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Resumo
Compreendendo os desafios associados às mudanças climáticas, as estratégias de manejo
agrícola devem avaliar o impacto do aumento das temperaturas e das mudanças nos
padrões de precipitação sobre a produtividade das culturas. Agricultura inteligente é a
adoção de tecnologias avançadas e operações agrícolas orientadas por dados para otimizar
e melhorar a sustentabilidade na produção agrícola. Esta tese explora o tema da agricul-
tura inteligente com uma perspectiva baseada em otimização, abordando o Problema de
Rotação de Culturas (PRC), a aplicação estratégica de herbicidas para o controle de ervas
daninhas em campos agrícolas, os desafios enfrentados na multiplicação de sementes de
milho, questões relacionadas a pragas que afetam a produção de soja e a utilização de
previsões de séries temporais no planejamento agrícola. Nosso principal objetivo é auxiliar
a comunidade de produtores de grãos oferecendo um conjunto completo de ferramentas
de otimização que incorporam diversos conceitos das práticas agrícolas em uma estrutura
matemática. Elaborar planos de cultivo de culturas baseados apenas em oportunidades
de mercado pode levar a abordagens que não são sustentáveis ao longo do tempo. Por-
tanto, exploramos o PRC como uma solução para auxiliar o manejo agrícola na criação
de estratégias de longo prazo que integrem eficiência agrícola e sustentabilidade. Nosso
arcabouço de manejo agrícola inclui as dinâmicas entre culturas, solo e água para desen-
volver um plano eficaz de rotação de culturas. Também consideramos o papel das culturas
de cobertura no balanço hídrico do solo e como indicador de melhorias na estrutura do
solo. Discutimos aprimoramentos na estrutura do solo relacionados ao uso recorrente de
culturas de cobertura no campo. Nosso método matemático para implementar o PRC
introduz diversas inovações na análise de manejo agrícola. O manejo de ervas daninhas
é fundamental para sustentar altos rendimentos na fazenda. No âmbito da melhoria das
práticas de manejo da soja, construímos um modelo de programação dinâmica para auxi-
liar no controle de ervas daninhas na soja, dado que a soja possui grande importância na
produção mundial de alimentos e em diversas indústrias. A crescente prevalência de ervas
daninhas resistentes a herbicidas é atribuída à intensificação agrícola, levando os agricul-
tores a utilizarem diversos herbicidas químicos para um controle eficaz. O uso extensivo
de herbicidas na agricultura comercial afeta negativamente o meio ambiente e desequilibra
o ecossistema. Adotar uma abordagem pragmática na aplicação de herbicidas promove
um uso mais consciente desses produtos químicos. Além disso, introduzimos um modelo
de otimização para lidar com o manejo de pragas. Nosso estudo concentra-se nos danos
causados por lagartas na soja. Propomos uma estrutura que descreve o equilíbrio entre
ação e perdas em um contexto dinâmico. Para além da comunidade agrícola, também pro-
pomos um modelo de otimização voltado para a indústria de multiplicação de sementes,
que enfrenta limitações nas capacidades de processamento e armazenamento. Ao longo



de nossa pesquisa, revisitamos uma variedade de conceitos agrícolas sob a perspectiva da
otimização, sugerindo diversas abordagens para enfrentar cada problema agrícola especí-
fico.

Palavras-Chave: Rotação de Cultivos; Pragas agrícolas - Controle integrado; Erva dani-
nha - Controle; Otimização matemática; Planejamento agrícola; Agricultura de precisão.



Abstract
Comprehending the challenges associated with climate change, agricultural management
strategies ought to evaluate the impact of increased temperatures and shifting precipita-
tion patterns on crop yields. Smart agriculture, also known as intelligent farming, is the
adoption of advanced technologies and data-driven agricultural operations to optimize
and improve sustainability in agricultural production. This thesis explores the subject of
smart agriculture from an optimization perspective, addressing the Crop Rotation Prob-
lem (CRP), the strategic application of herbicides for weed control in crop fields, the
challenges faced by agribusinesses in corn seed multiplication, issues related to insect
pests impacting soybean production, and the use of time series forecasting in agriculture.
Our main goal is to assist the grain farm community by offering a complete set of opti-
mization tools that incorporate various concepts from the agricultural practices into the
mathematical framework. Designing crop cultivation plans based only on market oppor-
tunities may lead to approaches that are not sustainable over time. Therefore, we explore
the CRP as an solution to aid farm management in crafting long-term strategies that
integrate agricultural efficiency with sustainability. Our farm management framework in-
clude the dynamics between crops, soil, and water to develop an effective crop rotation
plan. We also consider the role of cover crops within the soil water balance and as an
indicator of soil improvements. We discuss enhancements into the soil structure related
to the recurrent use of cover crops in the field. Our mathematical method for imple-
menting the CRP introduces various innovations into farm management analysis. Weed
management is critical to sustain high yield in the farm. Under the scope of improving
soybeans management practices, we have constructed a dynamic programming model to
assist weed control in soybeans as soybeans hold major significance in worldwide food pro-
duction and numerous industries. The increased prevalence of herbicide-resistant weeds
is attributed to agricultural intensification, prompting farmers to employ various chemi-
cal herbicides for effective weed management. Commercial agriculture’s extensive use of
herbicides adversely affects the environment and disrupts ecological balance. Adopting a
pragmatic approach to herbicide application fosters a more mindful use of these chemicals.
Additionally, we introduce an optimization model to tackle pest management. Our study
concentrates on the damages caused by caterpillars on soybeans. We propose a framework
that outlines the equilibrium between action and losses in a dynamic context. In addition
to the agricultural community, we also propose a optimization model designed to tackle
the seed multiplication industry, which is constrained by the limits of processing and
storage capabilities. Throughout our research, we revisit a variety of agricultural notions
from the perspective of optimization, suggesting several approaches to tackle each specific
farm issue.



Keywords: Crop Rotation; Agricultural pests - Integrated control; Weed Control; Math-
ematical Optimization; Agricultural planning; Precision farming.
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1 Introduction

Brazil has been the leading country in net agricultural exports for the last
twenty years (VALDES et al., 2020). During the 2020/2021 harvest, Brazilian soybean
production reached about 135.9 million tons, setting a record for the highest yield in the
country (CONAB, 2021b). Brazil also exported a total of 86.1 million tons of soybeans
in the same harvest season. Therefore, Brazilian farms account for about half of the
worldwide soybean trade. Soybeans and their derivatives have emerged as the predominant
agricultural products traded on global markets (CONAB, 2021a; ARAGAO; CONTINI,
2021). An agency report indicates that Brazil held the position of the second largest
corn exporter in 2020 (CONAB, 2021a). These statistics highlight the influence of grain
production on the Brazilian economy. Behind the massive agricultural market lies an
extensive operation that combines unprecedented grain processing capacity with a global
logistics network.

Remarkable figures in the agricultural sector indicate that substantial and
numerous opportunities for development are forthcoming. For analysts dedicated to per-
formance maximization, progress requires the skill of representing intricate issues based on
real-world parameters while maintaining consistency. There are occasions where achieving
what is feasible is enough; at different times, we aim at achieving the very best, the ideal
outcome.

Improvement on the horizon is the motivation of our research that merges op-
timization and sustainability within agribusiness. Overall, we aim to incorporate elements
of modularity, task distribution, and a systematic methodology into farm management,
as these have shown considerable success in the industrial sector. Even though industrial
production sites generally feature a controlled environment and more repetitive tasks, we
believe that agricultural practices and agronomic advice can similarly benefit from the
practical application of optimization. This approach can help organize their processes and
offer fresh perspectives beyond routine practices.

Agricultural tasks are varied, encompassing planting seeds, managing diseases,
and overseeing plant development until it is time for harvest. In carrying out these tasks,
farmers encounter numerous decisions. Many of these require swift action to avoid a reduc-
tion in yield. Introducing an optimization mindset into farm management, we believe, can
reduce the need for extreme actions in critical situations by predicting the most effective
strategy and making adjustments in advance using data.

In Brazil, favorable weather conditions provide farmers with the opportunity to
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choose from a diverse selection of commercial crops. Although certain crops dominate due
to the necessary infrastructure and market advantages, grain farmers still have the flexi-
bility to explore various unconventional alternatives. Choosing an alternative commercial
crop alters particular management methods; however, the existing farm equipment may
remain suitable, which is advantageous for agriculture. In contrast, large-scale industrial
production requires a complete overhaul to manufacture a different item.

The ability to grow diverse crops on a grain farm prompts an exploration of
the Crop Rotation Problem (CRP), a prominent combinatorial problem, which embraces
a wide array of viewpoints, leading to diverse applications and consistently yielding novel
insights. The fundamental challenge involves planning a cropping sequence tailored to
incorporate costs, profitability, environmental indicators, water resources, and other tar-
get attributes. Our distinctive CRP strategy for targeting grain farms incorporates the
integration of cover crops and their ecoservices, which can lead to various advantages for
soil health and enhance the consistency of grain yields. In addition, we include water bal-
ance equations in the model to predict the significant effects of cover crops on the overall
success of the farming operation.

Weed management approaches such as manual, mechanical, cultural, biologi-
cal, and chemical techniques each have their own limitations. It is unlikely that any method
alone can achieve the required effectiveness in the control of weeds (DAS et al., 2024).
To effectively manage weeds in any commercial crop, a well-structured approach known
as Integrated Weed Management (IWM) is employed within the agricultural sector.. As
outlined by Holt (2013), IWM is an approach to control weeds that integrates knowledge
of the biology and ecology of weeds with various control methods. This strategy em-
ploys diverse techniques, incorporating non-chemical and preventive measures, to reduce
reliance on herbicides.Without a comprehensive understanding of herbicide application
throughout the entire crop cycle, farmers are unable to effectively undertake preventa-
tive measures. A model-based approach we propose in this research aims to address the
decision making about herbicide application in soybean crops.

In Brazil, insect pests are estimated to lead to an average annual production
loss of 7.18% (OLIVEIRA et al., 2021), resulting in a significant decrease of millions
of tons in the production of biofuels, fiber, and food. Understanding the harm caused
by insect pests in agriculture is essential for the development of agronomic policies. The
impact of pest damage on commercial crops can have global price implications. Accurately
assessing losses caused by pests is essential for allocating additional resources to pest
management. This involves a thorough evaluation of control mechanisms that affect both
agricultural productivity and the environment. Among the numerous insect pests that
concern farmers in Brazil, Helicoverpa armigera (Lepidoptera, Noctuidae: Heliothinae)
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occurrences pose a serious threat to soybean and various other crops (SOSA-GóMEZ
et al., 2016). The adaptation strategies of Helicoverpa armigera with plants are highly
complex and not well understood (SUZANA et al., 2018). The difficulties in controlling
Helicoverpa armigera infestations in soybean crops drive us to formulate an optimization
model. This model aims to represent the density of the caterpillar population, assess the
corresponding damage to soybeans, and outline preventative measures to avert outbreaks,
ultimately strengthening farm management resilience against Helicoverpa Armigera.

Climate influences agricultural production on two different time scales: long-
term, historical climate directly affects crop production, affecting land use patterns, while
short-term, weather conditions play a crucial role in determining crop failure and produc-
tivity reductions (PEREDA; ALVES, 2018). Commodity futures prices are also crucial in
determining both the selection of crops and the timing of sowing. Our initiative to tackle
climate impacts and fluctuations in agricultural commodity prices involves employing time
series forecasting techniques.

Figure 1.1 – Creating a cohesive framework to facilitate sustainable practices in line with
the Smart Agriculture trend.

Figure 1.1 presents an overview of our research framework. In agriculture,
the concept of sustainability goes beyond simply addressing environmental issues. Al-
though adopting eco-friendly practices is essential, sustainability ought to be perceived
as the holistic evaluation of the entire farm operations. Our research aims to provide
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algorithm-driven solutions for each subject, continually supporting the sustainability of
farming as both a lucrative venture and a protector of the environment: (1) crop rotation,
(2) integrated pest management, (3) careful use of herbicides, (4) weather and market
forecasting, (5) interseeding with cover crops, (6) managing soil water balance, and (7)
efficient fertilizer usage.

Research question and objectives

In this thesis, the main research inquiry that we aim to explore is: “How can
farm management strategies integrate optimization principles to drive sustainability?”

The aim of our research is to investigate challenges in the grain production
chain, mainly in the grain farm context, from an optimization perspective by providing
a structured analysis of agronomic approaches and improving strategic planning abilities.
To achieve this objective, the following particular targets have been established:

• Create a model for the CRP that integrates soil water balance;

• Design a dynamic programming approach for herbicide application;

• Devising a mixed integer optimization model to address the seed multiplication
issue;

• Develop an algorithm for pest management that merges the use of natural predators
with artificial control techniques;

• Examine time series forecasting techniques and their applications in predicting
weather and agricultural commodity trends;

• Evaluate the effectiveness of the suggested optimization algorithms and decision-
support approaches using both actual agricultural data and simulated datasets.

Research motivation

Our methodology emphasizes the use of mathematical models and algorithmic
strategies; however, our research is primarily driven by two interdisciplinary themes that
are essential to the entire society:

1. Sustainability and food security: 17 Sustainable Development Goals (SDGs)
were formulated by the United Nations (UN) to tackle the major challenges faced
today, protect the planet and improve the quality of life for all. Part of the 2030
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Agenda, SDG2, or Sustainable Development Goal 2, aims to “End hunger, achieve
food security and improved nutrition and promote sustainable agriculture”. This ob-
jective underscores the interrelated aspects of encouraging sustainable agricultural
methods, empowering smallholder farmers, eliminating rural poverty, advocating for
healthy living, and combating climate change. Among the targets related to this ob-
jective (United Nations, 2023), we can highlight: “By 2030, double the agricultural
productivity and incomes of small-scale food producers, in particular women, indige-
nous peoples, family farmers, pastoralists and fishers, including through secure and
equal access to land, other productive resources and inputs, knowledge, financial ser-
vices, markets and opportunities for value addition and non-farm employment”; “By
2030, ensure sustainable food production systems and implement resilient agricul-
tural practices that increase productivity and production, that help maintain ecosys-
tems, that strengthen capacity for adaptation to climate change, extreme weather,
drought, flooding and other disasters and that progressively improve land and soil
quality”; “Increase investment, including through enhanced international coopera-
tion, in rural infrastructure, agricultural research and extension services, technology
development and plant and livestock gene banks in order to enhance agricultural
productive capacity in developing countries, in particular least developed countries”.

2. Transforming farm policies to reduce climate risks: The increasing frequency
and severity of extreme weather events driven by climate change present numerous
difficulties: they increase risks and impacts, influence every aspect of food security
and nutrition. The social groups most susceptible are disproportionately affected
by unstable weather conditions. Weather-related impacts exert pressure on land
and water resources, thereby affecting agricultural systems and ecosystems. The
United Nations’ Food and Agriculture Organization (FAO) argues for urgent mea-
sures to address climate risk by improving capabilities in prevention, anticipation,
absorption, adaptation, and transformation to inform policies, decisions, and climate
measures. This encompasses executing assessments of climate risk, impact, and vul-
nerability; establishing multi-hazard early warning systems; reinforcing infrastruc-
ture against climate risks and ensuring risk transfer methods, including insurance
and social protection; alongside anticipatory actions and strategies for emergency
preparedness and response to adapt to climate change and enhance resilience in
agricultural systems. Referencing (Food and Agriculture Organization (FAO) of the
United Nations (UN), 2022), it can be stated that: “Enabling stakeholders in the
agrifood systems to maintain the production, processing, distribution, and consump-
tion of safe and nutritious foods and other valuable goods and services necessitates
a series of effective climate resilience and adaptation measures founded on robust
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ecosystems and the sustainable management and preservation of natural resources”.

We hold that integrating optimization with farm management strategies is
closely linked to the adoption of resilient agricultural practices to improve adaptability
to climate change. An effective method for developing farm policies involves integrating
them into the design of a mathematical model within the farm decision-making framework.
Consequently, both interdisciplinary themes are intrinsically linked to the essence of this
research.

Contributions and thesis outline

The introduction to our research is outlined in Chapter 1, and this thesis
is further structured into five more chapters. Chapter 2 presents an engaging literature
review. Chapter 3 primarily discusses the farm management’s land allocation problem.
Chapter 4 focuses on a problem related to weed management in soybeans. The study of
seed multiplication enterprises is addressed in Chapter 5, where we introduce an opti-
mization solution to assist the seed allocation problem. Chapter 6 centers on pest control,
specifically analyzing caterpillar pressure on soybean fields. Our investigation aims to
comprehend how caterpillar population density impacts control strategies. We develop an
optimization model that integrates insecticide application with the predator-prey dynam-
ics based on the Lotka-Volterra equations. The comprehensive evaluation of our findings
is detailed in Chapter 8. The supporting data for our research can be found in Appendix
A to Appendix D.

Chapter 2 offers an in-depth analysis of the literature on the application of
optimization in agriculture. Not only covers well placement, it also identifies uncharted
and promising opportunities within the field. The chosen papers are highly relevant to the
context of our study, and as a result, are not limited to a certain publication period, even
though we have diligently searched for the most recent ones available. Our review of the
literature indicates that, although optimization in agriculture has been studied, there are
still numerous emerging research opportunities, as agricultural innovation significantly
transforms practices in the field. This thesis has explored several promising topics to
address existing gaps.

The renowned land allocation problem, called the Crop Rotation Problem
(CRP), is main theme of Chapter 3. In this chapter, we make an important contribution
by highlighting the crucial role of cover crops in the crop rotation process, enhancing soil
health and promoting water sustainability. Our proposed model capabilities incorporate
the equations that define crop evapotranspiration, accounting for the soil water content,



Chapter 1. Introduction 27

the foreseeing precipitation, and the crop water demand to full establishment.

Chapter 4 make a notable impact in the field by introducing our proposed dy-
namic programming model, which provides a structured method to implement agronomic
recommendations regarding herbicide use. Concerned about the excessive application of
herbicides, we introduce a novelty approach aimed at optimizing the use of selective her-
bicides on the preemergent and post-emergent stages of soybeans, focusing on managing
the potential yield losses compared with spraying expenses and controlling weeds without
over-relying on herbicides.

The key contribution of Chapter 5 is the proposed algorithmic solution de-
signed to tackle the complex challenge of managing corn breeding in large-scale seed mul-
tiplication businesses. The algorithm we propose is effective in assessing the maximum
storage capacity needed to manage a significant amount of corn seeds and in supporting
balanced utilization of the storage capacity during the harvest period.

The contribution of Chapter 6 is the innovative modeling of a pest problem
in soybeans combining the Lotka-Volterra prey-predator equations. Given the increased
significance of biological control strategies in agriculture, we develop a pest management
system that integrates the use of pesticides, alongside either chemical means or artificially
introduced predators.

Chapter 7 contributed to the field by exploring the use of recurrent artificial
neural networks in time series prediction. We recognize the importance of strengthening
the resilience of long-term strategies and seek to achieve this by incorporating time series
forecasting.
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2 Optimization and Agriculture: a scoping re-
view

Agriculture has long been a risky business, and farmers often navigate uncer-
tainty. The agricultural sector is highly influenced by weather patterns, regional climate
instabilities, soil quality, farm management practices, and seasonal market influences.
The annual crop yield is substantially impacted by the mean temperature and the sum
of accumulated rainfall, yet predicting weather conditions with accuracy over extended
crop cycles remains challenging. Farmers rely on estimated crop yields to determine the
acreage designated for each commercial crop to satisfy market demands and capture favor-
able market opportunities. Grasping the entire complexity of farming, it becomes evident
that optimization concepts are not only suitable for dealing with this intricate situation,
but also crucial to sustain an equilibrated agribusiness with modern farming practices.
In this chapter, we review a number of studies within the literature that explore the link
between agricultural challenges and the use of certain optimization methods to address
them. To select a few research papers from the vast literature, we search for terms like
crop yield prediction, farm management, and optimization, optimization methods applied
to the agricultural sector.

Our search was mainly conducted on Google Scholar and Science Direct. This
chapter aspires to present a comprehensive outlook connecting optimization with farm
management, while other chapters contain distinct related works sections that are focused
on particular subjects. In this concise scoping review, we are not strictly bound by the
latest publications, as our primary focus is to establish a foundation at the crossroads of
agriculture and optimization.

Establishing an analytical approach to relate the climate pattern to the yield
response would prevent farmers from making extremely risky decisions. Agrarian meteo-
rological models for the forecast of yield have been placed as the right tool to explore the
influences of weather variables (BASSO; LIU, 2019; APARECIDO et al., 2021; JUNIOR
et al., 2024). The variability in annual yields is predominantly influenced by meteorolog-
ical factors. Aparecido et al. (2021) conducted an analysis on the variability in soybean
yields and introduced an agricultural model to predict soybean yield, highlighting the
weather factors that significantly impact yield. This research utilized a historical series
of 34 climate records and soybean yield data from regions in Mato Grosso do Sul, Brazil,
with climate records spanning 20 years (2000-2019). They have used a multiple linear
regression approach to model farming and weather data , incorporating information from



Chapter 2. Optimization and Agriculture: a scoping review 29

36 different locations. They recognized that recurrent moderate droughts in December
rank among the most crucial climate factors. The persistent water shortage throughout
their study period was recognized for its considerable effect.

The production of Brazilian maize is crucial for global food security and serves
as a raw material in numerous supply chains. Given the vital importance of maize, accu-
rately predicting yields on a national scale can alert institutions and stakeholders ahead of
time, enabling them to implement precautionary measures to ensure food security before
any bias arises. The Joint UK Land Environment Simulator (JULES) is a process-oriented,
collaborative model designed to simulate the exchanges of carbon, water, energy, and mo-
mentum between terrestrial surfaces and the atmosphere. JULES-crop is a crop parameter
module within JULES, designed with the dual purpose of modeling the effects of weather
and climate on crop yields and assessing the influence of croplands on weather and climate
patterns (Geoscientific Model Development, 2024). From this premise, Junior et al. (2024)
examined maize yield forecasts by employing JULES-crop outputs under conditions of wa-
ter constraints and optimal scenarios, along with meteorological indicators. The favorable
Brazilian weather allows for several crop cycles annually, and their attention was directed
toward forecasting maize yields in the off-season. Their results indicated that, between
2003 and 2016, 60% of the variation from year to year in the off-season maize yields in
Brazil was attributed to factors such as rainfall and temperature.

Although more sophisticated strategies for prediction of yields are contempo-
raneous, the desire to estimate crop yield before harvest has intrigued humans since the
dawn of agriculture. Basso and Liu (2019) performed a thorough examination of sea-
sonal crop yield prediction techniques within the scientific literature. The findings of their
study indicated that yield predictions are primarily based on field surveys, statistical re-
gressions that correlate historical yields with current seasonal variables with a growing
number of remotely detected data, crop simulation models, or an integration of statis-
tical and dynamic process-based crop simulation models. Although few studies use field
surveys exclusively for yield forecasting, these remain the primary methods for predicting
and estimating yield in many countries.

Multiple linear regression is an established method for predicting yield, but
crop yield models offer a compelling alternative. These models can aid decision makers
across any agroindustrial supply chain, even in decisions that extend beyond crop pro-
duction. Data mining techniques, given the properties of mechanisms and yield data, are
well suited for modeling purposes. Implementing these methods with feature engineering,
feature selection, and optimal tuning can enhance performance beyond simply replacing
multiple linear regression. Their relevance is emphasized in Bocca and Rodrigues (2016),
which pointed out that contemporaneous yield models that combine weather prediction
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produce a more meaningful interpretation of the data. Bocca and Rodrigues (2016) as-
serted that data mining would be a wise choice among several strategies. Their proposed
data mining solution is based on a database encompassing 65 characteristics that include
soil, crop variety, and management practices.

According to Kaul et al. (2005), the mechanistic models in agriculture tend to
be quite complex given the biological considerations involved. Empirical models, on the
other hand, are generally simpler, but may sacrifice a degree of precision. They developed
a prediction model based on artificial neural networks (ANN) to forecast soybean and corn
yields. The researchers chose a feed-forward back-propagating architecture because it was
more efficient and had lower memory demands, which were significant challenges during
their study. Sharing the same data set in which the ANN was developed, they proposed
a multiple linear regression model based on the Maryland Agronomic Soil Capability
Assessment Program (MASCAP). The regression model has offered a reliable benchmark
against the ANN. In summary, following the evaluation and fine-tuning of the ANN, the
authors concluded that the ANN was beneficial and appropriate to help predict the yield.
They adjusted the ANN by modifying the learning rate, the count of hidden nodes and the
training tolerance. Kaul et al. (2005) also found that the yield predictions were improved
when the geographic area being examined was smaller. As the spatial scale increases,
there is more variability in cropping conditions.

Klompenburg et al. (2020) investigated the use of Machine Learning in crop
yield prediction. Their systematic approach to the literature produced a rich survey. In
addition to several important observations, Klompenburg et al. (2020) noticed that mod-
els with more features did not always provide the best performance, and emphasized
that test range ought to be extensive. Among the variety of Machine Learning models,
Klompenburg et al. (2020) avoided suggesting the best model as the scope of the selected
articles differs in data and features. Rather than pointing out the best option, which could
be biased, they indicated the most used ones in their survey, which are random forest,
neural networks, and gradient-boosting tree. Neural networks have the largest share. From
deep learning algorithms, convolutional neural networks (CNN), long-short-term memory
(LSTM), and deep neural networks (DNN) are often used. In their research, Klompenburg
et al. (2020) began with 567 papers collected from the search for specific keywords per
database. After filtering, they conducted 50 studies that met their criteria. Most of the
papers were located from Springer, Google Scholar, and Scopus.

Alves et al. (2018b) stand for the use of artificial neural networks in crop yield
prediction due to their ability to effectively handle nonlinear systems, which typically ex-
hibit complex and unclear variable interactions. Moreover, the intricacy involved in solving
statistical models for projecting crop yields limits their field application due to the ex-
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tensive data needed. Alves et al. (2018b) conducted an analysis on the effectiveness of
ANNs in estimating crop yields. Growth habit, sowing density, and agronomic character-
istics provide information. They successfully used a multi-layer perceptron neural network
(MLP) to predict soybean yield with considerable certainty. Rather than being concerned
with every stage of soybean development, which goes from seeding to harvesting, Alves et
al. (2018b) focus on collecting agronomic data during or after the stage R6. In soybeans,
the R6 stage denotes the full seed stage within the reproductive growth phases. Data
collected during these advanced crop stages are usually more precise; however, it is close
enough to the harvest period that it diminishes the potential for long-term predictions.
According to Alves et al. (2018b), the main factors associated with the potential soybean
yield include the following list: (1) number of branches per plant, (2) number of pods,
(3) number of inter-nodes, (4) insertion of the first pod, (5) stem diameter and (6) plant
height.

There is no doubt that chemical fertilizers significantly improve crop produc-
tion. The application of phosphates and nitrates is on the rise as farmers strive for higher
yields, but this leads to nutrient surplus and potential environmental dangers. A signifi-
cant problem is eutrophication, characterized by a reduction in oxygen levels in the water,
which endangers marine organisms. Regarding the extensive use of fertilizers, Cropper and
Comerford (2004) devised a genetic algorithm (GA) integrated with a mechanistic nutri-
ent uptake model (SSAND, soil supply and nutrient demand) to determine the minimal
phosphorus input required to satisfy the initial four-year nutrient needs of pine planta-
tions. Cropper and Comerford (2004) focused exclusively on the application of phosphorus
fertilizers. While phosphorus fertilizers play a crucial role in crop growth, it is important
to also consider additional macro and micronutrients. Cropper and Comerford (2004) pro-
vides a compelling study on phosphorus requirements, which could be modified to address
the demands for other vital nutrients in crops. Their dataset comprises trustworthy field
data, featuring records from 10 stands of rapidly growing loblolly pine plantations located
in southern Georgia, as well as one plantation in Florida. Their model range includes ex-
amining the connection between root length density and nutrient absorption. In addition,
the scenario involving grass competition in pine plantations has been investigated. While
our study does not specifically address pine plantations, Cropper and Comerford (2004)’s
insights into the nutrient absorption of growing pines prove enlightening, as their re-
search traverses several fields of knowledge, thereby broadening our perspective. Cropper
and Comerford (2004) highlighted in their research that one motivation for developing
genetic algorithm solutions is the complex nature of optimizing fertilizer regimes, mainly
due to multiple fertilizer applications. The problem is high-dimensionality suggests that
without meticulous attention, deterministic methods would likely face a swift increase in
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complexity given the vast number of possible combinations inherent in the problem.

In Zheng et al. (2009), researchers examined how long-term water shortages
reduce productivity. The aim was to gather data and suggest innovative strategies for
managing farms, addressing soil traits, and the differences in soybean production. They
aimed to identify the main factors that contribute to yield volatility. Their research was
carried out in fields at a relatively low elevation of 240 meters. Their research was con-
ducted in Hailun County, located centrally in Northeast China. This region is mostly
flat, with an average temperature of about 24.1 𝑐𝑖𝑟𝑐𝐶 and annual rainfall near 500 mm.
The wet season, which coincides with crop growth, runs from May to September and it
is recommended to begin planting in early May. Despite advances in modern machinery
transforming agriculture, certain resistant areas continue to rely heavily on labor-intensive
methods, given that traditional farming practices are culturally important. According to
the study by Zheng et al. (2009), a significant labor force persists in the rural areas of
their study location, leading to fragmentation of the croplands. Households often divide
arable land, which is vital for their study as it allows independent management practices
and unbiased data collection. Regular interviews were conducted with each household. In
our perspective, their extensive door-to-door data collection with multiple farmers was
crucial, likely facilitating significant informative exchanges. The discussions covered top-
ics such as soil preparation methods and crop rotations. In their analysis, Zheng et al.
(2009) employed SYSTAT 12 for statistical processes, which included summary statistics,
stepwise linear regression, and Classification and Regression Tree (CART) analysis. They
found that phosphorus application, farm manure use, and soil organic carbon levels sig-
nificantly influenced yield variability in their study. They concluded that it is imperative
to revise management approaches to diminish yield fluctuations and boost crop output
during drought conditions.

The increasing reliance on chemical fertilizers has prompted the research by
Ahmed et al. (2021). Repeated applications of chemical fertilizers and other compounds
have an impact on soil properties. Ahmed et al. (2021) express significant concern about
the balance of soil health and crop productivity. In their study, they acknowledge the on-
going shift in agriculture due to the rise of the Internet of Things (IoT), cloud computing,
and other technologies within precision agriculture. However, they claim that these ad-
vanced technologies alone cannot establish a sustainable production system. Traditional
farming practices, which have long been refined by farmers, remain the standard of agri-
culture. Leveraging this deep-rooted knowledge from farmers can guide environmental
understanding and decision making. Ahmed et al. (2021) introduced nutrient recommen-
dations through an enhanced genetic algorithm that uses sensor data from time series to
recommend diverse crop configurations.
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From Cardoso et al. (2011), climate forecasts are, foremost, responsible for an-
nual fluctuations in soybean yields. Soybeans have various uses, since they are primarily
processed for oil and ground to serve as a rich protein source in animal feed. Additionally,
soybeans are incorporated into numerous human foods in smaller amounts, such as soy
milk, soy protein, and several consumer food items. Among agricultural products, soy-
beans stand out as a major contributor to Brazil’s farm commodity cash receipts. Cardoso
et al. (2011) discussed the growth cycles of various soybean cultivars, categorizing the du-
ration of the cycle into different groups: (1) early, lasting 75 to 115 days, (2) semi-early,
taking 116 to 125 days, (3) medium, spanning 126 to 137 days, (4) late medium, covering
138 to 150 days, and (5) late, exceeding 150 days. Highlighting the broad variability in
soybean cycle length is crucial, as any optimization approach should be able to adjust the
optimization period accordingly. Cardoso et al. (2011)’s objective was to enhance yields by
studying crop forecast models. By linking climate patterns with anticipated crop yields,
analyses could be improved, significantly decreasing error margin. Leguminous crops have
specific water needs, and moderate to severe droughts can cause flower and pod abortion
at the start of the reproductive phase. Crop yields are particularly sensitive during the
grain filling stage, where browning of leaves and premature leaf drop are clear indicators
of water stress.

Gusso et al. (2017) analyzed the Enhanced Vegetation Index (EVI) data for
predicting soybean crop yield, deducing from their findings that it reliably estimates pro-
duction. They addressed the Brazilian production report and their methodology. The
Companhia Brasileira de Abastecimento (CONAB) releases grain yield forecasts periodi-
cally and, being a government entity, is the main source of production estimates in Brazil.
Inaccuracy in these forecasts could potentially lead to food supply crises or disruptions in
the market. Gusso et al. (2017) noted that although these agency reports provide accurate
and high-quality insights, CONAB’s methods are still prone to errors related to their sur-
vey methodology. Furthermore, fine-resolution data are not widely available. Due to these
limitations, the forecasts mainly serve large-scale policies and market regulation. Gusso
et al. (2017) conducted their study in Mato Grosso, Brazil, a tropical state with typically
high humidity; annual precipitation ranges from 1300 to 1700 mm (CARVALHO, 2022).
Their research incorporated data from the Landsat satellite along with the Moderate Res-
olution Imaging Spectroradiometer (MODIS). Landsat is a satellite system that operates
to continuously capture images of the global land surface, providing robust data and docu-
menting natural and human-made changes (MASEK, 2022). MODIS, a critical instrument
on board the Terra and Aqua satellites, covers the Earth’s entire surface every 1 to 2 days,
capturing data across 36 spectral bands or wavelength groups (MACCHERONE, 2022).

Oliveira et al. (2017)’s intriguing study, targeting not just sugarcane estimates,
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presented a comprehensive methodology with broad potential applications. Their research
goes beyond the calculation of fresh mass yields, aiming to assess the actual sugar content
of a harvest right from the field. They highlighted the significant economic impact of pre-
cise estimates, noting that setting goals, a critical business activity, is often based on these
estimates. Inaccurate growth predictions can exceed processing and storage capacities, re-
sulting in significant logistical problems. Setting ambitious goals creates a risky situation,
while overestimating production can lead to multiple breaches of supply contracts. Oliveira
et al. (2017) mentioned that accurately modeling plant phenology along with its physio-
logical mechanisms often necessitates a comprehensive grasp of their micro-environment
alongside laboratory experiments. Empirical models tend to avoid delving into the spe-
cific natural events involved, opting instead for a broader perspective. Unsurprisingly,
business management typically gravitates towards these empirical approaches. In Oliveira
et al. (2017), the objective was to assess sugar levels using weather fluctuations and man-
agement strategies as input variables. Their findings sought to offer valuable information
to the sugar industry, particularly for sugarcane processing facilities. The study explored
techniques such as support vector regression, random forests, and regression trees. Al-
though data mining exhibits significant promise, it necessitates adjusting the algorithm’s
parameters for every new set of data.

Burt (1965) released their study during an era when computers were primarily
the tool of select pioneers. In this time frame, as computational power was just beginning
to expand, the achievement of practical optimization solutions necessitated the expertise
of highly skilled specialists to convert the problem into a format that could be solved using
the computational power available at that time. Although trends in academic research had
decisively reshaped outlooks over the past decades, some researches from the 1960s man-
aged to grasp the optimistic future of operations research in many fields. We have found
in Burt (1965) a confident and precise perspective on Operations Research in farm man-
agement. In one of the initial insights presented in Burt (1965), it is observed that viewing
Operations Research merely as a collection of tricks or methods limits its ultimate effec-
tiveness in any field. This reflects a modern misunderstanding that without the necessary
expertise of optimization experts, even the results derived from certain methodologies may
fall short in various ways. Burt (1965) acknowledged the challenge of estimating param-
eters essential for managing intricate farm management scenarios, although they did not
explicitly identify it as a problem. They discussed various farm management applications
with optimism, expressing confidence in their feasibility for data collection. A compre-
hensive farm enterprise budget is crucial for the business’s profitability and strategically
guides the future use of farm resources. Using linear programming for budgeting in large
enterprises is quite commonplace. Even if the entire budget isn’t optimized, certain budget
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components are adjusted to achieve desired maximum or minimum outcomes. Burt (1965)
identified linear programming as a commonly used approach to budgeting. They suggested
that subsequent development should involve extending from budgeting to the allocation
of resources over time, leading to dynamic linear programming. Burt (1965) introduced
a creative scenario with respect to farm expansion. The act of purchasing land becomes
financially feasible only after some time, following the success in outcomes such as good
harvests. To foresee future results, it is essential for mathematical programming to incor-
porate uncertainties related to land and yield prices. Risk analysis in farm management
is another significant challenge, particularly with high-risk crops and risk-averse farming
strategies. A dynamic programming model could provide valuable insight for long-term
planning. Burt (1965) concluded notably that with the increasing mechanization of farms,
the demand for operations research methods would increase. Scheduling would become
a crucial aspect of large-scale agriculture. The field of farm management offers limitless
opportunities for application.

Neto et al. (1998) explored crop modeling by initially presenting a concise
semantic overview of model classification. They categorized the models into three main
types: (1) conceptual, (2) physical, and (3) mathematical. In the realm of mathematics,
models can be categorized as either empirical or mechanistic. Neto et al. (1998) high-
lighted the inherent ambiguity of the mechanistic models. Despite these models striving
for accurate representation of events and processes, the intricacy of the real world requires
omitting certain aspects to maintain practicality and usability. Consequently, all mecha-
nistic models carry limitations and require assumptions. Neto et al. (1998) discussed some
models in the literature that aim to predict wheat yield using meteorological variables
and another yield projection model based on sugarcane leaf and Growing Degree Days
(GDD). Their conclusion highlighted the importance of conducting a proper test batch
before implementing any model decision.

In order to address the intricate farm management issues present in horse
farms, Moghaddam and DePuy (2011) introduced a stochastic optimization model de-
signed to identify the optimal number of acres of hay a farm should cultivate for their
horses’ needs. The variability in weather conditions is represented within the mathe-
matical model by incorporating random variables into the constraints of the model. In
addition, the model helps determine the appropriate amount of hay to purchase and sell
with the goal of maximizing the farm’s overall profit. This model helps horse farmers make
effective decisions about the cultivation, purchasing, and sale of hay. Their model incorpo-
rated multiple constraints to manage inventory levels, ensuring that the hay consumption
in each period aligns with the estimated demand according to its definition.

Boussios et al. (2019) developed a methodology to determine optimal farm
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management strategies, supported by the use of Dynamic Programming (DP). By uti-
lizing stochastic variables associated with weather patterns and price fluctuations, they
developed a novel method aimed at enhancing sustainability and managing risk. Boussios
et al. (2019) stated that their approach aligns more closely with agricultural practices
because it incorporates stochastic weather variables. Their dynamic programming ap-
plication became efficient by the use of thresholds, which basically replace continuous
variables in the model with triggers. To illustrate, let us assume that a certain variable
represents the quantity of a highly hazardous chemical compound. If it is continuous and,
confined to tank, spans from 0 to 1000 liters, this creates an infinite range of intermediate
states. By categorizing the volume into intervals such as empty, half-full, or overflowing,
we can significantly reduce this state space, which would suffice for many decision mak-
ers. In Boussios et al. (2019), a key threshold is identified as the minimum criterion of
100 mm accumulated rainfall necessary to commence planting. This aligns well with the
straightforward decision-making process of farmers, who typically employ simple strategies
rather than intricate methods in their daily tasks. Agronomic recommendations are based
similarly on specified ranges. This threshold model shares similarities with agronomic
methodologies and offers significant improvements in computational efficiency through
the use of dynamic programming.

Popp et al. (2003) reported experiment results in soybean field to establish
comparison parameters in the following agricultural practices: (1) no-till versus tilled
seed bed preparation, (2) soybean cultivars and their maturity groups and plant seasons,
and (3) planting equipment (planter versus grain drill). The experimental site was set up
in Keiser, Arkansas, in 1990. A subsequent trial occurred in 1992, this time in Rohwer,
Arkansas. These trials generated data that were instrumental in developing an intriguing
optimization model. The objective function of the model of Popp et al. (2003) is to maxi-
mize the area that can be planted with a specified soybean maturity group cultivar. Their
constraints accounted for available labor resources and restricted access to equipment
and machinery. Their research provided robust information on the probability of timely
completion based on the availability of machinery and the planting season. Their study
reveals that recommendations that disregard the operational scale implications driven by
weather might neglect crucial factors for crop producers.

Manos et al. (2013) introduced a multi-criteria programming model designed to
optimize agricultural production plans. Their research focused on increasing gross margin
while minimizing reliance on fertilizers and reducing labor hours. The authors applied a
solution approach inspired by the Weighted Sum Method. Their optimization method was
tested in the Thessaly region of Greece and the findings demonstrate that it effectively
balances gross margin, fertilizer use, and labor efforts.
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In semi-arid countries, achieving agricultural sustainability in the face of cli-
mate change poses a significant obstacle. Robert et al. (2018) examined the adaptive
decision-making processes of farmers in response to climate change. Their study concen-
trated on long-term investments in bore well irrigation and analyzed short-term decisions
about cropping systems and irrigation water application rates. A stochastic dynamic
model was employed to evaluate how farmers’ decision making would respond to different
social and economic aspects under various climate change scenarios. Their study exam-
ined multiple policies—including subsidies for rain-fed agriculture, changes to subsidized
energy for irrigation, and a water charge adjusted to the ambient groundwater level—and
assessed their effects on both farmer profit and groundwater levels.

2.1 Understanding the relevancy of the reviewed material

Tables 2.1 and 2.2 resumes the principal factor from each research paper in this
brief literature review. From the work dedicated to crop yield prediction, a variety of tech-
niques were employed, such as multiple linear regression, artificial neural networks, data
mining, and evolutionary algorithms. Some methodologies are devised for a multi-crop
system, while others are exclusively dedicated to specific crops. While the application of
artificial neural networks can be smoothly modified for different crops, several parameters
must be customized to develop an efficient algorithm as it is applied to a new crop. This
is due to ANNs’ high dependence on the specific characteristics of the dataset.

Other investigations, like Burt (1965) and Neto et al. (1998), collectively aim
to underscore the significance of optimization within the agricultural sector. In conducting
our literature review, we opted for two surveys, Klompenburg et al. (2020) and Basso and
Liu (2019), which offer a comprehensive overview of their application within academic
studies. Based on the review by Basso and Liu (2019) that included more than 250 yield
prediction studies, remote sensing data was mentioned in slightly more than 50% of the
articles. Agrometeorological models were used in approximately one-third of the studies,
while process-based models appeared in 15% of the studies. Only a few papers discussed
the use of surveys in forecasting crop yields. Although we have discussed only one mul-
ticriteria, which is the paper published by Manos et al. (2013), incorporating multiple
objectives is a prevalent trend in the literature.
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Table 2.1 – Evaluating selected articles from the literature, part (a)

Article Type of Article Key Data
Analysis Tech-
niques

Role in Farm-
ing

Information source

Ahmed et al.
(2021)

Original Research Improved Ge-
netic Algorithm

Cotton /
Ground nuts
/ Maize / Rice /
Yield Prediction

Sensor mesh in the area

Alves et al.
(2018b)

Original Research Artificial Neural
Network

Soybean yield
forecast

Evaluation based on agro-
nomic traits of soybeans

Aparecido et al.
(2021)

Original Research Multiple linear
regression

Soybean yield
forecast

Historical series of climate
and soybean yield from
soybean-producing loca-
tions

Basso and Liu
(2019)

Survey Statistical re-
gression

General crop
yield prediction

Over 250 papers concerning
yield forecasts from the Web
of Science database by the
beginning of February 2018

Bocca and Ro-
drigues (2016)

Original Research Data Mining Sugarcane yield
forecast

Dataset provided by a sug-
arcane mill with 65 features

Boussios et al.
(2019)

Original Research Dynamic pro-
gramming model

Optimization
mathematical
models in Farm
Management

Crop growth and weather
simulators

Burt (1965) Systematic review Systematic
review of Oper-
ations Research
in Agriculture

Optimization
mathematical
models in Farm
Management

The author’s expertize

Cardoso et al.
(2011)

Original Research Statistical
analysis us-
ing data from
COLA-CPTEC
Atmospheric
Global Circu-
lation Model
(AGCM)

Soybean yield
forecast

Daily forecast and observed
precipitation data for Passo
Fundo, Brazil, alongside
daily temperature obser-
vations, spanning from
October 20 to February 21
for the years 2005/2006,
2006/2007, and 2007/2008

Cropper and
Comerford
(2004)

Original Research Genetic Algo-
rithm

Minimization of
fertilizer con-
sumption in pine
plantation

Ten stands of rapidly-
growing loblolly pine
plantations, ranging from 1
to 4 years old, were selected
for a field experiment con-
ducted in the coastal plain
area of southern Georgia

Gusso et al.
(2017)

Original Research EVI processing,
Artificial Neural
Network

Soybean yield
forecast

Experiment conducted in
Mato Grosso, Brazil
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Table 2.2 – Evaluating selected articles from the literature, part (b)

Article Type of Article Key Data
Analysis Tech-
niques

Role in Farm-
ing

Information source

Junior et al.
(2024)

Original Research JULES-crop,
multiple linear
regression

Maize yield fore-
cast

Meteorological data col-
lected on an hourly basis
from 2003 through 2016
and cultivar dataset from
several locations

Kaul et al.
(2005)

Original Research Artificial Neural
Network

Maize / Soybean
yield forecast

Historical (1978–1998)
Maryland corn and soybean
yield data from the Mary-
land Cooperative Extension
(MCE) Hybrid Variety
Performance

Klompenburg et
al. (2020)

Survey Machine learn-
ing

General crop
yield prediction

567 studies retrieved from
Science Direct, Scopus, Web
of Science, and Springer link

Manos et al.
(2013)

Original Research Multicriteria
programming
model

Sustainable Pro-
duction

Data from the region of
Thessaly in Greece

Moghaddam and
DePuy (2011)

Original Research Stochastic opti-
mization model

Optimization of
hay land use

Case study located in north-
ern Kentucky

Neto et al.
(1998)

Survey The use of opti-
mization models
in agriculture

Optimization
mathematical
models in Farm
Management

Literature review and the
author’s expertize

Oliveira et al.
(2017)

Original Research Data Mining Sugarcane yield
forecast

Data collected from a sugar-
cane mill

Popp et al.
(2003)

Original Research Stochastic opti-
mization model

Soybean yield
forecast

A field trial in Arkansas

Robert Original Research Stochastic dy-
namic model

The use of
groundwater
irrigation

A farmer who represents
the Berambadi watershed in
Karnataka, India

Zheng et al.
(2009)

Original Research Statistical Anal-
ysis: with gen-
eral linear model
(GLM) and clas-
sification and re-
gression trees

Soybean yield
forecast

Household interview
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3 Designing a crop rotation optimization
model

The rising population and increased food consumption are exerting signifi-
cant pressures on agriculture and natural resources. To address global food security and
sustainability challenges, it is essential for farming and food production to expand con-
siderably while also taking environmental stewardship into account. This enhancement in
production can be achieved either by agricultural extensification, which involves clearing
more land for farming, or intensification, which requires obtaining higher yields by using
more production resources, improved agronomic methods, diverse crop varieties, and other
innovations (TILMAN et al., 2011). Improving yields on existing farmland, restoring de-
graded land, and adopting sustainable agricultural practices would alleviate the pressure
to clear forests for agricultural production. Halting and reversing land degradation will
be essential in reaching the world’s growing food needs.

To enhance productivity and optimize waste management, agricultural systems
need to evolve. By adopting a comprehensive and integrated approach, farming practices
and food systems should strive for sustainability. Elements from traditional farming wis-
dom, when merged with cutting-edge technologies and scientific discoveries, can lead to
more sustainable management strategies. Decision-making should be integrated to effec-
tively address these goals. Agricultural innovations play a crucial role in aiding farmers
to boost productivity, minimize environmental harm, and tackle issues arising from vari-
ations in soil, climate, and market dynamics (AKKAYA et al., 2021).

According to the United Nations, investment in agriculture is on the decline.
The ratio of public spending on agriculture to the agricultural sector’s contribution to
GDP dropped from 0.50 in 2015 to 0.45 in 2021, in all regions except North Amer-
ica and Europe (United Nations, 2023). Although there has been some advancement,
numerous countries need accelerated progress towards sustainable agriculture and rural
development. Consequently, farmers need to boost their efficiency to align with public
expenditure in the sector.

Continued advancements in agriculture will enable society to achieve results in
securing food supply. In the past, policies aimed at modernizing crop production and de-
veloping agricultural practices were successful as they helped farmers who were struggling
with profitability in the agricultural sector. In the present day, although technological and
economic obstacles have diminished somewhat, global advancement in food production
has decelerated marginally. Securing food security continues to be a significant challenge,
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as uncertainties within the worldwide supply chain place strain on the agriculture industry
as a whole (SPIELMAN; PANDYA-LORCH, 2009).

Even with the advancements in modern agricultural machinery, anticipating a
significant shift solely through technological substitution is unrealistic. The future of farm-
ing lies in integrating optimization and decision-making models into agricultural choices.
Employing sophisticated planning methodologies to optimize the use of machinery, re-
sources, and the environment can significantly improve the production system. Studies
reveal that considerable advancements can be realized by targeting “yield gaps” in un-
derperforming lands, thus enhancing crop production efficiency (FOLEY et al., 2011).
Globally, there is a quest for innovative and sustainable projects and pioneering research
advancements to enhance the sustainability of food production systems worldwide (United
Nations, 2023).

Until recently, most agricultural paradigms focused on improving production,
often to the detriment of the environment. Likewise, many environmental conservation
strategies have yet to seek to improve food production. However, to achieve global food
security and environmental sustainability, agricultural systems must be transformed to
address both challenges (FOLEY et al., 2011). Innovations in technology, whether through
machinery, chemicals, or biological methods, should enhance farm productivity and boost
agricultural profits while minimizing negative environmental effects (PRETTY, 2008).

According to Carravilla and Oliveira (2013), management science plays a cru-
cial role in tackling complex problems related to management by integrating insights
from various scientific disciplines. This approach emphasizes the need for problem struc-
turing, modeling, and resolution to enhance decision-making. In the realm of agriculture,
the Crop Rotation Problem (CRP) represents the planning process for farmland man-
agement. Understanding the depth of agrarian applications, the CRP serves as a key to
exploring numerous options and possibilities. With many farmers embracing integrated
farming methods, this signifies strides toward sustainability. Implementing more precise
and targeted techniques leads to reduced waste and environmental gains, all while main-
taining profitability (PRETTY, 2008).

Farmers continually advance and make essential management decisions, yet
determining the best crop at the right moment is crucial and surpasses an individual’s
ability to evaluate all potential outcomes. This is not merely a choice among the most
lucrative crops; their plan takes into account soil type, soil fertility, weather conditions,
and previous crops planted in the field. Factors such as machinery, equipment, workforce,
and environmental impact also influence this decision. There are considerable opportuni-
ties to boost productivity by enhancing the use of current crop varieties through refined
management, which can significantly narrow yield gaps (FOLEY et al., 2011).



Chapter 3. Designing a crop rotation optimization model 42

Based on soil conservation practices, growing cover crops is adequate to keep
the land from being degraded. Cover crops provide resilient surface cover between growing
seasons in annual crops that can prevent erosion or soil depletion. Cover crop residues still
protect the soil after plant termination. Cover crops reduce erosion, and using cover crops
as green manure improves soil structure and nutrient availability. The organic matter
produced by cover crops provides a sustainable environment for beneficial soil organisms.
Hence, using cover crops in the crop rotation problem study is essential for enduring sus-
tainability in intensified cropping systems (BAUMHARDT; BLANCO-CANQUI, 2014).

Implementing the crop rotation system in the agrarian field improves the soil
ecosystem services. Crop rotation planning benefits multiple soil functions of water and
nutrient cycling. Even so, developing a proper rotation scheme could reduce the need for
herbicides and pesticides. Diversification in farmland allocation is also the core component
to sustain land-use intensification (PELTONEN-SAINIO et al., 2018) (BALESTRINI et
al., 2015). These agricultural benefits strongly rely on the selection of crop species and
the cultivation sequence adopted by the producer (VOLSI et al., 2022).

Insufficient information and management abilities significantly obstruct the
adoption of sustainable agricultural practices. Agribusiness ranges from small family-
run operations to extensive enterprises that manage farms nationwide. Larger businesses
require more meticulous planning to ensure smooth operation without significant disrup-
tions. Conversely, small farms often rely heavily on subsidies, either to cover production
expenses or to invest in new equipment, and they are frequently more attuned to the re-
gional agricultural landscape, focusing on crops that are readily marketable locally. While
both large and small agribusinesses have their distinct characteristics, all farmers face dif-
ficulties in understanding the long-term consequences of their choices, as it is challenging
to fully grasp the future impact of these decisions.

This chapter aims to fill this void and answer the following questions:

• How does an optimized cropping pattern perform in comparison with other farmland
allocations?

• How would the forecasting yield based on meteorological data affect the entire plan-
ning horizon?

• How would soil attributes drive decision-making?

• How costly is it to diversify farmland allocation to meet adjacent constraints?

To address these questions, we consider an actual case application from a
grain farmer in the state of São Paulo, Brazil. Studies (FOLEY et al., 2011) point out
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guidelines for developing better agricultural and land use practices through data analysis
and implementation of decision support tools to improve environmental management and
productivity. By diversifying crop rotations, we can promote the conservation of natural
resources and decrease production vulnerabilities. It is essential to highlight that low
diversity cropping schemes, even though they might have the best productivity and more
significant revenue, are not necessarily the ones with the highest profits in the long run
(VOLSI et al., 2022).

In this chapter, our research is structured around a discussion of materials
and methods, detailed in Section 3.1. Here, we explore related works and their beneficial
influence on existing literature. We examine the features we intend to incorporate into our
optimization model and outline the specifics of the proposed model. Section 3.2 discusses
the generated crop schemes and how they serve their purpose in agrarian activity. We
aim to answer the research quests using comparisons and observations. Section 3.3 states
our final observations about this research, pointing our analytical advice into the farmer
scenario and the future research possibilities in the agrarian field.

3.1 Materials and Methods

Subsection 3.1.1 surveys the crop planning problem in the literature and dis-
cusses our contribution to the agrarian field, which brings novelty from other literature
research. Subsection 3.1.2 presents an overview of the case study. We organized in this
section the gathered data from the grain producer in Brazil. We extend our survey in the
farmer scenario to form a reliable data set. Subsection 3.1.3 delves into the ideas asso-
ciated with evapotranspiration. The advantages of incorporating cover crops within the
crop rotation strategy are discussed in Subsection 3.1.4. Subsection 3.1.5 describes the
proposed optimization model. Crop nutrient demand and soil fertility are fundamental in
the crop rotation schedule. By creating an innovative mono-objective model of the CRP,
we aim to enhance the link between nutrient dynamics on arable lands and the sequence
of crops. In this section, we discuss the constraints of the problem and their justification
from the agrarian perspective.

3.1.1 Related works

Sustainable practices support economic health in contemporary agribusiness
management. Vegetable farms have significantly become sought after since market con-
sumption has been thinking more about a sustainable lifestyle. In the past few decades,
as societies seek more responsible and sustainable developments, we have noticed a strong
connection between the crop rotation problem and the contemporaneous agricultural
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transformation. Although farmland allocation studies have been around for many decades,
their goals have profoundly changed in recent trends, and farm profitability is not always
the primary task. The latest research in the literature takes more ecological criteria in their
approaches. Outside the broad field of agricultural sciences, the crop planning problem
has also experienced a great deal of attention from operations management and economics
(BOYABATL et al., 2019).

Although crop rotation may benefit soybean production, the relationship be-
tween the preceding and succeeding crops requires long-term evaluation. Kelley et al.
(2003) introduced a field study to evaluate the effects of crop rotation on soybean yield
and seed weight. The long-term study, which spans from 1979 to 1998, considered three
two-year rotations. Their rotation schemes have winter wheat, summer fallow, and grain
sorghum aside from the soybean. The comparison also includes the continuous soybean
scenario. In their final observations, full-season soybean yields grown in the crop rota-
tion strategy have been 15% higher than monoculture soybean. Crop rotations involving
sorghum and wheat also strongly affect the total soil organic carbon and nitrogen con-
centration levels. Their study gives us a perspective of how hard it is to evaluate crop
rotations in the field. They stuck with only a few configurations, one soil type, and one
field location, even though it took 20 years to get confident results.

Sehgal et al. (2023) and Notaris et al. (2023) studied the effects of long-term
cropping rotation strategies. A crop rotation based on grain legumes and cereals increased
yield stability. These experiments report overall gains in crop yields; however, they also
acknowledge that yield responses are deeply dependent on weather conditions and man-
agement practices. Even biological 𝑁2 fixation, which is a well-known service of legumes
in the field, is subject to fluctuation by year. Sehgal et al. (2023) also discussed conser-
vation crop rotation systems, which consist of establishing a combination of high residue
producing with low residue producing crops such as corn and soybean rotation. Selecting
highly stable crops in the crop rotation scheme can reduce production risk and withstand
various weather conditions (NIETHER et al., 2023).

A long-term crop rotation strategy combined with weed management is a reli-
able alternative for controlling perennial weeds in agrarian fields. Especially, crop rotation
and management practices can drastically affect weed seed bank and weed density (OLE-
SEN et al., 2007; MISHRA et al., 2022). In organic farms, crop rotation and residues from
the cropping system are essential for weed management (NIETHER et al., 2023).

The work of (VOLSI et al., 2022) indicates that grain production systems that
employ crop rotation with species diversification showed greater productivity and prof-
itability than rotation without species diversification. Six-grain production systems were
part of the experiments: five rotations with varying levels of species diversification and
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one corn-soybean rotation without species diversification. The study examined produc-
tivity, cropping revenue, production cost, and profit markers. Grain production systems
with species diversification showed better efficiency than the well-known corn-soybean
system. Economic, sensitivity, and statistical analyses were carried out in addition to
sample collections.

Haneveld and Stegeman (2005) provides a valuable insight into crop succession
requirements. They understood that planning the future crops to be seeded is fundamental
to sustaining fertility. Other options exist than scheduling the same botanical family
on the same land in a row. Crop residues that remain in the field after harvest often
still contain pests or diseases and can also cause the proliferation of some important
agricultural pests in the succeeding crop. Haneveld and Stegeman (2005) also considered
in their mathematical framework the necessity of leaving the land lying fallow.

The crop sequence and the selected plant species considerably impact carbon
retention. Carbon sequestration in soil organic matter is one of the most efficient climate
mitigation strategies. Triberti et al. (2016) detailed their experiment, which aims to eval-
uate the interaction between type of crop rotation, manure, and mineral fertilization on
the dynamic of organic matter and nitrogen in the soil. Their final observations include
cultivating crops with high carbon-to-nitrogen ratio residues and reintroducing legume-
based crop rotations, which would benefit farm management regarding soil fertility and
lower the carbon dioxide concentration in the atmosphere.

Dupuis et al. (2022) are deeply concerned about food shortage in the future
linked to the environmental impact of intensive agriculture systems. They understand that
a reliable prediction of the succeeding crop would benefit agronomic decisions and drive
them toward more sustainable practices. Optimized fertilizer plans based on the knowledge
from future growing seasons can reduce water pollution caused by fertilizer run-off. Their
work proposes methods for the prediction and visualization of crop rotations. Based on
data from many fields in Quebec, Canada, they combine Markov’s principle with process
mining to infer the next crop rotation. Their evaluations indicate equivalent performance
compared with neural networks, although their methodology is more straightforward to
implement.

Aggarwal et al. (2022) introduce a crop rotation proposal for the Muzaffarnagar
district in India. Sugarcane is the primary crop grown in the region, exceeding 90% of the
total cultivable area. Although raindrops are reasonable and soil fertility is high, Aggarwal
et al. (2022) reported land degradation around the district. Sugarcane monoculture is
partially responsible for land degradation and water contamination. Another side-effect
of extensive growing of one particular crop is the consumption market; the sugarcane yield
in the region exceeds the mill capacity and drives prices down during the harvest season.
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Dupuis et al. (2022) and Aggarwal et al. (2022) handle the crop rotation prob-
lem from the regional perspective. Their work observes the whole group of farmers and
could support policy decision-making. Aside from their research that explores the com-
munity pattern, our study intends to get close to the farmer decision-making framework
and the choices that affect the farm performance and profitability in a close assessment
of the large environmental impacts.

From the rich set of crop rotation applications, Pahmeyer et al. (2021) search
for a more friendly interface with the user. Pahmeyer et al. (2021) develop a web-based
decision support system called Fruchfolge, which aims to assist crop management choices
in the field. Although they recognize the powerful capacity of mathematical programming,
high data requirements are typically assumed to preclude the use of crop rotation models
on the farm. These procedures comply with European Union regulations to protect water
bodies from large-scale use of nitrogen fertilizers. Behind their user-friendly web solution,
the main goal in the optimization model is to reach the farm’s maximum total expected
contribution margin.

Fenz et al. (2023) propose an alternative solution method for the crop rotation
problem using reinforcement learning. Fenz et al. (2023) combines NDVI (Normalized
Difference Vegetation Index) from predecessor crops as an input parameter. From the
benefits of this methodology, flexibility and scalability stand out as the most recognized
characteristics. Fenz et al. (2023) and Pott et al. (2023) use satellite-based data to look
into the crop rotation problem. Pott et al. (2023) focus their evaluation on Southern
Brazil and observe that, in drought seasons, the continuous soybean practice in some
mesoregions in the state of Rio Grande do Sul showed a yield penalty around 20% in
comparison with more diverse fields, which indicates a low climate resilience of current
cropping system adopted.

Decisions on the crop rotation and the annually cropping plan can transform
agricultural profitability and productivity, with both short and long-term consequences.
Planning crop rotations is a complex task in farm management and the decisions must
consider favorable and unfavorable factors for reaching the desired outcomes (DURY et
al., 2012; KASU et al., 2019).

Some research has already been carried out on optimization models to support
sustainable crop planning and farm management. For example, Santos et al. (2015) de-
veloped an integer programming model to decrease the usage of cultivable area required
to produce a regional vegetable demand. Aliano et al. (2023) developed a mixed-integer
non-linear programming model to schedule planting and harvesting operations for distinct
sugarcane varieties. Boyabatl et al. (2019) discussed optimal farmland allocation policies
under revenue uncertainty and developed a heuristic approach to represent a typical grain
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farmer from Iowa, USA. Regis Mauri (2019) applied several renowned relaxation methods
in the crop rotation problem, such as Lagrangian Relaxation, Lagrangian Relaxation with
Clusters, Lagrangian Decomposition, Column Generation based on Lagrangian Relaxation
with Clusters, and Column Generation based on Lagrangian Decomposition. Fikry et al.
(2021) proposed a crop rotation model which maximizes the farm net return based on the
estimated yield sales. In their work, limited water resources and the fluctuations result-
ing from droughts in previous growing seasons are connected during the crop sequence
planning . They also presented a compelling study case in Egypt, where the uncertainty
in water level forecasting is tackled by robust optimization techniques. A related linear
programming model was designed by (KEYSER et al., 2023) to minimize fertilizer cost
using bio-based fertilizers in cultivable farms while at the same time complying with the
nutrient demand of the considered crop.

Time series forecasting (TSF) is a crucial research issue in diverse areas, such as
financial time series, wind power, and traffic forecasting (YADAV; THAKKAR, 2024; LIN-
DEMANN et al., 2021). Over the last decades, non-linear relationships in the TSF have
intrigued researches in developing innovative methods and models. Deep neural network
(DNN) has been surging in many data-driven applications as an alternative to classical
statistical methods since DNNs are able to estimate multi-target time-series (MASINI et
al., 2021; REYES; VENTURA, 2019).

Although research with similar intentions has been proposed in the literature,
the approach presented in our study here brings novelty to the crop rotation problem. A
real case study inspires our proposed model. Our research highlights the grain producers
in the state of São Paulo, Brazil. Our objective function and restrictions are fully aligned
with the struggles of their managerial activity. The proposed solution considers the nutri-
ent supply based on the farmer’s practice experience and the use of carefully selected cover
crops adapted to the state’s region. This paper is an unmatched combination of farming
management expertise that can be easily adapted to grain farming worldwide. We reeval-
uate the famous agrarian problem under new perspectives and aim to complement the
farmer’s difficult task of planning crops further ahead.

3.1.2 A case study

We calibrated our proposed optimization model with real data from a farmer.
We collected information about types and areas of the crop from a farmer in the city of
Tatuí, state of São Paulo. The specific location of the farmer is 23°22’28.7"S 47°52’43.3"W.
The farmer is well-skilled and has dedicated many years to raising beans, soybeans, maize,
sorghum and wheat. Due to the large sum of investments required to compete, renting
fields is common practice as many landowners cannot afford the cost of mechanization.
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From seed to harvest, our expert farmer has sufficient technology to perform
all the activities with a certain level of mechanization. Regarding the regional aspect, we
might classify our farmer as a medium-sized farmer. A minimum labor workforce manages
the daily operation. The majority of the arable land that the farmer has is composed of
red latosol. A spatial view of the cultivable land is shown in Figure 3.1.

Figure 3.1 – Distinct fields and their respective cultivable area (in hectares (ha): (1) Sítio
Shalar Gleba A: 18.8 ha (2) Sítio Shalar Gleba B: 34.4 ha (3) Sítio dos
Caresias: 13.3 ha (4) Sítio Bom Retiro: 18.9 ha (5) Sítio Boa Esperança
Gleba A: 6.1 ha (6) Sítio Boa Esperança Gleba B: 8.1 ha.

Figure 3.2 shows the climate chart that reflects the average climate data
for Tatuí, a city characterized by its humid subtropical climate (MOCHIZUKI et al.,
2006). This climatological chart is derived from the average data provided by the Insti-
tuto Brasileiro de Meteorologia (INMET) (Instituto Nacional de Meteorologia (INMET),
2024).
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Figure 3.2 – Climate chart from the city of Tatuí, SP.

3.1.3 Comprehending the relationship between evapotranspiration and crop
yield

This subsection explores various equations that determine the effect of water on
the cultivation of key crops. The constraints related to weather and water incorporated
into our proposed solution are grounded in the principles and insights covered in this
section of our work.

A sustainable water utilization would rather focus on maximizing the output
per unit of water, rather than achieving the greatest yield per unit of cultivable land (FER-
ERES; SORIANO, 2007; ARAYA et al., 2011). Thus, it becomes imperative to establish
a water assessment within the CRP. Our methodology bases on the approach proposed in
(DOORENBOS; KASSAM, 1979; ALLEN et al., 1998). The calculation procedure follows
the following:

I) Determine maximum yield (𝑌𝑚) if adopted crop variety, dictated by climate, assum-
ing other growth factors (e. g. water, fertilizer, pests and diseases) are not limiting.

II) Calculate maximum evapotranspiration (𝐸𝑇𝑚) when crop water requirements are
fully met by available water supply.

III) Determine actual crop evapotranspiration (𝐸𝑇𝑎) based on factors concerned with
available water supply to the crop.
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IV) Evaluate factors concerned with the interaction between water supply, crop water
requirements and actual yield (𝑌𝑎); through:

V) Selection of yield response factor (𝑘𝑦) to evaluate relative yield decrease as related
to relative evapotranspiration deficit, or (1 − 𝑌𝑎/𝑌𝑚) = 𝑘𝑦 · (1 − 𝐸𝑇𝑎/𝐸𝑇𝑚), and
obtain actual yield (𝑌𝑎).

3.1.3.1 Crop coefficients and the crop evapotranspiration

In this subsection, we present the crop coefficients (𝐾𝑐), which are vital for es-
timating crop evapotranspiration (𝐸𝑇𝑐) under ideal conditions, as referenced in (ALLEN
et al., 1998; DOORENBOS; KASSAM, 1979). The parameters do not account for limi-
tations such as soil water stress, salinity impact, crop density, pest and disease impact,
weed interference, or nutrient inadequacy. The combined influence of crop transpiration
and soil evaporation is represented by a unified crop coefficient. The 𝐾𝑐 coefficient re-
flects the traits of the crop and the mean effects of soil evaporation. The crop coefficient
method is used to calculate 𝐸𝑇𝑐, integrating various weather effects into reference evap-
otranspiration (𝐸𝑇𝑜) and crop attributes into the 𝐾𝑐 coefficient, as outlined in Equation
(3.1):

𝐸𝑇𝑐 = 𝐾𝑐 · 𝐸𝑇𝑜 [𝑚𝑚 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟/𝑑𝑎𝑦] (3.1)

Table 3.1 illustrates the typical growth cycles for the primary commercial crops
we have chosen. The area in which they are cultivated significantly impacts their growth
cycle, primarily because of fluctuating weather patterns.

Table 3.1 – Lengths of grain crop development stages for worldwide climatic regions
(days)

Crop Initial
Stage

Development
Stage

Mid-
Season
Stage

Late
Sea-
son
Stage

Total Plant Date Region

Soybeans 15 15 40 15 85 Dec Tropics
Soybeans 20 30/35 60 25 140 May Central USA
Soybeans 20 25 75 30 150 June Japan
Soybeans 20 25 75 30 150 June Japan
Winter Wheat 20 60 70 30 180 December Calif., USA
Winter Wheat 30 140 40 30 240 November Mediterranean
Winter Wheat 160 75 75 25 335 October Idaho, USA
Maize (grain) 30 50 60 40 180 April East Africa
Maize (grain) 25 40 45 30 140 Dec/Jan Arid Climate
Maize (grain) 20 35 40 30 125 June Nigeria (humid)
Maize (grain) 20 35 40 30 125 October India (dry, cool)
Maize (grain) 30 40 50 30 150 April Spain (spr, sum); Calif.
Maize (grain) 30 40 50 30 170 April Idaho, USA
Sorghum 20 35 40 30 130 May/June USA, Pakis., Med.
Sorghum 20 35 45 30 140 Mar/April Arid Region

Source: FAO - Food and Agriculture Organization of the United Nations 1
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The 𝐾𝑐 coefficient for any period of the growing season can be derived by
considering that during the initial and mid-season stages 𝐾𝑐 is constant and equal to the
𝐾𝑐 value of the growth stage under consideration. During the crop development and late
season stage, 𝐾𝑐 varies linearly between the 𝐾𝑐 at the end of the previous stage (𝑘𝑐𝑝𝑟𝑒𝑣)
and the 𝐾𝑐 at the beginning of the next stage (𝑘𝑐𝑛𝑒𝑥𝑡), which is 𝐾𝑐 end in the case of the
late season stage. From initial to mid, determine 𝐾𝑐 from the slope. Therefore, we could
use a interpolation to determine any intermediate 𝐾𝑐. Table 3.2 presents a set of crop
coefficients (𝐾𝑐) and mean maximum plant heights for non-stressed, well-managed crops
in sub-humid climates, which has relative humidity over 45% and wind velocity above 2
m/s, for use with the FAO Penman-Monteith 𝐸𝑇𝑜.

Table 3.2 – Empirical crop coefficient (𝐾𝑐)

Crop Initial 𝐾𝑐 Mid-
stage 𝐾𝑐

Late 𝐾𝑐 Maximum
Crop
Height
(m)

Maize, Field (grain)
(field corn)

0.3 1.20 0.60 2

Soybeans 0.4 1.15 0.50 0.5 - 1.0
Winter Wheat - non-
frozen soils

0.7 1.15 0.25 1

Sorghum -grain 0.3 1 - 1.10 0.55 1-2
Source: FAO - Food and Agriculture Organization of the United Nations 2

3.1.3.2 Hargreaves method to determine reference evapotranspiration (ETo)

The Hargreaves method (HARGREAVES; SAMANI, 1985) relies on temper-
ature to estimate evapotranspiration using an empirical relationship in which solar radi-
ation and air temperature data were used to model reference evapotranspiration (𝐸𝑇𝑜).
The technique can effectively record daily fluctuations in potential evapotranspiration for
simulation intervals shorter than 24 hours. The approach has been confirmed for locations
globally (HARGREAVES; ALLEN, 2003). The regression utilized a dataset compiled over
eight years of precise lysimeter measurements for a reference grass crop in Davis, Califor-
nia. Reference evapotranspiration (𝐸𝑇𝑜) is computed as defined in Equation (3.2):
1 Available at: <https://www.fao.org/4/X0490E/x0490e0b.htm#TopOfPage>. Access date: October

19th, 2024.
2 Available at: <https://www.fao.org/4/X0490E/x0490e0b.htm#TopOfPage>. Access date: October

19th, 2024.

https://www.fao.org/4/X0490E/x0490e0b.htm#TopOfPage
https://www.fao.org/4/X0490E/x0490e0b.htm#TopOfPage
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𝐸𝑇𝑜 = 0.0023 ·𝑅𝑎 · (𝑇𝑚𝑎𝑥− 𝑇𝑚𝑖𝑛)𝐻𝐸 · (𝑇𝑚𝑒𝑑+ 17.8) (3.2)

[𝑚𝑚 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒]

Where:

• 𝐸𝑇𝑜: reference evapotranspiration [mm of water per unit of time]

• 𝐻𝐸: empirical exponent (typically 0.5) [dimensionless]

• 𝑅𝑎: extraterrestrial radiation [𝑘𝐽/𝑚2]

• 𝑇𝑚𝑎𝑥: air maximum temperature [∘𝐶]

• 𝑇𝑚𝑖𝑛: air minimum temperature [∘𝐶]

• 𝑇𝑚𝑒𝑑: mean air temperature [∘𝐶]

While the FAO Penman-Monteith equation (ALLEN et al., 1998) provides a
more comprehensive method for calculating reference evapotranspiration (𝐸𝑇𝑜), we opted
for the Hargreaves method because it requires fewer parameters for computation. In this
study, a moderate level of accuracy suffices for assessing long-term crop rotations. The
source of these meteorological parameters are the automated weather stations operated
by the INMET (Instituto Nacional de Meteorologia (INMET), 2024).

3.1.3.3 Actual Evapotranspiration over monthly periods

Total available soil water (𝑆𝑎) is defined here as the depth of water in 𝑚𝑚/𝑚
soil depth between the soil water content at field capacity (Sfc or at soil water tension of
0.1 to 0.2 atmosphere) and the soil water content at wilting point (Sw or at soil water
tension of 15 atmosphere). Total available soil water (𝑆𝑎) can vary widely for soils having
a similar texture.

Despite employing an empirical methodology along with recognized parameters
to assess a complex dynamic process, it is important to recognize that incorporating
localized data on the total available soil water within the root zone is essential. Ultimately,
implementing this in the field would demand comprehensive measurements across the
cultivable area to enhance both performance and accuracy. We take the reference total
available water (𝑆𝑎 𝑚𝑚/𝑚) as a typical parameter for various soil textures, based on the
specifications in (DOORENBOS; KASSAM, 1979), which are outlined in the subsequent
list:
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• Heavy textured soil: 200 𝑚𝑚/𝑚

• Medium textured soil: 140 𝑚𝑚/𝑚

• Coarse textured soil: 60 𝑚𝑚/𝑚

In our case study, the arable land falls within a spectrum ranging from medium-
textured to heavy-textured soil. For reconnaissance and preliminary planning purposes an
estimate of mean actual evapotranspiration (𝐸𝑇𝑎) for a given crop can be obtained using
the available soil water index (𝐴𝑆𝐼). The 𝐴𝑆𝐼 indicates the part of the month when
available water is adequate for meeting full crop water requirements (𝐸𝑇𝑎 = 𝐸𝑇𝑚). A
combination of 𝐴𝑆𝐼 value, maximum evapotranspiration (𝐸𝑇𝑚) and remaining available
soil water [(1− 𝑝) · 𝑆𝑎 ·𝐷] provides an estimate of the mean monthly 𝐸𝑇𝑎. The following
equation is adapted from Doorenbos and Kassam (1979).

𝐴𝑆𝐼 = 𝐼𝑛+ 𝑃𝑒+𝑊𝑏− [(1− 𝑝) · 𝑆𝑎 ·𝐷]
𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝐸𝑇𝑚

[𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠] (3.3)

The symbols in Equation (3.3) are described as follows:

• 𝐼𝑛: net monthly irrigation application [mm of water per month]

• 𝑃𝑒: effective rainfall [mm of water per month]

• 𝑊𝑏: actual depth of available soil water at beginning of the month, [mm of water
per root depth in unit of length] (i. e. available water content in mm water depth
per meter soil depth (mm/m) (𝑊𝑏))

• [(1− 𝑝) · 𝑆𝑎 ·𝐷]: depth of remaining available soil water when 𝐸𝑇𝑎 < 𝐸𝑇𝑚 [mm of
water per root depth in unit of length]

• 𝐸𝑇𝑚: maximum evapotranspiration [mm of water per month]

For the 𝐴𝑆𝐼, it is presumed that when the sum of 𝐼𝑛 + 𝑃𝑒 is equal to or
less than 30 × 𝐸𝑇𝑚, it will entirely support evapotranspiration without causing deep
percolation or runoff. Additionally, the average monthly 𝐸𝑇𝑎 is influenced solely by the
aggregate of 𝐼𝑛, 𝑃𝑒, and 𝑊𝑏, rather than their monthly distribution. The 𝐴𝑆𝐼 can exceed
one or be less than zero. If 𝐴𝑆𝐼 ≥ 1, then 𝐸𝑇𝑎 = 𝐸𝑇𝑚, whereas if 𝐴𝑆𝐼 < 0, then the
ratio 𝐸𝑇𝑎/𝐸𝑇𝑚 becomes so diminutive that crop growth is nearly impossible unless 𝐸𝑇𝑚
is low and there is a significant amount of remaining soil water [(1− 𝑝) ·𝑆𝑎 ·𝐷] available.
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For illustration, let us consider maize, seeded at late September. Potential crop
evapotranspiration is 8 mm/day. The cultivable land is a medium textured soil with total
available water equals to 140 mm/m (𝑆𝑎 = 140 𝑚𝑚/𝑚) and maize root systems reaches
to 1.2 m of depth (𝐷 = 1.2 𝑚). Net irrigation (𝐼𝑛) was around 120 mm/month. Effective
rainfall (𝑃𝑒) was 30 mm/month. Actual depth of available water at the beginning of the
month 𝑊𝑏 = 60𝑚𝑚/𝑚. For example, consider the following procedure to determine the
actual evapotranspiration:

• 𝐼𝑛+ 𝑃𝑒+𝑊𝑏 = 120 + 30 + 60 = 210 𝑚𝑚/𝑚𝑜𝑛𝑡ℎ

• Fraction 𝑝 from Table 3.3: 0.45

• Available soil water when 𝐸𝑇𝑎 < 𝐸𝑇𝑚 (1− 𝑝)𝑆𝑎 ·𝐷 = 92 mm

• 𝐴𝑆𝐼 = (210− 92)/(30 · 8) = 0.49

• According to Figure 3.4, 𝐸𝑇𝑎 constitutes approximately 75% of 𝐸𝑇𝑚, which is nearly
6.0 mm/day.

Table 3.3 – An estimative to Soil Water Fraction (𝑝)

Soil Water Depletion Fraction (𝑝)

Evapotranspiration
(𝐸𝑇𝑚) [mm/day]

Crop Groups according to Soil Water Depletion
Crop Group 3 Crop Group 4

Wheat
Maize
Sorghum
Soybean

2 0.80 0.88
3 0.70 0.80
4 0.60 0.70
5 0.50 0.60
6 0.45 0.55
7 0.43 0.50
8 0.38 0.45
9 0.35 0.43
10 0.30 0.40

Source: Partly derived from Doorenbos and Kassam (1979)

We investigate the connection between 𝐴𝑆𝐼 and 𝐸𝑇𝑚 to determine 𝐸𝑇𝑎,
utilizing Figures 3.3 and 3.4. The charts present an approximation of the actual evapo-
transpiration based on mapping their relationship.
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Figure 3.3 – A surface plot of the Actual Evapotranspiration (𝐸𝑇𝑎)

Actual evapotranspiration (𝐸𝑇𝑎) expressed as a percentage of 𝐸𝑇𝑚 is deter-
mined by the residual depth of accessible soil moisture [(1− 𝑝) · 𝑆𝑎 ·𝐷] and the 𝐴𝑆𝐼.
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Figure 3.4 – Actual evapotranspiration (𝐸𝑇𝑎) expressed as a percentage of 𝐸𝑇𝑚.

No matter which soil preparation method is used, the soybean root system
generally penetrates to depths ranging from 0.43 to 0.54 m, while corn roots typically
extend between 0.40 and 0.46 m. Wheat roots can delve as deep as 1.5 m and are hair-like
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in structure. For optimal irrigation practices, wheat root depth is generally considered to
be 30 to 40 cm.,Moreover, the sorghum root system is extensive and fibrous, with more
absorbent hairs. It reaches a depth of up to 1.5 m (with 80% found within the top 30
cm of soil), and laterally it can extend to 2.0 m.,Corn roots, in deep and well-maintained
soils, may grow as deep as 2 meters. However, the most branched portion of the corn root
system is typically found between 0.4 and 0.6 meters deep, depending on the soil quality,
with about 80% of the soil’s moisture absorption occurring within this zone.

3.1.3.4 Yield and Water

In order to quantify the effect of water stress it is necessary to derive the
relation ship between relative yield decrease and relative evapotranspiration deficit given
by the empirically-derived yield response factor (𝑘𝑦). Since the relationship is also affected
by factors other than water, such as crop variety, fertilizer, salinity, pests and diseases, and
agronomic practices, the relationships presented refer to high producing varieties, well-
adapted to the growing environment, growing in large fields where optimum agronomic
and irrigation practices, including adequate input supply, except for water, are provided
(DOORENBOS; KASSAM, 1979).

With the presented relationships it is possible to plan, design, and operate
irrigation supply systems taking into account the effect of different water regimes on
crop production. Equation (3.4) defines the ratio of achieved yield to potential yield. The
following parameters and equation are adapted from Doorenbos and Kassam (1979).

• 𝑌𝑎: actual harvested yield [units of crop yield per area]

• 𝑌𝑚: maximum harvested yield [units of crop yield per area]

• 𝑘𝑦: yield response factor [dimensionless]

• 𝐸𝑇𝑎: actual evapotranspiration [mm of water per day]

• 𝐸𝑇𝑚: maximum evapotranspiration [mm of water per day]

(1− 𝑌𝑎
𝑌𝑚

) = 𝑘𝑦 · (1− 𝐸𝑇𝑎
𝐸𝑇𝑚

)⇒ 𝑌𝑎
𝑌𝑚

= 1− 𝑘𝑦 + 𝑘𝑦 · 𝐸𝑇𝑎
𝐸𝑇𝑚

(3.4)

The yield response to water availability is measured by the yield response factor
(𝑘𝑦), which connects the proportional yield reduction (1−𝑌 𝑎/𝑌 𝑚) to the ratio of actual
evapotranspiration (𝐸𝑇𝑎) to maximum evapotranspiration (𝐸𝑇𝑚). Either consistently
throughout the crop’s growth period or at distinct stages like establishment, vegetative,
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flowering, yield formation, or ripening, this relationship can appear. In the former case,
the degree of water shortage pertains to the deficit relative to the crop’s water needs
over the entire growing season, whereas in the latter, it pertains to the water needs of a
particular growth stage. The 𝑘𝑦 values used for many crops assume that the connection
between relative yield (𝑌 𝑎/𝑌 𝑚) and relative evapotranspiration (𝐸𝑇𝑎/𝐸𝑇𝑚) is linear,
applicable for water shortages reaching about 50 percent or 1 − 𝐸𝑇𝑎/𝐸𝑇𝑚 = 0.5. The
𝑘𝑦 values are derived from an evaluation of field data from experiments conducted under
diverse growing conditions. These experimental outcomes pertain to high-yield crop va-
rieties that are well-suited to the growing environment and are cultivated with advanced
crop management techniques. The magnitude and duration of water deficit expressed as
relative evapotranspiration deficits (1−𝐸𝑇𝑎/𝐸𝑇𝑚) are made to correspond closely to the
individual crop growth periods. Analysis of the available field experimental data in terms
of the more precisely defined stress-day and drought indices proved difficult. Utilizing the
yield response factor (𝑘𝑦) in the planning, design, and operation of irrigation projects
enables the quantification of water supply and usage with respect to crop yield and total
production in the designated area (DOORENBOS; KASSAM, 1979). Table 3.4 displays
the yield response factor for primary crops at various stages of crop development.

Table 3.4 – Yield response factor (𝑘𝑦) for major commercial crops.
Yield response factor (ky)

Crop Vegetative pe-
riod (1)

Flowering pe-
riod (2)

Yield forma-
tion (3)

Ripening (4) Total growing
period

Maize 0.40 1.50 0.50 0.20 1.25
Sorghum 0.20 0.55 0.45 0.20 0.90
Soybean 0.20 0.80 1.00 1.00 0.85
Winter Wheat 0.20 0.60 0.50 0.5 1.00
Spring Wheat 0.20 0.65 0.55 0.55 1.15

In this research, although these relations are more concerned to the irrigation
planning, we focus our attention to the capacity of establishing a yield parameter based
on the actual water supply in non-irrigated farms. As reported by the Instituto Brasileiro
de Geografia e Estatística (IBGE) (NUNES et al., 2006), data from the 2006 agricultural
census indicates that only 6.3% of the country’s agricultural lands used irrigation methods,
such as flooding, infiltration, sprinkling or similar. The irrigated area comprised 4.45
million hectares or 7.4% of the total area in temporary and permanent crops.

As an example, let us calculate the relative reduction in soybean yield, ex-
pressed as 1 − 𝑌𝑎/𝑌𝑚. According to the seeding calendar for soybeans in São Paulo,
planting occurred in early October with an anticipated harvest in February. An estima-
tion for the total growing period is around 115 to 140 days. The total water requirement
varies from 400 to 700 mm depending on depending on the climate, growing season length,
maturity, planting date, and location. Table 3.5 details the example parameters.
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Table 3.5 – Total growing period for soybeans and accumulated precipitation

Growth Period Duration (days) Total water requirements
(mm)

Establishment and
vegetative period

50 90

Flowering period 30 215
Yield formation 30 215
Ripening 20 180
Total 130 700

This analysis will examine the effect on harvest yield, taking into account
yield formation and the overall growth duration. The water supply is reduced by 18%
(126 mm) from the total requirement of 700 mm, and this deficit is evenly distributed
throughout the entire 130-day growing period. The yield response factor (𝑘𝑦) for the
total growing period is 0.85. Water supply is 18% less, so actual crop evapotranspiration
𝐸𝑇𝑎 = 595 𝑚𝑚 (15% less than 𝐸𝑇𝑚 = 700 𝑚𝑚). Using Equation (3.4), we determine
that, from the water requirements and supply, soybeans are anticipated to achieve just
0.847 of their full potential, following which a 15.3% reduction in yield is expected when
the water drought is evenly distributed.

𝑌𝑎
𝑌𝑚

= 1− 0.85 + 0.85 · 574
700

𝑌𝑎
𝑌𝑚

= 1− 0.85 + 0.85 · 0.82

𝑌𝑎
𝑌𝑚

= 1− 0.85 + 0.697

𝑌𝑎
𝑌𝑚

= 0.847

Now, suppose there was shortage of water during yield formation of the same
magnitude of previous example (18% less water supply during yield formation). According
to Table 3.4, the yield response factor (𝑘𝑦) for yield formation is 1.0. Thus, the following
procedure determines the relative yield response:
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𝑌𝑎
𝑌𝑚

= 1− 𝑘𝑦 + 𝑘𝑦 · 𝐸𝑇𝑎
𝐸𝑇𝑚

𝑌𝑎
𝑌𝑚

= 1− 1.0 + 1.0 · 176
215

𝑌𝑎
𝑌𝑚

= 1− 1.0 + 1.0 · 0.82

𝑌𝑎
𝑌𝑚

= 1− 1.0 + 0.82

𝑌𝑎
𝑌𝑚

= 0.82

As the yield factor (𝑘𝑦) from yield formation is greater than the total growing
period factor, the relative yield response would be more affected. Consequently, with the
ratio 𝑌𝑎/𝑌𝑚 being merely 0.82 of the total potential in this case, it can be deduced that
water stress in yield formation leads to an 18% reduction in potential yield. We could
make a similar assessment for vegetative or flowering stages. A solid projection of yield
will be based on the minimum result for all the periods.

3.1.4 Diversified crop rotation and beneficial effects

Crop rotation with high diversity and biomass input (plant shoots and roots)
under no-tillage (NT) management is one of the pillars of conservation agriculture, pos-
itively impact crop yield and agricultural profitability (LI et al., 2019; TELLES et al.,
2019; GARBELINI et al., 2022). (GARBELINI et al., 2022) reported several increases
to crop yields in a diversified agronomic system. Their study took place in the state of
Paraná, Brazil. Soybean yield was 6% higher on average than that in double-cropping
systems (wheat-soybean or maize-soybean). The wheat yield was among the most respon-
sive crops in diversified rotations, gathering an increase of 27.3% to 32.4% higher yield
in comparison with continuous double cropping system. (GARBELINI et al., 2022) also
reported that first maize crop yield in the spring-summer season was from 6.8 % to 9.2%
higher than that from maize-maize rotation system. (FRANCHINI et al., 2012a) reported
that wheat yield has 6.8 % higher in the crop rotation system than in the crop succession.
From their experiment, they noticed that the yield growth coefficient was greater in crop
rotation systems that in the crop succession. The study presented by (SMITH et al., 2023)
also observed the increasing grain yields with higher species diversity across several fields
in Europe and in the United States. The growth pattern in grain yields was consistent
over time. Diversity in crop schemes was beneficial to all cereals when was combined with
a small nitrogen input. Grain yields increased with diversification in crop rotations are
also related to the decreased weed competition, and pest and disease pressures (TELLES
et al., 2019; GARBELINI et al., 2022; SMITH et al., 2023; BENNETT et al., 2012). In
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a sandy soil, the use of cover crops has strong effect on soybean yield. (CORDEIRO et
al., 2021) conducted a field experiment in Western São Paulo state, Brazil, to evaluate
the increase in soybean production seeding cover crops. A crop succession of soybean and
black oats increased soybean yields by 50% in comparison with soybean after fallow. From
a six-year field experiment in the North China Plain, (YANG et al., 2024) realized that
the large-scale adoption of diversified cropping systems could increase cereal production
by 32% when wheat–maize follows alternative crops in rotation and farmer income by
20% while minimizing the environment impact from the agricultural chain. . In conclu-
sion, several studies pointed out significant yield gains from establishing a diversity crop
sequence including cover crops. The slope of yield growth is steeper in long-term planned
crop rotations. Although soil type and history defines the full yield potential, beneficial
effects from crop rotation have been demonstrated all over the world as a profitable and
sustainable approach.

3.1.5 Overview of the Optimization Model

The optimization framework we present here aligns to the following representa-
tion, incorporating elements from the mixed-integer linear programming models proposed
in (MIRANDA et al., 2019b) and (MIRANDA et al., 2021). A cropping set of 𝑁 crops
belong to a 𝑁𝑓𝑎𝑚 number of families. The entire planning horizon is composed of 𝑀
weeks. We also define a set of 𝐾 cultivable fields. Cropland area in hectares for each plot
𝑘 is combined in a vector called 𝑎𝑟𝑒𝑎[𝑘]. From the sequence of grown crops from each
cultivable field, we ensure that a safety interval must be satisfied to seed crops from the
same family again, which is 𝛽 interval in weeks.

The main indexes in our proposed optimization model are:

• 𝑖: the set of crops that can be seeded (𝑖 = 1, · · · , 𝑁)

• 𝑗: the set of periods to evaluate (𝑗 = 1, · · · ,𝑀)

• 𝑘: the set of cultivable land, divided in 𝐾 plots (𝑘 = 1, · · · , 𝐾)

• 𝑝: the set of crop’s families (𝑝 = 1, · · · , 𝑁𝑓𝑎𝑚)

• 𝑛: it represents the set of years from the planning horizon (𝑛 = 1, · · · , 𝑀
𝜃

), where 𝜃
stands for a year in weeks (𝜃 = 52)

• ℎ: the crop rotation attributes (ℎ = 1, · · · , 𝐻)

• 𝛾𝑐𝑜𝑣: impact of cover crops on evapotranspiration
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The primary decision variable set, denoted as 𝑢[𝑖][𝑗][𝑘], indicates whether Crop
𝑖 is scheduled to be planted in Plot 𝑘 during Period 𝑗.

𝑢[𝑖][𝑗][𝑘] =

⎧⎨⎩ 1, if Crop 𝑖 is to be seeded in Plot 𝑘 during Period 𝑗.
0, otherwise.

Production cost per area for any Crop 𝑖 presents in 𝑐𝑝𝑟𝑜𝑑[𝑖] vector, which
holds production expenses in terms of crop yield units. The notion of how much of the
crop yield is compromised by the costs of production is essential in the agrarian field. The
projected yield for Crop 𝑖 seeded in Period 𝑗 is 𝑌𝑀 [𝑖][𝑗]. Based on the assessment of the
water balance, 𝑦𝐹 [𝑖][𝑗][𝑘] calculates the proportion of the anticipated yield 𝑌𝑀 [𝑖][𝑗] that
can be achieved. Aside from the commercial crops revenues and costs, establishing cover
crops has also a significant cost in the agribusiness. Although cover crops do not require
any expensive cultural trait, they occupy the cropland during their cycle and so, farmers
could loose an opportunity to seed any particular profitable crop. We present cover crop’s
expenses as 𝑐𝑐𝑜𝑣[𝑖], which indicates costs per area (R$ / hectare). The crop cycle for each
Crop 𝑖 is 𝑐𝑦𝑐[𝑖] and presents in weeks of duration. Farmers would have some production
goals related to the major crops and we map their position using demand for each Crop
𝑖 through the 𝑌 𝑇 [𝑖] vector [unit of crop yield per unit of area].

Using 𝐶𝑜𝑚[𝑖], we establish two separate crop sets: commercial crops and cover
crops. Each group has its own goal; the first reunites the profitable crops, and the second
one, the crops intend to improve sustainable practices, build soil, and cover the soil. We
understand that the cover crops ought to be killed or pruned before reaching the mature
stages. In general, peak benefits from cover crops are attained while still in a vegetative
growth state. Therefore, we replace growing a commercial crop in order to improve soil
attributes using cover crops. 𝐶𝑜𝑚[𝑖] follows the description ahead:

𝐶𝑜𝑚[𝑖] =

⎧⎨⎩ 1, if Crop 𝑖 is a commercial crop.
0, if Crop 𝑖 is a cover crop.

Increasing diversification of crop families in the cropland is a control measure
to prevent more widespread crop pests. Establishing rotations in adjacent cultivable fields
would limit insect food availability and mobility. We use the 𝑆𝑎𝑑𝑗[𝑘][𝑣] adjacent array to
characterize the boundaries from each plot. 𝑆𝑎𝑑𝑗[𝑘][𝑣] defines a neighborhood crucial to
enforce group diversification.



Chapter 3. Designing a crop rotation optimization model 62

𝑆𝑎𝑑𝑗[𝑘][𝑣] =

⎧⎨⎩ 1, if Plot 𝑘 is adjacent to Plot 𝑣 .
0, otherwise.

The family array is 𝐹 [𝑖][𝑝]:

𝐹 [𝑖][𝑝] =

⎧⎨⎩ 1, if Crop 𝑖 is from the Family 𝑝 .
0, otherwise.

The remaining parameters are described in the following list:

• 𝑠[𝑖]: sales price for yield unit [$/unit of yield crop]

• 𝑎𝑡𝑡𝑟[𝑖][ℎ]: soil improvements: from 0 (poor) to 4 (excellent) for each crop 𝑖 [dimen-
sionless]

• 𝑎𝑡𝑡𝑟𝑝[𝑘][ℎ]: rating soil improvements for each 𝑘 plot [dimensionless]

• 𝑆𝑝[𝑙][𝑘][𝑛]: the supply quantity of nutrient 𝑙 to plot 𝑘 during the year 𝑛 [unit of
weight per unit of area]

• 𝑅[𝑙][𝑖]: the required quantity of nutrient 𝑙 for crop 𝑖 [unit of weight per unit of area]

• 𝑦𝐹 [𝑖][𝑗][𝑘]: yield ratio derived from the assessment of the soil water balance for crop
𝑖 seeded at period 𝑗 in plot 𝑘 [dimensionless]

• 𝐸𝑇𝑚𝑎𝑐𝑐𝑢𝑚[𝑖][𝑗][𝑘]: the accumulated evapotranspiration for crop 𝑖 seeded at period
𝑗 in plot 𝑘 during the whole cycle of crop 𝑖 [mm of water per crop cycle]

• 𝑃𝑒[𝑗]: reported precipitation for period 𝑗 [mm of water per unit of time]

The proposed objective function in Equation (3.5) aims to maximize the rev-
enues in the planning horizon. Our proposed model estimates profits based on the sale
price of any crop 𝑖, the expected yield, and the production costs per area. Aside from
the commercial crops, we also introduce the cover crops in the cropping planning study.
Cover crops are usually mowed down or killed using herbicide before reaching the repro-
ductive stage. Then, we do not expect direct returns from the cover crops seeding even
though they improve soil fertility and structure. The expenditure with cover crops is part
of Equation (3.7). The crop assessment, yield, and profit are determined at the seeding
period, meaning we account for harvest at the time of seeding rather than at the actual
harvesting period as described in Equation (3.6).
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Maximize 𝑐𝑜𝑚𝑝𝑟𝑜𝑓𝑖𝑡𝑠− 𝑐𝑜𝑣𝑐𝑜𝑠𝑡𝑠 (3.5)

𝑐𝑜𝑚𝑝𝑟𝑜𝑓𝑖𝑡𝑠 =
𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝑢[𝑖][𝑗][𝑘] ·
(︁
𝑎𝑟𝑒𝑎[𝑘] · 𝑠[𝑖][𝑗]·

(𝑦𝐹 [𝑖][𝑗][𝑘] · 𝑌𝑀 [𝑖][𝑗]− 𝑐𝑝𝑟𝑜𝑑[𝑖][𝑗]) · 𝐶𝑜𝑚[𝑖]
)︁ (3.6)

𝑐𝑜𝑣𝑐𝑜𝑠𝑡𝑠 =
𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝑢[𝑖][𝑗][𝑘] ·
(︂
𝑎𝑟𝑒𝑎[𝑘] · 𝑐𝑐𝑜𝑣[𝑖][𝑗] · (1− 𝐶𝑜𝑚[𝑖])

)︂
(3.7)

Constraints in Equations (3.8), (3.9) and (3.10) are adapted from Miranda
et al. (2019b). Equation (3.8) ensures that crops from the same family are not assigned
to adjacent plots during the same growing season. We introduce two arrays 𝐹 [𝑖][𝑝] and
𝑆𝑎𝑑𝑗[𝑘][𝑣] in the constraint composition; they are both binary sparse matrices. Using these
arrays as a reference to family and adjacency has enhanced the efficiency of the solving
process. It represents a new interpretation of crossing only crops from a given set find in
Miranda et al. (2019b).

𝑁∑︁
𝑖=1

𝑐𝑦𝑐[𝑖]−1∑︁
𝑟=0

𝐾∑︁
𝑣=1

𝑢[𝑖][𝑗 − 𝑟][𝑣] · 𝐹 [𝑖][𝑝] · 𝑆𝑎𝑑𝑗[𝑘][𝑣] ≤ (3.8)

𝐾 ·

⎛⎝1−
𝑁∑︁
𝑖=1

𝑐𝑦𝑐[𝑖]−1∑︁
𝑟=0

𝑢[𝑖][𝑗 − 𝑟][𝑘] · 𝐹 [𝑖][𝑝]
⎞⎠ ,

𝑝 = 1, · · · , 𝑁𝑓𝑎𝑚, 𝑗 = 1, · · · ,𝑀, 𝑘 = 1, · · · , 𝐾

Constraints in Equation (3.9) avoid seeding crops from the same family se-
quentially without growing another family or assigning a fallow interval. Their objective
is to disrupt pest cycles in the cropland.

𝑁∑︁
𝑖=1

𝑐𝑦𝑐[𝑖]+𝛽∑︁
𝑟=0

𝑢[𝑖][𝑗 − 𝑟][𝑘] · 𝐹 [𝑖][𝑝] ≤ 1, (3.9)

𝑝 = 1, · · · , 𝑁𝑓𝑎𝑚, 𝑗 = 1, · · · ,𝑀, 𝑘 = 1, · · · , 𝐾

Equation (3.10) represents the spatial and temporal limitation of the problem,
which prevents more than one crop from occupying some area at any period in the planning
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horizon. We should respect the proper seeding interval for each cultivar, which is the period
that leads to the maximum crop potential.

𝑁∑︁
𝑖=1

𝑐𝑦𝑐[𝑖]−1∑︁
𝑟=0

𝑢[𝑖][𝑗 − 𝑟][𝑘] ≤ 1, 𝑗 = 1, · · · ,𝑀, 𝑘 = 1, · · · , 𝐾 (3.10)

Constraint in Equation (3.11) defines the strategy to avoid seeding outside the
recommended window. An binary array represented by 𝑆𝑒𝑒𝑑[𝑖][𝑗] holds true when Period
𝑗 is adequate for seeding Crop 𝑖, and false when Period 𝑗 is outside the recommend seeding
window.

𝑢[𝑖][𝑗][𝑘] ≤ 𝑆𝑒𝑒𝑑[𝑖][𝑗], 𝑖 = 1, · · · , 𝑁, 𝑗 = 1, · · · ,𝑀, (3.11)

𝑘 = 1, · · · , 𝐾

Constraints in Equation (3.12) establish the minimum yield per Crop 𝑖. We
take yield demands only to commercial crops.

𝑀∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝑎𝑟𝑒𝑎[𝑘] · 𝑦𝐹 [𝑖][𝑗][𝑘] · 𝑌𝑀 [𝑖][𝑗] · 𝑢[𝑖][𝑗][𝑘] ≥ 𝑌 𝑇 [𝑖] · 𝐶𝑜𝑚[𝑖], 𝑖 = 1, · · · , 𝑁 (3.12)

Our nutrient analysis for the crop sequence encompasses both macro and micro
nutrient provision throughout the planning period. Nutrient assessment is characterized
in Equation (3.13), where 𝑆𝑝[𝑙][𝑘][𝑛] quantifies the amount of nutrient 𝑙 that needs to be
provided in year 𝑛 to meet the crop’s nutritional requirements.

𝑆𝑝[𝑙][𝑘][𝑛] =
𝑁∑︁
𝑖=1

𝑛·𝜃∑︁
𝑗=1+(𝑛−1)·𝜃

𝑢[𝑖][𝑗][𝑘] · 𝑎𝑟𝑒𝑎[𝑘] ·𝑅[𝑙][𝑖], (3.13)

𝑘 = 1, · · · , 𝐾, 𝑛 = 1, · · · , 𝑀
𝜃
, 𝑙 = 1, · · · , 𝐿

The constraints in Equation (3.14) limit the nutrient supply within specific
minimum and maximum values. It should be noted that our approach to the nutrient
model reflects the typical practices employed by farmers, although those with precision
agriculture equipment may apply fertilizers in a more tailored manner.

𝑚𝑖𝑛𝑛𝑢𝑡[𝑙] ≤ 𝑆𝑝[𝑙][𝑘][𝑛] ≤ 𝑚𝑎𝑥𝑛𝑢𝑡[𝑙] (3.14)

𝑘 = 1, · · · , 𝐾, 𝑛 = 1, · · · , 𝑀
𝜃
, 𝑙 = 1, · · · , 𝐿
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Cover crops in the crop rotation solution are the subject of Equations (3.15)
and (3.16). From analyzing the farmer’s context, we selected and classified cover crops
according to four desirable effects in the cropland: (i) nitrogen scavenger capacity, (ii) solid
builder, (iii) weed fighter, and (iv) lasting residue. Each Plot 𝑘 must reach a minimum
portion in each attribute to satisfy the constraint set in Equation (3.16).

𝑎𝑡𝑡𝑟𝑝[𝑘][ℎ] =
𝑁∑︁
𝑖=1

𝑎𝑡𝑡𝑟[𝑖][ℎ] · 𝑢[𝑖][𝑗][𝑘], 𝑘 = 1, · · · , 𝐾, ℎ = 1, · · · , 𝐻 (3.15)

𝑎𝑡𝑡𝑟𝑝[𝑘][ℎ] ≥ 𝑚𝑖𝑛𝑎𝑡𝑡𝑟[ℎ], 𝑘 = 1, · · · , 𝐾, ℎ = 1, · · · , 𝐻 (3.16)

Equation (3.17) defines the domain of the decision variable 𝑢[𝑖][𝑗][𝑘].

𝑢[𝑖][𝑗][𝑘] ∈ {0, 1}, 𝑖 = 1, · · · , 𝑁, , 𝑗 = 1, · · · ,𝑀, 𝑘 = 1, · · · , 𝐾 (3.17)

Equation (3.18) determines the maximum evapotranspiration (𝐸𝑇𝑚) when
crop water requirements are fully met by available water supply on a weekly basis.

𝐸𝑇𝑚[𝑖][𝑗][𝑘][𝑟] = 𝐸𝑇𝑐[𝑖][𝑟] (3.18)

∀𝑟 = 1, · · · , 𝑐𝑦𝑐[𝑖], 𝑖 = 1, · · · , 𝑁, 𝑗 = 1, · · · ,𝑀, 𝑘 = 1, · · · , 𝐾

Equation (3.19) represents the maximum evapotranspiration (𝐸𝑇𝑚) when crop
water requirements are fully met by available water supply during the whole crop cycle,
which is divided on four stages: initial, crop development, mid-season and late season.

𝐸𝑇𝑚𝑎𝑐𝑐𝑢𝑚[𝑖][𝑗][𝑘] =
𝑗+𝐼𝑛𝑖𝑡[𝑖]∑︁
𝑣=𝑗

𝐸𝑇𝑚𝑖𝑛𝑖[𝑖][𝑗] (3.19)

+
𝑗+𝐷𝑒𝑣[𝑖]∑︁
𝑣=𝑗

𝐸𝑇𝑚𝑖𝑛𝑖[𝑖][𝑗] + 𝐸𝑇𝑚𝑑𝑒𝑣[𝑖][𝑗]
2

+
𝑗+𝑀𝑖𝑑[𝑖]∑︁
𝑣=𝑗

𝐸𝑇𝑚𝑚𝑖𝑑[𝑖][𝑗]

+
𝑗+𝐿𝑎𝑡𝑒[𝑖]∑︁
𝑣=𝑗

𝐸𝑇𝑚𝑙𝑎𝑡𝑒[𝑖][𝑗])

We mapped idle fields with Equation 3.20. The evapotranspiration from an idle
(bare or fallow) field can be similar to the reference evapotranspiration (𝐸𝑇𝑜), although
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it may not be exactly equal. Mapping idle cropland indicates which is the main source of
evapotranspiration during each period 𝑗.

𝐸𝑚𝑝𝑡[𝑗][𝑘] =
𝑁∑︁
𝑖=1

𝑚𝑖𝑛{𝑐𝑦𝑐[𝑖],𝑗}∑︁
𝑟=0

𝑢[𝑖][𝑗 − 𝑟][𝑘 ], (3.20)

𝑗 = 1, · · · ,𝑀, 𝑘 = 1, · · · , 𝐾

Cover crops can reduce evapotranspiration by shading the soil and reducing
soil temperature. They can reduce wind speed at the soil surface, further decreasing
evaporation by windbreak effect. Equation (3.21) maps the seeding of cover crops into the
cultivable land in past seasons.

𝑐𝑜𝑣𝑆𝑒𝑒𝑑[𝑗][𝑘] =
𝑁∑︁
𝑖=1

𝑚𝑖𝑛{𝑐𝑦𝑐[𝑖]+𝛽,𝑗}∑︁
𝑟=0

𝑢[𝑖][𝑗 − 𝑟][𝑘 ] · (1− 𝐶𝑜𝑚[𝑖]), (3.21)

𝑗 = 1, · · · ,𝑀, 𝑘 = 1, · · · , 𝐾

Estimated actual evapotranspiration during period 𝑗 is defined in Equation
(3.22).

𝐸𝑇𝑎𝑐𝑐[𝑗][𝑘] =
𝑁∑︁
𝑖=1

𝑚𝑖𝑛{𝐶𝑦𝑐𝑙𝑒[𝑖],𝑗}∑︁
𝑟=0

(︀
𝐸𝑇𝑚[𝑖][𝑗 − 𝑟][𝑘][𝑟] · 𝑢[𝑖][𝑗 − 𝑟][𝑘] ·𝐴𝑆𝐼[𝑖][𝑗 − 𝑟][𝑘]

)︀
, (3.22)

𝑗 = 1, · · · , 𝑀, 𝑘 = 1, · · · , 𝐾

Soil water balance in the proposed solution is part of Equation (3.24). It deter-
mines the amount of available water in the soil for crop development. Soil water balance
is dynamic and influenced by various biophysical factors. Our modeling of the soil water
balance relies on an empirical approximation due to the complexity of capturing detailed
physical processes and the availability of field data. The following constraints that model
the yield response to water are based on Steduto et al. (2012) and Doorenbos and Kas-
sam (1979). The initial soil water content is defined by Equation (3.23). The precipitation
amount for each period 𝑗 is defined in 𝑃𝑒[𝑗].

𝑊𝑏[0] = 𝑊𝑏𝑖𝑛𝑖𝑡𝑖𝑎𝑙[0] (3.23)
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𝑊𝑏[𝑗][𝑘] = 𝑊𝑏[𝑗 − 1][𝑘] + 𝑃𝑒[𝑗] (3.24)

− 𝐸𝑇𝑜[𝑗][𝑘] · (1− 𝐸𝑚𝑝𝑡[𝑗][𝑘])

+ 𝛾𝑐𝑜𝑣 · (1− 𝐸𝑚𝑝𝑡[𝑗, 𝑘]) · 𝑐𝑜𝑣𝑆𝑒𝑒𝑑[𝑗][𝑘]

− (1− 𝛾𝑐𝑜𝑣 · 𝑐𝑜𝑣𝑆𝑒𝑒𝑑[𝑗][𝑘]) · 𝐸𝑇𝑎𝑐𝑐[𝑗][𝑘],

𝑗 = 1, · · · ,𝑀, 𝑘 = 1, · · · , 𝐾

The available soil water index (𝐴𝑆𝐼) for each Crop is defined in Equation
(3.25) .

𝐴𝑆𝐼[𝑖][𝑗][𝑘] =
(∑︀𝑗+𝑐𝑦𝑐[𝑖]

𝑣=𝑗 𝑃𝑒[𝑣]) +𝑊𝑏[𝑗][𝑘]− [(1− 𝑝[𝑖]) · 𝑆𝑎[𝑘] ·𝐷]
𝐸𝑇𝑚𝑎𝑐𝑐𝑢𝑚[𝑖][𝑗][𝑘] , (3.25)

𝑖 = 1, · · · , 𝑁, 𝑗 = 1, · · · ,𝑀, 𝑘 = 1, · · · , 𝐾

The benefits of cover crops are realized when they have optimal development
conditions, particularly in terms of water availability. Equation (3.26) ensures that they
are not seed under extremely unfavorable conditions.

𝐴𝑆𝐼[𝑖][𝑗][𝑘] ≥ 𝛾𝑐𝑜𝑣 · (1− 𝐶𝑜𝑚[𝑖]), (3.26)

𝑖 = 1, · · · , 𝑁, 𝑗 = 1, · · · ,𝑀, 𝑘 = 1, · · · , 𝐾

The actual evapotranspiration (𝐸𝑇𝑎[𝑖][𝑗][𝑘]) is estimated from the index 𝐴𝑆𝐼[𝑖][𝑗][𝑘],
according to Equation (3.27).

𝐸𝑇𝑎[𝑖][𝑗][𝑘] = 𝑢[𝑖][𝑗][𝑘] · 𝑐𝑦𝑐[𝑖] · 𝐹𝐸𝑇𝑎(𝐴𝑆𝐼[𝑖][𝑗][𝑘]), (3.27)

𝑖 = 1, · · · , 𝑁, 𝑗 = 1, · · · ,𝑀, 𝑘 = 1, · · · , 𝐾

The yield assessment estimation is presented in Equation (3.28), which uses
the relationship between actual evapotranspiration and maximum evapotranspiration.

𝑦𝐹 [𝑖][𝑗][𝑘] = 1− 𝑘𝑦 + 𝑘𝑦 · 𝐸𝑇𝑎[𝑖][𝑗][𝑘]
𝐸𝑇𝑚𝑎𝑐𝑐𝑢𝑚[𝑖][𝑗][𝑘] , (3.28)

𝑖 = 1, · · · , 𝑁, 𝑗 = 1, · · · ,𝑀, 𝑘 = 1, · · · , 𝐾
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For demonstration purposes, Figure 3.5 showcases a generic solution. Various
crop families in this example are indicated by unique colors and hatch patterns. The re-
sultant solution is a comprehensive, meticulously planned seeding schedule. The outcome
solution is an entire well-planned seeding calendar. For illustration, we detail a generic
solution in Figure 3.5. Crop families from this example are represented using distinct
colors and hatch patterns. There is a set of 6 plots available to grow crops, and the farm-
land allocation problem expands to 104 weeks, which is equivalent to a 2-year-planning
evaluation.
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Figure 3.5 – An example of a crop sequence to demonstrate the Crop Rotation Problem
in agriculture.

The commercial crops usually grown in our farmer’s region are detailed in
Table 3.6. As we can notice in this table, not all significant crops are profitable during the
data analysis. Severe weather conditions, including longer heatwaves, frost, and droughts,
have drastically interfered in the second season yields in the past years. Summer harvests
are more stable and usually have higher incomes. Reports on market developments for
agricultural commodities could profoundly transform the scenario in Table 3.6.

Many cover crops could be seeded in this subtropical climate. However, we
select only the ones that are typically grown in the city of Tatuí and those that our farmer
has previous successful experiences. They represent a group of three main cover crops as in
Table 3.7. Cover crops generally reach their maximum soil improvement potential before
the reproductive stages. Their living cycle should be interrupted before establishing seeds
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Table 3.6 – The major commercial crops and average cost and yield from past harvest.

Crop Name Family Yield Per
Hectare (60-
kg bag/ha) in
2023

Cost Per
Hectare
(60-kg
bag/ha)
in 2023

Average Cash
Price Received by
Farmer Per Unit in
2023

Soybean Legume 78.00 34.9 R$ 160.00
Summer Corn Grass 157.00 67.95 R$ 71.00
Winter Corn Grass 103.00 67.95 R$ 50.00
Sorghum Grass 43.38 49.73 R$ 60.00
Wheat Grass 37.87 26.68 R$ 66.00

by using selective herbicides or with a brush cutter. Consequently, we do not intend to
seed cover crops with commercial expectations, but we hope to get better soil performance
over the years.

We summarize our qualitative analysis of growing cover crops in Table 3.7. The
main attributes we hold are the minimum produced dry matter once the farmer terminates
the cover crop and the nitrogen fix from the air that is capacity found in legume crops.
We also have an attribute named soil builder, which is the cover crop’s ability ratio to
produce organic matter and improve soil structure. The nitrogen scavenger ratio is the
ability to absorb nitrogen from the surface soil and hold the surplus in the organic matter.
Erosion fighter quality rates the capacity to sustain the soil integrity in the face of erosion
agents, and it is related to the root system development. Weed-fighter is a measure of
competitiveness; it defines how well the cover crops can compete with weeds through
their life cycle and after termination. The last residue indicates how long the cover crop
would protect the soil surface after termination. A long-lasting mulch even prevents the
loss of soil water content over dried seasons. Clark (2012) inspire our cover crop’s approach
to the crop rotation problem.

Table 3.7 – Cover crop attributes.
Crop
name

Family Cover
Crop
Costs
Per
Hectare

Minimum
Dry
Matter
(kg /ha
/ano)

Total N
Source
(kg/ha)

Nitrogen
Scav-
enger

Soil
Builder

Erosion
Fighter

Weed
Fighter

Lasting
Residue

Rating from 0 (not recommend) to 4 (excellent)
Black
Oats

Grass R$ 150.00 2200 0 3 2 3 4 2

Fodder
Turnip

Mustard R$142.50 2600 0 2 3 3 3 1

Hairy
vetch

Legume R$36.00 2600 100 0 1 3 2 1
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3.2 Computational tests

We implement our model and algorithms in Python, using the Gurobi solver.
The crop assessment, yield, and profit are determined at the seeding period, meaning we
account for harvest at the time of seeding rather than at the actual harvesting period.
We justify this interpretation as an efficient way to use the index notation; otherwise, we
would also need to establish a harvest index variable.

3.2.1 How would the forecasting yield affect the entire planning horizon?

In this subsection, we calibrate our model based on the price curves from
CONAB data. Although production in agriculture highly depends on uncertainties, a
reliable estimation is irreplaceable in any planning activity. Regional climate conditions
and historical yield records are strong references. We introduce evaluations based on
deviations from the average yields reported by our collaborative farmer.

The initial yield parameters are presented in Figure 3.6. Our first introduced
variation is the small range of soybean yields. From 2023/2024, our farmer reported an
average yield of 4680 kg/hectare (78 60-kg bag per ha); we take the range from 40 to 60
bags per hectare.

Soybean Summer Corn Winter Corn Sorghum Wheat
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Figure 3.6 – Yield estimation for the entire planning horizon in Test 1.

In this test, soybean became unattractive, and corn took the lead as the pri-
mary crop. During the first year (52 weeks), winter corn is profitable; however, in the
latter stages, we could not find any good choice for growing in the winter. This pattern
matches the reality in the field. The reference farm sits in a subtropical region. Tempera-
tures are chilly most of the year, neither extreme cold nor hot. Considering the pleasant
weather in the farm location, irrigation machinery is not essential to reaching good yields,
although it should reduce production risks in the winter crop season. Overall, the produc-
tion forecast does not consider irrigation availability. Climate patterns such as El Nino
or La Nina might interfere with the early seeding opportunities for the summer crop by
postponing the dried season until mid-September, which delays harvest and stretches the
winter crop seeding calendar.



Chapter 3. Designing a crop rotation optimization model 71

Without accounting for the adjacency constraints or any particular demand
for each crop, the most profitable growing pattern is the solution in Figure 3.7. Instead of
family rotation, we assign fallow intervals; in other words, we leave the farmland fallow.
Under sure soil moisture, seeds from the soil bank would germinate and introduce the
required family rotation. In the second year of planning and the third one, fallow intervals
are more significant and give plenty of time for soil recovery.

Figure 3.7 – The optimum profitable solution for each plot in Test 1.

Soybean production expectation is higher in Figure 3.8. We are close to the
reality in the farm as the interval is set between 70 and 80 bags/hectare.
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Figure 3.8 – Yield estimation for the entire planning horizon in Test 2.

Under this new trial, soybean is more competitive and secures a spot on the
planning horizon. Comfortable yield interval for summer corn also guarantees some places
in the optimal mix, as shown in Figure 3.9. Pondering between soybean and summer corn
is quite common in the regional scenario; the cash price received by the farmer would
make the final decision. From our cash prices charts in the previous subsection, there are
some price slows in the most recent year harvests. As our test is based on these curves,
soybean sale prices are smaller as we approach the final weeks in the planning horizon.

Figure 3.9 – The optimum profitable solution for each plot in Test 2.

Attaining high average corn production on a large scale is usually hard to
sustain in the farmer context. His cultivable field is composed of rental fields, which involve
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distinct soil types, fertility, and tillage. Combining each field with its management history
leads to significant variation in the outcome yields. In general, corn is more sensitive to soil
characteristics than soybean. In this scenario, we reevaluate the summer corn production
parameter. The lower range for summer corn yield is presented in Figure 3.10.
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Figure 3.10 – Yield estimation for the entire planning horizon in Test 3.

We find the farmer’s preferred crop pattern in Figure 3.11 — the rotation bases
on soybean followed by wheat. Over the years, this crop combination provided stable
results under several weather patterns, such as short drought and high temperatures.
Hence, this crop scheme confirms a well-established cultivable pattern.

Figure 3.11 – The optimum profitable solution for each plot in Test 3.

We reshape our yield estimation in Figure 3.12. In this scenario, we consider
better conditions for winter corn and sorghum.
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Figure 3.12 – Yield estimation for the entire planning horizon in Test 4.

Boosting the yields for both changes the optimal crop mix, although sorghum
remains noncompetitive compared to winter corn and wheat. Higher prices for wheat in
the last year of planning still benefit this crop instead of corn and sorghum, and even
with poor production performance, wheat remains a good choice. The final combination
is presented in Figure 3.13.
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Figure 3.13 – The optimum profitable solution for each plot in Test 4.

In conclusion, based on our analysis of the farmer’s experiences, the regional
weather characteristics, and the generated cropping schemes in this section, we observe
that the scenario favors soybean as a major summer crop. However, once the farmer
significantly improves soil fertility and organic matter, producing corn in the summer
with higher efficiency and yield will be more reliable. High-yield corn areas are more
rewarding than soybeans. Winter crop remains surrounded by uncertainties, and we have
indications that wheat is the best option. Without irrigation, high yields from winter corn
or sorghum are highly improbable. The cash price farmers receive per unit of wheat is
greater than the corn’s price; wheat is more profitable, even producing less.

3.2.2 How would soil attributes drive decision-making?

Sustainable practices are in demand. Over the past decade, agriculture has
overcome cultural obstacles to embrace environmental initiatives. Soil degradation and
water pollution in rural areas become significant concerns in modern society. In the previ-
ous section, we discussed the economic approach in agriculture, which combination suits
better the farmer’s reality. In this current section, we take the crop rotation model as a
sustainable initiative from which the farmer could improve soil attributes gradually.

From Test 5 to Test 9, we enable the minimum rating in dry matter, nitrogen
source, nitrogen scavenger, soil builder, erosion fighter, weed fighter, and lasting residue.
Improvements from each trial are reported in Figure 3.14.
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Figure 3.14 – Reported attributes from Test 5 to Test 9.
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The solution in Figure 3.15 is the starting point. Even though cover crops are
part of the solution, they do not replace the major commercial crops. They fill the gaps
between significant crops. From the aggregation of the cover crops in the solution, the soil
is more occupied than in Figure 3.7 and in Figure 3.9. Although leaving the field fallow
improves the performance of the subsequent crop, there is more space to populate the soil
with weeds, which could be challenging to manage.

Hairy vetch is well-known for fixing nitrogen in the soil surface, and corn is
one of the crops with the highest nitrogen demand. Crop succession of hairy vetch and
maize in the scheme from Figure 3.15 holds a positive impact in the proposed solution.

Figure 3.15 – The optimal scheme solution from Test 5.

From Test 6 to Test 9, we notice an increase in the soil occupation ratio. Cover
crops usually are killed before reaching maturation, and their cycle could be adjusted to
fit in the interval between major commercial crops.

Figure 3.16 – The optimal scheme solution from Test 6.

Figure 3.17 – The optimal scheme solution from Test 7.

Figure 3.18 – The optimal scheme solution from Test 8.
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Figure 3.19 – The optimal scheme solution from Test 9.

Test 9 in Figure 3.19 stacked with many crops.

Introducing cover crops in the solution scheme affects the gross profitability of
the farm. We should not focus strictly on the amount itself as we do not cover the cover
crop’s relationship with the following crop and its expected yield improvements in major
crops.

One interesting parameter is the gross profitability from Test 3 and Test 6,
which are almost equivalent. The crop scheme in Test 3 is composed of soybean and
wheat, while the crop pattern in Test 6 replaces wheat with winter corn, fodder turnip,
and hairy vetch and introduces summer corn. There are not any initiatives in Test 3 to
enhance soil performance over the entire planning horizon. However, Test 6 is composed
of many cover crops. Aside from the introduction of cover crops, the other change is the
yield expectation from winter corn, which is more significant in Test 6 than in Test 3.
Therefore, with a slight increase in winter corn yields, the combination of cover crops in
Test 6 could easily outperform the standard soybean-wheat rotation.
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Figure 3.20 – Gross profitability from Test 1 to Test 9.
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3.2.3 How costly is it to diversify farmland allocation to meet adjacent con-
straints?

Cropping family rotation in the field area neighborhood is one of the friendly
environmental practices to prevent widespread pest problems. Although crop diversifica-
tion in the cultivable group areas increases defenses as fortified barriers prevent mobility
from one field to another, crop diversification would contribute little to any specific plot
area enduring pest attacks.

Enforcing adjacency to all the plots sounds unwise. Figure 3.21 shows the
adjacency restriction fully satisfied. A clear negative sign in this solution is the allocation
emptiness. The crop set is tiny, as well as the number of crop families in the real database.
Working with few crop families leaves short options to attain the constraint of adjacency,
and consequently, we find long fallow intervals in the solution. Fulfilling the available
spots in the planning horizon would be more accessible when the farmer can grow crops
from many families besides legumes and grain.
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Figure 3.21 – Adjacent plots: fulfilling the family alternation constraint.

The best alternative is to reevaluate the adjacency. Grouping some plots would
reduce the neighborhood. Respecting adjacency is critical on the interconnecting plots.
Our central field area is Plot 3 in Figure 3.22. Plot 1 and Plot 2 constitute one group,
and Plots 4, 5, 6, and 7 form another. The bridge between them is Plot 3.
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Figure 3.22 – Alternative adjacency plots and crop families.

In Figure 3.23, we observe a seeding schedule including cover crops in the
planning horizon. A distinct scheme is presented in the bridge plot 3; others are distributed
in two big groups.
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Figure 3.23 – Plots adjacent and crop groups: reduced neighboring crops

Comparing profits, the crop planning in Figure 3.21 generates R$ 1,713,070.00
in gross profits while the second planning in Figure 3.22 results in R$2,361,879.00 in gross
profits and the last seeding schedule in Figure 3.23 produces R$ 2,064,957.00.



Chapter 3. Designing a crop rotation optimization model 78

According to the field area and characteristics from Figure 3.1, the total cul-
tivable area is 99.5 hectares, and the expected return per area is R$17,216.00 in Figure
3.21. From Figure 3.22, the return estimation per area is R$23,737.00. The same parame-
ter for the farmland allocation in Figure 3.23 is R$ 20,753.00. In conclusion, without the
relaxation of the adjacency constraint, farmers would endure small gross profits in the
planning period.

3.2.4 Discussion on results

This subsection examines how limitations in soil water influence the develop-
ment of the crop sequence. Yield and price are determined by average reports based on
Tables 3.6 and 3.7. We introduce a minor deviation in these parameters to assess the
sensibility of the optimization model. Initially, it may seem that cover crops would not be
part of the solution, given that they incur expenses rather than generate cash, and the
objective function aims to maximize profitability. Cover crops play an essential role in en-
hancing soil water balance, as illustrated in Equation (3.24), which has a notable impact
on the yield of commercial crops. Consequently, integrating cover crops into agricultural
practices can be a strategic approach to increasing commercial crops productivity. We
have planned crop rotations that extend over a period of five years (10 semesters). This
time-span is sufficient to assess the impact of field planning strategies.

We use historical climate data to simulate the next five years. Relative pre-
cipitation is a scalar parameter that we propose to create testing scenarios in which the
precipitation pattern may decrease or increase proportionally. This approach allows us to
study how changes in the precipitation pattern influence decision-making over an extended
time frame.

For years 1 to 5, we refer to data from a weather station that records tem-
perature, wind speed, humidity, and precipitation. For evaluation purposes, we alter the
recorded values to test how variations in precipitation affect the decision-making process.
A specific pattern that we look for in these simulations is the increase in cover crops when
precipitation decreases. In stressful conditions, agricultural performance is significantly
more robust when cover crops are regularly grown. Regular precipitation and overesti-
mated precipitation occur in crop sequences 1 and 2, where the presence of cover crops
is relatively lower than in the other sequences. Comparing the estimated profit from crop
sequences 2 and 5, we find that the presence of cover crops almost matches the solution
without cover crops, especially when considering crop sequences with only 0.9 precipi-
tation over the same period. In the context of the proposed optimization model, we do
not attribute increases to commercial crop yields. Instead, we consider their influence
on water balance, believing that cover crops will support commercial crops in achieving
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their maximum evapotranspiration potential. As discussed in the Subsection 3.1.4, vari-
ous studies have shown gains in crop production with cover crops. Hence, a value of 𝛾𝑐𝑜𝑣
around 30% serves as a reliable reference for designing crop schedules. The crop sequences
in Table 3.8 are generated based on 2010-2014 precipitation data and weather. Leaving
uncultivated land is not planned as part of crop rotations; instead, it is a decision made
to avoid planting crops that would not yield profit caused by the lack of soil moisture to
reach a reasonable production level in any commercial crop available. We did not impose
a strict limit on soil water storage capacity because our main concern is insufficient water
rather than excessive moisture levels.

In addition to affecting actual evapotranspiration on cultivable land, cover
crops offer other benefits that aren’t considered in the optimization model as incomes.
These benefits include weed suppression, improved nutrient availability for subsequent
crops, and erosion control. We rate all crop sequences based on these characteristics,
as illustrated in Table 3.9. The larger the attribute index, the more effective the crop
sequence.

Although we do not disclose the weather patterns from the simulations, we ob-
serve that profitability is lower based on data from 2018. Unfortunately, weather stations
recorded smaller volumes of rainfall from 2018 to 2023 compared to the period from 2010
to 2015. Rainfall has been below average in many regions of the world during this decade.
Therefore, integrating cover crops may not be beneficial in the short term, but it will be
essential for sustaining good average yields in the future.

The crop sequences in Table 3.10 are generated based on changes in relative
precipitation. The results from crop sequences are presented in Table 3.11.

Table 3.8 – Pre-generated crop sequences selecting crops in five rotation years (Abbrevi-
ations: Bo = black Oats, Ft = fodder turnip, Hv= hairy vetch, Sg=sorghum,
Soy = soybeans, Sc = summer corn, Wh=wheat, Wc = winter corn).

1 2 3 4 5 6 7 8 9 10
1 0.7 Bo Sg Bo Sc Bo Sc Hv Wh Sc Wh Sc Wh Sc
2 0.8 Bo Sg Bo Sc Bo Sc Wh Bo Sc Bo Sc Wh Sc
3 0.9 Ft Sg Sc Wh Sc Wh Bo Sc Ft Sc Wh Sc
4 1.0 Ft Sg Sc Wh Sc Wh Sc Wh Sc Wh Sc

Crop
Sequence

Relative
Precipitation

Semester

Table 3.9 – Outcomes from algorithm-derived crop rotations utilizing meteorological data
from 2010 to 2014.

1 R$ 23,861.41 10,400 100 6 10 12 11 4
2 R$ 30,307.49 13,000 0 10 15 15 15 5
3 R$ 35,283.96 7,000 0 8 7 9 11 5
4 R$ 39,830.23 2,200 0 3 2 3 4 2

Crop Sequence
Number

Estimated
Profit per

Hectare (ha)

Accumulated
Dry Matter

(kg/ha)

Total Nitrogen
Fixing (kg/ha)

Accumulated Soil Improvements Index
Nitrogen
Scavenger Soil Builder

Erosion
Fighter Weed Fighter Lasting

Residue
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Table 3.10 – Algorithm-generated crop rotations over a span of five years without cover
crops (Abbreviations: Bo = black Oats, Ft = fodder turnip, Hv= hairy vetch,
Sg=sorghum, Soy = soybeans, Sc = summer corn, Wh=wheat, Wc = winter
corn).

1 2 3 4 5 6 7 8 9 10
5 0.7 Ft Sg Sc Hv Wh Sc Wh Sc Wh Soy Ft Bo Sc
6 0.8 Bo Sg Bo Sc Bo Sc Wh Soy Ft Bo Sc Wh Sc
7 0.9 Bo Sg Bo Sc Bo Sc Sg Bo Sc Wh Sc Wh Sc
8 1.0 Hv Sg Bo Sc Bo Bo Sc Hv Sc Sg Bo Sc Wh Sc

Crop
Sequence

Relative
Precipitation

Semester

Table 3.11 – Outcomes from algorithm-derived crop rotations utilizing meteorological
data from 2018 to 2022.

5 R$ 12,536.32 9,600 100 8 8 12 13 6
6 R$ 18,020.80 12,600 0 11 14 15 16 6
7 R$ 23,821.01 10,400 0 8 12 12 12 4
8 R$ 27,534.17 15,600 200 8 14 18 16 6

Crop Sequence
Number

Estimated
Profit per

Hectare (ha)

Accumulated
Dry Matter

(kg/ha)

Total Nitrogen
Fixing (kg/ha)

Accumulated Soil Improvements Index
Nitrogen
Scavenger Soil Builder

Erosion
Fighter Weed Fighter Lasting

Residue

If there are no cover crops in the rotation, the yields from commercial crops
are likely to suffer. Unprotected soil is highly susceptible to evapotranspiration. Cover
crops and their residues are vital to avoid erosion and runoff in wet seasons, as well as
to minimize evapotranspiration during important dry periods. Table 3.12 illustrates the
crop sequence produced without the inclusion of cover crops within the subset. Despite
implementing family rotation by alternating crops between legume and grass families,
maize and soybean dominate the summer season, while wheat remains the safest option
for winter.

Table 3.12 – Algorithm-generated crop rotations over a span of five years without cover
crops (Abbreviations: Bo = black Oats, Ft = fodder turnip, Hv= hairy vetch,
Sg=sorghum, Soy = soybeans, Sc = summer corn, Wh=wheat, Wc = winter
corn).

1 2 3 4 5 6 7 8 9 10
9 Sg Sc Wh Soy Wh Soy Wh Sc Wh Sc
10 Sg Sc Wh Soy Wh Sc Wh Sc Sc
11 Wh Soy Wh Soy Wh Sc Sc Wh Sc
12 Sg Sc Wh Soy Wh Soy Wh Sc Sc
13 Wh Sc Wh Soy Wh Soy Wh Soy Wh Sc
14 Wh Soy Wh Sc Wh Soy Wh Soy Wh Sc

Crop
Sequence

Semester

Table 3.13 estimates profitability from the crop sequences in Table 3.12. They
are quite smaller than previous results in Tables 3.9 and 3.11. When precipitation sur-
passes historical averages, yield projections for commercial crops achieve their peak po-
tential, and the resulting outputs without cover crops align with estimated profitability
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similar to integrating cover crops. However, during dry seasons, we observe that the re-
silience provided by cover crops becomes evident. The expenses associated with cover
crops are outweighed by the benefits observed in the next commercial crop, considering
only the effect on evapotranspiration and not accounting for the potential yield increase
due to nutrient availability from cover crop residues.

Table 3.13 – A comparative analysis of crop sequences that do not include cover crops.

9 R$ 14,090.05 0.70 Jan/2010 to Dec/2014
10 R$ 30,742.14 1.00 Jan/2010 to Dec/2014
11 R$ 39,952.08 1.50 Jan/2010 to Dec/2014
12 R$ 2,760.78 0.70 Jan/2018 to Dec/2022
13 R$ 17,271.39 1.00 Jan/2018 to Dec/2022
14 R$ 36,455.22 1.50 Jan/2018 to Dec/2022

Crop
Sequence
Number

Estimated
Profit per

Hectare (ha)

Relative
precipitation

Weather historical
data

Under highly adverse conditions, Crop sequence 1 significantly outperforms
Crop sequence 9, primarily due to the presence of cover crops. Crop sequence 9 achieves
only 59% of the estimated profit generated by Crop sequence 1. The most unfavorable
comparison is between Crop sequence 12 and Crop sequence 5. Both are subjected to the
same weather conditions, but Crop sequence 5 includes several cover crops, whereas Crop
sequence 12 has none. Consequently, Crop sequence 12 reaches only 22% of the output of
Crop sequence 5.

When the relative precipitation is adjusted to one or higher —indicating that
the precipitation matches or exceeds historical weather data — the disparity between
crop sequences with and without cover crops diminishes. For instance, crop sequence 11
generates higher profits compared to crop sequence 4.

3.2.5 Assessing outcomes from various cities involved in grain production
across Brazil

In the preceding subsection, we examined crop sequences generated for the
Sorocaba region, where our collaborative farmer is situated, and explored various aspects
regarding the strategic utilization of our proposed model within this local framework.
Now, however, we aim to broaden our analysis by applying it to a larger group of grain
farmers, producing crop sequences for numerous locations throughout the country. For
different regions of Brazil, optimized cropping plans were developed to understand the
agricultural patterns among Brazilian grain producers. The cities listed in Table 3.14 are
significant grain production hubs in Brazil.
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Table 3.14 – Algorithm-generated crop rotations over a span of five years without cover
crops (Abbreviations: Bo = black Oats, Ft = fodder turnip, Hv= hairy vetch,
Sg=sorghum, Soy = soybeans, Sc = summer corn, Wh=wheat, Wc = winter
corn).

1 2 3 4 5 6 7 8 9 10
15 Barreiras-BA Ft Sg Sc Sg BoSc Wh Sc Ft Bo Sc Wh Sc
16 Castro-PR Bo Sg Sc Wh Sc Wh Sc Wh Sc Wh Sc
17 Chapadão do Sul-MS Ft Sg Sc Wh BoSc Bo Sc Sg Bo Sc Wh Sc
18 Rio Verde-GO Ft Sg Sc Wh Sc Wh Sc Wh Sc Wh Sc
19 Sorocaba-SP Bo Sg Bo Sc Bo Sc Wh Bo Sc Bo Sc Wh Sc
20 Sorriso-MT Wh Sc Wh Sc Wh Sc Wh Sc Wh Sc
21 Uberaba-MG Wc Sc Wh Sc Wh Sc Wh Sc Wh Sc
22 Barreiras-BA Ft Sg Sc Hv Wh Sc Wh Soy Wh Sc Wh Sc
23 Castro-PR Wh Sc Wh Sc Wh Sc Wh Sc Wh Sc
24 Chapadão do Sul-MS Ft Sg Sc Sg BoSc Wh Sc Wh Sc Wh Sc
25 Rio Verde-GO Ft Sg Sc Wh Sc Wh Sc Sg Sc Wh Sc
26 Sorocaba-SP Bo Sg Bo Sc Bo Sc Wh Sc Wh Sc Wh Sc
27 Sorriso-MT Bo Sg Sc Wh Sc Wh Sc Wh Sc
28 Uberaba-MG Wh Sc Wh Sc Wh Sc Wh Sc Wh Sc

Crop
Sequence Location

Semester

Table 3.15 presents the projected profits for each crop rotation. The significant
variations in the results are attributed to the weather conditions. The erratic nature of
rainfall influences the solver’s choice to bypass unprofitable cropping allocations, opting
for leaving fields fallow instead of incurring losses.

Cover crops are excluded from the solution only under exceptionally favorable
weather conditions, as illustrated in Table 3.14. In all other cases, they are essential for
reducing evapotranspiration and assisting commercial crops in achieving maximum yield.
Cover crops attributes are displayed in Tables 3.16 and 3.17.

We should consider that the yield estimations are grounded in the analysis
provided by a decision maker who utilizes comprehensive weather data. Consequently,
the significant decrease in profitability observed in crop sequence 2, compared to other
sequences, arises from a water deficit that impairs the allocation of any economically viable
crops. Our optimization approach, due to its comprehensive consideration of weather,
avoids taking risks. However, farmers may face some risk in their decisions, either aiming
for price spikes or hoping for unanticipated shifts in weather conditions.
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Table 3.15 – A comparative assessment of projected profits derived from solver solutions
across various Brazilian locations.

15 Barreiras-BA R$ 22,783.70 22 R$ 11,995.20
16 Castro-PR R$ 41,839.46 23 R$ 45,239.73
17 Chapadão do Sul-MS R$ 34,709.86 24 R$ 38,927.07
18 Rio Verde-GO R$ 35,821.26 25 R$ 38,268.21
19 Sorocaba-SP R$ 33,215.84 26 R$ 27,440.63
20 Sorriso-MT R$ 44,118.75 27 R$ 35,696.93
21 Uberaba-MG R$ 44,066.03 28 R$ 45,145.96

Crop
Sequence
Number

Location

Estimated
Profit per

Hectare(ha)
2010-2014

Crop
Sequence
Number

Estimated
Profit per

Hectare(ha)
2018-2022

Table 3.16 – Outcomes from algorithm-derived crop rotations utilizing meteorological
data from 2010 to 2014.

15 9,600 0 10 10 12 14 6
16 2,600 0 2 3 3 3 1
17 10,000 0 9 11 12 13 5
18 2,200 0 3 2 3 4 2
19 13,000 0 10 15 15 15 5
20 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0

Crop Sequence
Number

Accumulated
Dry Matter

(kg/ha)

Total Nitrogen
Fixing (kg/ha)

Accumulated Soil Improvements Index
Nitrogen
Scavenger Soil Builder

Erosion
Fighter Weed Fighter Lasting

Residue

Table 3.17 – Outcomes from algorithm-derived crop rotations utilizing meteorological
data from 2018 to 2022.

22 4,800 100 3 3 6 6 3
23 0 0 0 0 0 0 0
24 4,800 0 5 5 6 7 3
25 2,200 0 3 2 3 4 2
26 7,800 0 6 9 9 9 3
27 2,600 0 2 3 3 3 1
28 0 0 0 0 0 0 0

Crop Sequence
Number

Accumulated
Dry Matter

(kg/ha)

Total Nitrogen
Fixing (kg/ha)

Accumulated Soil Improvements Index
Nitrogen
Scavenger Soil Builder

Erosion
Fighter Weed Fighter Lasting

Residue

3.3 Final remarks and conclusion

Our research in this paper reshapes the famous Crop Rotation Problem. We
collect and analyze actual data from a collaborative farmer. The information taken directly
from the source and the contributions made by the main stakeholder, our collaborative
farmer himself, leads this research in a wealthy pathway that is deeply connected with the
agribusiness challenges. With a renewed vision of the agrarian problem, we dedicate our
time and effort to proposing an optimization model that embraces the farm management
challenge in planning many years from scratch. Our proposed solution follows the standard
crop rotation elements and the financial ecosystem surrounding farming activity (revenues,



Chapter 3. Designing a crop rotation optimization model 84

costs, and profits). Aside from the main features of crop rotations, we enhance the model
with cover crops and nutrient supply evaluation. In the modeling process, we elaborate an
efficient set of constraints, and we can run large instances of the rotation problem. We have
fully stretched the boundaries of the proposed optimization methodology and provided
a robust analysis of the real problem. Our gathered results attained the current farmer
necessity at hand. Our optimization strategy involving cover crops brings environmental
benefits, assisting farm management practices dealing with contemporaneous scarcity of
mineral resources.

After carefully considering the economic scenario from our actual data applica-
tion, we observe that corn average yields can sustain significant growth over the following
years with increasing investments in farming practices. Therefore, corn could even replace
soybean as the main crop due to the greater production. Once farmers reach stability in
production averages over the years, we would notice risk reduction in the farm business
as corn prices are less volatile in the harvest season than soybeans. Another benefit of
corn expansion is that the seeding window is more significant than soybeans.

Our next step is leaning toward the hot topics in Artificial Intelligence. In
that sense, exploring artificial neural networks in highly combinatorial models, such as
the crop rotation problem, would allow the incorporation of other fundamental ecological
patterns that affect farm management decisions. Besides our achievements in agriculture,
our modeling approach to the problem mechanism could also reach other research areas
as it is a scheduling problem.
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4 Developing a dynamic programming model
to assist weed management in soybeans

Agriculture technology undertook large evolutionary steps in the past century,
reaching unimaginable yield growths along all the cultivable crops (OLIVEIRA et al.,
2021). From soybeans, breeding of improved cultivars with higher yield potential combined
with no-tillage growing system and herbicide developments transformed a crop grown
mostly for forage in the early twentieth century into a worldwide major cultivable crop
(WARREN, 1998).

Until the late 1950s, nearly all soybean weed control was done by tillage before
and after seeding, managing weeds close to the soybean harvest was only possible when
manually removed from the field, weed competition in the harvest causes significant yield
losses. Nave and Wax (1971) reported even an average yield could drop 25% by a certain
weed infestation and the total machine losses were around 50% in unmanageable weed
infestation. The use of pre-emergence and post-emergence herbicides reduced drastically
the labor force required to deal with weeds and increased weed efficacy control in the field
(OLIVEIRA et al., 2017; GIANESSI; REIGNER, 2007).

Herbicides discoveries have their boom from 1940 to 1980. Aside from new her-
bicide designs, selectivity (i.e. selectivity refers to the capacity of a particular herbicide to
kill a certain group of weeds in a post-emergence state of the grown crop, without affecting
yield or grain quality) and the expansion of the application window spanning from many
crop stages have profoundly change the agrarian scenario. Although this prosperous era
provided almost all the major commercial herbicides, the following decades has been not
so much prolific in new herbicide site of action (SOA) (OLIVEIRA et al., 2021; DUKE,
2012).

Diversity is the dominant pattern in the Brazilian agriculture. Brazilian farm
production spans from food to fibers and other industrial raw materials (CARBONARI;
VELINI, 2021). Farmers have long used pesticides to sustain high yields and efficiency of
crops in land use, consequently, Brazil market is the second largest user of pesticides world-
wide (FAOSTAT, 2023), Brazilian farms consumes 377 thousands of pesticides tonnes in
2020.

As farms expand, the utilization of pesticides proportionally increases, Car-
bonari and Velini (2021) defend that the Environmental Impact Quotient (EIQ) contin-
uously drooped as the new market products are more efficient and present lower risks to
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the environment. They also pointed out that there are many degradation and dissipation
processes that reduces pesticide residues when applied in the fields. These set of processes
drives the amounts of pesticides present in food products to extremely small fractions and
in compliance with regulatory agencies.

Weed management is crucial in any major crop. Uncontrolled pests can lead
to production losses over many years and multiple crops. Although chemical control has
the greatest efficacy, farmers’ reliance on herbicides causes undesirable effects such as the
emergence of resistant weeds. Among many samples, populations of horseweed (Conyza
canadensis, Conyza bonariensis andC. sumatrensis) resistant to glyphosate are widespread
in Brazilian fields. We could see in Figure 4.1 the weed infestation of horseweed competing
with soybean. Trezzi et al. (2013) conducted an experiment to evaluate the loss of grain
yield caused by horseweed competition and the reported average loss was 25%.

Figure 4.1 – Typical horseweed infestation competing with soybeans.1

Management of sourgrass (Digitaria insularis) is another huge challenge in
Brazilian soybean fields. Wide distribution of glyphosate-resistant bio-types sourgrass are
one the main reasons to hand sourgrass infestation (GAZZIERO et al., 2012). Figure 4.2
illustrates an infested soybean field with sourgrass and other grass plants.
1 Source: Image from author’s ownership
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Figure 4.2 – Grass species like sourgrass and others are in competition with soybean
plants. 2

Taking into account the challenges of weed management in soybeans, we de-
velop a dynamic programming model to assist decision-making on the farm. Our special
attention to dynamic programming techniques are naturally motivated about the pro-
gressing states we observe in the field. Among them are soybean growth pattern, the weed
competition impact over the crop development and even the weather influence. There are
many state transitions driven by the managerial decisions taken in the agricultural en-
vironment. The objective of this chapter is to optimize herbicide use through a dynamic
programming solution that balances environmental conditions, agricultural needs, and
cost-efficiency.

The research question we would like to answer in this section are:

• How can we translate the weed control problem into an optimization problem?

• Can we reproduce the farmers’ expertise in the generated solutions?

• Which are our boundaries with the dynamic programming approach?

• Could we properly assist the farmer with the most recommend course of action?

The influence of weather on optimal herbicide application conditions is ad-
dressed in Section 4.1. Moving to a more detailed examination of herbicides, Section 4.2
covers the herbicides commonly used in Brazilian soybean agriculture. Section 4.3 presents
a brief discussion about the main weed species in the Brazilian soybean crop. Particularly,
sourgrass, as one of the hardest weeds to manage in cultivable areas, is our chosen weed
2 Source: Image from author’s ownership.
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to evaluate under the dynamic approach. Our proposed methodology exhibits in Section
4.4. Our current results are part of Section 4.5. Our final evaluation is Section 4.6. In
addition, Subsection 4.6.1 holds some remarks about further steps in the research field.

4.1 The impact of weather conditions in Herbicide Spray Tank
Applications

Based on the literature (MATZENBACHER et al., 2014; CIESLIK et al., 2013;
PENCKOWSKI et al., 2003), the recommended temperature for applying herbicides is
between 20∘C and 30∘C. Relative humidity should exceed 50%, and wind speed must be
less than 10 km/h. Rainfall occurring soon after spraying may diminish the absorption
and translocation of herbicides, thereby affecting weed control.If precipitation happens
before the herbicide reaches rain-fastness, its effectiveness will be diminished. It is not
recommended to spray immediately following rainfall. It is essential to allow the leaves
to dry before applying the spray to ensure the product’s effectiveness. For spraying to
be effective and consequently manage weeds, specific weather conditions need to be met.
Spraying in poor conditions might result in the need for an additional weed application to
achieve desired results. Therefore, the criteria we utilize to assess the timing for herbicide
spraying are outlined as follows:

• Temperature should range from 20 ∘𝐶 to 30 ∘𝐶

• Wind speed should be within 3 to 10 m/s

• There should be no rainfall in the last four hours or expected in the next four hours,
nor more than 20 mm of rain in the past 24 hours

• Optimal radiation levels for spraying are deemed to exceed 300 𝑘𝐽/𝑚2

In crop growth management, applying selective herbicides is essential to mini-
mize the impact of weeds. Failing to properly attend to the appropriate spraying conditions
can result in significant signs of phytotoxicity (PENCKOWSKI et al., 2003; MIOLA et
al., 2020; KIICHLER et al., 2023). Figure 4.3 illustrates a typical phytotoxicity effect
on soybeans, exemplifying inadequate herbicide application under adverse environmental
conditions.

Appendix B provides a concise summary of the weather stations from which
we collected data to assess spraying viability from 2010 to 2024. Using information from
3 Source: Image from author’s ownership.
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Figure 4.3 – Phytotoxicity in soybean crop caused by selective herbicide sprayed under
high temperature. 3

633 weather stations operated by the Instituto Brasileiro de Metereologia (INMET), we
examined the number of hours suitable for fieldwork under ideal weather conditions. Our
analysis centers on a tractor-operated herbicide sprayer that requires firm soil conditions
to function effectively without harming the developing crop. We base our analysis in terms
of:

• Total precipitation, hourly [mm of water ]

• Air temperature - Dry Bulb, hourly [∘𝐶]

• Global radiation, hourly [𝑘𝐽/𝑚2]

• Wind velocity, hourly [𝑚/𝑠]

For successful herbicide application, it is essential to consider a combination of
weather conditions. Unfavorable weather can lead to inadequate weed control, herbicide
loss due to wind drift, and other negative consequences. In Table 4.1, we display the mean
values across Brazilian states. This table underscores the limited hours during which the
optimal conditions for herbicide application are met. The column named “Temp” presents
the average monthly hours where temperature is between 20 ∘𝐶 to 30 ∘𝐶, the next column
denoted “Temp. and W. Speed” refers to the average monthly hours where temperature
criteria is met and also wind speed criteria is satisfied.
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Table 4.1 – Soybean stages and the adequate position of herbicides: the proper spraying
stage.

Average monthly hours suitable for herbicide application in each Brazilian State

Federative
Unit

Temp. Temp. and
W. Speed

Prec. Prec. and
Rad.

Temp.,
Prec., W.
Speed and
Rad.

Prec. and
Wind.

PB 303.33 40.07 73.93 44.56 25.43 77.13
RN 288.7 49.75 78.94 40.72 26.65 76.95
PE 291.81 40.99 78.64 46.76 26.23 76.54
DF 227.36 40.48 78.39 69.73 32.82 74.63
AL 313.06 27.98 66.05 36.71 17.25 53.99
BA 288.02 29.99 71.13 44.83 18.63 53.65
SE 319.94 30.43 65.08 37.93 16.45 52.64
CE 277.06 29.73 79.03 36.93 18.24 50.53
RS 160.62 42.71 75.1 61.28 28.71 46.12
PR 204.11 31.31 74.98 58.88 21.03 42.93
GO 255.66 21.47 73.4 52.43 15.74 40.24
ES 264.44 23.97 69.43 47.92 14.98 39.6
MG 227.37 22.97 77.02 60.87 17.23 39.18
RJ 250.64 24.94 73.04 49.54 15.63 39.18
PI 261.47 22.08 80.13 36.66 14.35 37.53
MS 241.95 24.26 73.8 46.75 14.33 34.68
SC 165.77 30.29 71.89 59.81 20.24 33.55
SP 215.9 20.94 74.55 57.25 14.56 31.44
MA 279.72 15.32 71.12 33.46 9.74 27.24
TO 259.37 16.31 67.07 34.61 10.13 26.27
MT 271.64 14.97 68.26 37.04 8.22 22.32
PA 303.51 9.78 64.2 30.58 5.52 16.74
RR 281.05 10.87 58.16 17.56 5.92 16.65
RO 296.71 9.24 62.41 29.8 3.78 11.22
AC 315.59 5.25 65.57 35.45 2.65 8.35
AP 314.48 5.27 46.06 21.75 1.98 6.24
AM 301.8 2.21 52.81 23.75 0.7 2.11

Temp.: Temperature; W. Speed: Wind Speed; Prec.: Precipitation; Rad.: Radiation

We reunite the best stations and the worst stations in terms of mean ideal
hours in Table 4.2. In the State of Amazonas, some of the least favorable conditions for
applying herbicides include high temperatures, an extensive rainy season, and frequent
cloudy days. Despite the fact that much of the region is classified as non-arable and
preserved as a natural resource, the average state parameters revealed extremely limited
prospects for addressing crop needs because of its tropical nature.
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Table 4.2 – Soybean stages and the adequate position of herbicides: the proper spraying
stage.

Average monthly hours suitable for herbicide application in each Brazilian State

Federative
Unit

Weather
Stations

Temp. Temp. and
W.Speed

Prec. Prec. and
Rad.

Prec.
Wind.
Rad.

Prec.
Wind.

RN NATAL 377.43 74.02 67.23 48.04 41.55 156.83
TO MATEIROS 279.47 69.76 78.24 60.94 52.88 147.77
MA FAROL de

SANTANA
332.13 70.04 78.73 50.21 44.36 147.32

CE TIANGUA 350.96 72.88 73.56 42.75 39.6 138.97
BA REMANSO 315.64 64.13 91.19 54.67 43.97 138.78

PA DTCEA
JACAREA-
CANGA

306.04 0.34 92.93 0.0 0.0 0.0

MG EB PEF
BONFIM

310.45 32.39 48.23 0.0 0.0 0.0

AM CRMN
MANAUS

309.17 0.34 82.24 0.0 0.0 0.0

AM DTCEA
TABATINGA

388.82 0.0 7.15 0.0 0.0 0.0

AM DTCEA
TEFE

314.62 0.52 66.55 0.0 0.0 0.0

Figure 4.4 illustrates the annual trend of available hours for two sites, show-
casing areas where weather conditions remain optimal for the longest duration within the
chosen locations. From May to September, Mateiros reported the closest match between
the ideal condition and the average hours when temperature is between 20 and 30 ∘𝐶.
In Natal, the time frame from October to February records the highest averages under
ideal conditions. The lines and their distribution depict the average monthly hours during
which the appropriate temperature is achieved. The box-plot shows a small interval of
hours allocated for herbicide application, during which the conditions of temperature, pre-
cipitation, wind speed and radiation are satisfied. For example, although Natal generally
experiences over 350 hours with suitable temperatures, it exceeds just 200 hours when it
comes to sufficient radiation, wind, and rainfall.

Figure 4.4 – An examination of spraying conditions in Mateiros and Natal.
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4.2 A comprehensive approach into typical soybean’s herbicides

Based on farmer’s expertise and data, we have selected a group of herbicides in
another to handle weed infestation in soybean fields. Product’s name and their classes are
introduced in Table 4.3. Herbicides have their recommended interval based on the soybean
growth, we manage to summarize each proper interval from the selected herbicides in Table
4.1.

Table 4.3 – A brief introduction of major herbicides commonly used in a grain farm from
the state of São Paulo, Brazil.

Index Selective Herbicide Class

1 Cloransulam-methyl Selective herbicide
2 Chlorimuron-ethyl Post-emergent, systemic selective herbicide

from the sulfonylurea chemical group
3 Saflufenacil Conditional selective contact herbicide
4 2,4-D Selective, systemic post-emergence herbi-

cide from the aryloxyalkanoic acid chemical
group

5 Glufosinate Non-selective total action herbicide
6 Glyphosate Conditional selective, systemic action herbi-

cide
7 Carfentrazone-ethyl + naphtha solvent Post-emergent, conditional selective herbi-

cide with non-systemic action
8 Sulfentrazone + Diuron + 1,2-ethanediol Pre-emergent, conditional selective herbi-

cide with systemic action
9 Diclosulam Selective herbicide
10 Haloxyfop-R-methyl + Ethylene glycol mo-

noethyl ether
Systemic action selective herbicide

11 Cletodim Systemic herbicide

Table 4.4 – Soybean stages and the adequate position of herbicides: the proper spraying
stage.

Index Selective Her-
bicide

Soybean Pre-
seed Burn-off

Soybean Pre-
emergence

Soybean Post-
emergence

Soybean Pre-
harvest

Maximum
spraying num-
ber per crop
cycle

1 Cloransulam-
methyl

N.R. N.R. R. R. 1

2 Chlorimuron-
ethyl

N.R. N.R. R. R. 1

3 Saflufenacil S (minimum
interval R. of
10 days before
planting)

N.R. N.R. R. 1

4 2,4-D R (at least 7
days before
planting)

N.R. N.R. N.R. 1

5 Glufosinate R (at least 7
days before
planting)

R. N.R. R. 1

6 Glyphosate R. R. R. R. 1
7 Carfentrazone-

ethyl + naphtha
solvent

R. R. N.R. R. 1

8 Sulfentrazone +
Diuron + 1,2-
ethanediol

R. R. N.R. N.R. 1

9 Diclosulam R. R. N.R. N.R. 1
10 Haloxyfop-

R-methyl +
Ethylene glycol
monoethyl ether

R. R. R. R. 1

11 Cletodim R. R. R. R. 1

R.: recommended N.R.: not recommended
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4.3 Advanced weed control combined with dynamic programming

Worldwide, weeds have long caused yield losses and increased farmers’ pro-
duction costs. Even though practices to manage weeds have appeared as soon as the first
agrarian developments, the lack of species equilibrium increases the pressure as some weed
populations have reached high adaptive capacity and distribution (REIS; VIVIAN, 2011).
Currently, the greatest challenges of weed control in soybean fields reported by our local
farmer are:

• Sourgrass (Digitaria insularis)

• Horseweed (Conyza bonariensis)

• Morningglory (Ipomoea grandifolia)

• Dayflower (Commelina benghalensis)

• Alexandergrass (Brachiaria plantaginea)

Handling all the main weeds that affect soybean crop at once would be a
difficult task to accomplish with dynamic programming techniques. However, we man-
aged to work around the dimensionality problem by considering each weed individually.
We take each weed competing with soybean as an independent sub-problem of the weed
management challenge. The flow of time does not compromise the feasibility of the dy-
namic programming approach; in other words, a large number of stages to evaluate is
more amenable than a large state space. Although we can manage many stages, there are
some main stages related to soybean development that can drastically reduce the span.
These stages are strictly associated with the herbicide position in soybeans. Our dynamic
programming model takes into account five essential phases:

1) Pre-seed of soybean with safety interval between spraying and seeding

2) Pre-seed of soybean

3) Pre-emergence of soybean

4) Post-emergence of soybean

5) Pre-harvest of soybean

From the whole weed problem in soybeans, we choose sourgrass as our initial
weed plant to handle in our fields. Based on our independence of states as an assumption,
the solution strategy can be reproduce for other pests in the soybean crop.
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Our dynamic programming method has the following features:

• The states to manage are the sourgrass density in soybeans.

• The transition function updates the sourgrass density in any given 𝑘 stage.

• The objective function aims to reduce yield loss combined with expenditures from
spraying herbicides.

4.3.1 The relationship between soybean and sourgrass

Sourgrass (Digitaria insularis) is one of the critical weed in soybeans. States
from Southeastern, Southern and Central-West regions of Brazil have accounted soybean
yield loss due to the aggressive establishment of sourgrass in no-till farming (PAULA et
al., 2020). Sourgrass, as native South and Central America’s specie, and its outstand-
ing adaptability among Brazilian agrarian fields have raised the barrier to suppress weed
competition among the crops (KISSMANN, 1995). Gazziero et al. (2012) referred to the
sourgrass’ glyphosate tolerance, even under high dose, as one of the reasons to the con-
tinuous growth of this specie.

In the literature, there are several researches trying to assess how substantial
are the soybean yield losses due to the sourgrass competition. From following a farmer’s
experience in the State of Parana, Gazziero et al. (2012) reported a reliable assessment
in yield loss caused by sourgrass that we could see in Table 4.5.

Reis and Vivian (2011) refer to sourgrass (Digitaria insularis) as one of the
most present weeds in the soybean crop in the country. Sourgrass resistance to glyphosate
has been known since 2008 in Brazilian fields. This specie is extremely competitive and
can suppress easily the crop development. The use of graminicide in the early stages of
soybean is still effective as long as the sourgrass has not reached 45 days of growth.

Table 4.5 – The assessment of soybean yield loss caused by sourgrass from (GAZZIERO
et al., 2012)

Sourgrass plant per square meter Yield per hectare (𝑘𝑔 · ℎ𝑎−1) Losses

0 3392 0.00
0-3 2595 23.49 %
4-8 1885 44.42 %

Paula et al. (2020) reported in their work the damage related to sourgrass den-
sity in the initial stage of soybean development. The highest density in their experiment
(8 sourgrass plants per square meter) resulted in 16% of germination losses. Sauerwein
et al. (2019) discussed an experiment that took place in ESALQ/USP department in the
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2018/2019 soybean season. In the most severe case of sourgrass density (up to 16 plants
per square meter), soybean yield was reduced by 60%.

4.3.2 Understanding the roll of herbicides

From consulting our local farmer, we have selected a group of commercial
herbicides. In our proposed model, we considered this selection as our decisions to make.
Table4.6 shows this selection of herbicides. Their detailed composition are described in
Table 4.7.

Table 4.6 – Current herbicides in use by a grain farmer in São Paulo, Brazil.

Index Product Chemical group

1 Cloransulam-methyl CLORANSULAM-METHYL: Sulfonanilide triazolopy-
rimidine

2 Chlorimuron-ethyl Chlorimuron-ethyl: Sulfonylurea
3 Saflufenacil (1) Saflufenacil: Pyrimidinedione (uracil) (2) Mixture of

sodium methylnaphthalenesulfonate: Naphthalene sul-
fonate salt

4 2,4-D 2,4-D: Aryloxyalkanoic acid
5 Glufosinate Substituted homoalanine
6 Glyphosate Substituted glycine
7 Carfentrazone-ethyl + solvent

naphtha
(1) Carfentrazone-ethyl: Triazolone (2) Solvent naphtha
(petroleum), light aromatic: Aromatic hydrocarbon

8 Sulfentrazone + Diuron + 1,2-
ethanediol

(1) Sulfentrazone: Triazolone (2) Diuron: Urea (3) 1,2-
ethanediol: Glycol alcohol

9 Diclosulam DICLOSULAM: Sulfonanilide triazolopyrimidine
10 Haloxyfop-R-methyl + Diethy-

lene glycol monoethyl ether
(1) Haloxyfop-R-methyl: Aryloxyphenoxypropionic acid
(2) Diethylene glycol monoethyl ether: Glycol ethers,
polyethers

11 Clethodim Cyclohexanedione oxime

Table 4.7 – Herbicides and chemical compound description.

Index Product Composition

1 Cloransulam-methyl CLORANSULAM-METHYL 840 g/kg
2 Chlorimuron-ethyl CHLORIMURON-ETHYL 250 g/kg
3 Saflufenacil (1) SAFLUFENACIL 700 g/kg (2) Mixture of sodium

methylnaphthalenesulfonate 10 g/kg
4 2,4-D 2,4-D 806 g/L
5 Glufosinate GLUFOSINATE AMMONIUM SALT 200.00 g/L
6 Glyphosate Glyphosate 792.5 g/kg
7 Carfentrazone-ethyl + solvent

naphtha
(1) CARFENTRAZONE-ETHYL 400.00 g/L (2) Sol-
vent naphtha (petroleum), light aromatic 556.69 g/L

8 Sulfentrazone + Diuron + 1,2-
ethanediol

(1) SULFENTRAZONE 175.00 g/L (2) Diuron 350.00
g/L (3) 1,2-ethanediol 65.70 g/L

9 Diclosulam DICLOSULAM 840 g/kg
10 Haloxyfop-R-methyl + Diethy-

lene glycol monoethyl ether
(1) Haloxyfop-R-methyl 540.0 g/L (2) Diethylene glycol
monoethyl ether 531.0 g/L

11 Clethodim CLETHODIM 120 g/L

In other to pair the dynamic programming evaluation with weed control, we
have to make some assumptions about the efficacy of herbicides as we consider them in
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the problem’s universe as actions. Although there are many researches about chemical
compound response, our study goals are more aligned with the management side of the
business and we would rather avoid the complex chemical background surrounding the
use of herbicide in grain crops. For our work at hand, the efficiency idea should be enough
to grasp a robust track in the research field. Even though many studies tried to investigate
pesticides’ performance under many conditions, weather related events, physiology, pop-
ulation dynamic, and dispersal of resistant weeds are just a small selection of imbalanced
variables.

Both under or over-dose for weed infestation could drastically alter herbicides’
performance. Spraying unadvised doses of herbicides leads to poor weed management,
phytotoxicity responses of the grown crop, or even, the weed evolution of polygenic resis-
tance from the herbicide site of action. In conclusive thoughts, a combination of herbicide
selection, appropriated doses, method of application and weather conditions has consid-
erable influence in the overall performance to manage weeds in the field (SHEKHAWAT
et al., 2022).

Our herbicides’ efficiency parameters bases on farmer report, which is rather
perception built from many years of experience in the field. They are bounded to very
local context of place, time and methodology, and, so far, they are rather empirical.
Nevertheless our current research does not follow into the chemical field and we have not
perform any field experiment to assure any accurate result.

We should have clear in mind that the mechanism of soybean’s physiology are
far more complex than we could encompass in this research even we decided to neglect the
herbicide’s peculiarities. Hence, our brief assumption about herbicide’s efficacy is in Table
4.8 based solely on farmer assistance and experience. From our set of herbicides, some of
them are not recommended to control sourgrass and we have not dropped them out due to
the potential fitting in other weed management. In the sourgrass scenario, these herbicides
without effect in sourgrass population have null efficiency as we can see in Table 4.8 and
the outcome solutions will not include them as they represent only costs. Product 8 and
Product 9 are recommended for controlling weeds at pre-emergent state. Pre-emergent
herbicides are designed to hold and kill germinating weed seeds. Their targets are weeds
that have not reached the soil surface. Therefore, their action mechanism is distinct in
comparison with general spray killers.

Table 4.8 – The author’s efficiency estimation of herbicides to handle Digitaria insularis
in soybeans.

Estimation of herbicide’s efficiency in managing sourgrass (Digitaria insularis) in soybean crop.

0.00: Ineffective to 1.00: Full Effective

1 2 3 4 5 6 7 8 9 10 11
0.00 0.00 0.00 0.00 0.80 0.75 0 0.50 0.45 0.97 0.95
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Currently in our research, we have discussed the aspect of herbicides, but
we still require a dependable cost relationship. Since purchase prices are closely tied to
immediate market fluctuations, the ratio between the unit cost of the herbicide and the
unit yield of soybeans is generally more stable. This ratio has been used as the basis for
compiling the data in Table 4.9, Table 4.10, and Table 4.11.

Table 4.9 – Understanding the cost of herbicides in soybean crop.

Index Chemical Herbicide Last Pur-
chase
Price

Unit Date Soybean
Price per
60kg bag

1 Cloransulam-methyl R$ 2.38 g 20/12/2022 R$ 163.10
2 Chlorimuron-ethyl R$ 0.19 g 05/10/2021 R$ 160.59
3 Saflufenacil R$ 0.87 g 14/10/2020 R$ 151.98
4 2,4-D R$ 17.29 L 14/10/2020 R$ 151.98
5 Glufosinato R$ 55.00 L 15/02/2023 R$ 155.16
6 Glifosato R$ 28.90 kg 02/08/2023 R$ 124.59
7 Carfentrazona-etílica + solvente

naphtha
R$ 643.00 L 09/03/2023 R$ 144.43

8 Sulfentrazona + Diuron + 1.2-
ethanediol

R$ 113.90 L 24/10/2022 R$ 165.21

9 Diclosulam R$ 1.12 g 29/10/2018 R$ 79.48
10 Haloxyfop-R-methyl + Diethy-

lene glycol monoethyl ether
R$ 0.24 L 24/03/2022 R$ 181.69

11 Clethodim R$ 57.40 L 22/11/2022 R$ 166.69

Table 4.10 – The ratio between soybean yield unit and spraying costs, part (a).

Chemical Herbicide Ratio: Soybean 60-kg
bag per Unit of Com-
mercial Product

Sourgrass (Digitaria
insularis) Recom-
mended Dose per
Hectare (𝑈𝑛𝑖𝑡/ℎ𝑎)

Ratio: Soybean 60-
kg bag per Sourgrass
Herbicide Spraying

Clethodim 0.3443462 2 0.6887
Diclosulam 0.0141400 41.7 0.5896
Glufosinate 0.3544781 3 1.0634
Glyphosate 0.2319592 1.5 0.3479
Haloxyfop-R-methyl + Di-
ethylene glycol monoethyl
ether

0.0013333 290 0.3867

Sulfentrazona + Diuron +
1.2-ethanediol

0.6894389 1.4 0.9652

Table 4.11 – The ratio between soybean yield unit and spraying costs, part (b).

Chemical Herbicide Ratio: Soybean 60-kg
bag per Unit of Com-
mercial Product

Standard Dosage for
Weed Management,
excluding Sourgrass
(𝑈𝑛𝑖𝑡/ℎ𝑎)

Ratio: Soybean 60-
kg bag per Sourgrass
Herbicide Spraying

Cloransulam-methyl 0.0145617 23.8 0.3466
Chlorimuron-ethyl 0.0012037 80 0.0963
Saflufenacil 0.0057311 50 0.2866
2,4-D 0.1137668 1.5 0.1707
Carfentrazone-ethyl + sol-
vent naphtha

4.4520453 0.075 0.3339
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4.4 Approach to algorithm design

Based on Bellman (1957), our optimization problem can be represented as a
dynamic programming model in the following format:

Minimize𝑢0,𝑢1,··· ,𝑢𝑛−1

𝑛−1∑︁
𝑘=0
{𝑒𝑘(𝑥𝑘, 𝑢𝑘) + 𝜓(𝑥𝑛)} (4.1)

Subject to 𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘, 𝑢𝑘, 𝑤𝑘) (4.2)

𝑥𝑘 ∈ 𝑋𝑘, 𝑘 = 1, · · · , 𝐾 (4.3)

𝑢𝑘 ∈ 𝑈𝑘, 𝑘 = 1, · · · , 𝐾 (4.4)

Given a 𝑥0 (4.5)

The following list presents the main parameters in the problem’s mathematical
approach:

• 𝑘 stages, ranging from the initial stage 𝑘 = 1 to 𝑘 = 𝐾;

• 𝑥𝑘 states, which represents sourgrass density in soybean crop;

• 𝑢𝑘 decisions that are the herbicide selection at some stage, for each 𝑘 stage, we have
a set of possible actions 𝑈𝑘;

• 𝑤𝑘 represent exogenous information acknowledged at some 𝑘 stage;

• 𝑒𝑘(𝑥𝑘, 𝑢𝑘) is the elementary cost function, which represents the soybean yield loss
due to the weed interference;

• 𝑓𝑘(𝑥𝑘, 𝑢𝑘, 𝑤𝑘) is the transition function that is the sourgrass population density at
each 𝑘 stage;

• 𝜓(𝑥𝑛) is the cost function when reaches a 𝑥𝑛 state at 𝐾 (final) stage, which is a
soybean yield loss estimation at the crop final stage;

• 𝑥0 is the initial state of the decision system.

For illustration, Figure 4.5 presents the line of though developed in our dy-
namic programming proposal.
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Figure 4.5 – The weed management problem as a dynamic programming model.

The problem’s solution would be attained based on the Hamilton–Jacobi–Bellman
equation. The cumulative cost function 𝐹 (𝑥𝑘) would be:

𝐹 (𝑥𝑛) = 𝜓(𝑥𝑛) (4.6)

𝐹 (𝑥𝑘) = Minimize𝑢𝑘,𝑢𝑘+1,··· ,𝑢𝑛−1{
𝑛−1∑︁
𝑗=𝑘

𝑒𝑗(𝑥𝑗, 𝑢𝑗) + 𝜓(𝑥𝑛)}, ∀𝑘 ̸= 𝑛 (4.7)

𝐹 (𝑥𝑘) = Minimize𝑢𝑘,𝑢𝑘+1,··· ,𝑢𝑛−1{𝑒𝑘(𝑥𝑘, 𝑢𝑘) + [
𝑛−1∑︁
𝑗=𝑘+1

𝑒𝑗(𝑥𝑗, 𝑢𝑗) + 𝜓(𝑥𝑛)]}, ∀𝑘 ̸= 𝑛 (4.8)

By definition:

𝐹 (𝑥𝑘) = Minimize𝑢𝑘
{𝑒𝑘(𝑥𝑘, 𝑢𝑘) (4.9)

+Minimize𝑢𝑘+1,𝑢𝑘+2,··· ,𝑢𝑛−1{[
𝑛−1∑︁
𝑗=𝑘+1

𝑒𝑗(𝑥𝑗, 𝑢𝑗) + 𝜓(𝑥𝑛)]}}, ∀𝑘 ̸= 𝑛

𝐹 (𝑥𝑘+1) = Minimize𝑢𝑘+1,𝑢𝑘+2,··· ,𝑢𝑛−1{[
𝑛−1∑︁
𝑗=𝑘+1

𝑒𝑗(𝑥𝑗, 𝑢𝑗) + 𝜓(𝑥𝑛)]}, ∀𝑘 ̸= 𝑛 (4.10)

At last, we reach the Hamilton-Jacobi-Bellman (HJB) equation in Equation
(4.11):

𝐹 (𝑥𝑘) = Minimize𝑢𝑘
{𝑒𝑘(𝑥𝑘, 𝑢𝑘) + 𝐹 (𝑥𝑘+1)}, ∀𝑘 ̸= 𝑛 (4.11)
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4.4.1 Pseudo-code of Dynamic Programming

In order to evaluate the weed management in soybean crop, we use Python al-
gorithms based on the pseudo-codes in Algorithm 1 and Algorithm 2. Algorithm 1 presents
a recursive method from the optimality assurance in Equation 4.11 . It is a recursive al-
gorithm, which means the iterative process begins at the last stage and moves forward
the first stage, tracing all the optimum decision path along the iterations. Algorithm 2
takes the initial conditions (𝑥0 state) and builds the optimum set of decisions taking the
mapped policies from Algorithm 1.

Our choice for coding is Python language due its simplicity. Our algorithms are
bounded by a finite number states a priori. States are also discrete, we manage sourgrass
density as a state, then it could be one plant per square meter or two plants per square
meter for example.

Algorithm 1: Recursive method to get optimum policies.
Input: 𝑛, 𝑋𝑘, 𝑈𝑘, 𝜓(𝑥𝑛)

1 for 𝑥𝑛 ∈ 𝑋𝑁 do
2 𝐹 (𝑥𝑛)← 𝜓(𝑥𝑛);
3 for 𝑘 = 𝑛− 1 to 0 do
4 for 𝑥𝑘 ∈ 𝑋𝐾 do
5 𝐹𝑎𝑢𝑥 ←∞;
6 𝑢𝑜𝑎𝑢𝑥 ←∞;
7 for 𝑢𝑘 ∈ 𝑈𝑘 do
8 𝑥𝑘+1 ← 𝑓𝑘(𝑥𝑘, 𝑢𝑘);
9 𝐹𝑥𝑢𝑎𝑢𝑥 ← 𝑒𝑘(𝑥𝑘, 𝑢𝑘) + 𝐹 (𝑥𝑘+1);

10 if 𝐹𝑥𝑢𝑎𝑢𝑥 < 𝐹𝑎𝑢𝑥 then
11 𝐹𝑎𝑢𝑥 ← 𝐹𝑥𝑢𝑎𝑢𝑥;
12 𝑢𝑜𝑎𝑢𝑥 ← 𝑢𝑘;

13 𝐹 (𝑥𝑘)← 𝐹𝑎𝑢𝑥;
14 𝜋(𝑥𝑘)← 𝑢𝑜𝑎𝑢𝑥;

Output: 𝜋(𝑥𝑘) = 𝑢*
𝑘, ∀𝑥𝑘 ∈ 𝑋𝑘, 𝑘 = 0, · · · , 𝑛− 1

Algorithm 2: Optimum trajectory recovery algorithm.
Input: 𝑥0, 𝜋(𝑥𝑘) = 𝑢*

𝑘, ∀𝑥𝑘 ∈ 𝑋𝑘, 𝑘 = 0, · · · , 𝑛− 1
1 𝑥*

0 ← 𝑥0;
2 for 𝑘 = 0 to 𝑛− 1 do
3 𝑢*

𝑘 ← 𝜋(𝑥*
𝑘);

4 𝑥*
𝑘+1 ← 𝑓𝑘(𝑥*

𝑘, 𝑢
*
𝑘);

Output: {𝑥*
𝑘, 𝑘 = 1, · · · , 𝑛}, {𝑢*

𝑘, 𝑘 = 0, · · · , 𝑛− 1}

We tested several parameters using these algorithms and our observations
present in the next subsection. Based on the herbicides we have already discussed, the crit-
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ical stages and the range of sourgrass density in soybean crop, Table 4.12 summarizes the
problem’s dimension. Dimensionality is a combination of states and action, which could
easily place the problem among the intractable under the classic dynamic programming
techniques.

Table 4.12 – Problem’s dimension.

Number of stages Number of actions Number of States

5 11 16

4.5 Results overview

We tested many combination of input parameters to produce a proper evalu-
ation of the optimization package in the weed management problem. Our methodology
aims to support the decision making in the farm, translating a typical agrarian challenge
into a fully observable system. From these computational experiments, we would like to
observe the problem from an unfamiliar angle, outside standard agronomic approach. The
following sub-subsections present the tested parameters and corresponding results. We de-
fine exogenous information as an indicator of a weed outbreak that occurs beyond the
typical developmental pattern.

In Test 1, we examine a case of well-managed sourgrass characterized by minor
fluctuations at each soybean stage. Test 2 presents a more challenging starting condition,
with an initial density of 5 plants per square meter. Test 3 further amplifies this challenge,
beginning with 12 plants per square meter. In Test 4, we incorporate repeated herbicide
applications and assess the high initial pressure and during the inter-harvest periods.

4.5.1 Test 1: Initial impressions

The initial state 𝑥0 is 0 sourgrass plants per square meter in soybean field. The
exogenous information are [2, 1, 3, 2, 3], which affects the sourgrass density in the field at
each 𝑘 stage. The optimum value of the function, which is the soybean yield loss caused
by sourgrass competition plus herbicide costs, is equivalent to 14.43 60-kg soybean bags
per hectare. The proposed solution does respect the maximum spraying recommended per
crop cycle. The execution was smooth, process time took only 0.140625 seconds and we
have around the same time in the other trials.

• Initial stage (𝑥0): 0 sourgrass plants per square meter;

• Exogenous information at each 𝑘 stage: [2, 1, 3, 2, 3];
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• Optimum policies:

Action mapping

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed with safety
interval

0 0 0 0 0 9 0 9 5 5 5 5 5 5 5 5 5

Pre-seed 0 0 0 0 0 0 0 9 9 9 9 5 5 5 5 5 5
Pre-emergence 0 0 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Post-emergence 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Pre-harvest 0 0 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10

• Optimum function values from previous policy mapping:

Cumulative yield loss

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

14.43 14.43 14.43 14.43 14.8 15.02 15.32 15.54 15.79 15.94 16.09 16.24 16.39 16.54 16.69 16.84 17.36

Pre-seed 13.74 14.43 14.43 14.43 14.43 14.43 14.8 15.17 15.32 15.47 15.99 16.24 16.39 16.54 16.69 16.84 16.99
Pre-emergence 11.84 13.74 14.43 14.43 14.43 14.43 14.43 14.8 15.18 15.55 15.93 16.3 16.68 17.05 17.43 17.8 18.18
Post-emergence 5.1 7.75 10.04 11.84 13.74 15.64 17.54 19.34 21.24 23.14 25.04 26.84 28.74 30.64 32.54 34.34 36.24
Pre-harvest 3 4 5.1 5.85 6.6 7.39 8.14 8.89 9.64 10.39 11.14 11.89 12.64 13.39 14.14 14.89 15.64

• Each 𝑥𝑘 state in the final solution: {0 : 0, 1 : 2, 2 : 3, 3 : 4, 4 : 3, 5 : 4}

• Cumulative yield loss per stage {0 : 0, 1 : 0, 2 : 0.69, 3 : 7.89, 4 : 1.85, 5 : 4}

• Control actions taken at each 𝑘 stage: {0 : 0, 1 : 0, 2 : 11, 3 : 10, 4 : 6}

• Optimum function value: 14.43 60-kg bags losses per hectare

Although we begin with a null initial state 𝑥0 as we did in the test before, the
exogenous information has moved to [0, 0, 2, 1, 3]. This modification leads to a reduced
sourgrass density from pre-emergence stage to harvest. We could observe that the optimum
value is much less than the previous test. The optimum value was 9.29 sc/hectare, which
the combination of soybean yield losses with expenditures in herbicides.

• Initial stage (𝑥0): 0 sourgrass density per square meter;

• Exogenous information at each 𝑘 stage: [0, 0, 2, 1, 3];

• Optimum policies:

Action mapping

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

0 0 0 0 0 0 0 11 11 11 11 11 11 11 11 11 11

Pre-seed 0 0 0 0 0 0 0 11 11 11 11 11 11 11 11 11 11
Pre-emergence 0 0 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Post-emergence 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Pre-harvest 0 0 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10

• Optimum function values from previous policy mapping:
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Cumulative yield loss

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

9.29 11.09 11.78 11.78 11.78 11.78 11.78 11.93 12.08 12.23 12.38 12.53 12.68 12.83 12.98 13.13 13.28

Pre-seed 9.29 11.09 11.78 11.78 11.78 11.78 11.78 11.93 12.08 12.23 12.38 12.53 12.68 12.83 12.98 13.13 13.28
Pre-emergence 9.29 11.09 11.78 11.78 11.78 11.78 11.78 12.15 12.53 12.9 13.28 13.65 14.03 14.4 14.78 15.15 15.53
Post-emergence 4 7 9.29 11.09 12.99 14.89 16.79 18.59 20.49 22.39 24.29 26.09 27.99 29.89 31.79 33.59 35.49
Pre-harvest 3 4 5.1 5.85 6.6 7.39 8.14 8.89 9.64 10.39 11.14 11.89 12.64 13.39 14.14 14.89 15.64

• Each 𝑥𝑘 state in the final solution: {0 : 0, 1 : 0, 2 : 0, 3 : 2, 4 : 2, 5 : 4}

• Cumulative yield loss per stage {0 : 0, 1 : 0, 2 : 0, 3 : 4.19, 4 : 1.1, 5 : 4}

• Control actions taken at each 𝑘 stage: {0 : 0, 1 : 0, 2 : 0, 3 : 10, 4 : 6}

• Optimum function value: 9.29 60-kg bags losses per hectare

In the following test, we adjust the exogenous input as [0, 0, 3, 3, 0]. Here, again,
we started without presence of sourgrass before seeding, but some pressure has surfaced
after crop’s emergence. As the severe losses occur from the post-emergence stage, the best
trade-off would be still deploying two weed killers.

• Initial stage (𝑥0): 0 sourgrass density reported in the soybean field;

• Exogenous information at each 𝑘 stage: [0, 0, 3, 3, 0];

• Optimum policies:

Action mapping

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

0 0 0 0 0 0 0 11 11 11 11 11 11 11 11 11 11

Pre-seed 0 0 0 0 0 0 0 11 11 11 11 11 11 11 11 11 11
Pre-emergence 0 0 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Post-emergence 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Pre-harvest 0 0 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10

• Optimum function values from previous policy mapping:

Cumulative yield loss

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

9.59 11.49 12.18 12.18 12.18 12.18 12.18 12.33 12.48 12.63 12.78 12.93 13.08 13.23 13.38 13.53 13.68

Pre-seed 9.59 11.49 12.18 12.18 12.18 12.18 12.18 12.33 12.48 12.63 12.78 12.93 13.08 13.23 13.38 13.53 13.68
Pre-emergence 9.59 11.49 12.18 12.18 12.18 12.18 12.18 12.55 12.93 13.3 13.68 14.05 14.43 14.8 15.18 15.55 15.93
Post-emergence 2.85 5.5 7.79 9.59 11.49 13.39 15.29 17.09 18.99 20.89 22.79 24.59 26.49 28.39 30.29 32.09 33.99
Pre-harvest 0 1 2.1 2.85 3.6 4.39 5.14 5.89 6.64 7.39 8.14 8.89 9.64 10.39 11.14 11.89 12.64

• Each 𝑥𝑘 state in the final solution: {0 : 0, 1 : 2, 2 : 3, 3 : 4, 4 : 3, 5 : 1}

• Cumulative yield loss per stage {0 : 0, 1 : 0, 2 : 0, 3 : 5.99, 4 : 2.6, 5 : 1}

• Control actions taken at each 𝑘 stage: {0 : 0, 1 : 0, 2 : 11, 3 : 10, 4 : 6}

• Optimum function value: 9.59 60-kg bags losses per hectare
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4.5.2 Test 2: Evaluating the exogenous information influence in the final
solution

In the following group, we establish the initial state 𝑥0 = 5 (5 sourgrass plants
per square meter). The exogenous information also is increased. The investment level in
herbicides completely reshapes as the effort to keep sourgrass under control was much
strong. The suggested number of spraying in the final solution is much higher than the
previous test.

• Initial stage (𝑥0): 5 sourgrass plant density;

• Exogenous information at each 𝑘 stage: [2, 3, 5, 5, 2];

• Optimum policies:

Action mapping

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

0 0 0 0 0 0 0 9 9 9 9 8 8 0 8 9 9

Pre-seed 0 0 0 5 5 5 6 6 6 9 8 5 5 5 5 5 5
Pre-emergence 0 0 6 6 6 5 6 6 6 5 5 6 6 5 5 5 6
Post-emergence 0 0 6 6 6 11 11 11 11 11 11 11 11 11 11 11 11
Pre-harvest 0 0 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10

• Optimum function values from previous policy mapping:

Cumulative yield loss

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

20.19 20.54 20.54 20.54 20.54 20.69 20.84 21.28 21.58 21.73 22.03 22.56 22.71 24.74 25.24 25.03 25.18

Pre-seed 19.48 19.48 20.19 20.54 20.54 20.54 20.54 20.69 20.84 23.07 23.6 23.09 23.24 23.39 23.54 23.69 24.21
Pre-emergence 17.23 19.13 19.48 19.48 19.48 20.19 21.28 21.66 22.03 23.11 23.49 25.05 25.43 26.51 26.89 27.27 28.83
Post-emergence 6.39 9.04 11.29 13.09 14.99 17.23 19.13 20.93 22.83 24.73 26.63 28.43 30.33 32.23 34.13 35.93 37.83
Pre-harvest 2 3 4.1 4.85 5.6 6.39 7.14 7.89 8.64 9.39 10.14 10.89 11.64 12.39 13.14 13.89 14.64

• Each 𝑥𝑘 state in the final solution: {0 : 5, 1 : 7, 2 : 5, 3 : 6, 4 : 6, 5 : 3}

• Cumulative yield loss per stage {0 : 0, 1 : 0.5, 2 : 1.06, 3 : 11.99, 4 : 4.14, 5 : 3}

• Control actions taken at each 𝑘 stage: {0 : 0, 1 : 6, 2 : 5, 3 : 11, 4 : 10}

• Optimum function value: 20.69 60-kg bags losses per hectare

In the following test, we introduce a more strong sourgrass density during the
evolving stages. We notice that the greatest impact in the final solution comes from the
post-emergence stage of soybean growth, which is also the stage with the largest exogenous
input information.

• Initial stage (𝑥0): 5 sourgrass plants per square meter;
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• Exogenous information at each 𝑘 stage: [4, 2, 6, 7, 5];

• Optimum policies:

Action mapping

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

0 0 0 0 0 0 0 0 0 9 9 9 9 9 9 8 8

Pre-seed 0 0 0 9 8 5 5 5 5 6 6 6 6 9 9 8 5
Pre-emergence 0 0 6 6 6 5 6 6 6 5 5 6 6 5 5 5 6
Post-emergence 0 0 6 6 6 11 11 11 11 11 11 11 11 11 11 11 11
Pre-harvest 0 0 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10

• Optimum function values from previous policy mapping:

Cumulative yield loss

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

26.75 26.84 26.84 26.99 27.14 27.29 27.44 27.74 28.04 28.33 28.63 28.93 29.08 29.38 29.53 30.06 30.21

Pre-seed 25.78 25.78 25.78 26.37 26.75 26.84 26.84 26.99 27.14 27.29 27.44 27.59 27.74 31.53 31.68 32.21 30.24
Pre-emergence 23.63 25.43 25.78 25.78 25.78 26.49 27.68 28.05 28.43 29.51 29.89 31.46 31.83 32.91 33.29 33.66 35.23
Post-emergence 10.89 13.54 15.79 17.59 19.49 21.73 23.63 25.43 27.33 29.23 31.13 32.93 34.83 36.73 38.63 40.43 42.33
Pre-harvest 5 6 7.1 7.85 8.6 9.39 10.14 10.89 11.64 12.39 13.14 13.89 14.64 15.39 16.14 16.89 17.64

• Each 𝑥𝑘 state in the final solution: {0 : 5, 1 : 9, 2 : 5, 3 : 7, 4 : 8, 5 : 6}

• Cumulative yield loss per stage {0 : 0, 1 : 0.8, 2 : 1.06, 3 : 13.79, 4 : 5.64, 5 : 6}

• Control actions taken at each 𝑘 stage: {0 : 0, 1 : 6, 2 : 5, 3 : 11, 4 : 10}

• Optimum function value: 27.29 60-kg bags losses per hectare

In this scenario, we smooth the exogenous input at a more tractable level. As
the most expressive drop is in the post-emergence stage, the optimum value function also
moves in proportion with the introduced changes. In comparison with the previous test,
yield drop is much smaller due to the distinct exogenous pattern.

• Initial stage (𝑥0): 5 sourgrass plants per square meter;

• Exogenous information at each 𝑘 stage: [3, 4, 5, 2, 4];

• Optimum policies:

Action mapping

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

0 0 0 0 0 0 0 0 9 9 5 9 9 8 8 9 9

Pre-seed 0 0 0 0 0 9 5 5 5 5 5 5 5 5 5 5 5
Pre-emergence 0 0 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Post-emergence 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Pre-harvest 0 0 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10

• Optimum function values from previous policy mapping:
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Cumulative yield loss

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

19.61 19.98 20.2 20.29 20.44 20.59 20.74 21.04 21.48 21.63 21.86 22.23 22.38 22.91 23.06 23.51 23.66

Pre-seed 19.23 19.23 19.23 19.61 19.98 20.2 20.29 20.44 20.59 20.74 20.89 21.41 21.57 21.71 21.87 22.02 22.54
Pre-emergence 16.64 18.54 19.23 19.23 19.23 19.23 19.23 19.61 19.98 20.36 20.73 21.11 21.48 21.86 22.23 22.6 22.98
Post-emergence 6.1 8.75 11.04 12.84 14.74 16.64 18.54 20.34 22.24 24.14 26.04 27.84 29.74 31.64 33.54 35.34 37.24
Pre-harvest 4 5 6.1 6.85 7.6 8.39 9.14 9.89 10.64 11.39 12.14 12.89 13.64 14.39 15.14 15.89 16.64

• Each 𝑥𝑘 state in the final solution: {0 : 5, 1 : 8, 2 : 6, 3 : 6, 4 : 3, 5 : 5}

• Cumulative yield loss per stage {0 : 0, 1 : 1.36, 2 : 0.69, 3 : 11.69, 4 : 1.85, 5 : 5}

• Control actions taken at each 𝑘 stage: {0 : 0, 1 : 5, 2 : 11, 3 : 10, 4 : 6}

• Optimum function value: 20.59 60-kg bags losses per hectare

4.5.3 Test 3: Assessing the impact of high density sourgrass at the initial
stage

We have two moments of impact in this test. The first one is the initial state 𝑥0
and the last one is the final stage (pre-harvest stage). This high sourgrass density would
require the most efficient herbicides choices.

• Initial stage (𝑥0): 12 sourgrass plants per square meter;

• Exogenous information at each 𝑘 stage: [4, 0, 4, 0, 12]

• Optimum policies:

Action mapping

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6

Pre-seed 0 0 0 0 0 0 0 11 11 11 11 11 11 11 11 11 11
Pre-emergence 0 0 6 6 6 11 11 11 11 11 11 11 11 11 11 11 11
Post-emergence 0 0 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10
Pre-harvest 0 0 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10

• Optimum function values from previous policy mapping:

Cumulative yield loss

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

23.14 23.48 23.48 23.63 23.78 23.83 23.83 23.98 24.13 24.43 24.58 24.73 24.88 25.18 25.33 25.48 25.63

Pre-seed 20.85 22.79 23.14 23.14 23.14 23.48 23.48 23.63 23.78 23.93 24.08 24.23 24.38 24.53 24.68 24.83 24.98
Pre-emergence 20.85 22.79 23.14 23.14 23.14 23.48 23.48 23.86 24.23 24.61 24.98 25.36 25.73 26.11 26.48 26.85 27.23
Post-emergence 12 14.9 17.15 18.95 20.85 22.79 24.69 26.49 28.39 30.29 32.19 33.99 35.89 37.79 39.69 41.49 43.39
Pre-harvest 12 13 14.1 14.85 15.6 16.39 17.14 17.89 18.64 19.39 20.14 20.89 21.64 22.39 23.14 23.89 24.64

• Each 𝑥𝑘 state in the final solution: {0 : 12, 1 : 7, 2 : 1, 3 : 5, 4 : 1, 5 : 13}

• Cumulative yield loss per stage {0 : 1.25, 1 : 0.84, 2 : 0, 3 : 9.79, 4 : 0, 5 : 13}
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• Control actions taken at each 𝑘 stage: {0 : 6, 1 : 11, 2 : 0, 3 : 10, 4 : 0}

• Optimum function value: 24.88 60-kg bags losses per hectare

Proceeding with the parameter pattern in previous test, we get the following
output:

• Initial stage (𝑥0): 12 sourgrass plants per square meter;

• Exogenous information at each 𝑘 stage: [0, 4, 4, 2, 0];

• Optimum policies:

Action mapping

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

0 0 0 0 0 0 0 5 5 5 5 5 5 5 5 5 5

Pre-seed 0 0 0 0 0 9 5 5 5 5 5 5 5 5 5 5 5
Pre-emergence 0 0 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Post-emergence 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Pre-harvest 0 0 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10

• Optimum function values from previous policy mapping:

Cumulative yield loss

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

13.33 13.33 13.33 13.71 14.08 14.29 14.39 14.54 14.69 14.84 14.99 15.52 15.66 15.82 15.96 16.12 16.64

Pre-seed 13.33 13.33 13.33 13.71 14.08 14.29 14.39 14.54 14.69 14.84 14.99 15.52 15.66 15.82 15.96 16.12 16.64
Pre-emergence 10.74 12.64 13.33 13.33 13.33 13.33 13.33 13.71 14.08 14.46 14.83 15.21 15.58 15.96 16.33 16.7 17.08
Post-emergence 2.1 4.75 7.04 8.84 10.74 12.64 14.54 16.34 18.24 20.14 22.04 23.84 25.74 27.64 29.54 31.34 33.24
Pre-harvest 0 1 2.1 2.85 3.6 4.39 5.14 5.89 6.64 7.39 8.14 8.89 9.64 10.39 11.14 11.89 12.64

• Each 𝑥𝑘 state in the final solution: {0 : 12, 1 : 3, 2 : 7, 3 : 5, 4 : 3, 5 : 1}

• Cumulative yield loss per stage {0 : 1.96, 1 : 0, 2 : 1.065, 3 : 9.79, 4 : 1.85, 5 : 1}

• Control actions taken at each 𝑘 stage: {0 : 5, 1 : 0, 2 : 11, 3 : 10, 4 : 6}

• Optimum function value: 15.66 60-kg bags losses per hectare

• Initial stage (𝑥0): 12 sourgrass plants per square meter;

• Exogenous information at each 𝑘 stage: [2, 2, 1, 1, 4];

• Optimum policies:

• Optimum function values from previous policy mapping:

• Each 𝑥𝑘 state in the final solution: {0 : 12, 1 : 5, 2 : 7, 3 : 2, 4 : 2, 5 : 5}

• Cumulative yield loss per stage {0 : 1.96, 1 : 0, 2 : 1.065, 3 : 4.15, 4 : 1.1, 5 : 5}



Chapter 4. Developing a dynamic programming model to assist weed management in soybeans 108

Action mapping

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

0 0 0 0 0 0 5 5 5 5 5 5 5 5 5 5 5

Pre-seed 0 0 0 0 0 0 9 9 9 9 5 5 5 5 5 5 5
Pre-emergence 0 0 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Post-emergence 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Pre-harvest 0 0 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10

Cumulative yield loss

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

10.98 10.98 10.98 11.35 11.57 11.72 12.04 12.19 12.34 12.49 12.64 13.16 13.31 13.46 13.61 13.76 14.13

Pre-seed 10.98 10.98 10.98 10.98 10.98 11.35 11.57 11.72 12.24 12.39 12.64 12.79 12.94 13.09 13.24 13.39 13.54
Pre-emergence 8 10.29 10.98 10.98 10.98 10.98 10.98 11.35 11.73 12.1 12.48 12.85 13.23 13.6 13.98 14.35 14.73
Post-emergence 5 8 10.29 12.09 13.99 15.89 17.79 19.59 21.49 23.39 25.29 27.09 28.99 30.89 32.79 34.59 36.49
Pre-harvest 4 5 6.1 6.85 7.6 8.39 9.14 9.89 10.64 11.39 12.14 12.89 13.64 14.39 15.14 15.89 16.64

• Control actions taken at each 𝑘 stage: {0 : 5, 1 : 0, 2 : 11, 3 : 10, 4 : 6}

• Optimum function value: 13.315 60-kg bags losses per hectare

4.5.4 Test 4: Relaxing the maximum number of spraying per crop cycle

We have tried a distinct approach in this test. In this scenario, we relax the
maximum number of applications just to observe how things change under this perspec-
tive. To begin with, let’s outline the standard solution for scenarios where the maximum
number of applications is adhered to without exception:

• Initial stage: 12 sourgrass plants per square meter;

• Exogenous information at each 𝑘 stage: [5, 4, 9, 9, 6];

• Optimum policies:

Action mapping

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

0 0 0 0 0 0 9 9 9 9 8 9 9 9 9 9 9

Pre-seed 0 0 6 6 6 9 5 5 5 5 5 5 5 5 5 5 5
Pre-emergence 0 0 6 6 6 5 6 6 6 5 5 6 6 5 5 5 6
Post-emergence 0 0 6 6 6 11 11 11 11 11 11 11 11 11 11 11 11
Pre-harvest 0 0 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10

• Optimum function values from previous policy mapping:

Cumulative yield loss

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

36.75 36.84 36.99 37.14 37.29 37.44 37.88 38.03 38.33 38.48 39.01 39.46 39.61 39.91 40.06 40.36 40.51

Pre-seed 33.98 34.69 35.04 35.04 35.04 36.75 36.84 36.99 37.14 37.29 37.44 37.97 38.12 38.27 38.42 38.57 39.09
Pre-emergence 31.73 33.63 33.98 33.98 33.98 34.69 35.78 36.16 36.53 37.62 37.99 39.55 39.93 41.02 41.39 41.77 43.33
Post-emergence 13.39 16.04 18.29 20.09 21.99 24.23 26.13 27.93 29.83 31.73 33.63 35.43 37.33 39.23 41.13 42.93 44.83
Pre-harvest 6 7 8.1 8.85 9.6 10.39 11.14 11.89 12.64 13.39 14.14 14.89 15.64 16.39 17.14 17.89 18.64

• Each 𝑥𝑘 state in the final solution: {0 : 12, 1 : 12, 2 : 7, 3 : 11, 4 : 10, 5 : 7}
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• Cumulative yield loss per stage {0 : 1.49, 1 : 1.96, 2 : 0.725, 3 : 21.29, 4 : 7.14, 5 : 7}

• Control actions taken at each 𝑘 stage: {0 : 9, 1 : 5, 2 : 6, 3 : 11, 4 : 10}

• Optimum function value: 39.60 60-kg bags losses per hectare

The subsequent solution is from the unlimited number of applications, suppos-
ing some herbicides can be applied more than once each crop cycle. Even though losses
are smaller than the previous test that strictly consider the maximum number of herbi-
cide applications per cycle, soybean yield losses is still exceedingly lofty due to the high
sourgrass pressure in the field.

• Initial stage (𝑥0): 0 sourgrass density per square meter;

• Exogenous information at each 𝑘 stage: [5, 4, 9, 9, 6];

• Optimum policies:

Action mapping

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

0 0 0 0 6 10 10 10 10 10 10 10 10 10 10 10 10

Pre-seed 0 0 0 6 6 6 6 6 6 10 10 10 10 10 10 10 10
Pre-emergence 0 0 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10
Post-emergence 0 0 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10
Pre-harvest 0 0 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10

• Optimum function values from previous policy mapping:

Cumulative yield loss

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

34.07 34.07 34.22 34.37 34.42 34.46 34.46 34.61 34.76 34.91 35.06 35.21 35.36 35.51 35.66 35.81 35.96

Pre-seed 33.68 33.72 33.72 34.07 34.07 34.07 34.07 34.22 34.37 34.56 34.71 34.86 35.01 35.16 35.31 35.46 35.61
Pre-emergence 31.43 33.33 33.68 33.68 33.68 33.72 33.72 34.09 34.47 34.84 35.22 35.59 35.97 36.34 36.72 37.09 37.47
Post-emergence 13.39 16.04 18.29 20.09 21.99 23.93 25.83 27.63 29.53 31.43 33.33 35.13 37.03 38.93 40.83 42.63 44.53
Pre-harvest 6 7 8.1 8.85 9.6 10.39 11.14 11.89 12.64 13.39 14.14 14.89 15.64 16.39 17.14 17.89 18.64

• Each 𝑥𝑘 state in the final solution: {0 : 12, 1 : 6, 2 : 6, 3 : 10, 4 : 10, 5 : 7}

• Cumulative yield loss per stage {0 : 1.29, 1 : 0.35, 2 : 0.39, 3 : 19.19, 4 : 7.14, 5 : 7}

• Control actions taken at each 𝑘 stage: {0 : 10, 1 : 6, 2 : 10, 3 : 10, 4 : 10}

• Optimum function value: 35.36 60-kg bags losses per hectare

In the same course, we consider another parameter set, which characterizes a
more amenable competition scenario and the possibility of repeating chemical compounds
during the crop cycle. Under these test conditions, the best solution attained by the
algorithm is to spray the most efficient herbicide three times.
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• Initial stage (𝑥0): 2 sourgrass plants per square meter;

• Exogenous information at each 𝑘 stage: [0, 2, 3, 1, 0];

• Optimum policies:

Action mapping

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

0 0 0 0 0 0 0 9 9 9 5 5 5 5 5 5 5

Pre-seed 0 0 0 0 0 0 9 9 9 9 5 5 5 5 5 5 5
Pre-emergence 0 0 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Post-emergence 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Pre-harvest 0 0 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10

• Optimum function values from previous policy mapping:

Cumulative yield loss

Stage ∖ State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pre-seed of soybean
with safety interval

10.3 10.3 10.3 10.34 10.34 10.65 10.65 10.8 10.95 11.14 11.29 11.44 11.59 11.74 11.89 12.04 12.19

Pre-seed 10.3 10.3 10.3 10.34 10.34 10.65 10.65 10.8 10.95 11.14 11.29 11.44 11.59 11.74 11.89 12.04 12.19
Pre-emergence 8.05 9.95 10.3 10.3 10.3 10.34 10.34 10.71 11.09 11.46 11.84 12.21 12.59 12.96 13.34 13.71 14.09
Post-emergence 1 4 6.25 8.05 9.95 11.89 13.79 15.59 17.49 19.39 21.29 23.09 24.99 26.89 28.79 30.59 32.49
Pre-harvest 0 1 2.1 2.85 3.6 4.39 5.14 5.89 6.64 7.39 8.14 8.89 9.64 10.39 11.14 11.89 12.64

• Each 𝑥𝑘 state in the final solution: {0 : 2, 1 : 2, 2 : 4, 3 : 4, 4 : 2, 5 : 1}

• Cumulative yield loss per stage {0 : 0, 1 : 0, 2 : 0.35, 3 : 7.85, 4 : 1.1, 5 : 1}

• Control actions taken at each 𝑘 stage: {0 : 0, 1 : 0, 2 : 6, 3 : 6, 4 : 6}

• Optimum function value: 10.68 60-kg bags losses per hectare

4.6 Final observations

The use of herbicides has a profound effect on farm management decisions.
Precision and timing are fundamental. Without carefully positioning herbicides, the effi-
ciency of weed control decreases and production risks experience a sharp climb. Spraying
many herbicides based only on immediate answers pressures the environmental equilib-
rium. Therefore, modeling the decision pattern is the right path to enhance strategic
thinking in farm management decisions. Our innovative proposal supports weed manage-
ment using sophisticated optimization strategies, our optimization solution can provide
herbicide recommendations that balance soybean yield losses and herbicides costs in the
same decision plan. Using our systematic approach, we introduce a more fluid and flexible
implementation of break-even and control levels related to herbicides in soybeans. We cali-
brate our model using data from real grain farming applications. Our algorithm-generated
solutions are in line with agronomic expertise.
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4.6.1 Further researches and the Forward dynamic programming using the
post-decision state variable

Dynamic programming is still appealing and further steps are promising. How-
ever, the recursive method of Dynamic programming would not be able to handle large
size problem’s in the context of farm management. We might find some alternative path-
ways using approximate dynamic programming. Powell (2007) discussed several methods,
one of them that ought to be suitable in our case is forward dynamic programming.
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5 Scheduling corn seed populations: a seed
multiplication challenge

The grain farming community is significantly affected by the availability of
seeds; thus, our attention is directed towards the seed multiplication industry in this
chapter. Commercial corn is converted into numerous food and industrial products, rank-
ing it among the world’s most important commodities. Beyond its wide range of applica-
tions, corn cultivation significantly influences the agricultural sector. The Brazilian public
agency, Companhia Nacional de Abastecimento (CONAB), reported that farms in Brazil
are projected to yielded 110.96 million tons of corn during the 2023/2024 season, posi-
tioning the country among the world’s top three corn producers (CONAB, 2023). Given
the extensive supply chain necessary for corn production, there is significant pressure to
maintain a steady supply of corn seeds, leading to numerous concerns about potential
seed shortages.

Alongside the challenges experienced on the farm, companies engaged in corn
seed multiplication encounter obstacles, particularly when introducing new products—a
procedure that requires several years of field testing. Recently, groundbreaking technolo-
gies have significantly reduced the development time for new corn hybrids, allowing
more rapid creation of higher-yielding, better-adapted seed options for farmers. These
advanced technologies speed up the creation of commercial corn hybrid parents. Since
these hybrids are the result of cross-breeding of two parent plants, decreasing the time re-
quired to develop these parents enables scientists to deliver innovative products to farmers
more rapidly. Nevertheless, the faster generation of parental lines introduces new obsta-
cles—improving the yield (quantity of ears harvested) may result in complications related
to processing and storage capacity. Seed breeding companies would benefit from maintain-
ing a consistent weekly harvest of ears. Irregular weekly harvests, which cause under-use
or exceed storage limits, pose logistical and productivity problems. A thoughtfully orga-
nized harvest calendar emerges from the strategic seeding of the corn population in the
field. Whether to avoid exceeding storage capacity or a shortage of harvesting machinery
in the farm, careful planning is essential.

Although our attention is primarily on planning seed schedules, the assignment
of tasks and resources to achieve specific objectives is applicable beyond agriculture. Stud-
ies on allocation issues can also offer advantages in different fields, like urban planning
and enhancements in transportation and logistics (MEMMAH et al., 2015). Within the
field of Operations Research, coordinating a timeline for a seed population and assigning
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tasks are intricately linked in terms of data structure and in problem-solving strategies.
Optimization problems in mathematics are categorized according to the nature of the con-
straint equations, decision variables, and objective functions they encompass. Scheduling
problems are an example that focuses on optimizing the allocation of tasks, personnel, and
resources in typical production settings. They are regarded critical for decision-making.
Using optimization methods to formulate effective schedules increases managerial effi-
ciency, allowing organizations to adhere to deadlines and optimize resource utilization
(MIRANDA et al., 2019b).

This chapter aims to introduce an optimization strategy for allocating corn
seed populations to achieve a steady weekly harvest, thus preventing storage facility over-
load while maintaining a regular corn ear count each week. This research presents an
optimization strategy employing two mathematical models aimed at allocating seed pop-
ulations within a designated range, ensuring they do not exceed weekly processing limits.
The initial model utilizes Growing Degree Days (GDD) to pinpoint the harvest timeline,
whereas the second model constructs the planting plan to enhance efficiency given the re-
stricted processing capacity. We effectively found optimal solutions for a wide spectrum of
seed populations, and the time taken to reach these solutions showed substantial efficiency
and encouraging results.

In Section 5.1, we explore studies relevant to crop allocation and agricultural
land utilization. Models proposed in the literature for crop scheduling among sustainable
practices have guided us in formulating the constraints for the seed allocation problem.
Section 5.2 provides an overview of the proposed models and their corresponding solution
approaches. Section 5.3 presents an examination of the findings. In Section 5.4, concluding
observations on the subject matter are offered.

5.1 Related works

There is a scarcity of research papers examining seed allocation from the stand-
point of the seed multiplication industry. On the other hand, the allocation of agricultural
land use has been extensively studied, boasting many successful implementations, and
bears resemblances to the seed allocation issue. The operations research community has
developed numerous solutions, since allocation problems typically entail multiple objec-
tives and intricate model constraints.

Land use in agriculture involves complex tasks that typically include various
attributes, conflicting goals, and numerous spatial elements. Upon examining agrarian and
optimization studies, we identified a significant resemblance between the Crop Rotation
Problem (CRP), which involves assigning different crops to areas under specific conditions,
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and the present issue. Hence, in this subsection, we explore the foundational studies on
the scheduling of crop varieties and their connection to the seed multiplication problem.

Exploring the CRP, Aliano et al. (2014) introduced a mixed-integer optimiza-
tion framework alongside hybrid metaheuristic solutions. This study incorporates hybrid
algorithms that integrate local search with simulation annealing (SA). To prevent poor
initial setup, Aliano et al. (2014) designed a heuristic method designed to produce an
appropriate initial population. For the sake of clarity in this chapter, we utilize the term
hybrid in two contexts: firstly, a hybrid algorithm, which is an algorithm that integrates
multiple strategies, and secondly, hybrid corn, which pertains to a type of corn resulting
from crossbreeding two or more genetically distinct inbred parent lines to yield a new
variety with preferred characteristics.

In their study, Aliano et al. (2018) introduced a bi-objective optimization
framework for addressing the CRP. They highlighted that diversifying the crop sequence
by incorporating different crop families could increase diversity. However, its influence on
farm profitability should be assessed, as their rotation scheme assigns equal significance
to all crops, including the most profitable. This research explored deterministic strategies
to manage the multi-objective challenges, emphasizing the competing objectives within
the proposed model.

Santos et al. (2011) developed a model for the CRP tailored for organic agricul-
ture, emphasizing the modeling of spatial limitations through their optimization approach.
Similarly, Forrester and Rodriguez (2018) devised an integer binary linear optimization
model aimed at organizing crop rotations in organic vegetable cultivation. Both studies
consider multiple elements such as pest management, irrigation, fallow times, and field
capacity. The central aim of their crop rotation strategy is to meet market demands.

Miranda et al. (2019b) introduced a mixed integer linear programming model
(MILP) that address the CRP on large-scale farms. While the model’s objective function
focuses on profit maximization, their model incorporates a novel set of constraints that link
fertilization parameters to enhance soil nutrient availability and mitigate chemical inputs.
This results in a more sustainable and profitable allocation strategy. Additionally, they
devised a genetic algorithm employing unique encoding methods, which yielded favorable
results.

In their study, Miranda et al. (2019a) introduced a multi-objective optimization
model for the CRP. The research explored the link between the cultivation of crops and
soil fertility, with crop allocation guided by cultural characteristics of the crops. Besides
profit maximization, the decision-maker can adjust input parameters to achieve a sequence
of crops that controls erosion or offers a solution against weeds.
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Zhu et al. (2017) presented a MILP along with a heuristic algorithm targeting
optimization of seed product packaging planning to minimize total costs. The packaging
model is identified as a specialized dynamic lot-sizing problem. Given the NP-hard na-
ture of this problem, solving their MILP model requires significant computational time.
Consequently, their solution includes a heuristic algorithm to address this challenge. In
this chapter, we aim to propose a mathematical model to aid in the allocation of corn
seed populations by framing it as a scheduling problem. Our methodology is guided by
the optimization tactics discussed in the CRP literature.

5.2 Methodology

In contrast to typical grain farms that focus on optimizing yield from the
available arable land, seed multiplication companies prioritize the quality of seeds. To
manage space limitations, these companies can form partnerships, allowing them to ad-
just the size of their multiplication fields as needed. As seed grain has a higher value
compared to ordinary grain, seed companies can afford to pay seed-producing farms more
generously and extend agronomic support to collaborating farmers to improve production
quality. Therefore, generally speaking, seed multiplication businesses competently man-
age the spatial limitations of growing areas when it comes to producing seed populations.
The primary difficulty they face is not dedicating land for extensive seed cultivation,
but guaranteeing the market-ready quality of the seeds, which is their most challenging
task. Therefore, seeds must be assessed with standard germination tests, as mandatory,
to precisely evaluate their quality prior to marketing. After leaving the farm, essential
processes like packaging and storage are crucial to maintaining the seeds’ germination
potential until they reach the buyers. Post-harvest seed processing is usually limited to a
few facilities, typically depending on a single facility operating at full capacity to carry
out this critical function.

This research aims to sustain seed quality in the process by introducing a
carefully designed plan for corn seed populations. This approach helps prevent storage
overflow, which can compromise the quality of corn ears. Planning the optimal planting
date for each group with a focus on consistent utilization of storage leads to minimizing
the gap between the weekly harvest amount and the maximum weekly processing capacity.

For smaller cases of the issue, the task initially appears manageable. However,
the vast scale of the seed market operation results in an exponential increase in the figures.
There are numerous variations among parental breeders, indicating that numerous seed
populations are expected to emerge each year. Each seed company manages thousands of
seed populations, each having distinct seeding schedules and harvesting guidelines.
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Figure 5.1 – Achieved harvesting weekly quantity from site 0 in Scenario 1.

In the long run, managing a stable weekly harvest quantity becomes difficult
due to numerous input parameters. Making predictions about each population’s harvest
can assist in assessing whether the site’s processing capacity will be exceeded or underuti-
lized. Figure 5.1 illustrates the central issue. Here, the production output of population 1
is processed successfully without exceeding the maximum allowable capacity. Upon eval-
uating the yield from populations 2 and 3, it becomes apparent that it significantly sur-
passes the site’s capacity during that time. Adjusting the planting schedule could prevent
excessive production in a specific period, as illustrated in Figure 5.2.

Figure 5.2 – Achieved harvesting weekly quantity from site 0 in Scenario 1.

In the context of harvest planning, our knowledge is based on Growing Degree
Days (GDD), a technique for evaluating crop growth and progression during the growing
season. The core idea behind GDD is that crops grow when temperatures surpass a defined
minimum threshold, called the base temperature (ANANDHI, 2016; NIELSEN et al.,
2002). These thresholds are empirically established for each crop. Equation (5.1) provides
the formula for calculating the daily GDD using the maximum temperature (𝑇𝑚𝑎𝑥) [∘𝐶],
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the minimum temperature (𝑇𝑚𝑖𝑛) [∘𝐶], and the base temperature (𝑇𝑏𝑎𝑠𝑒) [∘𝐶] specific to
each crop.

𝐺𝐷𝐷 = 𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛
2 − 𝑇𝑏𝑎𝑠𝑒 [∘𝐶] (5.1)

Upon examining the context and desired outcomes of the problem, we found
that it is feasible to separate the GDD information from the planting schedule for each
crop type, thereby simplifying the optimization process. Additionally, the method for
evaluating GDDs is straightforward, as the outputs tend to be consistent for any given set
of inputs. In contrast, scheduling optimization does not easily follow predictable patterns.
By evaluating all GDD data first, we reduce the complexity of the task before addressing
the core optimization challenge. Our approach involves two optimization models: The
first, detailed in Subsection 5.2.1, unites the planting dates with the required GDDs for
each seed type to predict harvest periods; the second, described in Subsection 5.3, assesses
the scheduling itself.

5.2.1 Model A: finding harvesting periods from each seed population

The growth and development rate of plants is influenced by the ambient tem-
perature. Each species possesses a distinct temperature range, indicated by minimum,
maximum, and optimum values (HANEVELD; STEGEMAN, 2005). Temperature affects
plant development through various processes such as root growth, water and nutrient
uptake, respiration, metabolism, photosynthesis, and the movement of photosynthesis
products within the plant (SANS et al., 2002). The Growing Degree Days (GDD) metric
is a reliable tool that is used to assess a plant’s temperature response. The principle is
straightforward: plants grow and develop as long as temperatures exceed a specific baseline
(base temperature). The level of growth is directly related to how long the temperature
stays above this baseline (STEINMETZ et al., 2009; ALVES et al., 2018a).

For the suggested model, the input indices and parameters are defined as
follows:

• 𝑁 : total count of populations

• 𝐽 : period for late planting [the nth day in the sequence]

• 𝑚𝑎𝑥𝑠𝑝𝑎𝑛: duration for late harvesting [the nth day in the sequence]

• 𝐺𝐷𝐷[𝑗]: vector representing cumulative GDDs

• 𝐻[𝑖]: the necessary GDDs for crop 𝑖 to reach the harvest stage
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The model includes the following set of ranges:

• 𝑖 = 1, · · · , 𝑁 : range of seed populations

• 𝑗 = 1, · · · , 𝐽 : range of simulated periods [in days]

The set of decision variables is represented by 𝑡[𝑖][𝑗]. Since every solution cor-
responds to an index, these values must be integers.

• 𝑡[𝑖][𝑗]: the harvest time for the seed population 𝑖, which was seeded during period 𝑗
[the nth day in the sequence]

The resolution of the described model involves a collection of harvest schedules
organized by seed population index 𝑖 and planting date 𝑗. For each specific pairing of seed 𝑖
and date 𝑗, the matrix 𝑡[𝑖][𝑗] identifies the corresponding harvest period. Decomposing the
seed multiplication issue into two sub-models considerably improves the efficiency of the
optimization solution, despite the potential lengthiness of the matrix 𝑡[𝑖][𝑗]. The objective
outlined in Equation (5.2) is to minimize the harvesting period for each combination of 𝑖
and 𝑗.

Minimize
𝑁∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑡[𝑖][𝑗] (5.2)

Model A produces a dataset that serves as an input parameter for Model B.
The constraint described in Equation (5.3) mandates that the harvest period surpasses
the requisite growing degree days (GDDs) for each population 𝑖. We seek the smallest
𝑡[𝑖][𝑗] such that the gap between the GDDs from sowing in period 𝑗 to harvesting in
period 𝑡[𝑖][𝑗] is at least 𝐻[𝑖].

𝐺𝐷𝐷[𝑡[𝑖][𝑗]]−𝐺𝐷𝐷[𝑗] ≥ 𝐻[𝑖], 𝑖 = 1, · · · , 𝑁, 𝑗 = 1, · · · , 𝐽 (5.3)

Equations (5.4) and (5.5) define the domain for the variables 𝑡[𝑖][𝑗]. We permit 𝑡[𝑖][𝑗] to
exceed 𝐽 due to certain seed populations that are planted one year and harvested in the
next, necessitating that the harvest assessment extends beyond 𝐽 .

𝑡[𝑖][𝑗] ≥ 0, 𝑖 = 1, · · · , 𝑁, 𝑗 = 1, · · · , 𝐽 (5.4)

𝑡[𝑖][𝑗] ≤ 𝑚𝑎𝑥𝑠𝑝𝑎𝑛, 𝑖 = 1, · · · , 𝑁, 𝑗 = 1, · · · , 𝐽 (5.5)
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Harvesting schedules rely on the local environment and accumulated GDDs,
which requires evaluation on a case-by-case basis. Each location will have a unique out-
come. After optimizing, we can consolidate the solutions for all sites. In this example, we
have two initial populations of seeds (𝑁 = 2), and the schedule covers six periods (with
the late planting period labeled as 𝐽 = 3 and the late harvest period as 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 6).
The vector 𝐻 contains the required GDDs for harvest. The matrix 𝐼 indicates the plant-
ing intervals for seed populations 1 and 2. 𝐺𝐷𝐷 is a cumulative vector with a length of
𝑚𝑎𝑥𝑠𝑝𝑎𝑛.

• 𝑁 = 2

• 𝐽 = 3 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑜𝑓 𝑡𝑖𝑚𝑒

• 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 6 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑜𝑓 𝑡𝑖𝑚𝑒

• 𝐼 = [[1, 1, 1], [0, 1, 1]]

• 𝐻 = [20, 35]

• 𝐺𝐷𝐷 = [10 25 40 70 85 100]

The outcome is presented in Table 5.1. For each combination of crop 𝑖 and
planting period 𝑗, we have a respective harvesting period 𝑗. Each site has its own GDD
records; therefore, if there are more than one site, there will be solutions similar to the
one in Table 5.1 for each site 𝑘. Thinking about many sites, we could gather the results
in a single multidimensional matrix 𝑇 [𝑖][𝑗][𝑘].

Table 5.1 – Outcome solution: harvesting combinations.

𝑡[𝑖][𝑗] 𝑗 = 1 𝑗 = 2 𝑗 = 3

𝑖 = 1 3 4 4
𝑗 = 2 4 4 5

5.2.2 Model B: scheduling seed populations

In this part, we explain the suggested optimization framework for arranging
seed populations. The parameters of the model are as follows.

• 𝑁 : number of populations

• 𝐾: number of sites

• 𝑁𝑤: number of weeks

• 𝐵: week size

• 𝑀 : penalty parameter.
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The model includes the following set of ranges:

• 𝑖 = 1, · · · , 𝑁 : range of seed populations

• 𝑘 = 1, · · · , 𝐾: range of site locations

• 𝑗 = 1, · · · , 𝐽 : range of simulated periods [in days]

• 𝑚 = 1, · · · , 𝐽 : an alternative set of simulated periods (as we will observe in Equation
(5.7), a supplementary range of periods is needed) [in days]

• 𝑛 = 1, · · · , 𝑁𝑤: range of weeks

Additional parameters are outlined as follows:

• 𝑊 [𝑘]: storage capacity limitation of site 𝑘 [𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 𝑣𝑜𝑙𝑢𝑚𝑒/𝑤𝑒𝑒𝑘]

• 𝐼[𝑖][𝑗]: sparse matrix that holds a true value if the interval set by the early and late
seeding periods of seed population 𝑖 includes period 𝑗

• 𝐼[𝑖][𝑗]: sparse matrix indicating whether population 𝑖 is to be initiated during period
𝑗

• 𝑃 [𝑖]: projected yield for seed population 𝑖

• 𝑇 [𝑖][𝑗][𝑘]: an array containing the harvest period 𝑗ℎ𝑎𝑟𝑣𝑒𝑠𝑡 for each population 𝑖, which
is seeded at period 𝑗 at location 𝑘

• 𝑆[𝑖][𝑘]: a binary array is set to true if population 𝑖must be seeded at site 𝑘; otherwise,
it is set to zero

The proposed model addresses decision variables as detailed in the list below.

• 𝑥[𝑖][𝑗][𝑘]: a binary decision variable indicating whether population 𝑖 is seeded in
period 𝑗 at site 𝑘

• 𝑝[𝑗][𝑘]: quantity of harvest during period 𝑗 at location 𝑘

• 𝑎[𝑛][𝑘]: adjust parameter for storage capacity

• 𝑤𝑝[𝑛][𝑘]: total harvest during the 𝑛 week at location 𝑘

If storage capacities 𝑊 [𝑘] were really tight, infeasible solutions would appear
often. Taking into account that any solution is better than no solution at all, we introduced
the adjust parameter 𝑎[𝑛][𝑘].

Minimize
𝐾∑︁
𝑘=1

𝑁𝑤∑︁
𝑛=1
|𝑊 [𝑘]− 𝑤𝑝[𝑛][𝑘]|+𝑀 · 𝑎[𝑛][𝑘] (5.6)
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The constraint in Equation (5.7) assesses the production output for each period
𝑗. The variable 𝑝[𝑗][𝑘] aggregates the harvest for period 𝑗 at storage site 𝑘 by summing
𝑃 [𝑖] whenever 𝑥[𝑖][𝑚][𝑘] is true—meaning population 𝑖 is slated for planting in period 𝑚

— and the condition for harvesting is also satisfied as per the value in 𝑇 [𝑖][𝑚][𝑘].

𝑝[𝑗][𝑘] =
𝑁∑︁
𝑖=1

𝐽∑︁
𝑚=1

𝑥[𝑖][𝑚][𝑘] · 𝑃 [𝑖] · (𝑇 [𝑖][𝑚][𝑘] == 𝑗), 𝑗 = 1, · · · , 𝐽, 𝑘 = 1, · · · , 𝐾

(5.7)

The weekly production evaluation, represented by 𝑤𝑝[𝑛][𝑘], relies on the total
of the accumulated production variables 𝑝[𝑗][𝑘], and this sum should span from 1 to 𝐵

(with 𝐵 representing 7 days) to determine the fraction of the corresponding week. The
constraint is articulated in Equation (5.8).

𝑤𝑝[𝑛][𝑘] =
𝐵∑︁
𝑏=1

𝑝[(𝑛− 1) · 𝐵 + 𝑠][𝑘] =, 𝑘 = 1, · · · , 𝐾, 𝑛 = 1, · · · , 𝑁𝑤 (5.8)

Equation (5.9) evaluates the weekly production 𝑤𝑝[𝑛][𝑘] against the process
capacity 𝑊 [𝑘]. This constraint safeguards against exceeding storage process capacity. The
adjustment parameter 𝑎[𝑛][𝑘] is introduced to maintain an equitable allocation of storage
capacity across weeks. Given that 𝐵 denotes a weekly interval (𝐵 = 7) and the delayed
harvesting phase 𝐽 spans two years (𝐽 = 730), the total number of weeks 𝑁𝑤 amounts
to 104 (𝑁𝑤 = 104).

𝑤𝑝[𝑛][𝑘] <= 𝑊 [𝑘] + 𝑎[𝑛][𝑘], 𝑘 = 1, · · · , 𝐾, 𝑛 = 1, · · · , 𝑁𝑤 (5.9)

The parameter 𝑎[𝑛][𝑘] must remain non-positive, as dictated by Equation
(5.10). It is crucial to impose this restriction to avoid artificially increasing the storage
capacity of the warehouse that could occur due to the influence of the adjust parameter
in Equation (5.9). In cases where solutions do not affect storage capacity 𝑊 [𝑘], 𝑎[𝑛][𝑘]
will be zero, as is ensured by the negative term in the objective function presented in
Equation (5.6).

𝑎[𝑛][𝑘] ≤ 0, 𝑘 = 1, · · · , 𝐾, 𝑛 = 1, · · · , 𝑁𝑤 (5.10)

Within our proposed model, the constraint outlined in Equation 5.11 guar-
antees the correct sowing date for each seed variety. Specifically, if 𝑥[𝑖][𝑗][𝑘] holds true,
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indicating crop 𝑖 is scheduled to be planted in period 𝑗 at location 𝑘, then 𝐼[𝑖][𝑗] must also
be true, denoting that period 𝑗 falls within the designated early and late seeding windows
for crop 𝑖.

𝑥[𝑖][𝑗][𝑘] ≤ 𝐼[𝑖][𝑗], 𝑖 = 1, · · · , 𝑁, 𝑗 = 1, · · · , 𝐽, 𝑘 = 1, · · · , 𝐾 (5.11)

Equation (5.12) ensures that each seed population, from 𝑖 = 1 to 𝑖 = 𝑁 , is
seeded exactly once and only once.

𝐽∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝑥[𝑖][𝑗][𝑘] = 1, 𝑖 = 1, · · · , 𝑁 (5.12)

The constraint detailed in Equation (5.13) guarantees that seed population 𝑖

is exclusively planted at its designated site. This is achieved by incorporating the product
of 𝑥[𝑖][𝑗][𝑘] and (1 - 𝑆[𝑖][𝑘]). Here, 𝑆[𝑖][𝑘] is true if crop 𝑖 is assigned to be planted at
location 𝑘.

𝑁∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑥[𝑖][𝑗][𝑘] · (1− 𝑆[𝑖][𝑘]) = 0, 𝑘 = 1, · · · , 𝐾 (5.13)

The domain of the main decision variable that sets the allocation of each crop
𝑖 is defined in Equation (5.14). As a binary set of variables, it can only assume two values.

𝑥[𝑖][𝑗][𝑘] ∈ {0, 1} (5.14)

5.2.2.1 A minimum example of the proposed model

For illustration purpose only and serve the proposal of this subsection, we
have adopted a simplified version of Equation (5.8) that is Equation (5.15). By this
modification, a period 𝑗 accounts by a whole week. By that, we also need to introduce
a slightly change in the objective function, which is described by Equation (5.16).

𝑝[𝑗][𝑘] ≤ 𝑊 [𝑘], 𝑗 = 1, · · · , 𝐽, 𝑘 = 1, · · · , 𝐾 (5.15)

Minimize
𝐾∑︁
𝑘=1

𝐽∑︁
𝑗=1
|𝑊 [𝑘]− 𝑝[𝑗][𝑘]| (5.16)
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Input parameters include two seed populations (𝑁 = 2), with two sites (𝐾 =
2). The entire seeding window spans 3 weeks (𝐽 = 3), although the production evaluation
should reach more 3 weeks further the seeding windows (𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 6), and the production
vector is 𝑃 = [354, 342]. Each site 𝑘 has a maximum storage capacity of 400 units per
week. When optimizing multiple seed processing sites (𝐾 > 1), the matrix 𝑆 will have
dimensions of 𝑁 × 𝐾, with each element indicating whether crop 𝑖 is to be planted at
location 𝑘, exemplified by the following sample matrix:

𝑆 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The 𝑇 [𝑖][𝑗][𝑘] array indicates the harvest period for a specific combination of

seed population, period, and location. The harvest periods shown in Table 5.2 are derived
from the outcomes discussed in Subsection 5.2.1.

Table 5.2 – Harvest period record in the matrix parameter.

𝑇 [𝑖][𝑗][𝑘]
...

𝑘 = 1 𝑘 = 2
𝑗 = 1 𝑗 = 2 𝑗 = 3 · · · 𝑗 = 1 𝑗 = 2 𝑗 = 3 · · ·

𝑖 = 1 4 5 6 5 6 6
𝑖 = 2 3 4 5 4 5 5

...

Table 5.3 displays the results. It is evident that, for every site 𝑘, the outlined
weekly production remains within the constraints of storage and processing capacities.

Table 5.3 – Minimum example from scheduling optimization model.

𝑥[𝑖][𝑗][𝑘] 𝑝[𝑗][𝑘]
𝑖 𝑗 𝑘 𝑣𝑎𝑙𝑢𝑒 𝑗 𝑘 𝑝

1 3 1 1 6 1 354
2 2 2 1 5 1 342
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5.2.2.2 Transforming the model into into an evaluator for minimal storage capacity

To achieve the minimum processing and storage capacity, modifications in the
model are necessary. Specifically, we need to substitute the objective function in Equation
(5.6) with that in Equation (5.17). The processing capacity at site 𝑘 is denoted as 𝑤[𝑘]:

Minimize
𝐾∑︁
𝑘=1

𝑤[𝑘] (5.17)

Furthermore, it is essential to replace the capacity constraint in Equation (5.9)
with Equation (5.18). In our pursuit of finding the minimum storage capacity, the adjust-
ment variables 𝑎[𝑛][𝑘] are no longer needed, resulting in the modification shown in Equa-
tion (5.18). The maximum storage capacity 𝑊 [𝑘] continues to appear in the equation, yet
only as a boundary constraint.

𝑤𝑝[𝑛][𝑘] <= 𝑊 [𝑘], 𝑘 = 1, · · · , 𝐾, 𝑛 = 1, · · · , 𝑁𝑤 (5.18)

5.3 Results and observations

Given the extensive nature of the optimization problem tackled in this chapter,
we have utilized three different solvers to enhance our comprehension of the difficulties
associated with solving the mixed-integer linear programming model. The chosen solvers
are:

• IBM ILOG CPLEX Studio IDE Studio 22.1.1.0 : IBM has created a high-performance
optimization solver, known as CPLEX, that is designed to solve challenging mathe-
matical optimization problems. CPLEX efficiently addresses various types of prob-
lems, such as linear programming (LP), mixed-integer programming (MIP), quadratic
programming (QP), and constraint programming (CP).

• Gurobi 11.0.3 : A versatile mathematical optimization solver, Gurobi efficiently man-
ages a range of complex optimization tasks, including linear programming (LP),
mixed-integer programming (MIP), quadratic programming (QP), among others.

• PySCIPOpt: serves as a Python interface for SCIP, a software solution intended
to tackle various mathematical optimization challenges. SCIP (Solving Constraint
Integer Programs) is distinguished for its proficiency in managing mixed-integer pro-
gramming (MIP), mixed-integer nonlinear programming (MINLP), and constraint
programming (CP).
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Each of the three solvers demonstrates adaptability, making them relevant in
diverse fields. Their versatility aids operations research, analytics, and decision-making
endeavors. They are widely utilized in multiple industries, including finance, logistics,
energy, and manufacturing, facilitating data-driven decisions intended to boost efficiency,
reduce expenses, or enhance other vital performance indicators (KOCH et al., 2022).

If we do not find an optimal solution within the designated time frame, we use
a metric known as the optimality gap to evaluate the quality of the solution obtained. The
gap denotes the difference between the best known solution and the best possible one for
an optimization problem. This measure helps determine how close the solver’s existing
solution is to the real optimal outcome. All three solvers can offer the optimality gap
as a parameter for analysis. This gap represents the disparity between the best integer
solution obtained (when relevant) and the best bound provided by the solver to the
optimal objective value. Typically, it is expressed as a percentage and is calculated using:

𝑔𝑎𝑝 = 𝐵𝑒𝑠𝑡𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝐵𝑒𝑠𝑡𝐵𝑜𝑢𝑛𝑑
𝐵𝑒𝑠𝑡𝐵𝑜𝑢𝑛𝑑

× 100 [%] (5.19)

In terms of the test workbench in this study, we created a database derived from
actual data and used a probability density function to generate numerous populations.
To assess each solver’s ability to generate solutions for Model B, we chose several seed
population sizes ranging from 100 to 1000 corn seeds. Depending on these population sizes,
the number of variables and constraints is illustrated in Table 5.4 to solve the minimum
deviation from the weekly maximum capacity and to determine the weekly minimum
storage capacity.

For each test, we display the results in Table 5.5. Among the various tests
conducted, CPLEX outperforms Gurobi, while PySCIPOpt exhibits relatively weaker per-
formance. It is important to emphasize that our evaluation of performance is restricted
to this specific application, and is not meant to undermine the capabilities of any solver,
but rather to assess their effectiveness concerning the problem under consideration.

5.3.1 The use of CPLEX into the seed problem

Using CPLEX, we assessed the issue by using a database containing three
thousand seed populations (𝑁 = 3000). The schedule for seeding spans an entire year
(𝐽 = 365 𝑤𝑒𝑒𝑘𝑠). Planting at the conclusion of this interval means the harvest will occur
in the subsequent year, necessitating an additional number of periods to fully include
seed production (𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 730 𝑤𝑒𝑒𝑘𝑠). Initially, one must create all possible pairings of
seed population 𝑖 and period 𝑗 that result in the harvesting period 𝑡[𝑖][𝑗], based on Model



Chapter 5. Scheduling corn seed populations: a seed multiplication challenge 126

Table 5.4 – Describing the size of the optimization problem.

Minimum Variation

The total number of seed populations

100 200 500 1000

Integer 73000 146000 365000 730000
Binary 73000 146000 365000 730000
Continuous 1876 1876 1876 1876
Constraints 75394 148494 367794 733294

Minimum Capacity

The total number of seed populations

100 200 500 1000

Integer 73002 146002 365002 730002
Binary 73000 146000 365000 730000
Continuous 1668 1668 1668 1668
Constraints 74978 148078 367378 732878

Table 5.5 – A comparative study of linear solvers used for seed population distribution.
Number of
seed popula-
tions

Sites Allocation
window

Solver Solving
Time
(sec-
onds)

Gap Objective Objective
function

100 2 365 Gurobi 0.28 0.00% M.C. [771, 741]
100 2 365 pyscipopt 3 0.00% M.C. [771, 741]
100 2 365 CPLEX 0.67 0.00% M.C. [771, 741]
100 2 365 Gurobi 0.18 0.00% M.V. 164942
100 2 365 pyscipopt 16 0.00% M.V. 164942
100 2 365 CPLEX 0.23 0.00% M.V. 164942
200 2 365 Gurobi 1500.18 0.10% M.C. [848, 1063]
200 2 365 pyscipopt 1500 1.68% M.C. [858, 1063]
200 2 365 CPLEX 513.44 0.10% M.C. [848, 1063]
200 2 365 Gurobi 0.52 0.00% M.V. 160876
200 2 365 pyscipopt 105 0.00% M.V. 160876
200 2 365 CPLEX 0.53 0.00% M.V. 160876
500 2 365 Gurobi 1503 3.44% M.C. [1878, 2194]
500 2 365 pyscipopt 3 8.76% M.C. [2034, 2236]
500 2 365 CPLEX 0.67 1.57% M.C. [1840, 2162]
500 2 365 Gurobi 1.22 0.00% M.V. 309612
500 2 365 pyscipopt 1500 - M.V. -
500 2 365 CPLEX 1.09 0.00% M.V. 309612
1000 2 365 Gurobi 1501.72 1.5887 M.C. [3782, 4338]
1000 2 365 pyscipopt 1500 4.318% M.C. [3895, 4440]
1000 2 365 CPLEX 1500 1.380% M.C. [3831, 4324]
1000 2 365 Gurobi 4.94 0.00% M.V. 608817
1000 2 365 pyscipopt 1500 - M.V. -
1000 2 365 CPLEX 3.94 0.00% M.V. 608817

Note: M.C. stands for Minimum Capacity, and M.V. stands for Minimum
Variation.

A’s outcomes. Given the vast amount of input data, we divide the seed population into
groups of 500 each. Since there are 3000 seed populations, this procedure is performed six
times to cover all necessary harvesting combinations. If there are no modifications in the
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GDD data, it is unnecessary to re-solve Model A. The following section provides a short
overview of the parameters. The list ahead provides a fair description of the parameters
required to evaluate Model B:

• 𝑁 = 3000

• 𝐽 = 365 𝑤𝑒𝑒𝑘𝑠

• 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 730 𝑤𝑒𝑒𝑘𝑠

• 𝑃 = [354, 342, 300, · · · , 346, 268] (the dimension of 𝑃 vector is 𝑁)

• 𝐾 = 1

• 𝑊 = 23500 𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 𝑣𝑜𝑙𝑢𝑚𝑒/𝑤𝑒𝑒𝑘

• 𝑇 = [[109 110 111 · · · ; ... ; · · · 472 473 473] · · · ] (the dimension of 𝑇 is
𝑁 × 𝐽 ×𝐾)

Solving the problem and generating a seed schedule solution took 500 seconds.
Table 5.6 shows other solver parameters related to the optimization of Model B.

Table 5.6 – Model B: solver’s parameters.

IBM ILOG CPLEX: Statistics

Solver Cplex
Constraints 7146
Variables 1096250

Binary 1095000
Integer 938
Other 312

Non-zero coefficients 2995779
Iterations 3130

From the optimal solution found, Figure 5.3 exhibits weekly harvesting quan-
tities of Site 1. Processing capacity in this test is 𝑊 = 23500 𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 𝑣𝑜𝑙𝑢𝑚𝑒/𝑤𝑒𝑒𝑘. We
got the minimum deviation from site processing capacity, increasing the efficiency of the
whole seed processing facility.

Looking for minimum capacity, we found the results in Figure 5.4. Is also
praised because there is a consistency among every weekly harvest amount. The minimum
capacity value was 22047 𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 𝑣𝑜𝑙𝑢𝑚𝑒/𝑤𝑒𝑒𝑘.

Model B tackles infeasible issues by employing the adjust variables, which
diminish the processing capability. In scenarios where this capacity is insufficient, the
resulting scheduling solution would generate spikes, as illustrated in Figure 5.5.
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Figure 5.3 – Efficient seed distribution: minimum deviation.

Figure 5.4 – Minimum processing capacity.

5.3.2 A comparison about goals shaping the seed harvesting schedule

For this subsection, we produce another 3000 seed population dataset to com-
pare the objectives in Equations (5.6) and (5.17). Figure 5.6 and Figure 5.7 illustrate two
contrasting situations. The former focuses on identifying the minimum storage require-
ments based on the crop harvest timetable, while the latter seeks to optimize storage
usage by minimizing the discrepancy between a fixed storage capacity and the harvest
schedule. By examining Figure 5.6, we can see that the facility’s processing and storage
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Figure 5.5 – Undesirable solution: harvest overflows processing capacity.

capabilities are over-sized. The site experiences peak activity from the 10th to the 20th
week, followed by a period of minimal capacity usage between the 20th and 40th weeks.
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Figure 5.6 – Exploring a balanced utilization of storage capacity, with a maximum limit
of 25000 units weekly.

The results presented in Figure 5.6 and Figure 5.7 are derived from the same
database, however reflect different goals. Figure 5.7 illustrates the pursuit of minimizing
storage capacity. Rather than establishing a maximum capacity and aiming to achieve
that target, we adjust seed populations to attain the smallest possible overall capacity.
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Attempting to accommodate all weekly productions within a limit also resulted in a well-
organized seed schedule. Unusual harvests that deviate from the typical data pattern can
be further adjusted to align with storage capacity.

Minimum capacity can be achieved by employing both early and late seeding
of the seed population. However, if the gap between these seeding times is too narrow, it
results in uneven capacity distribution and often leads to capacity overflow during critical
stages.
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Figure 5.7 – Searching for minimum storage capacity for a two-site seed allocation prob-
lem.

5.4 Conclusion

Conducting large-scale operations without utilizing optimization can be chal-
lenging and inefficient. In this chapter, we introduce a streamlined approach to handle
the distribution of seed populations under processing capacity constraints. We develop
mathematical models and assess the performance of the selected solvers using a testing
environment with several seed populations based on real data. By applying deterministic
techniques to assess our proposed models, we obtain outstanding solutions. We advise
starting by determining the minimum required storage capacity, and then implementing
the model variant that optimally balances production distribution across weeks. Although
addressing agricultural challenges requires abstraction to manage the complexities of liv-
ing organisms, connecting Agriculture with Operations Research is an intriguing pursuit.



Chapter 5. Scheduling corn seed populations: a seed multiplication challenge 131

Developing strategies to solve difficulties in the agricultural sector is a continuous process
as we improve our understanding of the problem area.
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6 Pest management in soybeans

Warm temperatures, sunny days, mild winter and regular rainy seasons provide
opportunities for growing crops all year round. In Brazilian southeast, many farmers have
well-established the two cropping system, which defines an annual crop sequence which
combines soybean in the summer and corn, sorghum or wheat in the winter (FRANCHINI
et al., 2012b). Crop intensification increases farm profitability and double cropping allows
agricultural producers to improve soil fertility during all year. Although some Brazilian
regions have for long developed the double cropping system, reducing fallow interval
combined with warm temperatures along the year transform pest outbreak in a ongoing
challenge as pest cycles remains unshaken due to the stable food supply and mild weather.
Figure 6.1 depicts the occurrence of caterpillars in soybean fields and their effect on the
total area of leaves consumed.

Figure 6.1 – Caterpillars consuming soybean foliage. 1

One of the toughest challenges in Brazilian agriculture is to manage Helicov-
erpa armigera (Lepidoptera Noctuidae). Crop damages caused by Helicoverpa armigera
(H. armigera) are noticed in several large commercial crops. In soybean fields, typical
prejudices are the artificial defoliation in the vegetative stages of plant growth and pod-
consumption in the reproductive stages. The damages caused by H. armigera can even
reduce soybean’s growth and prevent the crop compensatory ability (STACKE et al.,
2018). In 2020/2021 year-crop, Companhia Nacional de Abastecimento (CONAB) re-
ported Brazilian soybean harvest around 135.9 million tons, which is the largest soybean
1 Source: Image from author’s ownership.
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yield in world (CONAB, 2021b). Brazilian soybean exports from the same period were
estimated at 86.1 million tons (CONAB, 2021a). Understanding how big is the Brazil-
ian soybean supply chain, any pest outbreak spreading across the country drives farmers
concerned about enormous yield losses.

Stacke et al. (2018) investigated the impact of H. armigera on soybean crops.
The study examined the damage during two reproductive stages of the soybean plant.
They conducted field experiments to verify the actual damage to soybeans caused by H.
armigera. Inside cage units, they analyzed the effects of distinct population densities. In
their conclusive remarks, they observed smaller losses in the early reproductive stages
compared to the final stages. This is related to the plant’s compensatory ability slowing
down in the late reproductive stages, as the time to recover is short at the end of the
plant cycle. From their experiments, they also reported that seed size does not vary in
proportion to the damage caused by H. armigera. The most significant production loss
was observed during the pod-filling reproductive stages.

The study conducted by (SUZANA et al., 2018) examined the soybean con-
sumption by H. armigera. Distinct vegetative and reproductive organs from the soybean
plant are qualified as the source of food at different stages of development. The economic
threshold, ranging from 2 to 3.5 H. armigera larvae per row-meter, is recommended during
soybean reproductive stages (HAILE et al., 2021; ADAMS et al., 2016).

Maintaining soybean crops in excellent conditions is always one of the farmer’s
goals. There are several pests that can damage soybean crops, scouting fields is routine and
leads to quick responses. The best scenario in pest management is to keep all the damaging
agents under strict control. However, most of the time, completely eradicating the entire
insect population is impractical , if no impossible. Even if farmers have the means to
complete eradicate certain pest agents, their actions might disrupt the crop ecosystem.
Agribusiness is complex and dynamic, with decisions balancing technical, financial and
sustainable implications. Hence, once a reasonable level is reached, appropriate actions
should be taken. In the literature, it is referred as economic threshold, introduced in
(STERN et al., 1959).

Stern et al. (1959) were pioneers in the economic control applied to pest man-
agement. The terminology introduced by Stern et al. (1959) have become widely accepted,
such as the terms economic injury level and economic control. The economic injury level
refers to the lowest pest population density that will cause significant economic dam-
age. Another fundamental concept is the economic threshold which is a break-point in
the curve of growing pest density. Some action at this point should be taken to avoid
reaching the economic injury-level. At the economic threshold, enough time must be left
to perform the economic control actions; otherwise, the economic injury level would be
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reached anyway. Another branch of their research is biological control, which attempts to
enhance the resistance of the surround environment over a particular pest. Introducing
selected natural enemies is a biological solution to reduce pest densities, and, hopefully,
these potential predators will keep the pest population below the economic threshold.

In the field, farmers have plenty of tools to deal with pests. Spraying pesticides
is the conventional way to keep pests under control, but biological control of caterpillars
has become a lot more appealing lately. Hence, our proposed model should accommodate
either chemical or biological solutions to handle the caterpillar pest problem in soybeans.
Farmers do more than just keep pests in check; they also work hard to minimize the
overseen damage using techniques such as foliar feeding and amino acid application, then
there are some space in the proposed model for actions that would minimize defoliation
over the crop cycle or help to reduce pod-damage.

This chapter aims to answer the following questions:

• How to evaluate conventional pesticides, biological pesticides and the action of nat-
ural agent predators under the same pest management perspective?

• Can an empirical assessment of complex population dynamics produce a trustworthy
optimization model to the integrate pest management practices on soybeans?

• Would our algorithm generated solutions produce insights to improve the decision-
making in the agrarian field?

Section 6.1 discuss the proposal of the mathematical model. Our proposal is to
introduce an empirical model that combines the growth population pattern of H. armigera
with the control mechanisms in the field, including the caterpillar’s natural predators and
the use of chemical or biological pesticides. Results from this study are described in Section
6.2. Conclusion and our future perspective about this ongoing research are addressed in
Section 6.3.

6.1 Methodology

Our optimization proposal evaluates the damage caused by H. armigera in
soybeans based on the three observable parameters: (1) the population density of cater-
pillars; (2) the soybean artificial defoliation; and (3) the soybean pod-damage related to
H. armigera presence in the field. By introducing new policies to assist pest manage-
ment decisions, we aim to minimize defoliation and pod-damage during the whole crop
cycle. We understand that pod-damage is the most prejudicial side-effect because it rep-
resents irreversible yield losses. Given the growth pattern of caterpillar populations and
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the interplay between pesticide application and natural predators, we suggest a dynamic
programming model for effective pest management.

We define a set of control decisions with 𝑁𝑎 actions and each action 𝑖 has
attributes 𝑎𝑡𝑡𝑟1[𝑖], 𝑎𝑡𝑡𝑟2[𝑖] and 𝑎𝑡𝑡𝑟3[𝑖]. The first one (𝑎𝑡𝑡𝑟1[𝑖]) represents the killing ef-
ficiency of the caterpillar population; the next one (𝑎𝑡𝑡𝑟2[𝑖]) is a secondary effect to the
soybean defoliation; and the third one (𝑎𝑡𝑡𝑟3[𝑖]) represents the effect from action 𝑖 on
reducing the soybean pod-damage. Typical control actions involve either spraying chem-
ical pesticides or using biological pesticides. However, other mechanisms of action are
also possible, as we focus on the effect of the action rather than the method by which it
is carried out. Another fundamental characteristic of our modeling approach is that the
effects of a control action 𝑖 can last for several weeks. Although contact pesticides which
exterminate pests directly upon contact, yield immediate results, there are also plenty
of other options with distinct patterns. For example, pesticides that act by ingestion as
insect growth regulator have effects on caterpillar population that last for several days
after spraying. Our proposed model does not restrict simultaneous actions during any
stage 𝑡.

Fundamental parameters in the proposed model are described ahead:

• 𝑋1: pest population density at the initial stage 𝑡 = 0 [number of individuals/area]

• 𝑋2, 𝑋3: recorded defoliation and pod-damage at the initial stage 𝑡 = 0, respectively,
which are usually null values when the optimization covers all the soybean growth
stages [injuries in percentage]

• 𝑍: predator population density at the initial stage [number of individuals per unit
of area]

• 𝑁𝑎: the total number of available pesticides, chemical pesticides or bio-pesticides

• 𝑇 : the total number of stages

• 𝐵: the lasting effect of pesticides [in weeks]

• 𝐼: the beginning of soybean reproductive stages [the nth week in the sequence]

• 𝑊1, 𝑊2, 𝑊3: weighted sum factors [dimensionless]

• 𝛼: Lotka-Volterra parameter: prey population growth rate

• 𝛿: Lotka-Volterra parameter: prey population death rate

• 𝛽: Lotka-Volterra parameter: predator population death rate
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• 𝛾: Lotka-Volterra parameter: predator population growth rate

In the model, the main indexes are:

• 𝑖 = 1, 2, · · · , 𝑁𝑎

• 𝑡 = 1, 2, · · · , 𝑇

• 𝑗 = 1, 2, · · · , 𝐵

Other parameters in the model are:

• 𝑎𝑐[𝑖]: the cost of taking action 𝑖 [$ per unit of area]

• 𝑏𝑐: the cost of increasing predator density in the field [$ per unit of predator ]

• 𝑠[𝑡]: a binary vector that represents suitable weather to perform actions in field

• 𝑒[𝑡]: a binary vector that defines the equipment availability to execute any action

• Ω[𝑡]: exogenous information that represent unpredictable increases or decreases in
caterpillar population density [number of individuals per unit of area]

• 𝑎𝑡𝑡𝑟1[𝑖][𝑗], 𝑎𝑡𝑡𝑟2[𝑖][𝑗], 𝑎𝑡𝑡𝑟3[𝑖][𝑗]: attributes of action 𝑖 in percentage of efficiency:
(1) reduce the number of caterpillars; (2) defoliation impact and (3) reduces soy-
bean pod damage. 𝑗 index holds the effect over time from applying to the current
evaluation.

• 𝑐𝑎[𝑡]: the cumulative costs of taking actions at stage 𝑡 [$ per unit of area]

• 𝑐1[𝑡], 𝑐2[𝑡], 𝑐3[𝑡]: the cumulative effect of control actions at stage 𝑡 [%]

• 𝑦1[𝑡], 𝑦2[𝑡], 𝑦3[𝑡]: the cumulative effect of control actions at stage 𝑡 expressed in
terms of 𝑥1[𝑡], 𝑥2[𝑡], and 𝑥3[𝑡] states

• 𝑥1[𝑡]: the caterpillar density in the field at stage 𝑡 [number of individuals per unit
of area]

• 𝑥2[𝑡]: the percentage of artificial defoliation caused by caterpillars at stage 𝑡 [number
of individuals per unit of area]

• 𝑥3[𝑡]: the percentage of soybean pod-damage caused by caterpillars at stage 𝑡 [num-
ber of individuals per unit of area]

• 𝑧𝑝[𝑡]: the artificial introduction of predators in the soybean field at stage 𝑡 [number
of individuals per unit of area]
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Decision variables are:

• 𝑢[𝑡][𝑖]: the decision set of actions, represented as a binary variable:

𝑢[𝑡][𝑖] =

⎧⎨⎩ 1, action 𝑖 is taken at stage 𝑡
0, otherwise

In general, decisions on the farm have a gradual effect extending over multiple
stages. Therefore, the actual state depends on the cumulative effects of actions taken
during previous stages. Equations (6.1), (6.2) and (6.3) compute the cumulative effects of
actions taken from stage 𝑡 to 𝑡−𝐵, in which recursive assessment of the actions undertaken
in prior stages. For each given period 𝑡, these equations consider what happened during
the past 𝐵 previous stages. Action attributes in Equation (6.1), (6.2) and (6.3) represent
the percentage of efficiency based on the magnitude of the problem, Thus, 𝑐1[𝑡], 𝑐2[𝑡], and
𝑐3[𝑡] represent the cumulative percentages derived from the attributes of each executed
action. The attributes of an action set are presented in Tables 6.2, 6.3, and 6.4.

𝑐1[𝑡] =
𝑁𝑎∑︁
𝑖=1

𝜓∑︁
𝑗=0

𝑢[𝑡− 𝑗][𝑖] · 𝑎𝑡𝑡𝑟1[𝑖][𝑗], ∀𝑡 ∈ {0, 1, 2, · · · , 𝑇 − 1}, (6.1)

𝜓 =

⎧⎨⎩ 𝑡, if 𝑡− 𝐵 < 0
𝐵, otherwise

𝑐2[𝑡] =
𝑁𝑎∑︁
𝑖=1

𝜓∑︁
𝑗=0

𝑢[𝑡− 𝑗][𝑖] · 𝑎𝑡𝑡𝑟2[𝑖][𝑗], ∀𝑡 ∈ {0, 1, 2, · · · , 𝑇 − 1}, (6.2)

𝜓 =

⎧⎨⎩ 𝑡, if 𝑡− 𝐵 < 0
𝐵, otherwise

𝑐3[𝑡] =
𝑁𝑎∑︁
𝑖=1

𝜓∑︁
𝑗=0

𝑢[𝑡− 𝑗][𝑖] · 𝑎𝑡𝑡𝑟3[𝑖][𝑗], ∀𝑡 ∈ {0, 1, 2, · · · , 𝑇 − 1}, (6.3)

𝜓 =

⎧⎨⎩ 𝑡, if 𝑡− 𝐵 < 0
𝐵, otherwise

Equation (6.4) states the initial condition of the system. The caterpillar pop-
ulation density at stage 𝑡 = 0 should be informed as well as the predator population
density. The starting population density of caterpillars is denoted by 𝑥1[0], while the ini-
tial defoliation level is indicated by 𝑥2[0], and the initial damage to pods is represented
by 𝑥3[0]. The initial density of predators is represented by 𝑧[0].

𝑥1[0] = 𝑋1, 𝑥2[0] = 𝑋2, 𝑥3[0] = 𝑋3, 𝑧[0] = 𝑍 (6.4)



Chapter 6. Pest management in soybeans 138

Equation (6.5) models the dynamic of the predator population at each stage
𝑡. We use the Lotka-Volterra equations in the problem for describing the relationship be-
tween the caterpillar predators and pest control management (LOTKA, 1956; VOLTERRA,
1926; DAS; GUPTA, 2011). We assume that the predator population, 𝑧[𝑡], represents a
specific group of caterpillar predators. Additionally, we assume that the pesticides and
all the control decisions affect the pest population, but not the predator population dy-
namics. Natural mortality and limited food supply (prey abundance) keep the predator
population in check. Another assumption is about the mutualistic relationship between
these predators and the soybean crop: we consider that these predators cause no damage
whatsoever. The decision variable 𝑧𝑝[𝑡] represents the capacity for artificially increasing
predators in soybeans.

𝑧[𝑡] = (1− 𝛽) · 𝑧[𝑡− 1] + 𝛾 · 𝑧[𝑡− 1] · 𝑥[𝑡− 1] + 𝑧𝑝[𝑡− 1], ∀𝑡 ∈ {1, 2, · · · , 𝑇} (6.5)

As 𝑐1[𝑡], 𝑐2[𝑡] and 𝑐3[𝑡] represent percentage amounts, we need Equations (6.6),
(6.7) and (6.8) to get the action size properly at each stage 𝑡 based on the previous states.

𝑦1[𝑡] = 𝑐1[𝑡− 1] · 𝑥1[𝑡− 1] + 𝛿 · 𝑧[𝑡− 1] · 𝑥1[𝑡− 1], ∀𝑡 ∈ {1, 2, · · · , 𝑇} (6.6)

𝑦2[𝑡] = 𝑐2[𝑡− 1] · 𝑥2[𝑡− 1], ∀𝑡 ∈ {1, 2, · · · , 𝑇} (6.7)

𝑦3[𝑡] = 𝑐3[𝑡− 1] · 𝑥3[𝑡− 1], ∀𝑡 ∈ {1, 2, · · · , 𝑇} (6.8)

Equations (6.9), (6.10) and (6.11) are the transition functions and they update
the states of 𝑥1[𝑡], 𝑥2[𝑡] and 𝑥3[𝑡]. Stink bugs or any other pathogen that could cause
soybean damages are overlooked. Artificial defoliation and pod-damage considered in the
model are only caused by caterpillar populations.

𝑥1[𝑡] = (1 + 𝛼) · 𝑥1[𝑡− 1] + Ω[𝑡]− 𝑦1[𝑡], ∀𝑡 ∈ {1, 2, · · · , 𝑇} (6.9)

𝑥2[𝑡] = 𝜆 · 𝑥1[𝑡− 1]− 𝑦2[𝑡], ∀𝑡 ∈ {1, 2, · · · , 𝑇} (6.10)

𝑥3[𝑡] =

⎧⎨⎩ 0, ∀𝑡 ∈ {0, 1, 2 · · · , 𝐼 − 1| 𝐼 < 𝑇}
𝜇 · 𝑥1[𝑡− 1]− 𝑦3[𝑡], ∀𝑡 ∈ {𝐼, 𝐼 + 1, · · · , 𝑇}

(6.11)

Field activities in the farm are dependent on good weather. Hence, we have
𝑠[𝑡], a vector that holds an estimate of good weather stages during the crop cycle. Equip-
ment availability must be accounted for in decision-making and it is represented by 𝑒[𝑡].
Equation (6.12) prevents taking actions in bad weather and Equation (6.13) avoids setting
decisions when the required equipment or personnel are busy with other activities.
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𝑢[𝑡][𝑖]− 𝑠[𝑡] ≤ 0, ∀𝑡 ∈ {0, 1, 2, · · · , 𝑇 − 1}, ∀𝑖 ∈ {0, 1, 2, · · · , 𝑁𝑎} (6.12)

𝑢[𝑡][𝑖]− 𝑒[𝑡] ≤ 0, ∀𝑡 ∈ {0, 1, 2, · · · , 𝑇 − 1}, ∀𝑖 ∈ {0, 1, 2, · · · , 𝑁𝑎} (6.13)

The cumulative cost of actions, 𝑐𝑎[𝑡], is defined in Equation (6.14). It includes
the cost of general pesticides, either biological or chemical, represented by 𝑢[𝑡][𝑖], and the
cost of introducing natural agent predators.

𝑐𝑎[𝑡] =
𝑁𝑎∑︁
𝑖

𝑎𝑐[𝑖] · 𝑢[𝑡][𝑖] + 𝑧𝑝[𝑡] · 𝑏𝑐, ∀𝑡 ∈ {0, 1, 2, · · · , 𝑇} (6.14)

The objective function in Equation (6.15) is a weighted sum. We aim to min-
imize both the maximum damage caused by caterpillar and the cost of taking actions.
This combination is essential to produce balanced pest management strategies. Without
considering the cost of actions, we could use all the available pesticides to achieve minimal
damage, but this would clearly be impractical and unsustainable. We do not employ a
multi-objective method to assess costs and damages to soybeans, as our primary interest
lies in analyzing the damages themselves. Since we utilize an artificial predator, we are
not entirely focused on achieving precision in cost assessment.

Minimize
𝑇∑︁
𝑡=0

𝑊1[𝑡] · 𝑥2[𝑡] +𝑊2[𝑡] · 𝑥3[𝑡] +𝑊3[𝑡] · 𝑐𝑎[𝑡] (6.15)

Equation (6.16) defines the binary variable 𝑢[𝑡][𝑖] in the model. As the states
are non-negative, we enforce that with Equation (6.17). The artificial introduction of
predators at stage 𝑡 is 𝑧𝑝[𝑡]. Equation (6.18) ensures that 𝑧𝑝[𝑡] is non-negative.

𝑢[𝑡][𝑖] = {0, 1}, ∀𝑡 ∈ {0, 1, 2, · · · , 𝑇 − 1}, ∀𝑖 ∈ {0, 1, 2, ..., 𝑁𝑎} (6.16)

𝑥1[𝑡] ≥ 0, 𝑥2[𝑡] ≥ 0, 𝑥3[𝑡] ≥ 0, ∀𝑡 ∈ {0, 1, 2, · · · , 𝑇} (6.17)

𝑧𝑝[𝑡] ≥ 0, ∀𝑡 ∈ {0, 1, 2, · · · , 𝑇 − 1} (6.18)

6.2 Computational tests and results

Our proposed optimization model is built in Python language and we use
PySCIPOpt, which is well-known open source software suite for optimization and a popu-
lar choice in the community. For our computational tests, we use real-data inspired dataset
and parameters. Although we did not refer to the actual pesticide compound, the set of
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actions is a solid virtualization of pesticide effect mechanisms. The damage caused by H.
armigera is also defined from real-data reports. The essential parameters outlined in the
following list are drawn from the research conducted by Suzana et al. (2018). By con-
structing the predator model based on theoretical assumptions, we presume that certain
capabilities have yet to be fully realized in practice.:

• The caterpillar population doubles every two weeks (𝛼 = 𝑙𝑛(2)/2 = 0.3466)

• Each predator consumes 5 caterpillars per week (𝛿 = 5)

• Half of predator population dies every four weeks (𝛽 = 𝑙𝑛(2)/4 = 0.1733)

• Each predation event results in 0.1 new predators (𝛾 = 0.1)

Crop cycle is divided by weeks and becomes the set of stages 𝑡 = 1, · · · , 𝑇 .
Table 6.1 presents the set of soybean growth stages ad each corresponding week.

Table 6.1 – Soybean growth stages reorganized in days and weeks.
Soybean growth
stages

Description Average days
interval after

sowing

Soybean
growth stages

duration

From sowing
to full

maturity
(days)

From sowing
to full

maturity
(weeks)

Vegetative Stages

VE Emergence 4-7 7 1
VC Cotyledon 3-10 10 17 2
V1 First node 5-6 6 23 3
V2 Second node 5-6 6 29 4
V3 Third node 5-6 6 35 5
V4 Fourth node 5-6 6 41 6
V5 Fifth node 3-4 4 45 6
V(n) Nth node 3-4 4 49 7
Reproductive
Stages

R1 Beginning bloom 2-7 7 56 8
R2 Full bloom 2-7 7 63 9
R3 Beginning pod 2-7 7 70 10
R4 Full pod 2-7 7 77 11
R5 Beginning seed 2-7 7 84 12
R6 Full seed 2-7 7 91 13
R7 Beginning maturity 5-10 10 101 14
R8 Full maturity 5-10 10 111 16

There are several model input parameters that we could performance a sensi-
bility analyzes, but we focus our evaluation in a comparison between general pesticides
(chemical or biological) and the natural control agent (the group of caterpillar’s preda-
tors). We define exogenous information as an indicator of a pest outbreak that occurs
beyond the typical developmental pattern.

Our proposed set of control actions are not fully effective, which is in line with
the application in the practice. Several pesticides are recommended to handle caterpillars,
we propose a set of general pesticides with distinct efficiency in managing caterpillars and
a residual effect that lasts at most three weeks after spraying. Hence, Tables 6.2, 6.3 and
6.4 presents some estimations in days after spraying.
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Table 6.2 – Efficiency of decision control actions to handle caterpillar population density
on soybeans.

The effect of control action in caterpillar population density
Action
ID

Percentage of efficiency in reducing caterpillar population density

Weeks After Spraying
0: immediate effect after application to 3: residual effect after three weeks

0 1 2 3
1 0 0 0 0
2 60 20 10 0
3 0 40 30 10
4 75 0 0 0
5 0 20 40 40
6 20 30 35 0

Table 6.3 – Efficiency of decision control actions to manage soybean defoliation caused by
caterpillar population.

The effect of control action in soybean defoliation

Action
ID

Percentage of efficiency in reducing defoliation

Weeks After Spraying
0: immediate effect after application to 3: residual effect after three weeks

0 1 2 3
1 0 0 0 0
2 20 40 80 0
3 30 50 70 10
4 80 15 0 0
5 0 40 45 0
6 40 30 10 0

Table 6.4 – Efficiency of decision control actions to manage soybean pod-damage caused
by caterpillar population.

The effect of control action in soybean pod-damage

Action
ID

Percentage of efficiency in reducing pod-damage

Weeks After Spraying
0: immediate effect after application to 3: residual effect after three weeks

0 1 2 3
1 0 0 0 0
2 30 70 10 0
3 0 40 30 10
4 20 75 0 0
5 0 10 40 45
6 50 70 10 5

From the computational tests we present ahead, the initial state are 𝑥1[0] = 5,
𝑥2[0] = 0 and 𝑥3[0] = 0. Predator population density is 0 (𝑧1[0] = 0). The beginning
of the soybean reproductive is at stage 𝑡 = 8 (𝐼 = 8). The relationship between the
caterpillar population density and defoliation damage is 𝜆 = 0.05 and for soybean pod-
damage is 𝜇 = 0.03. From the objective function in Equation 6.15, the model requires
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the weights 𝑊1, 𝑊2, and 𝑊3. This weight group defines the break-even between damage
and action costs. We set the weights to be 𝑊1 = 10, 𝑊2 = 10 and 𝑊3 = 1, representing
that controlling defoliation and pod-damage is more valuable than the decision costs from
handling the pest outbreak. Thus, selecting the weight is subjective and accentuates the
damages over the costs,although the solution will be designed to minimize costs.

The reported test in Figure 6.2 presents a pest problem solution based only
on introducing natural agent predators in the cropping area. The exogenous information
vector Ω[𝑡] disturbs the pest management equilibrium and makes it possible to emulate
pest outbreak throughout the entire crop cycle.
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Figure 6.2 – Caterpillar population density from Test A.

Using a typical pesticide spraying as value reference, controlling caterpillar
population by increasing predator population density becomes viable until its cost per unit
reaches 4.03 times the cost of the typical spraying. Above this threshold, the algorithm
provide solutions based on the set of available pesticides.

Figure 6.3 presents a combined action set involving pesticides and natural
agent predators to manage the pest population outbreak. Although a relative small per-
centage of defoliation does not severely affect productivity, we observe some decisions
taking by caterpillar density control acting in defoliation levels. Soybean pod-damage
is the most undesirable effect caused by caterpillar. Figure 6.4 indicates the percentage
damage caused by the caterpillar population on soybeans. Although the perception of
high pressure from pest population is immediate and control actions are taken as soon as
possible, a certain level of caterpillar in the field would cause inevitable damage until the
control mechanism reaches full performance. Our methodology provides a strong response
and brings down any pod-damage to prevent significant impacts during all the soybean
growth stages.



Chapter 6. Pest management in soybeans 143

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

State transition parameters: Exogenous information Caterpillar population density x[t] Predator population density z[t]
Aggregated effect of control actions at stage t Pesticide effect at stage t Predator effect at stage t
Caterpillar population growth at stage t

Caterpillar population density in the field

Soybean growth stages (in weeks)

C
at

er
pi

lla
r 

Po
pu

la
tio

n 
(i

nd
iv

id
ua

ls
/s

qu
ar

e 
m

et
er

)

Figure 6.3 – Caterpillar population density on soybeans from Test B.

0 5 10 15

0

5

10

15

20

State transition parameters: Defoliation damage at stage t Pod-damage at stage t

Soybean defoliation and pod-damage

Soybean growth stages (in weeks)

Pe
rc

en
ta

ge
 o

f 
da

m
ag

e

Figure 6.4 – Soybean defoliation and pod-damage from second Test B.

6.3 Conclusion and further steps

Integrated pest management guides farm decisions to prevent the spread of
plant pests, including diseases, weeds, and insects. We combine the available mechanisms
to handle one particular pest problem on soybeans under a new mathematical perspective.
Our optimization model allows farmers to evaluate what is the best solution to reduce
damages caused by H. armigera. Designing a tailored approach for each scenario of infesta-
tion brings more sustainable practices compared to spraying a fixed number of preventive
pesticides without carefully considering a broad perspective. From the same standpoint,
we provide a mathematical representation for divergent study branches that are hard to
join: spraying chemical and biological pesticides and introducing dynamic prey-predator



Chapter 6. Pest management in soybeans 144

relationships in the farm management policies. Although this work addresses one partic-
ular pest on soybeans, further researches in field could easily adapt the same modeling
structure to handle other critical pest agents. Our proposed strategy should to assist the
farm management decision-making due to its capacity to assess the impact of H. armigera
on soybeans and faithfully reproduce the pest challenge in a simulated environment, ad-
vising the best decisions. Once properly calibrated, our proposed model could reduce the
use of pesticides and increase farm efficiency.
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7 Time series forecasting in Agriculture

The agricultural sector relies heavily on climate factors and is often regarded
as the most vulnerable to changes in weather trends (SANTOS et al., 2021). The impact
of climate change on agriculture is influenced by both the pace and intensity of these
changes, as well as how well farmers can adjust their crop management practices. Strate-
gies such as crop rotation and integrated pest management are among the techniques
that can help farmers adapt. A natural outcome of this scenario is that agricultural pro-
duction is consistently exposed to risks and uncertainties, with numerous factors having
more negative impacts than positive ones, such as price volatility, disease outbreaks, and
prolonged droughts (ÖZDEN; BULUT, 2023).

The Food and Agriculture Organization stated that for those involved in agri-
food systems to continue producing, processing, marketing, and consuming safe and nu-
tritious foods, as well as other goods and services, it is vital to employ numerous effective
strategies for climate resilience and adaptation (Food and Agriculture Organization (FAO)
of the United Nations (UN), 2022). Improving climate change preparedness is closely
linked to initiatives in the agricultural sector, and transitioning towards more sustainable
practices will demand significant long-term investments. Thus, it is virtually impractical
to outline long-term investments in climate change mitigation strategies without taking
into account any form of price or weather forecasting over an extended period. Antic-
ipating trends in agricultural commodity time series plays a crucial role in sustaining
agricultural revenues, thereby supporting a robust financial enterprise. Accurate forecast-
ing of agricultural products can support decision-making and help farmers globally in
achieving consistent outcomes in the years ahead.

The Box-Jenkins method (JENKINS; BOX, 1976) is a key traditional tech-
nique for forecasting time series. It relies on a linear combination of prior values with
assigned weights and explicitly incorporates seasonality to account for recurring fluctua-
tions in seasonal cycles. Combining machine learning alongside the Box-Jenkins approach,
the application of artificial neural networks (ANNs) has been demonstrated as an effec-
tive method for addressing the non-linear aspects of time series forecasting (KHASHEI;
BIJARI, 2011; FARUK, 2010; KURUMATANI, 2020). Another important ability of ma-
chine learning solutions is to uncover concealed relationships within target systems and
accelerate the modeling of non-linear behaviors through the use of ingenious mechanisms
like the gate memory in long short-term memory (LSTM) (HOCHREITER, 1997).

Predicting prices in any market is challenging, and agricultural commodities
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are no exception. Price forecasts involve numerous non-linear elements and unpredictable
fluctuations. Among machine learning tools, Prophet stands out as a robust prediction
algorithm. Its most accurate outcomes are achieved when predicting time series with
pronounced seasonal patterns, such as those related series to climate (KANINDE et al.,
2022; GARLAPATI et al., 2021) .

In this chapter, we discuss the use of artificial neural networks (ANN) for time
series forecasting. Section 7.1 discusses the methodology we have utilized to predict time
series relevant to the agricultural sector. Section 7.2 presents our forecasting approach into
the major grain commodities. Applying time series forecasting methods to weather predic-
tion is the topic of Section 7.3. We present our concluding reflections on the methodology
for time series forecasting in Section 7.4.

7.1 The chosen techniques for forecasting time series

We have tailored our approach to time series forecasting by employing Long
Short-Term Memory (LSTM) and the Prophet. While ARMA (AutoRegressive Moving
Average) models are typically used for these tasks, the intricate non-linear characteristics
of the time series we aim to address make standard ARMA models inadequate for reliable
predictions. Thus, we utilize artificial neural networks with the aim of effectively identi-
fying the nonlinear component of the time series. A comprehensive overview of LSTM is
presented in Subsection 7.1.1. An overview of the Prophet presented in Subsection 7.1.2.
The metrics chosen for performance evaluation found in Subsection 7.1.3.

7.1.1 Describing the structure of Long short-term memory (LSTM)

Recurrent neural networks (RNN) are artificial neural networks focused on
sequential data or time series data. Although many deep learning architectures have been
developed to deal with intrinsic dataset properties, gathered information from previous
iterations are discarded and each step processes only their corresponding input. The lack
of memory in several deep learning methods turn out to be ineffective models for time
series forecasting. (BHANDARI et al., 2022).

The vanishing gradient problem is a phenomenon that takes place in the train
step of deep neural networks, where the gradients that are used to update the network’s
mechanism become extremely small as they are back-propagated from the output layers
to the preceding layers. Even though it presents one of the major difficulties for conven-
tional RNNs, Long short-term memory (LSTM), which is a variant RNN, has successfully
dealt with the vanishing gradient problem. Innovations in LSTM memory cell overpass the
challenge by incorporating a selective mechanism that hold or discard information, down-



Chapter 7. Time series forecasting in Agriculture 147

sizing the gradient problem and allowing learning long-term dependencies in sequential
data (SYED; AHMED, 2023). The use of LSTM for non-linear time series forecasting has
established its efficacy in several studies, exceeding classical approaches in complex task as
stock prediction (YADAV; THAKKAR, 2024; MOGHAR; HAMICHE, 2020; BHANDARI
et al., 2022; LINDEMANN et al., 2021).

Figure 7.1 details the information flow inside a LSTM cell. Input features are
a combination of the output from previous cell (𝑐𝑡−1) and the hidden state (ℎ𝑡−1). Three
gates compose a LSTM cell: a forget gate, an input gate, and an output gate. Discarding
information is very carefully weighed in the forget gate. Input gate updates the cell state
after filtering process in the forget gate. A sigmoid layer and a tahn layer compose the
input gate, the first one decides which segment to update and the last one creates a
vector of new candidate values that could be added to the state. The next hidden state
is provided by the output gate. The flow of information is fully refined within these three
gates, leaving behind irrelevant information or redundant data.

Figure 7.1 – Long short-term memory cell architecture: sh

An input time series can be represented as 𝑋 = (𝑥1, 𝑥2, · · · , 𝑥) and the hidden
state of the memory cell as 𝐻 = (ℎ1, ℎ2, · · · , ℎ𝑡). Equation (7.1) defines the critical task
of assessing which data fragments to retain or discard in the forget gate. The preceding
hidden state ℎ𝑡−1 and the actual input 𝑥𝑡 are the input features and the generated output
is the forget vector 𝑓𝑡. Therefore, we have 𝜎 representing a sigmoid activation function,
which has the property that it map the entire number line into a small range, such as
between 0 and 1. Another features related to the forget gate are the weight matrix 𝑊𝑓

and the bias vector 𝑏𝑓 , both are learnable parameters acquired from the training process
of the neural network (GREFF et al., 2017; SYED; AHMED, 2023; BHANDARI et al.,
2022).
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𝑓𝑡 = 𝜎(𝑊𝑓 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ) (7.1)

The input gate controls the inflow of fresh data into the memory cell. There
are two key components in the input gate: the input activation gate and the candidate
memory cell gate. The input features are the previous hidden state ℎ𝑡−1 and the actual
node 𝑥𝑡. The degree to which the new input is integrated into the memory cell is con-
trolled by the input activation gate, which produces an input vector 𝑖𝑡. The candidate
memory cell gate determines the portion of new data that is kept in the memory cell
illustrated in a candidate memory cell vector 𝑐𝑡. Equation (7.2) describes the operation
of the input activation gate, whereas Equation (7.3) represents the use of the hyperbolic
tangent activation function (𝑡𝑎𝑛ℎ) to determine the candidate memory cell 𝑐𝑡. The input
activation gate has a weight matrix 𝑊𝑖 and a bias vector 𝑏𝑖 , whereas a weight matrix 𝑊𝑐

and a bias vector 𝑏𝑐 holds a crucial role in the candidate memory cell gate. Equation (7.4)
denotes the combination of the input vector 𝑖𝑡 and the candidate memory cell vector 𝑐𝑡
to update the output from preceding cell 𝑐𝑡−1 using element-wise multiplication.

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (7.2)

𝑐 = 𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (7.3)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡 (7.4)

The output gate defines which data fragments from the current memory cell
ought to reach the current hidden state. The output vector 𝑜𝑡, produced in the output
gate, is produced in Equation (7.5) . The weight matrix 𝑊𝑜 and the bias vector 𝑏𝑜 are
associated with the output gate. The final step in the memory cell operation is to set the
current hidden state ℎ𝑡, which is is achieved through Equations (7.6) and (7.7).

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡, 𝑐𝑡] + 𝑏𝑜) (7.5)

ℎ̃𝑡 = 𝑡𝑎ℎ𝑛(𝑐𝑡) (7.6)

ℎ𝑡 = 𝑜𝑡 ⊙ ℎ̃𝑡 (7.7)

To enhance LSTM performance, it is necessary to perform hyperparameter tuning on
the algorithm in order to discover the optimal configuration of various parameters that
influence the learning process. Below, we identify the key parameters:

• Batch size: the quantity of samples analyzed prior to the adjustment of the model’s
internal parameters;
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• Epochs: the number of times the model goes through the training data;

• Optimizer: common optimizers for LSTMs include Adam, RMSprop, and SGD;

• Number of layers: adding additional layers enhances complexity but can also render
the model harder to train and susceptible to over-fitting;

• Hidden Units: the number of units in each LSTM layer;

• Learning rate: the step size in optimization; setting it too high may result in sub-
optimal convergence, whereas a too low value may cause the learning process to be
sluggish.

7.1.2 An overview of Prophet for time series prediction

Prophet, offered as an open-source utility by Facebook Inc., is accessible in
both Python and R programming languages. It is crafted to include user-friendly param-
eters that can be modified without the need to understand the specifics of the underlying
model (MENCULINI et al., 2021). As detailed in the author’s research in Taylor and
Letham (2018), Prophet employs a decomposable time series model that is composed of
three primary elements: (1) trend, (2) seasonality, and (3) holidays, if applicable. These
elements are incorporated into Equation (7.8). The trend function 𝑔(𝑡) captures non-
periodic shifts in the time series, while 𝑠(𝑡) models periodic fluctuations such as weekly
and yearly cycles. The function ℎ(𝑡) accounts for the holiday effects that can occur on
irregular schedules that span one or more days. The error term 𝜖𝑡 accounts for any unique
variations not covered by the model. This approach resembles a generalized additive model
(GAM) (HASTIE, 2017), a category of regression models that can apply non-linear smooth
transformations to predictors. The GAM framework facilitates decomposition and adapt-
ability, allowing the integration of new components, such as a newly detected seasonal
influence.

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜖𝑡. (7.8)

7.1.3 Model performance metrics

Any model creation necessitates a form of validation; however, there lacks an
established or theoretical framework uniquely tailored for validating ANN models. Typ-
ically, the practice involves assessing model validation using a particular performance
metric applied to data excluded from the model’s construction, known as a test set. Com-
monly cited performance metrics include Mean Absolute Error (MAE) and Root Mean
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Squared Error (RMSE) (TWOMEY; SMITH, 1995). In the subsequent sections, we will
examine various time series forecasting models, assessing the precision and reliability of
the models by calculating six different performance metrics: MSE, RMSE, MAE, MAPE,
SMAPE, and 𝑅2. Below are the mathematical equations for these metrics. We begin by
describing the symbols:

• 𝑦𝑖: predicted variable

• 𝑦𝑖: actual value

• 𝑦𝑖: mean actual value

• 𝑁 : number of observations

1. Mean Squared Error (MSE):

MSE = 1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (7.9)

2. Root Mean Squared Error (RMSE):

RMSE =
√

MSE =
⎯⎸⎸⎷ 1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (7.10)

3. Mean Absolute Error (MAE):

MAE = 1
𝑛

𝑛∑︁
𝑖=1
|𝑦𝑖 − 𝑦𝑖| (7.11)

4. Mean Absolute Percentage Error (MAPE):

MAPE = 100
𝑛

𝑛∑︁
𝑖=1

⃒⃒⃒⃒
⃒𝑦𝑖 − 𝑦𝑖𝑦𝑖

⃒⃒⃒⃒
⃒ (7.12)

5. Symmetric Mean Absolute Percentage Error (SMAPE):

SMAPE = 100
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖|
|𝑦𝑖|+|𝑦𝑖|

2

(7.13)

6. Coefficient of Determination (𝑅2):

𝑅2 = 1−
∑︀𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑖)2∑︀𝑛
𝑖=1(𝑦𝑖 − 𝑦)2 (7.14)
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7.2 Historical time series for major agricultural commodities

This research utilizes a collection of agricultural commodities for model fore-
casting. The feature selection process entails pinpointing the crucial elements that influ-
ence the pricing structure of commercial grains within Brazil’s market. We focus on four
primary grain commodities in Brazil: (1) corn, (2) sorghum, (3) soybeans, and (4) wheat.
The grain prices reported by farmers in São Paulo are derived from weekly data collected
by the Companhia Nacional de Abastecimento (CONAB) (CONAB, 2023), a state-owned
company focused on insights into the agricultural sector.

From the average cash prices paid to farmers in the state of São Paulo shown
in the appendix A, we compiled the price chart in Figure 7.2. Our historical dataset spans
the period from 2014-01-06 to 2024-02-05. Anticipating commodity trends is a complex
endeavor, as market globalization has significantly altered agricultural production. In
recent decades, prices have become considerably more influenced by global trends rather
than localized opportunities, resulting in a diminished seasonal impact from harvest times
in specific regions. The principle of supply and demand remains valid, yet their impact
should be evaluated on a global scale. Without correlating various financial indices, it
would be difficult to predict major price variations, like those observed in the latter half
of 2020.
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Figure 7.2 – The average cash price received by farmers for soybeans in São Paulo.

As illustrated in the price chart in Figure 7.2, we note a decline in prices
for the 2022/2023 harvest. The record yield coupled with constrained storage capacity
significantly affects prices. Indeed, throughout the harvest season, both domestic and
international markets exert downward pressure on the cash prices producers receive, with
increases being rare during this time. The factors contributing to the growth observed in
2021/2022 and 2022/2023 are more aligned with the international supply crisis.
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Corn cash prices received by producers tend to remain more stable during the
summer and winter harvest seasons. In the state of São Paulo, this price steadiness is
attributed to strong domestic demand and its advantageous geographic position. Accord-
ing to historical price data, 2023 experienced significant price declines. The reported cash
prices for major grains in 2023 brought an end to the growth seen in previous harvest
seasons. Even excluding yield unpredictability, low grain prices significantly impact farm
profitability. Thus, engaging in long-term planning initiatives would enhance business sta-
bility and better prepare farmers for the upcoming growth cycle. To predict the weekly
prices of agricultural commodities, we employ both univariate and multivariate LSTM
models, which will be detailed in the upcoming subsections.

7.2.1 Predicting price commodities using univariate LSTM network

We combine the prediction for corn cash price from the Long Short-Term
Memory in Figure 7.3. For a clearer presentation within the graphic, we omitted a sub-
stantial segment of the training from the plot, concentrating instead on the test set and
projections. At times, a sole focus on metrics evaluation can mislead us. By utilizing
plots, we can more effectively determine whether the model truly possesses any predictive
ability.The primary distinction between test evaluation and future projections hinges on
batch information. Testing utilizes historical data contained within the batch; in contrast,
predictions for corn futures extending beyond the batch size are achieved by incorporating
these future forecasts into the batch and fully substituting the real data from the input
parameters. This method results in error accumulation because predictions rely on other
predictions.
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Figure 7.3 – Predicting corn cash price using a univariate LSTM model.

From sorghum, we present the forecast in Figure 7.4. We define future pre-
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dictions as those made beyond the available historical data. In the training and testing
phases, the LSTM generates what we simply refer to as predictions.
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Figure 7.4 – Predicting sorghum cash price using a univariate LSTM model.

Figure 7.5 shows prediction for cash price paid to farmers for soybeans. By
integrating the data from this chart with the metrics presented in Table 7.1, we observe
that the correlation of the model with soybean data had the least accurate approximation
to the actual historical data in the test set. The performance metrics for predicting soybean
cash prices with the univariate LSTM model were inferior to those of other agricultural
commodity models.

2019−11 2020−03 2020−07 2020−11 2021−03 2021−07 2021−11 2022−03 2022−07 2022−11 2023−03 2023−07 2023−11 2024−03 2024−07 2024−11 2025−03

Date

80

100

120

140

160

180

200

S
oy

b
ea

n
s

C
as

h
P

ri
ce

(R
$)

Time Series Forecasting for Soybeans Prices

Actual Soybeans Data

Train Soybeans Predictions

Actual Soybeans Test Data

Soybeans Test Predictions

Soybeans Future Predictions

Figure 7.5 – Predicting soybean cash price using a univariate LSTM model.

While the model’s performance is not yet optimal, it is important to consider
that volatility in agricultural commodities has surged significantly since 2020, with mar-
ket fluctuations becoming so frequent that even market analysts are struggling to deliver
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reliable forecasts. Despite the LSTM making attempts to manage certain non-linear be-
haviors, the evaluation period corresponds to a highly volatile phase in commodity prices,
so the suboptimal performance observed in Table 7.1 should not be unexpected.

2019−11 2020−03 2020−07 2020−11 2021−03 2021−07 2021−11 2022−03 2022−07 2022−11 2023−03 2023−07 2023−11 2024−03 2024−07 2024−11 2025−03

Date

60

80

100

120

W
h

ea
t

C
as

h
P

ri
ce

(R
$)

Time Series Forecasting for Wheat Prices

Actual Wheat Data

Train Wheat Predictions

Actual Wheat Test Data

Wheat Test Predictions

Wheat Future Predictions

Figure 7.6 – Predicting wheat cash price using a univariate LSTM model.

By evaluating these measurements, we note that predicting sorghum cash
achieved the highest performance in terms of MSE, RMSE, and MAE. In contrast, wheat
predictions scored top in R2, whereas corn predictions excelled in SMAPE. While LSTMs
offer an extensive array of parameters to fine-tune their performance, we present solely
the optimal results obtained from numerous tests, aiming for conciseness in this thesis.

Table 7.1 – Evaluating the univariate LSTM performance for forecasting agricultural com-
modity futures prices.

Time Series MSE RMSE MAE MAPE SMAPE R2

Corn 62.82 7.93 5.91 9.39 8.57 0.73
Sorghum 53.85 7.34 5.74 11.56 10.54 0.57
Soybeans 299.2 17.3 14.51 10.34 9.8 0.48
Wheat 102.6 10.13 8.11 9.1 8.75 0.78

7.2.2 Using a multivariate LSTM network for forecasting agricultural com-
modities

In this subsection, we explore the application of a multivariate LSTM for
predicting agricultural commodities. The input variables consist of four commodities: corn,
sorghum, soybean, and wheat. The output is a unified forecast for all four commodities.
The predictions for the train set are omitted as it is required to combine the four series
into a single entity to properly represent the training context of multivariate LSTMs.
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Figure 7.7 displays the cash prices for corn paid to farmers in São Paulo. After
completing the training and testing phases, we predict prices for the subsequent year
based on historical data. Although our training incorporates data starting from early
2013, for clarity, we only show the final segment of training data from 2019 on-wards in
the following figures.
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Figure 7.7 – Predicting corn cash price using a multivariate LSTM model.

For sorghum, we have price prediction in Figure 7.8. Though corn prices exceed
those of sorghum, the pricing trends for both display a remarkably similar pattern.
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Figure 7.8 – Predicting sorghum cash price using a multivariate LSTM model.

Soybean forecasting in presented in Figure 7.9. The discrepancy between the
algorithm’s predictions and soybean prices in the last quarter of 2023 should not be viewed
as a flaw in the algorithm since economic volatility was exceptionally high during that
period.
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Figure 7.9 – Predicting soybean cash price using a multivariate LSTM model.

Wheat forecasting is part of Figure 7.10. By employing the multivariate variant
of LSTM, we aim to correlate additional time series with wheat predictions, and the
converse is equally applicable. The separation between the historical wheat series and the
test predictions might seem disconcerting; however, it reflects the algorithm’s inference
derived from the other price series.
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Figure 7.10 – Predicting wheat cash price using a multivariate LSTM model.

A consolidated view of the metric errors from the multivariate LSTM to predict
commodity prices is depicted in Table 7.2.
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Table 7.2 – Time series forecast evaluation using a multivariate LSTM.

Column MSE RMSE MAE MAPE SMAPE R2

Soybeans 193.45 13.91 11.55 7.88 7.79 0.67
Sorghum 83.26 9.12 7.89 15.66 14.02 0.34
Wheat 197.79 14.06 11.68 11.84 12.12 0.57
Corn 143.16 11.97 10.58 16.8 14.98 0.39

7.3 Historical weather data and forecasting

In combination with price history, the weather history plays a crucial role in
price fluctuations. We collected weather history from the Instituto Nacional de Metere-
ologia (INMET). We conducted multiple forecasts using Prophet, a univariate LSTM,
and a multivariate LSTM, which are detailed in the subsections below. To be concise and
improve clarity, we have chosen the following list for display in our chart analysis:

• Weekly average atmospheric pressure at station level (𝑚𝐵)

• Weekly average total precipitation (𝑚𝑚)

• Weekly average global radiation (𝐾𝐽/𝑚2)

• Weekly average air temperature (∘𝐶)

• Weekly relative air humidity (%)

• Weekly average wind speed (𝑚/𝑠)

In order to concisely assess the algorithms chosen for predicting weather vari-
ables, we employ data from a weather station in Sorocaba, São Paulo, to conduct various
tests and facilitate the ensuing discussions. In Subsection 7.3.1, the application of the
Prophet for predicting weather-related time series is discussed. Subsection 7.3.2 focuses
on employing the univariate LSTM, while Subsection 7.3.3 showcases outcomes from the
multivariate LSTM model. It is anticipated that any latent patterns within these combi-
nation of time series data would emerge in the multivariate model if they exist.

7.3.1 Using Prophet to forecast weather time series

For time series that exhibit significant seasonal dependence, a model using
Prophet can effectively align with the data.
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Figure 7.11 – Predicting Atmospheric Pressure at Station Level using Prophet.

Clearly, it is quite challenging to integrate extreme outliers observed in April
2021 into the time series forecasts. The weekly cumulative precipitation depicted in Figure
7.12 shows a distinct pattern with pronounced annual seasonality, featuring peaks during
spring and summer and notable lows from autumn to winter.
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Figure 7.12 – Predicting Precipitation using Prophet.

Total weekly accumulated radiation depends on the ratio of cloudy and sunny
days. This weather variable is highly difficult to grasp as we can see in Figure 7.13.
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Figure 7.13 – Prophet Model for Accumulated Radiation Prediction.

Extended periods of drought typically occurring during winter show a notable
correlation with declines in the average relative humidity depicted in Figure 7.14.
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Figure 7.14 – Utilizing Prophet to forecast relative humidity.

In the graph shown in Figure 7.15, one can observe a modest year-to-year
rise in the temperature forecast by Prophet. Even algorithmic predictions are starting to
reveal the effects of global warming.
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Figure 7.15 – Forecasting mean temperature with the Prophet model.

In analyzing the data illustrated in Figure 7.16, we observed a regular trend in
wind velocity spanning 2019 to 2022. However, a significant decline in the weekly average
wind velocity is evident in 2023. Prophet successfully identified this outlier trend and
accurately captured the overall annual behavior.
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Figure 7.16 – Utilizing Prophet to forecast mean wind speed.

Table 7.3 summarizes the evaluation of Prophet metrics. We have included
various graphics throughout this section to forecast variables, aiming to prevent relying
solely on the table’s metrics for model assessment. Despite not achieving outstanding
results from these metrics, it is evident that the algorithm demonstrates some predictive
capability. The lower performance can be attributed to the numerous outliers in the
weather-related parameters.
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Table 7.3 – Evaluating Prophet performance in predicting weather parameters.
Forecasting variable MSE RMSE MAE MAPE SMAPE R2

Weekly Accumulated Precipitation 1270.25 35.64 18.81 inf 141.51 0.04
Weekly Accumulated Radiation 7025772647.92 83819.88 49032.93 69.54 29.95 0.04
Atmospheric Pressure at Station Level 5.76 2.4 1.72 0.18 0.18 0.21
Weekly Maximum Atmospheric Pressure in the Previous Hour 5.76 2.4 1.71 0.18 0.18 0.21
Weekly Minimum Atmospheric Pressure in the Previous Hour 5.95 2.44 1.73 0.18 0.18 0.21
Weekly Average Temperature 4.67 2.16 1.67 8.24 8.06 0.39
Weekly Average Temperature - Dew Point 5.4 2.32 1.7 13.85 12.55 0.5
Weekly Maximum Temperature 15.27 3.91 2.53 9.7 8.76 0.01
Weekly Minimum Temperature 6.46 2.54 1.94 32.82 17.82 0.67
Weekly Maximum Dew Point Temperature in the Previous Hour 8.44 2.91 1.96 12.27 11.07 0.22
Weekly Minimum Dew Point Temperature in the Previous Hour 10.33 3.21 2.58 161.11 38.9 0.5
Weekly Maximum Relative Humidity 74.63 8.64 3.74 5.21 4.46 -0.02
Weekly Minimum Relative Humidity 116.49 10.79 8.05 25.66 23.91 0.14
Weekly Average Relative Humidity 68.98 8.31 6.66 9.96 9.76 0.01
Weekly Average Wind Direction 745.53 27.3 22.0 13.12 13.12 -0.18
Weekly Maximum Wind Gust 4.54 2.13 1.63 102.6 43.76 0.13
Weekly Average Wind Velocity 1.33 1.15 0.9 2007.41 62.09 0.03

7.3.2 Univariate LSTM

Using a multivariate LSTM, we predict atmospheric pressure at stations level
depicted in Figure 7.17.
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Figure 7.17 – Using LSTM univariate to predict atmospheric pressure at station level.

A prediction for weekly precipitation is part of Figure 7.18.Forecasting pre-
cipitation for the upcoming years undoubtedly stands as the foremost task in time series
forecasting in relation to the topics we have investigated in this study. Accurate rain-
fall predictions for the upcoming season can significantly influence the decisions on crop
sequences that we explored in Chapter 3. Being aware of a forthcoming dry season can
influence farmers’ choices to enhance resilience and prevent crop failures.
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Figure 7.18 – Weekly total precipitation prediction with univariate LSTM.

Weekly accumulated radiation using univariate LSTM is part of Figure 7.19.
Radiation is as crucial as water for crop growth and can significantly influence yield.
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Figure 7.19 – Weekly accumulated radiation estimation from a univariate LSTM.
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Figure 7.20 – Mean relative humidity using a univariate LSTM.
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Predicting mean temperature using univariate LSTM is presented in Figure
7.21.
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Figure 7.21 – Mean temperature forecasting using univariate LSTM.

Wind velocity is predicted in Figure 7.22.
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Figure 7.22 – Wind velocity prediction based on univariate LSTM network.

Errors from the selected metrics are displayed in Table 7.4. Errors associated
with accumulated radiation are not surprising, given their distinction from other types
of errors because of the large quantities that characterize accumulated radiation.Other
meteorological variables are expressed in smaller units.
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Table 7.4 – Assessing the effectiveness of LSTM models for forecasting weather patterns.

Time series MSE RMSE MAE R2

Weekly Accumulated Precipitation 1304.51 36.12 22.04 0.01
Weekly Accumulated Radiation 5170616000.0 71906.99 43702.19 0.29
Atmospheric Pressure at Station Level 4.05 2.01 1.62 0.45
Weekly Maximum Atmospheric Pressure in the Previous Hour 4.4 2.1 1.64 0.4
Weekly Minimum Atmospheric Pressure in the Previous Hour 4.39 2.09 1.68 0.42
Weekly Average Temperature 3.99 2.0 1.55 0.48
Weekly Average Temperature - Dew Point 5.57 2.36 1.83 0.49
Weekly Maximum Temperature 9.88 3.14 2.32 0.36
Weekly Minimum Temperature 6.12 2.47 1.97 0.68
Weekly Maximum Dew Point Temperature in the Previous Hour 7.55 2.75 1.99 0.3
Weekly Minimum Dew Point Temperature in the Previous Hour 10.33 3.21 2.58 0.5
Weekly Maximum Relative Humidity 66.64 8.16 3.41 0.08
Weekly Minimum Relative Humidity 101.07 10.05 7.51 0.25
Weekly Average Relative Humidity 62.18 7.89 6.15 0.11
Weekly Average Wind Direction 432.83 20.8 16.69 0.32
Weekly Maximum Wind Gust 1.63 1.28 1.0 0.69
Weekly Average Wind Velocity 0.56 0.75 0.58 0.59

7.3.3 Using LSTM multivariate version to predict weather forecast

In the same manner we did with price series forecasting, we use a multivariate
LSTM predict input several weather parameters and predicting all of them together to
see if there are interrelated.
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Figure 7.23 – Predicting atmospheric pressure with a multivariate LSTM network.

Weekly accumulated precipitation and radiation are presented in Figures 7.24
and 7.25. We note the peak occurring around April 2021 and acknowledge the difficulty
in devising a precise prediction strategy for long-term evaluation.
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Figure 7.24 – Weekly accumulated precipitation using a multivariate LSTM network.
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Figure 7.25 – Weekly accumulated radiation using a multivariate LSTM network.

Air moisture prediction is the subject of Figure 7.26. The low levels of air
moisture observed in December 2022 stand out as outliers. Forecasts conducted beyond
the actual test data indicate a predictable trait, which is a drop in air humidity throughout
the winter months, with a particularly notable low occurring in July 2024.
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Figure 7.26 – Weekly average relative humidity using a multivariate LSTM network.

Predicting mean temperature using univariate LSTM is presented in Figure
7.27. We observed a modest rise in the annual trend shown in the forecast beyond the
test dataset, aligning with the global warming trends for the upcoming years.
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Figure 7.27 – Predicting average temperature using a multivariate LSTM network.

Wind velocity is predicted in Figure 7.28. The climatic factors discussed in this
chapter are closely linked to the various themes explored in prior chapters of this thesis.
For instance, the effectiveness of herbicide spraying conducted by tractors is impacted by
wind velocity. The evapotranspiration rate in crops is also influenced by wind conditions.
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Figure 7.28 – Weekly average wind velocity from a multivariate LSTM network.

Computed errors for the multivariate LSTM is the theme of Table 7.5. Upon
comparison with the results in Tables 7.4 and 7.3, it is evident that none of the three
methods align perfectly with the historical weather data. It is important to note that the
significant weekly fluctuation in weather data results in metric inaccuracies. Nevertheless,
charts illustrate that these methods effectively capture the seasonal component.

Table 7.5 – Evaluating LSTM multivariate performance.

Time series MSE RMSE MAE R2

Weekly Accumulated Precipitation 1379.77 37.15 23.31 -0.04
Weekly Accumulated Radiation 6686341600.0 81770.06 49024.26 0.08
Atmospheric Pressure at Station Level 4.54 2.13 1.66 0.38
Weekly Maximum Atmospheric Pressure in the Previous Hour 4.5 2.12 1.6 0.39
Weekly Minimum Atmospheric Pressure in the Previous Hour 4.32 2.08 1.6 0.43
Weekly Average Temperature 4.37 2.09 1.64 0.42
Weekly Average Temperature - Dew Point 4.52 2.13 1.63 0.58
Weekly Maximum Temperature 16.65 4.08 2.87 -0.08
Weekly Minimum Temperature 8.62 2.94 2.31 0.56
Weekly Maximum Dew Point Temperature in the Previous Hour 6.63 2.58 1.81 0.38
Weekly Minimum Dew Point Temperature in the Previous Hour 11.14 3.34 2.68 0.46
Weekly Maximum Relative Humidity 55.27 7.43 3.74 0.24
Weekly Minimum Relative Humidity 115.13 10.73 8.0 0.14
Weekly Average Relative Humidity 63.98 8.0 6.5 0.08
Weekly Average Wind Direction 625.21 25.0 19.27 0.01
Weekly Maximum Wind Gust 3.08 1.76 1.37 0.4
Weekly Average Wind Velocity 0.93 0.96 0.8 0.32

7.4 Final remarks about time series forecasting in the agrarian field

Forecasting time series in agriculture is not merely a promising strategy; it
is critical to maintain consistent agricultural output amid the challenges posed by cli-
mate change, which affects both weather patterns and commodity prices. The increasing
expenses that farmers incur for crop cultivation should be carefully evaluated against
potential revenue before proceeding. For a precise assessment of future earnings, it is es-
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sential to establish accurate predictions for agricultural commodities and substantiate the
necessity of enhancing foreseeability within the agricultural industry.

Our findings suggest that predicting time series in agricultural settings is fea-
sible and merits additional investigation. Although making accurate long-term forecasts,
spanning several years, may remain challenging in the immediate future, we cannot over-
look the potential transformation they may bring to agricultural planning as they become
more dependable. Additional research is necessary to determine the reliability of forecasts
over multiple steps based on historical data. Instead of attempting to forecast time series
events, we should reinterpret predictions as the likelihood of events occurring. For in-
stance, predicting the probability of receiving sufficient rainfall in the upcoming cropping
season. Potential modifications may enhance the accuracy of forecasts when compared to
straightforward predictions of weekly rainfall several months in advance.
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8 Conclusion

This thesis’s findings have demonstrated their worth in addressing the agricul-
tural challenges we explored through the perspective of optimization. We offer an engaging
methodology, enhancing the efficiency of various planning activities associated with farm
management. Through our proposal of optimization models, we have provided several
services that encompass the daily operations of numerous grain farmers both in Brazil
and around the world.

We address real-world challenges in agriculture by modeling their effects on
the agribusiness sector, and developed practical solutions to help overcome obstacles in
farming activities. Our findings indicate that agriculture can gain substantially by merg-
ing planning with a systematic methodology, especially in daily farm decisions. In our
quest for sustainability, we prioritize evaluating the environmental impacts of agricul-
tural management choices on ecological balance, considering both resource consumption
and pesticide application. Our approach is meticulously crafted to reduce environmental
impact through a deliberate management strategy.

We have presented an extensive review of the agricultural sector along with
a broad perspective on grain farm practices, encompassing the application of herbicides,
pest management, the utilization of cover crops, and the rotation of different crop families.
Our study sets itself apart in the literature by addressing farm management decisions in
a practical manner, enabling the incorporation of typically complex elements into farm
production forecasts. This includes factors like water demand and availability, nutrient
absorption, herbicide selection, and pest control components. We do not aim to replace
agronomic expertise; instead, we seek to offer a framework for evaluating strategies that
extends beyond cost analysis in order to assess decisions in farm management.

Addressing the research question

The primary research inquiry driving this thesis was as follows: “How can
farm management strategies integrate optimization principles to drive sustainability?”.
This study demonstrates that integrating an algorithm-based approach into agriculture
should be approached incrementally, as we have done in this thesis. Initially, the review
of the literature in Chapter 2 indicates that farmers face multiple problems in their daily
routine. Addressing the entire scope of farm management within a single framework would
be excessively complex and likely impractical.
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Upon evaluating our efforts in this thesis, we found that sustainability on
the farm is achieved through the appropriate blend of profitability and environmentally
friendly practices. In the preceding chapters, the application of optimization methods
has consistently focused on balancing these two occasionally conflicting goals. While
we did not directly address multi-criteria optimization, by ensuring compliance with
environment-related constraints, we inherently integrate the utilization of ecosystem ser-
vices, thereby benefiting the environment and subsequently shifting our focus to achieve
profitability.

Therefore, employing optimization in agriculture is vital for converting agro-
nomic principles into measurable attributes, even enabling us to compare more preferable
outcomes, such as fortifying soil structure to prevent erosion versus combating weeds.

Summary of contributions

This thesis have embraced several ecosystem services in the agricultural sector.
The novel method we describe in Chapter 3 involves incorporating cover crops into the
crop rotation sequence in such a manner that allows for measurement, comparison, and
analysis, even during the planning stage. While cover crops are frequently utilized in agri-
culture, this thesis thoroughly examines the essential tools needed to assess their on-site
performance, offering a substantial contribution to the field. Our empirical methodology
linking soil moisture levels with crop requirements further elevates the significance of the
Crop Rotation Problem.

The themes we have examined delve into the concept of sustainable agricul-
ture. In this thesis, we advocate for a strategic approach to using resources in agriculture.
Our efforts focus on raising awareness about the application of herbicides, the strategy
for managing pests, and the adaptation of farm management practices to mitigate the
effects of climate change while enhancing farm profitability. We explore the application of
optimization techniques to improve farm management practices. Our study distinguishes
itself from existing literature as it addresses the challenges farmers face in managing and
evaluating the vast amount of information necessary for making efficient decisions.Once
we have devised mathematical methods to evaluate the impacts of climate, provide agro-
nomic recommendations, and assess the utilization of insecticides and herbicides in crop
planning, the optimal approach to decision making will naturally arise from data analysis.

Contributions to the conscious use of herbicides are part of Chapter 4. In
this chapter, we introduce an optimization model that outlines a comprehensive weed
management approach to maintain weed levels within control throughout the entire crop
cycle. Within the optimization framework, we explore a wide range of control actions, not
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limited to modeling solely the effects of chemical herbicides. Future agricultural strategies
employing alternative weed control mechanisms can also be incorporated into the model
assessment. In addition to the straightforward use of herbicides, Chapter 3 explores the
concept of utilizing crop rotation as a means to manage weeds.

Ecological equilibrium is the key component to sustain farm profitability on
the long-therm. Although most chemical pesticides have a immediate impact, we aim to
reduce the use of pesticides by sustain a stable predator population in the field. Chapter
6 plays a crucial role in facilitating a comparison between chemical pesticide use and
the impact of an artificially managed predator population. As practical advances enable
the maintenance of a predator population with desired characteristics for crop symbiosis,
the equations we proposed within the pest optimization model will effectively guide the
decision between chemical-based and more environmentally friendly solutions.

Related works

Throughout our research, we published two conference papers and submitted
an article to a journal, which is currently under review. The paper titled “OPTIMIZA-
TION MODEL TO HANDLE INTEGRATED PEST MANAGEMENT IN SOYBEANS”
has been chosen as one of the top five contenders for the Roberto Diéguez Galvão award,
recognizing the best English presentation and publication at the conference.

MIRANDA, B. S.; YAMAKAMI, A.; RAMPAZZO, P. C. B. AN OPTIMAL STRATEGY
FOR SCHEDULING SEED POPULATIONS. In: ANAIS DO SIMPóSIO BRASILEIRO
DE PESQUISA OPERACIONAL, 2021, João Pessoa. Anais eletrônicos... Campinas,
Galoá, 2021. Disponível em: <https://proceedings.science/sbpo/sbpo-2021/trabalhos/an-
optimal-strategy-for-scheduling-seed-populations?lang=pt-br>

MIRANDA, B. S.; YAMAKAMI, A.; RAMPAZZO, P. C. B. DESIGNING AN OPTI-
MIZATION MODEL TO HANDLE INTEGRATED PEST MANAGEMENT IN SOY-
BEANS. In: ANAIS DO SIMPóSIO BRASILEIRO DE PESQUISA OPERACIONAL,
2024, Fortaleza/CE. Anais eletrônicos... Campinas, Galoá, 2024.

Remaining questions and future work

Moving beyond the contributions of this thesis, open questions remain, and
additional research could greatly enhance understanding in this field. We are progressing
with our study based on these topics:

Ensemble-based optimization: adapting the developed algorithms to handle
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ensemble-based optimization, where several scenarios are constructed, each with its own
probability of occurrence, would enhance the algorithms’ capacity to address problems in
uncertain environments. This, in turn, would necessitate exploring methods to reduce the
population size without substantially compromising the algorithm’s performance, making
it a critical focus for future research.

• Uncertainty modeling: adapting our algorithm-driven strategy to optimize problems
under uncertainty by utilizing variations in problem variables with methods such
as robust optimization, stochastic programming, and techniques based on Bayesian
networks;

• Multi-criteria decision making: improving the algorithm’s design by transforming
ecosystem concepts, originally modeled as constraints, into a functional objective,
and identifying the optimal alternative by evaluating multiple criteria during the
selection process.

• Transitioning from a static to a dynamic framework: adapting the methods to con-
sider objective function values that evolve over time, reassessing the developed plans
to address economic functions that change with time.

• Heuristics evaluation: exploring heuristic methods and evaluating their effectiveness
against the mathematical optimization solvers that we have thoroughly examined
in our study.
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APPENDIX A – Appendix A

Tables presented below are derived from the average weekly price reports paid to
farmers in São Paulo State, Brazil. These assessments are carried out regularly by the
Companhia Nacional de Abastecimento (CONAB) and can be accessed at <https:
//sisdep.conab.gov.br/precosiagroweb/>.

Table A.1 – Cash commodities prices paid
to farmers in the State of São
Paulo, part (a)

Price paid to farmers in São Paulo (R$)

Week Soybeans Corn Wheat Sorghum

2014-01-06 62.21 22.27 48.59 19.3
2014-01-13 61.62 22.78 45.77 19.1
2014-01-20 60.92 22.59 45.52 19.07
2014-01-27 61.06 22.56 46.89 19.03
2014-02-03 60.81 22.54 46.89 19.1
2014-02-10 61.62 23.54 47.03 19.1
2014-02-17 61.82 25.01 48.21 20.0
2014-02-24 61.82 26.74 47.83 20.0
2014-03-03 62.59 27.27 47.2 20.0
2014-03-10 62.23 28.74 47.2 21.68
2014-03-17 61.51 28.93 47.88 20.0
2014-03-24 61.58 28.67 46.86 19.0
2014-03-31 62.55 28.26 46.8 19.0
2014-04-07 63.18 28.13 46.83 19.0
2014-04-14 63.01 28.01 46.83 19.0
2014-04-21 63.28 28.18 46.83 19.0
2014-04-28 63.02 28.09 46.77 19.0
2014-05-05 62.93 27.87 46.77 19.0
2014-05-12 63.75 27.46 49.54 19.0
2014-05-19 63.43 26.93 49.54 19.0
2014-05-26 62.96 26.4 49.54 16.0
2014-06-02 63.05 26.22 48.47 16.0
2014-06-09 62.6 26.1 47.76 16.0
2014-06-16 62.69 25.7 48.44 16.0
2014-06-23 62.32 24.88 47.8 16.0
2014-06-30 61.14 24.8 50.16 16.0
2014-07-07 61.49 24.28 44.75 16.0
2014-07-14 61.95 24.74 45.21 16.0
2014-07-21 59.82 22.36 36.36 15.0
2014-07-28 59.43 21.77 36.91 15.0
2014-08-04 60.06 20.33 39.36 15.0
2014-08-11 57.13 20.05 40.35 15.0
2014-08-18 59.71 19.35 39.21 15.0
2014-08-25 59.85 18.61 38.79 15.0
2014-09-01 60.01 17.84 38.74 15.0
2014-09-08 60.11 18.28 38.74 15.0
2014-09-15 59.76 18.25 34.35 15.0
2014-09-22 59.31 18.62 28.18 15.0
2014-09-29 57.63 18.66 28.5 15.0
2014-10-06 57.27 19.32 28.76 14.83
2014-10-13 57.13 19.38 29.22 15.0
2014-10-20 56.95 20.8 30.46 17.0
2014-10-27 57.07 21.62 30.35 17.0
2014-11-03 57.4 22.09 30.5 17.0
2014-11-10 57.37 22.44 30.44 17.0
2014-11-17 58.34 22.8 30.44 17.0
2014-11-24 58.66 23.08 30.23 17.0
2014-12-01 58.99 23.36 30.46 17.0
2014-12-08 59.38 24.62 30.77 17.0
2014-12-15 60.12 24.79 32.0 17.0
2014-12-22 60.42 24.76 32.0 17.0
2014-12-29 60.42 24.76 32.0 17.0

Table A.2 – Cash commodities prices paid
to farmers in the State of São
Paulo, part (b)

Price paid to farmers in São Paulo (R$)

Week Soybeans Corn Wheat Sorghum

2015-01-05 59.3 25.31 30.56 19.0
2015-01-12 58.84 24.96 33.57 19.0
2015-01-19 58.97 25.04 33.86 19.0
2015-01-26 54.25 24.19 33.86 19.0
2015-02-02 54.25 24.19 32.0 18.14
2015-02-09 54.24 24.19 32.0 18.14
2015-02-16 54.24 24.19 32.0 18.14
2015-02-23 54.24 23.96 31.0 17.97
2015-03-02 54.24 23.96 31.0 18.0
2015-03-09 54.24 23.96 31.0 18.0
2015-03-16 54.79 24.4 32.0 18.0
2015-03-23 54.79 24.4 32.0 18.0
2015-03-30 54.79 24.4 32.0 18.0
2015-04-06 54.79 24.4 32.0 18.0
2015-04-13 55.67 24.44 32.0 18.0
2015-04-20 55.67 24.44 32.0 18.0
2015-04-27 55.67 24.44 32.0 18.0
2015-05-04 55.77 24.36 32.0 18.0
2015-05-11 62.0 24.57 34.0 18.2
2015-05-18 62.37 24.19 35.0 18.2
2015-05-25 60.92 23.2 36.74 18.0
2015-06-01 60.85 22.8 37.09 17.7
2015-06-08 60.21 22.02 36.63 18.17
2015-06-15 59.43 21.52 36.75 17.87
2015-06-22 59.54 20.89 36.48 18.13
2015-06-29 59.63 20.58 36.75 18.15
2015-07-06 59.86 20.8 37.07 18.32
2015-07-13 61.11 20.63 37.78 18.9
2015-07-20 61.42 20.85 37.49 18.67
2015-07-27 61.95 21.28 36.69 18.6
2015-08-03 65.85 22.32 37.72 18.33
2015-08-10 66.49 22.57 35.24 18.0
2015-08-17 66.62 21.66 35.5 17.83
2015-08-24 66.67 22.45 36.3 18.0
2015-08-31 66.8 22.53 36.61 18.0
2015-09-07 66.18 22.78 37.2 18.0
2015-09-14 66.12 22.79 37.55 18.2
2015-09-21 66.79 23.02 38.4 18.3
2015-09-28 67.24 23.31 39.1 18.87
2015-10-05 67.59 23.52 38.6 19.03
2015-10-12 68.45 24.11 39.18 20.35
2015-10-19 68.55 24.09 39.44 20.5
2015-10-26 68.64 24.32 39.79 21.5
2015-11-02 70.24 25.03 39.62 21.8
2015-11-09 73.06 31.0 43.6 22.07
2015-11-16 73.06 31.0 43.6 22.07
2015-11-23 73.37 31.28 43.67 22.3
2015-11-30 73.52 31.02 43.79 22.63
2015-12-07 73.17 30.4 42.98 22.83
2015-12-14 74.17 30.48 42.85 22.88
2015-12-21 74.13 30.48 42.85 22.88
2015-12-28 74.27 30.69 43.02 23.03

https://sisdep.conab.gov.br/precosiagroweb/
https://sisdep.conab.gov.br/precosiagroweb/
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Table A.3 – Cash commodities prices paid
to farmers in the State of São
Paulo, part (c)

Price paid to farmers in São Paulo (R$)

Week Soybeans Corn Wheat Sorghum

2016-01-04 74.42 30.59 43.06 22.97
2016-01-11 69.31 30.96 43.06 23.5
2016-01-18 69.48 31.29 43.22 23.33
2016-01-25 69.56 31.58 43.22 23.33
2016-02-01 69.61 31.7 43.35 23.43
2016-02-08 69.73 31.97 43.52 23.52
2016-02-15 69.43 32.64 43.69 23.83
2016-02-22 69.0 34.24 43.55 24.13
2016-02-29 69.66 34.44 43.55 24.27
2016-03-07 71.03 34.91 43.55 24.5
2016-03-14 71.09 34.85 43.55 24.37
2016-03-21 69.26 36.15 43.55 25.27
2016-03-28 68.45 37.64 43.55 26.5
2016-04-04 66.88 37.57 43.38 26.73
2016-04-11 65.82 41.36 43.38 26.93
2016-04-18 68.05 41.87 43.38 27.0
2016-04-25 68.08 42.1 43.38 26.97
2016-05-02 68.75 42.8 43.38 27.73
2016-05-09 69.08 43.14 43.95 27.9
2016-05-16 73.81 43.4 44.7 28.75
2016-05-23 79.85 47.59 45.12 29.43
2016-05-30 79.98 47.7 45.18 29.5
2016-06-06 80.41 47.92 45.65 29.6
2016-06-13 81.4 48.66 46.25 30.0
2016-06-20 82.25 48.42 48.33 30.82
2016-06-27 82.35 47.01 48.73 30.82
2016-07-04 82.38 37.32 49.08 30.75
2016-07-11 78.93 37.04 50.07 30.73
2016-07-18 79.09 36.29 52.75 30.52
2016-07-25 76.18 36.61 49.82 30.55
2016-08-01 74.46 39.1 49.79 30.55
2016-08-08 74.65 39.03 52.0 30.58
2016-08-15 76.97 38.41 52.0 30.58
2016-08-22 77.05 38.91 51.75 30.5
2016-08-29 73.8 34.79 48.78 30.0
2016-09-05 73.22 34.56 48.78 29.9
2016-09-12 73.2 34.54 48.55 29.9
2016-09-19 74.01 34.74 48.58 29.94
2016-09-26 72.68 34.25 48.15 30.0
2016-10-03 72.43 34.31 46.88 29.8
2016-10-10 72.63 34.53 46.55 29.87
2016-10-17 72.19 34.52 45.33 29.88
2016-10-24 72.58 34.81 45.33 29.9
2016-10-31 72.58 34.81 45.32 29.88
2016-11-07 72.22 34.47 45.0 29.73
2016-11-14 70.9 33.96 44.3 29.6
2016-11-21 70.38 33.51 44.2 29.48
2016-11-28 69.52 32.62 44.2 29.48
2016-12-05 69.5 32.2 44.23 29.35
2016-12-12 69.61 33.03 44.23 29.35
2016-12-19 69.41 32.89 44.19 29.0
2016-12-26 69.41 32.41 43.23 28.65

Table A.4 – Cash commodities prices paid
to farmers in the State of São
Paulo, part (d)

Price paid to farmers in São Paulo (R$)

Week Soybeans Corn Wheat Sorghum

2017-01-02 69.71 32.12 43.23 28.6
2017-01-09 69.84 31.72 42.73 28.4
2017-01-16 69.19 30.78 42.48 28.4
2017-01-23 68.98 29.76 41.83 28.3
2017-01-30 69.5 29.08 41.83 28.3
2017-02-06 69.5 29.41 41.48 28.33
2017-02-13 69.39 29.98 41.46 28.32
2017-02-20 68.12 30.34 41.44 25.0
2017-02-27 67.78 29.86 41.23 25.37
2017-03-06 67.52 29.65 40.15 25.42
2017-03-13 67.55 29.59 40.25 26.87
2017-03-20 66.18 29.69 39.63 26.9
2017-03-27 63.31 29.09 39.13 26.9
2017-04-03 61.74 28.21 40.15 26.83
2017-04-10 60.5 27.56 40.15 26.9
2017-04-17 60.42 27.43 40.1 26.77
2017-04-24 60.3 27.11 40.05 26.61
2017-05-01 59.22 26.05 39.81 26.55
2017-05-08 59.09 25.85 39.74 26.52
2017-05-15 59.04 25.63 39.7 26.43
2017-05-22 59.02 25.45 39.74 26.33
2017-05-29 59.02 25.41 39.69 26.38
2017-06-05 57.51 23.23 39.0 20.67
2017-06-12 58.95 22.27 37.97 21.17
2017-06-19 58.83 22.44 38.0 20.17
2017-06-26 57.04 21.85 34.78 19.17
2017-07-03 57.04 21.79 34.83 19.38
2017-07-10 57.47 21.7 37.41 19.67
2017-07-17 57.58 21.52 38.69 19.67
2017-07-24 60.35 24.25 40.46 31.89
2017-07-31 60.11 24.16 41.03 18.0
2017-08-07 60.97 22.16 42.21 18.0
2017-08-14 59.21 21.37 39.08 18.0
2017-08-21 58.87 22.27 38.1 17.0
2017-08-28 59.47 22.61 35.17 19.0
2017-09-04 59.87 22.82 35.17 16.55
2017-09-11 60.28 22.58 35.17 17.0
2017-09-18 60.28 24.16 34.58 20.4
2017-09-25 61.55 24.98 41.03 20.4
2017-10-02 61.7 26.55 35.17 20.4
2017-10-09 62.59 26.56 35.17 20.41
2017-10-16 62.63 26.25 35.25 19.56
2017-10-23 63.08 26.23 36.34 23.2
2017-10-30 65.55 25.84 35.17 23.2
2017-11-06 64.79 26.61 34.59 23.2
2017-11-13 64.76 27.46 35.17 24.0
2017-11-20 62.92 26.72 36.14 24.0
2017-11-27 61.92 27.5 35.17 24.0
2017-12-04 62.08 27.35 35.76 24.0
2017-12-11 68.16 28.2 37.12 24.0
2017-12-18 68.01 28.77 39.08 24.0
2017-12-25 67.98 28.77 39.08 24.0
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Table A.5 – Caption

Price paid to farmers in São Paulo (R$)

Week Soybeans Corn Wheat Sorghum

2018-01-01 68.02 29.89 39.08 24.0
2018-01-08 67.26 30.15 38.68 24.0
2018-01-15 67.09 30.12 38.68 24.0
2018-01-22 63.41 28.89 37.52 24.4
2018-01-29 63.22 28.95 40.11 24.0
2018-02-05 68.03 30.18 38.88 24.0
2018-02-12 68.29 30.06 40.44 24.0
2018-02-19 66.9 26.67 39.9 24.0
2018-02-26 66.33 30.02 39.0 24.0
2018-03-05 67.13 35.32 39.86 24.0
2018-03-12 66.36 36.19 40.44 24.0
2018-03-19 66.26 36.25 39.27 24.0
2018-03-26 66.6 36.35 41.2 24.0
2018-04-02 69.21 36.03 42.2 24.0
2018-04-09 69.11 37.12 42.2 24.0
2018-04-16 72.82 36.2 46.89 24.0
2018-04-23 73.14 35.96 49.82 24.0
2018-04-30 73.58 36.08 43.96 24.0
2018-05-07 74.49 36.92 47.82 24.0
2018-05-14 75.04 37.41 58.03 24.0
2018-05-21 75.45 37.85 59.88 28.0
2018-05-28 75.84 38.14 65.65 28.0
2018-06-04 75.07 37.82 64.48 28.0
2018-06-11 74.44 36.84 67.9 30.0
2018-06-18 72.74 37.04 76.28 30.0
2018-06-25 73.22 35.48 64.48 26.0
2018-07-02 71.7 33.06 58.62 28.0
2018-07-09 72.75 31.59 67.41 28.0
2018-07-16 76.07 33.12 61.55 26.0
2018-07-23 75.26 32.41 58.62 26.0
2018-07-30 75.72 33.3 58.62 26.0
2018-08-06 75.06 34.76 58.62 25.0
2018-08-13 74.55 36.18 55.68 31.0
2018-08-20 75.77 36.61 54.51 32.0
2018-08-27 76.4 36.32 52.75 32.0
2018-09-03 77.06 37.36 55.68 32.0
2018-09-10 78.45 36.01 56.86 32.0
2018-09-17 78.55 36.25 58.62 32.0
2018-09-24 79.42 36.63 57.62 32.3
2018-10-01 78.35 34.91 56.56 30.68
2018-10-08 77.44 33.95 54.51 27.67
2018-10-15 78.34 33.93 49.24 27.75
2018-10-22 76.93 31.82 51.0 25.6
2018-10-29 75.38 32.54 49.82 23.9
2018-11-05 73.96 31.88 47.87 22.4
2018-11-12 73.1 32.43 51.25 24.55
2018-11-19 71.94 31.65 48.5 26.88
2018-11-26 71.17 32.2 46.89 28.24
2018-12-03 72.72 32.69 51.0 27.13
2018-12-10 73.54 33.54 52.8 28.4
2018-12-17 73.7 33.0 54.0 29.0
2018-12-24 71.63 33.25 53.0 29.0
2018-12-31 71.63 33.25 53.0 29.0

Table A.6 – Cash commodities prices paid
to farmers in the State of São
Paulo, part (e)

Price paid to farmers in São Paulo (R$)

Week Soybeans Corn Wheat Sorghum

2019-01-07 68.34 34.1 54.18 28.4
2019-01-14 67.6 34.9 55.5 26.17
2019-01-21 68.13 35.05 50.58 26.29
2019-01-28 66.56 35.39 48.65 26.54
2019-02-04 66.76 34.61 53.5 25.96
2019-02-11 68.39 35.69 54.51 26.77
2019-02-18 68.13 36.32 51.58 27.24
2019-02-25 66.12 37.58 49.82 28.18
2019-03-04 69.94 38.63 54.51 28.97
2019-03-11 69.23 37.85 54.51 28.39
2019-03-18 71.23 37.48 55.68 28.11
2019-03-25 69.17 36.4 55.1 27.3
2019-04-01 67.88 35.59 57.0 28.7
2019-04-08 67.38 33.78 57.0 28.7
2019-04-15 67.21 33.58 57.0 29.4
2019-04-22 66.2 32.13 53.65 29.1
2019-04-29 65.92 31.61 49.82 29.1
2019-05-06 64.03 30.36 51.58 29.1
2019-05-13 65.02 29.89 50.99 29.1
2019-05-20 66.84 29.75 50.99 26.7
2019-05-27 68.12 31.17 50.99 28.0
2019-06-03 69.18 32.5 53.4 28.0
2019-06-10 69.49 31.96 54.35 27.7
2019-06-17 71.11 33.26 50.41 27.0
2019-06-24 71.52 34.31 52.75 26.5
2019-07-01 69.85 33.65 52.75 25.0
2019-07-08 71.11 33.75 55.68 25.0
2019-07-15 70.26 33.36 51.58 26.0
2019-07-22 69.44 33.02 51.58 26.0
2019-07-29 67.75 34.37 51.25 25.7
2019-08-05 71.34 33.46 46.89 25.5
2019-08-12 71.84 31.3 48.0 25.5
2019-08-19 72.59 30.7 49.2 24.2
2019-08-26 75.17 32.35 48.06 25.5
2019-09-02 77.85 31.58 48.0 25.0
2019-09-09 78.39 32.42 49.35 25.5
2019-09-16 75.61 31.81 48.06 25.5
2019-09-23 76.58 32.88 48.94 25.5
2019-09-30 79.87 34.64 48.94 26.75
2019-10-07 78.01 35.17 48.94 26.75
2019-10-14 78.41 34.95 46.9 25.0
2019-10-21 76.51 36.31 47.9 25.0
2019-10-28 79.26 35.92 51.0 26.25
2019-11-04 81.74 37.23 49.82 28.5
2019-11-11 79.31 39.61 51.3 30.67
2019-11-18 80.3 40.07 51.3 30.67
2019-11-25 80.31 41.96 48.65 31.6
2019-12-02 78.7 43.19 49.82 35.93
2019-12-09 79.27 42.13 49.82 35.97
2019-12-16 78.64 42.81 53.1 37.4
2019-12-23 78.64 43.05 53.1 37.4
2019-12-30 78.5 43.1 53.1 37.4
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Table A.7 – Cash commodities prices paid
to farmers in the State of São
Paulo, part (f)

Price paid to farmers in São Paulo (R$)

Week Soybeans Corn Wheat Sorghum

2020-01-06 79.38 44.03 52.17 39.4
2020-01-13 78.97 45.87 54.6 39.8
2020-01-20 77.61 45.79 56.27 39.75
2020-01-27 78.24 46.98 58.6 40.5
2020-02-03 78.16 46.4 58.5 39.58
2020-02-10 78.78 45.31 58.51 39.58
2020-02-17 79.49 45.36 58.51 38.8
2020-02-24 79.49 46.67 60.0 39.0
2020-03-02 79.87 45.23 59.1 39.3
2020-03-09 81.04 47.91 56.71 37.0
2020-03-16 81.06 50.08 57.88 40.5
2020-03-23 82.27 51.04 62.11 40.5
2020-03-30 80.79 54.13 64.45 46.4
2020-04-06 85.83 54.41 71.03 45.0
2020-04-13 83.34 50.5 64.55 41.5
2020-04-20 87.51 49.25 60.03 37.5
2020-04-27 89.18 44.58 64.71 38.75
2020-05-04 88.78 43.04 68.42 38.0
2020-05-11 93.94 43.28 67.68 39.0
2020-05-18 100.62 44.82 68.71 41.0
2020-05-25 96.87 47.24 78.0 42.0
2020-06-01 96.29 45.33 78.21 39.0
2020-06-08 96.9 44.0 73.5 36.1
2020-06-15 96.29 45.44 73.93 37.0
2020-06-22 96.57 43.45 75.6 38.0
2020-06-29 99.19 45.43 75.6 37.5
2020-07-06 101.99 44.69 75.9 38.5
2020-07-13 100.99 43.96 75.6 39.0
2020-07-20 102.66 43.61 73.8 40.0
2020-07-27 100.25 44.49 72.9 39.75
2020-08-03 103.99 45.71 72.9 41.0
2020-08-10 107.1 47.59 71.1 43.35
2020-08-17 110.79 49.93 72.5 45.56
2020-08-24 112.98 55.23 70.41 47.1
2020-08-31 113.01 56.03 67.2 47.83
2020-09-07 116.84 54.47 70.92 48.0
2020-09-14 118.4 53.51 68.4 48.5
2020-09-21 129.23 54.07 69.12 48.33
2020-09-28 129.87 55.71 70.8 49.5
2020-10-05 140.17 60.27 72.9 51.5
2020-10-12 143.07 62.24 73.2 52.29
2020-10-19 150.45 66.18 74.1 53.5
2020-10-26 153.87 69.95 81.3 60.75
2020-11-02 146.54 70.63 87.0 62.0
2020-11-09 153.03 73.89 81.7 61.5
2020-11-16 167.03 74.61 79.5 62.5
2020-11-23 156.13 74.74 77.1 61.23
2020-11-30 151.67 71.16 78.0 60.11
2020-12-07 138.1 66.29 76.8 55.0
2020-12-14 148.0 63.85 75.78 58.5
2020-12-21 136.33 68.24 81.9 59.37
2020-12-28 140.7 68.11 81.9 59.26

Table A.8 – Cash commodities prices paid
to farmers in the State of São
Paulo, part (g)

Price paid to farmers in São Paulo (R$)

Week Soybeans Corn Wheat Sorghum

2021-01-04 149.74 74.75 81.9 62.5
2021-01-11 151.62 80.03 83.4 62.42
2021-01-18 158.61 78.17 87.6 60.97
2021-01-25 158.69 78.0 88.76 60.84
2021-02-01 155.9 81.51 90.0 63.58
2021-02-08 159.25 76.93 90.0 60.01
2021-02-15 157.09 78.47 80.4 61.21
2021-02-22 156.43 78.61 79.2 61.32
2021-03-01 157.43 82.08 80.44 64.02
2021-03-08 160.39 84.28 88.08 65.74
2021-03-15 159.88 85.55 90.24 66.73
2021-03-22 158.21 86.61 92.7 67.56
2021-03-29 159.31 87.4 92.7 68.17
2021-04-05 160.77 88.93 96.0 69.37
2021-04-12 161.03 91.53 94.53 71.39
2021-04-19 162.69 92.79 95.85 72.38
2021-04-26 163.73 95.05 97.8 74.14
2021-05-03 166.79 96.35 98.1 75.15
2021-05-10 170.99 98.14 99.0 76.55
2021-05-17 169.45 99.7 99.3 77.77
2021-05-24 159.48 92.45 97.5 72.11
2021-05-31 161.94 95.54 98.4 74.52
2021-06-07 158.92 94.31 97.5 73.56
2021-06-14 155.7 91.99 95.4 71.75
2021-06-21 143.07 83.0 94.5 64.74
2021-06-28 138.77 83.0 93.6 64.74
2021-07-05 147.68 85.0 92.7 66.3
2021-07-12 150.18 85.0 93.0 66.3
2021-07-19 152.99 94.74 95.4 73.9
2021-07-26 156.55 97.72 96.9 76.22
2021-08-02 157.86 98.49 97.5 76.82
2021-08-09 159.46 95.64 98.5 74.6
2021-08-16 162.02 97.44 99.19 76.0
2021-08-23 163.07 96.68 98.52 75.41
2021-08-30 157.24 92.78 96.2 72.37
2021-09-06 159.11 91.56 99.9 71.42
2021-09-13 161.46 89.42 95.28 69.75
2021-09-20 157.99 87.3 97.62 68.09
2021-09-27 161.96 88.61 97.92 69.12
2021-10-04 160.73 89.12 98.8 69.51
2021-10-11 160.85 88.25 98.05 68.84
2021-10-18 163.0 86.91 100.5 67.79
2021-10-25 164.94 85.84 100.2 66.96
2021-11-01 159.29 84.02 99.4 65.54
2021-11-08 156.12 81.1 100.8 63.26
2021-11-15 154.99 82.61 102.0 64.44
2021-11-22 156.9 83.29 93.57 64.97
2021-11-29 157.87 83.85 97.43 65.4
2021-12-06 156.6 82.36 104.1 64.24
2021-12-13 157.33 85.58 105.6 66.75
2021-12-20 157.38 85.59 102.6 66.76
2021-12-27 162.63 85.59 102.6 66.76
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Table A.9 – Cash commodities prices paid
to farmers in the State of São
Paulo, part (h)

Price paid to farmers in São Paulo (R$)

Week Soybeans Corn Wheat Sorghum

2022-01-03 167.85 87.85 105.93 68.52
2022-01-10 161.99 86.45 106.08 67.43
2022-01-17 163.34 93.25 106.5 72.74
2022-01-24 166.57 92.26 106.5 71.96
2022-01-31 168.29 94.96 105.0 74.07
2022-02-07 173.93 93.63 107.5 73.03
2022-02-14 184.25 93.01 107.5 72.55
2022-02-21 186.37 90.76 105.0 70.79
2022-02-28 187.21 93.0 104.1 72.54
2022-03-07 193.17 95.19 110.0 74.25
2022-03-14 194.76 99.27 114.5 77.43
2022-03-21 191.16 94.17 113.5 73.45
2022-03-28 194.82 93.98 113.5 73.3
2022-04-04 190.74 89.61 114.0 69.9
2022-04-11 173.04 85.29 114.6 66.53
2022-04-18 174.32 84.08 114.0 65.58
2022-04-25 180.56 83.64 116.0 65.24
2022-05-02 178.99 83.3 119.1 64.97
2022-05-09 180.57 82.44 119.1 64.3
2022-05-16 181.0 83.97 120.0 65.5
2022-05-23 178.73 82.1 123.0 64.04
2022-05-30 178.67 82.73 126.0 64.53
2022-06-06 178.85 82.9 126.0 64.66
2022-06-13 180.61 83.25 127.5 64.94
2022-06-20 179.51 83.15 129.0 64.86
2022-06-27 176.55 80.19 129.0 62.55
2022-07-04 174.66 77.85 133.5 60.72
2022-07-11 174.06 80.15 129.0 62.52
2022-07-18 171.68 77.36 130.5 60.34
2022-07-25 170.73 76.06 129.0 59.33
2022-08-01 170.91 78.48 127.0 61.21
2022-08-08 170.07 78.68 124.5 61.37
2022-08-15 167.64 78.53 121.5 61.25
2022-08-22 167.68 78.18 121.5 60.98
2022-08-29 168.27 78.38 115.4 61.14
2022-09-05 169.36 78.23 115.4 61.02
2022-09-12 172.01 78.19 107.5 60.99
2022-09-19 168.28 77.87 105.7 60.74
2022-09-26 168.68 78.4 104.7 61.15
2022-10-03 165.57 79.12 105.15 61.71
2022-10-10 165.66 78.91 106.8 61.55
2022-10-17 166.81 80.05 108.0 62.44
2022-10-24 168.39 79.8 108.9 62.24
2022-10-31 169.45 80.35 108.9 62.67
2022-11-07 171.13 79.97 116.6 62.38
2022-11-14 173.82 79.86 111.5 62.29
2022-11-21 171.87 80.07 111.3 62.45
2022-11-28 173.49 80.56 111.6 62.84
2022-12-05 169.55 80.75 111.3 62.98
2022-12-12 171.51 80.46 110.7 62.76
2022-12-19 171.21 79.7 109.8 62.17
2022-12-26 169.12 80.59 109.9 62.86

Table A.10 – Cash commodities prices paid
to farmers in the State of São
Paulo, part (i)

Price paid to farmers in São Paulo (R$)

Week Soybeans Corn Wheat Sorghum

2023-01-02 171.84 80.98 101.0 63.0
2023-01-09 168.08 80.1 108.0 63.0
2023-01-16 164.66 80.29 109.2 63.0
2023-01-23 165.68 80.78 109.2 63.0
2023-01-30 162.66 79.93 107.7 63.0
2023-02-06 163.25 79.89 103.5 65.0
2023-02-13 162.68 79.91 102.9 67.7
2023-02-20 161.08 80.96 103.3 65.7
2023-02-27 159.68 80.63 103.1 64.0
2023-03-06 159.56 79.1 102.0 66.5
2023-03-13 156.91 79.62 102.0 68.0
2023-03-20 149.85 80.07 102.0 68.0
2023-03-27 140.6 78.9 102.0 65.0
2023-04-03 141.64 77.96 102.0 67.5
2023-04-10 136.98 75.46 99.7 62.75
2023-04-17 132.87 73.03 97.0 61.5
2023-04-24 127.26 66.89 96.0 56.0
2023-05-01 125.5 60.99 93.0 51.5
2023-05-08 126.14 57.14 85.2 49.5
2023-05-15 122.37 54.06 79.2 45.7
2023-05-22 123.29 50.93 81.7 42.1
2023-05-29 122.11 50.72 78.0 42.5
2023-06-05 119.26 48.07 79.5 43.9
2023-06-12 117.97 47.33 78.1 42.5
2023-06-19 119.56 48.3 78.5 43.5
2023-06-26 120.62 49.49 77.7 42.7
2023-07-03 125.64 49.06 76.5 42.1
2023-07-10 125.74 49.23 77.7 41.0
2023-07-17 125.46 51.14 80.1 42.5
2023-07-24 130.65 47.18 79.59 43.0
2023-07-31 131.1 49.84 80.1 39.0
2023-08-07 127.11 49.36 78.47 42.0
2023-08-14 136.38 47.88 75.0 38.67
2023-08-21 137.31 47.15 71.64 37.0
2023-08-28 132.21 47.41 67.0 37.7
2023-09-04 132.42 47.68 63.0 38.0
2023-09-11 131.27 48.48 61.7 37.6
2023-09-18 131.3 49.05 60.75 37.7
2023-09-25 128.82 48.61 57.0 38.25
2023-10-02 129.68 50.16 57.8 38.5
2023-10-09 128.27 50.14 57.1 38.75
2023-10-16 128.78 50.49 60.9 39.9
2023-10-23 129.34 52.24 61.5 40.5
2023-10-30 129.34 51.72 63.6 40.1
2023-11-06 129.54 52.15 65.1 41.4
2023-11-13 132.19 53.63 65.1 41.4
2023-11-20 131.9 55.17 69.7 42.4
2023-11-27 130.49 56.68 72.0 44.53
2023-12-04 130.88 55.58 73.2 47.25
2023-12-11 130.11 58.48 73.7 50.6
2023-12-18 127.72 58.43 72.5 52.8
2023-12-25 129.7 59.94 73.5 53.2
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Table A.11 – Cash commodities prices paid
to farmers in the State of São
Paulo, part (j)

Price paid to farmers in São Paulo (R$)

Week Soybeans Corn Wheat Sorghum

2024-01-01 130.55 62.29 75.0 55.63
2024-01-08 122.88 60.56 73.5 54.4
2024-01-15 115.77 61.4 72.7 54.3
2024-01-22 114.84 59.47 69.0 53.15
2024-01-29 107.48 54.63 70.45 47.9
2024-02-05 104.79 54.76 71.4 48.0
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APPENDIX B – Appendix B

Based on Instituto Nacional de Meteorologia (INMET) (2024), we collected informa-
tion from weather stations across Brazil. A total of 633 automated stations are involved
in data collection. To keep it concise, we find it pertinent to provide the station’s location
along with certain annual average parameters. Our observations span from 2010 to 2024,
with the average values for compiled in the tables below. Apart from the station’s specific
location, we present the mean annual values for the following meteorological variables:

• Total Precipitation (𝑚𝑚)

• Global Radiation (𝐾𝐽/𝑚2)

• Atmospheric Pressure at Station Level (𝑚𝐵)

• Air Temperature - Dry Bulb (∘𝐶)
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Table B.1 – Average values for precipitation, radiation, pressure and air temperature
across the collection of weather stations, part (a)

Station Federation
Unit

Latitude Total Precip-
itation (mm)

Global
Radiation
(𝐾𝐽/𝑚2)

Atmospheric
Pressure
at Station
Level (mB)

Air Temper-
ature - Dry
Bulb (∘𝐶)

ABROLHOS BA -17.96 487 4299861 1013.07 25.65
ACARAU CE -3.12 597 7066392 1004.2 26.9
AFONSO CLAUDIO ES -20.1 839 5934722 957.87 22.16
AGUA BOA MT -14.02 2418 5648212 962.23 26.24
AGUA CLARA MS -20.44 1139 6714083 975.9 24.66
AGUAS EMENDADAS DF -15.6 1338 7237078 900.65 21.37
AGUAS VERMELHAS MG -15.75 771 6969732 930.79 21.31
AIMORES MG -19.53 787 7154414 983.28 24.53
ALEGRE ES -20.75 1282 7025661 1000.68 24.15
ALEGRETE RS -29.71 1757 6612988 1000.42 19.68
ALFREDO CHAVES ES -20.64 1333 6575169 1012.94 24.45
ALMAS TO -11.28 1083 8159029 954.73 26.46
ALMENARA MG -16.17 743 7605682 994.14 25.59
ALTA FLORESTA MT -9.85 1127 7045464 978.29 26.02
ALTAMIRA PA -3.27 954 2807084 989.64 26.44
ALTO ARAGUAIA MT -17.34 1343 7327771 929.1 23.52
ALTO PARAISO DE GOIAS GO -14.13 1100 7061056 877.14 20.67
ALTO PARNAIBA MA -9.11 1015 8658871 979.53 26.82
ALTO TAQUARI MT -17.82 945 7387514 917.56 22.68
ALVORADA DO GURGUEIA PI -8.44 441 8703248 982.29 27.83
AMAMBAI MS -23.0 1180 6933317 963.38 22.5
AMARGOSA BA -13.01 956 6763176 971.12 22.94
ANGELICA MS -22.15 1060 6692422 973.73 24.12
ANGICAL DO PIAUI PI -6.09 237 5056298 989.79 27.73
ANGRA DOS REIS RJ -22.98 1704 4580289 1015.46 23.04
APIACAS MT -9.56 1390 9427542 986.78 27.19
APODI RN -5.63 609 8774395 997.71 28.14
APUI AM -7.22 4104 6924831 992.8 26.57
AQUIDAUANA MS -20.48 1042 6264962 995.19 24.94
ARACAJU SE -10.95 1168 7311668 1014.26 26.78
ARACUAI MG -16.85 660 6588810 979.86 24.76
ARAGARCAS GO -15.91 1311 7258153 975.39 26.51
ARAGUACU TO -12.59 2103 6677792 985.8 26.84
ARAGUAINA TO -7.1 1417 6677023 985.32 25.79
ARAGUATINS TO -5.64 1250 6363503 996.14 27.25
ARAL MOREIRA MS -22.96 1270 6349244 944.74 22.24
ARAPIRACA AL -9.8 468 6564504 987.88 24.89
ARARANGUA SC -28.93 1480 5763866 1015.74 19.92
ARAXA MG -19.61 1337 9783718 902.48 21.76
ARCO VERDE PE -8.42 456 8801352 937.72 24.11
AREIA PB -6.97 1141 4828642 948.75 22.52
ARIQUEMES RO -9.95 1372 6468987 995.68 26.77
ARIRANHA SP -21.13 740 8000874 954.43 23.41
ARQ.SAO PEDRO E SAO PAULO RN 0.9 649 1365406 1011.64 27.36
ARRAIAL DO CABO RJ -22.98 895 6828885 1015.8 23.47
AUTAZES AM -2.06 2190 6671753 1007.71 27.47
AVARE SP -23.1 1790 6393069 928.18 21.2
BACABAL MA -4.24 1278 6012355 1008.48 28.2
BAGE RS -31.35 1395 6457437 989.06 17.83
BAIXA GRANDE DO RIBEIRO PI -8.34 1052 8607888 953.41 26.64
BALIZA RR 0.95 12139 0 994.5 25.24
BALSAS MA -7.46 764 6646617 980.98 27.52
BAMBUI MG -20.03 1177 6425138 937.02 21.58
BANDEIRANTES MS -19.95 189 2102559 943.04 23.33
BARBACENA MG -21.23 1460 5753176 889.0 18.66
BARBALHA CE -7.32 571 7777457 966.52 26.09
BARCELOS AM -0.96 2688 6716727 1008.8 27.03
BARRA BA -11.08 576 8826844 966.69 27.72
BARRA BONITA SP -22.37 935 5767972 954.16 22.76
BARRA DO CORDA MA -5.51 814 7586510 993.52 28.19
BARRA DO TURVO SP -24.96 1662 4495540 941.99 17.93
BARREIRAS BA -12.15 843 7841145 959.2 25.78
BARRETOS SP -20.56 1232 6107217 953.46 23.26
BARUERI SP -23.52 1120 4672608 928.59 19.86
BATAGUASSU MS -21.75 1066 7013992 968.8 24.18
BAURU SP -22.36 1211 5946751 943.31 22.11
BEBDOURO SP -20.95 1004 5285194 945.35 23.53
BEBEDOURO SP -20.95 617 3896822 950.34 23.61
BELA VISTA MS -22.1 920 5725090 988.96 22.43
BELEM PA -1.41 3406 5583913 1008.86 26.92
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Table B.2 – Average values for precipitation, radiation, pressure and air temperature
across the collection of weather stations, part (b)

Station Federation
Unit

Latitude Total Precip-
itation (mm)

Global
Radiation
(𝐾𝐽/𝑚2)

Atmospheric
Pressure
at Station
Level (mB)

Air Temper-
ature - Dry
Bulb (∘𝐶)

BELMONTE BA -16.09 1002 7216988 1005.01 23.88
BELO HORIZONTE (PAMPULHA) MG -19.88 1323 6103780 919.39 22.02
BELO HORIZONTE - CERCADINHO MG -19.98 1359 6127116 883.02 19.98
BENTO GONCALVES RS -29.17 1695 5996772 944.33 17.63
BERTIOGA SP -23.84 1927 7086333 1015.14 23.34
BOA VISTA RR 2.82 1250 9107670 1001.61 28.22
BOCA DO ACRE AM -8.78 1676 6979776 998.27 26.91
BOM JARDIM DA SERRA - MORRO
DA IGREJA

SC -28.13 2605 6178200 821.51 11.36

BOM JESUS DA LAPA BA -13.42 1752 8655839 962.24 28.01
BOM JESUS DO PIAUI PI -9.08 555 8390839 978.27 27.79
BONITO MS -21.25 928 7634540 974.89 24.32
BRAGANCA PA -1.05 1847 6658441 1007.46 27.14
BRAGANCA PAULISTA SP -23.95 1498 5908149 916.41 20.82
BRASILANDIA MS -21.3 285 2542063 974.93 22.71
BRASILIA DF -15.79 1358 7179598 887.43 21.51
BRASNORTE (MUNDO NOVO) MT -12.87 1233 8695059 963.14 25.23
BRASNORTE (NOVO MUNDO) MT -12.52 912 11244198 963.17 27.03
BRAZLANDIA DF -15.6 1496 6612352 888.65 21.98
BREJO GRANDE SE -10.48 1655 8787984 1014.59 26.54
BREVES PA -1.68 842 5972789 1009.95 28.16
BRUMADO BA -14.18 528 7291644 961.57 25.14
BURITICUPU MA -4.32 3354 7335551 990.87 27.13
BURITIRAMA BA -10.72 394 8103179 955.85 26.96
BURITIS MG -15.52 1483 8194913 912.01 22.83
CAARAPO MS -22.66 1231 709921 962.37 23.25
CABACEIRAS PB -7.48 833 7174207 968.61 25.73
CABROBO PE -8.5 376 8150842 974.47 27.34
CACADOR SC -26.82 1402 4804219 909.86 16.64
CACAPAVA DO SUL RS -30.55 1700 6322936 966.82 17.44
CACERES MT -16.07 824 7413885 998.09 26.58
CACHOEIRA PAULISTA SP -22.69 1254 5347194 949.28 22.08
CACOAL RO -11.45 1724 6985518 989.73 27.06
CAIAPONIA GO -16.97 1200 7297469 930.91 24.03
CAICO RN -6.46 329 9943390 993.01 29.0
CALCANHAR RN -5.16 2837 4649912 1011.5 26.72
CALDAS MG -21.92 1298 6435834 896.8 18.07
CAMAPUA MS -19.59 408 3852117 952.0 24.82
CAMAQUA RS -30.81 1473 5671681 1005.01 18.51
CAMARATUBA PB -6.56 833 7237939 997.68 25.78
CAMBARA DO SUL RS -29.05 1473 5383756 902.14 15.68
CAMBUCI RJ -21.57 1058 6343846 1009.67 23.89
CAMETA PA -2.25 2906 5884008 1010.53 27.76
CAMPINA DA LAGOA PR -24.57 1245 8282277 946.68 23.39
CAMPINA GRANDE PB -7.24 636 7519154 952.36 23.98
CAMPINA VERDE MG -19.54 1304 7377143 950.72 24.05
CAMPO BOM RS -29.67 1662 4912722 1012.54 20.61
CAMPO GRANDE MS -20.45 1330 6601301 953.01 24.0
CAMPO MAIOR PI -4.86 359 7563030 997.34 28.76
CAMPO NOVO DOS PARECIS MT -13.78 922 6794045 952.07 25.24
CAMPO VERDE MT -15.53 1600 6974996 930.19 23.82
CAMPOS RJ -21.72 846 6950288 1013.61 23.88
CAMPOS DO JORDAO SP -22.75 1483 5621362 836.87 15.13
CAMPOS DOS GOYTACAZES RJ -21.71 1042 5992062 1013.51 23.94
CAMPOS DOS GOYTACAZES - SAO
TOME

RJ -22.04 685 7472678 1015.46 24.38

CAMPOS LINDOS TO -8.15 681 6216559 963.73 26.42
CAMPOS NOVOS SC -27.39 1825 5878143 908.61 17.12
CAMPOS SALES CE -7.08 301 6048105 948.31 25.3
CANELA RS -29.37 2094 6014436 921.46 15.95
CANGUCU RS -31.41 1423 5539559 963.21 16.3
CANTO DO BURITI PI -8.12 610 7752156 976.4 27.53
CAPAO DO LEAO (PELOTAS) RS -31.8 1243 5302249 1014.63 18.21
CAPELINHA MG -17.71 961 7214923 911.97 20.25
CAPITAO POCO PA -1.73 1894 6862390 1002.6 26.24
CARACOL PI -9.29 384 6073791 954.41 26.03
CARATINGA MG -19.74 2625 6466880 947.19 23.81
CARAVELAS BA -17.73 1303 6037894 1016.03 24.51
CARIRA SE -10.4 1807 9072495 981.29 24.89
CARLINDA MT -10.01 2064 8340641 978.0 25.57
CARMO RJ -21.94 1085 5327365 982.31 22.88
CAROLINA MA -7.34 2608 7424749 990.41 27.86
CARUARU PE -8.24 501 6098915 937.16 22.45
CASA BRANCA SP -21.78 869 5373604 933.37 22.34
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Table B.3 – Average values for precipitation, radiation, pressure and air temperature
across the collection of weather stations, part (c)

Station Federation
Unit

Latitude Total Precip-
itation (mm)

Global
Radiation
(𝐾𝐽/𝑚2)

Atmospheric
Pressure
at Station
Level (mB)

Air Temper-
ature - Dry
Bulb (∘𝐶)

CASSILANDIA MS -19.12 1274 9152082 957.21 24.91
CASTANHAL PA -1.3 1862 6619402 1006.17 26.87
CASTELO DO PIAUI PI -5.35 620 7577418 981.11 28.11
CASTRO PR -24.79 1087 5487840 905.25 17.9
CATALAO GO -18.16 1419 6997040 914.79 23.22
CAXIAS MA -4.82 1289 6878670 1001.54 27.05
CHAPADA GAUCHA MG -15.31 936 8162124 917.42 23.36
CHAPADAO DO SUL MS -18.8 1033 7634263 922.46 23.28
CHAPADINHA MA -3.74 1452 6308423 999.28 27.88
CHAPECO SC -27.96 1761 6026748 937.38 19.71
CIDADE GAUCHA PR -23.38 1373 6858387 971.42 23.77
CLEVELANDIA PR -26.42 1949 5782704 906.84 17.7
COARI AM -4.1 1767 8771077 1006.61 27.37
COLINAS MA -6.03 819 8379759 990.56 27.34
COLINAS DO TOCANTINS TO -8.09 1415 7056812 986.31 26.35
COLOMBO PR -25.32 1397 5341486 910.7 17.17
COMODORO MT -13.71 1648 5340583 947.62 23.0
CONCEICAO DAS ALAGOAS MG -19.99 1200 6703397 949.31 23.41
CONCEICAO DO ARAGUAIA PA -8.26 1373 7822952 991.59 26.67
CONDE BA -11.8 1847 7505288 1011.22 25.95
CORONEL PACHECO MG -21.55 1213 5625354 967.35 23.33
CORRENTE PI -10.43 722 7232465 960.69 26.91
CORRENTINA BA -13.33 1322 8101784 951.11 24.69
CORUMBA MS -19.0 829 7879268 998.46 26.61
CORURIPE AL -10.15 4631 6737342 1005.12 26.18
COSTA RICA MS -18.82 962 6645517 931.89 23.47
COTRIGUACU MT -9.91 1758 8283783 981.46 26.31
COXIM MS -18.51 816 7284617 983.76 25.27
CRATEUS CE -5.19 587 6909615 978.4 28.06
CRIOSFERA SP -84.0 0 3497640 836.5 N/A
CRISTALINA GO -16.79 1483 7313187 882.42 21.11
CRISTALINA (FAZENDA SANTA
MONICA)

GO -16.4 1228 7323630 909.23 21.78

CRMN MANAUS AM -3.02 624 0 1001.15 27.16
CRUZ ALTA RS -28.6 1770 6332472 965.61 18.59
CRUZ DAS ALMAS BA -12.65 1070 7168661 989.63 24.36
CRUZEIRO DO SUL AC -7.61 1522 4819901 986.74 26.71
CUIABA MT -15.56 1369 4955115 987.64 27.19
CURACA BA -9.0 290 5616351 972.13 27.46
CURITIBA PR -25.43 1468 5732453 913.01 18.13
CURITIBANOS SC -27.29 1569 6660125 906.16 17.06
CURVELO MG -18.76 1026 8179914 939.85 23.29
DELFINO BA -10.46 300 5547648 941.58 24.36
DIAMANTE DO NORTE PR -22.63 712 7742249 971.22 23.85
DIAMANTINA MG -18.23 1278 6934530 868.42 18.61
DIANOPOLIS TO -11.59 1194 7889482 931.66 25.02
DIONISIO CERQUEIRA SC -26.29 2152 6874182 923.37 19.62
DIVINOPOLIS MG -20.17 1202 6122874 926.59 22.14
DOIS VIZINHOS PR -25.69 1564 7426217 951.91 20.93
DOM ELISEU PA -4.29 2724 4828723 982.56 26.26
DOM PEDRITO RS -31.0 1257 7092745 997.18 18.6
DORES DO INDAIA MG -19.48 1248 7319646 933.51 22.63
DOURADOS MS -22.19 771 8161253 960.84 23.32
DRACENA SP -21.46 1003 6534297 969.67 24.95
DTCEA GUAJARA-MIRIM RO -10.79 615 0 995.17 26.79
DTCEA JACAREACANGA PA -6.24 266 0 998.77 26.24
DTCEA TABATINGA AM -4.25 19280 0 1002.84 24.46
DTCEA TEFE AM -3.38 1229 0 1005.1 26.1
DTCEA VILHENA RO -12.75 189 0 943.11 25.36
DUQUE DE CAXIAS - XEREM RJ -22.59 1894 6723778 1013.37 23.15
EB_PEF_BONFIM MG 3.36 760 0 1001.53 27.97
ECOLOGIA AGRICOLA RJ -22.8 1548 5924804 1011.75 23.91
ECOPORANGA ES -18.29 777 6492583 989.9 24.84
EDEIA GO -17.34 1023 6987434 944.7 25.22
EIRUNEPE AM -6.65 1022 6174819 998.04 26.89
ENCRUZILHADA DO SUL RS -30.54 1414 5759236 967.38 17.95
EPITACIOLANDIA AC -11.02 938 7174166 988.33 25.51
ERECHIM RS -27.66 1657 7047521 927.79 18.04
ESPERANTINA PI -3.9 1143 8724186 1000.92 27.74
ESPINOSA MG -14.91 342 7489649 950.63 25.67
ESTREITO MA -6.65 583 8065944 990.38 26.96
EUCLIDES DA CUNHA BA -10.54 579 8502944 962.32 25.14
FAROL de SANTANA MA -2.27 635 5553847 1010.53 28.05
FATIMA DO SUL MS -22.31 1170 10910376 973.42 25.26
FEIJO AC -8.24 1879 6573696 992.83 25.61
FEIRA DE SANTANA BA -12.2 1200 7159940 988.5 25.05
FLORESTA PE -8.59 621 8016586 976.29 27.37
FLORESTAL MG -19.89 1431 6798541 930.98 20.69
FLORIANO PI -6.77 538 6464551 996.94 29.22
FLORIANOPOLIS SC -27.6 1739 5707605 1015.91 21.28
FORMIGA MG -20.45 1098 6965012 916.98 21.67
FORMOSA DO RIO PRETO BA -11.05 700 6995724 958.38 24.23
FORMOSO DO ARAGUAIA TO -11.99 798 8086529 987.13 27.05
FORMOSO DO RIO PRETO BA -11.05 891 8081789 957.93 25.48
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Table B.4 – Average values for precipitation, radiation, pressure and air temperature
across the collection of weather stations, part (d)

Station Federation
Unit

Latitude Total Precip-
itation (mm)

Global
Radiation
(𝐾𝐽/𝑚2)

Atmospheric
Pressure
at Station
Level (mB)

Air Temper-
ature - Dry
Bulb (∘𝐶)

FORTALEZA CE -3.83 1248 6560304 1009.39 27.48
FORTE DE COPACABANA RJ -22.99 995 6530493 1011.51 23.51
FORTE PRINCIPE RO -12.43 61 0 996.8 28.33
FOZ DO IGUACU PR -25.6 1206 7173706 985.89 22.79
FRANCA SP -20.58 1368 6753776 904.29 21.87
FREDERICO WESTPHALEN RS -27.4 1995 6139454 958.27 19.58
GAMA (PONTE ALTA) DF -15.94 1238 6689182 905.09 22.33
GARANHUNS PE -8.91 1641 6992655 922.93 21.34
GAUCHA DO NORTE MT -13.18 1100 8845080 969.1 27.06
GENERAL CARNEIRO PR -26.4 1659 5658666 903.5 16.56
GILBUES PI -9.87 930 8990032 963.96 27.93
GOIANESIA GO -15.22 1092 7716500 938.5 25.03
GOIANIA GO -16.64 1324 6723841 932.4 23.8
GOIAS GO -15.94 1339 7388722 954.75 25.85
GOIOERE PR -24.16 4256 12222845 960.26 23.34
GOVERNADOR VALADARES MG -18.83 906 6620787 990.73 24.38
GRAJAU MA -5.82 1144 7356270 984.87 27.88
GUANAMBI BA -14.21 955 9180898 951.51 26.23
GUANHAES MG -18.79 966 6551303 920.33 20.8
GUARAMIRANGA CE -4.26 1058 5767443 917.81 21.44
GUARANTA DO NORTE MT -9.95 977 4918064 979.13 26.39
GUARDA-MOR MG -17.56 950 7446449 905.07 21.75
GUIRATINGA MT -16.34 1750 7216482 953.85 26.16
GURUPI TO -11.75 1344 7607397 980.18 25.77
HUMAITA AM -7.92 1891 6663442 1004.35 27.37
IBIMIRIM PE -8.51 423 7811042 964.27 25.86
IBIRITE (ROLA MOCA) MG -20.03 1547 7081379 884.23 20.06
IBIRUBA RS -28.65 1846 5795395 962.41 19.26
IBITINGA SP -21.86 931 7931212 958.32 22.75
IBOTIRAMA BA -12.19 639 11117707 964.53 27.66
ICARAIMA PR -23.39 1511 5984816 963.13 23.98
IGUAPE SP -24.72 2306 6042859 1015.2 21.96
IGUATEMI MS -23.64 831 8340143 975.88 23.73
IGUATU CE -6.4 812 5802021 986.86 27.77
ILHA DO MEL PR -25.49 3501 6393303 1014.66 22.11
ILHEUS BA -14.66 1477 5754223 1005.79 24.05
IMPERATRIZ MA -5.56 1141 6870137 997.83 27.52
INACIO MARTINS PR -25.57 1831 6079988 882.09 16.28
INDAIAL SC -26.91 1622 6020009 1007.62 21.03
IPANGUACU RN -5.53 673 7988725 1009.47 28.62
IPERO SP -23.43 681 4453496 947.73 21.33
IPIAU BA -14.17 815 6005942 1000.59 24.05
IPORA GO -16.42 1256 7453908 944.87 25.09
IRECE BA -11.33 455 8299549 928.41 24.08
ITABAIANA SE -10.67 368 2361646 990.24 24.24
ITABAIANINHA SE -11.27 966 7210931 990.72 24.92
ITABERABA BA -12.52 315 13905026 986.14 25.6
ITACOATIARA AM -3.13 1127 9047012 1005.69 27.37
ITAITUBA PA -4.28 1712 6880070 1007.71 27.71
ITAJAI SC -26.95 1534 4926640 1015.65 20.02
ITAMARAJU BA -17.01 1036 5288789 1004.24 24.33
ITAOBIM MG -16.58 602 7583708 984.28 25.76
ITAPACI GO -14.98 1049 6745066 951.04 24.07
ITAPETINGA BA -15.24 741 7330827 983.81 24.62
ITAPEVA SP -23.98 1522 6580136 931.94 19.96
ITAPIPOCA CE -3.48 609 6365456 999.96 28.11
ITAPIRA SP -22.42 1222 7199778 943.61 22.11
ITAPOA SC -26.08 1953 5658727 1015.65 20.82
ITAPORA MS -22.09 1206 7208554 971.42 24.12
ITAPORANGA PB -7.32 1185 6983121 979.27 28.14
ITAQUIRAI MS -23.45 1356 6887574 974.45 23.01
ITATIAIA RJ -22.37 1836 2105191 762.44 10.58
ITAUBAL AP 0.57 1574 4589280 1008.14 28.2
ITIQUIRA MT -17.3 661 6449926 947.08 24.85
ITIRUCU BA -13.53 767 6655840 931.11 21.19
ITUIUTABA MG -18.95 1050 7579981 952.64 24.3
ITUMBIARA GO -18.41 1123 7421166 957.88 24.41
ITUPORANGA SC -27.42 1547 6232876 960.8 18.41
ITUVERAVA SP -20.36 1095 7378667 945.09 22.97
IVAI PR -25.01 1402 6247796 925.23 18.97
IVINHEMA MS -22.31 1046 7456470 969.83 24.12
JACOBINA BA -11.2 532 6229253 964.58 24.16
JAGUARAO RS -32.54 1354 6043048 1012.33 17.85
JAGUARIBE CE -5.91 288 7232774 994.1 29.11
JAGUARUANA CE -4.85 219 8341197 1009.4 28.11
JALES SP -20.16 1222 7566325 961.77 24.42
JANAUBA MG -15.8 735 7622370 953.65 25.89
JANUARIA MG -15.45 744 7481594 959.5 25.19
JAPIRA PR -23.77 1693 8179765 936.48 20.93
JARDIM MS -21.48 995 6784726 983.83 24.92
JATAI GO -17.92 1382 7808268 938.73 23.15
JEREMOABO BA -10.08 463 7957884 984.2 26.34
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Table B.5 – Average values for precipitation, radiation, pressure and air temperature
across the collection of weather stations, part (e)

Station Federation
Unit

Latitude Total Precip-
itation (mm)

Global
Radiation
(𝐾𝐽/𝑚2)

Atmospheric
Pressure
at Station
Level (mB)

Air Temper-
ature - Dry
Bulb (∘𝐶)

JOACABA SC -27.17 1907 6235486 927.91 18.04
JOAO PESSOA PB -7.17 1681 8384130 1009.24 26.88
JOAO PINHEIRO MG -17.78 1050 7796181 917.39 22.73
JOAQUIM TAVORA PR -23.51 1111 7126081 956.17 21.86
JOSE BONIFACIO SP -21.09 2624 7314456 966.97 24.08
JUARA MT -11.28 1327 6523695 976.15 26.32
JUINA MT -11.37 1396 7584961 970.3 25.3
JUIZ DE FORA MG -21.77 1561 5996016 911.94 19.36
JUTI MS -22.86 1142 5615099 970.34 23.2
LABREA AM -7.44 2521 7165708 1003.75 26.82
LAGES SC -27.8 1424 5831567 908.68 16.62
LAGOA DA CONFUSAO TO -10.81 1273 7105087 990.61 26.51
LAGOA VERMELHA RS -28.22 2855 6353796 921.05 17.2
LAGUNA CARAPA MS -22.58 1208 6792502 956.27 22.45
LARANJEIRAS DO SUL PR -25.37 1730 6452746 921.0 19.09
LENCOIS BA -12.56 955 6946511 964.63 24.66
LINHARES ES -19.36 1035 6694276 1011.96 24.35
LINS SP -21.67 935 6896552 962.53 23.55
LUIZ EDUARDO MAGALHAES BA -12.15 1055 8676713 928.51 24.22
LUZIANIA GO -16.27 1361 7293901 903.89 22.6
Laguna - Farol de Santa Marta SC -28.6 1279 6135773 1011.12 19.76
MACAE RJ -22.38 1156 6797605 1012.92 23.59
MACAJUBA BA -12.12 716 13481988 975.14 24.95
MACAPA AP 0.04 2707 7356420 1009.81 27.86
MACAU RN -5.15 217 8458536 1010.23 28.14
MACAUBAS BA -13.04 486 8530599 949.14 25.91
MACEIO AL -9.55 1566 7457492 1005.09 25.67
MACHADO MG -21.68 1268 6229142 907.05 20.68
MAJOR VIEIRA SC -26.39 1040 5430741 925.5 17.27
MAL. CANDIDO RONDON PR -24.54 1505 6932407 968.45 22.07
MANACAPURU AM -3.29 2531 6628297 1006.01 27.4
MANAUS AM -3.1 2211 5905646 1004.62 27.82
MANHUACU MG -20.26 953 7226653 923.79 20.34
MANICORE AM -5.81 4885 4951128 1005.8 26.81
MANTENA MG -18.78 965 6636119 986.08 24.11
MARABA PA -5.17 1251 6076678 997.98 26.88
MARACAJU MS -21.61 832 7467102 967.96 24.47
MARAMBAIA RJ -23.05 1075 6855987 1014.08 23.28
MARAU BA -13.91 2756 7198214 1014.78 25.33
MARECHAL THAUMATURGO AC -8.95 2446 7123426 983.71 26.36
MARIA DA FE MG -22.31 1449 6167952 876.42 16.8
MARIANOPOLIS DO TO TO -9.58 1355 7833849 989.95 27.28
MARILANDIA ES -19.41 919 6210814 1004.35 24.65
MARILIA SP -22.24 1231 6605808 939.66 22.73
MARINGA PR -23.41 1464 6599675 952.36 22.91
MATEIROS TO -10.43 1113 7856743 924.92 24.62
MAUES AM -3.4 1714 6790194 1007.92 26.55
MEDICILANDIA PA -3.51 3249 6400254 981.97 26.16
MINA DO PALITO PA -6.32 1020 5131064 980.42 26.03
MINEIROS GO -17.45 1292 7340020 926.42 23.22
MIRANDA MS -20.38 2369 7651165 997.27 24.63
MOCAMBINHO MG -15.09 677 8074917 962.32 25.06
MONTALVANIA MG -15.09 1435 8388614 954.98 24.59
MONTE ALEGRE PA -2.0 1091 7418744 999.45 27.75
MONTE ALEGRE DE GOIAS GO -13.25 963 7883424 950.9 25.77
MONTE VERDE MG -22.86 1603 6239537 849.11 15.35
MONTEIRO PB -7.89 1089 8481863 945.58 25.09
MONTES CLAROS MG -16.72 761 7336683 942.02 24.06
MORADA NOVA CE -5.14 617 7051115 1008.05 28.03
MORRETES PR -25.51 2035 5671694 1009.0 21.13
MORRINHOS GO -17.72 1191 7610862 930.16 23.11
MOSSORO RN -4.9 17554 8443113 1009.93 27.82
MOSTARDAS RS -31.25 2165 6068537 1011.25 20.01
MURIAE MG -21.1 1636 6095380 982.45 23.19
NATAL RN -5.9 1181 21471439 1007.3 26.84
NHUMIRIM MS -18.99 816 7825509 1000.18 26.93
NITEROI RJ -22.87 986 5489141 1015.35 24.72
NOSSA SENHORA DA GLORIA SE -10.21 461 7953363 983.38 25.3
NOVA ALVORADA DO SUL MS -21.45 1084 7753849 968.74 24.71
NOVA ANDRADINA MS -22.08 385 10112584 971.48 25.07
NOVA FATIMA PR -23.41 2150 6986453 939.34 21.44
NOVA FRIBURGO RJ -22.33 1614 6167742 898.54 17.16
NOVA FRIBURGO - SALINAS RJ -22.33 1595 6238409 899.3 17.17
NOVA MARINGA MT -13.07 1394 6539221 973.74 25.92
NOVA PORTEIRINHA (JANAUBA) MG -15.8 672 7215943 954.07 25.48
NOVA TEBAS PR -24.44 1277 7120614 940.58 21.56
NOVA UBIRATA MT -13.69 1225 7042547 959.6 25.91
NOVA VENECIA ES -18.7 902 6865768 998.29 24.0



APPENDIX B. Appendix B 198

Table B.6 – Average values for precipitation, radiation, pressure and air temperature
across the collection of weather stations, part (f)

Station Federation
Unit

Latitude Total Precip-
itation (mm)

Global
Radiation
(𝐾𝐽/𝑚2)

Atmospheric
Pressure
at Station
Level (mB)

Air Temper-
ature - Dry
Bulb (∘𝐶)

NOVO ARIPUANA AM -8.09 1340 8639767 1006.58 27.97
NOVO HORIZONTE SC -26.41 2302 7132183 908.09 18.21
NOVO REPARTIMENTO PA -4.23 1593 5991670 999.43 26.95
OBIDOS PA -5.37 2129 5803672 1000.9 26.59
OEIRAS PI -6.97 707 6783948 993.98 27.78
OIAPOQUE AP 3.81 2463 5157560 1010.3 26.32
OLIVEIRA MG -20.71 1200 6337792 902.72 21.09
OURICURI PE -7.88 336 9256056 961.09 26.9
OURINHOS SP -22.95 1104 6278556 966.4 22.06
OURO BRANCO MG -20.55 1333 5962468 899.64 20.1
PACAJA PA -3.84 845 5849505 1000.93 27.67
PACARAIMA RR 4.48 3610 0 915.48 18.0
PALMARES PE -8.67 938 4625137 995.13 24.88
PALMAS TO -10.18 3750 6630609 979.21 27.53
PALMEIRA DAS MISSOES RS -27.92 1420 6350090 944.44 19.02
PALMEIRA DOS INDIOS AL -9.42 495 7810246 982.64 25.22
PAMPULHA MG -19.88 1529 7077853 919.4 22.01
PAO DE ACUCAR AL -9.77 392 7432506 1011.88 27.59
PARACATU MG -17.24 750 6920727 934.21 23.89
PARAGOMINAS PA -3.01 2123 8162327 999.53 27.18
PARANA TO -12.62 890 7803980 979.64 26.5
PARANAIBA MS -19.7 962 6935407 967.58 24.89
PARANAPOEMA PR -22.49 1879 8235601 978.22 23.72
PARANATINGA MT -14.42 1209 7637067 955.95 25.76
PARANOA (COOPA-DF) DF -16.01 1312 7127080 899.61 21.75
PARATI RJ -23.22 2005 6475395 1015.29 22.99
PARATY RJ -23.22 1613 5168887 1015.38 22.88
PARAUNA GO -16.95 1052 7432631 937.51 24.69
PARINTINS AM -2.64 2043 7190628 1008.14 27.76
PARNAIBA PI -3.09 2525 6905358 1002.95 27.54
PARQUE ESTADUAL CHANDLESS AC -9.36 1479 7221131 993.18 25.17
PASSA QUATRO MG -22.4 1085 6089990 901.54 19.16
PASSO FUNDO RS -28.23 1857 6187557 937.44 17.97
PASSOS MG -20.74 1196 7418744 927.37 21.6
PATOS PB -7.08 439 10184411 982.89 28.39
PATOS DE MINAS MG -18.52 1141 6800863 909.64 22.16
PATROCINIO MG -19.0 1286 7018952 906.84 20.76
PAULISTANA PI -8.08 496 9776971 969.72 28.04
PEDRO AFONSO TO -8.97 1390 7918190 990.06 27.39
PEDRO GOMES MS -18.07 1308 6910090 984.53 24.54
PEF ESTIRAO DO EQUADOR AM -4.53 715 0 1000.79 27.22
PEF IPIRANGA AM -2.93 187 0 1002.95 30.6
PEF YAUARETE AM 0.6 487 0 998.41 26.14
PEIXE TO -12.02 1197 8297555 983.11 26.97
PETROLINA PE -9.39 269 5915072 971.19 27.28
PIATA BA -13.16 787 7143868 874.32 19.61
PICO DO COUTO RJ -22.48 2033 5715893 828.83 14.41
PICOS PI -7.07 349 7186591 985.44 28.76
PILAO ARCADO BA -10.0 524 7684304 967.78 28.12
PIRACICABA SP -22.7 1062 7230465 951.16 22.09
PIRANHAS AL -9.62 506 7256021 992.75 26.95
PIRAPORA MG -17.26 968 8075656 957.35 24.13
PIRES DO RIO GO -17.3 1638 7425554 930.04 23.35
PIRIPIRI PI -4.26 1265 7277643 992.68 28.2
PIUM TO -10.48 1523 6684459 990.4 26.35
PLACAS PA -3.88 2726 5563411 999.3 26.59
PLANALTO PR -25.72 1517 8065500 967.97 21.67
POCO VERDE SE -10.74 632 7451197 972.73 24.43
POMPEU MG -19.23 802 9084505 938.36 23.57
PONTA PORA MS -22.55 1615 5899611 938.15 21.93
PONTES E LACERDA MT -15.25 928 6490547 979.98 25.44
PORANGATU GO -13.51 998 7214047 970.18 27.13
PORTO ALEGRE RS -30.05 1513 5982066 1009.8 20.0
PORTO ALEGRE - JARDIM
BOTANICO

RS -30.05 1576 5012476 1009.69 20.0

PORTO ALEGRE- BELEM NOVO RS -30.19 1114 3225675 1013.54 20.96
PORTO DE MOZ PA -1.82 1931 4967055 1009.55 27.07
PORTO ESTRELA MT -15.55 539 7161731 994.85 26.43
PORTO GRANDE AP 0.69 3706 7375588 1002.44 26.6
PORTO MURTINHO MS -21.71 745 5876571 1002.39 25.39
PORTO SEGURO BA -16.39 1287 6093869 1006.18 23.74
PORTO VELHO RO -8.76 1845 5832050 995.87 26.46
PORTO WALTER AC -8.27 1327 6566752 987.49 26.25
POSSE GO -14.09 866 8142999 921.77 24.82
PRADOPOLIS SP -21.34 911 5577805 953.24 22.48
PREGUICAS MA -2.59 1348 6684649 1010.77 27.49
PRES. KENNEDY ES -21.1 981 7212223 1006.9 24.01
PRESIDENTE FIGUEIREDO AM -2.08 2242 5721036 1003.44 27.03
PRESIDENTE KENNEDY ES -21.1 814 6673927 1006.52 24.82
PRESIDENTE PRUDENTE SP -22.12 1173 5462301 964.35 23.92
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Table B.7 – Average values for precipitation, radiation, pressure and air temperature
across the collection of weather stations, part (g)

Station Federation
Unit

Latitude Total Precip-
itation (mm)

Global
Radiation
(𝐾𝐽/𝑚2)

Atmospheric
Pressure
at Station
Level (mB)

Air Temper-
ature - Dry
Bulb (∘𝐶)

PRIMAVERA DO LESTE MT -15.58 1418 7893095 936.82 25.56
PATY DO ALFERES - AVELAR RJ -22.35 636 3997627 955.13 21.2
QUARAI RS -30.37 1353 6502826 1000.67 19.0
QUEIMADAS BA -10.98 546 7729012 978.59 26.27
QUERENCIA MT -12.6 1092 7757898 972.46 26.02
QUIXADA CE -4.98 1045 4908574 991.14 27.43
QUIXERAMOBIM CE -5.17 898 8466626 986.89 27.99
RANCHARIA SP -22.37 1969 7481489 968.66 22.11
RANCHO QUEIMADO SC -27.68 1645 5359321 917.78 16.05
RECIFE PE -8.06 1755 6693808 1012.8 25.83
REDENCAO PA -8.04 1401 6484167 988.08 27.56
REGISTRO SP -24.53 1072 7628179 1012.16 22.92
REMANSO BA -9.6 324 9842972 967.5 27.3
RESENDE RJ -22.45 1354 6009665 965.5 21.88
RIBAS DO RIO PARDO MS -20.47 1144 6656393 962.89 24.77
RIBEIRA DO AMPARO BA -11.06 544 6148236 992.79 25.87
RIO BRANCO AC -9.96 2068 7005299 988.26 26.67
RIO BRILHANTE MS -21.77 1125 6815417 975.78 23.34
RIO CLARO RJ -22.65 1236 5771526 958.35 20.86
RIO DE JANEIRO - FORTE DE CO-
PACABANA

RJ -22.99 1202 5659702 1011.58 23.73

RIO DE JANEIRO - JACAREPAGUA RJ -22.94 1334 5422536 1013.78 23.09
RIO DE JANEIRO - VILA MILITAR RJ -22.86 1185 5761186 1012.46 24.09
RIO DE JANEIRO-MARAMBAIA RJ -23.05 1061 6088850 1014.11 23.55
RIO DO CAMPO SC -26.94 2321 6789035 947.54 18.68
RIO GRANDE RS -32.03 1171 5700248 1015.17 18.73
RIO NEGRINHO SC -26.25 1525 5433670 919.58 17.06
RIO PARDO RS -29.87 1480 5991588 1002.64 19.49
RIO PARDO DE MINAS MG -15.72 747 7145309 920.8 21.42
RIO SONO TO -9.16 1217 7913850 976.05 26.62
RIO URUBU AM -2.72 2545 6599514 1005.6 26.24
RIO VERDE GO -17.79 1286 8527756 927.3 23.46
RONDON DO PARA PA -4.83 2532 6885484 985.67 25.93
RONDONOPOLIS MT -16.45 899 6717027 979.3 25.9
ROSARIO OESTE MT -14.83 804 6542436 988.38 27.42
S. G. DA CACHOEIRA AM -0.12 2932 6276961 1001.02 26.33
S.J. DO RIO CLARO MT -13.45 1044 7127755 973.44 25.75
SACRAMENTO MG -19.88 1371 7369404 913.22 22.17
SALGUEIRO PE -8.06 353 9330353 962.39 27.42
SALINAS MG -16.16 830 7487427 959.71 24.26
SALINOPOLIS PA -0.62 2158 6873189 1009.05 27.5
SALTO DO CEU MT -15.14 947 7163196 977.81 25.5
SALVADOR BA -13.02 1700 6712889 1008.91 25.77
SALVADOR (RADIO FAROL) BA -12.81 1540 5725201 1010.13 25.35
SANTA CRUZ RN -6.23 248 7255035 987.2 26.88
SANTA FE DO ARAGUAIA TO -7.12 1549 7384503 988.49 26.58
SANTA ISABEL DO RIO NEGRO AM -0.41 245 0 1007.65 28.09
SANTA MARIA RS -29.71 1747 5969349 1003.11 19.39
SANTA MARIA DAS BARREIRAS PA -8.73 1119 8551996 990.0 27.74
SANTA MARIA MADALENA RJ -21.95 1055 5325175 951.81 20.66
SANTA RITA DE CASSIA BA -11.02 609 9178753 961.55 26.84
SANTA RITA DO PARDO MS -21.31 900 7366504 970.3 23.57
SANTA ROSA RS -27.89 2426 6575920 982.64 20.52
SANTA ROSA DO TOCANTINS TO -11.05 1008 7463865 977.68 26.64
SANTA TERESA ES -19.99 1433 6054571 907.3 18.42
SANTANA DO ARAGUAIA PA -9.34 1334 6929246 990.6 27.29
SANTANA DO LIVRAMENTO RS -30.84 1220 4889772 987.83 17.98
SANTAREM PA -2.5 3082 7494576 994.53 27.04
SANTIAGO RS -29.19 1795 6642577 969.3 19.1
SANTO ANTONIO DO LESTE MT -14.93 579 9482899 938.06 24.93
SANTO AUGUSTO RS -27.85 1852 6394332 958.16 19.72
SAO BENTO MA -2.7 4155 0 1008.51 29.6
SAO BORJA RS -28.65 1230 7015559 1004.23 21.14
SAO CARLOS SP -21.98 1346 6708090 920.04 21.2
SAO FELIX DO ARAGUAIA MT -11.62 1192 6847731 988.41 28.2
SAO FELIX DO XINGU PA -6.64 1915 7389780 988.38 26.33
SAO GABRIEL RS -30.34 1446 6027613 1001.57 19.73
SAO GABRIEL DO OESTE MS -19.42 1097 7915551 940.2 23.78
SAO GONCALO PB -6.76 769 8424049 985.68 27.45
SAO JOAO DEL REI MG -21.23 1402 6793947 910.77 19.88
SAO JOAO DO PIAUI PI -8.36 334 8078410 985.31 28.74
SAO JOAQUIM SC -28.28 1793 6347487 862.27 14.0
SAO JOSE DO XINGU MT -10.48 897 6714703 977.98 27.04
SAO JOSE DOS AUSENTES RS -28.75 2292 6174521 879.06 13.89
SAO LUIS MA -2.53 1956 7245124 1005.56 26.82
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Table B.8 – Average values for precipitation, radiation, pressure and air temperature
across the collection of weather stations, part (h)

Station Federation
Unit

Latitude Total Precip-
itation (mm)

Global
Radiation
(𝐾𝐽/𝑚2)

Atmospheric
Pressure
at Station
Level (mB)

Air Temper-
ature - Dry
Bulb (∘𝐶)

SAO LUIS DO PARAITINGA SP -23.23 1135 7697032 918.58 19.14
SAO LUIS DO QUITUNDE AL -9.29 1318 7110908 1012.88 25.57
SAO LUIZ DO PARAITINGA SP -23.23 549 5696742 918.92 19.31
SAO LUIZ GONZAGA RS -28.42 1685 6806692 985.66 20.88
SAO MATEUS ES -18.71 1205 6901068 1011.93 24.05
SAO MATEUS DO SUL PR -25.83 1325 4666775 928.15 17.31
SAO MIGUEL ARCANJO SP -23.85 1041 6737471 939.68 19.83
SAO MIGUEL DO ARAGUAIA GO -12.82 1036 8917619 987.19 28.07
SAO MIGUEL DO OESTE SC -26.78 1669 6588369 940.31 20.4
SAO PAULO - INTERLAGOS SP -23.72 1320 5383160 928.55 19.55
SAO PAULO - MIRANTE SP -23.48 1548 6358827 927.18 20.53
SAO PEDRO DO PIAUI PI -5.91 694 8194333 978.1 27.39
SAO RAIMUNDO NONATO PI -9.03 277 8079526 969.03 27.5
SAO ROMAO MG -16.36 1253 8300864 958.55 24.99
SAO SEBASTIAO SP -23.81 992 8322203 1014.04 25.34
SAO SEBASTIAO DO PARAISO MG -20.91 1623 8965256 920.29 21.84
SAO SIMAO GO -18.97 2403 9985072 955.24 24.45
SAO TOME RJ -22.04 700 7907735 1015.54 24.06
SAO VICENTE DO SUL RS -29.7 1558 6528927 999.33 19.34
SAPEZAL MT -10.17 1205 6642101 950.18 25.11
SAQUAREMA RJ -22.87 1010 5617816 1013.63 23.87
SAQUAREMA - SAMPAIO COR-
REIA

RJ -22.87 1662 6066720 1013.76 23.49

SELVIRIA MS -20.35 614 3715336 971.46 23.81
SENHOR DO BONFIM BA -10.44 640 4314587 954.14 24.18
SERAFINA CORREA RS -28.7 1875 5873535 958.97 17.88
SEROPEDICA-ECOLOGIA AGRI-
COLA

RJ -22.76 1183 6221740 1011.89 24.06

SERRA DOS AIMORES MG -17.8 1034 6388096 991.9 23.64
SERRA DOS CARAJAS PA -6.08 2543 6240659 931.84 24.76
SERRA NOVA DOURADA MT -11.99 931 8229976 961.05 27.71
SERRA TALHADA PE -7.95 550 7618740 956.97 26.18
SERRINHA BA -11.66 485 5612236 976.28 24.49
SETE LAGOAS MG -19.45 1167 6414267 933.35 21.95
SETE QUEDAS MS -23.97 1418 8665154 967.46 22.94
SIDROLANDIA MS -20.98 821 6974565 959.4 23.79
SILVA JARDIM RJ -22.65 1452 5319743 1013.74 23.34
SILVANIA GO -16.68 1077 5677463 908.83 22.19
SINOP MT -11.98 1113 6130993 970.28 25.79
SOBRAL CE -3.73 541 7268669 1000.42 27.77
SOLEDADE RS -28.85 1737 6685936 939.71 17.79
SONORA MS -17.9 2116 5834250 956.74 24.86
SOROCABA SP -23.35 1119 7242863 946.98 20.71
SORRISO MT -12.55 1643 6628601 968.88 26.57
SOURE PA -0.81 2172 5804393 1009.93 27.4
SURUBIM PE -7.84 450 8210346 966.31 24.62
Santa Vitoria do Palmar - Barra do
Chui

RS -33.74 1029 7296151 1014.8 17.39

TANGARA DA SERRA MT -14.65 1440 14471995 962.32 25.05
TAUA CE -6.02 380 6673967 965.86 27.63
TAUBATE SP -23.04 2514 5779055 949.82 21.15
TEOFILO OTONI MG -17.9 3011 6743478 962.8 23.2
TERESINA PI -5.07 1183 6586561 1002.8 27.98
TERESOPOLIS RJ -22.45 2754 5586595 907.75 18.13
TERESOPOLIS-PARQUE NA-
CIONAL

RJ -22.45 2735 5048234 907.96 18.24

TEUTONIA RS -29.45 1505 5659185 1006.05 20.23
TIANGUA CE -3.73 1104 6528028 929.06 23.36
TIMOTEO MG -19.57 1307 5731999 960.4 22.62
TOME ACU PA -2.6 1546 7087964 1006.2 26.92
TORRES RS -29.35 1556 6941464 1015.17 19.65
TRAMANDAI RS -30.01 1370 6247772 1015.12 19.73
TRES LAGOAS MS -20.79 977 7474636 976.27 25.87
TRES MARIAS MG -18.2 1109 7404252 912.16 22.16
TRES RIOS RJ -22.1 1099 5105744 981.37 22.35
TUCUMA PA -6.74 1772 4178883 975.42 26.16
TUCURUI PA -3.82 1443 6277285 994.7 27.09
TUPA SP -21.93 1246 6824508 957.55 23.83
TUPANCIRETA RS -29.89 1695 5884831 962.35 18.74
TURIACU MA -1.66 1764 6789729 1006.17 26.96
UAUA BA -9.83 367 7268971 962.63 25.0
UBERABA MG -19.71 1491 6433433 927.46 22.6
UBERLANDIA MG -18.92 1395 7040143 917.34 23.46
ULIANOPOLIS PA -3.8 0 0 N/A N/A
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Table B.9 – Average values for precipitation, radiation, pressure and air temperature
across the collection of weather stations, part (i)

Station Federation
Unit

Latitude Total Precip-
itation (mm)

Global
Radiation
(𝐾𝐽/𝑚2)

Atmospheric
Pressure
at Station
Level (mB)

Air Temper-
ature - Dry
Bulb (∘𝐶)

UNA BA -15.28 1306 6719631 1007.12 23.94
UNAI MG -16.55 1184 7903895 942.0 23.89
URUCARA AM -2.9 2061 6103958 1008.18 27.33
URUCUI PI -7.47 842 7728643 967.4 26.57
URUGUAIANA RS -29.84 1302 6622765 1005.63 20.03
URUSSANGA SC -28.53 1938 5675922 1011.48 20.22
VACARIA RS -28.51 1794 6327272 906.76 15.68
VALENCA BA -13.34 2390 13573660 989.34 23.05
VALENCA DO PIAUI PI -6.4 1974 8119401 974.3 27.65
VALPARAISO SP -21.32 1408 7182408 970.13 24.03
VARGINHA MG -21.57 1276 6754094 909.96 20.36
VENDA NOVA DO IMIGRANTE ES -20.25 1283 6262500 935.62 19.97
VENTANIA PR -24.24 1172 5130270 894.79 18.23
VICOSA MG -20.76 1320 5882549 937.26 20.03
VILA BELA DA SANTISSIMA
TRINDADE

MT -15.06 1084 5761425 987.29 25.85

VILA MILITAR RJ -22.86 1099 6338465 1012.55 24.12
VILA VELHA ES -20.47 1080 6714676 1012.19 23.91
VILHENA RO -12.73 1736 6833653 946.56 24.9
VITORIA ES -20.27 1427 6686121 1016.16 24.59
VITORIA DA CONQUISTA BA -14.89 1196 7822505 918.07 20.61
VOTUPORANGA SP -20.4 1059 6701148 959.49 24.93
XANXERE SC -26.94 2687 6404418 915.97 18.73
XEREM RJ -22.59 1907 5910708 1012.96 22.85
XINGUARA PA -7.11 1728 6568366 983.93 26.48
ZE DOCA MA -3.27 1621 5217725 1005.77 27.82
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APPENDIX C – Appendix C

From the Instituto Nacional de Meteorologia (Instituto Nacional de Meteorologia (IN-
MET), 2024), we gathered data from various weather stations throughout Brazil. The
network consists of 633 automated stations engaged in data gathering. Our data covers
the period from 2010 to 2024, with annual average values summarized in the tables below.
We provide the mean annual values for the following meteorological parameters:

• Temperature - Dew Point (∘𝐶)

• Relative Humidity (%)

• Gust Wind (m/s)

• Wind Velocity (m/s)
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Table C.1 – Mean values for weather stations across the entire data collection period, part
(a)

Station Temperature - Dew
Point (∘𝐶)

Relative Humid-
ity (%)

Gust Wind
(m/s)

Wind Velocity
(m/s)

ABROLHOS 19.15 68.27 8.36 5.35
ACARAU 21.75 75.87 6.34 3.11
AFONSO CLAUDIO 16.51 72.65 4.22 1.88
AGUA BOA 17.51 63.77 4.95 2.31
AGUA CLARA 17.18 69.78 3.94 1.33
AGUAS EMENDADAS 14.01 67.51 4.98 1.98
AGUAS VERMELHAS 15.24 72.18 4.94 2.01
AIMORES 17.7 68.23 5.38 2.47
ALEGRE 17.98 71.72 3.74 1.38
ALEGRETE 14.11 73.25 5.44 2.06
ALFREDO CHAVES 18.25 70.65 4.82 1.93
ALMAS 18.81 67.3 4.71 1.77
ALMENARA 18.14 66.64 4.26 1.52
ALTA FLORESTA 20.46 75.45 4.22 1.75
ALTAMIRA 22.8 81.92 2.77 0.86
ALTO ARAGUAIA 15.8 66.3 5.08 2.42
ALTO PARAISO DE GOIAS 12.56 60.6 4.84 1.95
ALTO PARNAIBA 17.95 63.65 3.42 1.03
ALTO TAQUARI 15.37 67.73 4.96 2.23
ALVORADA DO GURGUEIA 16.28 55.22 4.65 1.8
AMAMBAI 15.79 70.41 4.97 1.7
AMARGOSA 17.64 73.56 4.8 1.83
ANGELICA 16.44 65.96 5.18 2.25
ANGICAL DO PIAUI 19.12 63.6 3.61 1.19
ANGRA DOS REIS 19.65 82.64 3.13 0.62
APIACAS 21.4 73.88 2.98 0.97
APODI 18.93 60.74 6.22 2.68
APUI 21.54 76.57 3.23 0.91
AQUIDAUANA 17.6 68.03 3.47 0.94
ARACAJU 19.64 65.99 5.92 2.49
ARACUAI 15.09 58.46 4.28 1.33
ARAGARCAS 17.09 61.13 3.67 1.23
ARAGUACU 19.51 69.76 4.33 1.9
ARAGUAINA 20.8 77.46 2.52 0.6
ARAGUATINS 20.65 70.3 3.78 1.57
ARAL MOREIRA 15.2 67.35 6.58 3.11
ARAPIRACA 19.33 73.73 5.12 1.87
ARARANGUA 16.97 82.65 4.84 2.27
ARAXA 13.68 63.32 5.41 2.45
ARCO VERDE 16.56 66.38 7.39 3.13
AREIA 19.31 83.75 7.46 3.56
ARIQUEMES 21.79 77.22 4.89 1.44
ARIRANHA 15.64 66.57 4.46 1.75
ARQ.SAO PEDRO E SAO
PAULO

26.53 88.39 9.69 4.58

ARRAIAL DO CABO 20.16 80.09 8.51 4.73
AUTAZES 21.63 75.75 1.43 0.39
AVARE 14.67 69.84 5.9 2.34
BACABAL 21.6 70.42 4.06 1.18
BAGE 12.83 75.36 6.67 3.35
BAIXA GRANDE DO RIBEIRO 17.95 63.05 5.74 2.0
BALIZA 21.98 75.3 2.03 0.63
BALSAS 18.59 63.25 3.96 1.35
BAMBUI 16.63 77.36 3.56 1.34
BANDEIRANTES 16.91 70.66 5.95 3.12
BARBACENA 14.33 74.23 4.3 1.66
BARBALHA 17.37 62.44 4.78 1.7
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Table C.2 – Mean values for weather stations across the entire data collection period, part
(b)

Station Temperature - Dew
Point (∘𝐶)

Relative Humid-
ity (%)

Gust Wind
(m/s)

Wind Velocity
(m/s)

BARRA DO TURVO 15.73 88.6 2.9 0.62
BARREIRAS 17.06 63.4 3.51 1.2
BARRETOS 15.26 65.53 3.69 1.21
BARUERI 14.69 75.14 4.39 1.35
BATAGUASSU 16.29 64.66 5.86 3.06
BAURU 15.87 70.83 4.82 1.4
BEBDOURO 16.17 66.46 5.13 2.12
BEBEDOURO 15.62 65.38 4.64 1.68
BELA VISTA 16.12 69.45 4.57 1.89
BELEM 23.2 81.38 3.64 0.82
BELMONTE 20.28 82.08 4.44 1.73
BELO HORIZONTE (PAM-
PULHA)

14.45 64.98 4.66 1.51

BELO HORIZONTE - CER-
CADINHO

13.62 69.11 8.86 5.24

BENTO GONCALVES 13.2 77.14 6.42 2.81
BERTIOGA 20.57 86.31 4.44 1.59
BOA VISTA 20.6 65.61 5.2 1.97
BOCA DO ACRE 21.38 74.95 3.58 1.24
BOM JARDIM DA SERRA -
MORRO DA IGREJA

8.53 75.94 12.35 7.75

BOM JESUS DA LAPA 16.64 54.94 4.71 1.48
BOM JESUS DO PIAUI 16.76 57.56 3.95 1.09
BONITO 18.1 71.59 5.6 2.89
BRAGANCA 22.99 79.43 4.77 1.39
BRAGANCA PAULISTA 15.14 73.37 5.37 1.84
BRASILANDIA 15.83 67.58 3.61 1.36
BRASILIA 13.67 65.1 5.14 2.28
BRASNORTE (MUNDO NOVO) 19.4 73.64 5.07 1.93
BRASNORTE (NOVO MUNDO) 19.37 67.19 3.84 0.33
BRAZLANDIA 13.28 62.12 5.64 2.25
BREJO GRANDE 21.34 73.98 4.87 1.62
BREVES 22.76 74.25 3.98 1.1
BRUMADO 16.2 61.23 4.85 1.52
BURITICUPU 20.43 69.68 4.95 2.29
BURITIRAMA 15.95 55.38 4.81 1.59
BURITIS 13.94 61.61 5.52 2.58
CAARAPO 16.26 67.96 5.91 2.78
CABACEIRAS 18.09 66.31 6.53 2.49
CABROBO 16.49 56.92 6.89 2.36
CACADOR 12.01 76.64 4.01 1.19
CACAPAVA DO SUL 13.34 79.06 7.54 4.06
CACERES 20.15 71.17 3.9 1.38
CACHOEIRA PAULISTA 16.52 74.06 4.0 1.22
CACOAL 19.84 68.15 4.0 1.46
CAIAPONIA 15.34 63.19 4.02 1.38
CAICO 17.58 53.97 6.8 2.85
CALCANHAR 18.96 65.16 10.77 7.22
CALDAS 13.19 77.66 3.01 0.86
CAMAPUA 17.66 70.95 5.18 2.83
CAMAQUA 15.57 83.94 3.81 0.87
CAMARATUBA 19.49 67.46 5.67 2.14
CAMBARA DO SUL 12.47 83.26 6.46 2.96
CAMBUCI 18.53 74.67 3.02 1.11
CAMETA 22.48 74.22 4.76 1.7
CAMPINA DA LAGOA 16.25 67.41 5.98 3.12
CAMPINA GRANDE 19.25 77.16 7.24 3.25
CAMPINA VERDE 15.71 64.26 4.39 1.71
CAMPO BOM 14.79 68.94 3.75 1.23
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Table C.3 – Mean values for weather stations across the entire data collection period, part
(c)

Station Temperature - Dew
Point (∘𝐶)

Relative Humid-
ity (%)

Gust Wind
(m/s)

Wind Velocity
(m/s)

CAMPOS 19.27 77.62 6.35 3.3
CAMPOS DO JORDAO 11.74 81.92 4.17 1.44
CAMPOS DOS GOYTACAZES 19.19 76.74 5.74 2.73
CAMPOS DOS GOYTACAZES -
SAO TOME

20.7 79.26 7.21 3.59

CAMPOS LINDOS 17.78 65.4 5.15 2.22
CAMPOS NOVOS 12.68 77.68 6.66 3.43
CAMPOS SALES 17.37 65.31 5.35 2.01
CANELA 12.59 81.87 6.61 2.82
CANGUCU 12.92 82.04 8.55 4.56
CANTO DO BURITI 16.41 55.68 5.65 2.67
CAPAO DO LEAO (PELOTAS) 14.12 83.49 6.4 3.21
CAPELINHA 15.01 74.78 4.88 2.0
CAPITAO POCO 22.28 80.2 4.4 1.81
CARACOL 17.42 63.89 5.29 2.17
CARATINGA 18.03 72.67 4.21 1.44
CARAVELAS 20.72 80.72 5.86 2.64
CARIRA 20.15 77.19 5.59 2.54
CARLINDA 19.67 73.1 3.67 1.26
CARMO 17.84 75.91 2.79 0.92
CAROLINA 19.88 65.9 3.55 1.15
CARUARU 18.0 77.92 7.34 3.02
CASA BRANCA 14.24 64.15 4.41 1.46
CASSILANDIA 16.47 63.86 3.55 1.2
CASTANHAL 23.02 80.26 3.94 1.06
CASTELO DO PIAUI 17.68 57.66 5.1 1.98
CASTRO 14.18 81.37 4.56 1.46
CATALAO 14.13 60.87 4.83 1.85
CAXIAS 20.88 72.47 3.67 1.28
CHAPADA GAUCHA 13.99 59.93 5.66 2.73
CHAPADAO DO SUL 15.52 65.69 5.39 2.19
CHAPADINHA 21.22 70.87 4.96 1.91
CHAPECO 13.8 72.83 6.5 3.44
CIDADE GAUCHA 16.15 65.96 4.74 1.61
CLEVELANDIA 12.74 72.76 6.88 3.44
COARI 22.97 78.35 3.72 1.23
COLINAS 18.99 64.37 3.62 1.02
COLINAS DO TOCANTINS 21.75 76.8 3.87 1.59
COLOMBO 14.18 84.69 4.28 1.38
COMODORO 18.34 77.65 3.46 1.16
CONCEICAO DAS ALAGOAS 15.82 66.94 4.68 2.0
CONCEICAO DO ARAGUAIA 20.17 71.55 3.58 1.38
CONDE 21.91 79.25 5.86 2.69
CORONEL PACHECO 18.2 75.74 3.51 1.41
CORRENTE 16.59 58.95 4.16 1.44
CORRENTINA 17.7 69.61 4.07 1.52
CORUMBA 18.44 63.75 4.71 1.67
CORURIPE 21.62 77.15 5.61 2.29
COSTA RICA 15.91 67.33 6.05 3.29
COTRIGUACU 21.3 76.9 3.36 1.17
COXIM 18.17 69.24 3.33 0.9
CRATEUS 17.98 58.47 5.26 2.07
CRIOSFERA nan 61.18 12.2 10.32
CRISTALINA 13.21 64.36 4.61 2.11
CRISTALINA (FAZENDA
SANTA MONICA)

15.18 70.46 4.91 1.92

CRMN MANAUS 22.33 76.74 2.31 0.73
CRUZ ALTA 13.42 75.13 5.96 2.69
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Table C.4 – Mean values for weather stations across the entire data collection period, part
(d)

Station Temperature - Dew
Point (∘𝐶)

Relative Humid-
ity (%)

Gust Wind
(m/s)

Wind Velocity
(m/s)

CURITIBA 13.43 73.98 5.1 1.88
CURITIBANOS 12.76 78.19 5.75 2.62
CURVELO 14.93 63.62 4.19 1.69
DELFINO 14.42 58.38 6.08 2.57
DIAMANTE DO NORTE 17.11 69.38 5.17 2.02
DIAMANTINA 13.28 73.8 5.73 2.94
DIANOPOLIS 16.03 61.79 5.6 2.63
DIONISIO CERQUEIRA 13.65 71.01 6.42 3.02
DIVINOPOLIS 16.15 72.68 4.57 2.14
DOIS VIZINHOS 15.15 72.24 4.42 1.82
DOM ELISEU 21.37 75.36 4.13 1.74
DOM PEDRITO 13.07 72.88 6.75 3.67
DORES DO INDAIA 15.05 66.0 4.31 1.8
DOURADOS 16.14 67.7 5.76 2.32
DRACENA 17.57 70.4 6.76 3.04
DTCEA GUAJARA-MIRIM 21.32 74.87 4.11 1.39
DTCEA JACAREACANGA 22.35 81.41 1.39 0.34
DTCEA TABATINGA 20.69 80.93 1.04 0.14
DTCEA TEFE 24.37 90.9 1.83 0.48
DTCEA VILHENA 20.25 76.55 6.4 3.07
DUQUE DE CAXIAS - XEREM 18.98 78.06 2.81 0.63
EB_PEF_BONFIM 21.0 67.84 4.42 2.54
ECOLOGIA AGRICOLA 19.28 77.93 4.63 2.19
ECOPORANGA 19.16 73.66 4.75 1.91
EDEIA 16.27 62.85 4.76 1.81
EIRUNEPE 18.99 67.36 3.25 1.01
ENCRUZILHADA DO SUL 13.02 77.44 6.37 2.63
EPITACIOLANDIA 21.42 80.41 3.1 1.02
ERECHIM 13.25 76.23 4.99 1.83
ESPERANTINA 20.78 69.75 4.17 1.3
ESPINOSA 13.75 51.42 6.31 2.77
ESTREITO 20.52 73.24 3.35 1.04
EUCLIDES DA CUNHA 18.25 68.91 6.69 3.07
FAROL de SANTANA 23.22 75.46 8.57 3.57
FATIMA DO SUL 18.91 57.24 6.17 3.03
FEIJO 22.31 81.44 3.18 1.37
FEIRA DE SANTANA 19.59 74.14 5.65 2.48
FLORESTA 16.6 55.38 7.1 3.18
FLORESTAL 14.89 73.68 2.86 0.77
FLORIANO 18.96 59.04 3.98 1.25
FLORIANOPOLIS 16.89 77.17 4.91 1.58
FORMIGA 14.71 68.01 4.38 1.63
FORMOSA DO RIO PRETO 17.76 72.8 3.88 1.29
FORMOSO DO ARAGUAIA 18.67 65.1 4.45 1.69
FORMOSO DO RIO PRETO 17.34 66.29 3.91 1.36
FORTALEZA 21.49 71.02 6.52 2.52
FORTE DE COPACABANA 19.39 77.93 5.72 2.7
FORTE PRINCIPE 16.61 51.4 2.68 1.52
FOZ DO IGUACU 16.61 72.07 5.36 2.43
FRANCA 13.41 62.64 4.97 1.88
FREDERICO WESTPHALEN 14.53 75.24 4.16 1.43
GAMA (PONTE ALTA) 13.93 63.75 5.17 2.29
GARANHUNS 18.08 82.5 5.78 2.11
GAUCHA DO NORTE 17.9 61.96 3.94 1.29
GENERAL CARNEIRO 13.41 84.34 3.53 0.95
GILBUES 16.67 55.13 5.48 2.37
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Table C.5 – Mean values for weather stations across the entire data collection period, part
(e)

Station Temperature - Dew
Point (∘𝐶)

Relative Humid-
ity (%)

Gust Wind
(m/s)

Wind Velocity
(m/s)

GOVERNADOR VALADARES 17.78 69.81 4.16 1.63
GRAJAU 18.99 61.34 4.2 1.68
GUANAMBI 14.54 51.99 7.83 3.75
GUANHAES 15.57 74.77 4.26 1.63
GUARAMIRANGA 18.58 84.92 7.43 2.84
GUARANTA DO NORTE 20.91 75.56 3.01 0.79
GUARDA-MOR 14.53 67.06 4.56 1.71
GUIRATINGA 17.65 64.29 3.33 0.9
GURUPI 18.83 70.5 3.43 1.09
HUMAITA 22.28 76.22 3.35 1.24
IBIMIRIM 16.37 61.15 6.48 2.89
IBIRITE (ROLA MOCA) 13.44 68.05 7.76 3.52
IBIRUBA 14.51 76.88 5.68 2.47
IBITINGA 15.63 68.44 4.46 1.64
IBOTIRAMA 15.61 53.0 5.04 1.86
ICARAIMA 16.47 66.16 5.46 2.5
IGUAPE 18.69 83.39 4.17 1.32
IGUATEMI 15.91 67.57 6.38 3.15
IGUATU 18.29 60.23 5.77 2.51
ILHA DO MEL 19.57 83.52 5.03 2.46
ILHEUS 20.96 83.65 4.93 2.22
IMPERATRIZ 20.48 68.69 2.84 0.73
INACIO MARTINS 12.78 81.6 4.98 2.12
INDAIAL 17.7 82.84 3.23 0.99
IPANGUACU 20.79 65.67 5.8 2.4
IPERO 15.23 71.62 1.16 0.1
IPIAU 19.32 77.51 3.63 1.46
IPORA 15.99 62.08 4.77 1.86
IRECE 15.53 62.39 6.91 2.73
ITABAIANA 21.38 85.76 4.67 2.33
ITABAIANINHA 19.95 76.21 5.99 2.63
ITABERABA 20.14 74.28 5.08 2.05
ITACOATIARA 23.22 79.35 3.1 0.97
ITAITUBA 22.92 76.11 2.79 0.81
ITAJAI 16.93 83.16 3.84 1.52
ITAMARAJU 20.85 82.47 5.36 2.63
ITAOBIM 16.57 60.44 5.07 1.66
ITAPACI 17.09 70.05 3.16 1.09
ITAPETINGA 18.31 71.23 4.79 2.12
ITAPEVA 14.91 75.24 5.25 2.14
ITAPIPOCA 20.35 65.57 8.27 3.95
ITAPIRA 15.0 68.26 3.56 0.97
ITAPOA 18.24 86.14 3.02 1.01
ITAPORA 16.52 66.35 5.07 2.13
ITAPORANGA 19.08 62.07 5.5 2.3
ITAQUIRAI 16.85 71.39 4.88 1.81
ITATIAIA 7.78 82.01 6.46 2.77
ITAUBAL 22.02 71.45 6.7 2.91
ITIQUIRA 17.5 68.11 4.22 1.52
ITIRUCU 17.09 79.66 5.28 2.28
ITUIUTABA 16.33 65.76 4.41 1.5
ITUMBIARA 16.5 65.79 3.83 1.42
ITUPORANGA 14.99 82.53 2.83 0.82
ITUVERAVA 15.23 66.72 4.24 1.68
IVAI 14.04 75.75 4.24 1.42
IVINHEMA 16.36 65.46 5.52 2.46
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Table C.6 – Mean values for weather stations across the entire data collection period, part
(f)

Station Temperature - Dew
Point (∘𝐶)

Relative Humid-
ity (%)

Gust Wind
(m/s)

Wind Velocity
(m/s)

JALES 15.7 63.1 5.2 2.25
JANAUBA 16.36 59.58 6.1 2.47
JANUARIA 16.67 64.32 4.6 1.93
JAPIRA 15.0 71.49 4.99 1.91
JARDIM 17.34 66.45 4.22 1.58
JATAI 16.04 69.64 4.19 1.55
JEREMOABO 18.38 65.26 6.11 2.7
JOACABA 13.8 78.98 5.07 2.27
JOAO PESSOA 21.64 73.9 5.93 1.98
JOAO PINHEIRO 13.75 60.59 4.38 1.72
JOAQUIM TAVORA 15.8 71.13 5.47 2.11
JOSE BONIFACIO 16.04 64.8 5.22 2.18
JUARA 20.26 72.99 3.48 1.05
JUINA 19.97 74.94 3.6 1.1
JUIZ DE FORA 15.32 79.49 5.8 2.59
JUTI 16.75 70.84 4.68 1.49
LABREA 22.34 78.45 3.14 0.91
LAGES 12.99 80.75 6.21 3.05
LAGOA DA CONFUSAO 21.42 77.57 3.5 1.28
LAGOA VERMELHA 12.64 77.19 6.62 3.21
LAGUNA CARAPA 16.2 71.35 6.33 3.45
LARANJEIRAS DO SUL 14.47 77.62 5.27 2.09
LENCOIS 18.29 70.57 3.58 0.88
LINHARES 19.33 75.44 5.69 2.96
LINS 15.12 63.17 4.81 1.6
LUIZ EDUARDO MAGAL-
HAES

16.23 64.9 5.51 2.48

LUZIANIA 13.97 62.64 5.42 2.6
Laguna - Farol de Santa Marta 16.17 80.09 8.23 5.47
MACAE 19.39 79.01 5.86 2.55
MACAJUBA 18.78 71.68 5.86 2.75
MACAPA 22.94 75.66 5.68 2.11
MACAU 20.57 65.91 8.54 4.59
MACAUBAS 14.72 54.07 5.18 2.22
MACEIO 21.4 78.8 5.49 2.65
MACHADO 14.59 71.19 3.5 1.31
MAJOR VIEIRA 13.75 82.41 4.52 2.03
MAL. CANDIDO RONDON 15.85 71.29 5.87 2.94
MANACAPURU 22.85 77.51 3.58 1.4
MANAUS 22.53 74.74 3.93 1.41
MANHUACU 15.4 75.36 4.6 2.0
MANICORE 22.75 80.23 4.51 1.38
MANTENA 17.58 69.64 3.5 0.87
MARABA 21.57 75.29 3.54 1.3
MARACAJU 16.16 66.53 4.31 1.18
MARAMBAIA 18.47 75.71 6.13 3.36
MARAU 19.21 71.77 5.07 2.03
MARECHAL THAUMATURGO 20.38 67.11 4.13 1.63
MARIA DA FE 13.1 81.6 2.64 0.63
MARIANOPOLIS DO TO 19.75 68.36 4.49 2.0
MARILANDIA 19.36 75.28 3.72 1.26
MARILIA 15.19 66.6 5.12 1.77
MARINGA 14.91 64.33 5.38 1.98
MATEIROS 15.04 60.32 6.38 3.49
MAUES 23.86 84.36 2.41 0.57
MEDICILANDIA 21.63 78.13 2.83 0.54
MINA DO PALITO 21.24 77.93 2.91 0.98
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Table C.7 – Mean values for weather stations across the entire data collection period, part
(g)

Station Temperature - Dew
Point (∘𝐶)

Relative Humid-
ity (%)

Gust Wind
(m/s)

Wind Velocity
(m/s)

MONTE ALEGRE 22.22 73.07 5.69 2.84
MONTE ALEGRE DE GOIAS 15.5 58.44 4.55 1.63
MONTE VERDE 11.01 79.62 4.5 1.42
MONTEIRO 15.97 60.12 6.27 2.78
MONTES CLAROS 13.96 57.34 4.09 1.67
MORADA NOVA 19.27 63.36 5.8 2.5
MORRETES 18.71 86.84 2.42 0.63
MORRINHOS 15.24 65.87 4.34 1.66
MOSSORO 21.06 68.3 7.2 3.46
MOSTARDAS 15.53 75.22 9.13 5.28
MURIAE 17.73 74.16 3.36 0.94
NATAL 22.32 76.85 8.29 3.95
NHUMIRIM 19.08 66.93 4.56 1.91
NITEROI 19.56 75.37 4.02 1.36
NOSSA SENHORA DA GLO-
RIA

20.34 77.15 6.6 2.94

NOVA ALVORADA DO SUL 17.43 66.36 5.36 2.14
NOVA ANDRADINA 16.77 63.93 5.81 2.56
NOVA FATIMA 15.07 69.67 5.98 2.68
NOVA FRIBURGO 13.74 82.22 5.26 2.27
NOVA FRIBURGO - SALINAS 13.42 80.44 5.92 2.27
NOVA MARINGA 19.26 70.78 3.27 0.96
NOVA PORTEIRINHA
(JANAUBA)

16.76 62.49 5.73 2.21

NOVA TEBAS 14.71 68.06 3.77 1.66
NOVA UBIRATA 19.1 70.08 5.23 2.53
NOVA VENECIA 18.74 75.1 4.79 2.15
NOVO ARIPUANA 23.97 86.16 4.31 0.79
NOVO HORIZONTE 13.28 75.25 7.3 3.23
NOVO REPARTIMENTO 20.4 72.07 3.97 1.61
OBIDOS 22.44 79.82 0.68 0.18
OEIRAS 17.81 60.42 5.06 2.06
OIAPOQUE 23.42 85.58 3.22 1.03
OLIVEIRA 14.55 69.45 5.5 2.74
OURICURI 15.75 54.58 6.42 2.93
OURINHOS 15.91 71.32 4.11 1.21
OURO BRANCO 14.67 73.72 5.26 2.13
PACAJA 21.54 71.49 2.49 0.8
PACARAIMA 14.8 77.5 2.31 1.13
PALMARES 20.89 80.13 4.88 2.17
PALMAS 18.58 62.9 4.3 1.49
PALMEIRA DAS MISSOES 13.6 73.87 5.81 2.41
PALMEIRA DOS INDIOS 19.77 73.39 5.22 2.0
PAMPULHA 14.33 64.48 5.3 2.03
PAO DE ACUCAR 18.46 62.61 4.95 1.8
PARACATU 14.93 61.38 4.79 2.17
PARAGOMINAS 22.38 77.51 3.84 1.27
PARANA 16.93 61.9 3.26 0.9
PARANAIBA 16.7 64.37 4.12 1.63
PARANAPOEMA 16.55 67.36 5.7 2.68
PARANATINGA 18.12 68.63 3.64 1.31
PARANOA (COOPA-DF) 14.79 68.47 5.1 2.24
PARATI 19.05 80.07 3.69 1.48
PARATY 19.28 81.63 3.64 1.5
PARAUNA 15.69 61.62 4.04 1.13
PARINTINS 23.0 77.0 2.44 0.89
PARNAIBA 23.11 78.04 6.65 3.03
PARQUE ESTADUAL CHAND-
LESS

21.36 81.1 2.64 0.58
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Table C.8 – Mean values for weather stations across the entire data collection period, part
(h)

Station Temperature - Dew
Point (∘𝐶)

Relative Humid-
ity (%)

Gust Wind
(m/s)

Wind Velocity
(m/s)

PATOS DE MINAS 14.11 64.22 5.0 2.08
PATROCINIO 14.58 72.06 3.66 1.15
PAULISTANA 15.8 51.14 7.4 3.22
PEDRO AFONSO 20.29 69.5 2.98 0.7
PEDRO GOMES 19.27 76.87 3.43 1.35
PEF ESTIRAO DO EQUADOR 23.54 82.05 2.1 0.7
PEF IPIRANGA 24.2 68.99 2.25 1.01
PEF YAUARETE nan nan 2.93 0.98
PEIXE 18.73 66.11 3.44 1.26
PETROLINA 15.85 52.49 7.32 3.38
PIATA 13.04 68.65 6.56 2.59
PICO DO COUTO 11.98 83.74 8.73 4.57
PICOS 17.44 54.69 5.9 2.22
PILAO ARCADO 16.62 52.87 6.53 2.82
PIRACICABA 15.51 70.2 4.85 1.84
PIRANHAS 19.37 66.49 6.65 2.65
PIRAPORA 15.83 64.22 3.95 1.31
PIRES DO RIO 15.28 65.4 3.28 0.82
PIRIPIRI 20.15 66.66 4.72 1.88
PIUM 21.44 79.04 3.52 1.28
PLACAS 21.02 74.5 2.97 0.95
PLANALTO 15.52 70.71 4.86 2.36
POCO VERDE 19.3 75.66 5.54 2.32
POMPEU 16.24 66.67 4.84 1.87
PONTA PORA 15.44 70.03 5.11 2.15
PONTES E LACERDA 18.71 70.08 3.83 1.16
PORANGATU 18.73 65.13 4.21 1.23
PORTO ALEGRE 15.4 76.88 4.75 1.48
PORTO ALEGRE - JARDIM
BOTANICO

15.59 77.7 4.69 1.42

PORTO ALEGRE- BELEM
NOVO

16.5 77.63 5.84 2.67

PORTO DE MOZ 24.05 85.03 3.38 1.06
PORTO ESTRELA 20.49 73.44 3.22 0.93
PORTO GRANDE 20.18 70.85 4.2 1.77
PORTO MURTINHO 17.6 65.54 4.63 1.57
PORTO SEGURO 20.34 82.67 4.17 1.44
PORTO VELHO 21.92 78.22 3.99 1.36
PORTO WALTER 22.18 80.29 3.5 1.44
POSSE 14.21 56.02 5.62 2.21
PRADOPOLIS 15.05 67.62 4.55 2.01
PREGUICAS 22.64 75.43 6.15 2.72
PRES. KENNEDY 18.95 75.29 6.64 3.77
PRESIDENTE FIGUEIREDO 22.76 79.64 2.78 0.71
PRESIDENTE KENNEDY 19.17 72.94 6.64 3.61
PRESIDENTE PRUDENTE 15.52 63.04 4.86 1.48
PRIMAVERA DO LESTE 15.19 55.28 5.42 2.5
Paty do Alferes - Avelar 16.56 77.0 3.55 1.23
QUARAI 13.14 72.39 5.79 2.42
QUEIMADAS 17.7 63.2 7.03 3.3
QUERENCIA 19.04 70.81 3.78 1.23
QUIXADA 22.68 75.62 5.7 2.27
QUIXERAMOBIM 18.26 59.45 6.17 2.16
RANCHARIA 16.03 73.0 4.07 1.48
RANCHO QUEIMADO 14.04 88.78 5.12 2.02
RECIFE 21.45 78.02 5.14 1.74
REDENCAO 21.31 67.02 3.84 1.49
REGISTRO 20.89 85.34 4.91 2.18
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Table C.9 – Mean values for weather stations across the entire data collection period, part
(i)

Station Temperature - Dew
Point (∘𝐶)

Relative Humid-
ity (%)

Gust Wind
(m/s)

Wind Velocity
(m/s)

RIO BRANCO 20.99 73.5 3.68 1.17
RIO BRILHANTE 16.22 67.46 3.91 1.34
RIO CLARO 16.79 79.66 4.2 1.62
RIO DE JANEIRO - FORTE DE
COPACABANA

19.74 79.27 5.51 2.46

RIO DE JANEIRO -
JACAREPAGUA

18.29 76.71 3.42 0.78

RIO DE JANEIRO - VILA MIL-
ITAR

19.0 75.49 3.72 1.17

RIO DE JANEIRO-
MARAMBAIA

18.94 71.9 6.19 3.49

RIO DO CAMPO 15.11 81.78 3.31 1.0
RIO GRANDE 14.21 76.39 6.88 3.24
RIO NEGRINHO 14.44 86.79 3.7 1.16
RIO PARDO 14.93 77.08 5.41 2.49
RIO PARDO DE MINAS 15.13 71.01 4.8 2.06
RIO SONO 19.75 70.48 4.26 1.73
RIO URUBU 22.99 84.18 2.42 0.59
RIO VERDE 14.97 63.49 4.9 1.98
RONDON DO PARA 20.56 74.64 3.83 1.32
RONDONOPOLIS 18.18 66.73 3.94 1.33
ROSARIO OESTE 18.54 64.56 3.18 1.04
S. G. DA CACHOEIRA 22.58 81.17 1.98 0.62
S.J. DO RIO CLARO 19.28 71.16 2.81 0.9
SACRAMENTO 14.02 63.82 5.39 1.93
SALGUEIRO 17.64 58.78 6.07 2.32
SALINAS 15.59 62.98 3.89 1.26
SALINOPOLIS 22.32 74.73 6.89 2.03
SALTO DO CEU 18.78 71.14 4.28 1.35
SALVADOR 21.49 77.94 5.37 1.42
SALVADOR (RADIO FAROL) 22.66 85.83 4.56 1.34
SANTA CRUZ 18.53 63.63 6.68 2.69
SANTA FE DO ARAGUAIA 21.73 77.97 4.24 1.86
SANTA ISABEL DO RIO NE-
GRO

22.6 73.08 0.88 0.08

SANTA MARIA 15.2 78.61 5.06 2.04
SANTA MARIA DAS BAR-
REIRAS

20.67 69.64 4.72 2.1

SANTA MARIA MADALENA 17.38 82.9 3.01 0.57
SANTA RITA DE CASSIA 16.16 56.91 4.48 1.8
SANTA RITA DO PARDO 16.76 70.57 5.27 2.63
SANTA ROSA 14.89 73.58 4.88 1.81
SANTA ROSA DO TO-
CANTINS

18.11 64.94 4.76 2.2

SANTA TERESA 15.42 82.38 5.36 1.85
SANTANA DO ARAGUAIA 19.89 68.28 3.4 1.19
SANTANA DO LIVRAMENTO 12.22 71.47 5.72 2.76
SANTAREM 22.75 77.87 4.07 1.41
SANTIAGO 13.68 73.6 6.05 2.33
SANTO ANTONIO DO LESTE 16.91 65.49 5.0 2.13
SANTO AUGUSTO 13.15 68.52 5.44 1.99
SAO BENTO 23.93 72.77 2.63 0.81
SAO BORJA 14.83 70.29 5.08 1.99
SAO CARLOS 14.25 67.86 4.69 1.58
SAO FELIX DO ARAGUAIA 16.07 52.49 4.33 1.32
SAO FELIX DO XINGU 21.45 77.14 3.92 1.66
SAO GABRIEL 14.34 74.08 5.31 2.07
SAO GABRIEL DO OESTE 16.38 67.05 5.17 1.61
SAO GONCALO 17.47 58.62 4.92 1.74
SAO JOAO DEL REI 14.39 74.06 5.16 2.35
SAO JOAO DO PIAUI 16.11 50.6 5.38 2.04
SAO JOAQUIM 10.37 80.24 5.9 2.27
SAO JOSE DO XINGU 20.54 71.81 3.76 1.6
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Table C.10 – Mean values for weather stations across the entire data collection period,
part (j)

Station Temperature - Dew
Point (∘𝐶)

Relative Humid-
ity (%)

Gust Wind
(m/s)

Wind Velocity
(m/s)

SAO LUIZ DO PARAITINGA 15.57 81.41 4.05 1.17
SAO LUIZ GONZAGA 14.27 69.57 6.22 2.75
SAO MATEUS 20.75 82.73 5.13 2.44
SAO MATEUS DO SUL 13.85 82.73 2.65 0.56
SAO MIGUEL ARCANJO 15.55 79.26 5.45 2.22
SAO MIGUEL DO ARAGUAIA 19.58 65.17 4.62 1.97
SAO MIGUEL DO OESTE 14.95 73.5 5.88 2.76
SAO PAULO - INTERLAGOS 15.91 82.14 5.2 1.98
SAO PAULO - MIRANTE 14.04 69.36 5.22 1.84
SAO PEDRO DO PIAUI 18.3 62.28 4.53 1.79
SAO RAIMUNDO NONATO 16.17 54.57 5.28 1.94
SAO ROMAO 16.57 64.61 3.92 1.33
SAO SEBASTIAO 19.8 72.2 7.52 4.13
SAO SEBASTIAO DO
PARAISO

15.53 71.0 4.54 1.83

SAO SIMAO 16.23 64.81 4.63 1.85
SAO TOME 19.56 76.72 6.84 3.5
SAO VICENTE DO SUL 14.22 75.01 6.26 3.24
SAPEZAL 18.42 73.46 5.42 2.76
SAQUAREMA 19.22 77.3 4.78 1.87
SAQUAREMA - SAMPAIO
CORREIA

19.02 77.59 4.47 1.7

SELVIRIA 18.52 75.65 6.32 2.81
SENHOR DO BONFIM 17.06 68.16 6.08 2.82
SERAFINA CORREA 13.32 78.25 3.7 1.25
SEROPEDICA-ECOLOGIA
AGRICOLA

18.19 72.58 4.72 1.71

SERRA DOS AIMORES 18.71 76.46 5.61 2.8
SERRA DOS CARAJAS 18.9 72.26 6.09 2.83
SERRA NOVA DOURADA 17.62 58.64 5.18 2.65
SERRA TALHADA 15.35 55.65 6.57 2.49
SERRINHA 19.06 74.98 6.1 2.71
SETE LAGOAS 14.86 68.39 4.63 1.98
SETE QUEDAS 16.44 69.81 5.08 1.61
SIDROLANDIA 16.34 66.91 5.08 2.01
SILVA JARDIM 19.08 79.49 3.49 1.29
SILVANIA 14.87 67.66 3.53 1.11
SINOP 19.25 71.73 4.28 1.71
SOBRAL 20.11 67.25 4.55 1.57
SOLEDADE 13.1 76.49 7.5 3.89
SONORA 17.42 67.57 5.98 3.3
SOROCABA 15.13 73.5 4.66 2.06
SORRISO 18.56 66.4 3.76 1.41
SOURE 23.04 77.81 6.17 2.17
SURUBIM 18.53 70.69 6.54 3.17
Santa Vitoria do Palmar - Barra
do Chui

13.75 80.53 7.56 4.55

TANGARA DA SERRA 18.39 70.77 4.38 2.02
TAUA 15.68 52.22 6.06 2.48
TAUBATE 15.82 74.58 4.19 1.91
TEOFILO OTONI 17.09 71.61 4.18 1.65
TERESINA 20.62 67.98 3.75 1.2
TERESOPOLIS 14.99 83.51 3.39 0.72
TERESOPOLIS-PARQUE NA-
CIONAL

15.25 83.93 3.27 0.79

TEUTONIA 15.45 76.88 4.56 1.92
TIANGUA 18.74 77.35 7.56 3.8
TIMOTEO 16.74 71.6 3.37 0.87
TOME ACU 22.43 77.47 3.57 1.09
TORRES 15.82 78.98 5.83 2.81
TRAMANDAI 15.83 76.19 7.07 3.72
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Table C.11 – Mean values for weather stations across the entire data collection period,
part (k)

Station Temperature - Dew
Point (∘𝐶)

Relative Humid-
ity (%)

Gust Wind
(m/s)

Wind Velocity
(m/s)

TUCURUI 22.38 77.09 3.02 0.6
TUPA 16.05 65.77 5.86 2.83
TUPANCIRETA 13.69 75.45 5.73 2.17
TURIACU 23.21 80.82 5.73 2.3
UAUA 17.38 66.39 7.25 3.61
UBERABA 15.59 68.87 5.66 2.28
UBERLANDIA 13.95 59.15 5.06 1.72
ULIANOPOLIS nan nan nan nan
UNA 20.82 83.77 3.84 1.24
UNAI 15.57 64.29 4.1 1.54
URUCARA 23.32 80.28 3.1 0.83
URUCUI 17.41 61.29 3.09 0.74
URUGUAIANA 14.07 71.95 6.16 2.96
URUSSANGA 15.73 77.61 3.13 0.89
VACARIA 12.02 81.36 6.45 3.22
VALENCA 19.09 80.0 4.16 1.59
VALENCA DO PIAUI 17.65 59.89 5.15 1.95
VALPARAISO 16.08 65.65 5.1 1.95
VARGINHA 14.06 70.67 4.5 1.73
VENDA NOVA DO IMI-
GRANTE

15.63 77.73 4.86 1.19

VENTANIA 14.11 79.04 6.57 3.36
VICOSA 15.96 79.99 2.96 0.81
VILA BELA DA SANTISSIMA
TRINDADE

19.77 72.63 3.18 0.99

VILA MILITAR 17.82 70.87 3.95 1.38
VILA VELHA 20.07 80.47 6.06 2.96
VILHENA 18.12 69.48 4.98 1.9
VITORIA 19.45 74.81 5.03 1.71
VITORIA DA CONQUISTA 16.85 81.11 5.85 2.35
VOTUPORANGA 16.11 62.89 4.42 1.38
XANXERE 13.64 74.83 6.17 2.5
XEREM 18.71 80.28 3.01 0.82
XINGUARA 21.54 76.98 3.35 1.33
ZE DOCA 22.92 76.85 5.11 1.8
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APPENDIX D – Appendix D

We presented below the collected data from our colaborative farmer in the city of Tatuí, state of São Paulo.

Table D.1 – Parameters gathered from a grain farmer in São Paulo State, part (a)
ID Crop name Family ID Family Average

yield per
hectare
(sc/ha)

Cost
per area
(sc/ha)

Cover crop
costs ($)

Sale price
per unit

Usual
planting
dates - Be-
gin (Week)

Usual
plant-
ing dates
- End
(Week)

Init Dev Mid Late Cycle
(Weeks)

1 Soybean 1 Legume 78.0 34.9 0.0 160 42 48 3 5 7 4 19
2 Summer corn 2 Grass 157.0 67.95 0.0 71 35 52 4 7 8 4 23
3 Winter corn 2 Grass 103.0 67.95 0.0 50 1 10 4 7 8 6 25
4 Sorghum 2 Grass 43.38 49.73 0.0 60 1 12 3 5 7 5 20
5 Wheat 2 Grass 37.87 26.68 0.0 66 10 20 3 9 10 4 26
6 Black Oats 2 Grass 0.0 0.0 150.0 0 9 22 0 0 0 0 14
7 Fodder Turnip 3 Mustard 0.0 0.0 142.5 0 9 39 0 0 0 0 12
8 Hairy vetch 1 Legume 0.0 0.0 436.0 0 9 26 0 0 0 0 10

Table D.2 – Parameters gathered from a grain farmer in São Paulo State, part (b)
ID Crop name %N Total % P2O5

sol
CNA+Água

%k2O
SOL. WA-
TER

S B Mn Zn Ca Mg COT Dry
Matter
(kg/ha/ano)

Minimum
Dry
Matter
(kg/ha/ano)

Total N
Source
(kg/ha)

Minimum
Total N
Source
(kg/ha)

Nitrogen
Scavenger

Soil
Builder

Erosion
Fighter

Weed
Fighter

Lasting
Residue

Commercial
Crops

1 Soybean 20.0 92.5 90.67 19.39 0.25 0.5 0.5 0 0 0.0 0 0 0 0 0 0 0 0 0 Y
2 Summer corn 158.0 59.4 23.1 0.0 0.0 0.0 0.0 0 0 66.0 0 0 0 0 0 0 0 0 0 Y
3 Winter corn 158.0 59.4 23.1 0.0 0.0 0.0 0.0 0 0 66.0 0 0 0 0 0 0 0 0 0 Y
4 Sorghum 60.27 55.8 44.64 28.63 0.56 0.37 0.37 0 0 0.0 0 0 0 0 0 0 0 0 0 Y
5 Wheat 96.5 37.08 14.42 0.0 0.0 0.0 0.0 0 0 41.2 0 0 0 0 0 0 0 0 0 Y
6 Black Oats 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 2200-11000 2200 0 0 3 2 3 4 2 N
7 Fodder Turnip 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 2600-5600 2600 0 0 2 3 3 3 1 N
8 Hairy vetch 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 2600-5600 2600 100-220 100 0 1 3 2 1 N
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