛼𝜌 + 𝜒∇ ⋅ (𝜌∇Φ ∗ 𝜌) 𝑡 > 0, 𝑥 ∈ ℝ𝑑 ,

𝜌(𝑥, 0) = 𝜌0(𝑥),
(1.12)

where 𝜌0 is a nonnegative initial condition.

By applying the Fourier Transform, we can construct solutions to differential equations

involving the fractional Laplacian. For that, consider first the following lemma:

Lemma 1.6. [36, 71] Let 𝑃𝑘(𝑥) be a homogeneous harmonic polynomial of degree 𝑘, 𝑘 ≥ 0. Then,
for 0 < 𝛼 < 𝑑,

(
𝑃𝑘(𝑥)
|𝑥 |𝑘+𝑑−𝛼)

∧

= 𝛾𝑘,𝛼
𝑃𝑘(𝑥)
|𝑥 |𝑘+𝛼

with 𝛾𝑘,𝛼 = 𝑖𝑘𝜋𝑑/2−𝛼 Γ(𝑘/2+𝛼/2)
Γ(𝑘/2+𝑑/2−𝛼/2) , where this identity holds in the sense that

∫
𝐑𝑑

𝑃𝑘(𝑥)
|𝑥 |𝑘+𝑑−𝛼

𝜑̂(𝑥)d𝑥 = 𝛾𝑘,𝛼 ∫
𝐑𝑑

𝑃𝑘(𝑥)
|𝑥 |𝑘+𝛼

𝜑(𝑥)d𝑥

for every 𝜑 which is sufficiently rapidly decreasing at ∞, and whose Fourier transform has the

same property.

Based on Theorem 1.4 and Lemma 1.6, we obtain the following proposition:
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Proposition 1.7. Let 𝑢 ∈ (ℝ𝑑). Then, we have, for 𝛼 > 0

Λ𝛼(Φ𝛼 ∗ 𝑢) = 𝑢, with 𝛼 < 𝑑 (1.13)

𝜕𝑡 (𝐾𝛼
𝑡 ∗ 𝑢) = Λ𝛼 (𝐾𝛼

𝑡 ∗ 𝑢), (1.14)

(Λ𝛼 + 𝛾 I) (Φ𝛾 ∗ 𝑢) = 𝑢, (1.15)

where

Φ𝛼(𝑥) =
Γ((𝑑 − 𝛼)/2)
𝜋𝑑/22𝛼Γ(𝛼/2)

1
|𝑥 |𝑑−𝛼

, (1.16)

𝐾𝛼
𝑡 (𝑥) =

1
(2𝜋)𝑑 ∫ℝ𝑑

e−𝑡 |𝜉 |
𝛼
e𝑖𝑥 ⋅𝜉d𝜉 , (1.17)

Φ𝛼,𝛾(𝑥) = ∫
+∞

0
𝐾𝛼
𝑠 (𝑥)𝑒

−𝛾𝑠d𝑠. (1.18)

Proof. The proof involves applying the Fourier Transform on both sides of the correspondent
differential equation and using Theorem 1.4. In addition, for (1.13), we can use Lemma 1.6, and
for (1.15), the identity 1

𝑎 = ∫ ∞
0 𝑒−𝑠𝑎d𝑠. The proof is straightforward and thus omitted.

Remark 1.8. Note that Φ𝛼 ∗ 𝑢(𝑥) in (1.13) corresponds to the Riesz potential, 𝐼𝛼 , introduced in

Definition A.3. As mentioned in Appendix A, for 0 < 𝛼 < 𝑑, the operator 𝐼𝛼 = (−Δ)−𝛼/2 is the
inverse of (−Δ)𝛼/2 and is expressed through a convolution: (−Δ)−𝛼/2𝑢(𝑥) = Φ𝛼 ∗ 𝑢(𝑥).

Remark 1.9. The function 𝐾𝛼
𝑡 (𝑥) given by (1.17) is defined via the Fourier transform as follows:

𝐾𝛼
𝑡 (𝑥) = (2𝜋)−𝑑 ∫

ℝ𝑑
e−𝑡 |𝜉 |

𝛼
e𝑖𝑥 ⋅𝜉d𝜉

= (2𝜋)−𝑑𝑡−
𝑑
𝛼 ∫

ℝ𝑑
e−|𝜉 |

𝛼
e𝑖

𝑥
𝑡1/𝛼

⋅𝜉d𝜉

= 𝑡−
𝑑
𝛼𝐾𝛼

(
𝑥
𝑡1/𝛼)

,

where the kernel function 𝐾𝛼(𝑥) is defined as

𝐾𝛼(𝑥) = (2𝜋)−𝑑 ∫
ℝ𝑑
e𝑖𝑥 ⋅𝜉e−|𝜉 |

𝛼
d𝜉 . (1.19)

Remark 1.10. Let  be the linear vector operator formally defined as

(𝑢) = ∇ ((−Δ)−𝛽/2 𝑢) ,

for some 𝛽 > 0. From Theorem 1.4 and Lemma 1.6, for 1 < 𝛽 < 𝑑 + 1, (𝑢) can be expressed as

the following integral

(𝑢) = 𝐶𝑑,𝛽 ∫
ℝ𝑑

𝑥 − 𝑦
|𝑥 − 𝑦 |𝑑−𝛽+2

𝑢(𝑦)d𝑦, (1.20)

where 𝐶𝑑,𝛽 = − Γ((𝑑−𝛽+2)/2)
𝜋𝑑/22𝛽−1Γ(𝛽/2) .
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Moreover, by the Hardy-Littlewood-Sobolev inequality, if 𝑢 ∈ 𝐿𝑝(ℝ𝑑) for 𝑑
𝛽−1+𝑑 < 𝑝 < 𝑑

𝛽−1

and 1 < 𝛽 < 𝑑 + 1, we obtain that

‖(𝑢)‖𝐿𝑞 ≤ 𝐶𝑑,𝛽 ‖‖| ⋅ |
−𝑑+𝛽−1 ∗ 𝑢‖‖𝐿𝑞 ≤ 𝐶‖𝑢‖𝐿𝑝

for every 1 < 𝑝 < 𝑞 < ∞ satisfying 1
𝑝 − 𝛽−1

𝑑 = 1
𝑞 . Additionally, if 𝑢 ∈ 𝐿1(ℝ𝑑) ∩ 𝐿∞(ℝ𝑑) and

1 < 𝛽 < 𝑑 + 1, by decomposing (𝑢) into two parts, we find that

‖(𝑢)‖𝐿∞ ≤ 𝐶𝑑,𝛽 ess sup
𝑥∈ℝ𝑑 (∫𝐵1(𝑥)

|𝑢(𝑦)|
|𝑥 − 𝑦 |𝑑−𝛽+1

d𝑦 + ∫
ℝ𝑑⧵𝐵1(𝑥)

|𝑢(𝑦)|
|𝑥 − 𝑦 |𝑑−𝛽+1

d𝑦) ≤ 𝐶 (‖𝑢‖𝐿∞ + ‖𝑢‖𝐿1) .

Thus, for 1 < 𝛽 < 𝑑 + 1, (1.20) is a bounded linear operator from 𝐿𝑝(ℝ𝑑) into 𝐿𝑞(ℝ𝑑) for every
1 < 𝑝 < 𝑞 < ∞ satisfying 1

𝑝 −
𝛽−1
𝑑 = 1

𝑞 and from 𝐿1(ℝ𝑑) ∩ 𝐿∞(ℝ𝑑) into 𝐿∞(ℝ𝑑).

Remark 1.11. Consider the parabolic-elliptic fractional Keller-Segel model (1.6a) with 𝛾 = 0.
Similar to Remark 1.5, ∇𝑐 can be expressed using an integral formulation, and (1.6a) can be

rewritten as the single parabolic equation (1.12). Indeed, in this case, the second equation be-

comes (−Δ)𝛽/2 𝑐 = 𝜌, for 0 < 𝛽 ≤ 𝑑, and formally we obtain ∇𝑐 = ∇ ((−Δ)−𝛽/2 𝜌). Then, from
Remark 1.10, for 𝜌 with enough regularity, we can write (1.10) redefining (1.11) as

∇Φ(𝑥) = −
𝛽𝜔𝛽

(2𝜋)𝛽−1
1

(𝑑 − 𝛽 + 2)𝜔𝑑−𝛽+2

𝑥
|𝑥 |𝑑−𝛽+2

, (1.21)

since this is well-defined for 0 < 𝛽 ≤ 𝑑, and 𝐶𝑑,𝛽 in (1.20) can be rewritten as

𝐶𝑑,𝛽 = −
𝛽𝜔𝛽

(2𝜋)𝛽−1
1

(𝑑 − 𝛽 + 2)𝜔𝑑−𝛽+2
, (1.22)

where 𝜔𝛽 and 𝜔𝑑−𝛽+2 represent the volumes of the unit balls in ℝ𝛽 and ℝ𝑑−𝛽+2, respectively. Note

that (1.21) generalizes the definition provided in (1.11).

1.5 Self-Similar Solutions and Critical spaces

A system of equations admits self-similar solutions when any solution 𝑢(𝑥, 𝑡), with (𝑥, 𝑡) ∈

ℝ𝑑 × (0,∞], generates a family of solutions of the form 𝜆𝑎𝑢(𝜆𝑏𝑥, 𝜆𝑐𝑡) for all 𝜆 > 0 and suitably

real numbers 𝑎, 𝑏, 𝑐. In such cases, the system exhibits scaling invariance.

The process of scaling heuristics is a form of determining whether a system is scaling

invariance and identifying some possible values for 𝑎, 𝑏, and 𝑐. Through this procedure, one

can identify the critical spaces for the system, which are function spaces where the norm of

a solution remains unchanged under scaling transformations.

The concept of critical spaces is based on the idea of identifying the space of initial data for

which the given partial differential equation (PDE) is well-posed. Thus, the scaling heuristics
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procedure and the identification of critical spaces provide an understanding of which spaces

are particularly well-suited for the equations under consideration. Understanding these spaces

is crucial, as the local existence of solutions in a critical space can often be extended to establish

global existence [75].

1.5.1 Scaling Heuristics

We apply the scaling heuristics procedure to determine whether the solutions of the sys-

tem (1.5) with 𝛾 = 0 are invariant under scaling. For that, we define the functions 𝜌𝜆 and 𝑐𝜆
for any nonzero real number 𝜆 as follows:

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝜌𝜆(𝑥, 𝑡) = 𝜆𝑚1𝜌(𝜆𝑚2𝑥, 𝜆𝑚3 𝑡)

𝑐𝜆(𝑥, 𝑡) = 𝜆𝑚4𝑐(𝜆𝑚2𝑥, 𝜆𝑚3 𝑡)
(1.23)

where 𝑚1, 𝑚2, 𝑚3, 𝑚4 ∈ ℝ ⧵ {0}.

From this definition, we obtain

Λ𝛼𝜌𝜆(𝑥, 𝑡) = 𝜆𝑚1 ∫
𝑦∈ℝ𝑑

𝜌(𝜆𝑚2𝑦, 𝜆𝑚3 𝑡) − 𝜌(𝜆𝑚2𝑥, 𝜆𝑚3 𝑡)
|𝑥 − 𝑦 |𝑑+𝛼

d𝑦

= 𝜆𝑚1 ∫
𝑧∈ℝ𝑑

𝜌(𝑧, 𝜆𝑚3 𝑡) − 𝜌(𝜆𝑚2𝑥, 𝜆𝑚3 𝑡)
𝜆−𝑚2(𝑑+𝛼)|𝜆𝑚2𝑥 − 𝑧|𝑑+𝛼

𝜆−𝑚2𝑑d𝑧

= 𝜆𝑚1+𝑚2𝛼(Λ𝛼𝜌)(𝜆𝑚2𝑥, 𝜆𝑚3 𝑡),

and the first equation in (1.5) become

𝜕𝑡𝜌𝜆(𝑥, 𝑡) = 𝜆𝑚1+𝑚3(𝜕𝑡𝜌)(𝜆𝑚2𝑥, 𝜆𝑚3 𝑡)

= 𝜆𝑚1+𝑚3 [−(Λ𝛼𝜌)(𝜆𝑚2𝑥, 𝜆𝑚3 𝑡) − 𝜒 ((∇𝜌)(𝜆𝑚2𝑥, 𝜆𝑚3 𝑡) ⋅ (∇𝑐)(𝜆𝑚2𝑥, 𝜆𝑚3 𝑡)

+𝜌(𝜆𝑚2𝑥, 𝜆𝑚3 𝑡)(Δ𝑐)(𝜆𝑚2𝑥, 𝜆𝑚3 𝑡))]

= 𝜆𝑚1+𝑚3 [−𝜆−𝑚1−𝑚2𝛼Λ𝛼𝜌𝜆(𝑥, 𝑡) − 𝜆−𝑚1−𝑚4−2𝑚2𝜒 (∇𝜌𝜆 ⋅ ∇𝑐𝜆(𝑥, 𝑡) + 𝜌𝜆Δ𝑐𝜆(𝑥, 𝑡))]

= −𝜆−𝑚2𝛼+𝑚3Λ𝛼𝜌𝜆(𝑥, 𝑡) − 𝜆−𝑚4−2𝑚2+𝑚3𝜒∇ ⋅ (𝜌𝜆(𝑥, 𝑡)∇𝑐𝜆(𝑥, 𝑡)) .

Next, if 𝜏 > 0, the second equation in (1.5) becomes

𝜏𝜕𝑡𝑐𝜆(𝑥, 𝑡) = 𝜆𝑚4+𝑚3(𝜕𝑡𝑐)(𝜆𝑚2𝑥, 𝜆𝑚3 𝑡)

= 𝜆𝑚4+𝑚3 (−(Λ𝛽𝑐)(𝜆𝑚2𝑥, 𝜆𝑚3 𝑡) + 𝜌(𝜆𝑚2𝑥, 𝜆𝑚3 𝑡))

= 𝜆𝑚4+𝑚3 (−𝜆−𝑚4−𝑚2𝛽Λ𝛽𝑐𝜆(𝑥, 𝑡) + 𝜆−𝑚1𝜆𝑚1𝜌(𝜆𝑚2𝑥, 𝜆𝑚3 𝑡))

= −𝜆𝑚3−𝑚2𝛽(Λ𝛽𝑐𝜆)(𝑥, 𝑡) + 𝜆𝑚4+𝑚3−𝑚1𝜌𝜆(𝑥, 𝑡).
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Therefore, (𝜌𝜆, 𝑐𝜆) satisfies the equations in (1.5) if we can find𝑚1, 𝑚2, 𝑚3, and𝑚4 ∈ ℝ⧵ {0}

such that 𝐴 ⋅ 𝑚 = 0, where

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −𝛼 1 0

0 −2 1 −1

−1 0 1 1

0 −𝛽 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

𝑚 = (𝑚1, 𝑚2, 𝑚3, 𝑚4)𝑇 and 0 = (0, 0, 0, 0)𝑇 . Since det𝐴 = 𝛼 − 𝛽, system (1.5) with 𝜏 > 0 can

only exhibit self-similar solutions if 𝛼 = 𝛽. In that case, the scaling transformation from (𝜌, 𝑐)

to (𝜌𝜆, 𝑐𝜆), preserves system (1.5), allowing us to rewrite (1.23) as
⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝜌𝜆(𝑥, 𝑡) = 𝜆2𝛼−2𝜌(𝜆𝑥, 𝜆𝛼𝑡)

𝑐𝜆(𝑥, 𝑡) = 𝜆𝛼−2𝑐(𝜆𝑥, 𝜆𝛼𝑡).
(1.24)

For the parabolic-elliptic system, we set 𝜏 = 0 in (1.5) to obtain for its second equation

Λ𝛽𝑐𝜆(𝑥, 𝑡) = 𝜆𝑚4+𝑚2𝛽(Λ𝛽𝑐)(𝜆𝑚2𝑥, 𝜆𝑚3 𝑡) = 𝜆𝑚4+𝑚2𝛽𝜌(𝜆𝑚2𝑥, 𝜆𝑚3 𝑡) = 𝜆𝑚4−𝑚1+𝑚2𝛽𝜌𝜆(𝑥, 𝑡),

and the system reduces to 𝐴 ⋅ 𝑚 = 0, where 𝐴 is given by

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 −𝛼 1 0

0 −2 1 −1

−1 𝛽 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

As this system is over-determined, the parabolic-elliptic equation (1.6) is scaling invariant

regardless of the values of 𝛼 and 𝛽. Therefore, since (1.6b) is a PDE only on 𝜌, we can express

the rescaled function (1.23) simply as

𝜌𝜆(𝑥, 𝑡) = 𝜆𝛼+𝛽−2𝜌(𝜆𝑥, 𝜆𝛼𝑡). (1.25)

Remark 1.12. As mention in Section 1.2.2, in dimension two, for the classical Keler-Segel model

(1.3), with 𝛾 = 0, the 𝐿1(ℝ𝑑) is a critical space. Thus, the existence or nonexistence of a global

solution in time depended on the value of 𝑚0 = ∫ℝ𝑑 𝜌0(𝑥)d𝑥 = ∫ℝ𝑑 𝜌(𝑥, 𝑡)d𝑥 , in which the critical

value 𝑚0 = 8𝜋/𝜒 decides whether a nonnegative integrable initial datum leads to a global-in-

time solution or not. In the case of 𝛼 ≠ 𝑑, as pointed out by Biler et al. [9, 14], mass 𝑚0 cannot

play such a role anymore because the scaling 𝜌𝜆(𝑥, 𝑡) = 𝜆𝛼𝜌 (𝜆𝑥, 𝜆𝛼𝑡) for each 𝜆 > 0 leads to the
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equality

∫
ℝ𝑑
𝜌𝜆(𝑥, 𝑡)d𝑥 = 𝜆𝛼−𝑑 ∫

ℝ𝑑
𝜌(𝑥, 𝑡)d𝑥 = 𝜆𝛼−𝑑𝑚0,

which implies that the total mass of a rescaled solution 𝜌𝜆 can be chosen arbitrarily with suitable
𝜆 > 0. Thus, system (1.6) in two-dimension with 𝛾 = 0, 𝛽 = 2 and 𝛼 < 2 is insensitive to the

value of 𝑚0.

1.5.2 Analyses of Critical spaces

It is clear from the previous section that the classical Keller-Segel models (both parabolic-

parabolic system (1.2) and parabolic-elliptic system (1.3), with 𝛾 = 0) are scaling invariant.

Moreover, the model admits self-similar solution, as pointed out in the following propositions

[75].

Proposition 1.13. [75, Proposition 2.1] Assume that 𝜆 > 0 and 𝜌0 = 𝜌0(𝑥), for 𝑥 ∈ ℝ𝑑 . Let

𝜌𝜆 = 𝜌𝜆(𝑥, 𝑡) (and 𝑐𝜆 = 𝑐𝜆(𝑥, 𝑡)) in 𝑥 ∈ ℝ𝑑 and 0 ≤ 𝑡 < 𝑇 , be a solution of (1.3) with 𝛾 = 0
and initial condition 𝜌𝜆(𝑥, 0) = 𝜆−2𝜌0 (𝜆−1𝑥), for 𝑥 ∈ ℝ𝑑 . Then, 𝜌𝜆(𝑥, 𝑡) = 𝜆2𝜌𝜆 (𝜆𝑥, 𝜆2𝑡) (and

𝑐𝜆(𝑥, 𝑡) = 𝑐𝜆 (𝜆𝑥, 𝜆2𝑡)) in 𝑥 ∈ ℝ𝑑 and 0 ≤ 𝑡 < 𝜆−2𝑇 , is a solution to (1.3) with 𝛾 = 0 and initial

condition 𝜌𝜆(𝑥, 0) = 𝜌0 (𝑥), 𝑥 ∈ ℝ𝑑 .

Proposition 1.14. [75, Proposition 2.3] Assume that 𝜆 > 0 and consider 𝜌0 = 𝜌0(𝑥) and 𝑐0 =
𝑐0(𝑥), 𝑥 ∈ ℝ𝑑 . Moreover, let 𝜌𝜆 = 𝜌𝜆(𝑥, 𝑡), 𝑐𝜆 = 𝑐𝜆(𝑥, 𝑡) in 𝑥 ∈ ℝ𝑑 and 0 ≤ 𝑡 < 𝑇 , be a solution of

(1.2) with 𝛾 = 0 and initial condition 𝜌𝜆(𝑥, 0) = 𝜆−2𝜌0 (𝜆−1𝑥) and 𝑐𝜆(𝑥, 0) = 𝑐0 (𝜆−1𝑥), 𝑥 ∈ ℝ𝑑 .

Then, 𝜌𝜆(𝑥, 𝑡) = 𝜆2𝜌𝜆 (𝜆𝑥, 𝜆2𝑡) and 𝑐𝜆(𝑥, 𝑡) = 𝑐𝜆 (𝜆𝑥, 𝜆2𝑡) in 𝑥 ∈ ℝ𝑑 and 0 ≤ 𝑡 < 𝜆−2𝑇 is a solution
of (1.2) with 𝛾 = 0 and initial condition 𝜌𝜆(𝑥, 0) = 𝜌0 (𝑥), and 𝑐𝜆(𝑥, 0) = 𝑐0 (𝑥) in 𝑥 ∈ ℝ𝑑 .

Now, assume that there exist positive numbers 𝛿 and 𝑇 such that 𝜌 in ℝ𝑑 × (0, 𝑇 ) is a

solution of (1.3) with 𝛾 = 0, 𝑑 ≥ 2 and initial data 𝜌(𝑥, 0) = 𝜌0(𝑥) for 𝑥 ∈ ℝ𝑑 if

𝜌0 ∈ 𝐿𝑝(ℝ𝑑) with ‖𝜌0‖𝐿𝑝 ≤ 𝛿. (1.26)

We then ask whether 𝜌𝜆, given by (1.25), is also a solution of this system with the same initial

data 𝜌0 on ℝ𝑑 × (0, 𝜆−2𝑇 ). For this purpose consider first the solution 𝜌𝜆 assumed by Proposi-

tion 1.13 under the condition (1.26), that is

‖𝜌𝜆(⋅, 0)‖𝐿𝑝 = 𝜆−2‖𝜌0 (𝜆−1⋅) ‖𝐿𝑝 = 𝜆−2+
𝑑
𝑝 ‖𝜌0‖𝐿𝑝 ≤ 𝛿.

Thus, if the condition ‖𝜌0‖𝐿𝑝 ≤ 𝛿𝜆2−
𝑑
𝑝 holds for 𝜆 > 0, then 𝜌𝜆, given by Proposition 1.13, solves

(1.3). This suggests that the space 𝐿𝑑/2(ℝ𝑑) is well-suited to the system. Since, if parabolic-
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elliptic system in ℝ𝑑 × (0, 𝑇 ) has a solution for any initial data 𝜌0 that satisfies condition (1.26)

with 𝛿 > 0 and 𝑝 = 𝑑/2, then the parabolic-elliptic system in ℝ𝑑 × (0, 𝜆−2𝑇 ) also has a solution

for any 𝜆 > 0, with the same initial data. In particular, for initial data satisfying (1.26), the

system has solutions over any time interval, as 𝛾 can bemade arbitrarily small. Then, assuming

uniqueness, this yields global well-posedness for system (1.3). In this case 𝜌𝜆 in ℝ𝑑 × (0,∞) is

called self-similar solution, and 𝐿𝑑/2(ℝ𝑑) is the critical space for the system.

The spaces 𝐿𝑝(ℝ𝑑) with 𝑝 > 𝑑/2 are known as supercritical for the classical parabolic-

elliptic Keller-Segel system, while those with 𝑝 < 𝑑/2 are called subcritical. If a solution

exists in ℝ𝑑 × (0, 𝑇 ) for any initial data 𝜌(𝑥, 0) = 𝜌0(𝑥) in a supercritical space 𝐿𝑝(ℝ𝑑), with

𝑝 > 𝑑/2, satisfying (1.26), then, as 𝜆 → ∞, it follows that for arbitrarily large initial data

𝜌0 ∈ 𝐿𝑝(ℝ𝑑), a solution exists in ℝ𝑑 × (0, 𝜆−2𝑇 ), which corresponds to shrinking time intervals.

On the other hand, for an initial data 𝜌0 in a subcritical space 𝐿𝑝(ℝ𝑑), with 𝑝 < 𝑑/2, letting

𝜆 → 0 implies that a solution would exist globally in time for arbitrarily large 𝜌0 ∈ 𝐿𝑝(ℝ𝑑),

which is unlikely.

As pointed out by Triebel [75] for the classical Keller-Segel systems, the scaling heuristics

below serve as a guideline for identifying which spaces (critical and supercritical) are naturally

adapted to the related problems. However, it does not provide rigorous barriers for other

spaces. In summary, understanding which spaces are critical, supercritical, and subcritical for

the system under analysis is crucial, as it allows us to trade time of existence for the size of

initial data (measured with respect to the norm space) and vice versa.

Remark 1.15. The classification of functional spaces reveals important aspects of solution be-

havior and well-posedness of the PDE:

- Subcritical spaces: If the solution lies in a subcritical space with respect to scaling, we can

often establish local well-posedness for large initial data by shrinking the time intervals. This

is because, in subcritical spaces, the norms controlling the solution become smaller as we zoom

in on shorter time scales.

- Supercritical spaces: If the solution lies in a supercritical space, we can use scaling to convert
bad behavior arising from large initial data at some time 𝑇 > 0 to bad behavior arising from

small initial data at some time less or equal to 𝑇 . This suggests the existence of a significant

barrier to developing a well-posedness theory below a certain regularity level.

- Critical spaces: In a critical space, establishing local well-posedness also leads to global

well-posedness for the same initial data. This is because the size of the initial data remains
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unchanged under the scaling, allowing time intervals to be expanded. Thus, if we can control

the solution locally, this control extends globally without the norms changing under scaling.

1.6 Literature Review of Key Mathematical Results for the

Fractional Keller-Segel Model

In this section, we provide a comprehensive review of key mathematical results related

to the fractional Keller-Segel model, systems (1.5) and (1.6). The review begins with an explo-

ration of the parabolic-elliptic fractional Keller-Segel model (1.6). It is worth emphasizing that

a significant portion of the existing literature addresses the case where the fractional exponent

𝛽 = 2, which corresponds to classical diffusion in the chemoattractant equation, while the cell

density equation incorporates fractional diffusion with 𝛼 ∈ (1, 2].

Next, we explore a generalized parabolic-elliptic fractional model, which further extends

the classical framework by introducing more generalized forms of chemical signal diffusion

(interaction kernels).

Finally, the review turns to the parabolic-parabolic fractional Keller-Segel model, where

the cell density and chemical concentration evolve according to parabolic fractional equations.

To the best of our knowledge, despite the progress made, the fundamental question regarding

global and local wellposedness for the fully parabolic-parabolic fractional Keller-Segel sys-

tem (1.5) in ℝ𝑑 , with distinct exponents 𝛼 and 𝛽, remained unanswered prior to this thesis.

In Chapter 3, we address this particular system in detail. As Burczak et al. [23] highlighted,

it is appealing to determine the minimum diffusion strength that dominates the chemotactic

forces, demonstrating the existence of regular solutions globally, or to investigate the maxi-

mum diffusion strength that does not inhibit blow-up.

The literature on the fractional case review that a substantial portion of the mathemati-

cal results have been centered around the parabolic-elliptic formulation (1.6). However, the

exploration of these results has provided us insights for tackling the more general parabolic-

parabolic fractional Keller-Segel model (1.5).
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1.6.1 The Parabolic-elliptic Fractional Keller-Segel Model

The pioneering work of Escudero [33] extended classical parabolic-elliptic Keller-Segel

model results driven by Brownian motion to those driven by 𝛼 Lévy processes with 1 < 𝛼 < 2

in one dimension, by considering system (1.6) with 𝛽 = 2 and 𝑑 = 1. According to Escudero

[33], as the fractional Laplacian operator (equation (1.4)) with 1 < 𝛼 < 2 imparts less regular-

ization than the Laplacian, it is possible that the solution of system (1.6) with 𝛽 = 2 blows up in

finite time. In fact, as pointed out by Burczak et al. [25], for any dimension, −Λ𝛼 provides, for

𝛼 < 2, a weaker dissipation than the classical one, making the systemmore prone to exhibiting

a blow-up. This outcome would imply a significant change in the collapsed structure that can

form in many situations where the classical Keller-Segel system does not apply. Since, as dis-

cussed in Section 1.2.3, for the case of the minimal system, one-dimensional global existence

implies that chemotactic collapse to a line is impossible in two dimensions, and chemotactic

collapse to a sheet cannot occur in a three-dimensional setting.

Escudero [33] established global boundedness in time of the 𝐿∞(ℝ) norm of 𝜌 and 𝑐, for

initial condition 𝜌0 ∈ 𝐿1(ℝ) ∩ 𝐿2(ℝ) and d𝜌0/d𝑥 ∈ 𝐿2(ℝ), . Hence, similar to the standard

Keller-Segel model, it was established that solutions to the fractional Keller-Segel model exist

globally in time in one dimension.

Subsequently, Bournaveas et al. [19] considered system (1.6) with 𝛽 = 2 in one space

dimension with 𝛼 ∈ (0, 2] and simplified the problem by setting 𝛾 = 0. The authors asserted

that adopting 𝛾 > 0 would not significantly affect the outcomes of global existence, although

blow-up results would be slightly modified due to the fast decay of the interacting kernel at

infinity (as 𝛾 > 0 plays a damping role; see Chapter 2 for further discussions). They stated

that one can think of this solution as the limit of 𝑐𝛾 as 𝛾 → 0 where 𝑐𝛾 is the solution to the

elliptic problem: −𝜕2𝑥𝑥𝑐𝛾 + 𝛾𝑐𝛾 = 𝜌. Moreover, they proved that in the case 1 < 𝛼 ≤ 2, assuming

𝜌0 ∈ 𝐿𝑝0(ℝ) for some 𝑝0 > 1, the solutions to the parabolic-elliptic fractional Keller-Segel

model are global in time and belong to any 𝐿𝑝(ℝ) space for all positive time 𝑡 > 0. The authors

mentioned that their methods could be used to improve the results of Escudero [33] by relaxing

the regularity hypotheses on the initial data.

In the case 0 < 𝛼 < 1, Bournaveas et al. [19] proved that solutions may exist globally

or blow up depending on the initial data. Specifically, if 𝜌0 ∈ 𝐿𝑝0(ℝ) for some 𝑝0 > 1/𝛼,

there exists a constant 𝐾1(𝛼) such that the condition ‖𝜌0‖𝐿1/𝛼 ≤ 𝐾1(𝛼) ensures the existence
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of global weak solutions. Moreover, the density belongs to any 𝐿𝑝(ℝ) space for any positive

time 𝑡 > 0 (these results extend to 𝛼 = 1 as well). On the other hand, assuming an even

𝜌0 ∈ 𝐿1(ℝ, (1 + |𝑥 |)d𝑥), there exists a constant 𝐾2(𝛼) such that the condition

(∫ℝ
|𝑥 |𝜌0(𝑥)d𝑥)

1−𝛼

< 𝐾2(𝛼)𝑚2−𝛼
0 (1.27)

excludes the global existence of a regular solution: a singularity must appear in finite time.

The authors did not describe the behavior of solutions for a large initial mass when 𝛼 = 1.

This omission was attributed to the fact that, in this case, their strategy fails, since the constant

𝐾2(𝛼) in (1.27) diverges as 𝛼 approaches 1. Then, guided by numerical evidence, Bournaveas

et al. [19] conjectured that solutions might blow up for sufficiently large initial data. However,

Burczak et al. [22] later refuted this conjecture, showing that, at least in the periodic setting,

the system exhibits global-in-time behavior regardless of the size of initial data. Additionally,

for 𝛼 = 1, Ascasibar et al. [4] explicitly estimated the constant 𝐾1(1) as (2𝜋)−2, for 𝜒 = 1 and

within the periodic torus setting.

Biler et al. [15] presented conditions for the global-in-time existence of solutions versus

finite time blow-up for 𝑑 ≥ 2, 𝛼 = 2, 𝛾 = 0 and 1 < 𝛽 ≤ 𝑑. The authors analyzed the evolution

of the second moment of a solution, 𝑚2(𝑡) = ∫ℝ𝑑
|𝑥 |2
2 𝜌(𝑥, 𝑡) d𝑥 , demonstrating the contradiction

that 𝑚2(𝑡) vanishes for some 𝑡 > 0. This result established the nonexistence of global-in-time,

nonnegative, nontrivial solutions for 𝛼 = 2 under some conditions on 𝜌0. As mentioned in

Remark 1.1, a similar approach can be found in the study of the classical Keller-Segel model

(see [66]). Moreover, they present result on local-in-time solutions to (1.6) for 𝑑 ≥ 2 and

𝛼 ∈ (1, 2) in Lebesgue, that can be continued to a global-in-time solution for 𝛽 + 𝛼 > 𝑑 + 1.

Huang et al. [42] also considered the system in dimension 𝑑 ≥ 2with 𝛾 = 0, 1 < 𝛼 < 2, 𝛽 =

2. They proved that for small initial density 𝜌0 ∈ 𝐿1(ℝ𝑑) ∩ 𝐿𝑑/𝛼(ℝ𝑑), the system admits a global

and bounded weak solution. They also provided decay estimates of the solution in different

function spaces. Furthermore, they proved local existence for a more general nonnegative

initial density 𝜌0 ∈ 𝐿1(ℝ𝑑) ∩ 𝐿2(ℝ𝑑).

Additionally, Li et al. [55] consider the same problem in 𝑑 = 2, and proved, for any 𝜌0 ∈

𝐻 𝑠(ℝ2) ∩ 𝐿𝑞(ℝ2) with 𝑠 > 3 and 1 < 𝑞 < 2, local existence and uniqueness of solutions 𝜌 ∈

𝐶([0, 𝑇 ), 𝐻 𝑠(ℝ2) ∩ 𝐿𝑞(ℝ2)). Moreover 𝜌 ∈ 𝐶1([0, 𝑇 ), 𝐻 𝑠0(ℝ2)), where 𝑠0 = min{𝑠 − 𝛼, 𝑠 − 1} > 1,

and, if 𝜌0 ≥ 0, 𝜌 remains nonnegative for any 0 ≤ 𝑡 < 𝑇 . If in addition 𝜌0 ∈ 𝐿1(ℝ2), then
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‖𝜌(⋅, 𝑡)‖𝐿1 = ‖𝜌0‖𝐿1 for any 0 ≤ 𝑡 < 𝑇 . For 𝑇 , the maximal-lifespan solution, either 𝑇 = +∞,

in which case there is a global solution, or 𝑇 < ∞, and lim𝑡→𝑇 ∫
𝑡

0 ‖𝜌(𝑠)‖𝐿∞𝑑𝑠 = +∞. They also

showed the existence of a blow-up solution for the system.

Biler et al. [11] analyzed system (1.6) in 𝑑 ≥ 2, with parameters 𝛾 = 0, 𝛼 ∈ (1, 2] and

𝛽 ∈ (1, 𝑑]. They established the global-in-time existence in the critical space 𝐿𝑑/(𝛼+𝛽−2)(ℝ𝑑) and

formulate a condition on the initial data which leads to the blow-up in a finite time of the

corresponding solution. For that, they extended the classical method to prove the existence

of blowing-up solutions with 𝛼 = 2 by studying moments of lower order 𝜗 ∈ (1, 2), since for

0 < 𝛼 < 2 the second moment cannot be finite. Then, they showed that a sufficient condition

for blow-up is that 𝜌0 is well concentrated, namely

(
∫ℝ𝑑 |𝑥 |

𝜗𝜌0(𝑥)d𝑥
𝑚0 )

𝑑+2−𝛼−𝛽
𝜗

≤ 𝑐 𝑚0

for some 𝜗 ∈ (1, 𝛼), 𝛼 and 𝛽 satisfying 𝛼 + 𝛽 < 𝑑 + 2, 𝜌0 ∈ 𝐿1(ℝ𝑑 , (1 + |𝑥 |𝜗) d𝑥) and 𝑐 > 0, a

sufficiently small constant independent of 𝜌0. Further details about this study are discussed

in Section 3.1, where we detail their findings on the existence of both global and local-in-time

solutions, and Section 4.3.2.2, where their results on the blow-up of solutions are explored.

Note that the results in [11, 15] have been formulated in terms of global quantities like the

moment. In contrast, Biler et al. [9, 13, 14] formulated their results in terms of local properties

of initial data instead of a comparison of the total mass and moments of the initial data as

done previously. Their approach did not require additional assumptions about 𝜌0, such as

𝜌0 ∈ 𝐿1(ℝ𝑑 , (1+ |𝑥 |𝜗)d𝑥), which were necessary in the earlier works by Biler et al. [11, 15]. The

blow-up results of [55] were also in terms of local properties of the initial condition.

Specifically, Biler et al. [13] presented criteria for blow-up of solutions to system (1.6) with

parameters 𝛾 = 0, 𝛼 ∈ (1, 2] and 𝛽 = 2, in 𝑑 = 2. They established that the solution 𝜌 ceases to

exists in a finite time if there exist 𝑥0 ∈ ℝ2 and 𝑅 > 0 such that

𝑅𝛼−2 ∫
{|𝑥−𝑥0 |<𝑅}

𝜌0(𝑥) d𝑥 > 𝐶 and ∫
{|𝑥−𝑥0 |≥𝑅}

𝜌0(𝑥) d𝑥 < 𝜈

for a small 𝜈 > 0 and a large 𝐶 > 0 constants. This criteria for a blow-up of solutions with

large concentration can be expressed using Morrey space𝑀2/𝛼(ℝ2) norms and the size of such

a norm is critical for the global-in-time existence versus finite time blow-up. Additionally, in

𝑑 ≥ 2, they derived, for radially symmetric solutions, a criteria for blow-up of solutions in
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terms of the radial initial concentrations. They showed that there exists a critical constant

𝐶𝛼,𝑑 > 0 such that if

𝑅𝛼−𝑑0 ∫
{|𝑥 |<𝑅0}

𝑢0(𝑥)d𝑥 > 𝐶𝛼,𝑑

for some 𝑅0 > 0, then the corresponding solution could not be global-in-time. Next, Biler et al.

[9] extended these results in 𝑑 = 2 to include cases with 𝛾 > 0 (see Remark 1.1(c) and (d) for

more details on this work).

Biler et al. [13] pointed out that these conditions were, in a sense, complementary to

those ensuring the global-in-time existence of solutions, where it imposed smallness of initial

conditions in the Morrey space norm. Exemplars of such results can be found in [11, Remark

2.7] and [54, Theorem 2], where global-in-time solutions were proven for 𝑑 ≥ 1 and 𝛼 = 𝛽 ∈

(1, 2] (futher details on this work see Section 1.6.3). Note that these results contrast sharply

with the case 𝛼 = 2, where, as previously mentioned, the blow-up condition depends solely

on the initial mass size (see [50, 66] and Remark 1.12).

Biler et al. [14] tried to identify the threshold for size and for a singularity of an initial

condition such that the corresponding solution of the problem in 𝑑 ≥ 2 for 𝛼 ∈ (0, 2) and 𝛽 = 2

is still regular and global-in-time. They focused on radially symmetric solutions and presented

some results in global-in-time solutions in Sobolev spaces for 𝛼 ∈ (0, 1) and Morrey spaces for

𝛼 ∈ (1, 2) and blow-up of solutions for 𝛼 ∈ (0, 2]. They extended the work of [13] in radially

symmetric solutions for 𝛼 ∈ (0, 2].

In addition, Biler et al. [14] pointed out that the parabolic-elliptic system (1.6) with 𝛾 = 0

and 𝛽 = 2 in 𝑑 ≥ 2 classify into subcritical case for 𝛼 ∈ (1, 2) and supercritical case for 𝛼 ∈ (0, 1].

Moreover, they emphasized that various results on local-in-time and global-in-time solutions

to this systemwith 𝛼 ∈ (1, 2) – such as those found in [15, Theorem 2.2], [16, Theorem 1.1], [11,

Theorem 2.1], [54, Theorem 2] and [14, Section 7] – in various functional spaces (Lebesgue,

Besov, Morrey) are, broadly speaking, analogous to those for 𝛼 = 2. In [16], Biler and Wu

presented results on local-in-time and blow-up solutions to (1.6) in 𝑑 = 2 for initial data in

critical Besov spaces 𝐵̇1−𝛼
2,𝑟 (ℝ2) with 𝑟 ∈ [1,∞].

Sugiyama et al. [73] mentioned an expanded classification that categorizes this system as

subcritical for 𝛼 > 1, critical for 𝛼 = 1, and supercritical for 𝛼 < 1. The authors presented

results on local and global existence and uniqueness of solutions of (1.6) with 𝛾 = 0 and 𝛽 = 2
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for 𝛼 ∈ (0, 1) and 𝑑 ≥ 3 and 𝛼 = 1 and 𝑑 ≥ 2 in the Besov space 𝐵̇
𝑑
𝑝−𝛼
𝑝,𝑞 (ℝ𝑑), which is a critical

space for the problem.

1.6.2 Generalized Parabolic-elliptic fractional Keller-Segel model

Consider the following parabolic fractional equation:
⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝜕𝑡𝜌 = −Λ𝛼𝜌 + 𝜒∇ ⋅ (𝜌(𝜌)) 𝑡 > 0, 𝑥 ∈ ℝ𝑑 ,

𝜌(𝑥, 0) = 𝜌0(𝑥),
(1.28)

where 𝜌0 ≥ 0, and (𝜌)(𝑥) = 𝐶𝜗(𝐾 ∗𝜌)(𝑥), with 𝐶𝜗 > 0 being a constant and the attractive

kernel 𝐾 defined by

𝐾(𝑥) ∶=
𝑥
|𝑥 |𝜗

, 𝑥 ∈ ℝ𝑑 ⧵ {0} and 𝜗 > 0. (1.29)

Note that for 𝜗 = 𝑑, 𝐾 corresponds to the Newtonian kernel in ℝ𝑑 .

According to Lafleche et al. [52], this equation can be seen as a generalization of the

classical parabolic-elliptic Keller-Segel equation (see also Remarks 1.5 and 1.11). Observe that

system (1.28) reduces to the classical parabolic-elliptic Keller-Segel model, represented by (1.3)

with 𝛾 = 0, when 𝛼 = 2 and 𝜗 = 𝑑 (which correspond to 𝛽 = 2 in system (1.6)).

Moreover, the results presented by Biler et al. [11, 15], discussed in the previous section,

correspond to (1.28) with 𝛼 ∈ (1, 2) and 𝜗 ∈ [2, 𝑑+1). Additionally, Biler et al. [15] explored the

local well-posedness, global well-posedness and finite time blow-up of solutions for parabolic

equations (1.28) in arbitrary dimension 𝑑 ≥ 2, with 𝛼 ∈ (0, 2] and potential kernels satisfying

|𝐾(𝑥)| ≤ 𝐶|𝑥 |𝜗, where 1 < 𝜗 ≤ 𝑑. They determined threshold conditions on the values of 𝛼,

𝜗, and 𝑑 that determine whether solutions can be extended indefinitely in time or blow up in

finite time for suitable initial data. Furthermore, they highlighted various physical phenomena

involving diffusion and particle interactions that can be described by equation (1.28) for an

appropriate integral operator  and specific values of 𝛼. For additional examples and detailed

results see [12, 15, 24, 25, 55].

To conclude, we highlight the work of Lafleche et al. [52], where the authors examined

system (1.28) for 𝑑 ≥ 1 and (𝛼, 𝜗) ∈ ℝ2
+, with 𝜗 < 𝑑. The objective of this study was to

evaluate how diffusion competes with an aggregation field. To establish local and global well-

posedness, the authors considered the parameter range (𝛼, 𝜗) ∈ [0, 2)×[0, 𝑑)with the condition
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𝜗 + 𝛼 > 1 and 𝑘 ∈ [(1 − 𝜗)+, 𝛼). They then organized their findings into the following distinct

cases.

- Diffusion dominated case (𝜗 < 𝛼): global well-posedness for any initial condition in

𝐿1𝑘(ℝ𝑑), where 𝐿𝑝𝑘 (ℝ𝑑) ∶=
{
𝜌 ∈ 𝐿𝑝(ℝ𝑑), (

√
1 + |𝑥 |2)

𝑘
𝜌 ∈ 𝐿𝑝(ℝ𝑑)

}
is a weighted space;

- Fair competition case (𝜗 = 𝛼): global well-posedness for an initial condition in

𝐿1𝑘(ℝ𝑑) ∩ 𝐿 ln 𝐿(ℝ𝑑) with small mass, where 𝐿 ln 𝐿(ℝ𝑑) is the space of functions with finite

entropy, defined as 𝐿 ln 𝐿(ℝ𝑑) ∶=
{
𝜌 ∈ 𝐿1(ℝ𝑑), 𝜌 ln(𝜌) ∈ 𝐿1(ℝ𝑑)

}
;

- Aggregation dominated case (𝜗 > 𝛼): global or local well-posedness for an initial

condition in 𝐿1𝑘(ℝ𝑑) ∩ 𝐿𝑝(ℝ𝑑) with 𝑝 ∈ ( 𝑑
𝑑+𝛼−𝜗 ,

𝑑
𝑑−𝜗), depending on the smallness condition on

the 𝐿𝑝(ℝ𝑑) norm of the initial data.

In the case 𝜗 ≤ 𝛼, their finds expand the existing result by Biler et al. [15], where global

existence was proved for 𝑑 = 2, 3 in the case 𝛼 ≤ 𝑑
2 . Lafleche et al. [52] also examined the

conditions under which solutions to the equation exhibit finite-time blow-up. They showed

that, for (𝛼, 𝜗) ∈ [0, 2) × [1, 𝑑) such that 𝛼 < 𝜗 and 𝑘 ∈ (0, 𝛼), an even nonnegative weak

solution to equation (1.28) with initial condition 𝜌0 ∈ 𝐿1𝑘(ℝ) ceases to exist in finite time if

∫
ℝ𝑑
𝜌0(𝑥)(

√
1 + |𝑥 |2)

𝑘
d𝑥 ≤ 𝐶1𝜆

𝑘
2(𝜗−𝑘)𝑚

2𝜗−𝑘
2(𝜗−𝑘)
0 , for 𝛼 > 1

∫
ℝ𝑑
𝜌0(𝑥)|𝑥 |𝑘 d𝑥 ≤ 𝐶2𝑚0 and 𝜆𝑚0 ≥ 𝐶3, for 𝛼 < 1,

where 𝐶1, 𝐶2 and 𝐶3 are constants depending only on 𝑑, 𝜗, 𝛼 and 𝑘.

The proof of this result relies on the time differentiation of an adequate moment, which

leads to a contradiction. This approach is the same as the one followed to prove the existence

of a blow-up solution to the parabolic-elliptic Keller-Segel model without chemoattractant

consumption (𝛾 = 0); for instance: the classical Keller-Segel model (1.3) is addressed in [66];

the fractional version (1.6) with 𝛼 = 2 and 1 < 𝛽 ≤ 𝑑 is discussed in [15]; and the more general

fractional system (1.6) with 1 < 𝛼 ≤ 2 and 1 < 𝛽 ≤ 𝑑 is treated in [11].

Lafleche et al. [52] pointed out that one of the strengths of the blow-up result, even if it

deals only with even solutions, is that it applies to weakly singular interactions, i. e., 𝜗 < 2,

which corresponds to considering 𝛽 > 𝑑 in (1.6).
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1.6.3 The Parabolic-parabolic Fractional Keller-Segel Model

The doubly parabolic case with fractional operators, system (1.5), has been addressed for

example by Biler et al. [16], Burczak et al. [23], Jiang et al. [43], X. Wang et al. [77], and Wu

et al. [78], however for the case where 𝛼 = 𝛽.

Biler et al. [16] andWu et al. [78] used the same techniques to analyze the doubly parabolic

model. Biler et al. [16] considered the model in ℝ2 with 𝛼 = 𝛽 ∈ (1, 2) and initial condition

in critical Besov spaces, and proved the existence of a locally unique solution. Wu et al. [78]

considered the model in ℝ𝑑 with 𝛼 = 𝛽 ∈ (1, 2] in the critical Fourier-Herz spaces, and proved

local well-posedness and a global well-posedness with a small initial data.

Besides to prove global-in-time solutions to parabolic-elliptic case, P. G. Lemarié-Rieusset

[54] established result on global-in-time solutions to parabolic-parabolic case for 𝑑 ≥ 1 and

𝛼 = 𝛽 ∈ (1, 2] under smallness condition on initial data 𝜌0 in Morrey space and ∇𝑐0 = 0.

Moreover, they proved that when 𝜏 goes to 0 in (1.5) the solution of the parabolic-parabolic

problem converges in certain space to the solution of the parabolic-elliptic problem.

X. Wang et al. [77] studied a doubly parabolic system with fractional Laplacian 𝛼 ∈

(4/3, 2) for 𝑑 ≥ 2 in Sobolev space. They proved the existence and the uniqueness of a

global classical solution, assuming that the initial data are small enough. They also showed

the asymptotic decay behaviors of the 𝑊 𝑚−𝑑−3,∞(ℝ𝑑)-norm of 𝜌 and ∇𝑐, for 𝑚 ≥ 𝑑 + 4.

Jiang et al. [43] studied a doubly parabolic model with signal-dependent sensitivity and

the source term, on ℝ𝑑 with 𝑑 ≥ 2, in Sobolev space, with 𝛼 = 𝛽 ∈ (0, 2). They showed

the existence, uniqueness, and temporal decay of the global classical solutions to the problem

under the assumption of small initial data.

Once again, it is important to emphasize that, to the best of our knowledge, the funda-

mental question concerning the existence of a solution to fully parabolic fractional Keller-Segel

system (1.5) in ℝ𝑑 with distinct exponents 𝛼 and 𝛽 remains unanswered. In Chapter 3, we ad-

dress this specific system in detail.
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1.7 Further PDE models for chemotaxis

Besides the fractional Keller-Segel models, system (1.5) and (1.6), the classical Keller-Segel

equations as described in Section 1.2.1 have been under numerous modifications. Several vari-

ations of the classical Keller-Segel models have been developed to incorporate additional bi-

ological realism and to address specific biological problems. The surveys [3, 40, 41] and the

books [66, 67, 75] provide an overview of some of the available adaptations of the Keller-Segel

chemotaxis model. They also highlight certain findings from the existing literature, includ-

ing discussions on aspects like existence, boundedness, blowup of solutions, and numerical

analysis. We also mention the following works with fractional Laplacian [23, 38, 43, 80, 81].

A variation of the classical Keller-Segel model that we address here involves incorporating

an additional source function, 𝑓 (𝜌,∇𝜌), into (1.2):
⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝜕𝑡𝜌 = Δ𝜌 − 𝜒∇ ⋅ (𝜌∇𝑐) + 𝑓 (𝜌,∇𝜌) 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,

𝜏𝜕𝑡𝑐 = Δ𝑐 + 𝜌 − 𝛾𝑐 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,

𝜌(𝑡 = 0) = 𝜌0, 𝑐(𝑡 = 0) = 𝑐0 𝑥 ∈ ℝ𝑑 .

(1.30)

where for simplicity, besides retaining the constants 𝜏 and 𝛾 , all other constants in the system

have been normalized to 1.

For instance, 𝑓 can incorporate logistic terms into the model: 𝑓 (𝜌) = 𝜈𝜌 − 𝜇𝜌2, where

𝜈𝜌 represents the birth (reproduction) rate of cells, and −𝜇𝜌2 represents the death rate of cells

[75]. Burczak et al. [25] introduces a logistic term into the minimal system by prescribing

𝑓 (𝜌) = 𝑟𝜌(1 − 𝜌) with 𝑟 > 0. They emphasized that the parabolic-elliptic system is less

prone to admitting solutions that exhibit blowup for 𝑟 > 0 compared to the case when 𝑟 = 0.

The authors also mention that blowups are excluded for any initial mass, regardless of the

relationship between the mass and the parameters 𝑟 and 𝜒 .

Moreover, system (1.30) can model chemotaxis in reaction-diffusion processes [46–48,

67]. Kiselev et al. [48] considered a model with 𝜏 = 0 and 𝑓 (𝜌) = −𝑢 ⋅ ∇𝜌 − 𝜖𝜌𝑞 , where

𝑢 is divergence free, regular and prescribed independent of 𝜌. This model is related to the

phenomenon known as broadcast spawning, an external fertilization strategy employed by

various benthic invertebrates, such as sea urchins, anemones, corals, and jellyfish. As with

the previous model, Kiselev et al. [48] proved that the blowup in the parabolic-elliptic system,

with 𝜖 > 0, is excluded for any initial mass. This model is explored in detail in Chapter 4.
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Chapter 2

Preparations

With system (1.30) as a starting point, consider the prototype of Keller-Segel equations

with nonlocal diffusion terms in dimension 𝑑 ≥ 2, with 𝛼 ∈ (1, 2] and 𝛽 ∈ (1, 𝑑], given by
⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝜕𝑡𝜌 = −Λ𝛼𝜌 − 𝜒∇ ⋅ (𝜌∇𝑐) + 𝑓 (𝜌,∇𝜌) 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,

𝜏𝜕𝑡𝑐 = −Λ𝛽𝑐 + 𝜌 − 𝛾𝑐 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,

𝜌(𝑡 = 0) = 𝜌0, 𝑐(𝑡 = 0) = 𝑐0 𝑥 ∈ ℝ𝑑 .

(2.1)

In this chapter, we aim to establish foundational results and a set of essential tools for

investigating the existence, uniqueness, and properties of the solutions to (2.1). We define the

specific type of solution under consideration and introduce key notations. Furthermore, we

provide a general discussion on some properties of the solutions.

Note that throughout this thesis, constants, which may change from line to line, are de-

noted by the same letter 𝐶, and are independent of the variables 𝜌, 𝑐, 𝑥 , and 𝑡. The notation

𝐶 = 𝐶(∗) emphasizes the dependency of 𝐶 on a parameter represented by “∗”.

2.1 Introduction

System (2.1) models the chemotactic movement of cells, represented by their density 𝜌 =

𝜌(𝑥, 𝑡), toward higher concentrations of a chemical substance 𝑐 = 𝑐(𝑥, 𝑡), i. e., 𝜌 moves along

the gradient of the chemical. Since 𝜌 and 𝑐 represent densities, nonnegative initial data is

expected to result in nonnegative solutions to the system.

As outlined in Section 1.2, system (2.1) incorporates, in the right-hand side of the first

equation, the diffusion of cells (representing random microscopic movements that result in

observable macroscopic motion), a chemotactic flux of advective type (where 𝜒 stands for the
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chemotactic sensitivity), and a source term 𝑓 . The second equation accounts for the diffusion,

production, and consumption (or degradation) of the chemical signal, known as the chemoat-

tractant. This signal is emitted by the cells, diffused in the environment, and degraded at a

rate proportional to its local concentration, with the nonnegative constant 𝛾 describing this

degradation rate [3, 19, 66, 75]. Furthermore, the parabolic-elliptic version of (2.1) arises from

the assumption that the production and diffusion of the chemical occur much faster than other

time scales in the problem, leading the second equation of (2.1) to become Λ𝛽𝑐 = 𝜌− 𝛾𝑐. Thus,

the parabolic-elliptic model takes the following form
⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝜕𝑡𝜌 = −Λ𝛼𝜌 − 𝜒∇ ⋅ (𝜌∇ ((−Δ)𝛽/2 + 𝛾𝐼)
−1
𝜌) + 𝑓 (𝜌,∇𝜌), 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,

𝜌(𝑥, 0) = 𝜌0(𝑥) 𝑥 ∈ ℝ𝑑 .
(2.2)

which includes the case of 𝛾 = 0.

In Chapter 3, we focus on the parabolic-parabolic model (2.1) with 𝑓 (𝜌,∇𝜌) = 0 and, as

discussed in Section 1.2.2 for the Classical Keller-Segel model, we demonstrate that the value

of 𝛾 (whether 𝛾 > 0 or 𝛾 = 0) does not significantly impact our results on well-posedness. In

Chapter 4, we explore the parabolic-elliptic model (2.2) with 𝑓 (𝜌,∇𝜌) ≠ 0, extending the study

by Kiselev et al. [48] mentioned in Section 1.7.

Remark 2.1. To study the chemotactic response, it is important to analyze the behavior of the

total number of cells over time 𝑡 given by

𝑚(𝑡) ≡ ∫
ℝ𝑑
𝜌(𝑥, 𝑡) d𝑥. (2.3)

If the model is proved to ensure nonnegative solutions for cell density and chemical concentration

under nonnegative initial conditions, then (2.3) is given by the 𝐿1(ℝ𝑑) norm of 𝜌.

Note that, through a formal calculation, considering that 𝜌 vanishes when |𝑥 | → ∞ and

(̂Λ𝛼𝜌)(0) is well defined, we obtain

(̂Λ𝛼𝜌)(0) = ∫
ℝ𝑑
Λ𝛼𝜌 d𝑥 = 0,

and a direct application of the boundary conditions yields

d
d𝑡
𝑚(𝑡) = ∫

ℝ𝑑
𝑓 (𝜌,∇𝜌) d𝑥. (2.4)

This means that, for 𝑓 = 0, 𝑚(𝑡) = 𝑚0 over time. This further implies that, for a nonnegative

solution with a nonnegative initial data 𝜌0 ∈ 𝐿1(ℝ𝑑), the 𝐿1(ℝ𝑑) norm of 𝜌 is conserved over time:

𝑚(𝑡) ≡ ‖𝜌(⋅, 𝑡)‖𝐿1 = ‖𝜌0‖𝐿1 ≡ 𝑚0.



Chapter 2. Preparations 49

That is then total number of cells does not vary in time, which is expected as system (2.1) or (2.2),
in that case, models only the motion of the cells (there are no birth or death processes).

Moreover, using the same approach as before, for the parabolic-parabolic model (2.1), again
with 𝑓 = 0 and assuming nonnegative initial condition 𝑐0 ∈ 𝐿1(ℝ𝑑) and a nonnegative solution,

the concentration of the chemical over time 𝑡, ‖𝑐(⋅, 𝑡)‖𝐿1 , grows proportionally to ‖𝜌0‖𝐿1 :

‖𝑐(⋅, 𝑡)‖𝐿1 = ‖𝜌0‖𝐿1 (
1 − 𝑒−

𝛾
𝜏 𝑡

𝛾 ) + ‖𝑐0‖𝐿1𝑒−
𝛾
𝜏 𝑡 (2.5)

and

‖𝑐(⋅, 𝑡)‖𝐿1 −−−−→
𝑡→∞

‖𝜌0‖𝐿1
𝛾

, (2.6)

which includes 𝛾 = 0 by taking 𝛾 → 0.

Note that, for small 𝑡, this growth is approximately linear in time, and for 𝛾 > 0, the influence
of 𝑐0 is reduced over time and the growth of the chemical concentration is bounded. This explains

why 𝛾 is called damping constant.

2.2 Mild solution to Keller-Segel system

Based on Section 1.4, we turn (2.1) and (2.2) into an integral equation on 𝜌 depending on

∇𝑐. That is,

𝜌(𝑥, 𝑡) = 𝐾𝛼
𝑡 ∗ 𝜌0(𝑥) − 𝜒 ∫

𝑡

0
∇𝐾𝛼

𝑡−𝑠 ∗ (𝜌∇𝑐) d𝑠 + ∫
𝑡

0
𝐾𝛼
𝑡−𝑠 ∗ 𝑓 (𝜌,∇𝜌)d𝑠, (2.7)

where ∇𝑐 given by:

-for the parabolic-parabolic system (2.1),

∇𝑐(𝑥, 𝑡) = 𝑒−
𝛾
𝜏 𝑡𝐾𝛽

𝑡
𝜏
∗ ∇𝑐0(𝑥) + ∫

𝑡

0

1
𝜏
𝑒𝛾(

𝑠−𝑡
𝜏 )∇𝐾𝛽

𝑡−𝑠
𝜏
∗ 𝜌 d𝑠; (2.8)

-for the parabolic-elliptic equation (2.2) with 𝛾 = 0,

∇𝑐(𝑥, 𝑡) = ∇Φ ∗ 𝜌(𝑥) = −
Γ ((𝑑 − 𝛽 + 2)/2)
𝜋𝑑/22𝛽−1Γ (𝛽/2) ∫

ℝ𝑑

𝑥 − 𝑦
|𝑥 − 𝑦 |𝑑−𝛽+2

𝜌(𝑦) d𝑦; (2.9)

-for the parabolic-elliptic equation (2.2) with 𝛾 > 0,

∇𝑐(𝑥, 𝑡) = ∇Φ𝛽,𝛾 ∗ 𝜌(𝑥) = ∫
∞

0
𝑒−𝛾𝑠∇𝐾𝛽

𝑠 ∗ 𝜌(𝑥, 𝑡)d𝑠, (2.10)

with the kernels 𝐾𝛼
𝑡 , 𝐾

𝛽
𝑡 and Φ𝛽,𝛾 as defined in Proposition 1.7 and ∇Φ as described in Re-

mark 1.11.
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Remark 2.2. Note that, if ∇𝑐0 = 0 in (2.1), each of the models can be considered as a single

nonlinear parabolic equation for 𝜌 with a nonlocal (either in 𝑥 or in (𝑥, 𝑡)) nonlinearity since the
term ∇𝑐 can be expressed as a linear integral operator acting on 𝜌.

Remark 2.3. It is usual to specify ∇𝑐 since 𝑐 itself does not appear in the first equation of the

parabolic-parabolic system (2.1). Therefore, in the existence theorem in Chapter 3, the initial

condition and the results are specified for ∇𝑐.

Similarly, as pointed out in Remarks 1.5 and 1.11, for the parabolic-elliptic case (2.2), ∇𝑐 is
considered instead of 𝑐. However, the theorem concerning the solution to this equation generally

specifies only 𝜌 for the initial condition and the results, as, in this case, ∇𝑐 is solely a function of

𝜌 (in addition to 𝑥 and 𝑡).

Remark 2.4. Note that, as mentioned before, for 𝛾 > 0, 𝛾𝑐 plays a role of damping in (2.8).

This general method for writing solutions to partial differential equations via integral for-

mulation is also known as Duhamel’s principle, and (2.7) with the correspondent ∇𝑐 is known

as Duhamel’s formula.

Using this integral formulation, we define a mild solution to systems (2.1) and (2.2) as:

Definition 2.5 (Mild solution). A solution to (2.7) is called the mild solution to system (2.1) or
(2.2), with the correspondent definition of ∇𝑐 above.

2.2.1 Contraction Mapping Principle

Through the integral formulation, we can convert the problem of finding solutions to

system (2.1) or (2.2) into a fixed point problem in a Banach space (𝐗, ‖ ⋅ ‖𝐗). With that in mind,

let us recall the Banach Fixed Point Theorem:

Theorem 2.6 (Banach Fixed Point Theorem). Let (𝐗, ‖ ⋅ ‖𝐗) be a Banach space, and assume

that  ∶𝐗 → 𝐗 is a bounded linear operator and a contraction on 𝐗. That is, there exists a

constant Θ ∈ (0, 1) such that

‖ (𝑢) −  (𝑣)‖𝐗 ≤ Θ‖𝑢 − 𝑣‖𝐗 (2.11)

for all 𝑢, 𝑣 ∈ 𝐗. Then, there exists a unique 𝑢 ∈ 𝐗 such that  (𝑢) = 𝑢, i. e., the linear operator 
has a unique fixed point in 𝐗.

Now, using Theorem 2.6, we can transform the problem of finding the solution to the

parabolic-elliptic system (2.2) in a space 𝐗 into a fixed point problem. This is achieved by



Chapter 2. Preparations 51

considering the mapping defined through (2.7):

 (𝜌) ≡ 𝐾𝛼
𝑡 ∗ 𝜌0 + ∫

𝑡

0
𝐾𝛼
𝑡−𝑠 ∗ (𝜒∇ ⋅ (𝜌(𝑠)∇𝑐(𝑠)) + 𝑓 (𝜌,∇𝜌)) d𝑠. (2.12)

This is equivalent to showing that the initial data 𝜌0 is such that 𝐾𝛼
𝑡 ∗ 𝜌0 ∈ 𝐗 and there exists

a constant Θ ∈ (0, 1) for which the inequality (2.11) holds for the linear operator , defined as

(𝜌) ≡ ∫
𝑡

0
𝐾𝛼
𝑡−𝑠 ∗ (𝜒∇ ⋅ (𝜌(𝑠)∇𝑐(𝑠)) + 𝑓 (𝜌,∇𝜌)) d𝑠. (2.13)

This approach ensures that  , as defined, is a contraction mapping in𝐗, thereby guaranteeing

the existence of a unique fixed point.

To convert the problem of finding the solution of the parabolic-parabolic model (2.1) into

a fixed point problem, let us consider a corollary of Theorem 2.6 based on a result from [53].

Corollary 2.7. Let (𝐗, ‖ ⋅ ‖𝐗) be a Banach space,  ∶ 𝐗 × 𝐗 → 𝐗 a bounded bilinear form

satisfying

‖(𝑢, 𝑣)‖𝐗 ≤ 𝐶‖𝑢‖𝐗‖𝑣‖𝐗 for all 𝑢, 𝑣 ∈ 𝐗, and a constant 𝐶 > 0, (2.14)

and  ∶ 𝐗 → 𝐗 a bounded linear form satisfying

‖(𝑢)‖𝐗 ≤ 𝐶‖𝑢‖𝐗 for all 𝑢 ∈ 𝐗, and a constant 𝐶 > 0. (2.15)

Then, if 0 < 𝛿 < 1−2𝐶
4𝐶

and 𝑢1 ∈ 𝐗 is such that ‖𝑢1‖𝐗 < 𝛿, the equation 𝑢 = 𝑢1 +(𝑢, 𝑢) +
(𝑢) has a solution in 𝐗 such that ‖𝑢‖𝐗 ≤ 2𝛿. This solution is the only one in the ball 𝐵̄(0, 2𝛿).

Proof. Starting from 𝑢1, we define the sequence 𝑢𝑛+1 = 𝑢1 + (𝑢𝑛, 𝑢𝑛) +  (𝑢𝑛). By induction,
we assume that ‖𝑢𝑛‖𝐗 ≤ 2𝛿. Then

‖𝑢𝑛+1‖𝐗 ≤ ‖𝑢1‖𝐗 + 𝐶 ‖𝑢𝑛‖2𝐗 + 𝐶 ‖𝑢𝑛‖𝐗 ≤ 𝛿 + 4𝐶𝛿2 + 2𝐶𝛿 = 𝛿 + 𝛿 (4𝐶𝛿 + 2𝐶) ≤ 2𝛿,

since 4𝛿𝐶 + 2𝐶 < 1. Moreover, we have

‖𝑢𝑛+1 − 𝑢𝑛‖𝐗 = ‖ (𝑢𝑛, 𝑢𝑛) − (𝑢𝑛−1, 𝑢𝑛−1) +  (𝑢𝑛) −  (𝑢𝑛−1)‖𝐗
= ‖ (𝑢𝑛 − 𝑢𝑛−1, 𝑢𝑛) + (𝑢𝑛−1, 𝑢𝑛 − 𝑢𝑛−1) +  (𝑢𝑛) −  (𝑢𝑛−1)‖𝐗
≤ ‖ (𝑢𝑛 − 𝑢𝑛−1, 𝑢𝑛)‖𝐗 + ‖ (𝑢𝑛−1, 𝑢𝑛 − 𝑢𝑛−1)‖𝐗 + ‖ (𝑢𝑛) −  (𝑢𝑛−1)‖𝐗
≤ 𝐶‖𝑢𝑛‖𝐗‖𝑢𝑛 − 𝑢𝑛−1‖𝐗 + 𝐶‖𝑢𝑛−1‖𝐗‖𝑢𝑛 − 𝑢𝑛−1‖𝐗 + 𝐶‖𝑢𝑛 − 𝑢𝑛−1‖𝐗

≤ [𝐶 (‖𝑢𝑛‖𝐗 + ‖𝑢𝑛−1‖𝐗) + 𝐶] ‖𝑢𝑛 − 𝑢𝑛−1‖𝐗,

and, with the previous conclusion, it follows that

‖𝑢𝑛+1 − 𝑢𝑛‖𝐗 ≤ (4𝛿𝐶 + 𝐶) ‖𝑢𝑛 − 𝑢𝑛−1‖𝐗

< (4𝛿𝐶 + 2𝐶) ‖𝑢𝑛 − 𝑢𝑛−1‖𝐗

≤ 𝐶‖𝑢𝑛 − 𝑢𝑛−1‖𝐗,
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where 𝐶 < 1. Hence ‖𝑢𝑛+1 − 𝑢𝑛‖𝐗 ≤ 𝐶𝑛 ‖𝑢2 − 𝑢1‖𝐗.

Therefore, 𝑢𝑛 converges to a limit 𝑢, which is the required solution. The uniqueness of 𝑢
in 𝐵̄(0, 2𝛿) is then trivial.

Now, in view of (2.7), we can define 𝑢1 as

𝑢1(𝑥, 𝑡) = 𝐾𝛼
𝑡 ∗ 𝜌0(𝑥), (2.16)

the bilinear form  ∶ 𝐗 × 𝐗 → 𝐗 as

(𝑢, 𝑣)(𝑡) = −∫
𝑡

0 [𝜒∇𝐾
𝛼
𝑡−𝑠 ∗(𝑢(𝑠)∫

𝑠

0

1
𝜏
𝑒𝛾(

𝑤−𝑠
𝜏 )∇𝐾𝛽

𝑠−𝑤
𝜏
∗ 𝑣(𝑤)d𝑤) + 𝐾𝛼

𝑡−𝑠 ∗ 𝑓 (𝑢,∇𝑢)] d𝑠, (2.17)

and the linear form  ∶ 𝐗 → 𝐗 as

(𝑢)(𝑡) = −∫
𝑡

0
∇𝐾𝛼

𝑡−𝑠 ∗ [𝑢(𝑠)𝑒
− 𝛾
𝜏 𝑠𝐾𝛽

𝑠
𝜏
∗ ∇𝑐0] d𝑠. (2.18)

Then, we transform the problem of finding the solution to the parabolic-parabolic model (2.1)

in a space 𝐗 into a fixed point problem, through (2.7), by applying Corollary 2.7.

Note that this is equivalent to considering the fixed point problem for the mapping

 (𝜌) ≡ 𝑢1 +(𝜌, 𝜌) + (𝜌) (2.19)

through the application of Theorem 2.6.

Remark 2.8. Sugiyama et al. [73] point out that the application of this method is effective in

some cases where the order of the derivative of fractional dissipation is larger than that of the

nonlinear term. They analyzed the parabolic-elliptical case where 𝛾 = 0 and 𝛽 = 2. The authors
also mentioned that this method is difficult to apply to the case 0 ≤ 𝛼 ≤ 1 since the dissipation
balances nonlinearity when 𝛼 = 1 (it is difficult to show that the continuity holds for the integral

operator of type (2.13)).

2.3 Preliminary

Here, we present key results crucial for establishing the existence and properties of so-

lutions to systems of type (2.1) and (2.2). We start by presenting important properties and

estimates regarding the kernel functions 𝐾𝛼
𝑡 and 𝐾𝛼 , defined in (1.17) and (1.19) respectively.

Lemma 2.9. Consider the functions 𝐾𝛼
𝑡 and 𝐾𝛼 defined by (1.17) and (1.19), respectively. Then,

1. it follows that 𝐾𝛼 ∈ 𝐶∞
0 (ℝ𝑑);
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2. 𝐾𝛼 , ∇𝐾𝛼 ∈ 𝐿𝑝(ℝ𝑑) and, for 0 < 𝑡 < ∞, 𝐾𝛼
𝑡 , ∇𝐾𝛼

𝑡 ∈ 𝐿𝑝(ℝ𝑑), for any 1 ≤ 𝑝 ≤ ∞ [58];

3. it follows that

∫
ℝ𝑑
𝐾𝛼(𝑥) d𝑥 = 1, ∫

ℝ𝑑
𝐾𝛼
𝑡 (𝑥) d𝑥 = 1, and ∫

ℝ𝑑
∇𝐾𝛼(𝑥) d𝑥 = 0;

4. for every 𝑢 ∈ 𝐿1(ℝ𝑑), it follows that

∫
ℝ𝑑
𝐾𝛼
𝑡 ∗ 𝑢(𝑥) d𝑥 = ∫

ℝ𝑑
𝑢(𝑥) d𝑥 and ∫

ℝ𝑑
∇𝐾𝛼

𝑡 ∗ 𝑢(𝑥) d𝑥 = 0.

Proof. 1. Note that 𝐾𝛼 (𝜉) = e−|2𝜋𝜉 |𝛼 ∈ 𝐿1(ℝ𝑑). Thus, from the Fourier transform, 𝐾𝛼 ∈ 𝐿∞(ℝ𝑑) ∩
𝐶(ℝ𝑑). Moreover, from the Riemann Lebesgue Lemma, ℑ (𝐿1(ℝ𝑑)) ⊂ 𝐶0(ℝ𝑑), 𝐾𝛼 ∈ 𝐿∞(ℝ𝑑) ∩
𝐶0(ℝ𝑑). In an analogous way, we have ∇𝐾𝛼 ∈ 𝐿∞(ℝ𝑑) ∩ 𝐶0(ℝ𝑑), since 2𝜋i𝜉e−|2𝜋𝜉 |𝛼 ∈ (𝐿1(ℝ𝑑))

𝑑 .
Additionally, 𝜕𝜂𝐾𝛼 ∈ 𝐿∞(ℝ𝑑) ∩ 𝐶0(ℝ𝑑), since (2𝜋𝜉)𝜂e−|2𝜋𝜉 |𝛼 ∈ 𝐿1(ℝ𝑑), where for higher-order
derivatives we use multi-index notation (see Index of Notation). Therefore, we conclude that
𝐾𝛼 ∈ 𝐶∞

0 (ℝ𝑑).

2. See [58].

3. According to the Fourier Inversion Theorem, if 𝑓 and its Fourier transform 𝑓 lie in
𝐿1(ℝ𝑑), then 𝑓 agrees almost everywhere with a continuous function 𝑓0, and (𝑓 )∨ = (𝑓 ∨)∧ = 𝑓0.
Thus, since 𝐾𝛼 and 𝐾𝛼 are in 𝐿1(ℝ𝑑), we have ∫ℝ𝑑 𝐾

𝛼(𝑥) d𝑥 = 𝐾𝛼(0) = 1.

Furthermore, for the transformation 𝑇 (𝑥) = 𝑡−1𝑥 (𝑡 > 0), we have (𝑓 ◦ 𝑇 )̂(𝜉) = 𝑡𝑑𝑓 (𝑡𝜉).
Applying this to 𝐾𝛼

𝑡 (𝑥) = 𝑡− 𝑑
𝛼𝐾𝛼 ( 𝑥

𝑡1/𝛼 ), we see that ∫ℝ𝑑 𝐾
𝛼
𝑡 (𝑥) d𝑥 = 𝐾𝛼

𝑡 (0) = 𝐾𝛼(0) = 1.

Moreover, utilizing the property (∇𝑓 )̂(𝜉) = 2𝜋𝑖𝜉𝑓 (𝜉) for 𝑓 ∈ 𝐶1(ℝ𝑑) with ∇𝑓 ∈ 𝐿1(ℝ𝑑),
we derive the final equality in 3.

4. Set 𝐹(𝑥, 𝑦) = 𝐾𝛼
𝑡 (𝑥 − 𝑦)𝑢(𝑦). Then, from Lemma 2.9.2, for a.e. 𝑦 ∈ ℝ𝑑 , we have

∫
ℝ𝑑
|𝐹(𝑥, 𝑦)|d𝑥 = |𝑢(𝑦)| ∫

ℝ𝑁
|𝐾𝛼

𝑡 (𝑥 − 𝑦)|d𝑥 = ‖𝐾𝛼
𝑡 ‖𝐿1 |𝑢(𝑦)| < ∞

and, moreover,

∫
ℝ𝑑
∫
ℝ𝑑
|𝐹(𝑥, 𝑦)|d𝑥d𝑦 = ‖𝐾𝛼

𝑡 ‖𝐿1‖𝑢‖𝐿1 < ∞,

since 𝑢 ∈ 𝐿1(ℝ𝑑). Then, from Tonelli’s theoremwe see that 𝐹 ∈ 𝐿1 (ℝ𝑑 × ℝ𝑑). Applying Fubini’s
theorem and Lemma 2.9.3, we have that

∫
ℝ𝑑
∫
ℝ𝑑
𝐾𝛼
𝑡 (𝑥 − 𝑦)𝑢(𝑥)d𝑥d𝑦 = ∫

ℝ𝑑
𝑢(𝑥)(∫ℝ𝑑

𝐾𝛼
𝑡 (𝑥 − 𝑦)d𝑥) d𝑦 = ∫

ℝ𝑑
𝑢(𝑦)d𝑦.

Similarly, we prove

∫
ℝ𝑑
∇𝐾𝛼

𝑡 ∗ 𝑣(𝑥)d𝑥 = ∫
ℝ𝑑
𝑣(𝑦)(∫ℝ𝑑

∇𝐾𝛼
𝑡 (𝑥 − 𝑦)d𝑥) d𝑦 = 0.
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Lemma 2.10. Let 1 ≤ 𝑞 ≤ 𝑝 ≤ ∞ and let 𝜑 ∈ 𝐿𝑞(ℝ𝑑). For 𝑡 > 0, we have

‖‖𝐾
𝛼
𝑡 ∗ 𝜑‖‖𝐿𝑝 ≤ 𝐶𝑡−

𝑑
𝛼 (

1
𝑞−

1
𝑝)‖𝜑‖𝐿𝑞 , (2.20)

‖‖∇𝐾
𝛼
𝑡 ∗ 𝜑‖‖𝐿𝑝 ≤ 𝐶𝑡−

𝑑
𝛼 (

1
𝑞−

1
𝑝)−

1
𝛼 ‖𝜑‖𝐿𝑞 . (2.21)

Proof. From Lemma 2.9.2, the kernel function, 𝐾𝛼(𝑥), defined in (1.19), and ∇𝐾𝛼(𝑥) lie in 𝐿𝑟(ℝ𝑑)
for any 1 ≤ 𝑟 ≤ ∞. Therefore, as 𝐾𝛼

𝑡 (𝑥) = 𝑡− 𝑑
𝛼𝐾𝛼 ( 𝑥

𝑡1/𝛼 ) for 𝑡 > 0, we have

‖𝐾𝛼
𝑡 ‖𝐿𝑟 = 𝑡−

𝑑
𝛼
(∫ℝ𝑑

||||
𝐾𝛼

(
𝑥
𝑡1/𝛼)

||||

𝑟

d𝑥)

1/𝑟

= 𝑡−
𝑑
𝛼 (1− 1

𝑟 )
(∫

ℝ𝑑
|𝐾𝛼 (𝑧)|𝑟 d𝑧)

1/𝑟

= 𝑡−
𝑑
𝛼 (1− 1

𝑟 )‖𝐾𝛼‖𝐿𝑟 .

Then, by Young’s Inequality, for 1
𝑝 + 1 = 1

𝑟 +
1
𝑞 , with 1 ≤ 𝑟 , 𝑝, 𝑞 ≤ ∞, and 𝜑 ∈ 𝐿𝑞(ℝ𝑑), we

have
‖‖𝐾

𝛼
𝑡 ∗ 𝜑‖‖𝐿𝑝 ≤ ‖‖𝐾

𝛼
𝑡
‖‖𝐿𝑟 ‖𝜑‖𝐿𝑞 ≤ 𝑡−

𝑑
𝛼 (1− 1

𝑟 )‖𝐾𝛼‖𝐿𝑟 ‖𝜑‖𝐿𝑞 ≤ 𝐶𝑡−
𝑑
𝛼 (

1
𝑞−

1
𝑝)‖𝜑‖𝐿𝑞 ,

where 𝐶 = ‖𝐾𝛼‖𝐿𝑟 . In the same way, since

∇𝐾𝛼
𝑡 (𝑥) = 𝑡−

𝑑
𝛼 (∇𝐾𝛼)(

𝑥
𝑡1/𝛼)

𝑡−1/𝛼 = 𝑡−
𝑑
𝛼−

1
𝛼 (∇𝐾𝛼)(

𝑥
𝑡1/𝛼)

,

we have ‖∇𝐾𝛼
𝑡 ‖𝐿𝑟 = 𝑡−

𝑑
𝛼 (1− 1

𝑟 )− 1
𝛼 ‖∇𝐾𝛼‖𝐿𝑟 . Then, the results follow from Young’s Inequality.

Lemma 2.11. Let 1 ≤ 𝑞 ≤ 𝑝 ≤ ∞ and 𝜑 ∈ 𝑊 𝑘,𝑞(ℝ𝑑), where 𝑘 > 0 is an integer. For 𝑡 > 0, we
have

‖‖𝐾
𝛼
𝑡 ∗ 𝜑‖‖𝑊 𝑘,𝑝 ≤ 𝐶𝑡−

𝑑
𝛼 (

1
𝑞−

1
𝑝)‖𝜑‖𝑊 𝑘,𝑞 , (2.22)

‖‖∇𝐾
𝛼
𝑡 ∗ 𝜑‖‖𝑊 𝑘,𝑝 ≤ 𝐶𝑡−

𝑑
𝛼 (

1
𝑞−

1
𝑝)−

1
𝛼 ‖𝜑‖𝑊 𝑘,𝑞 . (2.23)

In particular, for Sobolev spaces 𝐻 𝑘(ℝ𝑑), we obtain

‖𝐾𝛼
𝑡 ∗ 𝜑‖𝐻 𝑘 ≤ 𝐶‖𝜑‖𝐻 𝑘 , (2.24)

‖∇𝐾𝛼
𝑡 ∗ 𝜑‖𝐻 𝑘 ≤ 𝐶𝑡−1/𝛼‖𝜑‖𝐻 𝑘 . (2.25)

Proof. It follows from Lemma 2.10 by replacing 𝜑 with 𝐷𝜈𝜑, where 𝜈 is a multiindex.

Definition 2.12 (Weighted space 𝐿∞𝛼+𝑑(ℝ𝑑)). The space 𝐿∞𝛼+𝑑(ℝ𝑑) is a weighted 𝐿∞(ℝ𝑑) space
defined as

𝐿∞𝛼+𝑑(ℝ
𝑑) =

{
𝜑 ∈ 𝐿∞(ℝ𝑑) ∶ ‖𝜑‖𝐿∞𝛼+𝑑 ≡ ess sup

𝑥∈ℝ𝑑
(1 + |𝑥 |)𝛼+𝑑 |𝜑(𝑥)| < ∞

}
.

where 𝛼 is the order of the fractional differential operator in (2.1) or (2.2).
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Remark 2.13. In general, we can define the spaces 𝐿∞𝜗 (ℝ𝑑) for a fixed 𝜗 ≥ 0 as weighted 𝐿∞(ℝ𝑑)
spaces by replacing 𝛼 + 𝑑 with 𝜗 in the definition above.

Note that 𝐿∞𝜗 (ℝ𝑑) ⊂ 𝐿∞(ℝ𝑑) and, for 𝜗 > 𝑑/𝑝, 𝐿∞𝜗 (ℝ𝑑) ⊂ 𝐿𝑝(ℝ𝑑). Indeed, let 𝜑 ∈ 𝐿∞𝜗 (ℝ𝑑),
since 1𝜗 ≤ (1 + |𝑥 |)𝜗 and ‖𝜑‖𝐿∞ = ess sup𝑥∈ℝ𝑑 |𝜑(𝑥)|, we have ‖𝜑‖𝐿∞ ≤ ‖𝜑‖𝐿∞𝛼+𝑑 . Moreover, since

(1 + |𝑥 |)−𝜗 ∈ 𝐿𝑝(ℝ𝑑) for 𝜗 > 𝑑/𝑝, we obtain ‖𝜑‖𝐿𝑝 ≤ ‖‖(1 + | ⋅ |)−𝜗‖‖𝐿𝑝 ‖‖(1 + | ⋅ |)𝜗𝜑‖‖𝐿∞ = 𝐶 ‖𝜑‖𝐿∞𝜗 .
Therefore, we can infer that the weighted space 𝐿∞𝛼+𝑑(ℝ𝑑) ⊂ 𝐿1(ℝ𝑑) ∩ 𝐿∞(ℝ𝑑), since 𝛼 > 0.

Lemma 2.14. [11, Lemma 3.3] Let 𝜑 ∈ 𝐿∞𝛼+𝑑(ℝ𝑑) and 𝑡 > 0. There exists 𝐶 > 0 independent of 𝜑
and 𝑡 such that

‖‖𝐾
𝛼
𝑡 ∗ 𝜑‖‖𝐿∞𝛼+𝑑 ≤ 𝐶(1 + 𝑡) ‖𝜑‖𝐿∞𝛼+𝑑 , (2.26)

‖‖∇𝐾
𝛼
𝑡 ∗ 𝜑‖‖𝐿∞𝛼+𝑑 ≤ 𝐶𝑡−1/𝛼 ‖𝜑‖𝐿∞𝛼+𝑑 + 𝐶𝑡1−1/𝛼 ‖𝜑‖𝐿1 . (2.27)

Definition 2.15. We define the Banach space 𝐸𝛼+𝑑 as

𝐸𝛼+𝑑 =
{
𝜑 ∈ 𝑊 1,∞

𝑙𝑜𝑐 (ℝ
𝑑) ∶ ‖𝜑‖𝐸𝛼+𝑑 ≡ ‖𝜑‖𝐿∞𝛼+𝑑 + ‖∇𝜑‖𝐿∞𝛼+𝑑 < ∞

}
.

where 𝛼 is the order of the fractional differential operator in (2.1) or (2.2).

Lemma 2.16. [20, Lemma 3.2] Assume 𝜑 ∈ 𝐸𝛼+𝑑(ℝ𝑑) and 𝑡 > 0. There exists 𝐶 > 0 independent
of 𝜑 and 𝑡 such that

‖‖𝐾
𝛼
𝑡 ∗ 𝜑‖‖𝐸𝛼+𝑑 ≤ 𝐶(1 + 𝑡) ‖𝜑‖𝐸𝛼+𝑑 , (2.28)

‖‖∇𝐾
𝛼
𝑡 ∗ 𝜑‖‖𝐸𝛼+𝑑 ≤ 𝐶𝑡−1/𝛼 ‖𝜑‖𝐸𝛼+𝑑 + 𝐶𝑡1−1/𝛼 ‖𝜑‖𝐿1 . (2.29)

Lemma 2.17. [70, Lemma 6] Let 𝛾, 𝜗 be multi-indices, |𝜗| < |𝛾 | + 𝛼max(𝑗 , 1), 𝑗 = 0, 1, 2, … ,
1 ≤ 𝑝 ≤ ∞, and 𝛼 ∈ (0, 2]. Then,

‖𝑥𝜗𝐷𝑗
𝑡𝐷

𝛾𝐾𝛼
𝑡 ‖𝐿𝑝 = 𝐶𝑡

|𝜗|−|𝛾 |
𝛼 −𝑗− 𝑑(𝑝−1)

𝛼𝑝 (2.30)

for 𝐶 a constant depending only on 𝛼, 𝛾, 𝜗, 𝑗 , 𝑝, and the space dimension 𝑑.

Definition 2.18. Let 𝜗 ≥ 0. We define the Banach space 𝑀𝜗(ℝ𝑑) as

𝑀𝜗 =
{
𝜑 ∈ 𝑊 1,1(ℝ𝑑) ∶ ‖𝜑‖𝑀𝜗 ≡ ∫

ℝ𝑑
(|𝜑(𝑥)| + |∇𝜑(𝑥)|) (1 + |𝑥 |𝜗) d𝑥 < ∞

}
.

Lemma 2.19. Assume 𝜑 ∈ 𝑀𝜗(ℝ𝑑), with 0 ≤ 𝜗 < 𝛼, and 𝑡 > 0. There exists 𝐶 > 0 independent
of 𝜑 and 𝑡 such that

‖𝐾𝛼
𝑡 ∗ 𝜑‖𝑀𝜗 ≤ 𝐶 (1 + 𝑡𝜗/𝛼) ‖𝜑‖𝑀𝜗 , (2.31)

‖∇𝐾𝛼
𝑡 ∗ 𝜑‖𝑀𝜗 ≤ 𝐶 (𝑡−1/𝛼 + 𝑡(𝜗−1)/𝛼) ‖𝜑‖𝑀𝜗 . (2.32)

Proof. Note that (1 + |𝑥 |𝜗) ≤ 𝐶 (1 + |𝑥 − 𝑦 |𝜗) (1 + |𝑦 |𝜗) and (1 + |𝑥 |𝜗) ≤ 1 + ∑𝑑
𝑖=1 |𝑥𝑖|𝜗. More-

over, from Lemma 2.17, as 𝜗 < 𝛼, we have 𝐾𝛼
𝑡 and 𝑥𝜗𝑖 𝐾𝛼

𝑡 ∈ 𝐿1(ℝ𝑑), for 1 ≤ 𝑖 ≤ 𝑑 and 𝑡 > 0.
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Then, considering 𝜑 ∈ 𝑀𝜗(ℝ𝑑) and employing Fubini’s theorem, we have

‖𝐾𝛼
𝑡 ∗ 𝜑‖𝑀𝜗 ≤ ∫

ℝ𝑑
∫
ℝ𝑑
(1 + |𝑥 |𝜗) |𝐾𝛼

𝑡 (𝑥 − 𝑦)| (|𝜑(𝑦)| + |∇𝜑(𝑦)|) d𝑦 d𝑥

≤ 𝐶 ∫
ℝ𝑑
∫
ℝ𝑑
(1 + |𝑥 − 𝑦 |𝜗) (1 + |𝑦 |𝜗) |𝐾𝛼

𝑡 (𝑥 − 𝑦)| (|𝜑(𝑦)| + |∇𝜑(𝑦)|) d𝑦 d𝑥

≤ 𝐶‖(1 + | ⋅ |𝜗)𝐾𝛼
𝑡 ‖𝐿1‖𝜑‖𝑀𝜗

≤ 𝐶
‖‖‖‖‖(

1 +
𝑑

∑
𝑖=1

|𝑥𝑖|𝜗)
𝐾𝛼
𝑡

‖‖‖‖‖𝐿1
‖𝜑‖𝑀𝜗

≤ 𝐶
(
‖𝐾𝛼

𝑡 ‖𝐿1 +
𝑑

∑
𝑖=1

‖𝑥𝜗𝑖 𝐾
𝛼
𝑡 ‖𝐿1)

‖𝜑‖𝑀𝜗

≤ 𝐶(1 + 𝑡
𝜗
𝛼 )‖𝜑‖𝑀𝜗 ,

where the last line is due to application of Lemma 2.17 as 𝜗 < 𝛼.

Similarly, from Lemma 2.17, as 𝜗 < 𝛼 + 1, we see that ∇𝐾𝛼
𝑡 and 𝑥𝜗𝑖 ∇𝐾𝛼

𝑡 ∈ 𝐿1(ℝ𝑑) for
1 ≤ 𝑖 ≤ 𝑑 and 𝑡 > 0, and

‖∇𝐾𝛼
𝑡 ∗ 𝜑‖𝑀𝜗 ≤ 𝐶

(
‖∇𝐾𝛼

𝑡 ‖𝐿1 +
𝑑

∑
𝑖=1

‖𝑥𝜗𝑖 ∇𝐾
𝛼
𝑡 ‖𝐿1)

‖𝜑‖𝑀𝜗 ≤ 𝐶(𝑡−
1
𝛼 + 𝑡

𝜗−1
𝛼 )‖𝜑‖𝑀𝜗 .

Remark 2.20. The constraint on the value of 𝜗 in Lemma 2.19 arises from the distinctive behavior

of non-Gaussian Lévy 𝛼-stable semigroups, for 0 < 𝛼 < 2. Unlike Gaussian kernel (𝛼 = 2), which
exhibits exponential decay, these semigroups decay only at an algebraic rate, specifically |𝑥 |−𝑑−𝛼

as |𝑥 | → ∞. This difference in decay behavior explains the imposed constraint on 𝜗.

Remark 2.21. Note that, for 0 ≤ 𝜗 < 𝛼, 𝐸𝛼+𝑑(ℝ𝑑) ⊂ 𝑀𝜗(ℝ𝑑). To see this, observe that since

𝛼 + 𝑑 − 𝜗 > 𝑑, we have

‖𝜑‖𝑀𝜗 ≤ 𝐶 ∫
ℝ𝑑
(|𝜑(𝑥)| + |∇𝜑(𝑥)|) (1 + |𝑥 |)𝜗 d𝑥

≤ 𝐶 ∫
ℝ𝑑
(|𝜑(𝑥)| + |∇𝜑(𝑥)|)(1 + |𝑥 |)−𝛼−𝑑+𝜗(1 + |𝑥 |)𝛼+𝑑 d𝑥

≤ 𝐶‖𝜑‖𝐸𝛼+𝑑 ∫
ℝ𝑑
(1 + |𝑥 |)−𝛼−𝑑+𝜗 d𝑥

= 𝐶‖𝜑‖𝐸𝛼+𝑑 .

Lemma 2.22. Assume 𝑏 + 1 > 0, 𝑎 + 1 > 0. Then the following inequality holds

∫
𝑡

0
(𝑡 − 𝑠)𝑎𝑠𝑏𝑑𝑠 ≤ 𝐶𝑡𝑎+𝑏+1, for all 𝑡 > 0 (2.33)

where 𝐶 is a positive constant independent of 𝑡.

Proof. We have
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∫
𝑡

0
(𝑡 − 𝑠)𝑎𝑠𝑏𝑑𝑠 = 𝑡𝑎+𝑏 ∫

𝑡

0 (1 −
𝑠
𝑡 )

𝑎

(
𝑠
𝑡 )

𝑏
𝑑𝑠

= 𝑡𝑎+𝑏+1 ∫
1

0
(1 − 𝑧)(1+𝑎)−1 𝑧(1+𝑏)−1𝑑𝑧

=
Γ(𝑎 + 1)Γ(𝑏 + 1)
Γ(𝑎 + 𝑏 + 2)

𝑡𝑎+𝑏+1.

Lemma 2.23. Let 𝑞 and 𝑠 be positive integers such that 𝑠 > 𝑑/2 + 1, and 𝜗 ≥ 0. Consider

𝑓 , 𝑔 ∈ 𝐻 𝑠(ℝ𝑑) ∩𝑀𝜗(ℝ𝑑). Then, the following estimates hold:

‖𝑓 𝑞 − 𝑔𝑞‖𝐻 𝑠 ≤ 𝐶 (‖𝑓 ‖
𝑞−1
𝐻 𝑠 + ‖𝑔‖𝑞−1𝐻 𝑠 ) ‖𝑓 − 𝑔‖𝐻 𝑠 , (2.34)

‖𝑓 𝑞 − 𝑔𝑞‖𝑀𝜗 ≤ 𝐶 (‖𝑓 ‖
𝑞−1
𝐻 𝑠 + ‖𝑔‖𝑞−1𝐻 𝑠 ) ‖𝑓 − 𝑔‖𝑀𝜗 , (2.35)

‖𝑓 ∇Δ−1𝑓 − 𝑔∇Δ−1𝑔‖𝐻 𝑠 ≤ 𝐶 (‖𝑓 ‖𝐻 𝑠 + ‖𝑓 ‖𝑀𝜗 + ‖𝑔‖𝐻 𝑠) (‖𝑓 − 𝑔‖𝑀𝜗 + ‖𝑓 − 𝑔‖𝐻 𝑠) , (2.36)

‖𝑓 ∇Δ−1𝑓 − 𝑔∇Δ−1𝑔‖𝑀𝜗 ≤ 𝐶 (‖𝑓 ‖𝐻 𝑠 + ‖𝑓 ‖𝑀𝜗 + ‖𝑔‖𝐻 𝑠 + ‖𝑔‖𝑀𝜗) (‖𝑓 − 𝑔‖𝑀𝜗 + ‖𝑓 − 𝑔‖𝐻 𝑠) . (2.37)

Proof. Estimate (2.34) follows from writing 𝑓 𝑞 − 𝑔𝑞 = (𝑓 − 𝑔) (∑
𝑞−1
𝑗=0 𝑓 𝑞−1−𝑗𝑔 𝑗) and the fact that

𝐻 𝑠(ℝ𝑑) is an algebra when 𝑠 > 𝑑/2. For (2.35), a similar approach is adopted, using the Sobolev
embedding theorem for 𝑠 > 𝑑/2 + 1: ‖𝜑‖𝐿∞ + ‖∇𝜑‖𝐿∞ ≤ 𝐶‖𝜑‖𝐻 𝑠 , for any 𝜑 ∈ 𝐻 𝑠(ℝ𝑑). This leads to

‖𝑓 𝑞 − 𝑔𝑞‖𝑀𝜗 ≤ (‖𝑓 𝑞−1 + … + 𝑔𝑞−1‖𝐿∞ + ‖∇ (𝑓 𝑞−1 + … + 𝑔𝑞−1) ‖𝐿∞) ‖𝑓 − 𝑔‖𝑀𝜗 .

Now, consider 𝜑 ∈ 𝐻 𝑠(ℝ𝑑). By decomposing ∇Δ−1𝜑 into two parts, we find that

‖∇Δ−1𝜑‖𝐿∞ ≤ 𝐶 ess sup𝑥∈ℝ𝑑 (∫𝐵1(𝑥)
|𝜑(𝑦)|

|𝑥 − 𝑦 |𝑑−1
d𝑦 + ∫

ℝ𝑑⧵𝐵1(𝑥)

|𝜑(𝑦)|
|𝑥 − 𝑦 |𝑑−1

d𝑦) ,

leading to the estimate

‖∇Δ−1𝜑‖𝐿∞ ≤ 𝐶 (‖𝜑‖𝐿∞ + ‖𝜑‖𝐿1) , (2.38)

which further implies

‖∇Δ−1𝜑‖𝐿∞ ≤ 𝐶 (‖𝜑‖𝐻 𝑠 + ‖𝜑‖𝑀𝜗) . (2.39)

Next, since 𝑠 is an integer, using ‖𝜑‖𝐻 𝑠 = (∑|𝜁 |≤𝑠 ‖𝜕𝜁𝜑‖22)
1/2, we have for 𝜑, 𝜓 ∈ 𝐻 𝑠(ℝ𝑑)

‖𝜓∇Δ−1𝜑‖𝐻 𝑠 ≤ ∑
|𝜁 |≤𝑠

‖𝜕𝜁𝜓∇Δ−1𝜑‖𝐿2 + ∑
|𝜁+𝛾 |≤𝑠
|𝛾 |=1

‖𝜕𝜁 (𝜓𝜕𝛾 (∇Δ−1𝜑)) ‖𝐿2 = 𝐼1 + 𝐼2.

Using (2.39), we estimate 𝐼1:

𝐼1 ≤ ∑
|𝜁 |≤𝑠

‖𝜕𝜁𝜓‖𝐿2‖∇Δ−1𝜑‖𝐿∞ ≤ ∑
|𝜁 |≤𝑠

𝐶‖𝜕𝜁𝜓‖𝐿2 (‖𝜑‖𝐻 𝑠 + ‖𝜑‖𝑀𝜗) .

By the Sobolev embedding theorem and [49, Lemma A.1], we have 𝐼2 ≤ 𝐶‖𝜓‖𝐻 𝑠 ‖𝜑‖𝐻 𝑠 . Thus,

‖𝜓∇Δ−1𝜑‖𝐻 𝑠 ≤ 𝐶 (‖𝜑‖𝐻 𝑠 + ‖𝜑‖𝑀𝜗) ‖𝜓‖𝐻 𝑠 . (2.40)
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Now, to establish (2.36), we write

𝑓 ∇Δ−1𝑓 − 𝑔∇Δ−1𝑔 = (𝑓 − 𝑔)∇Δ−1𝑓 + 𝑔 (∇Δ−1𝑓 − ∇Δ−1𝑔) , (2.41)

and apply (2.40) to obtain

‖𝑓 ∇Δ−1𝑓 − 𝑔∇Δ−1𝑔‖𝐻 𝑠 ≤ 𝐶 (‖𝑓 ‖𝐻 𝑠 + ‖𝑓 ‖𝑀𝜗) ‖𝑓 − 𝑔‖𝐻 𝑠 + 𝐶 (‖𝑓 − 𝑔‖𝐻 𝑠 + ‖𝑓 − 𝑔‖𝑀𝜗) ‖𝑔‖𝐻 𝑠

≤ 𝐶 (‖𝑓 ‖𝐻 𝑠 + ‖𝑓 ‖𝑀𝜗 + ‖𝑔‖𝐻 𝑠) (‖𝑓 − 𝑔‖𝑀𝜗 + ‖𝑓 − 𝑔‖𝐻 𝑠) .

For (2.37), note that

∇ ⋅ (𝑓 ∇Δ−1𝑓 − 𝑔∇Δ−1𝑔) = (∇𝑓 ⋅ ∇Δ−1𝑓 − ∇𝑔 ⋅ ∇Δ−1𝑔) + (𝑓 2 − 𝑔2)
= ∇(𝑓 − 𝑔) ⋅ ∇Δ−1𝑓 + ∇𝑔 ⋅ ∇Δ−1 (𝑓 − 𝑔) + (𝑓 − 𝑔) (𝑓 + 𝑔) .

(2.42)

Then, by summing (2.41) and (2.42), integrating it against (1 + |𝑥 |𝜗), and applying estimate
(2.39) along with the Sobolev embedding theorem, we see that (2.37) does not exceed

‖𝑓 − 𝑔‖𝑀𝜗‖∇Δ
−1𝑓 ‖𝐿∞ + ‖𝑔‖𝑀𝜗‖∇Δ

−1(𝑓 − 𝑔)‖𝐿∞ + ‖𝑓 − 𝑔‖𝑀𝜗‖𝑓 + 𝑔‖𝐿∞

≤ 𝐶 (‖𝑓 ‖𝐻 𝑠 + ‖𝑓 ‖𝑀𝜗 + ‖𝑔‖𝐻 𝑠 + ‖𝑔‖𝑀𝜗) (‖𝑓 − 𝑔‖𝑀𝜗 + ‖𝑓 − 𝑔‖𝐻 𝑠) .

2.4 Properties of Solutions

In this section, we explore the key properties of solutions to systems (2.1) and (2.2), pro-

viding an analysis of the system’s dynamics.

Therefore, we assume that (𝜌,∇𝑐) is a mild solution to the parabolic-parabolic system

(2.1) on [0, 𝑇 ] with initial condition (𝜌0,∇𝑐0). As noted in Remark 2.3, we specify ∇𝑐 instead of

𝑐 because 𝑐 itself does not appear in the first equation of the model. For the parabolic-elliptic

system (2.2) with initial condition 𝜌0, we assume that 𝜌 is its mild solution on [0, 𝑇 ]. In this

formulation, it is sufficient to specify only 𝜌, as the variable 𝑐 does not explicitly appear in

(2.2). This is because ∇𝑐 is purely a function of 𝜌, along with 𝑥 and 𝑡 (see Remark 2.3 for

further details).

With these assumptions in place, we start by analyzing the behavior of the total number

of cells and the concentration of the chemical signal over time. Building on this, we enhance

Remark 2.1 by providing a rigorous justification for this observation. Additionally, we focus on

the study of nonnegative solutions, demonstrating that for nonnegative initial conditions, suf-
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ficiently regular solutions to the system remain nonnegative over time. This analysis ensures

that the model remains consistent with the biological phenomena it is intended to represent.

Proposition 2.24. Assume 𝑑 ≥ 2, 𝛼 ∈ (1, 2] and 𝛽 ∈ (1, 𝑑]. Let (𝜌,∇𝑐) be a mild solution to

system (2.1) on [0, 𝑇 ] with initial condition (𝜌0,∇𝑐0), where 𝜌0 ∈ 𝐿1(ℝ𝑑) and 𝜌∇𝑐, and 𝑓 (𝜌,∇𝜌) lie
in 𝐿∞([0, 𝑇 ], 𝐿1(ℝ𝑑)). Then, as long as the solution is well-defined, the following conditions hold:

(i) 𝜌(⋅, 𝑡) ∈ 𝐿1(ℝ𝑑) for every 𝑡 ∈ [0, 𝑇 ] and

∫
ℝ𝑑
𝜌(𝑥, 𝑡)d𝑥 = ∫

ℝ𝑑
𝜌0(𝑥)d𝑥 + ∫

𝑡

0
∫
ℝ𝑑
𝑓 (𝜌,∇𝜌)d𝑥d𝑠, (2.43)

or, equivalently,
d
d𝑡 ∫ℝ𝑑

𝜌(𝑥, 𝑡) d𝑥 = ∫
ℝ𝑑
𝑓 (𝜌,∇𝜌) d𝑥; (2.44)

(ii) if 𝑐0 ∈ 𝐿1(ℝ𝑑), then, 𝑐(⋅, 𝑡) ∈ 𝐿1(ℝ𝑑) for every 𝑡 ∈ [0, 𝑇 ] and

∫
ℝ𝑑
𝑐(𝑥, 𝑡)d𝑥 = 𝑒−

𝛾
𝜏 𝑡 ∫

ℝ𝑑
𝑐0(𝑥)d𝑥 + ∫

𝑡

0

1
𝜏
𝑒𝛾(

𝑠−𝑡
𝜏 ) ∫

ℝ𝑑
𝜌0(𝑥) +(∫

𝑠

0
𝑓 (𝜌,∇𝜌)d𝜍) d𝑥d𝑠 (2.45)

Remark 2.25. For 𝑓 = 0, (2.43) describes the conservation of the total number of cells, i. e.,

𝑚(𝑡) = 𝑚0, and (2.45) turns into

∫
ℝ𝑑
𝑐 (𝑥, 𝑡) d𝑥 = (∫ℝ𝑑

𝜌0(𝑥)d𝑥)(
1 − 𝑒−

𝛾
𝜏 𝑡

𝛾 ) +(∫ℝ𝑑
𝑐0(𝑥)d𝑥) 𝑒−

𝛾
𝜏 𝑡 (2.46)

and

∫
ℝ𝑑
𝑐 (𝑥, 𝑡) d𝑥 −−−−→

𝑡→∞

∫ℝ𝑑 𝜌0(𝑥)d𝑥
𝛾

, (2.47)

where, for 𝛾 = 0, the result follows by letting 𝛾 → 0.

Proof. (i) Applying Lemma 2.10 to (2.7), since 𝛼 > 1 and 𝜌∇𝑐, 𝑓 ∈ 𝐿∞([0, 𝑇 ], 𝐿1(ℝ𝑑)), we obtain

‖𝜌(⋅, 𝑡)‖𝐿1 ≤ ‖𝜌0‖𝐿1 + ∫
𝑡

0

‖‖∇𝐾
𝛼
𝑡−𝑠 ∗ [𝜌(𝑠)∇𝑐(𝑠)]‖‖𝐿1 + ‖‖𝐾

𝛼
𝑡−𝑠 ∗ 𝑓 (𝜌,∇𝜌)‖‖𝐿1 d𝑠

≤ ‖𝜌0‖𝐿1 + 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛼 ‖𝜌(𝑠)∇𝑐(𝑠)‖𝐿1 + ‖𝑓 (𝜌,∇𝜌)‖𝐿1 d𝑠

≤ ‖𝜌0‖𝐿1 + 𝐶𝑡 (𝑡
− 1
𝛼 sup
𝑡∈[0,𝑇 ]

‖(𝜌∇𝑐)(⋅, 𝑡)‖𝐿1 + sup
𝑡∈[0,𝑇 ]

‖𝑓 (𝜌,∇𝜌)‖𝐿1) .

Thus 𝜌(⋅, 𝑡) ∈ 𝐿1(ℝ𝑑) for every 𝑡 ∈ [0, 𝑇 ].

Next, integrating both sides of equation (2.7) and applying Lemma 2.9.4, since 𝜌0 ∈ 𝐿1(ℝ𝑑)
and 𝜌∇𝑐 and 𝑓 (𝜌,∇𝜌) ∈ 𝐿∞([0, 𝑇 ], 𝐿1(ℝ𝑑)), we obtain (2.43). Indeed, we establish

∫
ℝ𝑑
𝜌(𝑥, 𝑡) d𝑥 = ∫

ℝ𝑑
𝜌0(𝑥) d𝑥 + ∫

𝑡

0 (∫
ℝ𝑑
∇𝐾𝛼

𝑡−𝑠 ∗ (𝜒𝜌(𝑠)∇𝑐(𝑠)) d𝑥 + ∫
ℝ𝑑
𝐾𝛼
𝑡−𝑠 ∗ 𝑓 (𝜌,∇𝜌) d𝑥) d𝑠

= ∫
ℝ𝑑
𝜌0(𝑥) d𝑥 + ∫

𝑡

0
∫
ℝ𝑑
𝑓 (𝜌,∇𝜌) d𝑥d𝑠
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for every 𝑡 ∈ [0, 𝑇 ]. Thus, by applying the derivative in both sides of (2.43), (2.44) follows.

(ii) Note that, from equation (2.8), we can obtain the correspondent equation for 𝑐. More-
over, since from (i) we have 𝜌(⋅, 𝑡) ∈ 𝐿1(ℝ𝑑) for every 𝑡 ∈ [0, 𝑇 ], we can apply Lemma 2.9.4.
Then, proceeding the same way as before, we establish

∫
ℝ𝑑
𝑐(𝑥, 𝑡) d𝑥 = 𝑒−

𝛾
𝜏 𝑡 ∫

ℝ𝑑
𝐾𝛽

𝑡
𝜏
∗ 𝑐0(𝑥) d𝑥 + ∫

ℝ𝑑
∫

𝑡

0

1
𝜏
𝑒𝛾(

𝑠−𝑡
𝜏 )𝐾𝛽

𝑡−𝑠
𝜏
∗ 𝜌(𝑥, 𝑠) d𝑠 d𝑥

= 𝑒−
𝛾
𝜏 𝑡 ∫

ℝ𝑑
𝑐0(𝑥) d𝑥 + ∫

𝑡

0

1
𝜏
𝑒𝛾(

𝑠−𝑡
𝜏 ) ∫

ℝ𝑑
𝜌(𝑥, 𝑠) d𝑥 d𝑠

= 𝑒−
𝛾
𝜏 𝑡 ∫

ℝ𝑑
𝑐0(𝑥) d𝑥 + ∫

𝑡

0

1
𝜏
𝑒𝛾(

𝑠−𝑡
𝜏 )

(∫ℝ𝑑
𝜌0(𝑥) d𝑥 + ∫

𝑠

0
∫
ℝ𝑑
𝑓 (𝜌,∇𝜌) d𝑥d𝜍) d𝑠,

and

‖𝑐(⋅, 𝑡)‖𝐿1 ≤ 𝑒−
𝛾
𝜏 𝑡 ‖‖‖𝐾

𝛽
𝑡
𝜏
∗ 𝑐0

‖‖‖𝐿1 + ∫
𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) ‖‖‖𝐾

𝛽
𝑡−𝑠
𝜏
∗ 𝜌(𝑠)‖‖‖𝐿1 d𝑠

≤ 𝐶𝑒−
𝛾
𝜏 𝑡 ‖𝑐0‖𝐿1 + 𝐶 ∫

𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡)‖𝜌(𝑠)‖𝐿1d𝑠

≤ 𝐶𝑒−
𝛾
𝜏 𝑡 ‖𝑐0‖𝐿1 + 𝐶(

1 − 𝑒−
𝛾
𝜏 𝑡

𝛾 ) sup
𝑡∈[0,𝑇 ]

‖𝜌(⋅, 𝑡)‖𝐿1 .

Proposition 2.26. Assume 𝑑 ≥ 2, 𝛼 ∈ (1, 2] and 𝛽 ∈ (1, 𝑑]. Let 𝜌 be a mild solution to sys-

tem (2.2) on [0, 𝑇 ] with initial condition 𝜌0, where 𝜌0 ∈ 𝐿1(ℝ𝑑) and 𝜌∇𝑐, and 𝑓 (𝜌,∇𝜌) lie in

𝐿∞([0, 𝑇 ], 𝐿1(ℝ𝑑)). Then, as long as the solution is well-defined, 𝜌(⋅, 𝑡) ∈ 𝐿1(ℝ𝑑) for all 𝑡 ∈ [0, 𝑇 ]
and (2.43) and (2.44) still hold. Moreover, if 𝑐0 ∈ 𝐿1(ℝ𝑑) and 𝛾 > 0, then 𝑐(⋅, 𝑡) ∈ 𝐿1(ℝ𝑑) for all
𝑡 ∈ [0, 𝑇 ] and

∫
ℝ𝑑
𝑐(𝑥, 𝑡)d𝑥 =

∫ℝ𝑑 𝜌(𝑥, 𝑡)d𝑥
𝛾

.

Proof. The proof here is analogous to the previous one. Thus, we only show that for the case
𝛾 > 0 the following hold

∫
ℝ𝑑
𝑐(𝑥, 𝑡)d𝑥 = ∫

ℝ𝑑
∫

∞

0
𝑒−𝛾𝑠𝐾𝛽

𝑠 ∗ 𝜌(𝑥, 𝑡)d𝑠d𝑥 =
∫ℝ𝑑 𝜌(𝑥, 𝑡)d𝑥

𝛾
,

and

‖𝑐(𝑥, 𝑡)‖𝐿1 ≤ ∫
∞

0
𝑒−𝛾𝑠‖𝐾𝛽

𝑠 ∗ 𝜌(⋅, 𝑡)‖𝐿1d𝑠 =
‖𝜌(⋅, 𝑡)‖𝐿1

𝛾
.

As mentioned before, systems (2.1) and (2.2) describe the density of cells 𝜌 and the con-

centration of the chemical signal 𝑐. Therefore, given nonnegative initial densities, 𝜌0 ≥ 0 and

𝑐0 ≥ 0, it is biologically relevant to ensure that the solutions remain nonnegative over time.
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Thus, we prove that, for a nonnegative initial condition, a sufficiently regular solution remains

nonnegative. For that, consider the following lemma based on Definition A.6.

Lemma 2.27. Let 𝑤 ∈ 𝐶1 ([0, 𝑇 ], 𝑊 1,𝑝(ℝ𝑑)) and 𝑝 ≥ 2. Then we obtain that

∫
ℝ𝑑
𝑤−|𝑤−|𝑝−2𝜕𝑡𝑤d𝑥 =

1
𝑝

d
d𝑡

‖𝑤−(⋅, 𝑡)‖
𝑝
𝐿𝑝 . (2.48)

Moreover, for 𝑣 ∈ 𝑊 2,∞(ℝ𝑑), we obtain

−∫
ℝ𝑑
𝑤−|𝑤−|𝑝−2∇ ⋅ (𝑤∇𝑣) d𝑥 ≤

𝑝 − 1
𝑝

‖Δ𝑣‖𝐿∞ ‖𝑤−(⋅, 𝑡)‖
𝑝
𝐿𝑝 , (2.49)

for every 𝑡 ∈ [0, 𝑇 ].

Proof. For 𝑤 ∈ 𝐶1 ((0, 𝑇 ), 𝑊 1,𝑝(ℝ𝑑)) and 𝑝 ≥ 2, we have, in the weak sense,

𝑤−|𝑤−|𝑝−2𝜕𝑡𝑤 = 𝑤−|𝑤−|𝑝−2𝜕𝑡𝑤− =
1
𝑝
𝜕𝑡 |𝑤−|𝑝, (2.50)

and

𝑤∇ (𝑤−|𝑤−|𝑝−2) = (𝑝 − 1) (|𝑤−|𝑝−2∇𝑤−)𝑤 = (𝑝 − 1)𝑤−|𝑤−|𝑝−2∇𝑤− =
𝑝 − 1
𝑝

∇|𝑤−|𝑝. (2.51)

Then, (2.48) follows from (2.50), and assuming 𝑣 ∈ 𝑊 2,∞(ℝ𝑑), we obtain from (2.51) that

−∫
ℝ𝑑
𝑤−|𝑤−|𝑝−2∇ ⋅ (𝑤∇𝑣) d𝑥 = −

𝑝 − 1
𝑝 ∫

ℝ𝑑
|𝑤−|𝑝 ∇ ⋅ ∇𝑣d𝑥

≤
𝑝 − 1
𝑝

‖Δ𝑣‖𝐿∞ ‖𝑤−(⋅, 𝑡)‖
𝑝
𝐿𝑝 .

Proposition 2.28. Assume 𝑑 ≥ 2, 𝛼 ∈ (1, 2] and 𝛽 ∈ (1, 𝑑]. Let (𝜌,∇𝑐) be a mild solution

to system (2.1) on [0, 𝑇 ] with initial condition (𝜌0,∇𝑐0). Moreover, let 𝜌0 and 𝑐0 be nonnegative
functions, and

• 𝜌 ∈ 𝐶((0, 𝑇 ), 𝐿𝑝(ℝ𝑑)) and 𝜌(⋅, 𝑡) ∈ 𝑊 2,𝑝(ℝ𝑑) for all 𝑡 ∈ [0, 𝑇 ], where 2 ≤ 𝑝 < ∞;

• ess sup𝑡∈[0,𝑇 ] ‖Δ𝑐‖𝐿∞ < ∞;

• ‖|𝜌−|𝑝−2𝜌−𝑓 ‖𝐿𝑝 ≤ 𝐶‖𝜌−(⋅, 𝑡)‖𝐿𝑝 , for all 𝑡 ∈ [0, 𝑇 ], where 2 ≤ 𝑝 < ∞ and 𝐶 ≥ 0 is a constant;

• ∇𝑐(⋅, 𝑡) ∈ 𝑊 2⌈𝛽/2⌉−1,𝑟(ℝ𝑑) for all 𝑡 ∈ [0, 𝑇 ], where 1 < 𝑟 < ∞.

Then, 𝜌 and 𝑐 remain nonnegative as long as the solution is well-defined.

Proof. Multiplying the first equation of (2.1) by |𝜌−|𝑝−2𝜌− and integrating over ℝ𝑑 , we obtain
from (2.48), (2.49), and Lemma A.8

1
𝑝

d
d𝑡

‖𝜌−(⋅, 𝑡)‖
𝑝
𝐿𝑝 ≤

𝑝 − 1
𝑝

‖Δ𝑐(⋅, 𝑡)‖𝐿∞ ‖𝜌−(⋅, 𝑡)‖
𝑝
𝐿𝑝 + 𝐶 ‖𝜌−(⋅, 𝑡)‖

𝑝
𝐿𝑝 .
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Let 𝜂(𝑡) = ‖𝜌−(⋅, 𝑡)‖
𝑝
𝐿𝑝 and 𝜙(𝑡) = (𝑝 − 1) ‖Δ𝑐(⋅, 𝑡)‖𝐿∞+𝐶, where 𝐶 ≥ 0 is a constant. The previous

inequality becomes

𝜂′(𝑡) ≤ 𝜙(𝑡)𝜂(𝑡),

where 𝜙(𝑡) is nonnegative, summable functions on [0, 𝑇 ], since by assumption ‖Δ𝑐(⋅, 𝑡)‖𝐿∞ < ∞
for all 𝑡 ∈ [0, 𝑇 ]. Then, by Gronwall’s inequality, we obtain

𝜂(𝑡) ≤ 𝑒∫
𝑡

0 𝜙(𝑠)𝑑𝑠𝜂(0)

for all 0 ≤ 𝑡 ≤ 𝑇 . Since 𝜂(0) = 0, as 𝜌0 ≥ 0, we conclude that 𝜂 ≡ 0 on [0, 𝑇 ]. Thus, 𝜌− = 0 and,
consequently, 𝜌 ≥ 0.

Next, we multiply the second equation of (2.1) by |𝑐−|𝑟−2𝑐− and integrate over ℝ𝑑 . From
(2.48) and Lemma A.8, we obtain

1
𝑟

d
d𝑡

‖𝑐−(⋅, 𝑡)‖𝑟𝐿𝑟 ≤ ∫
ℝ𝑑
|𝑐−(𝑥, 𝑡)|𝑟−2𝑐−(𝑥, 𝑡)𝜌(𝑥, 𝑡)d𝑥 − 𝛾 ‖𝑐−(⋅, 𝑡)‖𝑟𝐿𝑟 ≤ 0,

since 𝜌 ≥ 0 implies ∫ℝ𝑑 |𝑐−(𝑥, 𝑡)|
𝑟−2𝑐−(𝑥, 𝑡)𝜌(𝑥, 𝑡)d𝑥 ≤ 0. Now, ‖𝑐−(⋅, 0)‖𝐿𝑟 = 0, since 𝑐0 ≥ 0.

Therefore, we conclude that 𝑐− = 0 and, consequently, 𝑐 ≥ 0.

Proposition 2.29. Assume 𝑑 ≥ 2, 𝛼 ∈ (1, 2] and 𝛽 ∈ (1, 𝑑]. Let 𝜌 be a mild solution to system

(2.2) on [0, 𝑇 ] with initial condition 𝜌0. Moreover, let 𝜌0 be nonnegative function, and

• 𝜌 ∈ 𝐶((0, 𝑇 ), 𝐿𝑝(ℝ𝑑)) and 𝜌(⋅, 𝑡) ∈ 𝑊 2,𝑝(ℝ𝑑) for all 𝑡 ∈ [0, 𝑇 ], where 2 ≤ 𝑝 < ∞;

• ess sup𝑡∈[0,𝑇 ] ‖Δ𝑐‖𝐿∞ < ∞;

• ‖|𝜌−|𝑝−2𝜌−𝑓 ‖𝐿𝑝 ≤ 𝐶‖𝜌−(⋅, 𝑡)‖𝐿𝑝 , for all 𝑡 ∈ [0, 𝑇 ], where 2 ≤ 𝑝 < ∞ and 𝐶 ≥ 0 is a constant.

Then, 𝜌 remains nonnegative as long as the solution is well-defined.

Proof. The result can be obtained by following the same approach as in the first part of the
previous proposition.

Next, we establish conditions on the solution 𝜌 that ensure ess sup𝑡∈[0,𝑇 ] ‖Δ𝑐‖𝐿∞ < ∞, which

is crucial for proving that the solutions remain nonnegative over time.

Proposition 2.30. Assume 𝑑 ≥ 2, 𝛼 ∈ (1, 2] and 𝛽 ∈ (1, 𝑑]. Let (𝜌,∇𝑐) be a mild solution

to system (2.1) on [0, 𝑇 ] with initial condition (𝜌0,∇𝑐0). Suppose that ∇𝑐0 ∈ 𝐿𝑞(ℝ𝑑) and 𝜌 ∈
𝐿∞([0, 𝑇 ], 𝑊 2,𝑝(ℝ𝑑)) for 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞, where 𝑝 > 𝑑/𝛽. Then, as long as the solution is

well-defined, Δ𝑐(⋅, 𝑡) ∈ 𝐿∞(ℝ𝑑) for all 𝑡 ∈ (0, 𝑇 ].
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Proof. From (2.8), we establish for 0 < 𝑡 ≤ 𝑇 that

‖Δ𝑐(⋅, 𝑡)‖𝐿∞ ≤ 𝑒−
𝛾
𝜏 𝑡 ‖‖‖∇𝐾

𝛽
𝑡
𝜏
∗ ∇𝑐0

‖‖‖𝐿∞ + ∫
𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) ‖‖‖𝐾

𝛽
𝑡−𝑠
𝜏
∗ Δ𝜌(⋅, 𝑠)‖‖‖𝐿∞ d𝑠

≤ 𝐶𝑒−
𝛾
𝜏 𝑡 𝑡−

1
𝛽(

𝑑
𝑞 +1) ‖∇𝑐0‖𝐿𝑞 + 𝐶 ∫

𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) (

𝑠 − 𝑡
𝜏 )

− 𝑑
𝛽

1
𝑝
‖Δ𝜌(⋅, 𝑠)‖𝐿𝑝d𝑠

≤ 𝐶𝑒−
𝛾
𝜏 𝑡 𝑡−

1
𝛽(

𝑑
𝑞 +1) ‖∇𝑐0‖𝐿𝑞 + 𝐶(∫

𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) (

𝑠 − 𝑡
𝜏 )

− 𝑑
𝛽

1
𝑝
d𝑠) sup

𝑡∈[0,𝑇 ]
‖𝜌(⋅, 𝑡)‖𝑊 2,𝑝 .

Then, since 𝑑
𝛽
1
𝑝 < 1, we estimate the inner integration as, for 𝛾 ≠ 0,

∫
𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) (

𝑡 − 𝑠
𝜏 )

− 𝑑
𝛽

1
𝑝
d𝑠 = 𝛾−(1−

𝑑
𝛽

1
𝑝) ∫

𝛾𝑡/𝜏

0
𝑒−𝑢𝑢(1−

𝑑
𝛽

1
𝑝)−1d𝑢

≤ 𝐶Γ(1 −
𝑑
𝛽
1
𝑝)

< ∞,

and, for 𝛾 = 0.

∫
𝑡

0

1
𝜏
(𝑡 − 𝑠)−

𝑑
𝛽

1
𝑝 d𝑠 ≤ 𝐶𝑡1−

𝑑
𝛽

1
𝑝 .

Therefore, since 𝜌 ∈ 𝐿∞([0, 𝑇 ], 𝑊 2,𝑝(ℝ𝑑)), we conclude.

Proposition 2.31. Assume 𝑑 ≥ 2, 𝛼 ∈ (1, 2] and 𝛽 ∈ (1, 𝑑]. Let 𝜌 be a mild solution to system

(2.2) on [0, 𝑇 ] with initial condition 𝜌0. Assume 𝜌 ∈ 𝐿∞([0, 𝑇 ], 𝑊 2,𝑝(ℝ𝑑)). Then, as long as the

solution is well-defined, Δ𝑐(⋅, 𝑡) ∈ 𝐿∞(ℝ𝑑) a.e. 𝑡 ∈ (0, 𝑇 ].

Proof. To prove this assertion we can apply similar steps as in the previous proposition. There-
fore, we omit the proof here.

Remark 2.32. For (2.2) with 𝛾 = 0, if the solution is such that 𝜌 ∈ 𝐿∞([0, 𝑇 ], 𝐿1(ℝ𝑑) ∩ 𝐿∞(ℝ𝑑)),
we can apply the Hardy-Littlewood-Sobolev inequality as done in Remark 1.10 to prove Proposi-

tion 2.31.
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Chapter 3

Generalized Keller-Segel model

3.1 Introduction

In this chapter, we explore the existence, uniqueness, and analytical properties of non-

negative solutions for the system (2.1) in the particular case of 𝑓 (𝜌,∇𝜌) = 0 and 𝜒 = 1. That

is, our focus is on the following generalized Keller-Segel model with nonlocal diffusion terms

in dimension 𝑑 ≥ 2
⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝜕𝑡𝜌 = −Λ𝛼𝜌 − ∇ ⋅ (𝜌∇𝑐) 𝑥 ∈ ℝ𝑑 , 𝑡 > 0, 𝛼 ∈ (1, 2]

𝜏𝜕𝑡𝑐 = −Λ𝛽𝑐 + 𝜌 − 𝛾𝑐 𝑥 ∈ ℝ𝑑 , 𝑡 > 0, 𝛽 ∈ (1, 𝑑]

𝜌(𝑡 = 0) = 𝜌0, 𝑐(𝑡 = 0) = 𝑐0 𝑥 ∈ ℝ𝑑 .

(3.1)

We consider system (3.1) in its integral form using the Duhamel principle, which involves

equation (2.7) with 𝑓 (𝜌,∇𝜌) = 0 and 𝜒 = 1, and equation (2.8). We will establish both local and

global well-posedness of mild solution (see Definition 2.5) by converting system (3.1) into a

fixed point problem in a suitable function space𝐗 for the mapping  (𝜌) ≡ 𝑢1+(𝜌, 𝜌)+(𝜌),

where 𝑢1, the bilinear operator ∶ 𝐗×𝐗 → 𝐗, and the linear operator ∶ 𝐗 → 𝐗 are defined

in (2.16), (2.17) and (2.18), respectively.

For the parabolic-elliptic case with 𝛾 = 0 (system (3.1) with 𝜏 = 0), Biler et al. [11] demon-

strated the existence of a unique local-in-time mild solution 𝜌 ∈ 𝐶([0, 𝑇 ], 𝐿𝑝(ℝ𝑑)) for arbitrary

initial condition 𝜌0 ∈ 𝐿𝑝(ℝ𝑑), where 𝑇 = 𝑇(‖𝜌0‖𝐿𝑝) and max
{

𝑑
𝛼+𝛽−2 ,

2𝑑
𝑑−𝛽−1

}
< 𝑝 ≤ 𝑑. Addition-

ally, they proved the existence of a unique global-in-time mild solution 𝜌 ∈ 𝐶([0,∞), 𝐿𝑝(ℝ𝑑))

for any initial condition 𝜌0 ∈ 𝐿𝑑/(𝛼+𝛽−2)(ℝ𝑑) provided that ‖𝜌0‖𝐿𝑑/(𝛼+𝛽−2) is sufficiently small. Fur-

thermore, in both local and global cases, Biler et al. [11] proved that the solution is nonnegative

if it is initially nonnegative 𝜌0 ≥ 0. Moreover, if 𝜌0 ∈ 𝐿1(ℝ𝑑), then the corresponding solution
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conserves mass. Their proof followed the standard contraction mapping principle discussed

in Section 2.2.1. Here, we extend this approach to address the parabolic-parabolic version of

the system. Note that the results presented by Biler et al. [11] also hold for 𝛾 > 0, as 𝛾 acts as

a damping constant.

Biler et al. [11] point out that the assumption 𝛼 > 1 allows local control of the nonlinear-

ity in the parabolic-elliptic system by the linear term. We will demonstrate that this control

extends to the parabolic-parabolic system as well. Let us point out that the main goal of Biler

et al. [11] was to prove the finite time blow-up of solutions to system (2.2) with 𝛾 = 0. We

present and discuss these results in the next chapter (Section 4.3.2.2).

3.2 Local existence of solutions

To prove the local existence of solutions to the parabolic-parabolic system (3.1) consider

the following assumptions:

(A1) the parameters of the system are such that 𝑑 ≥ 2, 𝛼 ∈ (1, 2] and 𝛽 ∈ (1, 𝑑];

(A2) parameters 𝑝 and 𝑟 satisfy

• max
{

2𝑑
𝑑+𝛽−1 ,

𝑑
𝛼+𝛽−2

}
< 𝑝 ≤ 𝑑

𝛽−1 and max
{
𝑝, 𝑝

𝑝−1 ,
𝑑

𝛼−1

}
< 𝑟 < 𝑝𝑑

𝑑−𝑝(𝛽−1) , or

• 𝑝 > 𝑑
𝛽−1 and 𝑟 > max

{
𝑝, 𝑝

𝑝−1 ,
𝑑

𝛼−1

}
,

where, in both cases, the equality 𝑟 = max
{
𝑝, 𝑝

𝑝−1

}
is possible if max

{
𝑝, 𝑝

𝑝−1

}
> 𝑑

𝛼−1 ;

(A3) the parameter ℘ satisfies

℘ ∈ [
𝑑

𝛼 − 1
, 𝑟] if 𝛼 ≤ 𝛽,

℘ = 𝑟 if 𝛼 > 𝛽;

(A4) the Banach space 𝐗 is defined as 𝐗 = 𝐶([0, 𝑇 ], 𝐿𝑝(ℝ𝑑)) with the usual norm ‖𝑢‖𝐗 =

sup𝑡∈[0,𝑇 ] ‖𝑢(𝑡)‖𝐿𝑝 .

Next, we first establish some necessary estimates.

Lemma 3.1. Assume that (A1), (A2) and (A4) are in force, and 𝑇 > 0. Then,

‖𝑢1‖𝐗 ≤ 𝐶1‖𝜌0‖𝐗, (3.2)
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where 𝑢1(⋅, 𝑡) = 𝐾𝛼
𝑡 ∗ 𝜌0 for 𝑡 > 0, with 𝐾𝛼

𝑡 given by (1.17), and 𝐶1 is a constant depending on

parameters 𝛼, 𝑝, and 𝑑.

Proof. For 0 < 𝑡 < 𝑇 , using 𝑢1 into (2.20) with 𝑞 = 𝑝 and the definition of 𝐗, the result follows
as ‖𝑢1‖𝐿𝑝 = ‖𝐾𝛼

𝑡 ∗ 𝜌0‖𝐿𝑝 ≤ 𝐶1‖𝜌0‖𝐿𝑝 .

Lemma 3.2. Assume that (A1), (A2) and (A4) are in force, and 𝑇 > 0. Then,

‖(𝑢, 𝑣)‖𝐗 ≤ 𝐶2𝑇 1− 1
𝛼 ( 𝑑𝑟 +1) ‖𝑢‖𝐗 ‖𝑣‖𝐗 for 𝛾 ≠ 0, (3.3)

and

‖(𝑢, 𝑣)‖𝐗 ≤ 𝐶2𝑇
2− 1

𝛼 ( 𝑑𝑟 +1)− 𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽 ‖𝑢‖𝐗 ‖𝑣‖𝐗 for 𝛾 = 0, (3.4)

where  is given by (2.17) with 𝑓 (𝜌,∇𝜌) = 0 and 𝜒 = 1, and 𝐶2 is a constant depending on

parameters 𝛼, 𝛽, 𝑝, 𝑟 , and 𝑑.

Proof. Let 1 ≤ 𝑞 ≤ 𝑝 ≤ 𝑟 ≤ ∞ be such that 1/𝑞 = 1/𝑝 + 1/𝑟. For 0 < 𝑡 < 𝑇 , applying estimate
(2.21) and the definition of 𝐗 into (2.17), we have

‖(𝑢, 𝑣)‖𝐿𝑝 ≤ ∫
𝑡

0

‖‖‖‖
∇𝐾𝛼

𝑡−𝑠 ∗ [𝑢(𝑠)∫
𝑠

0

1
𝜏
𝑒𝛾(

𝑤−𝑠
𝜏 )∇𝐾𝛽

𝑠−𝑤
𝜏
∗ 𝑣(𝑤)d𝑤]

‖‖‖‖𝐿𝑝
d𝑠

≤ 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞−

1
𝑝)−

1
𝛼
‖‖‖‖
𝑢(𝑠)∫

𝑠

0

1
𝜏
𝑒𝛾(

𝑤−𝑠
𝜏 )∇𝐾𝛽

𝑠−𝑤
𝜏
∗ 𝑣(𝑤)d𝑤

‖‖‖‖𝐿𝑞
d𝑠

≤ 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞−

1
𝑝)−

1
𝛼 ‖𝑢(𝑠)‖𝐿𝑝

‖‖‖‖∫
𝑠

0

1
𝜏
𝑒𝛾(

𝑤−𝑠
𝜏 )∇𝐾𝛽

𝑠−𝑤
𝜏
∗ 𝑣(𝑤)d𝑤

‖‖‖‖𝐿𝑟
d𝑠

≤ 𝐶
(∫

𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞−

1
𝑝)−

1
𝛼

(∫
𝑠

0

1
𝜏
𝑒
𝛾
𝜏 (𝑤−𝑠) (

𝑠 − 𝑤
𝜏 )

− 𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽
d𝑤

)
d𝑠
)
‖𝑢‖𝐗 ‖𝑣‖𝐗.

Then, for 𝛾 ≠ 0, provided that 𝑑
𝛽 (

1
𝑝 −

1
𝑟)+ 1

𝛽 < 1, which, from Lemma B.3, is fulfilled, the
inner integral above is bounded, since

∫
𝑠

0

1
𝜏
𝑒
𝛾
𝜏 (𝑤−𝑠) (

𝑠 − 𝑤
𝜏 )

− 𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽
d𝑤 = 𝛾−(1−

𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽) ∫

𝛾𝑠/𝜏

0
𝑒−𝑢𝑢(1−

𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽)−1d𝑢

≤ 𝐶Γ(1 −
𝑑
𝛽 (

1
𝑝
−
1
𝑟)

−
1
𝛽)

< ∞.

Thus,

∫
𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞−

1
𝑝)−

1
𝛼

(∫
𝑠

0

1
𝜏
𝑒
𝛾
𝜏 (𝑤−𝑠) (

𝑠 − 𝑤
𝜏 )

− 𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽
d𝑤

)
d𝑠 ≤ 𝐶 ∫

𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞−

1
𝑝)−

1
𝛼 d𝑠

≤ 𝐶𝑇 1− 1
𝛼 ( 𝑑𝑟 +1),

since 1
𝛼 (

𝑑
𝑟 + 1) < 1 again from Lemma B.3. Therefore, estimate (3.3) holds.

Now, considering the case 𝛾 = 0, we estimate the inner integration as

∫
𝑠

0

1
𝜏
(𝑠 − 𝑤)−

𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽 d𝑤 ≤ 𝐶𝑠1−

𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽 ,
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since 𝑑
𝛽 (

1
𝑝 −

1
𝑟) + 1

𝛽 < 1. Then, applying (2.33), we get

∫
𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞−

1
𝑝)−

1
𝛼

(∫
𝑠

0

1
𝜏 (

𝑠 − 𝑤
𝜏 )

− 𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽
d𝑤

)
d𝑠 ≤ 𝐶 ∫

𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞−

1
𝑝)−

1
𝛼 𝑠1−

𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽 d𝑠

= 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛼 ( 𝑑𝑟 +1)𝑠1−

𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽 d𝑠

≤ 𝐶𝑡−
1
𝛼 ( 𝑑𝑟 +1)− 𝑑

𝛽(
1
𝑝−

1
𝑟 )−

1
𝛽+2,

since 1
𝛼 (

𝑑
𝑟 + 1) < 1 and 𝑑

𝛽 (
1
𝑝 −

1
𝑟) + 1

𝛽 < 2. Hence, we obtain estimate (3.4).

Lemma 3.3. Assume that (A1), (A2), (A3) and (A4) are in force, and 𝑇 > 0. Then,

‖(𝑢)‖𝐗 ≤ 𝐶3𝑇 1− 1
𝛼 ( 𝑑𝑟 +1)− 𝑑

𝛽 ( 1
℘−

1
𝑟 ) ‖∇𝑐0‖𝐿℘ ‖𝑢‖𝐗 , (3.5)

where  is given by (2.18) and 𝐶3 is a constant depending on parameters 𝛼, 𝛽, 𝑝, 𝑟 , ℘, and 𝑑.

Proof. Let 1 ≤ 𝑞 ≤ 𝑝 ≤ 𝑟 ≤ ∞ be such that 1/𝑞 = 1/𝑝 + 1/𝑟. For 0 < 𝑡 < 𝑇 , applying estimates
(2.20) and (2.21), and the definition of 𝐗 into (2.18) as 1 ≤ ℘ ≤ 𝑟 , we have

‖(𝑢)‖𝐿𝑝 ≤ ∫
𝑡

0

‖‖‖∇𝐾
𝛼
𝑡−𝑠 ∗ [𝑢(𝑠)𝑒

− 𝛾
𝜏 𝑠𝐾𝛽

𝑠
𝜏
∗ ∇𝑐0(𝑥)]

‖‖‖𝐿𝑝
d𝑠

≤ 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞−

1
𝑝)−

1
𝛼 ‖‖‖𝑢(𝑠)𝑒

− 𝛾
𝜏 𝑠𝐾𝛽

𝑠
𝜏
∗ ∇𝑐0(𝑥)

‖‖‖𝐿𝑞 d𝑠

≤ 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞−

1
𝑝)−

1
𝛼 ‖𝑢(𝑠)‖𝐿𝑝

‖‖‖𝑒
− 𝛾
𝜏 𝑠𝐾𝛽

𝑠
𝜏
∗ ∇𝑐0(𝑥)

‖‖‖𝐿𝑟 d𝑠

≤ 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞−

1
𝑝)−

1
𝛼 ‖𝑢(𝑠)‖𝐿𝑝 𝑒

− 𝛾
𝜏 𝑠 (

𝑠
𝜏)

− 𝑑
𝛽 ( 1

℘−
1
𝑟 )
‖∇𝑐0‖𝐿℘ d𝑠

≤ 𝐶(∫
𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞−

1
𝑝)−

1
𝛼 𝑒−

𝛾
𝜏 𝑠 (

𝑠
𝜏)

− 𝑑
𝛽 ( 1

℘−
1
𝑟 )
d𝑠) ‖∇𝑐0‖𝐿℘ ‖𝑢‖𝐗 .

Now, applying (2.33) to estimate the above integration, we obtain

∫
𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞−

1
𝑝)−

1
𝛼 𝑒−

𝛾
𝜏 𝑠 (

𝑠
𝜏)

− 𝑑
𝛽 ( 1

℘−
1
𝑟 )
d𝑠 ≤ 𝐶 ∫

𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞−

1
𝑝)−

1
𝛼 𝑠−

𝑑
𝛽 ( 1

℘−
1
𝑟 )d𝑠

≤ 𝐶𝑡1−
1
𝛼 ( 𝑑𝑟 +1)− 𝑑

𝛽 ( 1
℘−

1
𝑟 )

for 1
𝛼 (

𝑑
𝑟 + 1) < 1 and 𝑑

𝛽 (
1
℘ − 1

𝑟) < 1, which, from Lemma B.6, are fulfilled. Moreover,

∫
𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞−

1
𝑝)−

1
𝛼 𝑒−

𝛾
𝜏 𝑠 (

𝑠
𝜏)

− 𝑑
𝛽 ( 1

℘−
1
𝑟 )
d𝑠 ≤ 𝐶𝑇 1− 1

𝛼 ( 𝑑𝑟 +1)− 𝑑
𝛽 ( 1

℘−
1
𝑟 )

provided that 1
𝛼 (

𝑑
𝑟 + 1)+ 𝑑

𝛽 (
1
℘ − 1

𝑟) ≤ 1, which, again from Lemma B.6, is satisfied. Therefore,
(3.5) holds.

Theorem 3.4 (Local existence of solutions). Assume that (A1), (A2) and (A4) are in force.
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Case (a): Then, for every initial condition 𝜌0 ∈ 𝐿1(ℝ𝑑) ∩ 𝐿𝑝(ℝ𝑑) and ∇𝑐0 ∈ 𝐿𝑟(ℝ𝑑), there exist
𝑇 = 𝑇 (‖𝜌0‖𝐿𝑝 , ‖∇𝑐0‖𝐿𝑟 ) and a unique local mild solution (𝜌, 𝑐) to system (3.1) in [0, 𝑇 ], such that

𝜌 ∈ 𝐶([0, 𝑇 ], 𝐿𝑝(ℝ𝑑)), ∇𝑐 ∈ 𝐶([0, 𝑇 ], 𝐿𝑟(ℝ𝑑)), and

sup
𝑡∈[0,𝑇 ]

𝑡1−
1
𝛼 ( 𝑑𝑟 +1) ‖∇𝑐(⋅, 𝑡)‖𝐿𝑟 < 𝐶 (𝑇 , ‖𝜌0‖𝐿𝑝 , ‖∇𝑐0‖𝐿𝑟 ) . (3.6)

Moreover,

(i) 𝜌 ∈ 𝐿∞ ((0, 𝑇 ); 𝐿1(ℝ𝑑) ∩ 𝐿𝑝(ℝ𝑑)), with

‖𝜌(⋅, 𝑡)‖𝐿𝑝 ≤ 𝐶‖𝜌0‖𝐿𝑝 , (3.7)

and the total mass is conserved;

(ii) 𝜌 ∈ 𝐿1 ((0, 𝑇 ); 𝐿𝑞(ℝ𝑑)) for all 1 ≤ 𝑞 ≤ 𝑝;

(iii) if 𝑐0 ∈ 𝑊 1,𝑟(ℝ𝑑), then 𝑐 ∈ 𝐶([0, 𝑇 ] , 𝑊 1,𝑟(ℝ𝑑)), and

sup
𝑡∈[0,𝑇 ]

𝑡1−
1
𝛼 ( 𝑑𝑟 +1) ‖𝑐(⋅, 𝑡)‖𝐿𝑟 < 𝐶 (𝑇 , ‖𝜌0‖𝐿𝑝 , ‖𝑐0‖𝐿𝑞 ) ; (3.8)

(iv) if ∫ℝ𝑑 𝑐0(𝑥)d𝑥 < ∞, the chemical concentration, 𝑐, grows as (2.46) and (2.47), that is,

∫
ℝ𝑑
𝑐 (𝑥, 𝑡) d𝑥 = (∫ℝ𝑑

𝜌0(𝑥)d𝑥)(
1 − 𝑒−

𝛾
𝜏 𝑡

𝛾 ) +(∫ℝ𝑑
𝑐0(𝑥)d𝑥) 𝑒−

𝛾
𝜏 𝑡

and

∫
ℝ𝑑
𝑐 (𝑥, 𝑡) d𝑥 −−−−→

𝑡→∞

∫ℝ𝑑 𝜌0(𝑥)d𝑥
𝛾

,

which include 𝛾 = 0 by taking 𝛾 → 0.

Assume 𝛽 ∈ (1, 2]. We also obtain

(v) 𝜌 ∈ 𝐿1 ((0, 𝑇 ); 𝐿𝑞(ℝ𝑑)) for all 𝑞 ≥ 1, and 𝜌 ∈ 𝐿∞loc ((0, 𝑇 ]; 𝐿𝑞(ℝ𝑑))for all 𝑞 > 𝑝.

(vi) ∇𝑐 ∈ 𝐶([0, 𝑇 ], 𝐿𝑞(ℝ𝑑)) for 𝑞 > 𝑑
𝛼−1 , and

sup
𝑡∈[0,𝑇 ]

𝑡1−
1
𝛼 (

𝑑
𝑞 +1) ‖∇𝑐(⋅, 𝑡)‖𝐿𝑞 < 𝐶 (𝑇 , ‖𝜌0‖𝐿𝑝 , ‖∇𝑐0‖𝐿𝑟 ) . (3.9)

Case (b): Let 𝛼 ≤ 𝛽 and the initial condition be such that 𝜌0 ∈ 𝐿1(ℝ𝑑)∩𝐿𝑝(ℝ𝑑) and ∇𝑐0 ∈ 𝐿℘(ℝ𝑑),
where

℘ ∈ [
𝑑

𝛼 − 1
, 𝑟) , (3.10)

and
1
𝛼 (

𝑑
𝑟
+ 1) +

𝑑
𝛽 (

1
℘

−
1
𝑟)

= 1. (3.11)
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Then, there exist 𝜖 > 0 and 𝑇 = 𝑇 (‖𝜌0‖𝐿𝑝 , ‖∇𝑐0‖𝐿℘ , 𝜖) such that, if ‖∇𝑐0‖𝐿℘ < 𝜖, there exists a unique
local mild solution (𝜌,∇𝑐) to system (3.1), with 𝜌 ∈ 𝐶([0, 𝑇 ], 𝐿𝑝(ℝ𝑑)) and ∇𝑐 ∈ 𝐶([0, 𝑇 ], 𝐿𝑟(ℝ𝑑)).
Moreover,

sup
𝑡∈[0,𝑇 ]

𝑡1−
1
𝛼 ( 𝑑𝑟 +1) ‖∇𝑐(⋅, 𝑡)‖𝐿𝑟 < 𝐶 (𝑇 , ‖𝜌0‖𝐿𝑝 , ‖∇𝑐0‖𝐿℘) , (3.12)

and (i), (ii), (iii), (iv), and (v) are still satisfied. Additionally, (vi) is also satisfied by replacing
‖∇𝑐0‖𝐿𝑟 with ‖∇𝑐0‖𝐿℘ in (3.9). On the other hand, if ℘ satisfies

1
𝛼 (

𝑑
𝑟
+ 1) +

𝑑
𝛽 (

1
℘

−
1
𝑟)

< 1, (3.13)

the smallness condition on ‖∇𝑐0‖𝐿℘ is not necessary, and 𝑇 = 𝑇 (‖𝜌0‖𝐿𝑝 , ‖∇𝑐0‖𝐿℘).

Remark 3.5. Assumption (A3) was not explicitly mentioned in Theorem 3.4, as it is incorporated

into the theorem through its cases. Note that, in case (a),℘ is equal to 𝑟 , since no restrictions on the
relationship between 𝛼 and 𝛽 are imposed. In case (b), where 𝛼 ≤ 𝛽,℘ is given by (3.10), as℘ = 𝑟
is already addressed in case (a). Furthermore, the constraints imposed on ℘ that divided case (b)

into two parts, specified in (3.11) and (3.13), are satisfied by ℘ when (A3) is in force (Lemma B.6).

Remark 3.6. For 𝑑 ≥ 3 and 𝛼 = 𝛽 = 2, Theorem 3.4 recovers and extends the result established

by Corrias et al. [30]. Specifically, in Theorem 2.1, Corrias et al. [30] established the existence of a

local solution for the classical parabolic-parabolic Keller-Segel model with initial data 𝜌0 ∈ 𝐿𝑝(ℝ𝑑)
and ∇𝑐0 ∈ 𝐿℘(ℝ𝑑) such that 𝑝 > 𝑑/2, and ℘ = 𝑑. In contrast, in Theorem 3.4 ℘ can vary within

the range [𝑑, 𝑟], where 𝑟 satisfies 𝑑 < 𝑟 < 𝑝𝑞
𝑑−𝑝 for 𝑝 ∈ ( 𝑑2 , 𝑑), or 𝑟 > 𝑝 for 𝑝 > 𝑑.

Proof. We establish the existence and uniqueness of local solution to system (3.1) by applying
the fixed point theorem through Corollary 2.7. Specifically, we construct the unique mild solu-
tion, with 𝑢1,, and  as described in Section 2.2.1, in the Banach space 𝐗 = 𝐶([0, 𝑇 ], 𝐿𝑝(ℝ𝑑))
equipped with the usual norm, and show that the hypotheses of Corollary 2.7 are satisfied.

From Lemmas 3.2 and 3.3, we can set the constants 𝐶 = 𝐶2𝑇 𝜗2 and 𝐶 = 𝐶3 ‖∇𝑐0‖𝐿𝑞 𝑇 𝜗1 ,
respectively, where 𝑞 = 𝑟 for case (a) and 𝑞 = ℘ for case (b), 𝐶2 and 𝐶3 are constants depending
on 𝛼, 𝛽, 𝑞, 𝑟 and 𝑝, 𝑇 > 0, and 𝜗2 ≥ 𝜗1 ≥ 0. Additionally, if condition (3.11) is satisfied, then
𝜗2 > 0 and 𝜗1 = 0; otherwise, 𝜗2 ≥ 𝜗1 > 0.

Next, let 𝛿 > 0 be such that 𝛿 = 𝐶1‖𝜌0‖𝐗. From Lemma 3.1, this implies that ‖𝑢1‖𝐗 ≤
𝐶1‖𝜌0‖𝐗 = 𝛿. Thus, to fall into the hypotheses of Corollary 2.7, 𝐹(𝑇 ) defined as

𝐹(𝑇 ) =
1 − 2𝐶

4𝐶
=

1 − 2𝐶3 ‖∇𝑐0‖𝐿𝑞 𝑇 𝜗1

4𝐶2𝑇 𝜗2

must satisfy 𝛿 < 𝐹(𝑇 ), i. e., 𝐹(𝑇 ) > 𝐶1‖𝜌0‖𝐿𝑝 . Note first that, since it is required that 𝐹(𝑇 ) > 0,
for 𝜗1 > 0 we have

𝑇 < 𝑇0 ≡ (
1

2𝐶3 ‖∇𝑐0‖𝐿𝑞 )

1/𝜗1

.
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Alternatively, for 𝜗1 = 0, 𝐹(𝑇 ) > 0 implies that 1 − 2𝐶3 ‖∇𝑐0‖𝐿𝑞 > 0. Then, it must exist 𝜖 > 0
such that this condition is met if ‖∇𝑐0‖𝐿𝑞 < 𝜖. In that case, 𝑇0 = ∞. In addition, since 𝑇 > 0,
𝐹(𝑇 ) is a continuous function on 𝑇 and, as

lim
𝑇→0

𝐹(𝑇 ) = ∞ and lim
𝑇→𝑇0

𝐹(𝑇 ) = 0,

by the intermediate value theorem, for any nontrivial 𝜌0 ∈ 𝐿𝑝(ℝ𝑑)there is 𝑇 ∗ ∈ (0, 𝑇0) such that
𝐹(𝑇 ∗) > 𝐶1‖𝜌0‖𝐿𝑝 . Hence, choosing this value of 𝑇 , we prove the local existence of solutions by
applying Corollary 2.7. Notice that 𝑇 ∗ depends on the values of ‖𝜌0‖𝐿𝑝 and ‖∇𝑐0‖𝐿𝑞 . Moreover, as
a conclusion of Corollary 2.7, we obtain (3.7). Then, as 𝜌 is given by (2.7), 𝜌 ∈ 𝐶([0, 𝑇 ], 𝐿𝑝(ℝ𝑑))
(renaming 𝑇 ∗ by 𝑇 ).

Throughout this proof, consider the parameter ℘, where ∇𝑐0 ∈ 𝐿℘(ℝ𝑑), such that ℘ ≤ 𝑟 ,
with 𝑟 defined as in (A2). Note that for any 𝛼 and 𝛽, setting℘ = 𝑟 places us in case (a), whereas
case (b) corresponds to ℘ ∈ [𝑑/(𝛼 − 1), 𝑟) for 𝛼 ≤ 𝛽.

To prove the estimate of ∇𝑐, that is, (3.6) for case (a), and (3.12) for case (b), we consider
integral formulation (2.8). Then,

‖∇𝑐(⋅, 𝑡)‖𝐿𝑟 ≤ 𝑒−
𝛾
𝜏 𝑡 ‖‖‖𝐾

𝛽
𝑡
𝜏
∗ ∇𝑐0

‖‖‖𝐿𝑟 + ∫
𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) ‖‖‖∇𝐾

𝛽
𝑡−𝑠
𝜏
∗ 𝜌(𝑠)‖‖‖𝐿𝑟 d𝑠, (3.14)

and applying (2.20) and (2.21) to (3.14), we get

‖∇𝑐(⋅, 𝑡)‖𝐿𝑟 ≤ 𝐶𝑒−
𝛾
𝜏 𝑡 (

𝑡
𝜏)

− 𝑑
𝛽 ( 1

℘−
1
𝑟 )
‖∇𝑐0‖𝐿℘ + 𝐶 ∫

𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) (

𝑡 − 𝑠
𝜏 )

− 𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽
‖𝜌(𝑠)‖𝐿𝑝d𝑠

≤ 𝐶𝑒−
𝛾
𝜏 𝑡 (

𝑡
𝜏)

− 𝑑
𝛽 ( 1

℘−
1
𝑟 )
‖∇𝑐0‖𝐿℘ + 𝐶

(∫
𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) (

𝑡 − 𝑠
𝜏 )

− 𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽
d𝑠
)
‖𝜌‖𝐗 .

Notice that hypothesis (A2) implies 𝑑
𝛽 (

1
𝑝 −

1
𝑟) < 1. Hence if 𝛾 > 0, the integral in the last

term above satisfies

∫
𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) (

𝑡 − 𝑠
𝜏 )

− 𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽
d𝑠 ≤ 𝐶Γ(1 −

𝑑
𝛽 (

1
𝑝
−
1
𝑟)

−
1
𝛽)

< ∞,

and we obtain ‖∇𝑐(⋅, 𝑡)‖𝐿𝑟 ≤ 𝐶𝑡−
𝑑
𝛽 ( 1

℘−
1
𝑟 ) ‖∇𝑐0‖𝐿℘ + 𝐶 ‖𝜌‖𝐗. Therefore,

𝑡1−
1
𝛼 ( 𝑑𝑟 +1)‖∇𝑐(⋅, 𝑡)‖𝐿𝑟 ≤ 𝐶𝑡1−

1
𝛼 ( 𝑑𝑟 +1)− 𝑑

𝛽 ( 1
℘−

1
𝑟 ) ‖∇𝑐0‖𝐿℘ + 𝐶𝑡1−

1
𝛼 ( 𝑑𝑟 +1) ‖𝜌‖𝐗

≤ 𝐶𝑇 1− 1
𝛼 ( 𝑑𝑟 +1)− 𝑑

𝛽 ( 1
℘−

1
𝑟 ) ‖∇𝑐0‖𝐿℘ + 2𝐶𝑇 1− 1

𝛼 ( 𝑑𝑟 +1)‖𝜌0‖𝐿𝑝

< 𝐶 (𝑇 , ‖𝜌0‖𝐿𝑝 , ‖∇𝑐0‖𝐿℘) ,

since 1
𝛼 (

𝑑
𝑟 + 1) + 𝑑

𝛽 (
1
℘ − 1

𝑟) ≤ 1, which follows from the definition of 𝑟 and by setting ℘ = 𝑟
(case (a)) or ℘ ∈ [𝑑/(𝛼 − 1), 𝑟) (case (b)). On the other hand, if 𝛾 = 0, we have

∫
𝑡

0

1
𝜏
(𝑡 − 𝑠)−

𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽 d𝑠 ≤ 𝐶𝑡1−

𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽 ,
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and, consequently, ‖∇𝑐(⋅, 𝑡)‖𝐿𝑟 ≤ 𝐶𝑡−
𝑑
𝛽 ( 1

℘−
1
𝑟 ) ‖∇𝑐0‖𝐿℘ + 𝐶𝑡1−

𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽 ‖𝜌‖𝐗. Therefore, again we

obtain

𝑡1−
1
𝛼 ( 𝑑𝑟 +1)‖∇𝑐(⋅, 𝑡)‖𝐿𝑟 ≤ 𝐶𝑡1−

1
𝛼 ( 𝑑𝑟 +1)− 𝑑

𝛽 ( 1
℘−

1
𝑟 ) ‖∇𝑐0‖𝐿℘ + 𝐶𝑡2−

1
𝛼 ( 𝑑𝑟 +1)− 𝑑

𝛽(
1
𝑝−

1
𝑟 )−

1
𝛽 ‖𝜌‖𝐗

≤ 𝐶𝑇 1− 1
𝛼 ( 𝑑𝑟 +1)− 𝑑

𝛽 ( 1
℘−

1
𝑟 ) ‖∇𝑐0‖𝐿℘ + 𝐶𝑇 2− 1

𝛼 ( 𝑑𝑟 +1)− 𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽 ‖𝜌‖𝐗

≤ 𝐶𝑇 1− 1
𝛼 ( 𝑑𝑟 +1)− 𝑑

𝛽 ( 1
℘−

1
𝑟 ) ‖∇𝑐0‖𝐿℘ + 2𝐶𝑇 2− 1

𝛼 ( 𝑑𝑟 +1)− 𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽 ‖𝜌0‖𝐿𝑝

< 𝐶 (𝑇 , ‖𝜌0‖𝐿𝑝 , ‖∇𝑐0‖𝐿℘) ,

since 1
𝛼 (

𝑑
𝑟 + 1)+ 𝑑

𝛽 (
1
℘ − 1

𝑟) ≤ 1. Thus, considering℘ = 𝑟 or℘ as defined in (3.10), the estimate
(3.6) and (3.12), respectively, hold.

Proof of (i): Applying Lemma 2.10 to (2.7) for 𝑡 > 0 and 1 ≤ (
𝑟

𝑝+𝑟) 𝑝 ≤ 𝑝1 < 𝑝, we obtain

‖𝜌(𝑡)‖𝐿𝑝1 ≤ ‖𝐾𝛼
𝑡 ∗ 𝜌0‖𝐿𝑝1 +

‖‖‖‖∫
𝑡

0
∇𝐾𝛼

𝑡−𝑠 ∗ [𝜌(𝑠)∇𝑐(𝑠)] d𝑠
‖‖‖‖𝐿𝑝1

≤ ‖𝜌0‖𝐿𝑝1 + ∫
𝑡

0

‖‖∇𝐾
𝛼
𝑡−𝑠 ∗ [𝜌(𝑠)∇𝑐(𝑠)]‖‖𝐿𝑝1 d𝑠

≤ ‖𝜌0‖𝐿𝑝1 + 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑝+

1
𝑟 −

1
𝑝1 )−

1
𝛼 ‖𝜌(𝑠)‖𝐿𝑝 ‖∇𝑐(𝑠)‖𝐿𝑟 d𝑠.

(3.15)

Since 𝑑
𝛼 (

1
𝑝 +

1
𝑟 −

1
𝑝1)+

1
𝛼 < 1, 1

𝛼 (
𝑑
𝑟 + 1) > 0 and 𝑑

𝛼 (
1
𝑝1
− 1

𝑝) > 0, we can apply Lemma 2.22
and use estimate (3.6) for case (a) and (3.12) for case (b) to obtain

∫
𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑝+

1
𝑟 −

1
𝑝1 )−

1
𝛼 ‖𝜌(𝑠)‖𝐿𝑝 ‖∇𝑐(𝑠)‖𝐿𝑟 d𝑠

≤ ∫
𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑝+

1
𝑟 −

1
𝑝1 )−

1
𝛼 𝑠−1+

1
𝛼 ( 𝑑𝑟 +1) ‖𝜌(𝑠)‖𝐿𝑝 𝑠

1− 1
𝛼 ( 𝑑𝑟 +1) ‖∇𝑐(𝑠)‖𝐿𝑟 d𝑠

≤ 𝐶(∫
𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑝+

1
𝑟 −

1
𝑝1 )−

1
𝛼 𝑠−1+

1
𝛼 ( 𝑑𝑟 +1)d𝑠) ‖𝜌0‖𝐿𝑝 (‖𝜌0‖𝐿𝑝 + ‖∇𝑐0‖𝐿℘)

≤ 𝐶𝑇
𝑑
𝛼 (

1
𝑝1
− 1
𝑝) ‖𝜌0‖𝐿𝑝 (‖𝜌0‖𝐿𝑝 + ‖∇𝑐0‖𝐿℘) ,

where ℘ = 𝑟 for case (a), ℘ is in the range defined by (3.10) for case (b), and the constant 𝐶
depends on 𝑇 . Thus, from (3.15), we have

‖𝜌(𝑡)‖𝐿𝑝1 < 𝐶 (𝑇 , ‖𝜌0‖𝐿𝑝 , ‖𝜌0‖𝐿𝑝1 , ‖∇𝑐0‖𝐿℘) . (3.16)

Note that if 1/𝑝 + 1/𝑟 = 1, we can take 𝑝1 = 1. Otherwise, we have 1/𝑝 + 1/𝑟 < 1,
and we can recalculate (3.15) using the new information stated in (3.16). Specifically, we can
recalculate (3.15) for 𝑝2 ≥ 1 such that (

𝑟
𝑝1+𝑟) 𝑝1 ≤ 𝑝2 < 𝑝1 using (3.16), and continue iteratively

for 𝑝𝑛 ≥ 1 such that (
𝑟

𝑝𝑛−1+𝑟) 𝑝𝑛−1 ≤ 𝑝𝑛 < 𝑝𝑛−1, using

‖𝜌(𝑡)‖𝐿𝑝𝑛 < 𝐶 (𝑇 , ‖𝜌0‖𝐿𝑝 , ‖𝜌0‖𝐿𝑝1 , ‖𝜌0‖𝐿𝑝2 , ⋯ , ‖𝜌0‖𝐿𝑝𝑛 , ‖∇𝑐0‖𝐿℘) ,
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until (
𝑟

𝑝𝑛+𝑟) 𝑝𝑛 ≤ 1, at which point we can choose 𝑝𝑛+1 = 1. Therefore, we conclude that
𝜌 ∈ 𝐿∞ ((0, 𝑇 ); 𝐿1 ∩ 𝐿𝑝).

Next, to prove the mass conservation, we can apply Proposition 2.24 since (𝜌∇𝑐)(⋅, 𝑡) ∈ 𝐿1.
Indeed, with the above calculation, we can choose 𝑝1 so that 𝜌 ∈ 𝐿𝑝1 and 1/𝑝1+1/𝑟 = 1. Then,
‖(𝜌∇𝑐)(⋅, 𝑡)‖𝐿1 ≤ 𝐶 ‖𝜌(⋅, 𝑡)‖𝐿𝑝1 ‖∇𝑐(⋅, 𝑡)‖𝐿𝑟 < ∞, and we establish that ∫ℝ𝑑 𝜌(𝑥, 𝑡)d𝑥 = ∫ℝ𝑑 𝜌0(𝑥)d𝑥
for every 𝑡 ≥ 0 where the solution exists. Therefore, we conclude (i).

Proof of (ii): It follows from (3.15).

Proof of (iii): Analogously to the way we proved the behavior of ∇𝑐 and obtained esti-
mates (3.6) and (3.12), we now prove the estimate of 𝑐. From integral formulation, as ℘ ≤ 𝑟 ,
with 𝑟 defined as in (A2), we obtain

‖𝑐(⋅, 𝑡)‖𝐿𝑟 ≤ 𝑒−
𝛾
𝜏 𝑡 ‖‖‖𝐾

𝛽
𝑡
𝜏
∗ 𝑐0

‖‖‖𝐿𝑟 + ∫
𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) ‖‖‖𝐾

𝛽
𝑡−𝑠
𝜏
∗ 𝜌(𝑠)‖‖‖𝐿𝑟 d𝑠

≤ 𝐶𝑒−
𝛾
𝜏 𝑡 (

𝑡
𝜏)

− 𝑑
𝛽 ( 1

℘−
1
𝑟 )
‖𝑐0‖𝐿℘ + 𝐶 ∫

𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) (

𝑡 − 𝑠
𝜏 )

− 𝑑
𝛽(

1
𝑝−

1
𝑟 )
‖𝜌(𝑠)‖𝐿𝑝d𝑠

≤ 𝐶𝑒−
𝛾
𝜏 𝑡 (

𝑡
𝜏)

− 𝑑
𝛽 ( 1

℘−
1
𝑟 )
‖𝑐0‖𝐿℘ + 𝐶

(∫
𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) (

𝑡 − 𝑠
𝜏 )

− 𝑑
𝛽(

1
𝑝−

1
𝑟 )
d𝑠
)
‖𝜌‖𝐗 .

Then, if 𝛾 > 0, the integral in the last term above satisfies

∫
𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) (

𝑡 − 𝑠
𝜏 )

− 𝑑
𝛽(

1
𝑝−

1
𝑟 )
d𝑠 ≤ 𝐶Γ(1 −

𝑑
𝛽 (

1
𝑝
−
1
𝑟))

,

since 𝑑
𝛽 (

1
𝑝 −

1
𝑟) + 1

𝛽 < 1, and we obtain ‖𝑐(⋅, 𝑡)‖𝐿𝑟 ≤ 𝐶𝑡−
𝑑
𝛽 ( 1

℘−
1
𝑟 ) ‖𝑐0‖𝐿℘ + 𝐶 ‖𝜌‖𝐗. Therefore,

𝑡1−
1
𝛼 ( 𝑑𝑟 +1)‖𝑐(⋅, 𝑡)‖𝐿𝑟 ≤ 𝐶𝑡1−

1
𝛼 ( 𝑑𝑟 +1)− 𝑑

𝛽 ( 1
℘−

1
𝑟 ) ‖𝑐0‖𝐿℘ + 𝐶𝑡1−

1
𝛼 ( 𝑑𝑟 +1) ‖𝜌‖𝐗

≤ 𝐶𝑇 1− 1
𝛼 ( 𝑑𝑟 +1)− 𝑑

𝛽 ( 1
℘−

1
𝑟 ) ‖𝑐0‖𝐿℘ + 𝐶𝑇 1− 1

𝛼 ( 𝑑𝑟 +1)‖𝜌0‖𝐿𝑝

< 𝐶 (𝑇 , ‖𝜌0‖𝐿𝑝 , ‖𝑐0‖𝐿℘) .

On the other hand, if 𝛾 = 0, we have

∫
𝑡

0

1
𝜏
(𝑡 − 𝑠)−

𝑑
𝛽(

1
𝑝−

1
𝑟 ) d𝑠 ≤ 𝐶𝑡1−

𝑑
𝛽(

1
𝑝−

1
𝑟 ),

since 𝑑
𝛽 (

1
𝑝 −

1
𝑟) + 1

𝛽 < 1, and, consequently, ‖𝑐(⋅, 𝑡)‖𝐿𝑟 ≤ 𝐶𝑡−
𝑑
𝛽 ( 1

℘−
1
𝑟 ) ‖𝑐0‖𝐿℘ + 𝐶𝑡1−

𝑑
𝛽(

1
𝑝−

1
𝑟 ) ‖𝜌‖𝐗.

Therefore,

𝑡1−
1
𝛼 ( 𝑑𝑟 +1)‖𝑐(⋅, 𝑡)‖𝐿𝑟 ≤ 𝐶𝑡1−

1
𝛼 ( 𝑑𝑟 +1)− 𝑑

𝛽 ( 1
℘−

1
𝑟 ) ‖𝑐0‖𝐿℘ + 𝐶𝑡2−

1
𝛼 ( 𝑑𝑟 +1)− 𝑑

𝛽(
1
𝑝−

1
𝑟 ) ‖𝜌‖𝐗

≤ 𝐶𝑇 1− 1
𝛼 ( 𝑑𝑟 +1)− 𝑑

𝛽 ( 1
℘−

1
𝑟 ) ‖𝑐0‖𝐿℘ + 𝐶𝑇 2− 1

𝛼 ( 𝑑𝑟 +1)− 𝑑
𝛽(

1
𝑝−

1
𝑟 )‖𝜌0‖𝐿𝑝

< 𝐶 (𝑇 , ‖𝜌0‖𝐿𝑝 , ‖𝑐0‖𝐿℘) ,

where again ℘ = 𝑟 for case (a), ℘ is in the range defined by (3.10) for case (b).

Proof of (iv): we can apply Proposition 2.24.
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Proof of (v): Let 𝑞0 > 𝑝 be such that
1
𝑝
+
1
𝑟
−
𝛼 − 1
𝑑

<
1
𝑞0
<

1
𝑝
. (3.17)

Then, for 𝑡 > 0, with estimate (2.21) and H𝑜̈lder’s inequality, we can bound the integral

‖𝜌(𝑡)‖𝐿𝑞0 ≤ ‖𝐾𝛼
𝑡 ∗ 𝜌0‖𝐿𝑞0 +

‖‖‖‖∫
𝑡

0
∇𝐾𝛼

𝑡−𝑠 ∗ [𝜌(𝑠)∇𝑐(𝑠)] d𝑠
‖‖‖‖𝐿𝑞0

≤ 𝐶𝑡−
𝑑
𝛼 (

1
𝑝−

1
𝑞0 )‖𝜌0‖𝐿𝑝 + ∫

𝑡

0

‖‖∇𝐾
𝛼
𝑡−𝑠 ∗ [𝜌(𝑠)∇𝑐(𝑠)]‖‖𝐿𝑞0 d𝑠

≤ 𝐶𝑡−
𝑑
𝛼 (

1
𝑝−

1
𝑞0 )‖𝜌0‖𝐿𝑝 + 𝐶 ∫

𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑝+

1
𝑟 −

1
𝑞0 )−

1
𝛼 ‖𝜌(𝑠)‖𝐿𝑝 ‖∇𝑐(𝑠)‖𝐿𝑟 d𝑠

≤ 𝐶𝑡−
𝑑
𝛼 (

1
𝑝−

1
𝑞0 )‖𝜌0‖𝐿𝑝 + 𝐶 (𝑇 , ‖𝜌0‖𝐿𝑝 , ‖∇𝑐0‖𝐿℘)∫

𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑝+

1
𝑟 −

1
𝑞0 )−

1
𝛼 𝑠−1+

1
𝛼 ( 𝑑𝑟 +1)d𝑠

≤ 𝐶 (𝑇 , ‖𝜌0‖𝐿𝑝 , ‖∇𝑐0‖𝐿℘) 𝑡
− 𝑑
𝛼 (

1
𝑝−

1
𝑞0 ), (3.18)

since, from (3.17), 𝑑𝛼 (
1
𝑝 +

1
𝑟 −

1
𝑞0) + 1

𝛼 < 1. Now, let 𝑞1 > 𝑞0 be such that

1
𝑞0

+
1
𝑟
−
𝛼 − 1
𝑑

<
1
𝑞1
<

1
𝑞0
. (3.19)

Moreover, note that, from (A2), we obtain 1
𝑝 −

1
𝑟 <

𝛽−1
𝑑 , which, given 𝛽 ∈ (1, 2], implies

𝑑
𝛼 (

1
𝑝
−
1
𝑟)

−
1
𝛼
<
𝑑
𝛼 (

𝛽 − 1
𝑑 ) −

1
𝛼
=
𝛽 − 2
𝛼

≤ 0. (3.20)

Then, using (3.18) and estimate (3.6) for case (a), or (3.12) for case (b), we obtain

‖𝜌(𝑡)‖𝐿𝑞1 ≤ ‖𝐾𝛼
𝑡 ∗ 𝜌0‖𝐿𝑞1 +

‖‖‖‖∫
𝑡

0
∇𝐾𝛼

𝑡−𝑠 ∗ [𝜌(𝑠)∇𝑐(𝑠)] d𝑠
‖‖‖‖𝐿𝑞1

≤ 𝐶𝑡−
𝑑
𝛼 (

1
𝑝−

1
𝑞1 )‖𝜌0‖𝐿𝑝 + 𝐶 ∫

𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞0
+ 1
𝑟 −

1
𝑞1 )−

1
𝛼 ‖𝜌(𝑠)‖𝐿𝑞0 ‖∇𝑐(𝑠)‖𝐿𝑟 d𝑠

≤ 𝐶𝑡−
𝑑
𝛼 (

1
𝑝−

1
𝑞1 )‖𝜌0‖𝐿𝑝 + 𝐶 (𝑇 , ‖𝜌0‖𝐿𝑝 , ‖∇𝑐0‖𝐿℘)∫

𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞0
+ 1
𝑟 −

1
𝑞1 )−

1
𝛼 𝑠−

𝑑
𝛼 (

1
𝑝−

1
𝑟 −

1
𝑞0 )−1+

1
𝛼 d𝑠

≤ 𝐶 (𝑇 , ‖𝜌0‖𝐿𝑝 , ‖∇𝑐0‖𝐿℘) 𝑡
− 𝑑
𝛼 (

1
𝑝−

1
𝑞1 ),

since, from (3.19) and (3.20), we have 𝑑
𝛼 (

1
𝑞0
+ 1

𝑟 −
1
𝑞1) + 1

𝛼 < 1 and 𝑑
𝛼 (

1
𝑝 −

1
𝑟 −

1
𝑞0) − 1

𝛼 < 0,
respectively.

By induction, let 𝑞𝑛+1 > 𝑞𝑛 be such that
1
𝑞𝑛

+
1
𝑟
−
𝛼 − 1
𝑑

<
1
𝑞𝑛+1

<
1
𝑞𝑛
, (3.21)

and assume

‖𝜌(𝑡)‖𝐿𝑞𝑛 ≤ 𝐶 (𝑇 , ‖𝜌0‖𝐿𝑝 , ‖∇𝑐0‖𝐿℘) 𝑡
− 𝑑
𝛼 (

1
𝑝−

1
𝑞𝑛 ). (3.22)
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Then, for 𝑡 > 0, with estimates (2.21) and (3.22), we obtain

‖𝜌(𝑡)‖𝐿𝑞𝑛+1

≤ ‖𝐾𝛼
𝑡 ∗ 𝜌0‖𝐿𝑞𝑛+1 +

‖‖‖‖∫
𝑡

0
∇𝐾𝛼

𝑡−𝑠 ∗ [𝜌(𝑠)∇𝑐(𝑠)] d𝑠
‖‖‖‖𝐿𝑞𝑛+1

≤ 𝐶𝑡−
𝑑
𝛼 (

1
𝑝−

1
𝑞𝑛+1 )‖𝜌0‖𝐿𝑝 + 𝐶 ∫

𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞𝑛 +

1
𝑟 −

1
𝑞𝑛+1 )−

1
𝛼 ‖𝜌(𝑠)‖𝐿𝑞𝑛 𝑠

−1+ 1
𝛼 ( 𝑑𝑟 +1)𝑠1−

1
𝛼 ( 𝑑𝑟 +1) ‖∇𝑐(𝑠)‖𝐿𝑟 d𝑠

≤ 𝐶𝑡−
𝑑
𝛼 (

1
𝑝−

1
𝑞𝑛+1 )‖𝜌0‖𝐿𝑝 + 𝐶 (𝑇 , ‖𝜌0‖𝐿𝑝 , ‖∇𝑐0‖𝐿℘)∫

𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞𝑛 +

1
𝑟 −

1
𝑞𝑛+1 )−

1
𝛼 𝑠−

𝑑
𝛼 (

1
𝑝−

1
𝑟 −

1
𝑞𝑛 )−1+

1
𝛼 d𝑠

≤ 𝐶𝑡−
𝑑
𝛼 (

1
𝑝−

1
𝑞𝑛+1 )‖𝜌0‖𝐿𝑝 + 𝐶 (𝑇 , ‖𝜌0‖𝐿𝑝 , ‖∇𝑐0‖𝐿℘) 𝑡

− 𝑑
𝛼 (

1
𝑝−

1
𝑞𝑛+1 ), (3.23)

since, from (3.21) and (3.20), we have 𝑑
𝛼 (

1
𝑞𝑛
+ 1

𝑟 −
1

𝑞𝑛+1) + 1
𝛼 < 1 and 𝑑

𝛼 (
1
𝑝 −

1
𝑟 −

1
𝑞𝑛) − 1

𝛼 < 0,
respectively.

Next, from (3.23), we infer that

‖𝜌(𝑡)‖𝐿𝑞 ≤ 𝐶 (𝑇 , ‖𝜌0‖𝐿𝑝 , ‖∇𝑐0‖𝐿℘) 𝑡
− 𝑑
𝛼 (

1
𝑝−

1
𝑞 ) (3.24)

for all 𝑞 > 𝑝. Thus, we conclude that 𝜌 ∈ 𝐿∞loc ((0, 𝑇 ]; 𝐿𝑞(ℝ𝑑)) for all 𝑞 > 𝑝.

Moreover, notice that 0 < 𝑑
𝛼 (

1
𝑝 −

1
𝑞𝑛) < 1, since 𝑞𝑛 > 𝑝 for all 𝑛 and 𝑝 in the range

defined by (A2). Then, from (3.24), it is easy to prove that 𝜌 ∈ 𝐿1 ((0, 𝑇 ); 𝐿𝑞(ℝ𝑑)) for all 𝑞 > 𝑝.
Additionally, we have already proven in (ii) that 𝜌 ∈ 𝐿1 ((0, 𝑇 ); 𝐿𝑞(ℝ𝑑)) for all 1 ≤ 𝑞 ≤ 𝑝.
Therefore, we obtain 𝜌 ∈ 𝐿1 ((0, 𝑇 ); 𝐿𝑞(ℝ𝑑)) for all 𝑞 ≥ 1.

Proof of (vi): We now prove the estimate of ∇𝑐, as before, by considering the integral
formulation (2.8) and applying estimates (2.20) and (2.21)to obtain

‖∇𝑐(⋅, 𝑡)‖𝐿𝑞 ≤ 𝑒−
𝛾
𝜏 𝑡 ‖‖‖𝐾

𝛽
𝑡
𝜏
∗ ∇𝑐0

‖‖‖𝐿𝑞 + ∫
𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) ‖‖‖∇𝐾

𝛽
𝑡−𝑠
𝜏
∗ 𝜌(𝑠)‖‖‖𝐿𝑞 d𝑠

≤ 𝐶𝑒−
𝛾
𝜏 𝑡 (

𝑡
𝜏)

− 𝑑
𝛽 ( 1

℘−
1
𝑟 )
‖∇𝑐0‖𝐿℘ + 𝐶 ∫

𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) (

𝑡 − 𝑠
𝜏 )

− 1
𝛽
‖𝜌(𝑠)‖𝐿𝑞d𝑠.

From (v) we know that 𝜌 ∈ 𝐿1 ((0, 𝑇 ); 𝐿𝑞(ℝ𝑑)) and ‖𝜌‖𝐿∞([𝑡1,𝑡2];𝐿𝑞(ℝ𝑑)) < ∞ for 𝑡1, 𝑡2 ∈ (0, 𝑇 ],
as 𝜌 ∈ 𝐿∞loc ((0, 𝑇 ]; 𝐿𝑞(ℝ𝑑)). Then, taking into account (v) and the fact that 𝛽 > 1, we obtain

∫
𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) (

𝑡 − 𝑠
𝜏 )

− 1
𝛽
‖𝜌(𝑠)‖𝐿𝑞d𝑠

= ∫
𝑡1

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) (

𝑡 − 𝑠
𝜏 )

− 1
𝛽
‖𝜌(𝑠)‖𝐿𝑞d𝑠 + ∫

𝑡

𝑡1

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) (

𝑡 − 𝑠
𝜏 )

− 1
𝛽
‖𝜌(𝑠)‖𝐿𝑞d𝑠

≤ 𝐶(𝑇 )‖𝜌‖𝐿1((0,𝑇 );𝐿𝑞(ℝ𝑑)) + 𝐶(𝑇 )‖𝜌‖𝐿∞([𝑡1,𝑡2];𝐿𝑞(ℝ𝑑)).

Therefore, (3.9) follows from setting ℘ = 𝑟 . For case (b), ℘ can be set in the range defined
by (3.10).
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Remark 3.7 (Higher-order regularity in space of local solutions). Higher regularity of

the solution in space – implying 𝜌 ∈ 𝐶((0, 𝑇 ), 𝑊 𝑁 ,𝑝(ℝ𝑑)), and ∇𝑐 ∈ 𝐶((0, 𝑇 ), 𝑊 𝑁 ,𝑟(ℝ𝑑)) for 𝑁 > 0
– follows from Theorem 3.4, Lemma 2.11 and the fact that in the Sobolev spaces, assuming 𝜑 ∈
𝑊 𝑁 ,𝑝(ℝ𝑑) and 𝜓 ∈ 𝑊 𝑁 ,𝑟(ℝ𝑑), where 1/𝑝+1/𝑟 = 1/𝑞 ≤ 1, we have 𝜑𝜓 ∈ 𝑊 𝑁 ,𝑞(ℝ𝑑) and ‖𝜑𝜓‖𝑊𝑁 ,𝑞 ≤
𝐶 ‖𝜑‖𝑊𝑁 ,𝑝 ‖𝜓‖𝑊𝑁 ,𝑟 . Indeed, we can consider the Banach space 𝐗 = 𝐶([0, 𝑇 ], 𝑊 𝑁 ,𝑝(ℝ𝑑)) with the

usual norm: ‖𝑢‖𝐗 = sup𝑡∈[0,𝑇 ] ‖𝑢(𝑡)‖𝑊𝑁 ,𝑝 . Then, by replacing 𝐿𝑣(ℝ𝑑) with 𝑊 𝑁 ,𝑣(ℝ𝑑) (and 𝑊 1,𝑟(ℝ𝑑)
with 𝑊 𝑁+1,𝑟(ℝ𝑑)), where 𝑣 can be equal to 𝑝, 𝑟 , 𝑞 or ℘, we obtain the version of Theorem 3.4 for

higher regularity.

3.3 Global in time solutions

To prove the global existence of solutions to the parabolic-parabolic system (3.1) consider

(A1), (A2) and the following assumptions:

(A5) in addition to (A2), if 2𝛽 (𝛼 − 1) ≥ 𝛼, parameters 𝑝 and 𝑟 satisfy 𝑝 < 𝑑𝛼
2𝛽(𝛼−1)−𝛼 ;

(A6) the Banach space 𝐗 is defined as 𝐗 = {𝑢 ∈ 𝐶([0,∞), 𝐿𝑝(ℝ𝑑)) ∶ ‖𝑢‖𝐗 ≡ 𝑠𝑢𝑝
𝑡>0

𝑡𝜎 ‖𝑢(𝑡)‖𝐿𝑝 <

∞}, where 𝜎 = 2 − 1
𝛼 (

𝑑
𝑟 + 1) − 𝑑

𝛽 (
1
𝑝 −

1
𝑟) − 1

𝛽 .

Now, before stating the global existence of solutions, we proceed by establishing some

estimates.

Lemma 3.8. Assume that (A1), (A5) and (A6) are in force. Then

‖𝑢1‖𝐗 ≤ 𝐶1 ‖𝜌0‖𝐿𝑝1 , (3.25)

where 𝑢1(⋅, 𝑡) = 𝐾𝛼
𝑡 ∗ 𝜌0 for 𝑡 > 0, 𝐾𝛼

𝑡 is given by (1.17), 𝑝1 = 𝑝𝑑
𝛼𝜎𝑝+𝑑 , and 𝐶1 is a time-independent

constant.

Proof. For 𝑡 > 0, we apply (2.20) to (2.16) and, in view of Lemma B.7, use 1 ≤ 𝑝1 < 𝑝 to obtain

‖𝑢1‖𝐿𝑝 = ‖‖𝐾
𝛼
𝑡 (𝑥) ∗ 𝜌0‖‖𝐿𝑝 ≤ 𝐶1𝑡

− 𝑑
𝛼 (

1
𝑝1
− 1
𝑝) ‖𝜌0‖𝐿𝑝1 = 𝐶1𝑡−𝜎 ‖𝜌0‖𝐿𝑝1 .

Therefore, (3.25) follows from the definitions of 𝐗 and 𝑝1.

Lemma 3.9. Assume that (A1), (A5) and (A6) are in force. Then

‖(𝑢, 𝑣)‖𝐗 ≤ 𝐶2 ‖𝑢‖𝐗 ‖𝑣‖𝐗, (3.26)

where  is given by (2.17) with 𝑓 (𝜌,∇𝜌) = 0 and 𝜒 = 1, and 𝐶2 is a time-independent constant.
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Proof. Let 1 ≤ 𝑞 ≤ 𝑝 ≤ 𝑟 ≤ ∞ be such that 1/𝑞 = 1/𝑝 + 1/𝑟. For 𝑡 > 0, applying estimate (2.21) to
(2.17), we obtain

‖(𝑢, 𝑣)‖𝐿𝑝 ≤ 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞−

1
𝑝)−

1
𝛼 ‖𝑢(𝑠)‖𝐿𝑝 (∫

𝑠

0

1
𝜏
𝑒
𝛾
𝜏 (𝑤−𝑠) (

𝑠 − 𝑤
𝜏 )

− 𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽
‖𝑣(𝑤)‖𝐿𝑝d𝑤)

d𝑠

≤ 𝐶
(∫

𝑡

0
(𝑡 − 𝑠)−

1
𝛼 ( 𝑑𝑟 +1)𝑠−𝜎 ∫

𝑠

0

1
𝜏
𝑒
𝛾
𝜏 (𝑤−𝑠) (

𝑠 − 𝑤
𝜏 )

− 𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽
𝑤−𝜎d𝑤d𝑠

)
‖𝑢‖𝐗 ‖𝑣‖𝐗.

Since, by Lemma B.3, 𝜎 < 1 and 𝑑
𝛽 (

1
𝑝 −

1
𝑟)+ 1

𝛽 < 1, we can apply Lemma 2.22 to estimate
the inner integral above as follows:

∫
𝑠

0

1
𝜏
𝑒
𝛾
𝜏 (𝑤−𝑠) (

𝑠 − 𝑤
𝜏 )

− 𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽
𝑤−𝜎d𝑤 ≤ 𝐶 ∫

𝑠

0
(𝑠 − 𝑤)−

𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽 𝑤−𝜎d𝑤

≤ 𝐶𝑠1−𝜎−
𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽 .

Then, applying again Lemma 2.22 together with the last estimate, from the definition of
𝜎, we obtain

∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛼 ( 𝑑𝑟 +1)𝑠−𝜎 ∫

𝑠

0

1
𝜏
𝑒
𝛾
𝜏 (𝑤−𝑠) (

𝑠 − 𝑤
𝜏 )

− 𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽
𝑤−𝜎d𝑤 d𝑠

≤ 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛼 ( 𝑑𝑟 +1)𝑠−𝜎𝑠1−𝜎−

𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽 d𝑠

≤ 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛼 ( 𝑑𝑟 +1)𝑠1−2𝜎−

𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽 d𝑠

≤ 𝐶𝑡−𝜎,

since, in view of Lemma B.3, we have 1
𝛼 (

𝑑
𝑟 + 1) < 1 and 𝜎 + 1

2 [
𝑑
𝛽 (

1
𝑝 −

1
𝑟) + 1

𝛽] < 1.

Therefore, (3.26) follows from the definition of 𝐗.

Lemma 3.10. Assume that (A1), (A5) and (A6) are in force. Then

‖(𝑢)‖𝐗 ≤ 𝐶3 ‖∇𝑐0‖𝐿𝑝2 ‖𝑢‖𝐗 , (3.27)

where  is given by (2.18), 𝑝2 = 𝑑𝑟𝛼
𝛽(𝑟(𝛼−1)−𝑑)+𝑑𝛼 , and 𝐶3 is a time-independent constant.

Proof. Let 1 ≤ 𝑞 ≤ 𝑝 be such that 1/𝑞 = 1/𝑝 + 1/𝑟. For 𝑡 > 0, applying estimates (2.20) and (2.21)
to (2.18), and using 1 ≤ 𝑝2 ≤ 𝑟 (Lemma B.8), we obtain

‖(𝑢)‖𝐿𝑝 ≤ 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞−

1
𝑝)−

1
𝛼 ‖𝑢(𝑠)‖𝐿𝑝 𝑒

− 𝛾
𝜏 𝑠 ‖‖‖𝐾

𝛽
𝑠
𝜏
(𝑥) ∗ ∇𝑐0(𝑥)

‖‖‖𝐿𝑟 d𝑠

≤ 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛼 ( 𝑑𝑟 +1) ‖𝑢(𝑠)‖𝐿𝑝 𝑒

− 𝛾
𝜏 𝑠 (

𝑠
𝜏)

− 𝑑
𝛽(

1
𝑝2
− 1
𝑟 ) ‖∇𝑐0‖𝐿𝑝2 d𝑠

≤ 𝐶(∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛼 ( 𝑑𝑟 +1)𝑠−𝜎−

𝑑
𝛽(

1
𝑝2
− 1
𝑟 )𝑒−

𝛾
𝜏 𝑠d𝑠) ‖∇𝑐0‖𝐿𝑝2 ‖𝑢‖𝐗 .
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Since, by Lemmas B.3 and B.8, we have 1
𝛼 (

𝑑
𝑟 + 1) < 1 and 𝜎 + 𝑑

𝛽 (
1
𝑝2
− 1

𝑟) < 1, we can
apply Lemma 2.22 to estimate the inner integral above:

∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛼 ( 𝑑𝑟 +1)𝑠−𝜎−

𝑑
𝛽(

1
𝑝2
− 1
𝑟 )𝑒−

𝛾
𝜏 𝑠d𝑠 = ∫

𝑡

0
(𝑡 − 𝑠)−

1
𝛼 ( 𝑑𝑟 +1)𝑠−𝜎−

𝑑
𝛽(

1
𝑝2
− 1
𝑟 )𝑒−

𝛾
𝜏 𝑠d𝑠

≤ ∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛼 ( 𝑑𝑟 +1)𝑠−𝜎−

𝑑
𝛽(

1
𝑝2
− 1
𝑟 )d𝑠

≤ 𝐶𝑡−𝜎,

as the definition of 𝑝2 implies that 1
𝛼 (

𝑑
𝑟 + 1) + 𝑑

𝛽 (
1
𝑝2
− 1

𝑟) = 1.

Therefore, (3.27) follows from the definition of 𝐗.

Remark 3.11. It is important to note that the parameters 𝜎, 𝑝1 and 𝑝2 are chosen to ensure

that the constants 𝐶1, 𝐶 and 𝐶, in estimates (3.25), (2.14) and (2.15), respectively, are time-

independent. This choice is crucial for the validity of the global solution estimates.

Theorem 3.12 (Global in time solutions). Assume that (A1), (A5) and (A6) are in force. Then,

there exists 𝜖 > 0 such that, if

‖𝜌0‖𝐿𝑝1 + ‖∇𝑐0‖𝐿𝑝2 < 𝜖, (3.28)

there is a unique global mild solution (𝜌,∇𝑐) to system (3.1), 𝜌 ∈ 𝐶((0,∞), 𝐿𝑝(ℝ𝑑)) ∩ 𝐗, ∇𝑐 ∈
𝐶((0,∞), 𝐿𝑟(ℝ𝑑)), with initial condition 𝜌0 ∈ 𝐿𝑝1(ℝ𝑑) and ∇𝑐0 ∈ 𝐿𝑝2(ℝ𝑑), where

𝑝1 =
𝑝𝑑

𝛼𝜎𝑝 + 𝑑
and 𝑝2 =

𝑑𝑟𝛼
𝛽 (𝑟(𝛼 − 1) − 𝑑) + 𝑑𝛼

. (3.29)

Moreover,

sup
𝑡≥0

𝑡𝜎‖𝜌(⋅, 𝑡)‖𝐿𝑝 ≤ 𝐶‖𝜌0‖𝐿𝑝1 , (3.30)

and

sup
𝑡≥0

𝑡1−
1
𝛼 ( 𝑑𝑟 +1) ‖∇𝑐(⋅, 𝑡)‖𝐿𝑟 < 𝐶 ‖∇𝑐0‖𝐿𝑝2 + 𝐶 ‖𝜌0‖𝐿𝑝1 . (3.31)

Furthermore, if, in addition to (A5) (or equivalently, in that case, (A2)), 𝑝 satisfies

𝑝 ≤
2𝑑

(𝛼 − 1) + 2(𝛽 − 1)
(3.32)

or 𝑝 and 𝑟 satisfy

2𝑑
(𝛼 − 1) + 2(𝛽 − 1)

< 𝑝 <
𝛼𝑑

max {2𝛽 (𝛼 − 1) − 𝛼, 𝛼(𝛼 − 2) + 𝛽}
(3.33)

and

𝑟 ≤
(2𝛽 − 𝛼)𝑝𝑑

[𝛽(𝛼 − 1) + 𝛼(𝛽 − 1)]𝑝 − 𝛼𝑑
, (3.34)

then 𝜌 ∈ 𝐿∞ ((0,∞), 𝐿𝑝1(ℝ𝑑)).
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Proof. To establish the existence and uniqueness of global solution to system (3.1), we apply
the fixed point theorem as articulated in Corollary 2.7, with 𝐗 = {𝜌 ∈ 𝐶((0,∞), 𝐿𝑝(ℝ𝑑)) ∶
𝑠𝑢𝑝
𝑡>0

𝑡𝜎 ‖𝜌(𝑡)‖𝐿𝑝(ℝ𝑑) < ∞}. Then, we construct the unique mild solution using 𝑢1, , and  as
defined in Section 2.2.1 and demonstrate that the hypotheses of Corollary 2.7 are satisfied.

In view of Lemmas 3.8, 3.9 and 3.10 we set 𝛿 and the constants 𝐶 and 𝐶 from Corol-
lary 2.7 as 𝛿 = 𝐶1 ‖𝜌0‖𝐿𝑝1 , 𝐶 = 𝐶2, and 𝐶 = 𝐶3 ‖∇𝑐0‖𝐿𝑝2 . Then, choosing 𝜖 = 1

2max{4𝐶1𝐶2,2𝐶3}
,

condition (3.28) implies that

𝐶1 ‖𝜌0‖𝐿𝑝1 = 𝛿 <
1 − 2𝐶

4𝐶
=

1 − 2𝐶3 ‖∇𝑐1‖𝐿𝑝2
4𝐶2

.

Consequently, as a result of Corollary 2.7, we prove the global existence of solutions and es-
tablish estimate (3.30). Therefore, 𝜌 ∈ 𝐶((0,∞), 𝐿𝑝) ∩ 𝐗.

Next note that estimate (3.31) follows from integral formulation (2.8). Indeed, we have

‖∇𝑐(⋅, 𝑡)‖𝐿𝑟 ≤ 𝑒−
𝛾
𝜏 𝑡 ‖‖‖𝐾

𝛽
𝑡
𝜏
∗ ∇𝑐0

‖‖‖𝐿𝑟 + ∫
𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) ‖‖‖∇𝐾

𝛽
𝑡−𝑠
𝜏
∗ 𝜌(𝑠)‖‖‖𝐿𝑟 d𝑠.

Now, from Lemma B.3, we have 𝜎 < 1 and 𝑑
𝛽 (

1
𝑝 −

1
𝑟) + 1

𝛽 < 1. Then, we can apply
Lemmas 2.10 and 2.22 to obtain

‖∇𝑐(⋅, 𝑡)‖𝐿𝑟 ≤ 𝐶𝑒−
𝛾
𝜏 𝑡 (

𝑡
𝜏)

− 𝑑
𝛽(

1
𝑝2
− 1
𝑟 )
‖∇𝑐0‖𝐿𝑝2 + 𝐶 ∫

𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) (

𝑡 − 𝑠
𝜏 )

− 𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽
‖𝜌(𝑠)‖𝐿𝑝d𝑠

≤ 𝐶 (
𝑡
𝜏)

− 𝑑
𝛽(

1
𝑝2
− 1
𝑟 )
‖∇𝑐0‖𝐿𝑝2 + 𝐶 ∫

𝑡

0

1
𝜏 (

𝑡 − 𝑠
𝜏 )

− 𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽
𝑠−𝜎d𝑠 ‖𝜌‖𝐗

≤ 𝐶𝑡−
𝑑
𝛽(

1
𝑝2
− 1
𝑟 ) ‖∇𝑐0‖𝐿𝑝2 + 𝐶𝑡1−𝜎−

𝑑
𝛽(

1
𝑝−

1
𝑟 )−

1
𝛽 ‖𝜌‖𝐗 .

Therefore, by multiplying both sides of the inequality above by 𝑡1− 1
𝛼 ( 𝑑𝑟 +1) and using the

definitions of 𝜎 and 𝑝2, as well as estimate (3.30), inequality (3.31) is obtained.

To prove that 𝜌 ∈ 𝐿∞ ((0,∞), 𝐿𝑝1(ℝ𝑑)), consider 𝑝 satisfying (3.32) or 𝑝 and 𝑟 satisfying
(3.33) and (3.34). Note that, since from Lemma B.9 we have 𝛼

𝑑𝜎 ≤ 1
𝑟 , 𝑞 defined as 1/𝑞 = 1/𝑝+1/𝑟

is such that 𝑞 ≤ 𝑝1. Indeed, 1
𝑝1

= 𝛼
𝑑𝜎+

1
𝑝 ≤ 1

𝑞 =
1
𝑝 +

1
𝑟 . Then, for 𝑡 > 0, we can apply Lemma 2.10

to obtain

‖𝜌(𝑡)‖𝐿𝑝1 ≤ ‖𝐾𝛼
𝑡 ∗ 𝜌0‖𝐿𝑝1 +

‖‖‖‖∫
𝑡

0
∇𝐾𝛼

𝑡−𝑠 ∗ [𝜌(𝑠)∇𝑐(𝑠)] d𝑠
‖‖‖‖𝐿𝑝1

≤ 𝐶‖𝜌0‖𝐿𝑝1 + ∫
𝑡

0

‖‖∇𝐾
𝛼
𝑡−𝑠 ∗ [𝜌(𝑠)∇𝑐(𝑠)]‖‖𝐿𝑝1 d𝑠

≤ 𝐶‖𝜌0‖𝐿𝑝1 + 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑞−

1
𝑝1 )−

1
𝛼 ‖𝜌(𝑠)∇𝑐(𝑠)‖𝐿𝑞 d𝑠.
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Then, from Lemma B.3, 1
𝛼 (

𝑑
𝑟 + 1) − 1 < 𝜎 < 1

𝛼 (
𝑑
𝑟 + 1), and we can apply (3.30), (3.31),

and Lemma 2.22 to estimate the integral above as follows:

‖𝜌(𝑡)‖𝐿𝑝1 ≤ 𝐶‖𝜌0‖𝐿𝑝1 + 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

𝑑
𝛼 (

1
𝑝+

1
𝑟 −

𝛼
𝑑 𝜎−

1
𝑝)−

1
𝛼 ‖𝜌(𝑠)‖𝐿𝑝 ‖∇𝑐(𝑠)‖𝐿𝑟 d𝑠

≤ 𝐶‖𝜌0‖𝐿𝑝1 + 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛼 ( 𝑑𝑟 +1)+𝜎𝑠−𝜎−1+

1
𝛼 ( 𝑑𝑟 +1)𝑠𝜎 ‖𝜌(𝑠)‖𝐿𝑝 𝑠

1− 1
𝛼 ( 𝑑𝑟 +1) ‖∇𝑐(𝑠)‖𝐿𝑟 d𝑠

≤ 𝐶‖𝜌0‖𝐿𝑝1 + 𝐶(∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛼 ( 𝑑𝑟 +1)+𝜎𝑠−𝜎−1+

1
𝛼 ( 𝑑𝑟 +1)d𝑠) ‖𝜌0‖𝐿𝑝1 (‖𝜌0‖𝐿𝑝1 + ‖∇𝑐0‖𝐿𝑝2)

≤ 𝐶 ‖𝜌0‖𝐿𝑝1 (1 + ‖𝜌0‖𝐿𝑝1 + ‖∇𝑐0‖𝐿𝑝2) .

Remark 3.13 (Higher-order regularity in space of global solutions). As discussed in

Remark 3.7, higher regularity of the solution in space (implying 𝜌 ∈ 𝐶((0,∞), 𝑊 𝑁 ,𝑝(ℝ𝑑)) and

∇𝑐 ∈ 𝐶((0,∞), 𝑊 𝑁 ,𝑟(ℝ𝑑)), for 𝑁 > 0) follows from Theorem 3.12 and properties of the Sobolev

spaces 𝑊 𝑁 ,𝑝(ℝ𝑑) (see Remark 3.7). Indeed, for the global existence of solutions, consider the Ba-

nach space 𝐗 = {𝑢 ∈ 𝐶((0,∞), 𝑊 𝑁 ,𝑝(ℝ𝑑)) ∶ ‖𝑢‖𝐗 = 𝑠𝑢𝑝
𝑡>0

𝑡𝜎 ‖𝑢(𝑡)‖𝑊𝑁 ,𝑝 < ∞}. Then, by replacing

𝐿𝑞(ℝ𝑑) with𝑊 𝑁 ,𝑞(ℝ𝑑), where 𝑞 can be equal to 𝑝1, 𝑝2, 𝑝, or 𝑟 , we obtain a version of Theorem 3.12

for higher regularity.

Theorem 3.14. Let 𝑑 = 2, and consider system (3.1) with 𝛼 = 𝛽 ∈ (5/3, 2]. Assume that (A2)

and (A5) are in force and, in addition

𝑟 ≤ min
{

𝑝
𝑝(𝛼 − 1) − 1

,
1

2 − 𝛼

}
. (3.35)

Then, there exists 𝜖 > 0 such that, if

‖𝜌0‖𝐿 1
𝛼−1

+ ‖∇𝑐0‖𝐿 2
𝛼−1

< 𝜖, (3.36)

there exists a unique global mild solution 𝜌 ∈ 𝐶((0,∞), 𝐿𝑝(ℝ𝑑)) ∩ 𝐗, ∇𝑐 ∈ 𝐶((0,∞), 𝐿𝑟(ℝ𝑑)), with
initial condition 𝜌0 ∈ 𝐿

1
𝛼−1 (ℝ𝑑), ∇𝑐0 ∈ 𝐿

2
𝛼−1 (ℝ𝑑). Moreover, 𝜌 ∈ 𝐿∞ ((0,∞), 𝐿 1

𝛼−1 (ℝ𝑑)),

sup
𝑡≥0

𝑡𝜎‖𝜌(⋅, 𝑡)‖𝐿𝑝 ≤ 𝐶‖𝜌0‖𝐿 1
𝛼−1
, (3.37)

and

sup
𝑡≥0

𝑡1−
1
𝛼 ( 2

𝑟 +1) ‖∇𝑐(⋅, 𝑡)‖𝐿𝑟 < 𝐶 (‖∇𝑐0‖𝐿 2
𝛼−1

+ ‖𝜌0‖𝐿 1
𝛼−1 ) . (3.38)

Furthermore, if 𝜌0 ∈ 𝐿1(ℝ𝑑), then, 𝜌 ∈ 𝐿1(ℝ𝑑), the corresponding solution conserves mass

and, for ∫ℝ𝑑 𝑐0d𝑥 < ∞, the chemical concentration, 𝑐, grows as

∫
ℝ𝑑
𝑐 (𝑥, 𝑡) d𝑥 = (∫ℝ𝑑

𝜌0(𝑥)d𝑥)(
1 − 𝑒−

𝛾
𝜏 𝑡

𝛾 ) +(∫ℝ𝑑
𝑐0(𝑥)d𝑥) 𝑒−

𝛾
𝜏 𝑡

and ∫
ℝ𝑑
𝑐 (𝑥, 𝑡) d𝑥 −−−−→

𝑡→∞

∫ℝ𝑑 𝜌0(𝑥)d𝑥
𝛾

, which include 𝛾 = 0 by taking 𝛾 → 0.
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Remark 3.15. Note that, for 𝑑 = 2 and 𝛼 = 𝛽 ∈ (5/3, 2], assumption (A2) becomes

4
𝛼 + 1

< 𝑝 <
2

𝛼 − 1
and max

{
2

𝛼 − 1
,

𝑝
𝑝 − 1

}
< 𝑟 <

2𝑝
2 − 𝑝(𝛼 − 1)

,

where 𝑟 = 𝑝
𝑝−1 is also possible if 𝑝

𝑝−1 > 𝑑
𝛼−1 . Moreover, assumption (A3) is reduced to 𝜎 =

2 (𝛼−1𝛼 ) − 2
𝛼𝑝 .

Note also that additional condition (3.34) in Theorem 3.12 becomes 𝑟 ≤ 𝑝
𝑝(𝛼−1)−1 in (3.35).

In more detail, the ranges of 𝑝 and 𝑟 defined in Theorem 3.14 can be written as

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

4
𝛼 + 1

< 𝑝 ≤
2
3

2
𝛼 − 1

and max
{

2
𝛼 − 1

,
𝑝

𝑝 − 1

}
< 𝑟 < min

{
2𝑝

2 − 𝑝(𝛼 − 1)
,

1
2 − 𝛼

}
,

or

2
3

2
𝛼 − 1

< 𝑝 <
2

𝛼 − 1
and max

{
2

𝛼 − 1
,

𝑝
𝑝 − 1

}
< 𝑟 ≤ min

{
𝑝

𝑝(𝛼 − 1) − 1
,

1
2 − 𝛼

}
.

In the first line, 𝑟 can be equal to 1
2−𝛼 if 1

2−𝛼 <
2𝑝

2−𝑝(𝛼−1) and, in both cases, it can be equal to 𝑝
𝑝−1 if

𝑝
𝑝−1 >

𝑑
𝛼−1 .

Proof. We apply Theorem 3.12 to prove the existence, uniqueness, and asymptotic behavior of
the solution described in (3.37) and (3.38).

To prove that 𝜌 ∈ 𝐿1(ℝ𝑑) and to verify the mass conservation and chemical concentration
behavior, we apply Proposition 2.24. Then, it suffices to show that (𝜌∇𝑐)(⋅, 𝑡) ∈ 𝐿1(ℝ𝑑) for all
𝑡 ≥ 0. Note that, as 𝜌 ∈ 𝐿∞ ((0,∞), 𝐿 1

𝛼−1 (ℝ𝑑) ∩ 𝐿𝑝(ℝ𝑑)), we get 𝜌 ∈ 𝐿𝜍(ℝ𝑑), 𝜍 ∈ [ 1
𝛼−1 , 𝑝], for all

𝑡 ≥ 0, and from (3.35), we obtain 1
𝑟 + 𝛼 − 1 ≥ 1. As a result, there is 𝑞 ∈ [ 1

𝛼−1 , 𝑝] such that
1
𝑞 +

1
𝑟 = 1. Therefore, ‖(𝜌∇𝑐)(⋅, 𝑡)‖𝐿1 (𝑡) ≤ 𝐶 ‖𝜌(⋅, 𝑡)‖𝐿𝑞 ‖∇𝑐(⋅, 𝑡)‖𝐿𝑟 < ∞, and we conclude.

Remark 3.16. In Section 1.5.2, the importance of determining the critical space to establish global

well-posedness was discussed. Through the analysis of self-similar solutions, it was shown that

when 𝛼 = 𝛽, system (3.1) has 𝐿 1
𝛼−1 (ℝ𝑑) and 𝐿 2

𝛼−1 (ℝ𝑑) as critical spaces. Note that, as demonstrated

in Theorem 3.14, these spaces are crucial for ensuring the existence of solutions to system (3.1)
with 𝛼 = 𝛽, as evidenced by the condition for solution existence specified in (3.36).

Remark 3.17. If we assume 𝛼 = 𝛽 = 2, then system (3.1) is the classical one. In that case, for

𝑑 = 2, Theorem 3.12 becomes:

Let 𝜌0 ∈ 𝐿1(ℝ𝑑) and ∇𝑐0 ∈ 𝐿2(ℝ𝑑). Then, there exists 𝛿 > 0 such that, if ‖𝜌0‖𝐿1 + ‖∇𝑐0‖𝐿2 < 𝛿,
there is a unique global mild solution 𝜌 ∈ 𝐶((0,∞), 𝐿𝑝(ℝ𝑑)) ∩ 𝐗, ∇𝑐 ∈ 𝐶((0,∞), 𝐿𝑟(ℝ𝑑)),
where 4

3 < 𝑝 < 2 and 𝑟 = 𝑝
𝑝−1 (i. e., 2 < 𝑟 < 4). Moreover, 𝜌 ∈ 𝐿∞ ((0,∞), 𝐿1(ℝ𝑑)) conserves

mass, sup𝑡≥0 𝑡
1− 1

𝑝 ‖𝜌(⋅, 𝑡)‖𝐿𝑝 ≤ 𝐶‖𝜌0‖𝐿1 , and sup𝑡≥0 𝑡
1
𝑝−

1
2 ‖∇𝑐(⋅, 𝑡)‖𝐿𝑟 < 𝐶 ‖∇𝑐0‖𝐿2 + 𝐶 ‖𝜌0‖𝐿1 . In

addition, if ∫ℝ𝑑 𝑐0(𝑥)d𝑥 < ∞, the concentration of the chemical, 𝑐, grows as in (2.46) and

(2.47).
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3.4 Nonnegative Solution

In Section 2.4, we prove that given nonnegative initial conditions, the solution of (3.1) with

sufficient regularity remains nonnegative. In this section, we demonstrate that, under certain

assumptions on the initial conditional, the solution given by Theorem 3.4 or Theorem 3.12

satisfies the hypotheses of Proposition 2.28.

Proposition 3.18. Consider system (3.1) with 𝜌0 ∈ 𝑊 𝑁 ,𝑝0(ℝ𝑑), and ∇𝑐0 ∈ 𝑊 𝑁 ,𝑞0(ℝ𝑑), where
𝑁 = max{2, 2⌈𝛽/2⌉ − 1}. Moreover, assume that 𝜌0 and 𝑐0 are nonnegative. Then, the solution
𝜌 and 𝑐, given by Theorem 3.4 and Remark 3.7 for 0 < 𝑡 < 𝑇 (or Theorem 3.12 and Remark 3.13

with 𝑞0 ≠ 𝛼
𝛽

𝑑
𝛼−1 for 𝛼 ≠ 𝛽 and 0 < 𝑡 < 𝑇 = ∞) are also nonnegative, as long as the solution is

well-defined.

Proof. From Theorem 3.4 (Theorem 3.12 with 𝑇 = ∞) and Remark 3.7 (Remark 3.13), we know
that the solutions of (3.1) are such that 𝜌(⋅, 𝑡) ∈ 𝑊 𝑁 ,𝑝𝑠(ℝ𝑑) and ∇𝑐(⋅, 𝑡) ∈ 𝑊 𝑁 ,𝑞𝑠(ℝ𝑑) for 0 < 𝑡 < 𝑇
and for some values of 1 ≤ 𝑝𝑠 < ∞ and 1 ≤ 𝑞𝑠 < ∞. Then, since 𝑁 = max{2, 2⌈𝛽/2⌉ − 1},
we have 𝜌(⋅, 𝑡) ∈ 𝑊 2,𝑝(ℝ𝑑). Moreover, since 𝑝 satisfies (A2), 𝑝 > 𝑑

𝛽 , and from Proposition 2.30
it follows that ∇𝑐(⋅, 𝑡) ∈ 𝑊 1,∞(ℝ𝑑) for 0 < 𝑡 < 𝑇 . Therefore, by applying Proposition 2.28 we
ensure the nonnegativity of 𝜌 and 𝑐 for 0 ≤ 𝑡 < 𝑇 .

3.5 Well-posedness in Weighted spaces

In this section, we establish the existence and uniqueness of solutions for system (3.1) in

weighted spaces by applying the fixed point theorem. To begin, we consider the weighted 𝐿∞

spaces introduced in Definition 2.12. For this, we prove the following proposition:

Proposition 3.19. Let 𝑑 ≥ 2, 𝛼 ∈ (1, 2] and 𝛽 ∈ (1, 𝑑]. Then, for every initial condition 𝜌0 ∈
𝐿∞𝛼+𝑑(ℝ𝑑) and ∇𝑐0 ∈ 𝐿∞(ℝ𝑑), there exist 𝑇 = 𝑇 (‖𝜌0‖𝐿∞𝛼+𝑑 , ‖∇𝑐0‖𝐿∞) and a unique local mild solution

(𝜌,∇𝑐) to system (3.1) in [0, 𝑇 ], such that 𝜌 ∈ 𝐶([0, 𝑇 ], 𝐿∞𝛼+𝑑(ℝ𝑑)) and ∇𝑐 ∈ 𝐶([0, 𝑇 ] , 𝐿∞(ℝ𝑑)).
Moreover,

(i) if ∇𝑐0 ∈ 𝐿𝑟(ℝ𝑑), then ∇𝑐 ∈ 𝐶([0, 𝑇 ] , 𝐿𝑟(ℝ𝑑)), for 1 ≤ 𝑟 ≤ ∞;

(ii) if 𝑐0 ∈ 𝑊 1,𝑟(ℝ𝑑), then 𝑐 ∈ 𝐶([0, 𝑇 ] , 𝑊 1,𝑟(ℝ𝑑)), for 1 ≤ 𝑟 ≤ ∞;

(iii) ∫ℝ𝑑 |𝑥 |
𝜗𝜌(𝑥, 𝑡)d𝑥 < ∞ for any 0 ≤ 𝜗 < 𝛼.

Proof. We prove the existence and uniqueness of local solution to system (3.1) by employing
the fixed point theorem through Corollary 2.7. In particular, we consider the Banach space
𝐗 = 𝐶([0, 𝑇 ], 𝐿∞𝛼+𝑑(ℝ𝑑)) equipped with the usual norm, where 𝑇 depends on ‖𝜌0‖𝐿∞𝛼+𝑑 and ‖∇𝑐0‖𝐿∞ .
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We then construct the unique mild solution, with 𝑢1,, and  given by (2.16), (2.17) and (2.18)
respectively. To show that the premises of Corollary 2.7 are satisfied, we use Lemmas 2.10,
2.14 and 2.22 and Remark 2.13 to obtain the following estimates for 𝑇 > 0:

‖𝑢1(⋅, 𝑡)‖𝐿∞𝛼+𝑑 ≤ 𝐶(1 + 𝑇 )‖𝜌0‖𝐿∞𝛼+𝑑 ,

‖(𝑢, 𝑣)‖𝐗 ≤ 𝐶𝑇 2− 1
𝛼−

1
𝛽 (1 + 𝑇 ) ‖𝑢‖𝐗 ‖𝑣‖𝐗,

‖(𝑢)‖𝐗 ≤ 𝐶𝑇 1− 1
𝛼−

1
𝛽 (1 + 𝑇 ) ‖∇𝑐0‖𝐿∞ ‖𝑢‖𝐗 ,

which follow from ‖𝑢1(⋅, 𝑡)‖𝐿∞𝛼+𝑑 = ‖𝐾𝛼
𝑡 ∗ 𝜌0‖𝐿∞𝛼+𝑑 ≤ 𝐶(1 + 𝑡)‖𝜌0‖𝐿∞𝛼+𝑑 ,

‖(𝑢, 𝑣)‖𝐿∞𝛼+𝑑

≤ ∫
𝑡

0

‖‖‖‖
∇𝐾𝛼

𝑡−𝑠 ∗ (𝑢(𝑠)∫
𝑠

0
∇𝐾𝛽

𝑠−𝑤 ∗ 𝑣(⋅, 𝑤)d𝑤)
‖‖‖‖𝐿∞𝛼+𝑑

d𝑠

≤ 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛼

(

‖‖‖‖
𝑢(𝑠)∫

𝑠

0
∇𝐾𝛽

𝑠−𝑤 ∗ 𝑣(⋅, 𝑤)d𝑤
‖‖‖‖𝐿∞𝛼+𝑑

+ (𝑡 − 𝑠)
‖‖‖‖
𝑢(𝑠)∫

𝑠

0
∇𝐾𝛽

𝑠−𝑤 ∗ 𝑣(⋅, 𝑤)d𝑤
‖‖‖‖𝐿1)

d𝑠

≤ 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛼
‖‖‖‖∫

𝑠

0
∇𝐾𝛽

𝑠−𝑤 ∗ 𝑣(⋅, 𝑤)d𝑤
‖‖‖‖𝐿∞ (

‖𝑢(𝑠)‖𝐿∞𝛼+𝑑 + (𝑡 − 𝑠) ‖𝑢(𝑠)‖𝐿1) d𝑠

≤ 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛼 (1 + 𝑡 − 𝑠)(∫

𝑠

0
(𝑠 − 𝑤)−

1
𝛽 ‖𝑣(𝑤)‖𝐿∞𝛼+𝑑 d𝑤) d𝑠 ‖𝑢‖𝐗

≤ 𝐶 (𝑡
2− 1

𝛼−
1
𝛽 + 𝑡3−

1
𝛼−

1
𝛽
) ‖𝑢‖𝐗 ‖𝑣‖𝐗

≤ 𝐶𝑡2−
1
𝛼−

1
𝛽 (1 + 𝑡) ‖𝑢‖𝐗 ‖𝑣‖𝐗, and

‖(𝑢)‖𝐿∞𝛼+𝑑 ≤ ∫
𝑡

0

‖‖‖∇𝐾
𝛼
𝑡−𝑠 ∗ [𝑢(𝑠)𝑒

− 𝛾
𝜏 𝑠𝐾𝛽

𝑠
𝜏
∗ ∇𝑐0]

‖‖‖𝐿∞𝛼+𝑑
d𝑠

≤ 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛼
(
‖‖‖𝑢(𝑠)𝐾

𝛽
𝑠
𝜏
∗ ∇𝑐0

‖‖‖𝐿∞𝛼+𝑑
+ (𝑡 − 𝑠) ‖‖‖𝑢(𝑠)𝐾

𝛽
𝑠
𝜏
∗ ∇𝑐0

‖‖‖𝐿1) d𝑠

≤ 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛼 (‖𝑢(𝑠)‖𝐿∞𝛼+𝑑 + (𝑡 − 𝑠) ‖𝑢(𝑠)‖𝐿1)

‖‖‖𝐾
𝛽
𝑠
𝜏
∗ ∇𝑐0

‖‖‖𝐿∞ d𝑠

≤ 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛼 (1 + (𝑡 − 𝑠)) ‖𝑢(𝑠)‖𝐿∞𝛼+𝑑 𝑠

− 1
𝛽 ‖∇𝑐0‖𝐿∞ d𝑠

≤ 𝐶(∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛼 𝑠−

1
𝛽 d𝑠 + ∫

𝑡

0
(𝑡 − 𝑠)1−

1
𝛼 𝑠−

1
𝛽 d𝑠) ‖∇𝑐0‖𝐿∞ ‖𝑢‖𝐗

≤ 𝐶 (𝑡
1− 1

𝛼−
1
𝛽 + 𝑡2−

1
𝛼−

1
𝛽
) ‖∇𝑐0‖𝐿∞ ‖𝑢‖𝐗

≤ 𝐶𝑡1−
1
𝛼−

1
𝛽 (1 + 𝑡) ‖∇𝑐0‖𝐿∞ ‖𝑢‖𝐗 .

Then, it suffices to use the same argument from the proof of Theorem 3.4 to construct
solutions to system (3.1) and obtain 𝜌 ∈ 𝐶([0, 𝑇 ], 𝐿∞𝛼+𝑑(ℝ𝑑)).

Proof of (i): Now, in order to prove the estimate of ∇𝑐, we use the integral formulation
(2.8) and Remark 2.13 and apply Lemma 2.10 to obtain

here
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‖∇𝑐(⋅, 𝑡)‖𝐿𝑟 ≤ 𝑒−
𝛾
𝜏 𝑡 ‖‖‖𝐾

𝛽
𝑡
𝜏
∗ ∇𝑐0

‖‖‖𝐿𝑟 + ∫
𝑡

0

1
𝜏
𝑒
𝛾
𝜏 (𝑠−𝑡) ‖‖‖∇𝐾

𝛽
𝑡−𝑠
𝜏
∗ 𝜌(𝑠)‖‖‖𝐿𝑟 d𝑠

≤ 𝐶 ‖∇𝑐0‖𝐿𝑟 + 𝐶 ∫
𝑡

0
(𝑡 − 𝑠)−

1
𝛽 ‖𝜌(𝑠)‖𝐿𝑟 d𝑠

≤ 𝐶 ‖∇𝑐0‖𝐿𝑟 + 𝐶𝑡1−
1
𝛽 ‖𝜌‖𝐗 ,

which proves that ∇𝑐 ∈ 𝐶([0, 𝑇 ] , 𝐿𝑟(ℝ𝑑)), for 1 ≤ 𝑟 ≤ ∞.

Proof of (ii): Also, from integral formulation for 𝑐, we obtain

‖𝑐(⋅, 𝑡)‖𝐿𝑟 ≤ 𝐶 ‖𝑐0‖𝐿𝑟 + 𝐶 ∫
𝑡

0
‖𝜌(𝑠)‖𝐿𝑟 d𝑠 ≤ 𝐶 ‖𝑐0‖𝐿𝑟 + 𝐶𝑡 ‖𝜌‖𝐗 .

Proof of (iii): To prove that ∫ℝ𝑑 |𝑥 |
𝜗𝜌(𝑥, 𝑡)d𝑥 < ∞ for 0 ≤ 𝜗 < 𝛼, note that |𝑥 |𝜗 ≤

(1 + |𝑥 − 𝑦 |)𝜗 (1 + |𝑦 |)𝜗 and (1 + |𝑥 |)𝜗 ≤ 1 + ∑𝑑
𝑖=1 |𝑥𝑖|𝜗. Moreover, from Lemma 2.17, as 𝜗 < 𝛼,

we have 𝐾𝛼
𝑡 and 𝑥𝜗𝑖 𝐾𝛼

𝑡 ∈ 𝐿1(ℝ𝑑), for 1 ≤ 𝑖 ≤ 𝑑 and 𝑡 > 0. Then, as 𝜌0 ∈ 𝐿∞𝛼+𝑑(ℝ𝑑) we obtain

∫
ℝ𝑑
|𝑥 |𝜗(𝐾𝛼

𝑡 ∗ 𝜌0)(𝑥) d𝑥 = ∫
ℝ𝑑
∫
ℝ𝑑
|𝑥 |𝜗𝐾𝛼

𝑡 (𝑥 − 𝑦)𝜌0(𝑦) d𝑦 d𝑥

≤ ∫
ℝ𝑑
∫
ℝ𝑑
(1 + |𝑥 − 𝑦 |)𝜗 (1 + |𝑦 |)𝜗 𝐾𝛼

𝑡 (𝑥 − 𝑦)𝜌0(𝑦) d𝑦 d𝑥

≤ (∫ℝ𝑑
∫
ℝ𝑑
(1 + |𝑥 − 𝑦 |)𝜗 𝐾𝛼

𝑡 (𝑥 − 𝑦) (1 + |𝑦 |)−𝑑−𝛼+𝜗 d𝑦 d𝑥) ‖𝜌0‖𝐿∞𝛼+𝑑

≤ (
‖‖‖(1 + | ⋅ |)𝜗 𝐾𝛼

𝑡
‖‖‖𝐿1

‖‖‖(1 + | ⋅ |)−𝑑−𝛼+𝜗‖‖‖𝐿1)
‖𝜌0‖𝐿∞𝛼+𝑑

= 𝐶 ‖‖‖(1 + | ⋅ |)𝜗 𝐾𝛼
𝑡
‖‖‖𝐿1

‖𝜌0‖𝐿∞𝛼+𝑑

≤ 𝐶
‖‖‖‖‖(

1 +
𝑑

∑
𝑖=1

|𝑥𝑖|𝜗)
𝐾𝛼
𝑡

‖‖‖‖‖𝐿1
‖𝜌0‖𝐿∞𝛼+𝑑

≤ 𝐶
(
‖‖𝐾

𝛼
𝑡
‖‖𝐿1 +

𝑑

∑
𝑖=1

‖𝑥𝜗𝑖 𝐾
𝛼
𝑡 ‖𝐿1)

‖𝜌0‖𝐿∞𝛼+𝑑

≤ 𝐶 (1 + 𝑡
𝜗
𝛼) ‖𝜌0‖𝐿∞𝛼+𝑑 , (3.39)

where the last line is due to application of Lemma 2.17 as 𝜗 < 𝛼.

Moreover, from Lemma 2.17, as 𝜗 < 𝛼 + 1, we see that ∇𝐾𝛼
𝑡 and 𝑥𝜗𝑖 ∇𝐾𝛼

𝑡 ∈ 𝐿1(ℝ𝑑) for
1 ≤ 𝑖 ≤ 𝑑 and 𝑡 > 0. Then, similarly to the calculation of (3.39), as (𝜌∇𝑐)(⋅, 𝑡) ∈ 𝐿∞𝛼+𝑑(ℝ𝑑) for
𝑡 ≥ 0, we obtain

∫
ℝ𝑑
|𝑥 |𝜗∇𝐾𝛼

𝑡−𝑠 ∗ [𝜌(𝑠)∇𝑐(𝑠)]d𝑥 ≤ 𝐶
(
‖‖∇𝐾

𝛼
𝑡
‖‖𝐿1 +

𝑑

∑
𝑖=1

‖𝑥𝜗𝑖 ∇𝐾
𝛼
𝑡 ‖𝐿1)

‖𝜌(𝑠)∇𝑐(𝑠)‖𝐿∞𝛼+𝑑

≤ 𝐶(𝑡−
1
𝛼 + 𝑡

𝜗−1
𝛼 ) ‖𝜌(𝑠)‖𝐿∞𝛼+𝑑 ‖∇𝑐(𝑠)‖𝐿∞ .

Therefore, from the integral formulation (2.7) and prior estimates the result follows.
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Now consider the space 𝐸𝛼+𝑑 introduced in Definition 2.15, we establish the following

proposition:

Proposition 3.20. Let 𝑑 ≥ 2, 𝛼 ∈ (1, 2] and 𝛽 ∈ (1, 𝑑]. Then, for every initial condition 𝜌0 ∈
𝐸𝛼+𝑑(ℝ𝑑) and ∇𝑐0 ∈ 𝐿∞(ℝ𝑑), there exist 𝑇 = 𝑇 (‖𝜌0‖𝐸𝛼+𝑑 , ‖∇𝑐0‖𝐿∞) and a unique local mild solution

(𝜌,∇𝑐) to system (3.1) in [0, 𝑇 ], such that 𝜌 ∈ 𝐶([0, 𝑇 ], 𝐸𝛼+𝑑(ℝ𝑑)) and ∇𝑐 ∈ 𝐶([0, 𝑇 ] , 𝐿∞(ℝ𝑑)).
Moreover, if ∇𝑐0 ∈ 𝐿𝑟(ℝ𝑑), then ∇𝑐 ∈ 𝐶([0, 𝑇 ] , 𝐿𝑟(ℝ𝑑)), for 1 ≤ 𝑟 ≤ ∞. Furthermore, if 𝑐0 ∈
𝑊 1,𝑟(ℝ𝑑), then 𝑐 ∈ 𝐶([0, 𝑇 ] , 𝑊 1,𝑟(ℝ𝑑)).

Proof. The proof follows the same steps of Proposition 3.19.

Remark 3.21. Note that, from Remark 2.21, the solution provided by Proposition 3.20 belongs to

the space 𝑀𝜗, introduced in Definition 2.18.
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Chapter 4

Chemotaxis and Reactions

This chapter is part of the research internship conducted at Duke University under the su-

pervision of Professor Dr. Alexander Kiselev. During this period, we focused on the analytical

study of partial differential equations modeling chemotaxis and reactions. These mechanisms

are fundamental biological processes and are often intricately interconnected, with chemo-

taxis playing a crucial role in maintaining and accelerating reactions. The research aimed to

extend the investigation initiated in the work of Kiselev et al. [48] by examining the impact of

chemotactic attraction on reproduction and other processes. For that, we considered a partial

differential equation, with a single density function, that includes advection, chemotaxis, ab-

sorbing reaction, and diffusion, incorporating the fractional Laplacian Λ𝛼 . Thus, we delve into

the model describe by (2.2), focusing on the specific case where 𝑓 (𝜌,∇𝜌) = −𝑢 ⋅∇𝜌− 𝜖𝜌𝑞 , 𝛾 = 0

and 𝛽 = 2. The following introduction provides a biological and mathematical interpretation

of this model.

4.1 Introduction

Several variations of the Keller-Segel model have been proposed to explore chemotaxis in

conjunction with other phenomena, such as biological reactions. In that context, Kiselev et al.

[48] investigated the role of chemotaxis in enhancing biological reactions, focusing on coral

broadcast spawning, a fertilization strategy adopted by various benthic invertebrates, such as

sea urchins, anemones, and corals. In this process, males and females release sperm and egg

gametes into the surrounding flow, and the chemotaxis appears as the eggs release a chemical

that attracts sperm.
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The mathematical model analyzed by Kiselev et al. [48] is a modification of the minimal

model (see Section 1.2.1), including advection and absorbing reaction, in which the approxi-

mation to one equation was based on the assumption that the chemical diffusion is much faster

than the diffusion of gamete densities. Another simplification in this model is the assumption

that sperm and egg gametes have identical densities, leading to a single density function 𝜌 ≥ 0

as follows:
⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝜕𝑡𝜌 + 𝑢 ⋅ ∇𝜌 = Δ𝜌 − 𝜒∇ ⋅ (𝜌∇ (−Δ)−1 𝜌) − 𝜖𝜌𝑞 , 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,

𝜌(𝑥, 0) = 𝜌0(𝑥), 𝑥 ∈ ℝ𝑑 , 𝑑 ≥ 2,
(4.1)

where 𝑢 = 𝑢(𝑥, 𝑡) is a given vector field modeling the ambient ocean flow (𝑢 is divergence-

free, regular, and prescribed, independent of 𝜌), ∇ (−Δ)−1 𝜌 is given by (2.9), and the term

(−𝜖𝜌𝑞) models the reaction (fertilization), with the parameter 𝜖 regulating the strength of the

fertilization process. They pointed out that the value of 𝜖 is small because an egg gets fertilized

only if a sperm attaches to a certain limited area on its surface. The model does not track the

reaction production – fertilized eggs.

We extend the investigation initiated by Kiselev et al. [48] by examining the impact of

chemotactic attraction on reproduction and other processes in the context of anomalous dif-

fusion of gamete densities. To this purpose, we consider a modified single partial differential

equation modeling a fertilization process,
⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝜕𝑡𝜌 + 𝑢 ⋅ ∇𝜌 = −Λ𝛼𝜌 − 𝜒∇ ⋅ (𝜌∇ (−Δ)−1 𝜌) − 𝜖𝜌𝑞 , 𝛼 ∈ (1, 2]

𝜌(𝑥, 0) = 𝜌0(𝑥), 𝑥 ∈ ℝ𝑑 𝑑 ≥ 2.
(4.2)

As mentioned in Section 1.3, the inclusion of the fractional Laplacian, Λ𝛼 = (−Δ)𝛼/2,

is motivated by experimental evidence supporting the efficacy of anomalous diffusion mod-

els, particularly in scenarios with sparse targets. The fractional Laplacian accommodates the

nonlocal nature of superdiffusion processes, providing, in some cases, a more accurate repre-

sentation than traditional diffusion models.

To study the chemotactic attraction effect on reproduction and other biological processes,

we analyze the behavior of the total fraction of unfertilized eggs by time 𝑡 given by equation

(2.3). From Remark 2.1, we can see that, if 𝜌 ≥ 0, 𝑚(𝑡) is a monotone decreasing function, as

(2.4) turns into
d
d𝑡
‖𝜌(⋅, 𝑡)‖𝐿1 = −𝜖∫

ℝ𝑑
𝜌𝑞 d𝑥. (4.3)
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We seek to understand how fertilization can be efficient in chemotactic and chemotaxis-free

scenarios. Note that high-efficiency fertilization corresponds to 𝑚(𝑡) becoming small over

time, as almost all egg gametes are fertilized.

Furthermore, we prove the existence of solution for any initial condition sufficiently reg-

ular, emphasizing that the presence of an additional negative reaction term −𝜖𝜌𝑞 with 𝑞 > 2

prevents the solution from losing regularity in finite time, as proved by Kiselev et al. [48] for

model (4.1). It is important to note that the classical parabolic-elliptic Keller-Segel system (1.3)

with 𝛾 = 0, for 𝑑 ≥ 2, does not follow the same dynamics. As mentioned in Section 1.2.2, this

system exhibits critical behavior in 𝐿𝑑/2(ℝ𝑑), i. e., a small initial condition in the 𝐿𝑑/2(ℝ𝑑) space

ensures global well-posedness, whereas a large initial condition leads to blow-up in finite time.

In particular, for 𝑑 = 2, solutions exist globally in time for𝑚0 < 8𝜋/𝜒 , whereas blow-up occurs

in finite time for 𝑚0 > 8𝜋/𝜒 [18, 66].

This critical behavior also holds for the nonlocal parabolic-elliptic Keller-Segel system

(1.6) with 𝛾 = 0 and 1 < 𝛼 < 2, for which the existence of blowing-up solutions was proved

(see [11] for 𝛽 ∈ (1, 𝑑], and [9, 55] for 𝛽 = 2). In this case, Biler et al. [11] proved that the

system exhibits critical behavior in 𝐿𝑑/(𝛼+𝛽−2)(ℝ𝑑) space.

4.2 Global Existence of smooth solutions

As in Chapter 3, we use the Duhamel’s principle to write system (4.2) in its integral form.

Specifically, we look at equation (2.7) with 𝑓 (𝜌,∇𝜌) = −𝑢 ⋅ ∇𝜌 − 𝜖𝜌𝑞 , and equation (2.9) with

𝛾 = 0 and 𝛽 = 2. This leads to the following formulation:

𝜌(𝑥, 𝑡) = 𝐾𝛼
𝑡 ∗ 𝜌0(𝑥) + ∫

𝑡

0
𝐾𝛼
𝑡−𝑟 ∗ (−∇ ⋅ (𝑢𝜌) − 𝜖𝜌𝑞 + 𝜒∇ ⋅ (𝜌∇Δ−1𝜌)) d𝑟 , (4.4)

where 𝐾𝛼
𝑡 (𝑥) is defined by (1.17). As highlighted in Definition 2.5, a solution to (4.4) is referred

to as the mild solution to the system (4.2).

The approach employed in this section to establish the global existence of smooth solu-

tions closely follows the methodology outlined by Kiselev et al. [48]. We first establish local

well-posedness of a mild solution using the standard fixed-point procedure for the mapping

(2.13), which takes the form

𝑡(𝜌) ≡ ∫
𝑡

0
𝐾𝛼
𝑡−𝑟 ∗ (−∇ ⋅ (𝑢𝜌) − 𝜖𝜌𝑞 + 𝜒∇ ⋅ (𝜌∇Δ−1𝜌)) d𝑟
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in the Banach space 𝑋 𝑇
𝑠,𝜗(ℝ𝑑) ≡ 𝐶([0, 𝑇 ], 𝐾𝑠,𝜗(ℝ𝑑)), where 𝑇 > 0 is chosen sufficiently small and

𝐾𝑠,𝜗(ℝ𝑑) is the Banach space defined by the norm ‖𝜑‖𝐾𝑠,𝜗 = ‖𝜑‖𝑀𝜗 + ‖𝜑‖𝐻 𝑠 , with 𝑠 ≥ 0, 𝛼 ∈ (1, 2],

0 ≤ 𝜗 < 𝛼, 𝐻 𝑠(ℝ𝑑) the standard Sobolev space, and 𝑀𝜗(ℝ𝑑) introduced in Definition 2.18.

Subsequently, we demonstrate control over the growth of solution norms, leading to the

proof of global well-posedness.

Remark 4.1. Throughout this chapter, the vector field 𝑢 = 𝑢(𝑥, 𝑡), modeling the ambient ocean

flow, is assumed to belong to 𝐶∞([0,∞) × ℝ𝑑). By this, we mean that 𝑢 is not only infinitely

differentiable on [0,∞) × ℝ𝑑 but also that 𝑢 and all its derivatives are uniformly bounded over

(𝑥, 𝑡) ∈ ℝ𝑑 ×[0, 𝑇 ], for every 𝑇 > 0. This definition is tailored for our purposes and differs from the

standard interpretation of a function on 𝐶∞([0,∞) × ℝ𝑑). For clarity, we define the norm ‖𝑢‖𝑠 as

‖𝑢‖𝑠 = ∑
|𝜅|≤𝑠

sup
(𝑥,𝑡)∈ℝ𝑑×[0,𝑇 ]

|𝜕𝜅𝑢(𝑥, 𝑡)| ,

where 𝜅 is a multi-index, with this definition holding for every 𝑇 > 0.

Lemma 4.2. Assume 𝑢 ∈ 𝐶∞([0,∞) × ℝ𝑑) satisfies ∇ ⋅ 𝑢 = 0. Let 𝑠 and 𝑞 be positive integers,

where 𝑠 > 𝑑/2 + 1, and let 𝛼 and 𝜗 be such that 𝛼 ∈ (1, 2], and 0 ≤ 𝜗 < 𝛼. Then, for any

𝑓 , 𝑔 ∈ 𝑋 𝑇
𝑠,𝜗(ℝ𝑑), we have

‖𝑇 (𝑓 ) − 𝑇 (𝑔)‖𝑋 𝑇
𝑠,𝜗
≤ Θ‖𝑓 − 𝑔‖𝑋 𝑇

𝑠,𝜗
, (4.5)

where, for 𝑇 ≤ 1, we have

Θ ≤ 𝐶(𝑑, 𝑞, 𝜗, 𝜖, 𝜒 ) max
0≤𝑡≤𝑇 (‖𝑢(⋅, 𝑡)‖𝐶

𝑠 + ‖𝑓 (⋅, 𝑡)‖𝑞−1𝐾𝑠,𝜗 + ‖𝑔(⋅, 𝑡)‖𝑞−1𝐾𝑠,𝜗 + ‖𝑓 (⋅, 𝑡)‖𝐾𝑠,𝜗 + ‖𝑔(⋅, 𝑡)‖𝐾𝑠,𝜗) 𝑇
𝛼−1
𝛼 .

Proof. Consider

𝑡(𝑓 ) − 𝑡(𝑔) = ∫
𝑡

0
𝐾𝛼
𝑡−𝑟 ∗ (∇(𝑢(𝑓 − 𝑔)) − 𝜖 (𝑓 𝑞 − 𝑔𝑞) + 𝜒∇ ⋅ (𝑓 ∇Δ−1𝑓 − 𝑔∇Δ−1𝑔)) d𝑟 .

Using Lemmas 2.19, 2.11 and 2.23, and since 𝛼 > 1, we derive (4.5) as follows

‖𝑡(𝑓 ) − 𝑡(𝑔)‖𝐾𝑠,𝜗 ≤ 𝐶 ∫
𝑡

0
[((𝑡 − 𝑟)−1/𝛼 + (𝑡 − 𝑟)(𝜗−1)/𝛼) (‖𝑢‖𝐶𝑠 + ‖𝑓 ‖𝐾𝑠,𝜗 + ‖𝑔‖𝐾𝑠,𝜗)

+ (1 + (𝑡 − 𝑟)𝜗/𝛼) (‖𝑓 ‖
𝑞−1
𝐾𝑠,𝜗 + ‖𝑔‖𝑞−1𝐾𝑠,𝜗)] ‖𝑓 − 𝑔‖𝐾𝑠,𝜗d𝑟

≤ 𝐶 [(𝑡
𝛼−1
𝛼 + 𝑡

𝛼−1+𝜗
𝛼 )max

0≤𝑟≤𝑡 (‖𝑢‖𝐶
𝑠 + ‖𝑓 ‖𝐾𝑠,𝜗 + ‖𝑔‖𝐾𝑠,𝜗)

+(𝑡 + 𝑡
𝜗+𝛼
𝛼 )max

0≤𝑟≤𝑡 (‖𝑓 ‖
𝑞−1
𝐾𝑠,𝜗 + ‖𝑔‖𝑞−1𝐾𝑠,𝜗)]max

0≤𝑟≤𝑡
‖𝑓 − 𝑔‖𝐾𝑠,𝜗 ,

and considering 𝑇 ≤ 1 we can neglect the higher powers of 𝑡, yielding the estimate for Θ.

In a standard way, the existence of a local solution is implied by Lemma 4.2 through the

contraction mapping principle (see Section 2.2.1). This leads to the following theorem.
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Theorem 4.3. Consider positive integers 𝑞 and 𝑠 such that 𝑠 > 𝑑/2+1. Let 𝛼 ∈ (1, 2], 0 ≤ 𝜗 < 𝛼,
and assume 𝑢 ∈ 𝐶∞([0,∞) × ℝ𝑑) with ∇ ⋅ 𝑢 = 0. Additionally, suppose 𝜌0 ∈ 𝐾𝑠,𝜗(ℝ𝑑). Then, there
exists 𝑇 = 𝑇 (𝑞, 𝑑, 𝑢, 𝑠, 𝜖, 𝜒 , 𝛼, ‖𝜌0‖𝐾𝑠,𝜗) such that equation (4.2) has a unique solution 𝜌 ∈ 𝑋 𝑇

𝑠,𝜗

satisfying 𝜌(𝑥, 0) = 𝜌0(𝑥).

Remark 4.4. Higher regularity of the solution in space and time — implying, in particular,

𝜌 ∈ 𝐶((0, 𝑇 ], 𝐻𝑚(ℝ𝑑)) for every 𝑚 > 0 — follows from Theorem 4.3 and parabolic regularity

estimates applied iteratively [26, 37].

Remark 4.5. Note that, from Lemma 4.2, the value of Θ depends on the 𝐻 𝑠(ℝ𝑑) and 𝑀𝜗(ℝ𝑑)
norms of functions in 𝑋 𝑇

𝜗,𝑠(ℝ𝑑). Therefore, under the conditions of Theorem 4.3, if there is a control

over the growth of the 𝐻 𝑠(ℝ𝑑) and𝑀𝜗(ℝ𝑑) norms of the solution, the time existence of the solution

can be extended through iterative applications of local results. Hence, to prove global existence of

smooth solutions, we can establish a global a priori estimate on ‖𝜌(⋅, 𝑡)‖𝐻 𝑠 and ‖𝜌(⋅, 𝑡)‖𝑀𝜗 , and then

the local solution can be extended globally to 𝑋 𝑇
𝜗,𝑠(ℝ𝑑) with arbitrary 𝑇 .

To prove the bounds on𝑀𝜗(ℝ𝑑) and𝐻 𝑠(ℝ𝑑) norms of the solutionwe first establish control

of the 𝐿∞(ℝ𝑑) norm.

Lemma 4.6. Assume that 𝜌 is the local solution guaranteed by Theorem 4.3, and 𝑞 > 2. Then,

‖𝜌(⋅, 𝑡)‖𝐿∞ ≤ 𝑁0 ≡ max((𝜒/𝜖)
1
𝑞−2 , ‖𝜌0‖𝐿∞) (4.6)

for all 0 ≤ 𝑡 ≤ 𝑇 .

Proof. For the sake of completeness, we reproduce the proof provided in [48, Lemma 5.6],
adapting it to address the fractional Laplacian. Assume, for contradiction, that the statement
does not hold. Then, there exist constants 𝑁1 > 𝑁0 and 0 < 𝑡1 ≤ 𝑇 such that ‖𝜌 (𝑥, 𝑡1)‖𝐿∞ = 𝑁1

is achieved for the first time, i. e., |𝜌 (𝑥, 𝑡)| ≤ 𝑁1 holds for every 𝑥 and 0 ≤ 𝑡 ≤ 𝑡1.

In this case, there exists a point 𝑥0 such that 𝜌 (𝑥0, 𝑡1) = 𝑁1. Indeed, consider a sequence
𝑥𝑘 such that 𝜌 (𝑥𝑘, 𝑡1) → 𝑁1 as 𝑘 → ∞. If 𝑥𝑘 has finite accumulation points, one of them can
be labeled 𝑥0 and, by continuity, 𝜌 (𝑥0, 𝑡1) = 𝑁1. Alternatively, if 𝑥𝑘 → ∞, we can consider a
subsequence and assume the unit balls 𝐵1 (𝑥𝑘) around these points are disjoint. Then, using a
version of Poincare inequality (e.g., [82]), we find

‖𝜌 − 𝜌̄‖2𝐿∞(𝐵1(𝑥𝑘)) ≤ 𝐶‖𝜌‖2𝐻 𝑠(𝐵1(𝑥𝑘))

and, since ∑𝑘 ‖𝜌‖2𝐻 𝑠(𝐵1(𝑥𝑘)) ≤ 𝐶 (𝑡1) < ∞, it follows that

𝜌̄𝑘 ≡
1

|𝐵1 (𝑥𝑘)| ∫𝐵1(𝑥𝑘)
𝜌𝑑𝑥 𝑘→∞−−−→ 𝑁1.

However, this contradicts the integrability condition ∫ℝ𝑑 |𝜌(𝑥)| (1 + |𝑥 |𝛽) 𝑑𝑥 ≤ 𝐶 (𝑡1).
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Consequently, there exists 𝑥0 such that 𝜌 (𝑥0, 𝑡1) = 𝑁1, representing a maximum (the case
of a minimum is treated similarly). Evaluating the fractional Laplacian at this point, we obtain

Λ𝛼𝜌(𝑥0, 𝑡1) = 𝑐𝑑,𝛼𝑃.𝑉 .∫
ℝ𝑑

𝜌(𝑥0, 𝑡1) − 𝜌(𝑦, 𝑡1)
|𝑥0 − 𝑦 |𝛼+𝑑

d𝑦 ≥ 0 (≤ 0) for all 𝑦 ∈ ℝ𝑑 ,

which implies

𝜕𝑡𝜌 (𝑥0, 𝑡)|𝑡=𝑡1 =(𝑢 ⋅ ∇)𝜌 (𝑥0, 𝑡1) − Λ𝛼𝜌 (𝑥0, 𝑡1) + 𝜒∇𝜌 (𝑥0, 𝑡1) ⋅ ∇Δ−1𝜌 (𝑥0, 𝑡1)

+ 𝜒𝜌 (𝑥0, 𝑡1)2 − 𝜖𝜌 (𝑥0, 𝑡1)𝑞 ≤ 𝜌 (𝑥0, 𝑡1)2 (𝜒 − 𝜖𝜌 (𝑥0, 𝑡1)𝑞−2) .

Therefore, based on the assumption about 𝑁1, we deduce that 𝜕𝑡𝜌 (𝑥0, 𝑡1) < 0, contradict-
ing the definition of 𝑡1.

Next, we prove an upper bound on the growth of the 𝑀𝜗(ℝ𝑑) norm of the solution.

Lemma 4.7. Assume that 𝜌 is the local solution guaranteed by Theorem 4.3. Then, on the interval

of existence, we have the following bound for the growth of the 𝑀𝜗(ℝ𝑑) norm of the solution

‖𝜌(⋅, 𝑡)‖𝑀𝜗 ≤ 𝐶 (1 + 𝑡
𝜗
𝛼) ‖𝜌0‖𝑀𝜗 exp(𝐶 ∫

𝑡

0 [𝜖(1 + (𝑡 − 𝑟)
𝜗
𝛼
) ‖𝜌(⋅, 𝑟)‖𝑞−1𝐿∞

∫
𝑡

0
+((𝑡 − 𝑟)−

1
𝛼 + (𝑡 − 𝑟)

𝜗−1
𝛼
) (‖𝑢(⋅, 𝑟)‖𝐶1 + ‖𝜌(⋅, 𝑟)‖𝐿∞ + ‖𝜌(⋅, 𝑟)‖𝐿1)] d𝑟) . (4.7)

Proof. Note that the following estimates hold:

‖𝑢𝜌‖𝑀𝜗 ≤ ‖𝑢‖𝐶1‖𝜌‖𝑀𝜗 and ‖𝜌𝑞‖𝑀𝜗 ≤ 𝐶‖𝜌‖𝑞−1𝐿∞ ‖𝜌‖𝑀𝜗 . (4.8)

Moreover, from

‖𝜌∇Δ−1𝜌‖𝑀𝜗 = ∫
ℝ𝑑
[|∇Δ−1𝜌|(|𝜌(𝑥)| + |∇𝜌(𝑥)|) + |𝜌(𝑥)|2] (1 + |𝑥 |𝜗) d𝑥

≤ (‖∇Δ−1𝜌‖𝐿∞ + ‖𝜌‖𝐿∞) ‖𝜌‖𝑀𝜗

and (2.38), we obtain

‖𝜌∇Δ−1𝜌‖𝑀𝜗 ≤ 𝐶 (‖𝜌‖𝐿∞ + ‖𝜌‖𝐿1) ‖𝜌‖𝑀𝜗 . (4.9)

Then, applying estimates (2.31) and (2.32) to (4.4), and using (4.8) and (4.9) , we obtain

‖𝜌(⋅, 𝑡)‖𝑀𝜗 ≤ 𝐶 (1 + 𝑡
𝜗
𝛼) ‖𝜌0‖𝑀𝜗 + 𝐶 ∫

𝑡

0 [𝜖(1 + (𝑡 − 𝑟)
𝜗
𝛼
) ‖𝜌(⋅, 𝑟)‖𝑞−1𝐿∞

+((𝑡 − 𝑟)−
1
𝛼 + (𝑡 − 𝑟)

𝜗−1
𝛼
) (‖𝑢(⋅, 𝑟)‖𝐶1 + ‖𝜌(⋅, 𝑟)‖𝐿∞ + ‖𝜌(⋅, 𝑟)‖𝐿1)] ‖𝜌(⋅, 𝑟)‖𝑀𝜗d𝑟 . (4.10)

Now, applying Gronwall’s inequality to (4.10), noticing that (1+ 𝑡𝜗/𝛼) is a non-decreasing
function on 𝑡, we obtain (4.7).

Next, we prove uniform in time bounds on the 𝐻 𝑠(ℝ𝑑) norm of the solution.
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Lemma 4.8. Let 𝜌 be the local solution whose existence is guaranteed by Theorem 4.3 and suppose

‖𝜌(⋅, 𝑡)‖𝐿∞ does not exceed 𝑁0 for all 0 ≤ 𝑡 ≤ 𝑇 . Then, for 𝑠 even, we have

‖𝜌(⋅, 𝑡)‖𝐻 𝑠 ≤ max (‖𝜌0‖𝐻 𝑠 , 𝐶 (𝑢, 𝑑, 𝑞, 𝑠, 𝜒 , 𝜖, 𝑁0)) .

Proof. Here we follow the same steps as in [48, Lemma 5.8]. Applying Δ𝑠/2 to (4.2), multiplying
by Δ𝑠/2𝜌, and integrating, we find

1
2
d
d𝑡
‖𝜌‖2𝐻̇ 𝑠 = ∫

ℝ𝑑
Δ𝑠/2 [(𝑢 ⋅ ∇)𝜌] (Δ𝑠/2𝜌) d𝑥 − ∫

ℝ𝑑
(Δ(𝑠+𝛼)/2𝜌) (Δ𝑠/2𝜌) d𝑥

− 𝜖∫
ℝ𝑑
(Δ𝑠/2𝜌𝑞) (Δ𝑠/2𝜌) d𝑥 + 𝜒 ∫

ℝ𝑑
[∇ ⋅ Δ𝑠/2 (𝜌∇Δ−1𝜌)] (Δ𝑠/2𝜌) d𝑥. (4.11)

Now, using the fact that ∇ ⋅ 𝑢 = 0, for the first integral on the right-hand side of (4.11), we
obtain

||||∫ℝ𝑑
Δ𝑠/2 [(𝑢 ⋅ ∇)𝜌] (Δ𝑠/2𝜌) d𝑥

||||
≤ 𝐶‖𝑢‖𝐶𝑠 ‖𝜌‖2𝐻̇ 𝑠 .

Next, for the second one, we see that

∫
ℝ𝑑
(Δ(𝑠+𝛼)/2𝜌) (Δ𝑠/2𝜌) d𝑥 = ‖𝜌‖2

𝐻̇ 𝑠+ 𝛼2
.

Subsequently, the third integral can be written as a sum of a finite number of terms of the
form ∫ℝ𝑑 𝐷

𝑠𝜌 ∏𝑞
𝑖=1 𝐷𝑠𝑖𝜌 d𝑥 , 𝑠1 + ⋯ + 𝑠𝑞 = 𝑠, 𝑠𝑖 ≥ 0, where 𝐷𝑙 denotes any partial derivative

operator of the 𝑙th order. By Hölder’s inequality, we have
|||||
∫
ℝ𝑑
𝐷𝑠𝜌

𝑞

∏
𝑖=1

𝐷𝑠𝑖𝜌 d𝑥
|||||
≤ ‖𝐷𝑠𝜌‖𝐿2

𝑞

∏
𝑖=1

‖𝐷𝑠𝑖𝜌‖𝐿𝑝𝑖 ,

∑𝑞
𝑖=1 1/𝑝𝑖 = 1/2 . Then, taking 𝑝𝑖 = 2𝑠/𝑠𝑖 and using Gagliardo-Nirenberg inequality, we obtain

‖𝐷𝑠𝑖𝜌‖𝐿2𝑠/𝑠𝑖 ≤ 𝐶‖𝜌‖1−
𝑠𝑖
𝑠

𝐿∞ ‖𝐷𝑠𝜌‖
𝑠𝑖
𝑠
𝐿2 , (4.12)

and hence
||||∫ℝ𝑑

Δ𝑠/2𝜌𝑞Δ𝑠/2𝜌 d𝑥
||||
≤ 𝐶‖𝜌‖𝑞−1𝐿∞ ‖𝜌‖2𝐻̇ 𝑠 .

Additionally, the fourth integral can be written as a sum of a finite number of terms of
the form ∫ℝ𝑑 𝐷

𝑠𝜌𝐷𝑘𝜌𝐷𝑠+2−𝑘Δ−1𝜌 d𝑥 , where 𝑘 = 0,… , 𝑠. The only term one gets from the direct
differentiation that does not appear to be of this form is ∫ℝ𝑑 Δ

𝑠/2𝜌∇Δ𝑠/2𝜌∇Δ−1𝜌 d𝑥 . However,
we find that this term is equal to − 1

2 ∫ℝ𝑑 𝜌 ||Δ
𝑠/2𝜌||

2 d𝑥 through integration by parts. Now,
||||∫ℝ𝑑

𝐷𝑠𝜌𝐷𝑘𝜌𝐷𝑠+2−𝑘Δ−1𝜌 d𝑥
||||
≤ 𝐶‖𝐷𝑠𝜌‖𝐿2‖𝐷𝑘𝜌‖𝐿𝑝1 ‖𝐷𝑠−𝑘𝜌‖𝐿𝑝2 ,

1/𝑝1 + 1/𝑝2 = 1/2, 𝑝2 < ∞, where we used boundedness of Riesz transforms on 𝐿𝑝2(ℝ𝑑),
𝑝2 < ∞. Then, setting 𝑝1 = 2𝑠

𝑘 , 𝑝2 =
2𝑠
𝑠−𝑘 , and using Gagliardo-Nirenberg inequality (4.12) with
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𝑠𝑖 = 𝑘, 𝑠 − 𝑘, we get
||||∫ℝ𝑑

𝐷𝑠𝜌𝐷𝑘𝜌𝐷𝑠+2−𝑘Δ−1𝜌 d𝑥
||||
≤ 𝐶‖𝜌‖𝐿∞‖𝜌‖2𝐻̇ 𝑠 .

Thus, putting all the estimates into (4.11), we find that
1
2
d
d𝑡
‖𝜌‖2𝐻̇ 𝑠 ≤ 𝐶‖𝜌‖𝐿∞‖𝜌‖2𝐻̇ 𝑠 − ‖𝜌‖2

𝐻̇ 𝑠+ 𝛼2
, (4.13)

and from Hölder’s inequality we obtain ‖𝜌‖𝐻̇ 𝑠 ≤ 𝐶‖𝜌‖
𝑠

𝑠+𝛼/2

𝐻̇ 𝑠+ 𝛼2
‖𝜌‖

𝛼/2
𝑠+𝛼/2
𝐿2 . Then, we can rewrite (4.13)

as
1
2
d
d𝑡
‖𝜌‖2𝐻̇ 𝑠 ≤ 𝐶‖𝜌‖𝐿∞‖𝜌‖

2𝑠
𝑠+𝛼/2

𝐻̇ 𝑠+ 𝛼2
‖𝜌‖

𝛼
𝑠+𝛼/2
𝐿2 − ‖𝜌‖2

𝐻̇ 𝑠+ 𝛼2
. (4.14)

Note that, as ‖𝜌‖𝐿2 ≤ ‖𝜌‖1/2𝐿1 ‖𝜌‖
1/2
𝐿∞ < ∞, the differential inequality (4.14) implies the result

of the lemma, since if 𝐶‖𝜌‖𝐿∞‖𝜌‖
2𝑠

𝑠+𝛼/2

𝐻̇ 𝑠+ 𝛼2
‖𝜌‖

𝛼
𝑠+𝛼/2
𝐿2 − ‖𝜌‖2

𝐻̇ 𝑠+ 𝛼2
> 0, then

‖𝜌‖𝐻̇ 𝑠 ≤ ‖𝜌‖𝐻̇ 𝑠+ 𝛼2 < ‖𝜌‖
𝑠−𝛼/2
𝑠

𝐿∞ ‖𝜌‖𝐿2 ≤ 𝐶‖𝜌‖𝐿1𝑁
3
2−

𝛼
2𝑠

0 ,

whereas if 𝐶‖𝜌‖𝐿∞‖𝜌‖
2𝑠

𝑠+𝛼/2

𝐻̇ 𝑠+ 𝛼2
‖𝜌‖

𝛼
𝑠+𝛼/2
𝐿2 − ‖𝜌‖2

𝐻̇ 𝑠+ 𝛼2
≤ 0, then ‖𝜌‖𝐻̇ 𝑠 ≤ ‖𝜌0‖𝐻̇ 𝑠 .

Given the 𝑀𝜗(ℝ𝑑) and 𝐻 𝑠(ℝ𝑑) norms bounds, we proved that the local solution can now

be continued globally, establishing the following theorem:

Theorem 4.9 (Global existence of smooth solutions). Let 𝑞 > 2, 𝑠 > 𝑑/2+1 be integers, 𝛼 ∈
(1, 2], and 𝜗 satisfy 0 ≤ 𝜗 < 𝛼. Assume 𝑢 ∈ 𝐶∞([0,∞) × ℝ𝑑) is divergence free, and 𝜌0 ∈ 𝐾𝑠,𝜗(ℝ𝑑).
Then, there exists a unique solution 𝜌 to equation (4.2) in 𝐶 ([0,∞), 𝐾𝑠,𝜗(ℝ𝑑)) ∩ 𝐶∞ ((0,∞) × ℝ𝑑).

4.2.1 Nonnegative Solution

Since 𝜌 in equation (4.2) describes the densities of sperm and egg gametes, given a nonneg-

ative initial condition, the biological interest lies in nonnegative solutions. In Proposition 2.29,

we prove for a more general system, equation (2.2), with nonnegative initial conditions 𝜌0 ≥ 0,

the solution 𝜌 remains nonnegative, provided they have sufficient regularity. Note that the so-

lutions guaranteed by Theorem 4.3 or Theorem 4.9 possess the required regularity. Therefore,

we can restate Proposition 2.29 for system (4.2) as follows:

Theorem 4.10. Let 𝑞 > 2, 𝑠 > 𝑑/2 + 1 be integers, 𝛼 ∈ (1, 2], and 𝜗 satisfy 0 ≤ 𝜗 < 𝛼. Suppose
that 𝑢 ∈ 𝐶∞([0,∞) × ℝ𝑑) is divergence free and 𝜌0 ∈ 𝐾𝑠,𝜗(ℝ𝑑) is nonnegative. Then, the solution
𝜌 guaranteed by Theorem 4.3 or Theorem 4.9 remains nonnegative for all 𝑥 and 𝑡.
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Proof. Consider Definition A.6, and note that by replacing ∇𝑣 in (2.49) with the divergence-free
vector field 𝑢 we obtain that

∫
ℝ𝑑
𝜌−|𝜌−|𝑝−2𝑢 ⋅ ∇𝜌d𝑥 = 0.

Moreover, for 𝑞 ≥ 1 integer, we obtain
⎧⎪⎪
⎨⎪⎪⎩

0 ≤ − ∫ℝ𝑑 𝜌−|𝜌−|
𝑝−2 𝜌𝑞 d𝑥 ≤ ‖𝜌(⋅, 𝑡)‖𝑞−1𝐿∞ ‖𝜌−(⋅, 𝑡)‖

𝑝
𝐿𝑝 if 𝑞 is even,

− ∫ℝ𝑑 𝜌−|𝜌−|
𝑝−2𝜌𝑞 d𝑥 ≤ 0 if 𝑞 is odd.

(4.15)

Therefore, by setting 𝑝 = 2 the results follows from Proposition 2.29 and Proposition 2.31
(or Remark 2.32).

4.3 Reaction efficiency

In this section, we aim to analyze the dynamics of the total fraction of unfertilized eggs,

denoted as 𝑚(𝑡) and given by (2.3), in both chemotactic and chemotaxis-free scenarios. Our

investigation delves into understanding the impact of chemotaxis on reaction efficiency by

comparing these specific cases.

It is important to emphasize that, for a nonnegative initial condition, the quantity 𝑚(𝑡)

corresponds to the 𝐿1(ℝ𝑑) norm of 𝜌 (Theorem 4.10). We also highlight that 𝑚(𝑡) exhibits a

monotone decreasing behavior. Indeed, by applying Proposition 2.26we can provide a rigorous

justification of this observation.

Proposition 4.11. Consider the nonnegative initial condition 𝜌0 ≥ 0, and let 𝜌 be the solution

provided by Theorem 4.3 or Theorem 4.9. Then, the total fraction of unfertilized eggs by time 𝑡,
𝑚(𝑡), exhibits a monotone decreasing behavior.

Proof. From direct application of Proposition 2.26 we need to prove that 𝜌𝑞(⋅, 𝑡) ∈ 𝐿1(ℝ𝑑) and
𝑣 = −𝑢𝜌+𝜒𝜌∇Δ−1𝜌 ∈ 𝐿1(ℝ𝑑). Note that, ‖𝜌𝑞(⋅, 𝑡)‖𝐿1 ≤ ‖𝜌(⋅, 𝑡)‖𝑞−1𝐿∞ ‖𝜌(⋅, 𝑡)‖𝐿1 and ‖𝑣‖𝐿1 ≤ ‖𝑢‖𝐶1‖𝜌‖𝐿1+
‖∇Δ−1𝜌‖𝐿∞‖𝜌‖𝐿1 ≤ 𝐶 (‖𝑢‖𝐶1 + ‖𝜌‖𝐿∞ + ‖𝜌‖𝐿1) ‖𝜌‖𝐿1 .

Therefore, we establish that

∫
ℝ𝑑
𝜌(𝑥, 𝑡) d𝑥 = ∫

ℝ𝑑
𝜌0(𝑥) d𝑥 − 𝜖∫

𝑡

0
∫
ℝ𝑑
𝜌𝑞(𝑥, 𝑠) d𝑥d𝑠

for every 𝑡 ≥ 0 where the solution exists. Equivalently, we can write equation (4.3).

The following lemma provides an inequality that will be important in establishing a lower

bound for the 𝐿1(ℝ𝑑) norm of 𝜌 in both chemotactic and chemotaxis-free scenarios.
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Lemma 4.12. [29, 39] Let 𝛼 ∈ [0, 2] and 𝑓 ,Λ𝛼𝑓 ∈ 𝐿𝑝(ℝ𝑑). Then, for any 𝑝 ≥ 2, it is true that

∫
ℝ𝑑
|𝑓 |𝑝−2𝑓Λ𝛼𝑓 d𝑥 ≥

2
𝑝 ∫

ℝ𝑑 (
Λ

𝛼
2 |𝑓 |

𝑝
2)

2
d𝑥. (4.16)

4.3.1 Reaction in a Chemotaxis-Free Environment

Here, we establish that, in the chemotaxis-free scenario, there exists a constant 𝐶0 depend-

ing on 𝜖, 𝑞, 𝑑, 𝛼, and 𝜌0 and independent of 𝑢, such that 𝑚(𝑡) ≥ 𝐶0 for all 𝑡 ≥ 0. Additionally,

when 𝜌0, 𝑢 and 𝑞 are fixed, the quantity 𝑚(𝑡) converges to 𝑚0 as 𝜖 → 0. To demonstrate this,

consider equation (4.2) with 𝜒 = 0:
⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝜕𝑡𝜌 + 𝑢 ⋅ ∇𝜌 = −Λ𝛼𝜌 − 𝜖𝜌𝑞 , 𝛼 ∈ (1, 2]

𝜌(𝑥, 0) = 𝜌0(𝑥), 𝑥 ∈ ℝ𝑑 𝑑 ≥ 2.
(4.17)

Note that, by the comparison principle, 𝜌 ≤ 𝑏, where
⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝜕𝑡𝑏 + 𝑢 ⋅ ∇𝑏 = −Λ𝛼𝑏, 𝛼 ∈ (1, 2]

𝑏(𝑥, 0) = 𝜌0(𝑥), 𝑥 ∈ ℝ𝑑 𝑑 ≥ 2.
(4.18)

Also, since 𝜌 ≥ 0, we have

d
d𝑡
‖𝜌(⋅, 𝑡)‖𝐿1 =

d
d𝑡 ∫ℝ𝑑

𝜌(𝑥, 𝑡) d𝑥 = −𝜖∫
ℝ𝑑
𝜌𝑞(𝑥, 𝑡) d𝑥 ≥ −𝜖∫

ℝ𝑑
𝑏𝑞(𝑥, 𝑡) d𝑥.

The behavior of the 𝐿𝑞(ℝ𝑑) norm of 𝑏 can be used for estimating the decay of the 𝐿1(ℝ𝑑)

norm of 𝜌.

Lemma 4.13. There exists 𝐶 = 𝐶(𝑑, 𝛼) (independent of the flow 𝑢) such that

‖𝑏(⋅, 𝑡)‖𝐿2 ≤ min (‖𝑏0‖𝐿2 , 𝐶𝑡−𝑑/2𝛼‖𝑏0‖𝐿1) , ‖𝑏(⋅, 𝑡)‖𝐿∞ ≤ min (‖𝑏0‖𝐿∞ , 𝐶𝑡−𝑑/𝛼‖𝑏0‖𝐿1) . (4.19)

Proof. Consider the Riesz potential 𝐼𝜐 = (−Δ)−𝜐/2 on ℝ𝑑 and let 𝑟 be defined as 1
𝑟
=

1
𝑝
−
𝜐
𝑑
,

where 𝑝 and 𝑟 are related by the Hardy-Littlewood-Sobolev fractional integration theorem.
This theorem, applicable for 0 < 𝜐 < 𝑑 and 1 < 𝑝 < 𝑟 < ∞, establishes the existence of a
constant 𝐶 (dependent solely on 𝑝) such that ‖𝐼𝜐𝑓 ‖𝐿𝑟 ≤ 𝐶‖𝑓 ‖𝐿𝑝 is satisfied for suitable functions.
Setting 𝜐 = 𝛼/2, considering 𝑓 = Λ 𝛼

2 𝑏, and choosing 𝑝 = 2, we derive the inequality ‖𝑏‖
𝐿

2𝑑
𝑑−𝛼

≤
𝐶‖Λ 𝛼

2 𝑏‖𝐿2 for 𝛼 ≠ 𝑑. Moreover, by interpolation inequality for 𝐿𝑝(ℝ𝑑) norms, we see that
‖𝑏‖1+

𝛼
𝑑

𝐿2 ≤ ‖𝑏‖
𝛼
𝑑
𝐿1‖𝑏‖𝐿 2𝑑

𝑑−𝛼
. Therefore,

‖𝑏‖1+
𝛼
𝑑

𝐿2 ≤ 𝐶‖𝑏‖𝛼/𝑑𝐿1 ‖Λ
𝛼
2 𝑏‖𝐿2 . (4.20)
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For 𝛼 = 𝑑 = 2, Nash’s inequality yields (4.20) directly: ‖𝑏‖1+
2
𝑑

𝐿2 ≤ 𝐶‖𝑏‖2/𝑑𝐿1 ‖∇𝑏‖𝐿2 . Then, from
Plancherel theorem and (4.20), we have, for a constant 𝐶,

∫
ℝ𝑑
𝑏Λ𝛼𝑏 d𝑥 = ‖Λ

𝛼
2 𝑏‖2𝐿2 ≥ 𝐶

‖𝑏‖2+
2𝛼
𝑑

𝐿2

‖𝑏‖2
𝛼
𝑑

𝐿1
. (4.21)

Now, we proceed bymultiplying equation (4.18) by the variable 𝑏, integrating the resulting
equation, and using the incompressibility of the velocity field 𝑢 and inequality (4.21) to obtain

1
2
d
d𝑡
‖𝑏‖2𝐿2 ≤ −‖Λ

𝛼
2 𝑏‖2𝐿2 ≤ −𝐶

‖𝑏‖2+
2𝛼
𝑑

𝐿2

‖𝑏‖
2𝛼
𝑑
𝐿1

= −𝐶
‖𝑏‖2+

2𝛼
𝑑

𝐿2

‖𝑏0‖
2𝛼
𝑑
𝐿1

,

with the final step obtained from the conservation of the 𝐿1(ℝ𝑑) norm of 𝑏. Now, setting
𝑧(𝑡) = ‖𝑏(⋅, 𝑡)‖2𝐿2 , we have

𝑧′(𝑡) ≤ −𝐶𝑧(𝑡)1+
𝛼
𝑑 ‖𝑏0‖

− 2𝛼
𝑑

𝐿1 ,

and solving this differential inequality, we find that

𝑧(𝑡) ≤
(

𝛼𝐶𝑡
𝑑‖𝑏0‖2𝛼/𝑑𝐿1

+
1

‖𝑏0‖2𝛼/𝑑𝐿2 )

−𝑑/𝛼

,

implying the first inequality in (4.19).

The second inequality in equation (4.19) emerges via a duality argument using the in-
compressibility of the velocity field 𝑢. This approach involves considering 𝜃(𝑥, 𝑠), which is a
solution to

𝜕𝑠𝜃 + 𝑢(𝑥, 𝑡 − 𝑠) ⋅ ∇𝜃 = −Λ𝛼𝜃, 𝜃(𝑥, 0) = 𝜃0(𝑥) ∈ (ℝ𝑑).

Note that 𝜃(𝑥, 𝑠) also satisfies the first estimate in (4.19), and we have
𝑑
𝑑𝑠 ∫ℝ𝑑

𝑏(𝑥, 𝑠)𝜃(𝑥, 𝑡 − 𝑠) d𝑥 = 0, (4.22)

which stems from the self-adjoint property of Λ𝛼 leading to the equivalence of integrals

∫
ℝ𝑑
Λ𝛼𝑏(𝑥, 𝑠)𝜃(𝑥, 𝑡 − 𝑠) d𝑥 = ∫

ℝ𝑑
𝑏(𝑥, 𝑠)Λ𝛼𝜃(𝑥, 𝑡 − 𝑠) d𝑥.

Then, considering first 𝑠 = 𝑡 and then 𝑠 = 𝑡/2 on (4.22), we obtain

‖𝑏(⋅, 𝑡)‖𝐿∞ = sup
‖𝜃0‖𝐿1=1

||||∫ℝ𝑑
𝑏(𝑥, 𝑡)𝜃0(𝑥) d𝑥

||||

= sup
‖𝜃0‖𝐿1=1

||||∫ℝ𝑑
𝑏(𝑥, 𝑡/2)𝜃(𝑥, 𝑡/2) d𝑥

||||

≤ sup
‖𝜃0‖𝐿1=1

‖𝑏(⋅, 𝑡/2)‖𝐿2‖𝜃(⋅, 𝑡/2)‖𝐿2

≤ sup
‖𝜃0‖𝐿1=1

𝐶(𝑡/2)−𝑑/2𝛼‖𝑏0‖𝐿1(𝑡/2)−𝑑/2𝛼‖𝜃0‖𝐿1

≤ 𝐶(𝑑, 𝛼) 𝑡−𝑑/𝛼‖𝑏0‖𝐿1 .
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Herewe used the first inequality in (4.19) and adjusted𝐶(𝑑, 𝛼). Finally, from theweak parabolic
maximum principle, we have ‖𝑏(⋅, 𝑡)‖𝐿∞ ≤ ‖𝑏0‖𝐿∞ [37, 72, 76].

Lemma 4.14. Assume that 𝜌 solves (4.17) with a smooth, bounded, and divergence-free vector 𝑢,
and 𝜌0 ∈ (ℝ𝑑). Then, for every 𝑡 > 0, we have

‖𝜌(⋅, 𝑡)‖𝐿𝑝
‖𝜌(⋅, 𝑡)‖𝐿1

≤
‖𝜌0‖𝐿𝑝
‖𝜌0‖𝐿1

for all 1 ≤ 𝑝 ≤ ∞.

Proof. Here, for the sake of completeness, we provide a proof similar to the one presented by
Kiselev et al. [48], but considering the Fractional Laplacian. To start, note that for 𝑝 = 1 the
result is immediate. Moving on to the case of 1 < 𝑝 < ∞, we use (4.3) to find

‖𝜌(⋅, 𝑡)‖2𝐿1
d
d𝑡

‖𝜌(⋅, 𝑡)‖𝐿𝑝
‖𝜌(⋅, 𝑡)‖𝐿1

= ‖𝜌(⋅, 𝑡)‖𝐿1
d
d𝑡
‖𝜌(⋅, 𝑡)‖𝐿𝑝 + 𝜖‖𝜌(⋅, 𝑡)‖𝑞𝐿𝑞 ‖𝜌(⋅, 𝑡)‖𝐿𝑝 ,

and from Lemma 4.12, we have
d
d𝑡
‖𝜌(⋅, 𝑡)‖𝐿𝑝 = ‖𝜌(⋅, 𝑡)‖1−𝑝𝐿𝑝 ∫

ℝ𝑑
𝜌𝑝−1 (−𝑢 ⋅ ∇𝜌 − Λ𝛼𝜌 − 𝜖𝜌𝑞) d𝑥

≤ ‖𝜌(⋅, 𝑡)‖1−𝑝𝐿𝑝 (−
2
𝑝
‖Λ𝛼/2𝜌𝑝/2‖2𝐿2 − 𝜖∫

ℝ𝑑
𝜌𝑞+𝑝−1 d𝑥) .

(4.23)

Therefore,

‖𝜌(⋅, 𝑡)‖2𝐿1
d
d𝑡

‖𝜌(⋅, 𝑡)‖𝐿𝑝
‖𝜌(⋅, 𝑡)‖𝐿1

≤ ‖𝜌(⋅, 𝑡)‖1−𝑝𝐿𝑝 [−
2
𝑝
‖𝜌(⋅, 𝑡)‖𝐿1‖Λ𝛼/2𝜌𝑝/2‖2𝐿2

+ 𝜖(‖𝜌(⋅, 𝑡)‖
𝑞
𝐿𝑞 ‖𝜌(⋅, 𝑡)‖

𝑝
𝐿𝑝 − ‖𝜌(⋅, 𝑡)‖𝐿1 ∫

ℝ𝑑
𝜌𝑞+𝑝−1 d𝑥)] . (4.24)

Now, by applying Hölder’s inequality, we can observe that the expression

∫
ℝ𝑑
𝜌𝑞 d𝑥 ∫

ℝ𝑑
𝜌𝑝 d𝑥 − ∫

ℝ𝑑
𝜌 d𝑥 ∫

ℝ𝑑
𝜌𝑞+𝑝−1 d𝑥

is less than or equal to zero. The case 𝑝 = ∞ follows from a limiting procedure, since 𝜌(⋅, 𝑡) ∈
(ℝ𝑑) for all 𝑡.

Theorem 4.15. Let 𝜌 solve (4.17) with a divergence-free vector 𝑢 ∈ 𝐶∞([0,∞) × ℝ𝑑) and initial

data 𝜌0 ≥ 0 ∈ (ℝ𝑑). Assume that 𝑞𝑑 > 𝑑 + 𝛼 and the chemotaxis is absent: 𝜒 = 0. Then there

exists a constant 𝐶0 depending only on 𝜖, 𝑞, 𝑑, 𝛼, and 𝜌0 but not on 𝑢 such that 𝑚(𝑡) ≥ 𝐶0 for all

𝑡 ≥ 0. Moreover, 𝐶0 → 𝑚0 as 𝜖 → 0 while 𝜌0, 𝑢 and 𝑞 are fixed.

Proof. As in [48], the idea here is to show that if the 𝐿1(ℝ𝑑) norm of 𝜌 at some time 𝑡0 is
sufficiently small then, for all times 𝑡 > 𝑡0, the 𝐿1(ℝ𝑑) norm of 𝜌 cannot drop below ‖𝜌(⋅, 𝑡0)‖𝐿1/2.
This shows that 𝜌 cannot tend to zero as 𝑡 → +∞. For this, recall that, for every 𝑡,

d
d𝑡 ∫ℝ𝑑

𝜌(𝑥, 𝑡) d𝑥 = −𝜖∫
ℝ𝑑
𝜌(𝑥, 𝑡)𝑞 d𝑥 ≥ −𝜖∫

ℝ𝑑
𝑏(𝑥, 𝑡)𝑞 d𝑥,
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where 𝑏 is given by (4.18). From Lemma 4.13 and Hölder’s inequality,

∫
ℝ𝑑
𝑏(𝑥, 𝑡)𝑞 d𝑥 ≤ 𝐶min(‖𝜌0‖

𝑞−2
𝐿∞ ‖𝜌0‖2𝐿2 , 𝑡

− 𝑑(𝑞−1)
𝛼 ‖𝜌0‖

𝑞
𝐿1) ≤ 𝐶min(‖𝜌0‖

𝑞−1
𝐿∞ ‖𝜌0‖𝐿1 , 𝑡−

𝑑(𝑞−1)
𝛼 ‖𝜌0‖

𝑞
𝐿1) .

Thus, for every 𝜏 > 0,

∫
∞

𝑡0
∫
ℝ𝑑
𝑏(𝑥, 𝑡)𝑞 d𝑥d𝑡 = ∫

𝑡0+𝜏

𝑡0
∫
ℝ𝑑
𝑏(𝑥, 𝑡)𝑞 d𝑥d𝑡 + ∫

∞

𝑡0+𝜏
∫
ℝ𝑑
𝑏(𝑥, 𝑡)𝑞 d𝑥d𝑡

≤ 𝐶(𝑑, 𝛼)(‖𝜌(⋅, 𝑡0)‖
𝑞−1
𝐿∞ ‖𝜌(⋅, 𝑡0)‖𝐿1𝜏 + ‖𝜌(⋅, 𝑡0)‖

𝑞
𝐿1 ∫

∞

𝑡0+𝜏
(𝑡 − 𝑡0)−

𝑑(𝑞−1)
𝛼 d𝑡) ,

and, as by assumption 𝑞𝑑 > 𝑑 + 𝛼, we have

∫
∞

𝑡0
∫
ℝ𝑑
𝑏(𝑥, 𝑡)𝑞 d𝑥d𝑡 ≤ 𝐶(𝑑, 𝛼, 𝑞)(‖𝜌(⋅, 𝑡0)‖

𝑞−1
𝐿∞ ‖𝜌(⋅, 𝑡0)‖𝐿1𝜏 + ‖𝜌(⋅, 𝑡0)‖

𝑞
𝐿1𝜏

𝑑+𝛼−𝑞𝑑
𝛼 ) . (4.25)

Assume, on the contrary, that the 𝐿1(ℝ𝑑) norm of 𝜌 does go to zero for some 𝑢 and 𝜌0.
Then, consider some time 𝑡0 > 0 when ‖𝜌(⋅, 𝑡0)‖𝐿1 is sufficiently small. By Lemma 4.14 and
(4.25), we see that further decrease of the 𝐿1(ℝ𝑑) norm from that level is bounded as

‖𝜌(⋅, 𝑡0)‖𝐿1 − ‖𝜌(⋅, 𝑡)‖𝐿1 ≤ 𝐶(𝑑, 𝛼, 𝑞)𝜖
(
‖𝜌0‖

𝑞−1
𝐿∞

‖𝜌0‖
𝑞−1
𝐿1

‖𝜌(⋅, 𝑡0)‖
𝑞
𝐿1𝜏 + ‖𝜌(⋅, 𝑡0)‖

𝑞
𝐿1𝜏

𝑑+𝛼−𝑞𝑑
𝛼

)
(4.26)

for all 𝑡 > 𝑡0, 𝜏 > 0. Choosing 𝜏 to minimize expression (4.26), for every 𝑡 > 𝑡0, we find that

‖𝜌(⋅, 𝑡0)‖𝐿1 − ‖𝜌(⋅, 𝑡)‖𝐿1 ≤ 𝐶(𝑑, 𝛼, 𝑞)𝜖‖𝜌(⋅, 𝑡0)‖
𝑞
𝐿1 (

‖𝜌0‖𝐿∞
‖𝜌0‖𝐿1 )

𝑞𝑑−𝑑−𝛼
𝑑

.

If ‖𝜌(⋅, 𝑡)‖𝐿1 → 0 as 𝑡 → +∞, we may choose 𝑡0 so that

𝐶(𝑑, 𝛼, 𝑞)𝜖‖𝜌(⋅, 𝑡0)‖
𝑞−1
𝐿1 (

‖𝜌0‖𝐿∞
‖𝜌0‖𝐿1 )

𝑞𝑑−𝑑−𝛼
𝑑

≤
1
2
. (4.27)

Then we get a contradiction to the assumption that ‖𝜌(⋅, 𝑡)‖𝐿1 → 0 as 𝑡 → +∞, as

‖𝜌(⋅, 𝑡)‖𝐿1 ≥
1
2
‖𝜌(⋅, 𝑡0)‖𝐿1 ≥ 𝐶0 (𝑞, 𝑑, 𝜖, 𝛼, 𝜌0)

for every 𝑡 > 𝑡0, where 𝐶0 in the statement of the theorem can be defined as

𝐶0 (𝑞, 𝑑, 𝜖, 𝛼, 𝜌0) ≡ min
(
1
2
‖𝜌0‖𝐿1 ,

1
2

𝑞
𝑞−1 𝜖

1
𝑞−1𝐶(𝑞, 𝑑, 𝛼)

1
𝑞−1 (

‖𝜌0‖𝐿1
‖𝜌0‖𝐿∞)

1− 𝛼
𝑑(𝑞−1)

)
.

Note that, if 𝜖 → 0 while 𝜌0, 𝑢 and 𝑞 are fixed, we can replace condition ≤ 1
2 in (4.27) with

≤ 𝜅, where 𝜅 can be taken as small as desired, proving the last statement of the theorem.
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4.3.2 Reaction in a Chemotactic Environment

In the chemotactic environment, we prove that the large time limit of the 𝐿1(ℝ𝑑) norm

of 𝜌 tends to zero as chemotaxis coupling increases, with an upper bound independent of 𝜖

(Theorem 4.22). However, we establish lower bounds for the 𝐿1(ℝ𝑑) norm of the solution,

showing that, for each fixed coupling, ‖𝜌(⋅, 𝑡)‖𝐿1 does not go to zero as 𝑡 → ∞, as outlined next.

4.3.2.1 Lower bound for the total fraction of unfertilized eggs

We proceed by setting a lower bound for the 𝐿1(ℝ𝑑) norm of 𝜌.

Theorem 4.16. Let 𝑑 = 2, 𝑞, 𝑠 > 2 be integers, 𝛼 ∈ (1, 2), and 𝜗 satisfy 0 ≤ 𝜗 < 𝛼. Suppose that
𝑢 ∈ 𝐶∞([0,∞) × ℝ𝑑) is divergence free, and 𝜌 solves (4.2) with 𝜌0 ∈ 𝐾𝑠,𝜗(ℝ𝑑) and 𝜌0 ≥ 0. Then,
lim𝑡→∞ ‖𝜌(⋅, 𝑡)‖𝐿1 > 0.

Proof. In order to establish lower bounds on the 𝐿1(ℝ2) norm of the solution 𝜌, let us deduce
estimates on ‖𝜌(⋅, 𝑡)‖𝐿𝑞 . By multiplying (4.2) by 𝜌𝑞−1 and integrating, we obtain

1
𝑞
d
d𝑡 ∫ℝ2

𝜌𝑞d𝑥 = −∫
ℝ2
𝜌𝑞−1Λ𝛼𝜌d𝑥 + 𝜒 ∫

ℝ2
𝜌𝑞−1∇ ⋅ (𝜌∇Δ−1𝜌) d𝑥 − 𝜖∫

ℝ2
𝜌2𝑞−1d𝑥. (4.28)

Note that, from Lemma 4.12, we have

−∫
ℝ2
𝜌𝑞−1Λ𝛼𝜌 d𝑥 ≤ −

2
𝑞
‖Λ𝛼/2𝜌𝑞/2‖2𝐿2 , (4.29)

and using integration by parts, we find

∫
ℝ2
𝜌𝑞−1∇ ⋅ (𝜌∇Δ−1𝜌) d𝑥 = −(𝑞 − 1)∫

ℝ2
𝜌𝑞−1∇𝜌 ⋅ ∇Δ−1𝜌 d𝑥 =

𝑞 − 1
𝑞 ∫

ℝ2
𝜌𝑞+1 d𝑥. (4.30)

Furthermore, from interpolation inequality for 𝐿𝑝(ℝ2) norms, we see that

∫
ℝ2
𝜌𝑞+1 d𝑥 = ‖𝜌𝑞/2‖

2(𝑞+1)
𝑞

𝐿2+
2
𝑞
≤ 𝐶(𝑞, 𝛼)‖𝜌𝑞/2‖

4𝑞
2𝑞−2+𝛼

𝐿
4

2−𝛼
‖𝜌𝑞/2‖

2
𝑞 (

𝛼𝑞−2+𝛼
2𝑞−2+𝛼 )

𝐿
2
𝑞

. (4.31)

Now, employing Hardy-Littlewood-Sobolev fractional integration theorem, we can derive
that

‖𝜌𝑞/2‖
𝐿

4
2−𝛼

≤ 𝐶‖Λ
𝛼
2 𝜌𝑞/2‖𝐿2 . (4.32)

Moreover, by standard interpolation inequality for 𝐿𝑝(ℝ2) norms, we obtain

‖𝜌𝑞/2‖
2
𝑞

𝐿
4

2−𝛼
= ‖𝜌‖

𝐿
2𝑞
2−𝛼

≤ ‖𝜌‖
2−𝛼
2𝑞
𝐿1 ‖𝜌‖

2𝑞−2+𝛼
2𝑞

𝐿∞ . (4.33)

Then, from (4.32) and (4.33), we establish that

‖𝜌𝑞/2‖
4𝑞

2𝑞−2+𝛼

𝐿
4

2−𝛼
= ‖𝜌𝑞/2‖2

𝐿
4

2−𝛼
‖𝜌𝑞/2‖

2(2−𝛼)
2𝑞−2+𝛼

𝐿
4

2−𝛼
≤ 𝐶‖Λ

𝛼
2 𝜌𝑞/2‖2𝐿2‖𝜌‖

(2−𝛼)2
2(2𝑞−2+𝛼)
𝐿1 ‖𝜌‖

2−𝛼
2

𝐿∞ .
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Applying this to (4.31), we can write

∫
ℝ2
𝜌𝑞+1 d𝑥 ≤ 𝐶(𝑞, 𝛼)‖Λ

𝛼
2 𝜌𝑞/2‖2𝐿2‖𝜌‖

(2−𝛼)2
2(2𝑞−2+𝛼)
𝐿1 ‖𝜌‖

2−𝛼
2

𝐿∞ ‖𝜌𝑞/2‖
2
𝑞 (

𝛼𝑞−2+𝛼
2𝑞−2+𝛼 )

𝐿
2
𝑞

≤ 𝐶(𝑞, 𝛼)‖Λ
𝛼
2 𝜌𝑞/2‖2𝐿2‖𝜌‖

(2−𝛼)2
2(2𝑞−2+𝛼)+

𝛼𝑞−2+𝛼
2𝑞−2+𝛼

𝐿1 ‖𝜌‖
2−𝛼
2

𝐿∞ .

Thus, from (4.29), (4.30), and the inequality above, we obtain

𝑞(−∫
ℝ2
𝜌𝑞−1Λ𝛼𝜌d𝑥 + 𝜒 ∫

ℝ2
𝜌𝑞−1∇ ⋅ (𝜌∇Δ−1𝜌) d𝑥) ≤

‖Λ
𝛼
2 𝜌𝑞/2‖2𝐿2 (𝐶(𝑞, 𝛼)𝜒 ‖𝜌‖

𝛼
2 (1+

2
2𝑞−2+𝛼 )

𝐿1 ‖𝜌‖
2−𝛼
2

𝐿∞ − 2) .

Therefore, we can rewrite (4.28) as

d
d𝑡 ∫ℝ2

𝜌𝑞d𝑥 ≤ 𝑁
2−𝛼
2

0 ‖Λ
𝛼
2 𝜌𝑞/2‖2𝐿2 (𝐶(𝑞, 𝛼)𝜒 ‖𝜌‖

𝛼
2 (1+

2
2𝑞−2+𝛼 )

𝐿1 − 2𝑁 − 2−𝛼
2

0 ) − 𝑞𝜖∫
ℝ2
𝜌2𝑞−1d𝑥, (4.34)

where 𝑁0 is a uniform in time upper bound of ‖𝜌(⋅, 𝑡)‖𝐿∞ , i. e., ‖𝜌‖𝐿∞𝑡 𝐿∞𝑥 ∶= ess sup
𝑡∈[0,∞)

‖𝜌(⋅, 𝑡)‖𝐿∞ ≤ 𝑁0.

Note that 𝑁0 = max((𝜒/𝜖)
1
𝑞−2 , ‖𝜌0‖𝐿∞) < ∞ according to Lemma 4.6, and ‖𝜌(⋅, 𝑡)‖𝐿1 is non-

increasing in time. Now supposing that, at some time 𝑡0, 𝐶(𝑞, 𝛼)𝜒 ‖𝜌‖
𝛼
2 (1+

2
2𝑞−2+𝛼 )

𝐿1 drops below
2𝑁 − 2−𝛼

2
0 , we also have

𝐶(𝑞, 𝛼)𝜒 ‖𝜌(⋅, 𝑡)‖
𝛼
2 (1+

2
2𝑞−2+𝛼 )

𝐿1 < 2𝑁 − 2−𝛼
2

0 , ∀ 𝑡 > 𝑡0. (4.35)

Then, for all later times, we get
d
d𝑡 ∫ℝ2

𝜌𝑞d𝑥 ≤ −𝑁
2−𝛼
2

0 ‖Λ
𝛼
2 𝜌𝑞/2‖2𝐿2 , (4.36)

and, again from interpolation inequality for 𝐿𝑝(ℝ2) norms, we obtain

‖𝜌𝑞/2‖𝐿2 ≤ 𝐶(𝑞, 𝛼)‖𝜌𝑞/2‖
2(𝑞−1)
2𝑞−2+𝛼

𝐿
4

2−𝛼
‖𝜌𝑞/2‖

𝛼
2𝑞−2+𝛼

𝐿
2
𝑞

.

Hence, from this and (4.32), we have

‖𝜌𝑞/2‖
1+ 𝛼

2(𝑞−1)
𝐿2 ≤ 𝐶(𝑞, 𝛼)‖Λ

𝛼
2 𝜌𝑞/2‖𝐿2‖𝜌𝑞/2‖

𝛼
2(𝑞−1)

𝐿
2
𝑞

,

which, applied to (4.36), leads to

d
d𝑡 ∫ℝ2

𝜌𝑞 d𝑥 ≤ −𝐶(𝑞, 𝛼) 𝑁
2−𝛼
2

0 (∫ℝ2
𝜌𝑞 d𝑥)

1+ 𝛼
2 (

1
𝑞−1)

(∫ℝ2
𝜌 d𝑥)

− 𝛼
2 (

𝑞
𝑞−1)

. (4.37)

Then, using the fact that ∫
ℝ2
𝜌(𝑥, 𝑡) d𝑥 is monotone decreasing and introducing 𝑧(𝑡) =

‖𝜌(⋅, 𝑡)‖𝑞𝐿𝑞 , we can represent (4.37) as

𝑧′(𝑡) ≤ −𝐶(𝑞, 𝛼) 𝑁
2−𝛼
2

0 𝑧(𝑡)1+
𝛼
2 (

1
𝑞−1)‖𝜌(⋅, 𝑡∗)‖

− 𝛼
2 (

𝑞
𝑞−1)

𝐿1
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for 𝑡∗ ≥ 𝑡0. Solving this differential inequality, we find

𝑧(𝑡) ≤
⎛
⎜
⎜
⎜
⎝

𝐶(𝑞, 𝛼) 𝑁
2−𝛼
2

0 (𝑡 − 𝑡∗)

‖𝜌(⋅, 𝑡∗)‖
𝛼
2 (

𝑞
𝑞−1)

𝐿1

+
1

‖𝜌(⋅, 𝑡∗)‖
𝛼
2 (

𝑞
𝑞−1)

𝐿𝑞

⎞
⎟
⎟
⎟
⎠

− 2
𝛼 (𝑞−1)

,

implying

‖𝜌(⋅, 𝑡)‖𝑞𝐿𝑞 ≤ min(‖𝜌(⋅, 𝑡∗)‖
𝑞
𝐿𝑞 , 𝐶(𝑞, 𝛼) 𝑁

− 2−𝛼
𝛼 (𝑞−1)

0 (𝑡 − 𝑡∗)−
2
𝛼 (𝑞−1)‖𝜌(⋅, 𝑡∗)‖

𝑞
𝐿1) . (4.38)

Next, setting 𝑝 = 𝑞 and 𝑡 > 𝑡0 as in the proof of Lemma 4.14, we can certify that
‖𝜌(⋅, 𝑡)‖𝐿𝑞
‖𝜌(⋅, 𝑡)‖𝐿1

≤
‖𝜌(⋅, 𝑡0)‖𝐿𝑞
‖𝜌(⋅, 𝑡0)‖𝐿1

. (4.39)

Indeed, with chemotaxis, an inequality equivalent to (4.23) can be deduced from (4.34). This
leads to an inequality equivalent to (4.24) whose expression inside square brackets turns out
to be

𝑞−1‖𝜌‖𝐿1‖Λ
𝛼
2 𝜌𝑞/2‖2𝐿2 (𝐶(𝑞, 𝛼)𝜒 ‖𝜌‖

𝛼
2 (1+

2
2𝑞−2+𝛼 )

𝐿1 ‖𝜌‖
2−𝛼
2

𝐿∞ − 2) + 𝜖(‖𝜌‖
2𝑞
𝐿𝑞 − ‖𝜌‖𝐿1 ∫

ℝ2
𝜌2𝑞−1 d𝑥) ,

which, based on assumption (4.35) and Hölder’s inequality, is negative for all 𝑡 > 𝑡0.

Now, for every 𝜏 > 0 and 𝑡∗ ≥ 𝑡0, we obtain

∫
∞

𝑡∗
∫
ℝ2
𝜌𝑞 d𝑥d𝑡 = ∫

𝑡∗+𝜏

𝑡∗
∫
ℝ2
𝜌𝑞 d𝑥d𝑡 + ∫

∞

𝑡∗+𝜏
∫
ℝ2
𝜌𝑞 d𝑥d𝑡

≤ 𝐶(𝑞, 𝛼)(‖𝜌(⋅, 𝑡∗)‖
𝑞
𝐿𝑞𝜏 + 𝑁 − 2−𝛼

𝛼 (𝑞−1)
0 ‖𝜌(⋅, 𝑡∗)‖

𝑞
𝐿1 ∫

∞

𝑡∗+𝜏
(𝑡 − 𝑡∗)−

2(𝑞−1)
𝛼 d𝑡)

≤ 𝐶(𝑞, 𝛼)(‖𝜌(⋅, 𝑡∗)‖
𝑞
𝐿𝑞𝜏 + 𝑁 − 2−𝛼

𝛼 (𝑞−1)
0 ‖𝜌(⋅, 𝑡∗)‖

𝑞
𝐿1𝜏

2+𝛼−2𝑞
𝛼 ) ,

where we use (4.38) and the fact that 𝑞 > 1 + 𝛼
2 . Thus, using (4.39) and Hölder’s inequality, we

see that

‖𝜌(⋅, 𝑡∗)‖𝐿1 − ‖𝜌(⋅, 𝑡)‖𝐿1 ≤ 𝐶(𝑞, 𝛼)𝜖‖𝜌(⋅, 𝑡∗)‖
𝑞
𝐿1 (

‖𝜌(⋅, 𝑡0)‖
𝑞−1
𝐿∞

‖𝜌(⋅, 𝑡0)‖
𝑞−1
𝐿1

𝜏 + 𝑁 − 2−𝛼
𝛼 (𝑞−1)

0 𝜏
2+𝛼−2𝑞

𝛼

)
(4.40)

for all 𝑡 > 𝑡∗ > 𝑡0, and 𝜏 > 0. Subsequently, choosing 𝜏 to minimize expression (4.40), we find,
for every 𝑡 > 𝑡∗ > 𝑡0, that

‖𝜌(⋅, 𝑡∗)‖𝐿1 − ‖𝜌(⋅, 𝑡)‖𝐿1 ≤ 𝐶(𝑞, 𝛼)𝜖𝑁 − 2−𝛼
2

0 ‖𝜌(⋅, 𝑡∗)‖
𝑞
𝐿1 (

‖𝜌(⋅, 𝑡0)‖𝐿∞
‖𝜌(⋅, 𝑡0)‖𝐿1 )

2(𝑞−1)−𝛼
2

.

Then, employing the same argument used in the proof of Theorem 4.15, we obtain

inf
𝑡 ∫

ℝ2
𝜌(𝑥, 𝑡) d𝑥 ≥ min

(
1
2
‖𝜌(⋅, 𝑡0)‖𝐿1 , 𝐶(𝑞, 𝛼) 𝑁

2−𝛼
2(𝑞−1)
0 𝜖−

1
𝑞−1

(
‖𝜌(⋅, 𝑡0)‖𝐿1
‖𝜌(⋅, 𝑡0)‖𝐿∞)

𝑞−(1+𝛼/2)
𝑞−1

)
. (4.41)
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Observe that (4.41) implies lim𝑡→∞ ‖𝜌(⋅, 𝑡)‖𝐿1 > 0, as global well-posedness of the solution
has been established and, from Lemma 4.6,

𝑁
2−𝛼

2(𝑞−1)
0 ‖𝜌(⋅, 𝑡0)‖

− 𝑞−(1+𝛼/2)
𝑞−1

𝐿∞ ≥ 𝑁
− 𝑞−2
𝑞−1

0 > 0.

Additionally, if there exists 𝜌 such that (4.41) is not satisfied, it implies that there is no 𝑡 > 0
for which (4.35) holds. Consequently, once again, lim𝑡→∞ ‖𝜌(⋅, 𝑡)‖𝐿1 > 0.

4.3.2.2 Upper bound for the total fraction of unfertilized eggs

To establish the existence of solutions that blow up for the classical parabolic-elliptic

Keller-Segel model (1.3) with no chemoattractant consumption effect, a virial argument in-

volves analyzing the evolution of the second-order moment 𝑚2(𝑡) = ∫
ℝ𝑑

|𝑥 − 𝑥0|2

2
𝜌(𝑥, 𝑡)d𝑥 ,

where 𝑥0 ∈ ℝ𝑑 , and showing that the ordinary differential equation (ODE) corresponding to

its evolution,
d
d𝑡
𝑚2(𝑡) ≤ ℎ(𝑚(𝑡), 𝑚2(𝑡)), (4.42)

generates a negative solution in finite time given sufficiently large initial data, since, in that

scenario, d𝑚2(𝑡)
d𝑡

< 0. In essence, the objective is to demonstrate that the second-order mo-

ment, initially positive, vanishes for some 𝑡 > 0 [11, 55, 66]. For this classical model, the

function ℎ in (4.42) is explicitly defined as

ℎ(𝑚0, 𝑚2(𝑡)) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

2𝑚0 (1 −
𝜒
8𝜋

𝑚0) , 𝑑 = 2,

𝑚0 (−1 + 𝐶
𝜒𝑚2(𝑡)
(𝜒𝑚0)

𝑑
𝑑−2 )

, 𝑑 > 2,
(4.43)

where 𝑚(𝑡) = 𝑚0, since the total mass 𝑚(𝑡) is conserved over time.

Thus, as mentioned in the literature review (Section 1.2.2), for 𝑑 = 2, if 𝑚0 exceeds 8𝜋/𝜒 ,

it would imply𝑚2(𝑡) becomes negative in finite time, contradicting the non-negative nature of

𝜌. Analogously, for 𝑑 > 2, 𝑚2(𝑡) will decrease for all 𝑡 if 𝜒𝑚2(0) is sufficiently small compared

to (𝜒𝑚0)
𝑑
𝑑−2 , leading to a contradiction. It is important to observe that this smallness condition

on 𝜒𝑚2(0) is inconsistent with the assumption of a sufficiently small norm ‖𝜌0‖𝐿𝑑/2 required for

the global well-posedness outcome.

Kiselev et al. [48] adapted this virial method to establish an upper bound for 𝑚(𝑡) in the

modified model (4.1) when 𝑑 = 2. They observed the following key points:
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1. The ODE associated with the evolution of 𝑚2(𝑡) is intricately linked to the behavior of

𝑚(𝑡) (note that ℎ in (4.42) is a function of 𝑚(𝑡) and 𝑚2(𝑡)). Given that 𝑚(𝑡) is a monotone

decreasing function, it introduces a dynamic element into the ODE, as this may imply

that the ODE undergoes a change in sign as 𝑚(𝑡) decreases. Consequently, despite the

ODE being negative for a sufficiently large𝑚0, there exists a possibility for it to transition

to a positive value, preventing 𝑚2(𝑡) from vanishing;

2. The moment of second order, 𝑚2(𝑡), cannot vanish, as Kiselev et al. [48] established

global regularity for solutions to (4.1) for any initial data.

Hence, assuming ‖𝜌(⋅, 𝑡)‖𝐿1 ≥ 𝑌 for all 𝑡 ∈ [0, 𝜏], in order to prevent the contradiction of

𝑚2 vanishing, the value of 𝑌 had to be restricted to a threshold, providing an upper bound

for 𝑚(𝑡). This threshold did not depend quantitatively on the reaction term, and the only

role the reaction term played was making sure that a smooth decaying solution would occur.

Kiselev et al. [48] highlighted that, on a qualitative level, chemotaxis without reaction would

lead ‖𝜌(⋅, 𝑡)‖𝐿∞ to exhibit a 𝛿 function profile blow-up. In contrast, with a reaction in place,

the growth in the 𝐿∞(ℝ2) norm of the solution was controlled by the balance between the

chemotaxis and the reaction term, as corroborated by the same result described in Lemma 4.6.

The case 0 < 𝛼 < 2 makes this argument inapplicable, as the second moment of a typi-

cal solution to an evolution equation with fractional Laplacian cannot be finite. Li et al. [55]

pointed out that the weight function |𝑥 |2 makes the linear term too strong to be controlled by

the nonlinear part. To overcome this limitation and prove the existence of blowing-up solu-

tions for a nonlocal Keller-Segel equation (1.6) with no chemoattractant consumption effect,

1 < 𝛼 < 2 and 𝛽 ∈ (1, 𝑑], Biler et al. [11] extended the classical method by studying moments

of lower order 𝛾 ∈ (1, 2):

𝑚𝛾(𝑡) = ∫
ℝ𝑑
|𝑥 − 𝑥0|𝛾𝜌(𝑥, 𝑡)d𝑥, 𝑥0 ∈ ℝ𝑑 . (4.44)

They emphasized that, for 𝛼 < 2, the existence of higher-order moments 𝑚𝛾 with 𝛾 ≥ 𝛼

cannot be expected. Even for the linear equation 𝜕𝑡𝜌+(−Δ)𝛼/2 𝜌 = 0, the fundamental solution

𝑝𝛼(𝑥, 𝑡) behaves like 𝑝𝛼(𝑥, 𝑡) ∼ (𝑡𝑑/𝛼 + |𝑥 |𝑑+𝛼/𝑡)
−1, forcing moments with 𝛾 ≥ 𝛼 to be infinite.

Biler et al. [11] then demonstrated the existence of blowing-up solutions by showing the finite-

time extinction of the function (setting 𝑥0 = 0 for simplicity)

𝑤(𝑡) ≡ ∫
ℝ𝑑
𝜑(𝑥)𝜌(𝑥, 𝑡)d𝑥, (4.45)
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where 𝜑(𝑥) is a smooth nonnegative weight function on ℝ𝑑 defined as

𝜑(𝑥) ≡ (1 + |𝑥 |2)
𝛾/2

− 1, (4.46)

with 𝛾 ∈ (1, 𝛼). Biler et al. [11] highlighted that the quantity𝑤(𝑡), defined in (4.45), is essentially

equivalent to the moment 𝑚𝛾 of order 𝛾 of the solution, as for every 𝜀 > 0, a suitably chosen

𝐶(𝜀) > 0 ensures that

𝜑(𝑥) ≤ |𝑥 |𝛾 ≤ 𝜀 + 𝐶(𝜀)𝜑(𝑥) ∀𝑥 ∈ ℝ𝑑 . (4.47)

Note that, in our study, Lemma 4.6 guarantees, as far as 𝑞 > 2, that the balance between

chemotaxis and the reaction term results in a smooth decaying solution, leading to global

regularity of the solutions (Theorem 4.9). As a result, the quantity 𝑚𝛾(𝑡) cannot vanish, even

when the initial condition ‖𝜌0‖𝐿1 is sufficiently large and well-concentrated around a point, i. e.,

𝑚𝛾(0) is small enough. Analysis of the nonlocal Keller-Segel model (1.6) with no chemoattrac-

tant consumption, 1 < 𝛼 < 2 and 𝛽 = 2 shows a behavior contrary to this, as presented in

Section 1.6.1 or in the works of Biler et al. [9, 11].

Therefore, building on the insights of Kiselev et al. [48] and Biler et al. [11], we study

the ODE governing the evolution of 𝑤(𝑡) to establish an upper bound for 𝑚(𝑡) (Theorem 4.22),

which holds regardless of changes in the coupling of the reaction term, 𝜖. Unlike the approach

in [48], we explicitly focus on analyzing the sign of d𝑤/d𝑡 for the initial condition (𝑚0, 𝑤0). To

start, consider the two following lemmas from [11]:

Lemma 4.17. [11] Let 𝛼 ∈ (1, 2), 𝛾 ∈ (1, 𝛼), and 𝜑 be defined as in (4.46). Then, (−Δ)𝛼/2 𝜑 ∈
𝐿∞(ℝ𝑑).

Lemma 4.18. [11] For every 𝛾 ∈ (1, 2], the function 𝜑 defined in (4.46) is locally uniformly

convex on ℝ𝑑 . Moreover, there exists 𝐾 = 𝐾(𝛾) such that the inequality

(∇𝜑(𝑥) − ∇𝜑(𝑦)) ⋅ (𝑥 − 𝑦) ≥
𝐾 |𝑥 − 𝑦 |2

1 + |𝑥 |2−𝛾 + |𝑦 |2−𝛾
(4.48)

holds true for all 𝑥, 𝑦 ∈ ℝ𝑑 .

Remark 4.19. The derivation of inequality (4.48) hinges on the condition 𝛾 > 1, and consequently
𝛼 > 1, since 𝑚𝛾 with 𝛾 ≥ 𝛼 cannot be expected to be finite. Furthermore, it can be established that

𝐾(𝛾) = 𝛾 − 1.

Lemma 4.20. Let 𝛼 ∈ (1, 2), 𝛾 ∈ (1, 𝛼), and 𝜑 be defined as in (4.46). Then, the inequality

||||
∇𝜑(𝑥)
𝛾

||||

𝛾
𝛾−1

≤
2
𝛾
𝜑(𝑥) (4.49)



Chapter 4. Chemotaxis and Reactions 104

holds for all 𝑥 ∈ ℝ𝑑 .

Proof. Note that ∇𝜑(𝑥) = 𝛾 (1 + |𝑥 |2)
𝛾
2−1 𝑥 and both |∇𝜑(𝑥)|

𝛾
𝛾−1 and 𝜑(𝑥) are radially symmetric

functions. Then, the functions 𝐻, 𝐺 ∶ ℝ𝑑\{0} → ℝ defined as

𝐻 (𝑥) =
|𝛾−1∇𝜑(𝑥)|

𝛾
𝛾−1

𝜑(𝑥)
, and 𝐺(𝑥) =

|𝛾−1∇𝜑(𝑥)||𝑥 |
𝜑(𝑥)

are equivalent to the functions ℎ, 𝑔 ∶ ℝ∗
+ → ℝ, defined

ℎ(𝑥) = [(1 + 𝑥2)
𝛾
2−1 𝑥]

𝛾
𝛾−1

(1 + 𝑥2)𝛾/2 − 1
, and 𝑔(𝑥) = (1 + 𝑥2)

𝛾
2−1 𝑥2

(1 + 𝑥2)𝛾/2 − 1
,

respectively.

We observe that ℎ(𝑥) < 𝑔(𝑥). Indeed, this inequality can be expressed as

[(1 + 𝑥2)
𝛾
2−1 𝑥]

𝛾
𝛾−1

< (1 + 𝑥2)
𝛾
2−1 𝑥2

which simplifies to (1 + 𝑥2)
1/2

> 𝑥 , a statement valid for all 𝑥 ∈ ℝ∗
+. Furthermore,

𝑔 ′(𝑥) =
2𝑥 (1 + 𝑥2)

𝛾−4
2

((1 + 𝑥2)
𝛾
2 − 𝛾

2𝑥
2 − 1)

((1 + 𝑥2)
𝛾
2 − 1)

2 < 0 ∀ 𝑥 > 0,

since

(1 + 𝑥2)
𝛾
2 −

𝛾
2
𝑥2 − 1 = (1 + 𝑥2) ((1 + 𝑥2)

𝛾
2−1 −

𝛾
2)

+ (
𝛾
2
− 1) < 0 ∀ 𝑥 > 0,

implying 𝑔(𝑥) ≤ lim𝑥→0 𝑔(𝑥) for all 𝑥 ∈ ℝ∗
+. Finally, since

lim
𝑥→0

𝑔(𝑥) = lim
𝑥→0(

|𝑥 |2

(1 + |𝑥 |2)
𝛾
2 − 1)

L’H= lim
𝑥→0(

2𝑥
𝛾𝑥 (1 + |𝑥 |2)

𝛾
2−1)

=
2
𝛾
,

we conclude that ℎ(𝑥) ≤ 2
𝛾 holds for all 𝑥 ∈ ℝ∗

+, completing the proof.

Proposition 4.21. Let 𝑞 and 𝑠 be integers such that 𝑞, 𝑠 > 2, 𝑑 = 2, 𝛼 ∈ (1, 2), 𝜗 satisfy

0 ≤ 𝜗 < 𝛼, and 𝛾 ∈ (1, 𝜗]. Assume 𝑢 ∈ 𝐶∞([0,∞) × ℝ𝑑) is divergence free, and 𝜌 solves (4.2) with

𝜌0 ≥ 0 ∈ 𝐾𝑠,𝜗(ℝ𝑑). Then the time derivative of 𝑤, defined in (4.45), can be expressed as

d
d𝑡
𝑤(𝑡) ≤ 2𝛿(𝑢)𝜒−𝜇𝑤(𝑡) + ℎ(𝑢)(𝑚,𝑤), (4.50)

where 𝛿(𝑢) equals zero when 𝑢 = 0 and one otherwise, and

ℎ(𝑢)(𝑚,𝑤) = 𝑚(𝑡)(𝐶1 + 𝜒 𝜇(𝛾−1)‖𝑢‖𝛾𝐿∞ − 𝜒𝐶2𝑚(𝑡)
2
𝛾 (𝑚(𝑡) + 2𝑤(𝑡))−

2−𝛾
𝛾
) , (4.51)

with 𝐶1 and 𝐶2 being functions of 𝛾 , and 𝜇 ≥ 0 a parameter to be chosen.
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Proof. By differentiating equation (4.45), we obtain

d
d𝑡
𝑤(𝑡) = ∫

ℝ2
𝜑(𝑥)(𝑢 ⋅ ∇)𝜌 d𝑥 − ∫

ℝ2
𝜑(𝑥) (−Δ)𝛼/2 𝜌 d𝑥+

𝜒 ∫
ℝ2
𝜑(𝑥)∇ ⋅ (𝜌∇Δ−1𝜌) d𝑥 − 𝜖∫

ℝ2
𝜑(𝑥)𝜌𝑞 d𝑥. (4.52)

Notice that all the upcoming integrations by parts are justified for all 𝑡 ≥ 0 by Theorem 4.9.

Then, since 𝑢 is an smooth divergence-free vector field, we have

∫
ℝ2
𝜑(𝑥)(𝑢 ⋅ ∇)𝜌 d𝑥 = −∫

ℝ2
∇𝜑(𝑥) ⋅ 𝑢𝜌 d𝑥,

and applying Young’s inequality and Lemma 4.20, we see that

||||
∇𝜑(𝑥)
𝛾

||||
|𝑢| ≤ 𝜒−𝜇 ||||

∇𝜑(𝑥)
𝛾

||||

𝛾
𝛾−1

+ 𝜒 𝜇(𝛾−1) ((𝛾 − 1)𝛾−1𝛾−𝛾) |𝑢|𝛾 ≤
2
𝛾
𝜒−𝜇𝜑(𝑥) +

𝜒 𝜇(𝛾−1)

𝛾
|𝑢|𝛾 ,

with 𝜇 > 0 to be chosen later. Therefore, we can bound the first term on (4.52) as follows
||||∫ℝ2

∇𝜑(𝑥) ⋅ 𝑢𝜌 d𝑥
||||
≤ 2𝜒−𝜇𝑤(𝑡) + 𝜒 𝜇(𝛾−1)‖𝑢‖𝛾𝐿∞𝑚(𝑡).

Next, from Lemma 4.17, we find

−∫
ℝ2
(−Δ)𝛼/2 𝜌(𝑥, 𝑡)𝜑(𝑥) d𝑥 = −∫

ℝ2
𝜌(𝑥, 𝑡) (−Δ)𝛼/2 𝜑(𝑥) d𝑥 ≤ ‖ (−Δ)𝛼/2 𝜑‖𝐿∞ ∫

ℝ2
𝜌(𝑥, 𝑡) d𝑥,

and for the chemotaxis term, we obtain

∫
ℝ2
𝜑(𝑥)∇ ⋅ (𝜌∇Δ−1𝜌) d𝑥 = −∫

ℝ2
∇𝜑(𝑥) ⋅ (𝜌∇Δ−1𝜌) d𝑥

= −∫
ℝ2×ℝ2

∇𝜑(𝑥) ⋅
𝑥 − 𝑦
|𝑥 − 𝑦 |2

𝜌(𝑥, 𝑡)𝜌(𝑦, 𝑡) d𝑦 d𝑥

= −
1
2 ∫ℝ2×ℝ2

(∇𝜑(𝑥) − ∇𝜑(𝑦)) ⋅ (𝑥 − 𝑦)
𝜌(𝑥, 𝑡)𝜌(𝑦, 𝑡)

|𝑥 − 𝑦 |2
d𝑦 d𝑥,

(4.53)

where in the last step we used the symmetry in the variables 𝑥 and 𝑦. Now observe that

𝑚2 = ∫
ℝ2×ℝ2

𝜌(𝑥, 𝑡)𝜌(𝑦, 𝑡) d𝑥 d𝑦

= ∫
ℝ2×ℝ2

𝜌(𝑥, 𝑡)𝜌(𝑦, 𝑡)
1

(1 + |𝑥 |2−𝛾 + |𝑦 |2−𝛾)𝛾/2
(1 + |𝑥 |2−𝛾 + |𝑦 |2−𝛾)

𝛾/2
d𝑥 d𝑦

= ∫
ℝ2×ℝ2 (

𝜌(𝑥, 𝑡)𝜌(𝑦, 𝑡)
1 + |𝑥 |2−𝛾 + |𝑦 |2−𝛾)

𝛾/2

(𝜌(𝑥, 𝑡)𝜌(𝑦, 𝑡))
2−𝛾
2 (1 + |𝑥 |2−𝛾 + |𝑦 |2−𝛾)

𝛾/2
d𝑥 d𝑦.

Then, by applying the Hölder’s inequality, we obtain

𝑚2 ≤ (∫ℝ2×ℝ2

𝜌(𝑥, 𝑡)𝜌(𝑦, 𝑡)
1 + |𝑥 |2−𝛾 + |𝑦 |2−𝛾

d𝑥 d𝑦)

𝛾
2

(∫ℝ2×ℝ2
𝜌(𝑥, 𝑡)𝜌(𝑦, 𝑡) (1 + |𝑥 |2−𝛾 + |𝑦 |2−𝛾)

𝛾
2−𝛾 d𝑥 d𝑦)

2−𝛾
2

. (4.54)
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From the properties of convex functions, as 𝛾/(2 − 𝛾) > 1, and utilizing the inequality
|𝑥 |𝛾 ≤ 1 + 𝜑(𝑥), we have

(1 + |𝑥 |2−𝛾 + |𝑦 |2−𝛾)
𝛾

2−𝛾 ≤ 𝐶 (1 + |𝑥 |𝛾 + |𝑦 |𝛾) ≤ 𝐶 (1 + 𝜑(𝑥) + 𝜑(𝑦)) ,

for 𝐶 a function of 𝛾 . This implies that

∫
ℝ2×ℝ2

𝜌(𝑥, 𝑡)𝜌(𝑦, 𝑡) (1 + |𝑥 |2−𝛾 + |𝑦 |2−𝛾)
𝛾

2−𝛾 d𝑥 d𝑦 ≤ 𝐶 [𝑚
2 + 2𝑚(∫

ℝ2
𝜑(𝑥)𝜌(𝑥, 𝑡) d𝑥)] .

Thus, back to (4.54), we have

(∫ℝ2×ℝ2

𝜌(𝑥, 𝑡)𝜌(𝑦, 𝑡)
1 + |𝑥 |2−𝛾 + |𝑦 |2−𝛾

d𝑥 d𝑦)

𝛾
2

≥ 𝐶− 2−𝛾
2

𝑚2

(𝑚2 + 2𝑚𝑤(𝑡))
2−𝛾
2
. (4.55)

Now, considering Lemma 4.18, observe that

∫
ℝ2×ℝ2

𝜌(𝑥, 𝑡)𝜌(𝑦, 𝑡)
1 + |𝑥 |2−𝛾 + |𝑦 |2−𝛾

d𝑥 d𝑦 ≤
1
𝐾 ∫

ℝ2×ℝ2
(∇𝜑(𝑥) − ∇𝜑(𝑦)) ⋅ (𝑥 − 𝑦)

𝜌(𝑥, 𝑡)𝜌(𝑦, 𝑡)
|𝑥 − 𝑦 |2

d𝑥 d𝑦.

Then, from (4.55),

∫
ℝ2×ℝ2

(∇𝜑(𝑥) − ∇𝜑(𝑦)) ⋅ (𝑥 − 𝑦)
𝜌(𝑥, 𝑡)𝜌(𝑦, 𝑡)

|𝑥 − 𝑦 |2
d𝑥 d𝑦 ≥ 𝐾𝐶− 2−𝛾

𝛾
𝑚

4
𝛾

(𝑚2 + 2𝑚𝑤(𝑡))
2−𝛾
𝛾
.

Therefore, the chemotaxis term (4.53) can be estimated as

∫
ℝ2
𝜑(𝑥)∇ ⋅ (𝜌∇Δ−1𝜌) d𝑥 ≤ −𝐶2

𝑚(𝑡)
4
𝛾

(𝑚(𝑡)2 + 2𝑚(𝑡)𝑤(𝑡))
2−𝛾
𝛾

≤ −𝐶2𝑚(𝑡)1+
2
𝛾 (𝑚(𝑡) + 2𝑤(𝑡))−

2−𝛾
𝛾 ,

and we can rewrite (4.52) as
d𝑤
d𝑡

≤ 𝑚(𝑡)(𝐶1 + 𝜒 𝜇(𝛾−1)‖𝑢‖𝛾𝐿∞ − 𝜒𝐶2𝑚(𝑡)
2
𝛾 (𝑚(𝑡) + 2𝑤(𝑡))−

2−𝛾
𝛾
) + 2𝜒−𝜇𝑤(𝑡) − 𝜖∫

ℝ2
𝜑(𝑥)𝜌𝑞 d𝑥,

which can be simplified to (4.50).

Theorem 4.22. Let 𝑞 and 𝑠 be integers such that 𝑞, 𝑠 > 2, 𝑑 = 2, 𝛼 ∈ (1, 2), 𝜗 satisfy 0 ≤ 𝜗 < 𝛼,
and 𝛾 ∈ (1, 𝜗]. Suppose 𝑢 ∈ 𝐶∞([0,∞) × ℝ𝑑) is divergence free, and 𝜌 solves (4.2) with 𝜌0 ≥ 0 ∈
𝐾𝑠,𝜗(ℝ𝑑). Then, for all 𝜏 > 0, we have

‖𝜌(⋅, 𝜏)‖𝐿1 < max
{
𝜓

𝛾
2+𝛾𝑤

2
2+𝛾
0 , 𝜓

}
, (4.56)

where

𝜓(𝜒 , 𝑢, 𝜏) =
𝐶1 + ‖𝑢‖𝛾𝐿∞

𝜒𝐶2 (
Θ(𝜏)

𝐶1 + ‖𝑢‖𝛾𝐿∞
+ 1) , Θ(𝜏) =

⎧⎪⎪
⎨⎪⎪⎩

𝜏−1 if 𝑢 = 0

2 (1 − 𝑒−2𝜏)
−1

if 𝑢 ≠ 0,
(4.57)

𝑤0 = 𝑤(0), and 𝐶1, 𝐶2 are functions of 𝛾 .

Remark 4.23. Here 𝐶2 is obtained by multiplying the constant 𝐶2 from (4.51) with 3−
2−𝛾
𝛾 .



Chapter 4. Chemotaxis and Reactions 107

Remark 4.24. Notice that when 𝑢 = 0, if 𝑤0 < 𝐶1
𝜒𝐶2 (

1
𝐶1𝜏

+ 1), the level ‖𝜌(⋅, 𝜏)‖𝐿1 ∼ 𝜒−1 will be

attained in at most 𝜏 ∼ 1. Otherwise, if this condition is not met, the level ‖𝜌(⋅, 𝜏)‖𝐿1 ∼ 𝜒−1 will be

reached in at most 𝜏 ∼ 𝜒
2
𝛾 , while the level ∼ 𝜒

𝛾
2+𝛾 (1/3 < 𝛾/(2 + 𝛾) < 1/2) in at most 𝜏 ∼ 1. Moreover,

for 𝑢 ≠ 0, if𝑤0 < 𝐶1
𝜒𝐶2 (

1
𝐶1𝜏

+ 1), on the time scale 𝜏 ∼ 1 the level ‖𝜌(⋅, 𝜏)‖𝐿1 is ∼ 𝜒−1, and otherwise,

the level ‖𝜌(⋅, 𝜏)‖𝐿1 is ∼ 𝜒
𝛾

2+𝛾 .

Proof. Observe that, since 𝜌0 ∈ 𝐾𝑠,𝜗(ℝ𝑑) and 𝛾 ≤ 𝜗, the integral 𝑤0 = ∫ℝ2 𝜑(𝑥)𝜌0(𝑥) d𝑥 is well-
defined and finite. Furthermore, from the ordinary differential inequality (4.50), we establish
that

d
d𝑡 (

𝑒−2𝛿(𝑢)𝜒
−𝜇 𝑡𝑤(𝑡)) ≤ 𝑒−2𝛿(𝑢)𝜒

−𝜇 𝑡ℎ(𝑢)(𝑚,𝑤), (4.58)

where ℎ(𝑢) and 𝛿(𝑢) are defined in Proposition 4.21.

To proceed, we divide the analysis into two cases.

∙ Case 1 (𝑢 = 0): Substituting 𝑢 = 0 into (4.58) simplifies the differential inequality to

d
d𝑡
𝑤(𝑡) ≤ ℎ(𝑚,𝑤), (4.59)

where ℎ(𝑚,𝑤) ≡ ℎ(𝑢=0)(𝑚,𝑤).

Next, assume the initial condition (𝑚0, 𝑤0) satisfies ℎ (𝑚0, 𝑤0) < 0. By the continuity of ℎ
with respect to𝑚 and𝑤, and the continuity of𝑤(𝑡) and𝑚(𝑡), there exists an open neighborhood
𝑈1 of 𝑡 = 0 such that, for all 𝑡 ∈ 𝑈1,

|ℎ (𝑚(𝑡), 𝑤0) − ℎ (𝑚0, 𝑤0)| < −
1
2
ℎ (𝑚0, 𝑤0) ,

implying that ℎ (𝑚(𝑡), 𝑤0) < ℎ (𝑚0, 𝑤0) /2 in 𝑈1, and open neighborhood 𝑈2 of 𝑡 = 0 such that
ℎ(𝑚(𝑡), 𝑤(𝑡)) < 0 for all 𝑡 ∈ 𝑈2. Choosing 𝜏 ∈ 𝑈1 ∩ 𝑈2 ensures ℎ(𝑚(𝑡), 𝑤(𝑡)) < 0 for all 𝑡 ∈ [0, 𝜏]
and ℎ(𝑚(𝜏), 𝑤0) < 0.

Since ℎ(𝑚(𝑡), 𝑤(𝑡)) < 0 on [0, 𝜏], it follows from (4.59) that 𝑤(𝑡) decreases, implying 𝑤0 ≥
𝑤(𝑡) on this interval. Moreover, as 𝑚(𝑡) is monotonically decreasing, 𝑚(𝜏) ≤ 𝑚(𝑡) for every
𝑡 ∈ [0, 𝜏]. As a result,

ℎ(𝑚(𝑡), 𝑤(𝑡)) ≤ ℎ(𝑚(𝜏), 𝑤0),

for all 𝑡 ∈ [0, 𝜏]. To substantiate this, we analyze the partial derivatives of ℎ(𝑚,𝑤):

𝜕𝑚ℎ(𝑚,𝑤) =
ℎ(𝑚,𝑤)
𝑚

− 𝐶2𝜒𝑚
2
𝛾 (𝑚 + 2𝑤)−

2
𝛾

(𝑚 +
4𝑤
𝛾 ) , (4.60)

𝜕𝑤ℎ(𝑚,𝑤) = 2𝛾−1𝐶2𝜒𝑚
2
𝛾 +1 (2 − 𝛾) (𝑚 + 2𝑤)−

2
𝛾 . (4.61)

Notably, 𝜕𝑤ℎ(𝑚,𝑤) > 0 and, as ℎ(𝑚,𝑤) < 0 holds for all 𝑡 ∈ [0, 𝜏], 𝜕𝑚ℎ(𝑚,𝑤) < 0 in
this interval. These derivative signs indicate that ℎ decreases as 𝑤 decreases, and, over the
interval [0, 𝜏], ℎ increases as 𝑚 decreases. Thus, the inequalities 𝑤0 ≥ 𝑤(𝑡) and 𝑚(𝜏) ≤ 𝑚(𝑡)
for every 𝑡 ∈ [0, 𝜏] imply ℎ(𝑚(𝑡), 𝑤(𝑡)) ≤ ℎ(𝑚(𝜏), 𝑤0). In a more direct argument, we can
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compare −ℎ(𝑚(𝑡), 𝑤(𝑡)) and −ℎ(𝑚(𝜏), 𝑤0) for 𝑡 ∈ [0, 𝜏] using the relations −ℎ(𝑚(𝑡), 𝑤(𝑡)) > 0,
𝑤0 ≥ 𝑤(𝑡) and 𝑚(𝜏) ≤ 𝑚(𝑡) in this interval:

−ℎ (𝑚(𝑡), 𝑤(𝑡)) = 𝑚(𝑡)
(
𝜒𝐶2𝑚(𝑡)(1 +

2𝑤(𝑡)
𝑚(𝑡) )

− 2−𝛾
𝛾

− 𝐶1)

≥ 𝑚(𝜏)
(
𝜒𝐶2𝑚(𝜏)(1 +

2𝑤0

𝑚(𝜏))

− 2−𝛾
𝛾

− 𝐶1)
= −ℎ (𝑚(𝜏), 𝑤0) .

Next, integrating equation (4.59) yields the following estimate:

𝑤0 − 𝑤(𝜏) ≥ −∫
𝜏

0
ℎ (𝑚(𝜏), 𝑤0) d𝑡 = −𝜏ℎ (𝑚(𝜏), 𝑤0) .

Thus, we must have −𝜏ℎ (𝑚(𝜏), 𝑤0) < 𝑤0 to avoid the contradiction that 𝑤(𝜏) vanishes, that is,

𝜏𝑚(𝜏) [𝜒𝐶2𝑚(𝜏)
2
𝛾 (𝑚(𝜏) + 2𝑤0)−

2−𝛾
𝛾 − 𝐶1] < 𝑤0, (4.62)

which can be rewritten as

𝑚(𝜏)1+
2
𝛾 <

𝐶1

𝜒𝐶2 (
𝑤0

𝐶1𝜏
+ 𝑚(𝜏)) (𝑚(𝜏) + 2𝑤0)

2−𝛾
𝛾 .

From this, observe that if 𝑚(𝜏) < 𝑤0, we have

𝑚(𝜏) < [
𝐶1

𝜒𝐶2 (
1
𝐶1𝜏

+ 1)]

𝛾
2+𝛾

𝑤
𝛾

2+𝛾
0 (3𝑤0)

2−𝛾
2+𝛾 = [

𝐶1

𝜒𝐶2 (
1
𝐶1𝜏

+ 1)]

𝛾
2+𝛾

𝑤
2

2+𝛾
0 ,

where 3−
2−𝛾
𝛾 is incorporated into 𝐶2.

On the other hand, if 𝑚(𝜏) ≥ 𝑤0, the inequality becomes

𝑚(𝜏)1+
2
𝛾 < [

𝐶1

𝜒𝐶2 (
1
𝐶1𝜏

+ 1)]𝑚(𝜏) (3𝑚(𝜏))
2−𝛾
𝛾 = [

𝐶1

𝜒𝐶2 (
1
𝐶1𝜏

+ 1)]𝑚(𝜏)
2
𝛾 ,

where 3−
2−𝛾
𝛾 is again absorbed into 𝐶2. Consequently,

𝑚(𝜏) <
𝐶1

𝜒𝐶2 (
1
𝐶1𝜏

+ 1) .

Finally, observe that if the initial assumption, ℎ(𝑚0, 𝑤0) < 0, is not satisfied, the result still
follows since 𝑚(𝑡) ≤ 𝑚0 for all 𝑡 > 0, and ℎ(𝑚0, 𝑤0) ≥ 0 implies 𝑚1+ 2

𝛾
0 ≤ 𝐶1

𝜒𝐶2
𝑚0 (𝑚0 + 2𝑤0)

2−𝛾
𝛾 .

Then, repeating the previous steps and incorporating 3−
2−𝛾
𝛾 into 𝐶2, we find that if 𝑚0 < 𝑤0,

then 𝑚0 < (
𝐶1
𝜒𝐶2)

𝛾
2+𝛾
𝑤

2
2+𝛾
0 . Otherwise, if 𝑚0 ≥ 𝑤0, we conclude that 𝑚0 ≤ 𝐶1

𝜒𝐶2
.

∙ Case 2 (𝑢 ≠ 0): Assume the initial condition (𝑚0, 𝑤0) satisfies ℎ(𝑢) (𝑚0, 𝑤0) < 0. As
proved in Case 1, it follows that there exists a time 𝜏 > 0 such that

ℎ(𝑢) (𝑚(𝜏), 𝑤0) < 0 and ℎ(𝑢) (𝑚(𝑡), 𝑤(𝑡)) < 0,

for all 𝑡 ∈ [0, 𝜏].
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Moreover, since the partial derivatives of ℎ(𝑢) with respect to 𝑚 and 𝑤 are given by equa-
tions (4.60) and (4.61), with 𝐶1 replaced by 𝐶1 + 𝜒 𝜇(𝛾−1)‖𝑢‖𝛾𝐿∞ , it follows that

ℎ(𝑢)(𝑚(𝑡), 𝑤(𝑡)) ≤ ℎ(𝑢)(𝑚(𝜏), 𝑤0)

throughout the interval [0, 𝜏]. This conclusion is justified as in Case 1.

Next, since 𝛿(𝑢) = 1 in (4.58), the time integral of the right-hand side of (4.58) over [0, 𝜏]
satisfies

∫
𝜏

0
𝑒−2𝜒

−𝜇 𝑡𝑚(𝜏) [𝐶1 + 𝜒 𝜇(𝛾−1)‖𝑢‖𝛾𝐿∞ − 𝜒𝐶2𝑚(𝜏)
2
𝛾 (𝑚(𝜏) + 2𝑤0)−

2−𝛾
𝛾
] d𝑡 =

(1 − 𝑒−2𝜒−𝜇𝜏)
2

𝜒 𝜇𝑚(𝜏) [𝐶1 + 𝜒 𝜇(𝛾−1)‖𝑢‖𝛾𝐿∞ − 𝜒𝐶2𝑚(𝜏)
2
𝛾 (𝑚(𝜏) + 2𝑤0)−

2−𝛾
𝛾
] . (4.63)

To avoid contradiction, the following condition must be satisfied:

(1 − 𝑒−2𝜒
−𝜇𝜏) 𝜒 𝜇𝑚(𝜏) [𝜒𝐶2𝑚(𝜏)

2
𝛾 (𝑚(𝜏) + 2𝑤0)−

2−𝛾
𝛾 − (𝐶1 + 𝜒 𝜇(𝛾−1)‖𝑢‖𝛾𝐿∞)] < 2𝑤0. (4.64)

Proceeding similarly to Case 1, inequality (4.64) can be expressed as

𝑚(𝜏)1+
2
𝛾 < (

𝐶1 + 𝜒 𝜇(𝛾−1)‖𝑢‖𝛾𝐿∞
𝜒𝐶2 )

(
2𝑤0

(𝐶1 + 𝜒 𝜇(𝛾−1)‖𝑢‖𝛾𝐿∞) (1 − 𝑒−2𝜒−𝜇𝜏) 𝜒 𝜇
+ 𝑚(𝜏)

)
(𝑚(𝜏) + 2𝑤0)

2−𝛾
𝛾 .

Then, incorporating 3−
2−𝛾
𝛾 into 𝐶2, as before, we obtain the following bounds:

1. For 𝑚(𝜏) < 𝑤0

𝑚(𝜏) <
[(

𝐶1 + 𝜒 𝜇(𝛾−1)‖𝑢‖𝛾𝐿∞
𝜒𝐶2 )(

2

(𝐶1 + 𝜒 𝜇(𝛾−1)‖𝑢‖𝛾𝐿∞) (1 − 𝑒−2𝜒−𝜇𝜏) 𝜒 𝜇
+ 1

)]

𝛾
2+𝛾

𝑤
2

2+𝛾
0 , (4.65)

2. For 𝑚(𝜏) ≥ 𝑤0,

𝑚(𝜏) < (
𝐶1 + 𝜒 𝜇(𝛾−1)‖𝑢‖𝛾𝐿∞

𝜒𝐶2 )(
2

(𝐶1 + 𝜒 𝜇(𝛾−1)‖𝑢‖𝛾𝐿∞) (1 − 𝑒−2𝜒−𝜇𝜏) 𝜒 𝜇
+ 1

)
. (4.66)

We observe that the optimal choice for the parameter 𝜇 – which is independent of any
specific quantities within the problem – minimizes 𝑚(𝜏) is zero. Finally, as in Case 1, if the
initial condition does not satisfy the assumption ℎ(𝑢)(𝑚0, 𝑤0) < 0, the result still holds due to
the inequality 𝑚(𝑡) ≤ 𝑚0 for all 𝑡 > 0.
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4.3.3 Chemotaxis Impact on Reaction Efficiency

In examining the interplay between chemotaxis, reaction, and anomalous diffusion in the

context of reproduction processes, several key insights have emerged.

First, in both chemotactic and chemotaxis-free scenarios, it was shown that the lower

bound for the total fraction of unfertilized eggs, 𝑚(𝑡), remains above a limit 𝐶 for all 𝑡 ≥ 0,

irrespective of the influence of the flow field 𝑢. This observation implies a capped thresh-

old for the reaction rate, beyond which it cannot be increased, regardless of the strength or

form of the flow. Furthermore, the value of 𝐶 depends on various parameters, including those

governing the reaction term (fertilization), such as 𝜖 and 𝑞, where 𝜖 regulates the strength of

the fertilization process. Additionally, it is influenced by the initial condition 𝜌0, 𝑑, and the

diffusion term, as 𝐶 is a function of 𝛼. In scenarios involving chemotaxis, the chemotactic

sensitivity 𝜒 also contributes to shaping 𝐶.

In chemotaxis-free settings, the function 𝐶(𝜖, 𝑞, 𝛼, 𝑑, 𝜌0) tends to 𝑚0 as 𝜖 → 0, given fixed

parameters 𝜌0, 𝑢, and 𝑞. Additionally, the quantity that reacts, 𝑚(0) − lim
𝑡→∞

𝑚(𝑡), exhibits a

decrease of order 𝜖 (Theorem 4.15).

In the presence of chemotaxis, particularly for 𝑑 = 2, Kiselev et al. [48] established, for

𝛼 = 2, the existence of solutions where the lower bound of its 𝐿1(ℝ2) norm is independent

of the reaction term, and thus independent of the coupling of the reaction term 𝜖. However,

for 1 < 𝛼 < 2, the possible dependence of condition (4.35) on 𝜖 challenges this assertion.

Therefore, we can not affirm that the lower bound of the 𝐿1(ℝ2) norm does not depend on 𝜖.

Also in the chemotactic environment, concerning the upper bound for 𝑚(𝑡), note that

the reaction term does not quantitatively impact its estimates, that is, all estimates of the

𝐿1(ℝ2) norm are independent of the coupling of the reaction term, 𝜖. This implies that the

amount of the density that reacts, 𝑚(0) − lim
𝑡→∞

𝑚(𝑡), satisfies a lower bound independent of

𝜖. While the reaction term does not directly impact the total fraction of reacting density, it

plays a crucial role in controlling the growth of the solution’s 𝐿∞(ℝ2) norm, determined by the

balance between chemotaxis and the reaction term. For instance, in a two-dimensional space

without the reaction term (classical parabolic-elliptic Keller-Segel), for an initial mass large

enough, chemotaxis alone would result in a blow-up with a 𝛿 function profile.
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Additionally, it is important to note that the chemotactic term, in contrast to the flow and

diffusion alone, plays a crucial role in achieving highly efficient fertilization rates, as in the

chemotactic scenario, both the upper and lower bounds of 𝑚(𝑡) decrease as the chemotaxis

strength, 𝜒 , increases.
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Appendix A

Fractional Laplacian

In this appendix, we present and prove essential properties of the Fractional Laplacian

for completeness. We begin by introducing a definition of the nonlocal operator (−Δ)𝑠 for any

𝑠 ∈ ℝ+ ⧵ℕ.

Definition A.1. Let 𝑠 = 𝑚 + 𝜎, where 𝜎 ∈ (0, 1) and 𝑚 ∈ ℕ0. Then, the operator (−Δ)𝑠 can be

defined as [1, 2, 69]

(−Δ)𝑠𝑢(𝑥) ∶=
𝑐𝑑,2𝑠
2
𝑃.𝑉 .∫

ℝ𝑑

𝛿𝑚+1𝑢(𝑥, 𝑦)
|𝑦 |𝑑+2𝑠

𝑑𝑦, 𝑥 ∈ ℝ𝑑 , (A.1)

where 𝑃.𝑉 . stands for the Cauchy principal value, 𝑐𝑑,𝑠 is the positive normalization constant

𝑐𝑑,2𝑠 ∶=
4𝑠Γ ( 𝑑2 + 𝑠)
𝜋 𝑑

2Γ (−𝑠)

⎛
⎜
⎜
⎝

𝑚+1

∑
𝑘=1

(−1)𝑘
⎛
⎜
⎜
⎝

2(𝑚 + 1)

𝑚 + 1 − 𝑘

⎞
⎟
⎟
⎠
𝑘2𝑠

⎞
⎟
⎟
⎠

−1

, (A.2)

and 𝛿𝑚+1𝑢 is the finite difference of order 2(𝑚 + 1) of 𝑢

𝛿𝑚+1𝑢(𝑥, 𝑦) ∶=
𝑚+1

∑
𝑘=−𝑚−1

(−1)𝑘
⎛
⎜
⎜
⎝

2(𝑚 + 1)

𝑚 + 1 − 𝑘

⎞
⎟
⎟
⎠
𝑢(𝑥 + 𝑘𝑦) for 𝑥, 𝑦 ∈ ℝ𝑑 . (A.3)

Note that, by a change of variables, it is easy to see that (A.1) can be rewritten as

(−Δ)𝑠𝑢(𝑥) = 𝑐𝑑,2𝑠𝑃.𝑉 .∫
ℝ𝑑

𝑢(𝑥) − 𝑢(𝑦)
|𝑥 − 𝑦 |𝑑+2𝑠

d𝑦, 𝑥 ∈ ℝ𝑑 , (A.4)

where the normalization constant is given by

𝑐𝑑,2𝑠 ∶=
4𝑠𝑠Γ (𝑑/2 + 𝑠)
𝜋𝑑/2 |Γ (1 − 𝑠)|

=
4𝑠Γ (𝑑/2 + 𝑠)
𝜋𝑑/2 |Γ (−𝑠)|

. (A.5)

Remark A.2. In literature, the definition of the fractional Laplacian, Λ2𝑠 = (−Δ)𝑠, generally
applies for 0 < 𝑠 < 1 and can be characterized in multiple equivalent ways [see 51, 56]. One such

characterization is as the singular integral operator (A.4) [37, 39].

Next, consider the definition of the operator 𝐼𝛼 for 0 < 𝛼 < 𝑑, known as the Riesz potential.
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Definition A.3 (Riesz potential). For any 𝑑 ∈ ℕ, let 0 < 𝛼 < 𝑑. The operator 𝐼𝛼 is the Riesz
potential of order 𝛼 given by [37]

𝐼𝛼𝑢(𝑥) = 𝑐𝑑,−𝛼 |𝑥 |−𝑑+𝛼 ∗ 𝑢(𝑥) = 𝑐𝑑,−𝛼 ∫
ℝ𝑑
|𝑥 − 𝑦 |−𝑑+𝛼𝑢(𝑦)d𝑦, (A.6)

where 𝑐𝑑,−𝛼 = Γ((𝑑−𝛼)/2)
𝜋𝑑/22𝛼Γ(𝛼/2) .

For 0 < 𝛼 < 2, the operator 𝐼𝛼 is defined to be the inverse of (−Δ)𝛼/2, and the constant 𝑐𝑑,−𝛼
is chosen to ensure the validity of 𝐼𝛼(−Δ)𝛼/2𝑢 = (−Δ)𝛼/2𝐼𝛼𝑢 = 𝑢 in  ′(ℝ𝑑) for any 𝑢 ∈ (ℝ𝑑)

[37, 39].

Now, we will show that Λ𝛼 = (−Δ)𝛼/2 maps𝑊 𝑘,𝑝(ℝ𝑑) to 𝐿𝑝(ℝ𝑑) for certain values of 𝑝 and

𝑘. For that purpose, consider the following lemma.

Lemma A.4. [32] Let 𝑢 ∈ 𝑊 𝑘,𝑝(ℝ𝑑), for some 1 ≤ 𝑝 ≤ ∞, and 𝑘 be a nonnegative integer. Then,
the following estimate holds

‖𝑢(⋅ + 𝑦) − 𝑃𝑘𝑢(⋅, 𝑦)‖𝐿𝑝 ≤ 𝐶‖𝑢‖𝑤𝑘,𝑝 |𝑦 |𝑘, (A.7)

where 𝐶 > 0 depends only on 𝑑 and 𝑘, and 𝑃𝑘𝑢(𝑥, ⋅) denotes the Taylor polynomial of order

𝑘, centered at 𝑥 , of the function 𝑢, i. e., using the standard multi-index notation (see Index of

Notation),

𝑃𝑘𝑢(𝑥, 𝑦) ∶= ∑
|𝜁 |≤𝑘

𝐷𝜁𝑢(𝑥)
𝜁 !

𝑦𝜁 .

Proposition A.5. Let 𝛼 > 0. If 𝑢 ∈ 𝑊 2⌈𝛼/2⌉,𝑝(ℝ𝑑), then Λ𝛼𝑢 ∈ 𝐿𝑝(ℝ𝑑) for 1 < 𝑝 < ∞. Specifically,

the following inequality holds

‖Λ𝛼𝑢‖𝐿𝑝 ≤ 𝐶‖𝑢‖𝑊 2⌈𝛼/2⌉,𝑝 ,

where 𝐶 > 0 depends only on 𝑑, 𝛼, and 𝑝.

Proof. The cases where 𝛼/2 ∈ ℕ can be checked directly, as Λ𝛼 is a local differential operator,
representing a power of the standard Laplacian. For 𝛼/2 ∈ ℝ+ ⧵ℕ, from (A.4), we write

‖‖‖‖∫ℝ𝑑

𝑢(𝑦) − 𝑢(𝑥)
|𝑥 − 𝑦 |𝑑+𝛼

d𝑦
‖‖‖‖𝐿𝑝

=
‖‖‖‖∫|𝑥−𝑦 |<1

𝑢(𝑦) − 𝑢(𝑥)
|𝑥 − 𝑦 |𝑑+𝛼

d𝑦
‖‖‖‖𝐿𝑝

+
‖‖‖‖∫|𝑥−𝑦 |≥1

𝑢(𝑦) − 𝑢(𝑥)
|𝑥 − 𝑦 |𝑑+𝛼

d𝑦
‖‖‖‖𝐿𝑝

= 𝐼1 + 𝐼2.

To compute 𝐼1 let us write 𝑢 ∈ 𝑊 𝑘,𝑝(ℝ𝑑), where 𝑘 = 2 ⌈𝛼/2⌉, using the Taylor expansion
centered at 𝑥 , i. e., 𝑢(𝑥 + 𝑦) = 𝑃𝑘𝑢(𝑥, 𝑦) + 𝑟(𝑥, 𝑦), where 𝑃𝑘𝑢(𝑥, 𝑦) is defined in Lemma A.4.
From Minkowski’s inequality for integrals, since 𝜒[−1,1](𝑦)(

𝑢(⋅+𝑦)−𝑃𝑘(⋅,𝑦)
|𝑦 |𝑑+𝛼 ) ∈ 𝐿𝑝(ℝ𝑑) for a.e. 𝑦,
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and 𝜒[−1,1](𝑦)
‖‖‖
𝑢(⋅+𝑦)−𝑃𝑘(⋅,𝑦)

|𝑦 |𝑑+𝛼
‖‖‖𝐿𝑝 ∈ 𝐿

1(ℝ𝑑), we have

‖‖‖‖∫|𝑦 |<1

𝑟(𝑥, 𝑦)
|𝑦 |𝑑+𝛼

d𝑦
‖‖‖‖𝐿𝑝

≤ 𝐶 ∫
|𝑦 |<1

‖𝑢(⋅ + 𝑦) − 𝑃𝑘(⋅, 𝑦)‖𝐿𝑝
|𝑦 |𝑑+𝛼

d𝑦

≤ 𝐶 ∫
|𝑦 |<1

‖𝑢‖𝑊 𝑘,𝑝 |𝑦 |𝑘

|𝑦 |𝑑+𝛼
d𝑦

≤ (∫|𝑦 |<1

1
|𝑦 |𝑑+𝛼−𝑘

d𝑦) ‖𝑢‖𝑊 𝑘,𝑝

≤ 𝐶‖𝑢‖𝑊 𝑘,𝑝 ,

where we used (A.7) and the fact that 𝑑 + 𝛼 − 𝑘 < 𝑑. Next, note that the finite difference of
order 𝑘 of 𝑢 can be expressed as

𝛿𝑘/2𝑢(𝑥, 𝑦) = −∑
|𝜁 |=𝑘

𝑦𝜁𝐷𝜁𝑢 +
𝑘/2

∑
𝑙=−𝑘/2

(−1)𝑙
⎛
⎜
⎜
⎝

𝑘

𝑘/2 − 𝑙

⎞
⎟
⎟
⎠
𝑟(𝑥 + 𝑙𝑦) for 𝑥, 𝑦 ∈ ℝ𝑑 .

Therefore, from the above, we obtain

𝐼1 = 𝐶
‖‖‖‖∫|𝑦 |<1

𝛿𝑘/2𝑢(𝑥, 𝑦)
|𝑦 |𝑑+𝛼

d𝑦
‖‖‖‖𝐿𝑝

≤ 𝐶
‖‖‖‖‖‖
∫
|𝑦 |<1

∑
|𝜁 |=𝑘

𝑦𝜁𝐷𝜁𝑢
|𝑦 |𝑑+𝛼

+
𝑘/2

∑
𝑙=−𝑘/2

(−1)𝑙
⎛
⎜
⎜
⎝

𝑘

𝑘/2 − 𝑙

⎞
⎟
⎟
⎠

𝑟(𝑥 + 𝑙𝑦)
|𝑦 |𝑑+𝛼

d𝑦
‖‖‖‖‖‖𝐿𝑝

≤ 𝐶 ‖‖𝐷
𝑘𝑢‖‖𝐿𝑝 (∫

|𝑦 |<1

1
|𝑦 |𝑑+𝛼−𝑘

d𝑦) + 𝐶‖𝑢‖𝑤𝑘,𝑝

≤ 𝐶‖𝑢‖𝑤𝑘,𝑝 ,

where ||𝐷𝑘𝑢|| = (∑|𝜁 |=𝑘
||𝐷

𝜁𝑢||
2
)
1/2

, and we used the fact that 1/|𝑦 |𝑑+𝛼−𝑘 is integrable as 𝑘 − 𝛼 > 0.

Now applying again Minkowski’s inequality, we obtain

𝐼2 =
‖‖‖‖∫|𝑧|≥1

𝑢(𝑥 + 𝑧) − 𝑢(𝑥)
|𝑧|𝑑+𝛼

d𝑧
‖‖‖‖𝐿𝑝

≤ ∫
|𝑧|≥1

‖𝑢(⋅ + 𝑧) − 𝑢(⋅)‖𝐿𝑝
|𝑧|𝑑+𝛼

d𝑧

≤ 2(∫|𝑧|≥1

1
|𝑧|𝑑+𝛼

d𝑧) ‖𝑢‖𝐿𝑝

≤ 𝐶 ‖𝑢‖𝐿𝑝 ,

where we used the fact that 1/|𝑧|𝑑+𝛼 is integrable, as 𝑑 + 𝛼 > 𝑑 and |𝑧| ≥ 1.

Now consider the following definition:
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Definition A.6. For a real Lebesgue-measurable function 𝑢 in ℝ𝑑 , 𝑑 ∈ ℕ, we define 𝑢 ↦ 𝑢+ and

𝑢 ↦ 𝑢−, bounded maps in 𝐿𝑝(ℝ𝑑) spaces, with 1 ≤ 𝑝 ≤ ∞, as

𝑢+(𝑥) = max{𝑢(𝑥), 0}, and 𝑢−(𝑥) = min{𝑢(𝑥), 0}, 𝑥 ∈ ℝ𝑑 . (A.8)

Thus, 𝑢(𝑥) = 𝑢+(𝑥) + 𝑢−(𝑥) a.e. 𝑥 . We also define 𝜕𝑖𝑢+ and 𝜕𝑖𝑢−, for 𝑢 ∈ 𝑊 1,𝑝(ℝ𝑑), as

𝜕𝑖𝑢+(𝑥) =
⎧⎪⎪
⎨⎪⎪⎩

𝜕𝑖𝑢(𝑥) if 𝑢(𝑥) > 0

0 if 𝑢(𝑥) ≤ 0
and 𝜕𝑖𝑢−(𝑥) =

⎧⎪⎪
⎨⎪⎪⎩

𝜕𝑖𝑢(𝑥) if 𝑢(𝑥) ≤ 0

0 if 𝑢(𝑥) > 0.
(A.9)

Then, we can prove for 𝑢, 𝑢− and 𝑢+ the following:

Lemma A.7. Let 𝛼 ≥ 0 and 𝑢 ∈ (ℝ𝑑). Then,

𝑢−Λ𝛼𝑢 ≥ 𝑢−Λ𝛼𝑢− and 𝑢+Λ𝛼𝑢 ≥ 𝑢+Λ𝛼𝑢+. (A.10)

Proof. The cases where 𝛼/2 ∈ ℕ can be verified directly, as Λ𝛼 acts as a local differential
operator, specifically a power of the Laplacian. For 𝛼/2 ∈ ℝ+ ⧵ℕ, from (A.4), we obtain

𝑢−Λ𝛼𝑢(𝑥) = 𝑐𝑑,𝛼𝑃.𝑉 .∫
ℝ𝑑

𝑢−(𝑥)𝑢(𝑥) − 𝑢−(𝑥)𝑢(𝑦)
|𝑥 − 𝑦 |𝑑+𝛼

d𝑦

= 𝑐𝑑,𝛼𝑃.𝑉 .∫
ℝ𝑑

𝑢2−(𝑥) − 𝑢−(𝑥) (𝑢−(𝑦) + 𝑢+(𝑦))
|𝑥 − 𝑦 |𝑑+𝛼

d𝑦

≥ 𝑐𝑑,𝛼𝑃.𝑉 .∫
ℝ𝑑

𝑢2−(𝑥) − 𝑢−(𝑥)𝑢−(𝑦)
|𝑥 − 𝑦 |𝑑+𝛼

d𝑦 (−𝑢−(𝑥)𝑢+(𝑦) ≥ 0)

= 𝑢−Λ𝛼𝑢−(𝑥).

Lemma A.8. Let 𝛼 ≥ 0, and suppose that 𝑢 ∈ 𝑊 2⌈𝛼/2⌉,𝑝(ℝ𝑑), with 1 < 𝑝 < ∞ . Then,

∫
ℝ𝑑
|𝑢|𝑝−2𝑢Λ𝛼𝑢 d𝑥 ≥ 0. (A.11)

and

∫
ℝ𝑑
|𝑢±|𝑝−2𝑢±Λ𝛼𝑢 d𝑥 ≥ 0. (A.12)

Proof. The proof of (A.11) with 𝛼 ∈ [0, 2] is available in Córdoba et al. [29] for 𝑥 ∈ ℝ2 or 𝕋2.
Interestingly, the same proof extends seamlessly to 𝑥 ∈ ℝ𝑑 and 𝛼 > 2. This extension holds,
particularly for 𝛼 > 2, owing to the equivalence between the fractional Laplacian expressions
(A.1) and (A.4). Note that (A.12) follows from (A.10) and (A.11). Indeed,

∫
ℝ𝑑
|𝑢±|𝑝−2𝑢±Λ𝛼𝑢 d𝑥 ≥ ∫

ℝ𝑑
|𝑢±|𝑝−2𝑢±Λ𝛼𝑢± d𝑥 ≥ 0.
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Appendix B

Parameters for Lebesgue Spaces

In Sections 3.2 and 3.3, suitable restrictions are imposed on the parameters of the system,

𝑑, 𝛼 and 𝛽, as well as on the parameters related to the space of initial data and solutions: 𝑝, 𝑟

and ℘ for the local-in-time results, and 𝑝, 𝑟 , 𝑝1 and 𝑝2 for the global-in-time results.

In this Appendix, we present the proof of the existence of 𝑝 and 𝑟 satisfying these restric-

tions and show that these imply (B.4) and (B.15) for the local results, and (B.4), (B.5), (B.16),

1 ≤ 𝑝1 < 𝑝 and 1 < 𝑝2 < 𝑟 for the global results. Such conditions constitute the hypotheses

necessary to apply H𝑜̈lder’s inequality, Lemmas 2.10 and 2.22 to ensure that the mild solution

belongs to the appropriate function spaces.

Remark B.1. Throughout this appendix, consider 𝛼 ∈ (1, 2], 𝛽 ∈ (1, 𝑑] and 𝑑 ≥ 2.

Definition B.2. Let 1 < 𝑝 ≤ 𝑟 ≤ ∞. We define 𝜎 as

𝜎 = 2 −
1
𝛼 (

𝑑
𝑟
+ 1) −

𝑑
𝛽 (

1
𝑝
−
1
𝑟)

−
1
𝛽
. (B.1)

Lemma B.3. Consider 𝑝 and 𝑟 satisfying

max
{

2𝑑
𝑑 + 𝛽 − 1

,
𝑑

𝛼 + 𝛽 − 2

}
< 𝑝 ≤

𝑑
𝛽 − 1

and

max
{
𝑝,

𝑝
𝑝 − 1

,
𝑑

𝛼 − 1

}
< 𝑟 <

𝑝𝑑
𝑑 − 𝑝(𝛽 − 1)

, or (B.2a)

𝑝 >
𝑑

𝛽 − 1
and 𝑟 > max

{
𝑝,

𝑝
𝑝 − 1

,
𝑑

𝛼 − 1

}
, (B.2b)

where, in both cases, the equality 𝑟 = max
{
𝑝, 𝑝

𝑝−1

}
is possible if max

{
𝑝, 𝑝

𝑝−1

}
> 𝑑

𝛼−1 .

Part 1. Assume 2𝛽 (𝛼 − 1) − 𝛼 ≥ 0. Then, there exist 𝑝 and 𝑟 satisfying (B.2) with

𝑝 <
𝑑𝛼

2𝛽 (𝛼 − 1) − 𝛼
. (B.3)
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Part 2: Consider 𝑝 and 𝑟 satisfying (B.2). Then 𝑝 > 1, and the following conditions hold

(a)
1
𝛼 (

𝑑
𝑟
+ 1) < 1, (b)

𝑑
𝛽 (

1
𝑝
−
1
𝑟)

+
1
𝛽
< 1, (c)

1
𝑝
+
1
𝑟
≤ 1. (B.4)

Additionally, if 2𝛽 (𝛼 − 1) − 𝛼 < 0 or 𝑝 also satisfies (B.3), then

(d) 𝜎 +
1
2 [

𝑑
𝛽 (

1
𝑝
−
1
𝑟)

+
1
𝛽 ]

< 1, (e)
1
𝛼 (

𝑑
𝑟
+ 1) − 1 < 𝜎 <

1
𝛼 (

𝑑
𝑟
+ 1) . (B.5)

Proof. Part 1. Note that, since by assumption 2𝛽 (𝛼 − 1) − 𝛼 ≥ 0, we have
𝑑𝛼

2𝛽 (𝛼 − 1) − 𝛼
≥

𝑑
𝛽 − 1

(B.6)

as 𝛼 ≤ 2. Therefore, for 𝛼 < 2, there exists 𝑝 in the range defined by (B.2b) and (B.3), i. e., such
that 𝑑

𝛽−1 < 𝑝 < 𝑑𝛼
2𝛽(𝛼−1)−𝛼 . Then, for 𝛼 < 2, there exist numbers 𝑝 and 𝑟 in the ranges defined by

(B.2b) where 𝑝 satisfies (B.3).

Note that (regardless of whether 2𝛽 (𝛼 − 1) − 𝛼 ≥ 0) there also exist numbers 𝑝 and 𝑟 in
the ranges defined in (B.2a). Indeed, for 𝑝 ≤ 𝑑

𝛽−1 , we have

𝑑
𝛽 − 1

>
2𝑑

𝑑 + 𝛽 − 1
as 𝛽 < 𝑑 + 1,

𝑑
𝛽 − 1

>
𝑑

𝛼 + 𝛽 − 2
as 𝛼 > 1.

Moreover, since 𝑑 − 𝑝(𝛽 − 1) ≥ 0,
𝑝𝑑

𝑑 − 𝑝(𝛽 − 1)
>

𝑝
𝑝 − 1

as 𝑝 >
2𝑑

𝑑 + 𝛽 − 1
,

𝑝𝑑
𝑑 − 𝑝(𝛽 − 1)

>
𝑑

𝛼 − 1
as 𝑝 >

𝑑
𝛼 + 𝛽 − 2

,

𝑝𝑑
𝑑 − 𝑝(𝛽 − 1)

> 𝑝 as 𝛽 > 1.

Then, for 𝛼 < 2, there are 𝑝 and 𝑟 , with 𝑝 satisfying (B.3), in the ranges defined by either
cases in (B.2). On the other hand, for 𝛼 = 2, such numbers exist only in the ranges defined by
(B.2a), and we must have 𝑝 < 𝑑

𝛽−1 so that (B.3) also holds. Therefore, it is always possible to
find numbers 𝑝 and 𝑟 in the ranges defined in (B.2a) or (B.2b) where 𝑝 also satisfies (B.3).

Part 2. Note that 𝑝 > 1 follows from the fact that 2𝑑
𝑑+𝛽−1 > 1, since 1 < 𝛽 < 𝑑 + 1, and

𝑝 > 2𝑑
𝑑+𝛽−1 .

Now, from either restrictions in (B.2), we obtain
1
𝑟
<
𝛼 − 1
𝑑

and 1
𝑟
≤ 1 −

1
𝑝
, (B.7)

and conditions (B.4(a)) and (B.4(c)) follow immediately.
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Next, assuming (B.2a), we see that 𝑟 < 𝑝𝑑
𝑑−𝑝(𝛽−1) and 𝑑 − 𝑝(𝛽 − 1) ≤ 0, and assuming (B.2b),

we have 1
𝑝 −

𝛽−1
𝑑 < 0 and 1

𝑟 ≥ 0. Then, from either cases, it follows that

1
𝑝
−
𝛽 − 1
𝑑

<
1
𝑟
, (B.8)

which implies (B.4(b)).

To prove (B.5(d)), note that if 2𝛽 (𝛼 − 1) − 𝛼 < 0, 𝛽−1𝑑 + 𝛽(𝛼−2)
𝑑𝛼 < 0. Otherwise, 𝑝 satisfies

(B.3). Then, it follows from both scenarios that 1
𝑝 >

𝛽−1
𝑑 + 𝛽(𝛼−2)

𝑑𝛼 , implying 𝛼 (
𝛽−1
𝑑 − 1

𝑝)+
𝛽(𝛼−2)

𝑑 <
0. Hence, as 1

𝑟 ≥ 0 and 2𝛽 − 𝛼 > 0, we have

1
𝑟
(2𝛽 − 𝛼) > 𝛼(

𝛽 − 1
𝑑

−
1
𝑝)

+
𝛽(𝛼 − 2)

𝑑
,

which leads to

1 −
1
𝛼 (

𝑑
𝑟
+ 1) −

1
2 [

𝑑
𝛽 (

1
𝑝
−
1
𝑟)

+
1
𝛽 ]

< 0,

proving (B.5(d)) .

Finally, from (B.4(a)) and (B.4(b)), we obtain

1
𝛼 (

𝑑
𝑟
+ 1) − 1 < 𝜎 − 3 +

2
𝛼 (

𝑑
𝑟
+ 1) +

𝑑
𝛽 (

1
𝑝
−
1
𝑟)

+
1
𝛽

< 𝜎 + 2 [
1
𝛼 (

𝑑
𝑟
+ 1) − 1] + [

𝑑
𝛽 (

1
𝑝
−
1
𝑟)

+
1
𝛽
− 1] < 𝜎,

and from (B.5(d)),

𝜎 −
1
𝛼 (

𝑑
𝑟
+ 1) = 2

{
1 −

1
𝛼 (

𝑑
𝑟
+ 1) −

1
2 [

𝑑
𝛽 (

1
𝑝
−
1
𝑟)

+
1
𝛽 ]

}

= 2
{
𝜎 − 1 +

1
2 [

𝑑
𝛽 (

1
𝑝
−
1
𝑟)

+
1
𝛽 ]

}

= 2
{
𝜎 +

1
2 [

𝑑
𝛽 (

1
𝑝
−
1
𝑟)

+
1
𝛽 ]

}
− 2 < 0,

which proves (B.5(e)).

Remark B.4. The lower bound on 𝑝 in Lemma B.3 is the same as that in [11, Theorem 2.1] used

to establish the local and global existence of mild solutions for the parabolic-elliptic form of (3.1).

Remark B.5. Consider 𝜎 defined in (B.1) and 𝑝 and 𝑟 in the ranges defined in Lemma B.3.

1. (a)We have 𝑝 < 2 iff 𝑝
𝑝−1 > 2 (since this is true for any number greater than zero).

(b) From the fact that 𝛼 ∈ (1, 2], 𝛽 ∈ (1, 𝑑], 𝑑 ≥ 2, the following relations are established:

∙
𝑑

𝛼 − 1
≥ 2, thus 𝑟 > 2;

∙
𝑝

𝑝 − 1
>

𝑑
𝛼 − 1

, iff 1 < 𝑝 <
𝑑

𝑑 + 1 − 𝛼
;
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. ∙ 𝑝 < 2 if 𝑝 <
𝑑

𝑑 + 1 − 𝛼
, as

𝑑
𝑑 + 1 − 𝛼

≤ 2 for any 𝛼 and 𝑑;

∙
𝑑

𝑑 + 1 − 𝛼
>

2𝑑
𝑑 + 𝛽 − 1

iff 2𝛼 + 𝛽 > 𝑑 + 3;

∙
2𝑑

𝑑 + 𝛽 − 1
>

𝑑
𝛼 + 𝛽 − 2

iff 2𝛼 + 𝛽 > 𝑑 + 3.

(c) If 𝑟 = 𝑝
𝑝−1 , we can state that 𝑑

𝛼−1 < 𝑟 < 2𝑑
𝑑−𝛽+1 <

𝑝𝑑
𝑑−𝑝(𝛽−1) .

2. In more detail, from Remark B.5.1, (B.2) can be rewritten as

(i) for 2𝛼 + 𝛽 ≤ 𝑑 + 3,

max
{

𝑑
𝛼 − 1

, 𝑝
}
< 𝑟 <

𝑝𝑑
𝑑 − 𝑝(𝛽 − 1)

if
𝑑

𝛼 + 𝛽 − 2
< 𝑝 ≤

𝑑
𝛽 − 1

, (B.9)

𝑟 > max
{

𝑑
𝛼 − 1

, 𝑝
}

if
𝑑

𝛼 + 𝛽 − 2
<𝑝 >

𝑑
𝛽 − 1

, (B.10)

(ii) otherwise, for 2𝛼 + 𝛽 > 𝑑 + 3,

𝑝
𝑝 − 1

≤ 𝑟 <
𝑝𝑑

𝑑 − 𝑝(𝛽 − 1)
if

2𝑑
𝑑 + 𝛽 − 1

< 𝑝 <
𝑑

𝑑 + 1 − 𝛼
, (B.11)

max
{

𝑑
𝛼 − 1

, 𝑝
}
< 𝑟 <

𝑝𝑑
𝑑 − 𝑝(𝛽 − 1)

if
𝑑

𝑑 + 1 − 𝛼
≤ 𝑝 ≤

𝑑
𝛽 − 1

, (B.12)

𝑟 > max
{

𝑑
𝛼 − 1

, 𝑝
}

if
𝑑

𝛼 + 𝛽 − 2
<𝑝 >

𝑑
𝛽 − 1

, (B.13)

with, in both cases, the equality 𝑟 = 𝑝 being possible if 𝑝 > 𝑑/(𝛼 − 1).

3. Adding (B.3), for 2𝛽 (𝛼 − 1) − 𝛼 ≥ 0, Remark B.5.2 incorporates the following changes:

∙ Case A. 𝛼 < 2

addition of condition (B.3) to lines (B.10) and (B.13), i. e.,

𝑟 > max
{

𝑑
𝛼 − 1

, 𝑝
}

if
𝑑

𝛽 − 1
< 𝑝 <

𝑑𝛼
2𝛽 (𝛼 − 1) − 𝛼

.

∙ Case B. 𝛼 = 2

exclusion of (B.10) and (B.13); replacement of 𝑝 ≤ 𝑑
𝛽−1 with 𝑝 <

𝑑
𝛽−1 in (B.9) and (B.12).

4. From (B.1), (B.4(a)) and (B.4(c)), we see that the parameter 𝜎 is such that 𝜎 > 0, which is

a better lower bound than the one given by (B.5(e)). Moreover, (B.5(e)) ensures that 𝜎 < 1.
Then, seeking a better upper bound for 𝜎 that has the advantage over the one in (B.5(e)) of
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depending only on 𝛼 and 𝛽, we find, when 𝛼, 𝛽 ∈ (1, 2), that

𝜎 <
max {𝛼, 𝛽} − 2
min {𝛼, 𝛽}

+ 1.

Indeed, we can rewrite 𝜎 defined in (B.1) as 𝜎 = 2 − 1
𝛼𝛽 [𝑑 (

1
𝑟 (𝛽 − 𝛼) + 𝛼

𝑝) + 𝛽 + 𝛼]. Then,
due to relation (B.7), if 𝛼 ≥ 𝛽, we obtain

𝜎 < 2 −
1
𝛼𝛽 [𝑑(

𝛼 − 1
𝑑

(𝛽 − 𝛼) +
𝛼
𝑝)

+ 𝛽 + 𝛼] =
𝛼 − 1
𝛽

+
𝛽 − 1
𝛽

−
𝑑
𝛽𝑝

<
𝛼 − 2
𝛽

+ 1;

and, due to relation (B.8), if 𝛼 < 𝛽, we obtain

𝜎 < 2 −
1
𝛼𝛽

{
𝑑 [(

1
𝑝
−
𝛽 − 1
𝑑 ) (𝛽 − 𝛼) +

𝛼
𝑝]

+ 𝛽 + 𝛼
}
=
𝛼 − 1
𝛼

+
𝛽 − 1
𝛼

−
𝑑
𝛼𝑝

<
𝛽 − 2
𝛼

+ 1.

Therefore, the estimate follows.

Lemma B.6. Consider 𝑝 and 𝑟 in the ranges defined in (B.2) and let ℘ be given by

℘ ∈ [
𝑑

𝛼 − 1
, 𝑟] if 𝛼 ≤ 𝛽,

℘ = 𝑟 if 𝛼 > 𝛽.
(B.14)

Then, 2 ≤ ℘ ≤ 𝑟 and
1
𝛼 (

𝑑
𝑟
+ 1) +

𝑑
𝛽 (

1
℘

−
1
𝑟)

≤ 1. (B.15)

Moreover, for some values of 𝛼, 𝛽, 𝑑 and 𝑟 , there exist ℘ defined in (B.14) such that the equality

in (B.15) holds.

Proof. It is easy to see that 2 ≤ ℘ ≤ 𝑟 from the definition of ℘ and the fact that 𝑑
𝛼−1 ≥ 2

(Remark B.5.1). Next note that, if 𝛼 > 𝛽, condition (B.15) falls into (B.4(a)). If 𝛼 ≤ 𝛽, then
1
℘ ≤ 𝛼−1

𝑑 , and from condition (B.4(a)), we have

1
𝛼 (

𝑑
𝑟
+ 1) +

𝑑
𝛽 (

1
℘

−
1
𝑟)

≤
1
𝛼 (

𝑑
𝑟
+ 1) +

𝑑
𝛽 (

𝛼 − 1
𝑑

−
1
𝑟)

=
1
𝛼 (

𝑑
𝑟
+ 1)(1 −

𝛼
𝛽)

+
𝛼
𝛽

< 1 −
𝛼
𝛽
+
𝛼
𝛽
= 1.

Note that for 𝛽 > 𝛼 and 𝑟 ≤ 𝑑𝛼
𝛼−1 there exist ℘ defined in (B.14) such that the equality in

(B.15) holds. Moreover, for 𝛼 = 𝛽 the equality in (B.15) holds for ℘ = 𝑑
𝛼−1 .

The following lemmas are pertinent to Section 3.3. They address the proof of some in-

equalities that must be satisfied by 𝑝1 and 𝑝2, the parameters defining the space of the initial

data: 𝜌0 ∈ 𝐿𝑝1(ℝ𝑑) and ∇𝑐0 ∈ 𝐿𝑝2(ℝ𝑑).
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Lemma B.7. Consider 𝑝 and 𝑟 as in (B.2), with 𝑝 satisfying (B.3) if 2𝛽 (𝛼 − 1) − 𝛼 ≥ 0, and 𝑝1
given by 𝑝1 = 𝑝𝑑

𝛼𝜎𝑝+𝑑 . Then, 1 ≤ 𝑝1 < 𝑝.

Proof. Note that 𝑝1 ≥ 1 if and only if [
𝑑
𝛽 (

1
𝑝 −

1
𝑟) + 1

𝛽] (𝛽−𝛼) ≤ 𝑑+2(1−𝛼). Moreover, as 𝛼 ≤ 2
and 𝑑 ≥ 2, we see that 𝑑 + 2(1 − 𝛼) ≥ 0. Therefore, if 𝛽 ≤ 𝛼, the inequality is automatically
verified. Otherwise, from (B.4(b)) we obtain [

𝑑
𝛽 (

1
𝑝 −

1
𝑟) + 1

𝛽] (𝛽 − 𝛼) < 𝛽 − 𝛼, and, as 𝛽 ≤ 𝑑
and 𝛼 ≤ 2, it follows that 𝛽 − 𝛼 ≤ 𝑑 − 𝛼 + 2 − 𝛼 = 𝑑 + 2(1 − 𝛼); thus, 𝑝1 ≥ 1. Furthermore,
𝑝1 < 𝑝, as 𝛼𝜎𝑝 > 0 implies 𝑑

𝛼𝜎𝑝+𝑑 < 1.

Lemma B.8. Consider 𝑝 and 𝑟 as in (B.2), with 𝑝 satisfying (B.3) if 2𝛽 (𝛼 − 1) − 𝛼 ≥ 0, and 𝑝2
given by

𝑝2 =
𝑑𝑟𝛼

𝛽 (𝑟(𝛼 − 1) − 𝑑) + 𝑑𝛼
. (B.16)

Then, 1 < 𝑝2 < 𝑟 and the following condition is satisfied

𝜎 +
𝑑
𝛽 (

1
𝑝2

−
1
𝑟)

< 1. (B.17)

Proof. Note first that 𝛽 (𝑟(𝛼 − 1) − 𝑑) + 𝑑𝛼 > 0 as 𝑟 > 𝑑
𝛼−1 . Then, (B.16) can be rewritten as

1
𝑝2

=
𝛽
𝑑 (1 −

1
𝛼 (

𝑑
𝑟
+ 1)) +

1
𝑟
, (B.18)

and it follows from condition (B.4(a)) that 1
𝑝2
> 1

𝑟 . Thus, 𝑟 > 𝑝2. Moreover, 𝑝2 > 1. Indeed,
from (B.18), conditions (B.5(d)) and (B.4(c)) and the fact that 𝑑 ≥ 2, we obtain

1
𝑝2

=
𝛽
𝑑 [𝜎 +

1
2 (

𝑑
𝛽 (

1
𝑝
−
1
𝑟)

+
1
𝛽)

− 1 +
1
2 (

𝑑
𝛽 (

1
𝑝
−
1
𝑟)

+
1
𝛽)]

+
1
𝑟

≤
1
2 (

1
𝑝
+
1
𝑟
+
1
𝑑)

≤
3
4
< 1.

Next, note that (B.18) leads to 𝑑
𝛽 (

1
𝑝2
− 1

𝑟) = 1 − 1
𝛼 (

𝑑
𝑟 + 1). Therefore, condition (B.17) is

equivalent to 𝜎 < 1
𝛼 (

𝑑
𝑟 + 1), which is true from estimate (B.5(e)).

In the following lemma, new ranges for the parameters 𝑝 and 𝑟 are defined to satisfy the

supplementary condition: 𝑟𝜎 ≤ 𝑑/𝛼. This condition is essential for proving that the global

mild solution 𝜌 belongs to the space 𝐿𝑝1(ℝ𝑑), where the parameter 𝑝1 (defined in Lemma B.7)

specifies the space of the initial data 𝜌0 ∈ 𝐿𝑝1(ℝ𝑑).
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Lemma B.9. Consider 𝑝 and 𝑟 satisfying

max
{

2𝑑
𝑑 + 𝛽 − 1

,
𝑑

𝛼 + 𝛽 − 2

}
< 𝑝 ≤

2𝑑
(𝛼 − 1) + 2(𝛽 − 1)

and

max
{
𝑝,

𝑝
𝑝 − 1

,
𝑑

𝛼 − 1

}
< 𝑟 <

𝑝𝑑
𝑑 − 𝑝(𝛽 − 1)

, or (B.19a)

2𝑑
(𝛼 − 1) + 2(𝛽 − 1)

< 𝑝 <
𝛼𝑑

max {2𝛽(𝛼 − 1) − 𝛼, 𝛼(𝛼 − 2) + 𝛽}
and

max
{
𝑝,

𝑝
𝑝 − 1

,
𝑑

𝛼 − 1

}
< 𝑟 ≤

(2𝛽 − 𝛼)𝑝𝑑
[𝛽(𝛼 − 1) + 𝛼(𝛽 − 1)]𝑝 − 𝛼𝑑

, (B.19b)

where, in both cases, the equality 𝑟 = max
{
𝑝, 𝑝

𝑝−1

}
is possible if max

{
𝑝, 𝑝

𝑝−1

}
> 𝑑

𝛼−1 .

Part 1: There exist 𝑝 and 𝑟 such that (B.19) holds.

Part 2: Consider 𝑝 and 𝑟 satisfying constraint (B.19). Then 𝑝 > 1, and the following condi-
tions are satisfied:

(a)
1
𝛼 (

𝑑
𝑟
+ 1) < 1, (b)

𝑑
𝛽 (

1
𝑝
−
1
𝑟)

+
1
𝛽
< 1,

(c)
1
𝑝
+
1
𝑟
≤ 1, (d) 𝜎 +

1
2 [

𝑑
𝛽 (

1
𝑝
−
1
𝑟)

+
1
𝛽 ]

< 1,

(e) − 1 < 𝜎 −
1
𝛼 (

𝑑
𝑟
+ 1) < 0, (f) 𝑟𝜎 ≤ 𝑑/𝛼.

(B.20)

Remark B.10. Consider 𝑝 and 𝑟 satisfying (B.19b). Note that, since 𝛽 > 𝛼(2 − 𝛼) for any
𝛼 ∈ (1, 2], max {2𝛽(𝛼 − 1) − 𝛼, 𝛼(𝛼 − 2) + 𝛽} > 0. Moreover, as 𝛽 > 𝛼/2 implies 2𝑑

(𝛼−1)+2(𝛽−1) >
𝛼𝑑

𝛽(𝛼−1)+𝛼(𝛽−1) , we have 𝑝 >
𝛼𝑑

𝛽(𝛼−1)+𝛼(𝛽−1) , and hence [𝛽(𝛼 − 1) + 𝛼(𝛽 − 1)]𝑝 − 𝛼𝑑 > 0. Therefore,

𝛼𝑑
max {2𝛽(𝛼 − 1) − 𝛼, 𝛼(𝛼 − 2) + 𝛽}

> 0 and
(2𝛽 − 𝛼)𝑝𝑑

[𝛽(𝛼 − 1) + 𝛼(𝛽 − 1)]𝑝 − 𝛼𝑑
> 0.

Proof. Part 1: Consider first the restriction given by (B.19a). For (𝛼, 𝛽) ≠ (2, 𝑑), we obtain
2𝑑

(𝛼 − 1) + 2(𝛽 − 1)
>

2𝑑
𝑑 + 𝛽 − 1

as 𝛼 + 𝛽 < 𝑑 + 2,

2𝑑
(𝛼 − 1) + 2(𝛽 − 1)

>
𝑑

𝛼 + 𝛽 − 2
as 𝛼 > 1.

Moreover, note that
2𝑑

(𝛼 − 1) + 2(𝛽 − 1)
<

𝑑
𝛽 − 1

(B.21)

as 𝛼 > 1. Then, 𝑝 ≤ 2𝑑
(𝛼−1)+2(𝛽−1) is also less then 𝑑

𝛽−1 . Thus, 𝑑 − 𝑝(𝛽 − 1) ≥ 0 and 𝑝𝑑
𝑑−𝑝(𝛽−1) >

max
{

𝑝
𝑝−1 ,

𝑑
𝛼−1 , 𝑝

}
, as we have already shown in Lemma B.3. Therefore, there exist numbers

𝑝 and 𝑟 in the ranges defined in (B.19a) for (𝛼, 𝛽) ≠ (2, 𝑑).



Appendix B. Parameters for Lebesgue Spaces 130

Now, consider the restriction given by (B.19b) in the case (𝛼, 𝛽) = (2, 𝑑). In this scenario,
(B.19b) becomes

2𝑑
2𝑑 − 1

< 𝑝 <
2𝑑

2𝑑 − 2
and 𝑝

𝑝 − 1
≤ 𝑟 ≤

2(𝑑 − 1)𝑝𝑑
2(𝑑 − 1)𝑝 + 𝑑𝑝 − 2𝑑

, (B.22)

since 2𝑑
2𝑑−2 ≤ 𝑑 < 𝑝

𝑝−1 < 2𝑑. Notice that there exists number 𝑟 in the range defined by (B.22),
since 2𝑑

2𝑑−1 < 𝑝 < 2 implies − 1
2 <

𝑑
2(𝑑−1) −

2𝑑
2(𝑑−1)𝑝 < 0, which leads to

𝑝
𝑝 − 1

≤
2(𝑑 − 1)𝑝𝑑

2(𝑑 − 1)𝑝 + 𝑑𝑝 − 2𝑑
=

𝑑

1 + (
𝑑

2(𝑑−1) −
2𝑑

2(𝑑−1)𝑝)
.

Moreover, it is trivial to see that there exists a number 𝑝 in the range defined by (B.22). Thus,
we obtain that there exist numbers 𝑝 and 𝑟 in the ranges defined by (B.19b) for (𝛼, 𝛽) = (2, 𝑑).

Part 2: To prove (B.20(a)-(e)), first we assume (B.19a). In that case, note that 𝑝 also satisfies
(B.3) if 2𝛽 (𝛼 − 1) − 𝛼 ≥ 0, since from (B.21) and (B.6) it follows that

2𝑑
(𝛼 − 1) + 2(𝛽 − 1)

<
𝛼𝑑

2𝛽 (𝛼 − 1) − 𝛼
.

Moreover, from (B.21), we see that 𝑝 and 𝑟 also satisfy (B.2a). Therefore, from Lemma B.3,
(B.20(a)-(e)) follows.

On the other hand, if we assume (B.19b), we have, for 𝑑 − 𝑝(𝛽 − 1) ≥ 0,
(2𝛽 − 𝛼)𝑝𝑑

[𝛽(𝛼 − 1) + 𝛼(𝛽 − 1)]𝑝 − 𝛼𝑑
<

𝑝𝑑
𝑑 − 𝑝(𝛽 − 1)

,

since 𝑝 > 2𝑑
(𝛼−1)+2(𝛽−1) . Moreover, 𝑝 satisfies (B.3) if 2𝛽 (𝛼 − 1) − 𝛼 ≥ 0, since in that case

𝛼𝑑
max {2𝛽(𝛼 − 1) − 𝛼, 𝛼(𝛼 − 2) + 𝛽}

≤ min
{

𝛼𝑑
2𝛽(𝛼 − 1) − 𝛼

,
𝛼𝑑

𝛼(𝛼 − 2) + 𝛽

}
.

Then, again from Lemma B.3, (B.20(a)-(e)) follows.

To prove (B.20(f)), note that this is equivalent to

𝑟 ≤
(2𝛽 − 𝛼)𝑝𝑑

[𝛽(𝛼 − 1) + 𝛼(𝛽 − 1)]𝑝 − 𝛼𝑑
.

Then, assuming (B.19a), we have
𝑝𝑑

𝑑 − 𝑝(𝛽 − 1)
≤

(2𝛽 − 𝛼)𝑝𝑑
[𝛽(𝛼 − 1) + 𝛼(𝛽 − 1)]𝑝 − 𝛼𝑑

, (B.23)

since 𝑝 ≤ 2𝑑
(𝛼−1)+2(𝛽−1) , and (B.20(f)) follows. On the other hand, assuming (B.19b), (B.20(f))

follows directly from (B.23).
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