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1 Optimal and Suboptimal Stopping times for a Poisson
Point Process

1.1 Introduction

Suppqse the following situation: In the middle of the night, you are awaken by a plane
dropping leaflets right above you. In the following morning looking sequentially at regions
T'¢ you want to estimate which direction the plane flew.

v

Let 8 be the direction of the plane and A the intensity at which the leaflets were thrown.
Assume the distance from a leaflet to the line followed by the plane (y = az,a = tanb) is
normally distributed with mean zero and variance o2, i.e., i~ N(0,0%).

Let N be the point process obtained by the positions of the leaflets. Therefore, N is a
non-homogeneous Poisson process with mean measure determined by (a2, ,0).

Let §; be the maximum likelihood estimator of 8 based on Lr,, where T'; is a random
set chosen sequentially in order to minimize .



E[m(T) + C(6: - 6)?] | (1)
where m(A) = Lebesgue measure of A.

1.2 Mean' Measure

The process N is a Poisson process on (2, F,Py) with parameter measure My defined by

My(A) = ,\L \ﬁ]‘?a'e-(rsinO—ycooﬂ)z/Zaz dz dy, A€ B(R2)

Justification: It is enough to prove the result for & = 0 since for 8 # 0 the process can
be obtained by a rotation of a process generated by § = 0. Let A be any bounded set
and (X;,Y;),i = 1,2,... be any enumeration of the points of N. Define Ax = {z;(z,y) €
A, for some y € R}.

Let Nx be the random variable Nx = #{i; X; € Ax} and I = {41,42,...,iNy} be such
that Xy € Ay if k£ € I. In this case, from the properties of the Poisson process, we know
Nx is a Poisson random variable with mean Am(Ax). Then, define A(z) = {y; (z,y) € A}.

Therefore,
Nx

N(A) =) Ly, eax. )

1=1

Given Ny, we have Xj,,...,Xiy, i.i.d. with common distribution U(Ax) and

; N —u2 /242
E[N(A) [ Xiy,- s Xing ] = TP fax, ) 7aze ™ 12 dy
Consequently,

1 1 2 )02
= E[N / / VP dyd
E[N(4)] [Nx] = oy ydz
1

1 2 jon2
Sl / / e=v*129% gy dy
m(Ax) Ax JA(z) M(Ax) V270 i

/\/ ! eV /2 dydz
A V2mo

1.3 Maximum Likelihood Estimation

Let A be a bounded subset belonging to B(R?) (Borel o-algebra of R?). Let F4 =
o(N(B); B C A) and P# = Py|F4. For A bounded, P§ < Pg. Moreover, since My < m,
Pj < P™|F4, where m is the Lebesgue measure and under P™, N is a Poisson process



with Lebesgue mean measure. Also, denote by pe(z,y) the density of My with respect to
the Lebesgue measure ‘

We want to find the likelihood ratio
' _ dPy|F4
. ~ dP™|Fy
Let (Xi,Y:),i = 1,2,...,N(A) denote the points. of Nin A. Then, by Daley and
Vere-Jones (1988), the I:kelzhood functzon can be written as - .

-~ N(A)
LA0) = exp{ 3 log (X ¥ - / (#o(z y) - 1)da dy}

i=1
In our case,

N(4)
logLa(8) = Zlog(

=1

-(x uno-}'.cosa)*/zaz)

ke N % B

e-(:::s.mw-yc4330)2/2¢'r2 ~1)dzdy

(\/27ra
N(ZA)] ( ) - Nf) (Xisin@ — Y; cos §)?
= og — g
\/_ = 202 :
_/( e—(:::sinﬁ—ycosO)’/?cr2 _ l)dz dy (2)
V27O .
Assume ¢ and A are known
dlog L 4(0) _
06

1‘%) 2(X; s1n0 Y cosg)(X cos + Y;sin )

i=1

\/2_7;0 202
N(A) (X'Sln - )/' cos 0)(X' cos @ + ),iSin 0)

=-§ ' =

e~ (z2in0-yc0s8)*/2%[_9( 2 5in § — y cos §)(z cosd + ysin 0))dz dy

A ~(zsind-ycost)? /207 zsinf 0 ind)dzd
sin — ycosf)(z cosf + ysind)dz dy
\/27ra3e _ ( ) \
N(A) / v2 .
— Z(_X_),Qa-f-xyco%
202

i=1



v Wi, A 2
+ ~(=sin(0—y coe(6))2/203,2° — y? |
A e e ¥ ooe())/ [—-— 8in 20 — zy cos 20]dzdy

e 4

Letting u = ~ 008 8 |
ing 'u Z8ind — ycosd and v = Tcosé+ ysinf in the integral above we have:

(t) =

Y 2 2 _ 2 p p
~u/20%; (¥ — v?)cos 20sin20  2uvsin? 29
-L‘(A) \/2xa3c [ 2 + 2

i (u? - v)sin 20 cos 20

+ uv cos? 20) du dv

- 220 22 .
= /T(A) Toai® o uv(sin? 20 + cos? 26) du dv

2) 2 /0,2
-u?/20
/( )“3 uve du‘dv

If A is a disk with center at origin and radius r, T(A) = A and ()=0.
Therefore, i |

Olog L 4(0 sm20 N(4) 29 N14)
°580"() ):(x2 Y+ =— Y X

1=1

Consequently, ifAisa dxsk of center at origin and radius r, the maximum likelihood
estimator ; is the value of  that maximizes the expression above. Note that solving

M—O we have

50 N(A)
6= larc'ta,n 22 izm XiY,
i e

1=1

3)

Note that the value of # above does not always give the maximum value; sometimes it
gives the minimum value. Using the second derivative to find the maximum we have that
0 is the maximum likelihood estimator if 3 (X? - Y?) > 0 and it gives the minimum if
$(X? - Y?) < 0. In this case 8 + 7/2 gives the maximum likelihood estimator of 8. Note
that we are only interested in values of @ in the interval [-7/2,7/2]). Consequently, the
maximum likelihood estimator of # based on observations made in the disk I'; of center at

the origin and radius t is

b, = -l-arct 22 2(:;'21"‘ Y’) sgn(ZX i )I(Z(X2 Y?) <0) (4)
L




1.3.1 Consnstency of the Maxmmm Lnkellhood Estimator

In this sectxon w1thout loss of generahty we can assume § = 0 since for # # 0 the process
can be obtained by a rotation of a process generated by 8. =

We want to prove that ¢ — 0 as't — 0.’
In order to do this we need a continuous version of Kronecker’s Lemma

Kronecker’s Lemma: If ¥,(bx/ax) < oo and ax — o, as k — 0o, then -

/0 A(s_)dB(.s) < o

then B(1)
. t
2% 2w =
" Proof: Let dH(s) dB(s) Then,

B(t) = /0' A(s—) A(i_)dB(s)z Li‘A(s—'-)dH(s)

= AQR)H(t) - /Ot H(s—)dA(s) — [H,A] (by Ito’s Formula)

A(H(2) - /0 " H(s)dA(s)

Consequently, 2—% H(t) - ]ﬁ fO‘H(.s,)dA(.s). SinceH(t) = [, A(s )dB(s) converges
as t — oo, we have
H(t) - A( ) H(s)dA(s) =0
as t — 00, if A(t) = oo ast — 0.
In fact, let C and to be such that, |H(t) - C| < efor t > 1o, then

\H(1) - / H(.s)dA(s)| -

-
A(t) 0
= 1)~ C- 5 / (H(s) - CMA(S) + 715 / (H(s) - C)dA(s)|

6



< IH@)=Cl+ g [ 1) - ClA) + o5 [ 1) - Claage

4 QA4Q) - At) | 1 sup 4 (s) - ClA(to)

= T . A(t) ‘
b
< 2y (DA
Therefore,
%-»o g <05

o Consistency of the maximum likelihood estimator: To prove that b — 0 a.s.,
it is enough to prove that:

1. X3, XiY; = 0as.
2. 5n(XP-Y)-C,C>0as.
3. Tr,(X?-Y?)<0)—0as.

Note that 3 follows immediately from 2.

Note: The normalizing constant was chosen to be > because, if S(t) = {(z,y); -1 <
z < t}, then

N(Ty) N(S:)
CE( ) X)) < E( Yo X2 =(2/3)a.
i=1 i=1
N(T:) N(S))
E() Y<K YY) =2
i=1

i=1
are jid random variables with common distribution U(-t,t)Hh,Yz,.... ¥s

(X ’X R X
1 X2, Xn(s,) 2), Also, E(N(S:)) = 2At.)

are iid random variables with common distribution N (0,0

In order to prove 1. and 2. above note the following fact: for any function f(s)s

M(t) = /r f(z,y)N(dz, dy) - jr f(z, y)u(dz, dy)



is a martingale.

We want to prove that —}J — 0 as. as t — oo (equivalently, '—‘1-(]5))3- — 0asast — 00).
By the continuous version of the Kronecker s lemma, it is enough to prove

1 1 ' o
s oo -3 - <

But
(M), = /r f3(z,y)N(dz, dy)

However,

(M), - / Xz, y)u(dz, dy)

is a martingale and we have to prove

; _
/om ot l)‘;d/l(.s) < o0

A= [ Fz.v)u(dz,dy)

Particular Case 1: /(z y)= zy

- / zyﬂ(dz dy) =
I

where

17— y3
/ / zye=V /1% dzdy = 0

270 V-3
Therefore, .
M(t) = /r zyN(dz,dy) = 3 X3,
t rl
In this case,
‘s = fim [ il u(de,dy
= m ——(dz,
ll:ooo 0 (8 + 1)6 ( ) t—o0 Jry ( z? + v+ 1)6# Y
2y A v gy dy

= t—ooo r, (,/z’-}-y -{-1)6 2r0
2 —11"'/262 dzd
:’i‘&/ / (|a=|+1)6 ora.

= / ,\a d:z<oo

IA



Particular Case 2: f(z,y) =z2 - y2
Let

G(t) = /(-"’ -yg)#(dz dy [ z2e=v/29* 4o 4y — A / 20-v’/20* 4o 4
e »/2' nee HRRV. 7 i
Note that,
1 - 1 rt
ﬁ[‘. yle~v'/20? dzdy = 3 -t‘/p_yzy‘le-v’/hz i
¢ v
%/., 2 yte /27 4y

o0
tl/ 3/26_”2/2”2dy -0 ast — oo
— 00

IA

IA

Also, let ' .
t
Ity = [ 222 e~ g, dy - / Azdz
| T 270 -t
We claim that /(2)/t® — 0 as ¢ — 00. Note that,
t -r
I(t) = / Az / eV’ 4y — 1]dz
\/P:E-’ 27!’0'
- e—V? /257 ¥ /m -y’lza’ / ‘ 2
4/ = \/“Tv z + : z dz]dydz
_ —4[/‘ _y2,202( t3 (t2 - y ) ‘/m —y2/262t_3_}
- 1/21ra 3 V2ro 3
(42 _ 2

_ -y?/26% (1 _ .(_t_-__) Ji 4

= —4(’4 ’—21’0’8 (3 3 (K‘)) y]
Therefore,

2 142
,I(t)' — 4[/ —y2/2d’(% u#i)](y(‘)dy]
But, . '
gik 8\ e~V

4A ,e_yzlzaz(l = (1 - Y
210 3 3
and by the Dominated Convergence Theorem,

My<r] < WrP

3
11 1 (1-y%/t?)3 "
='~’9<>“M =ik Bty - y3/ ly<o) ] =0
=0



Therefore,

li ‘_.oota/' ,\zzdz-—->0

If we prove that,
M) _ Tr(X2-Y)-60) _,
1+ 1)3 (1+1)3 |

Then

t~°° 3 Z(X2 YQ) = l’m

In this case take

ﬂ

)l = /r z'p(dz,dy) -2 / Z’y’ﬂ(dz,dy)+/r' y*u(dz, dy) -
’ r, Y .

then

We proved before that

Note that

Analogously,

1 |
[ (s + 1)6dA3(")

00 1 |
'/0 ——-—(3 n 1)6 dA](S) =

<
- / -0 (l-"f‘|+1)6 210

IA

: A:Zs)

Aa(s)

[ (s + 1)6“’(.3) <, <

/ TR

y4

z4

/l‘, (\/2—2:‘7*' 1)6 21ra

4

b L

t—ooo°°:
A

-~ (|z|+1)®

1

dz ‘”°f’ 3,\0

[; 3\o? (=l

F 18

10

As(s)

/m( +1)6dA(3) f:’( +1)sdA1(-’) 2/00( +1)sdA2(3)+/®

e~v'/2’ dydz

74

A 12 grdy

/r. (VZ2 + 92 + 1)6 V270
/—:/-oo (Irly+ 1) /;\_WU

eV’ 127 dy dx

(III

(s+1)°

e V129 g dy

dA3(8)

dz < 0o

+1)°

dx<oo



Conclusion: The maximum likelihood estimator 6, is strongly consistent.

1.3.2 Central Limit Theorem for the Maximum Likelihood Estimator

We have that

9 X-v2 o XY
59 108 Lr.(6) = - FZ[—'EZ;'—'sm 26 — —3+ cos 26]
if Iy = {(z,9);2% + ¢ <12},
Then, - |
X2_Yv? Y.
My(t) = ;[‘—20# sin 260 — )f;:/' cos 26]

is a martingale with respect to {;} when 4 is the true parameter value. Let

1
My(t) = —573 Mo(nt)

Claim 1: For each T > 0, lim,, E[sup,<7 [MZ(1) — M2 (t-)|?] = 0.
Proof: Let U; = X;sinf — Y;cosf and V; = X;cos @ + Y;sinf. Denote by No the process
formed by the points (U;,V;). Then Nj is a rotation of the original process and it is a

Poisson process with mean measure

Mo(4) = [

A V210

e~v' /29" gz dy

And, since T, is invariant under rotation,

1
MJ(t) = =75 > UV,
Cne

Consequently, if there is a point in the circle of radius nt,

WAL R |Ui|?
04y — MOI+-)12 = : 22178
'Mn(t) Mn(t )l n3 04 S nsn T 0-4

Let S; = {(2,y);le| < t}, then No(Tne) < No(Sne). Also, No(Sn) and {Us} are
independent. Therefore,

{Elsup|M,(1) - Mi(t-)") = E[ sup —T°—]



i E[ sup U4
ot i<No(Sar) ®*

IA

T2 No(snT)

w\E[ ):‘; —U‘]

T | 1 No(Sat)

F\ —E| g i

Tf\/lE[No(S,.T)]E[U?I |

. | 5
Ui ~ N(0,0%) < Z—A-\/—QAnTlia‘—»O as n — 0o

Claim 2: Let A,(t) = [M?),, then limp— o Efsup,cr |An(t) — An(t=)l) =
Proof: Since

IA
l

IA

IA

M) = n3/2/ ((I ;y )sm20 —-cos20)N(da: dy)

then

Uzv2
(t) - 3 Z
| Tt
Therefore, claim 2 is equivalent to claim 1.

Claim 3: M?(t)? — A,(t) is martingale with respect to {F7'}.
Proof: By Proposition 2.6.1 (Ethier & Kurtz (1986)), it is enough to prove that M2 (t) is
square integrable martingale. In fact,

j 2
EM()Y = E[(Z X Y) XY
= —E[(Z )’]
Cne

- ;1131-3[( /r f(u,v)No(du,dv))?]  where f(u,v) = uv
by Campbell’s equations = ;—:—5 /l‘ f(u,v)po(du, dv)

v [ N S92, who(du, dv)uo(dz, dw)

nt 343
< Mzl dz = 2An3t o® = 22
n

-nt

12



Since,

/ u?p?- 2 e 1?7 dudv <
e

A 2 /03
2 -v/2dd d
€ uav
2xo0 v

2710

/ uly
= /"' / =712 4y du
-nt

\/_
And,

1 A o 2/20% -w?[20?
— u v e dudvdzdw =
n3 /Fnc ‘/F t vzw( \/2_7“7) ‘

= %(/ uv 2/\ =127 gy dv)? =0
Cne To

Claim 4: A,(t) — 2"3 a.5. as n — 0o.
Proof: Let _
M@= UV? - / w?v? o (du, dv)
Te il

therefore, M(t) is a martingale and we want to prove that

M(t)
RESE

-0 ast—o0

Let |
A(s) = / u?v? uo(du, dv).
r,

It is enough to prove that

e 1
/(; n 1)GdA(.s;) < 00.

In our case,
u2v?pg(du,dv by
f[‘. }‘0( ) E _3 ugvz 1 e_uzlzazdu dv
t3 t \/27ra
2 —u’/?a
= dv)u du
t3/ ( = ) Vvaro
22 2 1,2\3/2,,2€ akiadl
— —_ -— du
3 /_‘(1 u’ [t°)" u Toro
2\ ge~ v/ 2)0?

DCT — = [ 4 s 20

3 Jooo’ Vare 3
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Also,

“
1 2 /g2
~u/2¢d d
/l‘. (\/u2+v +1)8 2xa v

< A / WL / LA
-t (l”l % 1)6 v —00 21rae “
| ) )
= 30%) / (o] + 1)dv
-t

1 ;
/o‘ _—(3 m 1)GdA(.s)

Consequently,

U: 2V2 2At3
= Z

a.s.
Cne

Theorem: $Xt3n3/ %@ - 0) > B
where B is a process with independent Gaussian increments and
2At302

3

B? -
is a martingale. |

Proof: By claims 1, 2, 3 and 4 proved above, we can apply the Central Lxmlt Theorem
for martingales( Ethier & Kurtz (1986), Theorem 7.1.4). Let

M, (t,0) = ! Z(X‘; 2) sin 20 — X;Y; cos 26

3/2
i / Fut
Then,
M,=>X
where X is a process with independent Gaussian increments,
2302
XA - —5

is a martingale with respect to {F;* }. :
Note that by the definition of M, we have M;(t, 8) = 0. Therefore, when 4 is the true

parameter value, we have

M;(-,0) - Ma(-,0) = X

By Taylor’s expansion, for some £ between 6 and 6 we have,

M;(1,6) - M(t, 9) = (6 - 7 )[cos20 Z(x2 Y?) +2sin20 ) X;Y;] + Rn(0)

nt rnl

14



where

2 _y2 8 - 6)2
R.(8) = [—4sin2£2g!—2y—') +4cos2£EXiYi](—2n3/L2)

rnt rnt
and R, () — 0 a.s. as n — o0o. In fact,

1 : (X2 -Y?) VP2
EE[—!! sin 2§ ; —2—'- + 4 cos 2612”){:},:] < 0
and (6 — é) — 0 a.s as n — o0o. Using the process{(U;, V;)}, with true paraméter value
equals to zero, we have
M:(t,0) = M2(1,6,) = Mz Y (U - V) + Ra(9)
n\l% n\"HYnt) — 17,3/2 = 1 1

and we have proved that

2\
SEW -V =2 ass—co
F, ‘

Then, |
*(y * 0 3 1. 2 2
=X o N rnt | —0
2
3
Therefore,

g,\r’*nf‘/?(ém —-0) = X(t)

1.4 Optimal Stopping Time

Let X(t) = (t,r, Xi¥e, Zr, X3, 2or, Y?). Then, X(t) is a Markov process and also 2
piecewise deterministic Markov process. Looking at the expression for the likelihood fuﬂ}f‘
tion (see ( 2)) we can see that the distribution of the process N depends only ot ;ai
following four functions of the data when a disc of radius t is searched, this means t

X () is the vector of sufficient statistics for the parameter 4.

st
We want to find the optimal stopping time in order to minimize the expected €©
/2 1 25 X.Y;
9(X(t)) = min{rt* +C — arctan ¢ v
e { -n/2 2 Yr, X2- Y, Y

L) Y. - 0)? 6,A
+2(8gn§,:x'y')’():r.x?-£r.Y.-’<0) 0)9(617 )0, A}

15



where
A = maximum cost allowed;

9(81F:) = conditional distribution of the parameter 8 given the knowledge of the point
process over the circle I'; given by

9(0|F¢) exp{— (cos 4 EW +sin?8) " X} - 2sinfcosd ) X;Y;)}  (5)
rg rt
1.4.1 Piecewise Deterministic Processes Method

Let X(t) be the vector of sufficient statistics, i.e.
X(t) = (t, ZYY.,Z Wy
l rl

Then (X (t), Fi,Pz)i<0,z € (0,00)x R x[0,00)x[0,00) is a piecewise-deterministic process
(PDP) (see Davis(1984) and Gugerli(1986)).

Let the initial state Zg = z = (r,a,8,7) and set Tp = 0. The process follows a
deterministic trajectory except at random times 0 < T} < T3,... when it jumps off the
trajectory and immediately starts anew at a randomly chosen state Z,, Z,, ... respectively

X(t) = (t’ ZXI'YHZX;?, Z:}/‘Z), Tl <t< Ti+1
Cr, : L.

Let N*(t) be the inhomogeneous Poisson process with mean
M(t) = —-(/ —1290 12— u3d).

Then T} = inf{t : N*(t) = k} is the time of the k-th jump.

The probability law P, of the PDP X(t) is determined by: (i) a deterministic drift
#; (ii) a jump rate ); (iii) a transition measure Q.

Drift: ¢ :Rx F — E ¢(t,(r,a,ﬂ,7)) = (r+ t’aaﬂ’7)
Intensity: A: E — [0,00)
d
A(t»a)ﬁ)‘Y) g A(t) - EIM(t)
- A /?ﬁ te"‘z cos? ¢/205d¢

2ro Jo

16



A :[0,00] x E — [0, 00]

A(t,(r,@,8,7)) = A(t,r) = /0‘ A(s +r,a,f8,7))ds = /0‘ A(s + r)ds
- = M(t+r)— M(t) = Mg(Te4r \ Tt)
Also,
F(t,(r,a,ﬁ,;y)) =1-exp(- /ot A(s + 7)ds)
For any initial state z € E, F(.,z) is the pdf of T, i.e., P;(Ty < t) = F(t,z) and
F(.,z) has density

[t (r,a,8,7)) = f(t,7) = M7 + t) exp{- /0‘ A(r + s)ds}

Transition Probability: Q : £ x B — [0,1], where B is the Borel o-algebra of E.
For any bounded, measurable function w: £ - R

Qw(r,a,ﬂ,‘r)
/2
= F P/ =g st = i 4 B0 4 ) T(r2, dy)Blr, a8, 7)ds
—-nf2 J—r
/2 '
+ f/ paw(r,—y\/7? = y? + a,7* — y* + B,y* + 7)My(r?,dy)g(f|r,a, B,7)db
—nf2 J—-r ]

where
71 = p1(0,y,r) = conditional probability of getting the point (/72 — y2,y) given that the

point (X,Y) lies in the circle {(z,y) : 22 + y* = r?} and Y=y, given by ( 8);

p2 = p2(0,y,7) = 1 = p1(6,9,7);
IIg(r2 dy) = conditional density of Y given that there is a point in the circle {(z,y) :

z? + y? = r?}, given by ( 7);
g(f|r,a,B8,7) = conditional distribution of the parameter # given the knowledge that the

vector of sufficient statistics X(r) at time r has the value (r,a,3,7), given by

9(0|r,a,B,7) exp{— (7 cos? 8 + Bsin? # — 2asin 8 cos §)} (6)

Conditional distribution of Y; given X? + Y2 = z2. Note that, in order to find
the conditional distribution of Y; given X? + Y"’ = z% we want II4 such that

[ £@)alz)dy = E((¥)|R? = 27

17



We have,

El [ f)IWIR(R)ds] = E{f(V)e(X* +Y)]
= L f(y)g(z’+y’),/g,—,a"""‘""““"””’ dydz

Let f(z,y) = (z2 + y*,y), {is not a 1-1-function from R? to [0,00) X R. Let fi :
[0,00) x R — {(u,v);v € R,u > v}, defined by fi(z,y) = (z2+y%,y) and f : (—00,0) X
R — {(u,v);v € R,u > v?}, defined by fo(z,y) = (z2 + y%,y). Then, fi and fz are 1-1

functions and .
i (w,0) = (Vu—v%,0)
7 (u,0) = (-Vu-— v2, v)
Then, .
1 i
5 (w,0)] = _‘(‘_2 ; ‘ = Jw-o)*
and

IJ!:(“1 v)| =

Thus, the joint density of Y and R? is

fR’,Y(uv v) =
L 0?) (£, 0)) + 5= 0 2ma S5 (,9))

2

_ l(u _ 02)_1/2 A e-(\/u-ui sin 6—v cos 8) /202
2 2ro
+-1-(u p?)-112 A —(~Va=vTsin-vcosd)/207

2 2n0

_ _];(u _ 02)_1/2 A (c—(msino—uoosﬂ)/ch + e-—(—\/u-tﬂ sinﬂ—vcosﬂ)/202)

2 2ro
Consequently,

Ie(yl2) =
%(22 - y2)—1/2 ‘/2’\—1;0 (6_( Vz2-y? sin §—y cos 8)/20? + e—(—\/;——?sina—ycosﬂ)/mr?)
— - =
S (2 - y’)‘l/zﬁ;(e‘(\/"-v’ sind-ycos8)/207 4 o—(—/z2—y? sin6—ycos)/20? )d\y')
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Also,
6, ¢~ (/7 =77 sind—y cos0)? /207
. (e~ (VA= sind-ycosd)?/20% | o—(~y/22=y? sind-ycosd)?/20%)

(8)

Using the notation from Gugerli (1986), define J : Boo(E) X BS,(E) — ([0,00) X E) as
I h)(t(re, B,7)) = T(t, (ra, B, 7)) + Hh(t, (e, B, 7))
- where S
Iw(t,(r,e,8,7)) = [ Qu(r + s,e,8,7)A(r + 3) exp{—- Jo A(r + u) du}ds
Hh(t,(ra, 8,7)) = h(t + r,@,8,7) exp{~ [ A(s + r)ds}

 Define also, K : Boo(E) — Boo(E) as
Kw(r,a,8,7) = [7° Qu(r + s;¢,8,7)A(r + s)exp{— Jo AM(r + u)du}ds

The operator L : Bo(E) x BS,(E) — Bo(E) is defined as:
L(w,h)(r,a, 8,7) := min{Jo(w, h)(r,a,B,7), Kw(r,a, 8,7)}
where .
Je(w,R)(r,, B,7) = inf,>; J(w, h)(s,(r,a,08,7))

In our case, the cost function

w2

9(r,a,B,7) = min{xr? + C/

20
B—~
belongs to BS,(F) and to find the pay-off function s(r,a,f,7) for the opfima.l stopping
problem, let |

1 T 2
(5 arctan + —2—(sgna)1(5_7<0) . 0) g(9|f,)d0, A}

/2

S0=4g
Sn41 = L(sn,g) (9)
and
= 1i11ln Sn

and the optimal stopping time is given by

r = inf{t > 0;g(X (1)) = s(X(1)) (10)

1.4.2 Shyriayev’s Approach

Let
X(t) - (t’ z JYO'YS) Z‘X?v Z le)
C. I

Fy
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We Apply the the approach described in Shyriayev (1981) with cost function given by

g(t,a,8,7) =

2y |
= min{nt? + C'//2 (1 arctan + (sgna)l(p_,,«;) - 0)%g(0)t,a,8,7)do, A1)

ﬂ -
where 9(8lt,a, B,7) is given by (6).
Let QN be the operator:

Qng(t,a,8,7) = mm{y(t a,B,7), 5(2 M(t, a, 8,7)}

where
(S)g(t a :Ba 7) E(t,a,ﬂ,‘y)[X(")] - (12)

In this case, the pay-off function s(t, a,3,7) is given by
s(t, @, 8,7) = lim lim Qng(t, a,8,7)

where Q319 = Qn(Q%g). And the optimal stopping time is giveh by

7 = inf{t > 0; (X (1)) = s(X(2))} | (13)
Determination of S(s) h(t,a,(,7) |
Given a function h € BS (E), where £ = [0,00) x R x Rt x R*, we want to compute

S(s)h(t,a,8,7) = E(taﬁ‘y)[h(x(s))] = E[h(X(t + 3))|X(t) = (t,a,B,7)]. In order to

compute this, define the event:
A(t,s) = there is some point in the ring I‘¢+,\I‘, = {(z,9);t> < 22 + ¥ < (t + s)?}.

We have that, :
P(A(L,8)) = 1 — e~#Tea\[W
where '
A —(zsinf— 2 /942
M) = 2 [ e leintyemac gg gy
t4ea\lt
2 t+s .
(using polar coordinates) = o /0 / re="" sin’ /297 4 44
27
- \/A;W 0 sin12¢ it Tl #2%1dg

We have by the previous equation,

lim p(Te46\T¢) _ A /2' te=t aitl’¢/20’d¢
0

s—0 $ 2ro
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ConSequently; as s — 0,

AJ 2% _‘3 2 2¢/2’3 ..
P(A(t,8)) ~ 5= /0 et sin” $/20% 44 .

Therefore, we can write S(s)h(t,a,f3,7) as

E[h(X(t + $))IX(2) = (1,0, 8,7), A(t, )|P(A(1, 5))

S(S)h(ty a, ﬂv 7)
+E[A(X (1 + 8))|X(2) = (1, @, 8,7), A°(£,$)|P(A%(1,5)) (15

Let s be small enough so that, there is at most one point in the ring Ty s\T'; and its
distance to the origin is (¢ + s)?, then, we have

AY

E{A(X(t + )X (1) = (t,,8,7), A(t,8)] =

= [ 0, et 0087 01+ 5o, 5,10 dy
-x/2 J=(t+s) o . " :

# [ pa0, 9o,y 7, ) Ta(rI(E + )01, B, B 1)
-x/2 J—(t+3)

where |
| hl(",tia$ﬂ17ay) — h(t T S’Iyﬂt y 3)2— y2 + a’(t + 3)2 . y2 : o ,B,yz + 7)
| ha(s,t,a,B,7,9) = h(t+ 8, —y\/(t + )2 —y2 + a,(t+ )’ = y* + B,4° +7)

‘ - s d
and Tly(y|z) is given by ( 7), p1(8,y,1) is given by ( 8), p2(8,y,t) = 1 — p(6,9,1) 30
9(6Jt,a,3,7) is given by ( 6).

1.4.3 Generalized Stefan Problem .
; suen a SUE
The approach used in the subsection(1.4.2) can essentially be described as: lcl:l::‘:elope .
dard Markov process X(t) and a reward function g(t,a,4,7), find the Sne We want 10
This approach is equivalent to solving the Generalized Stefan Problem.
find a function s that satisfies
s<yg

As(t,a,3,7) >0
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As(t,a,8,7) =0, if s(t,a,8,7) < g(t,a,B,7)

where A is the generator of the process X(t).

In our case -

X(t) - (i,ZX,-Y,-,ZX,?,vEY.?)
Te

Iy |

and
/2

T 20« L
(5 arctan 5 +5(sgna)1(p_,,<o)—O)Zg(olt, a,f,7:)dé, A}

Note that the process X (t) has one deterministic component plus a jump process and
the generator of -the process will consist of the derivative with respect to the deterministic

variable plus the jump component.

9(t,@,8,7) = min{rt*+C
P E -n/f2

To find the generator of the procesé X(t) we want an operator A such that
. i ! ' :
AX@) - [ Af(X(s))ds

is 2 martingale for all f € Dom(A) (see Ethier & Kurtz (1986)). That is, we want a
process Z(t), {F:}-adapted such that,

1x@) - [ 2s)ds

is a ma.rtingale.

In our case, for each # we can find Z(6,t) a {F; Va(0)}-adapted process such that

fX0) - [ 200,9)ds
is #ma.;'tingale with respeét to F; Vo (), where f(X(t)) = E[fo(X(2))|F:]. Then we take
Z(s) = E[Z(6,3)|F]
That is, for each fixed # we find the generator Ay of the process X(t) and
Af(X(t)) = E[Asfo(X (1)) Fd)
By definition of generator we can find Ay fy by

Ao fo(t,,8,) = lim EUo(X(t+ ) = So(X)IX(D) = (t,0,8,7)]
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Defining the event A(t,s) as there is some point in the ring [';4,\I;, note that given
AS(t,s) we have X(t+3) = (s,0,0,0)+ X(2), that is, if X(t) = (t,a,,7) then X(t+3) =
(t+s,a,8,7)- Therefore,

Aelolts0,8.7) =
= lm —Elfo(X(t+s)) S X)X (@) = (1,2,0,7)]

PN

lim —E[f,(X (t+3)) - fo(X(i))IX (t) = (t,0,8,7), A(f S)IP(A(‘ s))

'.l;nm E[fa(X(t+s)) XOIX(®) = (&, a,ﬂ.7),A°(t APATE )

lim -E[fa(X(i +9)) = JoXENIX() = (& a,ﬂr/),A(t s)]P(A(t s))

+ hm —(fo(t + s, a, ﬂ,“/) fo(t a,ﬂ ‘7)P(A°(t s))
. ‘Therefore, if fo(t,a,B,7) = h(t)+ fz(ﬂ,ﬂ,‘I)

AOfO(tv avﬁi 7) =
= %f’(tyav ﬂﬂ)

+P(A(t))[/t n(fot,y/t? -¥ +o -y’ + 5, y 24+9) - folt, a,ﬂd))lna(ylt)dy
(AL

+ /_: pa(folt,—y\/1? - ¥ toa, -+ B8,y +7) - folt,a. B, 7))]Ho(y|t)dy] (17)

lim,~0 P(A(2, s)),P (A(t s)) is given by (14), p2 = pa(0,9,8) = 1 -

where P(A(t)) = n by ( 8) and ( 7), respectively. Consequently, -

n(8,3,t),n = p(6, y,1) and Ig(y|t) are give

Af(t,a,8,7) = “ Aofo(r,a,ﬂn)y(ﬂlt a,p,7)d

-x/3
where g(lr,a,/,7) is given by ( 6).

1.5 Numerical Results

time exists
The PDP method and Shyriayev’s approach give us that the opmnall;topll‘);ﬂis " il
and in both cases we have mathematical expressions that theoretically g
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on how to find the optimal stopping time through functional interaction. However, these
expressions are not of practical value and implementing a procedure that utilizes either
formulas ( 9) and ( 10) or equations ( 12) and ( 13) is not feasible, since it would require
huge amount of computer time and computer memory to run it.

One option is to work with some suboptimal stopping time. One method is suggested
by the corresponding Generalized Stefan Problem (Section 1.4.3). Use as a suboptimal
stopping time '

n = inf{t: Ag(X(1)) > 0}

Note that 7; < 7 and since the cost is the sum of the cost due to sampling plus the
cost due to estimation error, we have that 7; is the first time that the gain obtained by
finding one more observation in an infinitesimal ring after time t does not compensate for
the cost of sampling for one more observation. Several examples were carried out and the
suboptimal stopping time based on the generator is not very good, usually it stops after
just one or two observations, even when the first observations are not taken into account
the suboptimal time still does not have a good performance.

Anofher option is suggested by the comment above. Let A, be the time after r until
finding another point of the process. Then, an suboptimal stopping time could be

72 = inf{r : Eg(X(r + A,)) > o(X(r))}

Note that, .
P(A" > t) = P(N(rp-}g \ I‘,.) = 0) = e-MO(r'-M\rr)

From section 1.4.2, we have,

' AU 2x 1 L —(r 3&“’ o2
Mp(Tr4a \Ty) = 7—2; A m[c r? cos? $/20% _ e~ (r+1) ¢/2 ldo

Then, the density of A, is given by

Ja.(t)= e'”'"""‘r"%M.(rm \T;)
Therefore, |
E[x(r + A,)? = xr?) = E[27rA, + xA?) (18)
= 2xr /om tfa,(t)dt + x /om t2 fa, (t)dt (19)
o _

El(Br+a, - 0)°17,) - E[(d, - 0)*1F,) = Elf?,4, - 62 - 20(6, 4a, —6,)|F)
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}. Therefore, e .
E[(6r+a, = 6))|X(r) = (1,0,8,7)] = .
_ 3 poo plats) . | o , '
- = [ '4 / [(01(7'93/)2)_0) p1(0,y,r+z)+(02(r,y,z)- 0) P2(9,‘y,'r+z)]x

n/f2 J=(z+r)
.. Ho(ylz +r)fa,(2)9(b]r,e,B,7) dy dz df S
2 H o -, . -
where_, | '
N Ry , 1 v 2(0+y\/(r+z)2—y2)
0 -
| 1(.'.‘,!/,2) . .2Ie>.rctz:m.ﬂ+(r-|_z)2__7__y2
+§Sgn(a +y\/(1-+ 2)2 _yZ)I(ﬂ+ (T + 2)2 - - y2 < O)

and

- 1 2a-yr+2)2 —y2)
O2(r,y,2) = Earct_an ,(B+(f\-£)2_)7_;/2) |

f%sgn(a- p/(r+ 22 = y)IB+(r +2)* - 7- 4> <0)

The idea above could be pursued further, that is, instead of looking at the expected cost
for one observation ahead, we could look at the expected cost function for 2 observations
ahead. Let A, be the time after r until finding another point of the process and A be
the time after A, until finding another point of the process. Then, an suboptimal stopping

time could be
73 = inf{r : Eg(X(r + A;)) > 9(X(r)) andEg(X(r + A, + A?)) > Eg(X (1))}

However, this would be computer intensive to calculate and that is not the idea behind
finding suboptimal stopping times.

Looking at the cost function we can see that basically it is the posterior risk for the
maximum likelihood estimator plus a sampling cost, if our intention is to minimize the
cost, maybe it would be a better idea to use the conditional expectation as an estimatof
instead of the maximum likelihood estimator. However, in all our examples we fo‘”id
that the conditional expectation and the maximum likelihood estimator are very Clo;e
after a few observations are sampled, and the resulting cost is almost the same. Since ¢ ¢
conditional expectation can only be calculated numerically through numerical integratioh
the use of the conditional expectation would increase the computer time to be used ;2
the computation of the suboptimal stopping times. This additional computation can
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avoided by using the maximum likelihood estimator that can be calculated explicitly.

Due to the computer intensive routines being used, instead of working with simula-
tions, we are going to present some examples comparing the suboptimal stopping time ;
with the true minimum value of the reward function. Note that this is not the optimal
stopping value since it is found on the ground that we can see all the history of the process

(past and future).

A o 0 Time Cost MLE

Minimum 1.0 (1.0 | 0.0 | 13.0906 [ 1176.408 [ 0.00986

Suboptimal 20.6156 | 1541.286 | -0.00491
Minimum | 1.0 | 1.0 | x/4 | 15.4490 | 1071.205 | 0.78717

Suboptimal 20.3512 | 1450.404 | 0.77943
- Minimum 1.0 | 1.0 | -7/4 | 16.0464 | 1208.367 | -0.79591
Suboptimal 22.9431 | 1794.118 | -0.79758
Minimum 1.0 3.0 0.0 | 25.8631 3045.4'64 -0.03740

Suboptimal 44.1161 | 6324.750 | -0.01969
Minimum 1.0 (3.0 | /4 | 23.7833 | 2741.874 | 0.73949

Suboptimal 32.9034 | 3863.179 | -0.75224
Minimum | 1.0 [ 3.0 [ -x/4 | 23.7363 | 2696.709 | -0.75290

Suboptimal 39.5677 | 5113.177 | -0.77810
Minimum | 2.0/ 1.0 0.0 | 13.6945 | 877.254 | 0.00725

| Suboptimal . 120.9030 | 1349.634 | 0.00075
Minimum | 2.0 | 1.0 | /4 | 13.4085 | 822.934 | 0.81418

Suboptimal 13.4085 | 822.934 | 0.81418
Minimum [ 2.0 1.0 |-x/4 | 11.7957 | 821.304 | -0.81113

Suboptimal 16.1311 | 964.445 | -0.80369

Table 1:‘ Time of minimum cost and suboptimal stopping time

By Tablel and Figure 1 we can note that the suboptimal time estimates the true time
quite well, in these examples it is always bigger than the true value, but not very much.
As expected as o grows the stopping time increases and also the suboptimal stopping time

diverges from the minimizing value.
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