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Abstract
This thesis explores key aspects of quantum field theory in accelerated systems, focusing
on the thermodynamic effects of acceleration and causal horizons. It is known since
the 1970s that a deep connection exists between acceleration and thermodynamics, but
direct observations of its consequences are still elusive. Here, we focus on the observable
consequences in two distinct fronts: strong-field electrodynamics (QED), where the typical
systems are represented by electrons accelerated by classical potentials, and topologically
non-trivial quantum fields, where the typical representatives are given by non-abelian
gauge theories such as quantum chromodynamics (QCD).

First we investigate the thermality of the quantum vacuum from an accelerated observer’s
perspective, using the Unruh effect as a foundation. Through a study of fluctuation-
dissipation dynamics, we analyze observables such as the electron’s transverse momentum
fluctuations, deriving predictions for thermalization timescales and their dependence
on acceleration. The results indicate significant quantum electrodynamical corrections
at higher accelerations, but good agreement with classical and semiclassical results for
moderately-low regimes of acceleration. We discuss experimental implications for probing
such effects.

Second we address the impact of causal horizons on gauge theory vacua, particularly in
relation to the strong CP problem in QCD. We propose that the presence of horizons
causes decoherence in topologically non-trivial gauge theories, potentially providing a
new perspective on the absence of observable CP violation. A horizon-induced dissipation
model is introduced, offering a mechanism for the incoherent summation of topological
sectors and a pathway to understanding vacuum structure in non-abelian gauge fields.

Overall, this work advances our understanding of the thermodynamical consequences of ac-
celeration in both electrodynamics and non-abelian gauge theories, suggesting experimental
and theoretical avenues for further exploration.



Resumo
Esta tese explora aspectos fundamentais da teoria quântica de campos em sistemas
acelerados, com foco nos efeitos termodinâmicos da aceleração e dos horizontes causais.
Desde a década de 1970, é sabido que existe uma conexão profunda entre aceleração e
termodinâmica, mas as observações diretas de suas consequências ainda são difíceis de obter.
Aqui, focamos nas consequências observáveis em dois âmbitos distintos: eletrodinâmica
quântica (QED) de campos fortes, onde os sistemas típicos são representados por elétrons
acelerados por potenciais clássicos, e campos quânticos topologicamente não triviais, onde
os exemplos típicos são dados por teorias de gauge não abelianas, como a cromodinâmica
quântica (QCD).

Primeiro, investigamos a termalidade do vácuo quântico do ponto de vista de um observador
acelerado, utilizando o efeito Unruh como base. Através de um estudo das dinâmicas de
flutuação-dissipação, propomos e analisamos observáveis como as flutuações do momento
transversal do elétron, derivando previsões para as escalas de tempo de termalização e sua
dependência da aceleração. Os resultados indicam correções significativas da eletrodinâmica
quântica em acelerações mais altas, mas mostram boa concordância com resultados
clássicos e semiclassicos para regimes de aceleração moderadamente baixos. Discutimos as
implicações experimentais para a investigação desses efeitos.

Em seguida, abordamos o impacto dos horizontes causais nos vácuos de teorias de gauge,
particularmente em relação ao problema de CP forte na QCD. Propomos que a presença
de horizontes causa decoerência em teorias de gauge topologicamente não triviais, potenci-
almente fornecendo uma nova perspectiva sobre a ausência de violação de CP observável.
Um modelo de dissipação induzida por horizontes é introduzido, oferecendo um mecanismo
para a soma incoerente dos setores topológicos e um caminho para entender a estrutura
do vácuo em campos de gauge não abelianos.

No geral, este trabalho avança nosso entendimento das consequências termodinâmicas da
aceleração tanto na eletrodinâmica quanto em teorias de gauge não abelianas, sugerindo
caminhos experimentais e teóricos para futuras explorações.
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Chapter 1

Introduction

Among the various surprising predictions of quantum field theory (QFT), the
connection between uniform acceleration and thermodynamics is one of the most puzzling
ones. This connection was first discovered by Unruh in the mid 1970s [1], inspired by the
work of Hawking on black hole thermodynamics [2] and based on the previous works of
Fulling [3] and Davies [4] on quantization in accelerated Rindler spacetimes. Mathematically,
this connection is given by the observation that the usual Poincaré-invariant vacuum
of inertial observers, when restricted to the causally-connected region of an accelerated
observer, is a thermal state with respect to said observer’s proper-time translations [5, 6].
Physically, this means that uniformly accelerated observers can associate to the inertial
(“Minkowski”) vacuum state |0My a temperature given by

TU “
ℏa

2πckB
» 4 ˆ 10´21

ˆ

a

m{s2

˙

K, (1.1)

where a is the (constant) proper-acceleration of the observer. This connection between
acceleration and temperature is called the Unruh effect, and the accelerated temperature
TU is called the Unruh temperature.

At first glance, this effect seems almost paradoxical: how can an observer
associate a temperature and a thermal state to the vacuum, which is defined as the
“no-particle” state? It gets even more surprising when we realize, from the expression of
the Unruh temperature TU in Eq. (1.1), that the Unruh effect is a non-trivial result of
the combination between three of the most important areas of modern physics: special
relativity (c), quantum mechanics (ℏ), and statistical physics (kb). In fact, if we count the
fact that the Unruh effect was first worked out as a way to get better insight into the
physics of the Hawking effect for black hole radiation and evaporation at temperatures
TH “ ℏc3

{8πkBGM , we also can say that the Unruh effect also has deep ties to general
relativity (G) as well, which provides a link with another one of the major areas of research
in fundamental physics.

Moreover, it can be argued that the thermality of acceleration is in fact weirder
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than its black hole counterpart. Black holes are these exotic astrophysical systems that are
way out of direct human grasp. It is easy to visualize and accept that quantum mechanics
under such extreme conditions, such as the vicinity of black hole event horizons, can lead
to weird and unexpected results. Acceleration, however, is very much under the realm of
human experience. It is much more mundane, every-day occurrence, and, more importantly,
it is more suitable and directly accessible to experimental scrutiny in a laboratory. The
idea that we can somehow gain insight on the physics of exotic astrophysical objects like
black holes by simply considering how quantum mechanics interplays with accelerated
observers is nothing short of extraordinary.

For these reasons and more, it is no wonder why the Unruh effect has been the
target of heavy theoretical investigation and philosophical debates ever since it was first
discovered.

It is not only its connection to black hole radiation physics—and its potential
usefulness in the investigation of how eventual quantum theories of gravity should look
like—that makes the effect so important. It is also of great theoretical and experimental
interest because it directly involved with various counter-intuitive and nuanced subtleties in
the standard quantum theory of fields. Perhaps the most important of these nuances is the
fact that quantum field theory is, fundamentally, a true theory of fields, and not a theory
of particles [7]. That is one of the insights about quantum field theory that the Unruh
effect really highlights: the concept of “particle” is not a fundamental concept in the theory.
In the standard approach to QFT, this particular subtlety is often overlooked because in
flat spacetime there exists a prefered class of observers—the inertial observers—who can
unambiguously agree on a definition of particles, but this is no longer the case when we
leave the realm of flat spacetime (or leave the realm of inertial reference frames, such as in
the case of the accelerated observers in flat spacetime).

This fact was known ever since Fulling [3] discovered that quantum field
theory allowed for infinitely-many unitarily-inequivalent representations of the canonical
commutation relations (CCR). That means there is no unique way of constructing, in
general, the Fock-space

FpHq “
à

nPN
SσpHbn

q (1.2)

of a theory from a “single-particle” Hilbert space H. In the end, this means that the
“particle content” of states does not possess an objective, fundamental meaning in QFT.
This is true even in standard QFT in inertial coordinates: states, as elements on the Hilbert
space that represent the configurations of the theory, are never observables themselves. The
only observables in QFT are self-adjoint operators constructed from the field distributions
smeared by appropriate test functions. That is true even for observables such as S-matrix
elements xp1 . . .pn|S|k1 . . .kmy, which can be reduced in terms of correlation functions
by means of the LSZ reduction formula [8].



Chapter 1. Introduction 11

This fact is what explains the apparent paradox of accelerated observers to
perceive the “zero-temperature” Minkowski vacuum |0My as a thermal state: the accelerated
observer simply constructs their Fock-space of states from a different “single-particle”
Hilbert space that defines what are the excitations of the field. In other words, we can say
that the “particle content” of a quantum field theory is not generally covariant, depending
on the observer’s particular choice of construction of the space of states of the theory.

In fact, this non-uniqueness behavior is exclusive to quantum field theories,
where we have infinitely-many degrees of freedom. In ordinary quantum mechanics, where
the number of degrees of freedom is finite, the uniqueness of the representation of the
canonical commutation relations is guaranteed by the Stone-von Neumann theorem [9].
The Unruh effect is just a prime example of the consequences due to the break down of
this theorem in field systems.

Another point of tension between the Unruh effect and our intuition based
on the usual quantum mechanics is on the precise meaning of the term “thermal state”.
In ordinary quantum mechanics, we can simply define thermal states (with respect to a
Hamiltonian Ĥ) as the mixed states whose density matrices take the Gibbs form

ρ “
1
Z

expp´βHq, (1.3)

where β ” T´1
U is the inverse temperature associated with the mixed-state ρ. In QFT,

however, it is necessary to generalize the definition of what we mean by “thermal state”
beyond the quantum mechanical counterpart of Eq. (1.3). That is because the exponential
defining the Gibbs state ρ becomes quite an ill-defined object if the Hamiltonian H has a
continuous part in its spectrum [7, 10], which is the case in the overwhelming majority of
the QFTs of interest. The generalization of “thermal states” that can account for these
scenarios is given by the famous Kubo-Martin-Schwinger (KMS) condition [11, 12, 13].
The KMS condition establishes a criterion for defining the thermal equilibrium of a state
of temperature TU “ β´1 with respect to a generator of “time-translations” H [14]: for
any two operators A and B and any real number τ , we have

xApτqByβ “ xBApτ ` iβqyβ, (1.4)

where Apτq “ eiHτAe´iHτ is the time-translation of the operator A with respect to the
flow of H, and xOyβ is the expectation value of the operator O on the “thermal bath”. In
fewer words, the KMS condition defines thermal states as those states that are “periodic
with respect to time-translations in imaginary time”.

That is precisely what the more rigorous approaches to the Unruh effect
establish [5, 6]: the restriction of the inertial, Minkowski vacuum |0My to the right Rindler
wedge where the accelerated observer lives (see Fig. 1) is a KMS state with respect to the
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Figure 1 – The spacetime diagram for Minkowski space and its associated right, left, future,
and past Rindler wedges WR{L{F {P . Drawn in blue we have the flow lines for
the Killing-field in Eq. (1.5), which generate proper-time translations for the
accelerated observers in both WR and WL. Shown in the T ˘X “ 0 lines are
the past and future causal horizons for the right Rindler wedge WR, which
represent the boundaries of spacetime that separate the regions where the
accelerated observers in WR can send and receive light signals. Note that WR

and WL are completely causally disconnected.

proper-time translations τ Ñ τ ` iβ generated by the boost’s Killing field

K “ X

ˆ

B

BT

˙

` T

ˆ

B

BX

˙

, (1.5)

where (T,X) are global, inertial coordinates for flat Minkowski spacetime and a is the
acceleration parameter of the observers that enters on the temperature β´1

“ a{2π (in
natural units). Being the generator of proper-time τ -translations for accelerated observers,
the Killing field aK ” B{Bτ is also called in the literature the “Rindler Hamiltonian” HR.

This mathematical subtlety in the choice of criterion for what we mean by
thermal state is at the core of the tension between “standard intuition” and the Unruh
effect we mentioned before. In the context of the Unruh effect, acceleration temperature
has a very precise meaning: it is the temperature associated with the accelerated observer’s
own notion of time-translations, which is generated by the Lorentz boosts along the
acceleration axis that are generated by the Killing vector-field K given in Eq. (1.5).

This means that, in principle, there may be differences between detailed prop-
erties of the “thermal bath” seen by the accelerated observer and the usual “thermal bath”
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described by an inertial observer in a thermodynamic medium with the same temperature.
In fact, several differences between the thermal behavior of field observables in the acceler-
ated and inertial “thermal baths” can be established (for a comprehensive review of the
differences, see [15]).

Among those differences, perhaps the most notable is the difference between the
vacuum noise spectrum F of a field along the trajectory γapτq “ psinh aτ, cosh aτ, 0, . . . q
of an uniformly accelerated particle in n-dimensions. This is given in terms of the Fourier
transform of the positive-frequency Wightman’s function Gs

` for a massless field [15]:

F s
accelpωq “

ż

dτ e´iωτGs
`pγapτq, γap0qq 9 rβ,n`2spωqF s

minkpωq, (1.6)

where s is the spin of the field, β is the inverse Unruh temperature T´1
U , n is the number

of spacetime dimensions dimpMq, and rβ,n`2spωq is a temperature-dependent factor that
quantifies the difference in spectral noise between the “acceleration-induced thermal bath”
and the usual inertial thermal noise F s

minkpωq. While the exact general expression for the
ratio rβ,n`2s “ F s

accel{F
s
mink is unimportant for the present discussion1, the really surprising

observation comes from the fact that rβ,2pωq “ rβ,4pωq “ 1. This means that for massless
scalar fields in both n “ 2 and n “ 4 dimensions, the response of the accelerated thermal
noise is exactly the same as for the usual thermal noise felt by an inertial observer at finite
temperature.

At first, one can think that all the worry about defining precisely what we mean
call a thermal state might be just some non-essential mathematical detail. That however is
not the case, as much effort has been spent in debating the existence and the “observability”
of the “particles” that comprise the Unruh thermal bath [17, 18, 19, 20, 21]. In fact, the
usual derivations of the Unruh effect based on the representation of the Minkowski vacuum
|0My in terms of Rindler n-particle states |niy corresponding to the solutions to the wave
equation in the accelerated frame,

ρ “ TrHorizons |0Myx0M | 9
ź

i

˜

ÿ

nPN
e´nβωi |niyxni|

¸

, (1.7)

which is normally used to claim that the Minkowski vacuum is composed of a “thermal
bath of Rindler particles”, have been criticized in the literature [22, 23, 24, 25] for precisely
the reasons regarding the mathematical difficulties of constructing and comparing two
distinct Fock-space representations of the theory based on different “single particle” spaces
of states. In fact, the expression for the reduced density matrix in Eq. (1.7) representing
1 This factor is responsible for the famous statistics-inversion behavior for the Rindler noise in odd

spacetime dimensions [15], where bosonic fields show fermionic noise and vice versa, depending on the
dimensions of spacetime. This statistics-inversion behavior is another example of the differences between
an “inertial” and an “accelerated” thermal states. For more information about the statistics-inversion
and how it is connected to the lack of a Huygens principle in odd spacetime dimensions, see [16].
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the restriction of the Minkowski vacuum |0My in terms of the accelerated observer’s
“single-particle” states |niy can only be interpreted as a formal expression, since the |niy

states are eigenstates of the Rindler Hamiltonian (1.5) and possess a continuous spectrum
parametrized by i “ pω,kKq P Rě0 ˆ R2.

That is all to say that in the end, we are bound to encounter controversies
regarding the “reality” and the physical meaning of “Rindler particles” if we try too
hard to hold on to the concept of “particles” in order to make sense of the Unruh effect.
Thus, in the classical statement of the Unruh effect of the form “the inertial vacuum
appears as a thermal bath of particles from the point of view of an accelerated observer”
should be understood, in light of the discussion above, as a shorthand for the more precise
formulation of the result in terms of the KMS condition for observables living in the
causally accessible region available to the accelerated observer.

All this nuances puts a premium on understanding how the Unruh temperature,
and consequently the thermodynamical effects of acceleration, appear in actual physical
systems. In this thesis, we shall be mainly interested in two aspects of the thermality of
the “accelerated” vacuum.

The first aspect is about the experimental observability of the Unruh effect. As
we can see from the expression for the Unruh temperature (1.1), a direct observation of
the thermality of acceleration is not so easy: to obtain temperatures of the order of 1 K, it
is necessary accelerations of the order of 1020m{s2 are necessary. Not only that, but we
also need to be able to maintain said linear acceleration for long enough durations in order
for the accelerated probe to equilibrate with the field and thermalize its own state.

Naturally, the first candidate to serve as a probe to the Unruh “thermal bath”
is the electron. Being the lightest charged particle, electrons are capable of achieving the
highest possible acceleration given a particular electromagnetic potential, and therefore
capable of experiencing the highest Unruh temperature.

The first proposal to use electrons as a “thermometer” for the Unruh tempera-
ture came from Bell and Leinaas [26, 27], where they proposed a reinterpretation of the
depolarization of the electrons accelerating inside a storage ring in terms of a Unruh-like
analogous effect for a circular trajectory. In the standard analysis of the phenomena from
the point of view of inertial observers stationary in the laboratory, this effect known as
the Sokolov-Ternov effect [28, 29, 30]. Bell and Leinaas studied this effect from the point
of view of an observer comoving with the electron beam and concluded that both the
comoving and inertial analysis mainly agree with each other. This proposal of accepting
the depolarization of electrons as a signal of the “Unruh” effect has been discarted mainly
because of two reasons: it does not correspond to the same conditions of the classical
Unruh prediction, namely linear uniform-acceleration, and it does not yield an “exact”
thermal response for the electron’s spin distribution [31].
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An alternative, more recent proposal to probe the Unruh effect come from
Chen and Tajima [32], where they suggest the use of ultraintense laser pulses as a method
of accelerating the electron and propose the observation of emitted photons due to the
electron’s quivering, “Brownian” response to the Unruh temperature.

In Chapter 4 we present our published work [33], where we discuss and construct
potential electron observables that can be used as probes for the acceleration temperature
in the same context of Chen and Tajima’s proposal. We focus on charged particles coupled
to uniform, background electric fields, and we make general arguments for the response
of the particle’s transverse-momentum fluctuations due to its interactions with vacuum
fluctuations in its comoving frame. We study and compare these observables in the cases of
classical electromagnetic theory, pure photodynamics coupled to a semiclassical point-like
charge, and full quantum electrodynamics coupled to a background electric field, discussing
them in light of the current laser technology.

The second aspect of the Unruh effect we will be interested in this thesis is the
connection between the accelerated observer’s horizon and its interplay with topologically
non-trivial quantum field theories. It is a well-known fact that in certain gauge theories,
such as in quantum chromodynamics, a family of vacua |θy can be constructed from a
coherent superposition of topologically inequivalent configurations |ny [34],

|θy “
ÿ

iPZ
einθ|ny, (1.8)

where θ P R is a number parametrizing the superposition and n P Z is the so-called called
the winding number of the field configuration: the number of ways a gauge field can twist
and turn at the asymptotic regions Apr Ñ 8q in Euclidean four-space. This introduces in
the gauge theory’s effective Lagrangian for the field the famous CP-violating θ-term

Lθ “
θ

16π2 TrpFµνF̃ µν
q, (1.9)

and this introduction leads to several observable consequences, such as a θ-dependent
contribution to the neutron’s electric dipole moment (EDM). Experimental measurements
on the neutron’s EDM constraint θ to be very close to zero, |θ| ă 10´10, and a first-
principles explanation for why is the value of θ so small is a famous unsolved problems in
physics: the strong CP problem.

In Chapter 5 we present our published work [35], where we discuss the strong
CP problem in the context of causal horizons. We speculate on how general covariance
may be able to constraint the topological structure of non-trivial gauge theories, and
discuss the possible consequences for the CP-violating θ-term of Eq. (1.9). We draw a an
analogy between the topology-induced θ-vacua of gauge fields and the well-known model
of a quantum particle in a periodic potential to argue how dissipative effects can decohere
the θ-vacua superposition in Eq. (1.8), suggesting a possible dynamical mechanism that
can solve the strong CP problem.
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Chapter 2 gives a quick overview of the Unruh effect, introducing what is
understood by acceleration temperature and thermodynamics, extending some results
found in the literature, as well as setting the context for the rest of the thesis, while Chapter
3 gives a quick overview of the various ways of treating the electromagnetic radiation
emitted by an accelerated electron that sets the context for Chapter 4. Finally, in Chapter
6, we discuss the results obtained and the arguments made in the previous chapters, taking
a bird’s eye view on the subjects and highlighting the important takeaways. In Chapter 7
we conclude by summarizing the main results and pointing to future directions.
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Chapter 2

Review: The Unruh Effect

The purpose of this chapter is to give a brief overview of the Unruh effect and
to establish the connection between Rindler KMS-states and the “inertial vacuum” seen
by an inertial observer in th laboratory. We give a quick review of uniform acceleration
for classical relativistic particles in order to establish notation, introduce the accelerated
frames associated with an observer comoving with the accelerated particle, and setup the
general framework to construct QFT from an accelerated point of view. Then we discuss
one of the ways of constructing finite-temperature, KMS-states in QFT, based on the real
(proper-)time-path formalism [36, 37], and use it to show that in the accelerated observer’s
accessible region of spacetime, the KMS state with respect to its proper-time yields the
same correlation functions of the Minkowski vacuum of inertial observers. We finish by
discussing how the finite-temperature fluctuations of the “accelerated thermal vacuum”
can be understood from the point of view of broken correlations between regions outside
the Rindler horizon, and make the connection with the usual formulation of the Unruh
effect based on the common formal density matrix approach.

2.1 Uniformly-accelerated particle
In classical relativistic mechanics, the uniformly accelerated particle is an

idealization of an infinitesimally small body that is subjected to a constant accelerating
force. By this we mean a body whose dimensions are so small that we can neglect its
dimensions when describing its motion, which can be mathematically represented by a
smooth mapping γ : R Ñ M of the real line into a chosen configuration space M that
represents the spacetime that the particle inhabits. When M is a differentiable manifold
with a given connection ∇, we can say that the particle has constant acceleration when
the covariant derivative |∇ 9γ 9γ| of the proper four-velocity 9γ is constant.

The classical description of the accelerated point-particle starts with the choice
of time-oriented pseudo-Riemannian manifold pM, gq that acts as the background spacetime
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for the particle’s trajectory γ. The standard choice from classical relativistic mechanics
is the Minkowski spacetime M “ pR4, ηq, where η “ diagp1,´1,´1,´1q is the standard
Lorentzian metric. From the condition of constant acceleration |∇ 9γ 9γ| with respect to the
metric η, we get

ηµν
d 9γµ

dτ

d 9γν

dτ
“ ´a2, (2.1)

where τ is the proper-time of the trajectory γ and the negative sign is due to the convention
used for the signs of the metric for space-like four-vectors.

For simplicity (and without loss of generality), we can choose as the initial
conditions for the differential equation the conditions γµp0q “ a´1δµ3, and 9γµp0q “ δµ0,
which chooses the Z-axis as the direction of acceleration and determines that the turning-
point of the trajectory in the direction of acceleration takes place at the proper-time τ “ 0.
These initial conditions yield a worldline γa given by

γ0
apτq “ a´1 sinh aτ,

γ1
apτq “ γ2

apτq “ 0,

γ3
apτq “ a´1 cosh aτ,

(2.2)

which represents a hyperbola in the T ´ Z plane. We call this solution the uniformly-
accelerated worldline, and it is represented in Figure 2.

2.2 Accelerated reference frames
Together with the accelerated particle’s worldline γa from Eq. (2.2), we can

define an accelerated observer by choosing an orthonormal basis teRµ pτqu on each tangent
space TγpτqM that the observer’s worldline passes through [38]. However, in order to
simplify the discussion (and later make the connection with field theory), we instead
introduce the reference frame of an accelerated observer by directly choosing comoving
coordinates with respect to γa.

One such choice consists of coordinates pτ, ρ,xKq, ρ ą 0, defined by the trans-
formations

T “ ρ sinh aτ, X “ ρ cosh aτ, Y “ y, Z “ z (2.3)

with respect to the usual global coordinates pT,X, Y, Zq that cover the configuration space
M. We shall call these coordinates polar Rindler coordinates1, and the observer defined
by the accelerated worldline γ together with such choice of reference frame is called an
accelerated (or Rindler) observer, and it is also shown in Figure 2.

Another closely related coordinate system that will be very useful is the
coordinates pτ, ξ,xKq P R4, defined by the relationship ρ “ a´1eaξ to the polar Rindler
1 We call these coordinates polar Rindler coordinates because when performing a Wick rotation τ Ñ iτE ,

these coordinates take the form of proper polar coordinates in the Euclidean section of the manifold.
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Figure 2 – Representation of an accelerated (Rindler) observer. The equal-time coordinate lines
τ “ cst are straight lines that begin at the origin pt,xq “ 0, while ρ “ cst lines are
hyperbolas asymptotic to the lightcones t˘x “ 0 based on the origin. The observer’s
original accelerated worldline is given by the coordinate line ρ “ a´1.

coordinates. With respect to the usual inertial Minkowski coordinates, we have

T “ a´1eaξ sinh aτ, X “ a´1eaξ cosh aτ, XK “ xK. (2.4)

We shall call this coordinate system (conformal) Rindler coordinates2. One of the advantages
of the conformal Rindler coordinates pτ, ξ,xKq is the simplified expression for the metric
tensor

ds2
“ ηµνdx

µdxν “ e2aξ
pdτ 2

´ dξ2
q ´ dx2

K (2.5)

in the region covered by the coordinate chart in Eq. (2.4).

One important characteristic of accelerated observers comes from causality.
Due to their state of motion, only a part of the entire spacetime is completely available
for observation and probing by an accelerated observer. By this statement we mean that
there are events in spacetime that cannot be connected to the accelerated worldline γ via
time-like or light-like curves in M.

The region where the accelerated observer has complete information—that is,
the region where all events can both be seen and be probed by an accelerated observer—
is defined by the condition WR “ tx ą |t|u, and we call WR the right Rindler wedge.
Any event outside this region is, in some way, shape, or form, disconnected from the
worldline of such observer. The accelerated observer perceives all events in the “past” wedge
WP “ tt ă ´ |x|u as unreachable, all the events in the “future” wedge WF “ tt ą |x|u as
2 The name conformal comes from their behavior when we deal with the two-dimensional spacetime

Mink2, where they represent a true conformal symmetry of the metric.
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unobservable, and all the events in the left Rindler wedge WL “ tx ă ´ |t|u as completely
inaccessible. (See Figure 2 for the geometry of all the wedges.)

Another important characteristic of uniformly accelerated observers is their
behavior under the action of a Lorentz boost in the direction of acceleration. Lorentz
boosts are symmetries of Minkowski spacetime, given by the the transformations induced
by the vector field (1.5),

K ” X

ˆ

B

BT

˙

` T

ˆ

B

BX

˙

,

and by treating the right Rindler wedge WR as a submanifold of M, we can restrict their
action of K to WR, which can be re-written in terms of Rindler coordinates as aK “

B

Bτ
.

That means boosts are symmetries of the uniformly accelerated trajectories and act as a
global, timelike Killing vector field for the entire Rindler space.

2.3 Quantum fields in Rindler space
Now, given that the causally accessible region of an uniformly accelerated

observer is given by the right Rindler wedge WR Ă M, we can treat the sub-manifold
pWR, η|WR

q of Minkowski space pM, ηq as its own globally hyperbolic spacetime, which we
shall call the Rindler space. As a globally hyperbolic spacetime, we can study field theories
in this space without having to refer back to the theory in its “parent” manifold M. In
this section, we shall be considering a free scalar field theory in Rindler space, given by
the action functional S of the form

Srφ, Bφs “
1
2

ż

dnx
b

|det gµν |
`

gµνBµφpxqBνφpxq ´ m2φ2
pxq

˘

, (2.6)

where m is the bare-mass of the field and n “ dimWR.

The variational principle δSrφ, Bφs “ 0 applied to the scalar field yields the
classical equations of motion plg ` m2

qφpxq “ 0 for the field, where

lg “ |det gµν |
´1{2

Bµp

b

|det gµν |gµνBνq (2.7)

is the d’Alembertian operator in terms of the Rindler metric g “ η|WR
. In Rindler

coordinates, this equation of motion takes the form
ˆ

B2

Bτ 2 ´
B2

Bξ2 ` e2aξ
p´∇2

K ` m2
q

˙

φpxq “ 0, (2.8)

which is a type of modified Bessel equation and can be solved exactly. The general solutions
to Eq. (2.6) can be written in terms of a complete set of solutions

␣

fωkK
, f˚
ωkK

(

constructed
from the solution

fωkK
pτ, ξ,xKq “

ˆ

sinhpπω{aq

4π4a

˙1{2

Kiω{a

´µ

a
eaξ

¯

e´iωτ`ikK¨xK , (2.9)
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where ω ą 0 is the frequency of the Rindler modes fωkK
and µ ”

a

k2
K ` m2. Thus the

general solution to the classical equation of motion for the scalar field is given by

φpxq “

ż 8

0
dω dn´2kK

`

aωkK
fωkK

pxq ` a˚
ωkK

f˚
ωkK

pxq
˘

, (2.10)

where the Rindler mode fωkK
is a normal mode with positive frequency with respect to

the timelike Killing field K in Eq. (1.5).

The usual prescription to canonically quantize the field is to promote the
coefficients taωkK

, a˚
ωkK

u on the normal-mode expansion above into operators tâωkK
, â:

ωkK
u

acting on a Hilbert space of states HR, constructed from the action of the creation operator
a:

ωkK
on a vacuum state |0WR

y:

|nωkK
y 9 pâ:

ωkK
q
n
|0WR

y. (2.11)

The states |ni1 , ni2 , . . . y, i “ pω,kKq, are called the “Rindler n-particle states”. These are
the states that are usually used in the derivation of the Unruh effect, which we discussed
on Chapter 1, and in particular the states that constitute the formal expression for the
density matrix in Eq. (1.7),

ρ “ TrHorizons |0Myx0M| 9
ź

i

˜

ÿ

nPN
e´nβωi |niyxni|

¸

. (2.12)

This expression for the Rindler Gibbs state is obtained by interpreting the inertial vacuum
state |0My P HM of the usual quantum field in Minkowski space in terms of the Hilbert
space HWL

b HWR
associated with the quantization of both the right and the left Rindler

wedges. Here, the Hilbert space HWL
is obtained from the canonical quantization of the

scalar field in the left Rindler wedge WL in the exact same way as we’ve done for the right
wedge WR. Since the left wedge WL is completely hidden from the accelerated observer by
the presence of a causal horizon, the trace over “horizons” in Eq. (2.12) is in fact a trace
over the left wedge sector HWL

of the entire space HWL
b HWR

.

By now, it is clear how the expression for the reduced density matrix for |0My

in the right Rindler wedge WR can only be a formal one, given that the index i in the
product must take values in the continuous range i “ pω,kKq given by the spectrum of the
modes fωkK

. As we’ve discussed before, trying to interpret physical phenomena that occurs
for accelerated systems coupled to |0My in terms of its “Rindler particle content” does
not involve the actual physics behind the phenomena, since the only thing with physical
meaning are the correlators of the fields in a given state, instead of the states themselves.

2.4 Finite-temperature in QFT
We’ve discussed in the previous section that trying to use canonical quantization

methods to describe the inertial vacuum in terms of “Rindler particles” leads to a generally
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ill-defined expression for the reduced density matrix representing |0Myx0M| in the Rindler
wedge WR. One way of circumventing this problem is to find a way of determining the
time-ordered thermal n-point functions xT rφpx1q . . . φpxnqsyβ directly, instead of relying
on the particular representation of ρ “ Z´1 expp´βHq in terms of the eigenstates of the
Hamiltonian H of the field.

This can be done by working within the path-integral formulation of QFT. In
the standard Gibbs representation of a quantum field at finite temperature T “ β´1, the
expectation values of time-ordered field operators are given by the formal expression

Dβ
F px1, x2, . . . , xnq“ “ ” 1

Z
Tr

`

e´βHT rφpx1qφpx2q ¨ ¨ ¨φpxnqs
˘

, (2.13)

where Z “ Tr e´βH is a normalization factor for the state, and T indicates time-ordering
with respect to time-translations associated with H. In the zero-temperature (β “ 8)
theory, we know that these n-point functions can be obtained from the generating functional
ZrJs,

ZrJs “

ż

rDφs rDπs exp
ˆ

i

ż

dnX pπ 9φ ´ H ` Jφq

˙

, (2.14)

by means of functional differentiation with respect to the sources J : M Ñ R:

DF px1, x2, . . . , xnq “ p´iqn
δn lnZrJs

δJpx1q ¨ ¨ ¨ δJpxnq

∣∣∣∣
J“0

. (2.15)

The idea now is to generalize the zero-temperature procedure above for the
finite-temperature case, where the thermal Feynman n-point functions Dβ

F px1, . . . , xnq

described in Eq. (2.13). This can be done by generalizing the zero-temperature generating
functional ZrJs to the complex T -plane [37],

ZβrJs “

ż

C
rDφs rDπs exp

ˆ

i

ż

C
dnx pπ 9φ ´ H ` Jφq

˙

, (2.16)

where now the timelike coordinate T P C Ď C lives in the contour in the complex T -
plane that runs along the segment C1 “ p´T Ñ `T q on the real line, continues along
C2 “ p`T Ñ `T ´ iβ{2qdownwards in the imaginary time direction, winds back around
along C3 “ p`T ´ iβ{2 Ñ ´T ´ iβ{2q parallel to the real axis, and finally descends down
along C4 “ p´T ´ iβ{2 Ñ ´T ´ iβq. The contour C is represented in Figure 3. The fields
φ and π are defined on the complex extension of M determined by C, and φ satisfies the
periodic boundary condition

φp´T q “ φp´T ´ iβq. (2.17)

Functional derivatives of ZCrJs with respect to the source J gives the time-
ordered, thermal n-point functions Dβ

F px1, . . . , xnq,

xTCrφpx1q ¨ ¨ ¨φpxnqsy “ p´iqn
δn lnZCrJs

δJpx1q ¨ ¨ ¨ δJpxnq

∣∣∣∣
J“0

, (2.18)
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Figure 3 – Contour in the complex T-plane used to construct the finite-temperature
generating functional ZCrJs in Eq. (2.16). For the parallel segments C1,3, a small
slope in the negative imaginary T direction is understood.

but now the time ordering in the complex T -plane is given by the ordering on the contour
C: given τ, τ 1

P C, we have

θCpτ ´ τ 1
q “

ż τ

´8

dλ δCpλ ´ τ 1
q, (2.19)

where δC is the delta function on the contour C, defined by

fpτq “

ż

C
dλ δCpλ ´ τqfpλq. (2.20)

The construction of the generating functional in Eq. (2.16) is the real-time
analog of the Matsubara formalism in Euclidean path-integrals [39], and entirely equivalent
to the Schwinger-Keldysh formalism [40, 36] (modulo the choice of contour C).

2.5 The Unruh effect
Having constructed a way to generate time-ordered n-point functions for a

thermal state, we will now show that the KMS state corresponding to the generating
functional ZCrJs in Rindler space yields the same correlators as the usual Minkowski
inertial vacuum |0My. This is a generalization of the construction by Horibe et al. [41],
where this approach has been used to show the equivalency for massless scalar fields in
p1 ` 1q dimensions. Here we extend that result to the case of n-dimensional scalar fields
with possible non-zero masses.

First, we integrate over the canonical field momenta π, which is a gaussian
integral and can be carried on exactly to yield

ZβrJs “

ż

rDCφs exp
„

i

ż

C
dnx pLrφ, Bµφs ` J ¨ φq

ȷ

, (2.21)

where L is the Lagrangian density for the scalar field φ, given by

Lrφ, Bµφspxq “ ´
1
2 |det gµν |

1{2 φpxqplg ` m2
qφpxq, (2.22)
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where x ” pτ, ξ,xKq is written in terms of the Rindler coordinates on WR. By defining the
thermal Feynman propagator DF

β on the countour C by

plg ` m2
qDF

β px, x1
q “ ´

δCpx ´ x1q
a

det gµν
, (2.23)

we can change the integration variable φ in the path integral (2.21) to

φpxq Ñ φpxq `

ż

C
dnxDF

β px, yqJpyq (2.24)

and get the generalization of the known form of the generating functional

ZβrJs “ Zβr0s exp
„

´
i

2

ż

C
dnx dny JpxqDF

β px, yqJpyq

ȷ

. (2.25)

To solve Eq. (2.25), we make the ansatz

DF
β px, yq “ Dą

β px, yqθCp∆τq ` Dă
β px, yqθCp´∆τq, (2.26)

where ∆τ ” τx ´ τy. The change of variables (2.24) together with the periodic boundary
conditions (2.17) on the contour C yields the KMS condition on the propagators Dž

β ,

Dą
β pτx ´ iβ, τyq “ Dă

β pτx, τyq, (2.27)

where we’ve omited the spatial coordinates for brevity. Remembering that the propagator
equation (2.23) can be solved in terms of modified Bessel functions Kiω{apa

´1µeaξq, we can
find the solutions Dž

β px, yq of Eq. (2.23) subjected to the KMS boundary conditions:

Dą
β px, yq “ ´

i

π2a

ż 8

0
dω

ż

dn´2kK

p2πqn´2

ˆ

sinhpβω{2q

eβω ´ 1

˙

Gωpξx,xK; ξy,yKqFCpτx ´ τyq, (2.28)

where the functions Gω FC are given by

Gωpξx,xK; ξy,yKq “ Kiω{a

´µ

a
eaξx

¯

Kiω{a

´µ

a
eaξy

¯

eikKpxK´yKq, (2.29)

FCpτx ´ τy;ωq “
`

e´iωpτx´τyq`βω
` eiωpτx´τyq

˘

, (2.30)

where µ ” pk2
` m2

q
1{2 and, finally, Dă

β px, yq “ Dą
β py, xq.

Now we can calculate the τ -ordered two-point function Eq. (2.26) obtained
from the thermal generating functional ZβrJs in Rindler space. Events in the Rindler
wedge x, y P WR are represented on the countour C by the segment C1 (see Fig. 3). In this
segment, the time-ordering of the contour coincides with the time-ordering of the normal
real line R. Assuming for simplicity ∆τ ” τx ´ τy ą 0, and noting we can combine the
terms in Eq. (2.28) and extend the integration region, we can write

DF
β px, yq “ ´

i

π2a

ż 8

´8

dω

ż

dn´2kK

p2πqn´2 Gωpξx,xK; ξy,yKqe´iω∆τ` 1
2βω (2.31)
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Using the integral representation for the product of modified Bessel functions KiνpzqKiνpz1
q

[42],
ż `8

´8

dν eiντKiνpα1qKiνpα2q “ πK0

´

a

α2
1 ` α2

2 ` 2α1α2 cosh τ
¯

, (2.32)

valid for |argα1| ` |argα2| ` |ℑτ | ă π, we obtain

DF
β px, yq “ ´

i

2π

ż

dn´2kK

p2πqn´2 e
ikK∆xKK0

´µ

a
γ
¯

, (2.33)

where
γ2

” e2aξx ` e2aξy ` 2eapξx`ξyq coshpa∆τ ` ipπ ´ 0`
qq. (2.34)

By using the integral representation for the zeroth-order Bessel function K0,

K0pzq “

ż 8

0

dx

2x exp
„

´
1
2

´

x `
z

x

¯

ȷ

, (2.35)

we can swap the order of integration on (2.33) and complete the pn´ 2q gaussian integrals
with respect to the transverse momenta kK left, and obtain

ż

dn´2kK

p2πqn´2 e
ikK∆xKK0

´µ

a
γ
¯

“

ż 8

0

dx

2x

´ mx

2πΥ

¯
n
2 ´1

exp
„

´
m

2 Υ
ˆ

x ´
1
x

˙ȷ

(2.36)

“

´ m

2πΥ

¯
n
2 ´1

Kn
2 ´1pmΥq, (2.37)

where Υ2
“ γ2

` ∆x2
K.

The final expression for the Feynman propagator DF
β px, yq for the Rindler KMS

state represented by ZβrJs is given by

DF
β px, yq “

i

2π

´ m

2πΥ

¯
n
2 ´1

Kn
2 ´1pmΥq. (2.38)

By noting that Υ2
“ e2aξx `e2aξy ´2eapξx`ξyq coshpa∆τq`∆x2

K ` i0` is simply the geodesic
distance between x and y with the correct sign for the i0` prescription in the imaginary-
time plane, we identify (2.38) as simply usual zero-temperature Feynman propagator of
inertial observers, DF px, yq, for points inside the Rindler wedge WR of the accelerated
observer. This establishes the previously mentioned result that the inertial vacuum is
indeed a thermal state—as understood by the KMS condition—with respect to accelerated
observers.
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Chapter 3

Review: Classical and quantum
dynamics of accelerated electrons

The purpose of this chapter is to give a brief overview of various approaches to
calculating the electromagnetic radiation emitted by an uniformly accelerated electron.
Following the discussion about the Unruh effect in Chapter 2, we expect that there may
be thermal-like signatures in observables that are sensitive to the n-point functions of
the quantized electromagnetic field. As we will discuss in Chapter 4, one such observable
is the fluctuations around the electron’s momentum transverse to the acceleration axis.
The measure for the transverse-momentum fluctuations of the electron is given by the
mean-squared transverse-momentum transfer κ9

d

dτ
x∆p2

Ky, which can be obtained from
the photon emission rates dNγ{dτd2kK by the integration over the photon transverse-
momentum:

d

dτ
x∆p2

Ky “

ż

d2kK

dNγ

dτd2kK

∆p2
K. (3.1)

In this chapter, we shall consider the more realistic case where the charged
particles are accelerated by a constant background electric field, where we get a more
general expression for the accelerated trajectory (2.2) in terms of the electromagnetic field
strength Fµν . We shall focus on calculating the photon emission differentials dNγ for three
cases that will be important in Chapter 4: the classical electromagnetic field interacting
with a classical electron current, and the quantized electromagnetic field interacting with
the same classical source, and the full quantum electrodynamical calculation assuming the
fermionic field of the electron is coupled to a background electric field.

3.1 Classical electron accelerated by a constant electric field
In the last chapter, the acceleration of the classical point-like particle was

introduced by hand in the conditions of constant proper acceleration in Eq. (2.1). Now,
however, we shall be interested in the actual mechanics of how we accelerate the charged
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particles in our models. In this section, we will consider the dynamics of electrically charged
particles when coupled to a background electromagnetic potential Bµ, corresponding to a
constant electric field E “ Ezz, that will be responsible for accelerating the charge along
the z axis.

The action for a charged particle coupled to a background field Bµ is given by

SBrγs “ ´

ż

dτ
a

ηµν 9γµ 9γν ´

ż

d4xBµpxqJµγ pxq, (3.2)

where τ is the proper-time of the particle and the coupling of the charge to the background
electromagnetic potential is given in terms of the four-vector current

Jµγ pxq “ e

ż

dτ 9γµpτqδ4
px ´ γpτqq. (3.3)

where we take, for convenience, the parameter τ as the proper-time for the electron’s
trajectory γµ. Considering just the cases where the background field configuration has a
constant field-strength tensor BµFαβ “ 0, the classical equations of motion corresponding
to the action SBrγs are given by

δSBrγs

δγµpτq
“ m

d2

dτ 2γ
µ
pτq ´

ż

d4x
Jνpxq

δγµpτq
Bνpxq “ 0 ðñ

dpµpτq

dτ
“

´ e

m

¯

F µ
ν p

ν
pτq, (3.4)

where pµpτq ” m 9γµpτq is the four-momentum of the particle and Fµν “ BµBν ´ BνBµ is
the field-strength tensor corresponding to the background field configuration Bµ. For a
constant electric field in the z direction, we have a background potential Bµ “ Eztδµ3, and
an associated Fµν given by

F µ
ν “ Ezpδ

µ0δν3 ` δµ3δν0q. (3.5)

For a constant electromagnetic field-strength F , we can integrate the classical equations
of motion (3.4) directly. The solution to the particle’s four-momentum in the presence of a
constant electromagnetic field is given by

pµpτq “ exp
ˆ

eF µ
ν ∆τ
m

˙

pνpτ0q, (3.6)

where pµpτ0q is the initial condition on the momentum of the charge at the instant τ0.
Even though we will take τ0 “ 0 and pµp0q “ mδµ0 as the initial conditions at the end, we
shall keep the expressions general throughout the calculation.

The exponential of the field-strength tensor is given by

exp
ˆ

eF µ
ν ∆τ
m

˙

´ I “
1
E2
z

ˆ

cosh
ˆ

eEz∆τ
m

˙

´ 1
˙

F 2
`

1
Ez

sinh
ˆ

eEz∆τ
m

˙

F, (3.7)

and the explicit solution for the four-momentum vector pµpτq is

pµpτq ´ pµpτ0q “

ˆ

cosh
ˆ

eEz∆τ
m

˙

´ 1
˙

ppeF q2 ¨ p0qµ

peEzq2 ` sinh
ˆ

eEz∆τ
m

˙

peF ¨ p0qµ

peEzq
, (3.8)
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where the contraction with F 2 is understood as F 2
¨ p0 ” Fα

β F
β
γ p

γ
pτ0q. The trajectory of

the particle is obtained by integrating once again Equation (3.8),

γµpτq ´ γµpτ0q “
1
m

ż τ

τ0

dλ pµpλq “
1
m

ˆ

pµ0 ´
ppeF q2 ¨ p0qµ

peEzq2

˙

∆τ

` sinhpa∆τq
ppeF q2 ¨ p0qµ

peEzq3 ` pcoshpa∆τq ´ 1q
peF ¨ p0qµ

peEzq2 ,

(3.9)

where a ” eEz{m is the acceleration parameter of the trajectory.

By evaluating the products peF ¨ p0q and ppeF q
2

¨ p0q with respect to the field-
strength form of Eq. (3.5), we can calculate magnitude of the four-acceleration of the
particle in a constant electric field background. It is given by

:γ2
pτq “ ´

ˆ

eEz
m

˙2 ˆ

1 `
p2

K

m2

˙

, (3.10)

where pK “ pKp0q is the initial momentum of the particle in the plane transverse to the
electric field axis z.

3.2 Classical electromagnetic radiation from an accelerated electron
With the general expression for the trajectory γ of an electron accelerated by a

constant electric field in Eq. (3.9), we can study the radiation emission by a point-like
charge moving along this worldline1. The action that defines the interaction between the
charged particle with the (now dynamical) electromagnetic potential Aµ can be written as

Srγ,As “ SBrγs ` SEMrAs ` SIrγ,As, (3.11)

where SBrγs is the relativistic free-particle contribution under a fixed background field Bµ,
given by Eq. (3.2), SEMrAs is the free electromagnetic field action for the electromagnetic
potential A,

SEMrAs “ ´
1
4

ż

d4xFµνF
µν , (3.12)

where Fµν “ BµAν ´ BνAµ, and SIrγ,As is the field-charge interaction term given by

SIrγ,As “ ´e

ż

d4xAµpxqJµγ pxq. (3.13)

The classical equations of motion for the electromagnetic potential Aµ associated with the
action Srγ,As in the Lorenz gauge BµA

µ
“ 0 is given by the inhomogeneous wave equation

B
2Aµpxq “ Jµγ pxq. (3.14)

1 It is worth mentioning that the emission of radiation by uniformly accelerated charges as predicted
by classical electrodynamics—particularly in the context of different coordinate systems—has been a
source of debate and controversy during the first part of the twentieth century. This discussion at the
classical level was settled by the works of Fulton, Rohrlich, and Boulware [43, 44], to which we refer
the reader for more information about the topic.
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The solution for the radiated field Arad
µ pxq can be written as [45]

Aµradpxq “

ż

d4xGp´q
px ´ x1

qJµγ px1
q, (3.15)

where Gp´q
” Gret ´ Gadv is the difference between the retarded and advanced Green’s

function of the homogeneous Klein-Gordon wave equation (3.14),

Gp´q
pxq “ i

ż

d4k

p2πq3 e
´ikx signpk0qδpk2

q. (3.16)

The radiated four-momentum by the field, P µ
rad, is given by the integral over the

electromagnetic energy-momentum tensor T µν “
1
4η

µνFαβF
αβ

` F µαF ν
λ over a space-like

surface of spacetime Σ,
P µ

rad “

ż

Σ
d3x T µ0

radpxq, (3.17)

which can be expressed, in momentum space, as the differential

dP µ
rad “ ´

1
2 signpk0qδpk2

qkµpAλpkqA˚
λpkqqrad

d4k

p2πq5 . (3.18)

Taking into account the form of Gp´q
pkq “ 2πi signpk0qδpk2

q in Fourier space, we can write
the radiating field Aµrad as

Aµradpkq “ 2πi signpk0qδpk2
qJµγ pkq. (3.19)

Integrating over dk0 and interpreting the “classical photon number” by dividing the
radiated energy by the photon energy k0

” ℏ |k| (recovering the ℏ momentarily for clarity),
we can write the number of emitted photons emitted in a phase space element d3k as

dN cl
photon “

dP 0
rad
k0 “ ´

1
p2πq3J

λ
pkqJ˚

λ pkq
d3k
2k0 , (3.20)

where Jµγ pkq is the Fourier transform of the classical electron current

Jµγ pkq “ e

ż

dτ 9γµpτq exp pik ¨ γpτqq . (3.21)

The current product Jpkq ¨ J˚
pkq can be obtained from Equation (3.3) and the

expression trajectory (3.9) for the trajectory γ. The final expression is given by

ηµνJ
µ
γ pkqJνγ pkq

˚
“ e2

„ˆ

1 ´
E2

K

m2

˙

|I0|
2

´
E2

K

m2

`

|I1|
2

´ |I2|
2˘
ȷ

, (3.22)

where E2
K ” p2

K ` m2 is the charge’s “transverse” energy on the plane perpendicular to E,
and the auxiliary functions Ii are given by

I0 “
2m
eEz

eπκK{2KiκK
pκ∥q,

I1 “
2m
eEz

eπκK{2
ˆ

iκK

κ∥
KiκK

pκ∥q sinhχ ´ K 1
iκK

pκ∥q coshχ
˙

I2 “
2m
eEz

eπκK{2
ˆ

´
iκK

κ∥
KiκK

pκ∥q coshχ ` K 1
iκK

pκ∥q sinhχ
˙

,

(3.23)
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where κK and κ∥ are parameters related to the photon wave-vector kµ and the electron’s
four-momentum pµ by

κ∥ “
|kK|EK

eEz
and κK “

pK ¨ kK

eEz
, (3.24)

and χ is a parameter whose particular form is unimportant for the calculation of the
electron’s current product (3.22) [46].

The complete expression for the number of photons emitted by the accelerated
charge on the phase space element d3k is

dN cl
photon “

m2eπκK

4π3E2
z

«˜

E2
K

m2

˜

1 ´
κ2

K

κ2
∥

¸

´ 1
¸

|KiκK
pκ∥q|

2
`
E2

K

m2 |K 1
iκK

pκ∥q|
2

ff

d3k
k0 , (3.25)

and for the particular case of a charged particle with vanishing transverse momentum
pK “ 0, we get the simplified expression

dN cl
photon “

m2

4π3E2 |K1pkK{aq|
2d

3k
k0 , (3.26)

where we have used the modified Bessel function property K 1
0pzq “ ´K1pzq.

In Chapter 4, we discuss how we can understand the integration over longi-
tudinal momenta as the proper-time integration over the classical electron’s trajectory,
dkz{k0

“ peEz{mqdτ . (In particular, for a scalar radiation field, this relation can be
obtained directly from the integration of the Fourier-transformed electron current (3.21).
See Appendix C of [33], shown in Chapter 4). Using this relation, we can finally write the
expression for the photon emition amplitude per unit proper-time,

dN cl
photon

dτ d2kK

“
e2

4π3a
|K1pkK{aq|

2. (3.27)

3.3 Quantized electromagnetic radiation from an accelerated elec-
tron

In the last section, we calculated the “classical” photon emition rate by inter-
preting the total energy emitted by the electron onto the field in terms of the photon
dispersion relation Eγ “ ℏ |k|. To proceed with the actual quantum mechanical calculation,
we now proceed to quantize the electromagnetic field Aµ following the usual canonical
procedure [45]. We keep working in the Lorenz gauge, where the equations of motion are
given by Eq. (3.14). The solutions to Eq. (3.14) are still given by

Aµpxq “ Aµ0 `

ż

d4xGpx ´ x1
qJµγ px1

q, (3.28)
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where Aµ0 is a solution to the homogeneous version of the wave-equation (3.14), and G

is some Green function of the same homogeneous equation depending on the choice of
boundary conditions. In terms of the asymptotic solutions2

Aµinpxq “ lim
tÑ´8

Aµpxq,

Aµoutpxq “ lim
tÑ`8

Aµpxq,
(3.29)

where the retarded and advanced Green functions are given by

G ret
adv

pxq “ ´

ż

d4p

p2πq4
e´ipx

pp0 ˘ i0`q ´ p2 “
1

2πθp˘x0qδpx2
q (3.30)

and the general solution of the free homogeneous wave equation can be written as both

Aµpxq “ Aµin `

ż

d4xGretpx ´ x1
qJµγ px1

q

“ Aµout `

ż

d4xGadvpx ´ x1
qJµγ px1

q.

(3.31)

The “in” and “out” solutions can be connected by the equation

Aµoutpxq “ Aµinpxq `

ż

d4xGp´q
px ´ x1

qJµγ px1
q

“ Aµinpxq ` Aµradpxq,

(3.32)

where Aµrad is simply the c-number quantity corresponding to the classical radiating field
defined in Eq. (3.15). Here we can see that Gp´q is the Green function that takes free-field
solutions in the asymptotic past and evolves them into free-field solutions in the asymptotic
future, “after” the source Jγ had its effect on the field.

The canonical quantization of the free fields Aµin{out proceed in the standard
manner: associating to the negative and positive frequency modes of the homogeneous
wave-equation with creation and annihilation operators â:

λpkqin{out, âλpkqin{out,

Aµin{outpxq “

ż

d3k
2k0p2πq3

3
ÿ

λ“0

”

âλpkqin{outϵ
µ
λpkqe´ikx

` â:

λpkqin{outϵ
µ˚

λ pkqeikx
ı

, (3.33)

acting on vacuum states |0yin{out satisfying aλpkqin|0yin “ aλpkqout|0yout “ 0. The four-
vectors ϵµλpkq are the polarization states of the photons, labeled by λ, and k0 ” |k| is the
dispersion relation for the massless photons. Of course, due to gauge-invariance, only two
polarization states ϵλµpkq are physical: any other polarization states that are not transverse
to the photon momentum k are cancelled in the calculations of physical observables.

From Eq. (3.32), we can read the relationship between the creation and annihi-
lation operators in the asymptotic past and future,

âλpkqout “ âλpkqin ´ iηλµJ
µ
γ pkq, (3.34)

2 For a more nuanced discussion on the subtleties on the interpretation of these asymptotic field solutions,
see the discussion on [47].
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and we can write the photon Hamiltonian in terms of both the “in” and “out” fields,

HpAoutq “

ż

d3x :πµ 9Aµout ´ LpAoutq: “ ´
1
2

ż

d3k
p2πq3η

µνa:
µpkqoutaνpkqout

“ HpAinq `
1
2

ż

d3k
p2πq3ηµνJ

µ
γ pkqJνγ pkq.

(3.35)

The expression for the Hamiltonian shows that the average value of the energy emitted in
the process of photon emission by the classical source Jγ is given by

Etot “ inx0|HpAoutq|0yin “
1
2

ż

d3k
p2πq3ηµνJ

µ
γ pkqJνγ pkq, (3.36)

which agrees with the classical calculation (3.20). Thus, by using the dispersion relation
for the photon, we arrive that quantized photodynamics yields the same prediction for the
rate of emitted photons as the classical calculation,

dNquant
photon

dτ d2kK

“
e2

4π3a
|K1pkK{aq|

2. (3.37)

Despite being two qualitatively distinct calculations, the equality between the
classical radiation and the quantized photon emission, espressed in Eq. (3.37), can be
expected a priori. One possible argument for this is mathematical, since the responses of
the field to the classical point-like charge in both the classical and quantized radiation
cases are given entirely in terms of the two-point correlations of the electromagnetic field
evaluated along the uniformly accelerated trajectory, and thus can be expected to match.
The more physical explanation for this equality comes from the fact that the quantized
radiation calculation with a classical source is bounded to its domain-of-validity regime,
where the momentum of the emitted photon is not high enough to probe the internal
structure of the electron. This scale separation argument constrains the photon emission
process to the momentum scale where classical radiation behavior is expected to dominate,
and thus it is not a surprise that the rate of emitted photons match in both cases.

3.4 Quantum electrodynamics in a constant electrical field
When we consider higher accelerations, we are considering strong background

electric fields that couple to the charged particle. Naturally, the previous point particle
model we used to describe the charge can only be used up to a certain energy scale. The
most well known of these scales is the the critical field Ecrit “

m2c3

eℏ
, corresponding to the

Schwinger limit for pair production by the electric field. When the background electric field
gets close to that scale, the potential clearly begins to probe into the internal structure
of the electron field and, at that point, we must describe the electron as a true quantum
field. The action that describes such a system is given by the QED Lagrangian

LQED “ ´
1
4FµνF

µν
` ψpiγµDµ ´ mqψ, (3.38)
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where Dµ “ Bµ ` iqAµ ` ieAbg
µ is the gauge-covariant derivative that couples the fermionic

field ψ with both the dynamical electromagnetic field Aµ and the background potential
Abg
µ .

To calculate the amplitude for photon emission by an electron, we need first to
quantize the theory defined by the Lagrangian (3.38). To do this, we need to proceed like
in Chapter 2, finding the positive and negative frequency modes of the fermion field ψ,
but now over the constant electromagnetic background Abg

µ [48, 49, 46, 50].

The equation of motion for the fermion field ψ given by

r´iγµBµ ` qγµAµpxq ` msψpxq “ 0, (3.39)

where the field is understood as a four-component spinor field, and m ” mI4ˆ4 is a
four-by-four matrix. Making the ansatz

ψpxq “ riγµBµ ´ qγµAµpxq ` msφpxq, (3.40)

we can substitute the Dirac equation 3.39 for a second-order equation for the bispinor field
φpxq:

„

piBµ ´ qAµpxqq
2

´ m2
´

1
2qFµνσ

µν

ȷ

φpxq “ 0, (3.41)

where we have defined3 σµν ”
i

2rγµ, γνs and used the well-known identities of Dirac-matrix
calculations

{α ¨ {β “
1
2tαµ, βνuηµν ´

i

2rαµ, βνsσµν , (3.42)

riBµ ´ qAµ, iBν ´ qAνsψ “ ´iqFµνψ, (3.43)

with {α ” γµαµ the contraction of α with the Dirac gamma matrices γµ.

Choosing the chiral representation for the Dirac matrices

γµ “

«

0 σµ

σ̄µ 0

ff

, σµ “ p1, σiq, σ̄µ “ p1,´σiq, (3.44)

we find that the matrix structure of the interaction term 1
2qFµνσ

µν for the bispinor field φ
is given in block-diagonal form,

1
2qFµνσ

µν
“

1
2qFµν diagpsµν , s̄µνq, (3.45)

where the 2ˆ2 matrices sµν , s̄µν are combinations of products between the two-dimensional
Pauli matrices σ and σ̄. Choosing the temporal gauge Aµpxq “ p´Eztqδµ3, Ez ą 0, for the
3 These are the generators of Lorentz transformations on spinors. Under this prefactor convention, the

spinors ψ transform as

ψpxq Ñ exp
ˆ

´
i

4ωµνσ
µν

˙

ψpΛ´1xq.

See for example [8, Equation (3.30)].
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background potential corresponding to an electric field E “ Ezẑ, we get an electromagnetic
field tensor

Fµν “ ´Ezpδµ0δν3 ´ δµ3δν0q, (3.46)

and the interaction term takes the exact form

1
2qFµνσ

µν
“ iqEz diagpσ3,´σ3

q “ iqEz diagp1,´1,´1, 1q. (3.47)

Now we proceed to find solutions to bispinor field (3.41) associated with the
interaction term (3.47) of the form

φ “ Nψe
ip¨xfpσptquσ, (3.48)

where uσ are two eigenvectors of the interaction term 1
2qFµνσ

µν with eigenvalue iqEz:

1
2qFµνσ

µνuσ “ piqEzquσ. (3.49)

Specializing all the equations and relations obtained so far for the electron’s
case q “ ´e, where e ą 0 is the magnitude of the electron charge, and applying the ansatz
(3.48) to the second-order Dirac equation, we get the parabolic cylinder equation

„

d2

dξ2 ´

ˆ

iλ `
1
2

˙

´
ξ2

4

ȷ

fpσpξq “ 0, (3.50)

ξ “ eiπ{4
c

2
eEz

ppz ´ eEztq, λ “
p2

K ` m2

2eEz
. (3.51)

Two sets of linearly independent solutions ˘fpσpξq and ˘fpσpξq can be found
for this equation in terms of Weber’s parabolic cylinder functions Dνpzq. These sets are
given by [42, Eq. 9.255]

`fpσ “ Diλpξ˚
q, ´fpσ “ D´iλ´1pξq, (3.52)

and
`fpσ “ D´iλ´1p´ξq, ´fpσ “ Diλp´ξ˚

q. (3.53)

The two sets ˘fpσptq and ˘fpσptq differ in their behavior in the asymptotic past
(t Ñ ´8) and future (t Ñ 8) regions. From the asymptotic expansion of the parabolic
cylinder functions [42, Eq. 9.246],

Dνpzq „ e´z2{4zν
`

1 ` O
`

1{z2˘˘ , |arg z| ă
3π
4 , (3.54)

we find that as t Ñ 8, the complex phases on ˘fpσptq go as

˘fpσptq Ñ exp p¯iΘptqq , (3.55)
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where Θptq is a positive, monotonically increasing function of t [49]. That relation singles
out the positive and negative frequency solutions on the asymptotic future as `fpσ and
´fpσ respectively, as suggested by the notation. Similar arguments hold for ˘fpσ, which
are the positive and negative frequency solutions in the asymptotic past.

Now we find the complete spinors which are solutions to the Dirac equation
(3.39). To do this, we plug the solutions to the second-order equation in the ansatz (3.40):

˘ψpσpxq “
˘NpσriγµBµ ´ qγµAµpxq ` ms

`

˘fpσptqeip¨xuσ
˘

, (3.56)

˘ψpσpxq “ ˘NpσriγµBµ ´ qγµAµpxq ` ms
`

˘fpσptqeip¨xuσ
˘

. (3.57)

The matrix form of the operator in the ansatz is given by

iγµΠµ ` m “

»

—

—

—

—

–

m 0 Π0 ` Π3 p1 ´ ip2

0 m p1 ` ip2 Π0 ´ Π3

Π0 ´ Π3 ´p1 ` ip2 m 0
´p1 ´ ip2 Π0 ` Π3 0 m

fi

ffi

ffi

ffi

ffi

fl

, (3.58)

where we have defined, for convenience,

Π0 “ i
d

dt
, and Π3 “ pp3 ´ eEztq. (3.59)

The operators Π0 ˘ Π3 can be written in terms of the parabolic cylinder’s argument
ξ “ eiπ{4

a

2{eEzpp3 ´ eEztq, and they take the forms

Π0 ˘ Π3 “ e´iπ{4
a

2eEz
ˆ

d

dχ
˘
χ

2

˙

. (3.60)

These operators act on the parabolic cylinder functions Dνpzq, which satisfy the relations
[50, 42]

ˆ

d

dz
´
z

2

˙

Dνpzq “ ´Dν`1pzq,

ˆ

d

dz
`
z

2

˙

Dνpzq “ νDν´1pzq, (3.61)

and thus help us trade the time derivatives for other parabolic cylinder functions.

Now we are free to choose the two eigenvectors uσ of the bispinor field in ansatz
(3.48),

u1 “

»

—

—

—

—

–

1
0
0
0

fi

ffi

ffi

ffi

ffi

fl

, and u2 “

»

—

—

—

—

–

0
0
0
1

fi

ffi

ffi

ffi

ffi

fl

, (3.62)

obtaining the two spin states for the incoming ˘ψpσ and outgoing ˘ψpσ electron/positron
states. We show the spinors for the positive frequencies `ψpσ, `ψpσ on the remote past
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and future, since the procedure is analogous to the negative frequencies4

`ψp,1pxq “ peEzλq
´1{2e´ πλ

4 `ip¨x

»

—

—

—

—

–

mDiλpξ˚
q

0
λ e´iπ{4

a

2eEzDiλ´1pξ˚
q

´pp1 ` ip2qDiλpξ˚
q

fi

ffi

ffi

ffi

ffi

fl

, (3.63)

`ψp,2pxq “ peEzλq
´1{2e´ πλ

4 `ip¨x

»

—

—

—

—

–

pp1 ´ ip2qDiλpξ˚
q

λ e´iπ{4
a

2eEzDiλ´1pξ˚
q

0
mDiλpξ˚

q

fi

ffi

ffi

ffi

ffi

fl

, (3.64)

`ψp,1pxq “ p2eEzq´1{2e´ πλ
4 `ip¨x

»

—

—

—

—

–

mD´iλ´1p´ξq

0
e´iπ{4

a

2eEzD´iλp´ξq

´pp1 ` ip2qD´iλ´1p´ξq

fi

ffi

ffi

ffi

ffi

fl

, (3.65)

`ψp,2pxq “ p2eEzq´1{2e´ πλ
4 `ip¨x

»

—

—

—

—

–

pp1 ´ ip2qD´iλ´1p´ξq

e´iπ{4
a

2eEzD´iλp´ξq

0
mD´iλ´1p´ξq

fi

ffi

ffi

ffi

ffi

fl

, (3.66)

where we introduce the normalization with respect to the usual inner product in the space
of spinors,

pψ, ψ1
q “

ż

d3xψpxqγ0ψ1
pxq. (3.67)

These solutions are the same found in [50], and equivalent to those found in
[46] by means of a unitary transformation

U “
1

?
2

«

I I

I ´I

ff

(3.68)

on the spinors. The differences are in the chosen representations of Dirac gamma matrices
γµ; we use the chiral representation, while [46] uses the Dirac representation.

From the linear relations between parabolic cylinder functions [42, Eq. 9.248],

Dνpzq “ e´iνπDνp´zq `

?
2π

Γp´νq
eiπpν`1q{2D´ν´1pizq, (3.69)

we can establish a relationship between the positive and negative frequencies in the
asymptotic past and asymptotic future,

`ψpσ “ i

c

2π
λ

e´πλ{2

Γp´iλq

`ψpσ ` e´πλ´ψpσ, (3.70)

4 Here we use the convenient relationship ξ˚ “ ´iξ, valid for the variable ξ defined in (3.51).
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´ψpσ “ ´e´πλ`ψpσ ´ i

c

2π
λ

e´πλ{2

Γpiλq

´ψpσ. (3.71)

From these relationships, we can read the Bogoliubov transformation coefficients that
connect the modes:

Cpp`|
`

q “ Cpp´|´q “ i

c

2π
λ

e´πλ{2

Γp´iλq
,

Cpp`|
´

q “ ´Cpp´|
`

q “ e´πλ,

(3.72)

where we’ve used the notation ˘ψpσ “ Cpp˘|
`

q
`ψpσ ` Cpp˘|

´
q

´ψpσ.

The Green’s function Gpx1, xq, responsible for evolving the states to the asymp-
totic regions t Ñ ˘8, can be expressed in terms of the exact solutions ˘ψpσ and ˘ψpσ:

Gpx1, xq “
ÿ

p,σ
Npσ

“

θpt1 ´ tq`ψpσpx1
q`ψpσpxq ´ θpt ´ t1q´ψpσpx1

q
´ψpσpxq

‰

, (3.73)

where
Npσ “ iG´1

p p´|
´

q “ ´

c

λ

2πΓpiλqeπλ{2, |Npσ|
2

“ p1 ´ e´2πλ
q

´1. (3.74)

From the exact solutions, we can calculate the amplitude for a photon to be
emited by the scattering of an electron by the external field. In first-order perturbation in
the radiative interaction,

SI “

ż

d4x JµψpxqAµpxq “ ´e

ż

d4xψpxqγµAµpxqψpxq, (3.75)

the amplitude can be written as

´iM repσ Ñ ep1σ1 γkϵs “ ´i ⟨ep1σ1p8q, γkϵp8q|SI|epσp´8q⟩ , (3.76)

which is the amplitude for an incoming electron with momentum p and spin uσ to scatter
from the external electromagnetic potential, changing its momentum and spin to p1 and
uσ1 and emitting a photon with wave vector k and polarization ϵ. In terms of the exact
solutions for the fermion field in the background electric field, we get [49]

´iM “ ´
ie

a

p2πq32k0

ż

d4x `Φp1σ1pxqγµϵµpkq`Φpσpxq, (3.77)

where the electron’s wavefunctionals are given by

`Φp1σ1pxq “

ż

toutÑ8

d3xout
`ψp1σ1pxoutqγ

0Gpxout, xq “ Np1σ1 `ψp1σ1pxq,

`Φpσpxq “

ż

tinÑ´8

d3xin Gpx, xinqγ0
`ψpσpxinq “ Npσ

`ψpσpxq.

(3.78)

The differential probability amplitude for a photon emission event from a one electron
initial state (without pair creation), averaged over the initial spin states and insensitive to
the final electron spin, is given by [46]

dW “
1
2
ÿ

σ,σ1,ϵ

ż

d3k d3p1

p2πq6 |M repσ Ñ ep1σ1 γkϵs|
2

“ NW wpp,kq
d3k

p2πq3 , (3.79)
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where NW is a normalization factor given by

NW “
e2 exp p´πpλ ` λ1q{2q

k0λ1peEzq2p1 ´ e´2πλqp1 ´ e´2πλ1
q
, (3.80)

and wpp,kq is the momentum distribution function given by

wpp,kq “ πe3πν{2
!

pp2
K ` p1 2

K q |Ψ|
2

` r2ppK ¨ p1
K ` m2

q ` eEzρ
2
s

ˆ

ρ2

2λ

˙

|Ψ1
|
2

´rp2
Kρ

2
` 2νppK ¨ p1

K ` m2
qs

ˆ

1
λ

˙

ℜpΨ1Ψ˚
q

)

,

(3.81)

where ρ2
” k2

K{eEz, ν ” λ ´ λ1. The function Ψ is defined by the combination of the
confluent hypergeometric functions 1F1pa, b; zq [42, Eq. 9.210],

Ψpa, b; zq “
Γp1 ´ bq

Γpa ´ b ` 1q
1F1pa, b; zq `

Γpb ´ 1q

Γpaq
z1´b

1F1pa ´ b ` 1, 2 ´ b; zq, (3.82)

evaluated at
Ψ “ Ψ

`

iλ, 1 ` iν; ´iρ2
{2
˘

. (3.83)

The prime Ψ1 refers to the derivative of the hypergeometric with respect to the last argument
Ψ1

pa, b; zq “ dΨ{dz. All expressions are evaluated over the momentum conserving relation

p “ p1
` k. (3.84)

Again, just as the classical electromagnetic radiation case, the differential prob-
ability of photon emission does not have an explicit dependence on the initial longitudinal
momenta of the electron, pz, and only depends trivially on the emitted photon longitudinal
momentum kz via the integration measure p2k0q

´1dkz . Such divergence is expected since
the classical background field acts on the system for an infinitely long period of time, and
is equivalent to the divergence we get from the classical radiation analysis. By using the
same relationship between the longitudinal momentum and the proper-time of the classical
electron’s worldline,

dkz
k0

“
eEz
m

dτ, (3.85)

we can finally write the probability of emitting photons per unit proper-time and unit
transverse momentum kK, given an initial electron transverse momentum of pK “ 0:

dNQED
γ

dτd2kK

“
dW

dτd2kK

“
α

m
wpk2

Kq, (3.86)

where the specialized function wpk2
Kq ” p2πq

´3α´1NWwpp,kq|pK“0 is given by

wpk2
Kq “

ˆ

1
4π

˙

csch
ˆ

πm2

2eEz

˙

fpEKq e´
πk2

K
eEz

ˆ

k2
K

k2
K ` m2

˙„

|Ψ|
2

`

ˆ

2 `
k2

K

m2

˙

|Ψ1
|
2

` 2ℜpΨ1Ψ˚
q

ȷ

,

(3.87)
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where we defined for convenience

EK ” k2
K ` m2, fpEKq “

1
1 ´ exp p´πEK{eEzq

, (3.88)

and the confluent hypergeometric functions are evaluated at

Ψ “ Ψ
ˆ

im2

2eEz
, 1 ´

ik2
K

2eEz
; ´

ik2
K

2eEz

˙

. (3.89)
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Chapter 4

Electron response to radiation under
linear acceleration

In this chapter, we present our article discussing the electron’s response to
radiation due to the thermality of the vacuum as seen by uniformly accelerated observers.
In it, we examine how the interaction between an accelerated electron with the quantum
field vacuum can be understood as a stochastic “Brownian motion” type of problem. We
derive observables related to the fluctuating and dissipative behavior of the electron under
the action of the Unruh temperature, and quantitatively evaluate the predictions for these
observables in the classical, semiclassical, and quantum regimes. We compare the results
between various regimes, and interpret them in the light of possible experimental setups
that may be capable of detecting signals of the vacuum’s acceleration temperature.

This is the version of the article before peer review or editing, as submitted by
an author to Physical Review D. The American Physical Society is not responsible for any
errors or omissions in this version of the manuscript or any version derived from it. The
Version of Record is available online at DOI: 10.1103/PhysRevD.105.096034.

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.096034
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A model detector undergoing constant, infinite-duration acceleration converges

to an equilibrium state described by the Hawking-Unruh temperature Ta =

(a/2π)(~/c). To relate this prediction to experimental observables, a point-like

charged particle, such as an electron, is considered in place of the model detector.

Instead of the detector’s internal degree of freedom, the electron’s low-momentum

fluctuations in the plane transverse to the acceleration provide a degree of freedom

and observables which are compatible with the symmetry and thermalize by inter-

action with the radiation field. General arguments in the accelerated frame suggest

thermalization and a fluctuation-dissipation relation but leave underdetermined the

magnitude of either the fluctuation or the dissipation. Lab frame analysis reproduces

the radiation losses, described by the classical Lorentz-Abraham-Dirac equation, and

reveals a classical stochastic force. We derive the fluctuation-dissipation relation be-

tween the radiation losses and stochastic force as well as equipartitation 〈p2
⊥〉 = 2mTa

from classical electrodynamics alone. The derivation uses only straightforward sta-

tistical definitions to obtain the dissipation and fluctuation dynamics. Since high

accelerations are necessary for these dynamics to become important, we compare

classical results for the relaxation and diffusion times to strong-field quantum elec-

trodynamics results. We find that experimental realization will require development

of more precise observables. Even wakefield accelerators, which offer the largest linear

accelerations available in the lab, will require improvement over current technology

as well as high statistics to distinguish an effect.
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I. INTRODUCTION

The study of detectors in accelerated states was inspired by the quest to understand

Hawking’s prediction of thermal radiation from a black hole [1]. A detector undergoing

constant acceleration exhibits a thermal excitation spectrum at temperature [2, 3]

Ta =
a

2π

~
c

=
a

m/s2
3.5× 10−25 eV. (1)

In each case, the detector is coupled to a massless field which is quantized in the classical

spacetime. The thermal spectrum is manifestly associated with the wavefunctions of the

quantized field and can be factored out from the transition probability of the detector. For

this reason, it is frequently said that the massless field viewed by the accelerated detector is in

a thermal state [4–6], as appears to be the case for the massless field in a black hole spacetime

[7, 8]. The apparent finding of thermalized behavior in hadronic collisions, including very

small systems, has added a phenomenological dimension to these speculations, as the Unruh

effect has been advocated as a mechanism under which a coherent classical field configuration

dissipates into a thermal distribution in a time-scale parametrically shorter than perturbative

expectations [9–12].

To understand the apparent thermal state better, we consider a concrete realization: a

specific accelerated detector and a consequence of the detector’s thermalization that is mea-

surable in the laboratory inertial frame. Most proposals for experiments involve accelerating

electrons [13–18], which as the lightest charged particles achieve the highest accelerations.

The problem then is to derive the electron’s response to the predicted thermal excitation as

well as a dynamical observable measurable in the lab frame.

As a charged particle undergoing high acceleration, the electron radiates electromagnet-

ically. The massless photon field should exhibit a thermal distribution in the rest frame

of an electron in constant acceleration. Therefore the electron might reveal an imprint of

this thermal bath in some characteristic of its radiation distribution. This is the basic idea

behind two proposals for experiments, based either on the stochastic recoil of the probe par-

ticle from the radiation in the accelerated frame [15] or on correlations in 2-photon emission

processes [17].

Nonequilibrium quantum theory methods were developed to analyze the real-time dy-

namics of a classical detector or particle coupled to a quantum field [19–23] and from the
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dynamics compute the radiation [24–26] laying to rest questions raised about whether any

radiation survives in the far-field. These real-time calculations are also extended to noncon-

stant accelerations to test approximations and assumptions of the previous proposals [27].

Perhaps most interesting for experimental observation, the electron transverse momentum

“thermalizes”, i.e. after a sufficiently long time satisfies equipartition at the temperature

Eq. (1) [28],

1

2m
〈pi⊥pj⊥〉 =

1

2
Taδ

ij +O
( a
m

)2

(2)

This equipartition relation is an element of a fluctuation-dissipation relation, apparently con-

sistent with the hypothesis of coupling the transverse momentum fluctuations to a thermal

bath at temperature Ta, as we discuss below.

Ultimately, progress on understanding the physics content of Eq. (1) must be compared

to experiment. We show that equipartition for transverse dynamics arises in a consistent ex-

pansion for small accelerations (a~/c� mc2) and small transverse fluctuations (|~p⊥| � mc)

around the approximately constant longitudinal acceleration. The last condition is the ex-

perimental challenge: the acceleration should be approximately constant long enough for

transient effects and initial state information to be erased, that is several times longer than

the dissipation time. We obtain the dissipation time from classical radiation theory, find-

ing agreement with previous calculations. Classical radiation theory also yields the correct

noise, proving the fluctuation-dissipation and equipartition theorems. Since the classical

radiation calculation involves only a single scale a, 〈p2
⊥〉 proportional to Ta is inevitable.

What is nontrivial is the correct numerical factor for the equipartiation relation. The ~

in Eq. (2) arises from the conversion of the classical wave number k of the radiation to

the momentum it imparts to the electron/detector upon emission. On the other hand as

acceleration approaches a~/mc3 → 1, quantum electrodynamics, can be applied to deter-

mine the radiation emitted by the electron. We evaluate the dissipation time, noise and

mean-square transverse momentum using strong-field quantum electrodynamics to quan-

tify the high-acceleration departure from classical predictions of radiation response and the

thermal fluctuation-dissipation and equipartition relations. Before closing, we discuss the

timescales in the context of linear accelerator technology and find that both conventional

radio-frequency accelerators and wakefield accelerators currently provide gradients that are

too small and over too short times to access directly the “thermalized” state of an acceler-
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ating particle.

II. ACCELERATED FRAME ANALYSIS

Supposing horizons imply a thermodynamic description of the vacua of a massless field

[29–32], we examine the implications for the dynamics of a probe coupled to such a mass-

less field. More specifically, lab frame analysis of the two-point correlation function of the

radiation field proves it equivalent to a thermal two-point correlator [4, 19]. Concretely of

course, we are thinking of describing the dynamics of the electron coupled to the massless

photon field in the accelerated, co-moving frame, but the inferences should be applicable

more generally. We refer to the massless field as the radiation field, as in later sections, it is

identical with the radiation component of the electromagnetic field.

The simplest consequence is that the expectation value of the energy of the probe degree

of freedom should equilibrate at Ta,

〈E〉 = Ta. (3)

This result is straightforwardly applied to models in which the probe degree of freedom is an

“internal” state Q to which the radiation field couples, as in the Unruh-DeWitt detector [3].

In these models, the probability of excitation to an internal state with energy E is given by

the usual Bose or Fermi statistics distribution with temperature Ta, which implies Eq. (3).

However, most experimental proposals using electrons and electromagnetic radiation in-

volve phase space dynamics in response to the radiation field (electron spin is a notable

exception [33]). Involving phase space dynamics poses a potential difficulty in that radia-

tion dynamics generally change the acceleration. Lab frame analysis (Sec. III) shows that

radiation causes the acceleration in a general state to decrease to a well-defined non-zero

minimum. This dynamic will shortly be derived in the accelerated state as well. Clearly

we must assume for the moment–and justify a posteriori–that the accelerated state can be

treated as quasi-stationary, so that the decay is much slower than the dynamics we are con-

sidering and the acceleration and temperature can be considered approximately constant.

Without the quasi-stationary approximation, applying a thermodynamic description would

be nonsense.

Additionally, for the interaction of the probe (electron) with an accelerated frame radia-
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tion field to be described by classical thermodynamics, the temperature must be much less

than the mass of the probe, Ta � m. Otherwise, the radiation field would have enough

energy to probe the internal structure of the probe and create electron-positron pairs. This

condition is equivalent to the lab frame condition that the probe particle must have negligi-

ble recoil from interactions with the radiation field and supports the a posteriori justification

that the accelerated state is at least quasi-stationary.

To use the accelerated electron as the probe and its radiation as a signal accessible in

the lab frame, we need a degree of freedom which interacts with the radiation field in such

a way that the dynamics can be computed in both the lab frame and the accelerated frame.

The simplest choice, if it exists, is an observable invariant under the change in frame. Since

any point on the accelerated trajectory is related to the lab frame by a boost (and the

accelerated trajectory itself is boost invariant), we are looking for an observable invariant

under boosts along the direction of the acceleration. Such longitudinal boosts leave the

transverse directions invariant, so observables describing dynamics in the transverse plane

should be equal whether computed in lab or accelerated frame. Equality of observables has

been verified explicitly for the probability of photon emission per unit transverse momentum

by Refs. [14].

Therefore, we can investigate (~x⊥, ~p⊥) dynamics of the probe to seek effects of the thermal

state of the radiation field. The first inference is that equipartition Eq. (3) should be

applicable to the transverse kinetic energy. Since we are limited to the locally nonrelativistic

regime Ta � m (in the instantaneus co-moving frame the motion is non-relativistic for much

longer than equilibration time defined below), we have E⊥ ' p2
⊥/2m

1

2m
〈pi⊥pj⊥〉 =

1

2
Taδ

ij, (4)

The difference between this statement and Eq. (2) is that this has been obtained from

general reasoning about the accelerated state, whereas Eq. (2) was obtained from a lab frame

calculation [28]. The relativistic correction to the kinetic energy would imply a correction

to the right hand side of T 2/4m2, which we can compare to T/m corrections from other

calculations.

A second inference is to recall that under these conditions the dynamics of a heavy probe

coupled a thermal bath are described by Brownian motion. Specifically, according to Eq. (4)

we have a heavy particle with momentum p⊥ ∼
√
mTa and velocity v⊥ ∼

√
Ta/m � 1.
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Since p⊥ � T and collisions with momentum transfer ∆p⊥ ∼ T are rare, many collisions are

required to significantly change the momentum. Therefore, we can model the interaction

as dominated by dissipation and uncorrelated kicks. The dynamics are then described by a

(macroscopic) Langevin equation, defined for the transverse momentum [34],

dpi

ds
= − 1

τD
pi + ξi, 〈ξi(s)ξj(s′)〉 = κδ(s− s′)δij, (5)

where τD is the dissipation (or relaxation) time and ξi is a classical random variable describ-

ing the stochastic force. The time variable s in the accelerated frame is the proper time of

the accelerated probe. The dissipation time τD is the timescale for the exponential decay of

correlations, including initial data. For a thermal bath, the dynamics of ξi are completely

determined by its 2-point function, which being a δ-function in time represents white noise

and has no higher order correlations. Ndκ is the mean-square momentum transfer per unit

time. The number of spatial dimensions Nd = 2 in our case but we keep it as an explicit

factor to highlight how various thermodynamic relations are affected by the conversion from

usual 3-dimensional dynamics to 2 dimensions.

The relationship between momentum loss and diffusion is described by a fluctuation-

dissipation theorem, which follows from the general analysis of thermal equilibrium between

the probe and the thermal bath [34]. Integrating Eq. (5) leads to the mean square momentum

〈p2
⊥〉 −→

t�τD

Nd

2
τDκ (6)

Since equilibration in the long time limit t� τD requires Eq. (4), we obtain the fluctuation

dissipation relation

2mTa = κτD (7)

which is independent of Nd. Since τD is the timescale to erase initial conditions, it is also the

minimum (proper) duration of the quasi-constant period of acceleration required for these

thermal dynamics to become dominant (see Ref [27] for calculations of equilibration times

for nonconstant acceleration).

Integrating the momentum to obtain the mean square transverse displacement yields

〈∆x⊥(t)2〉 = 2Nd
Ta
m
τDt (8)

and comparison to the definition of the diffusion constant

〈∆xi⊥(t)∆xj⊥(t)〉 = 2Dtδij (9)
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shows that

D =
κ

2m2
τ 2
D =

Ta
m
τD. (10)

The latter equality has the form of an Einstein relation D ∝ T , modulo temperature depen-

dence of τD, which we will find is essential.

Thus we have 3 characteristic quantities for the fluctuation and dissipation dynamics,

and 2 relations determined by thermodynamics. We need to compute at least one of these

from the microscopic theory describing collisions between the probe and the thermalized

particles. Naively, it appears we could compute the mean square momentum transfer per

unit time from a standard finite temperature field theory in the limit of a heavy scatterer

(e.g. as in Ref. [35]), but as we discuss below, such calculations will appear in disagreement

with the present results since they results in κ ∝ e4.

III. LAB FRAME ANALYSIS

From the lab frame, the electron is undergoing constant acceleration. Fluctuations in the

transverse momentum converge to a steady state in which the mean square momentum is

proportional the temperature Ta, as would be expected for thermalization [28]. Verifying

this steady state would provide evidence for the thermal character of the interaction of the

electron with the radiation field. In this section, we show this apparently thermal character

is derived from classical electromagnetic theory. We compare the classical approach to the

quantum dynamical formalisms of Refs. [22, 23, 28]. As the effect of the accelerated state

thermalization is expected to become more important for high accelerations, we compute the

same observables in quantum electrodynamics in order to obtain corrections proportional to

T/m ∼ a/m.

A. Classical electrodynamics

Classical electrodynamics predicts that any accelerating charged particle radiates, in gen-

eral causing the particle to lose energy. We recall some of the basic equations here for

comparison to the approaches below. The starting point, the classical action, is

S = −m
∫ √

uµuµdτ −
∫

1

4
F µνFµνd

4x−
∫
jµ(x)Aµ(x)d4x (11)
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where the classical point-particle current is

jµ = −euµδ4 (x− ξ(τ)) (12)

with uµ = pµ/m the electron 4-velocity and ξ(τ) its trajectory. Constant, linear acceleration

is provided by a homogeneous and static electric field, and as usual we are implicitly splitting

the electromagnetic field into a classical, external field, Acl
µ which is not perturbed by the

probe particle, and a dynamic radiation field Arad
µ which is sourced by the particle dynamics.

Integrating the Lorentz force equation for a general electron momentum, we find the 4-

velocity uµ and trajectory ξµ recalled in Appendix A, and the magnitude acceleration in a

constant electric field is

aµaµ = −|eE|
2

m2

p2
⊥ +m2

m2
, (13)

which is equal to |eE|/m only for p⊥ = 0. The minus sign is due to the 4-acceleration being

spacelike. Any nonvanishing transverse momentum perturbs the acceleration from the naive

value. However, even as p2
⊥ acquires a nonvanishing expectation value due to radiation, its

magnitude is consistent with the implicit expansion in a/m ∼ Ta/m.

Computing the momentum flux of the Arad
µ field through a sphere at infinity provides the

rate of 4-momentum radiated by the electron [36, 37],

dP µ
rad = −1

2
sgn(k0)δ(k2)kµj(k) · j(k)∗

d4k

(2π)3
, (14)

where kµ = (ωk, ~k) with |~k| = 2π/λ is the wave 4-vector of the radiation field. After inserting

the classical trajectory and integrating, one finds the usual Larmor formula,

dP µ
rad

dτ
= − e

2

6π
aνaνu

µ = −dp
µ
loss

dτ
(15)

which is manifestly positive. The trajectory and other supporting calculations are found

in Appendix. In this construction, this momentum loss is not incorporated in the solution

of the trajectory entering the current. It is added to the Lorentz force equation to ob-

tain a radiation-corrected equation of motion, known as the Lorentz-Abraham-Dirac (LAD)

equation,

dpµ

dτ
= F µ

ext +
e2

6πm

(
pµ
(
duµ

dτ

)2

+
daµ

dτ

)
, (16)
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where F µ
ext is the driving force, here the Lorentz force F µ

ext → qF µνuν . The damping timescale

due to radiation emission is derived from

1

τD
' 1

E

dP 0
rad

dτ
=

e2

6πm
a2 = τe

a2

c2
, (17)

restoring powers of c in the last equality. τe is the timescale arising with the LAD,

τe =
e2

6πε0mc3
' 6.24× 10−24 s, (18)

related in turn to the Larmor radiation rate, but is not the timescale associated with the

dissipation of the charged particle’s energy. As expected, the dissipation time τD is inversely

proportional to the acceleration and is classical.

Considering the acceleration exactly constant daµ/dτ = 0 and ignoring the second term

in parentheses in Eq. (16) leaves an equation of the Langevin form dpµ

dτ
= F µ

ext − pµ/τD.

However, the second term is required in the equation of motion to conserve the norm of the

4-momentum p2 = m2, and therefore arises in any consistent derivation of dynamics from

the classical electrodynamic action. Consequently the complete two-term LAD correction is

obtained from a more rigorous linearization of the response of the particle to its radiation

field [20, 22, 23] together with Eq. (17) [28].

Now by interpreting the classical results in terms of photon emission, we can compute

higher order moments of the radiation, such as the mean square momentum transfer, for

comparison to the accelerated frame. To start, the number of photons emitted is deter-

mined(estimated) from the radiated 4-momentum as

dN cl
γ =

dP 0
rad

k0
= −1

2
sgn(k0)δ(k2)j(k) · j(k)∗

d4k

(2π)3
. (19)

To determine how fluctuations in the radiation contribute to the electron dynamics, we need

the mean square transverse momentum transfer from photon emission

Ndκcl =
d

dτ
〈∆p2

⊥〉 =

∫
d2k⊥

dN cl
γ

dτd2k⊥
∆p2
⊥. (20)

where ∆p⊥ is the momentum transfer during the radiation process. Clearly the δ function

in dN cl
γ Eq. (19) reduces one of the k integrals but to obtain a rate per unit (proper) time

dτ , we must convert from the longitudinal momentum dkz.

There are two ways to obtain the emission rate differential in time and transverse mo-

mentum. The first method is to calculate from first principles. The Fourier transformed
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current jµ(k) in Eq. (19) involves an integral over t, but instead of evaluating each Fourier

integral individually (as in Refs. [12, 14]) the current correlator j(k) · j(k)∗ can be written

in terms of average and relative electron rapidity y, related to proper time by y = aτ/c.

Due to the boost invariance of the source, emitted photon rapidity is determined only by

the average rapidity. Integrating over photon rapidity therefore eliminates dependence on

average rapidity, yielding the emission rate per unit transverse momentum per unit rapidity

of the source. This procedure is described in detail in Appendix A.

The second method is perhaps more transparent and utilizes the same symmetry of the

problem, but relies on a semiclassical estimate of the region of the t integration contribut-

ing for each photon wavenumber k. Due to the boost invariance of the source, the fully

differential emission probability

dNcl =
dP 0

rad

k0

=
e2m2eπκ⊥

4π3(eE)2

((
E2
⊥

m2

(
1− κ2

⊥
κ2
‖

)
− 1

)
Kiκ⊥(κ‖)

2 +
E2
⊥

m2

(
K ′iκ⊥(κ‖)

)2

)
d3k

2k0

,

(21)

depends on the photon longitudinal wavenumber kz only in the phase space factor dkz/2k0.

Consequently, the kz integral diverges logarithmically, as evidenced by the result for a finite

interval,

∫ kmax
z

−kmax
z

dk3

2k0

= asinh
kmax
z

k⊥
. (22)

Now saddlepoint analysis of the Fourier integral of the current correlator j(k) · j(k)∗ cor-

roborates the reasoning in the previous paragraph: the dominant contribution to probabil-

ity comes from a region of the source’s trajectory determined by its average momentum,

τs.p. = (pz +p′z)/2eE, with width δτs.p. = |pz−p′z|/eE = |kz|/eE. It follows that the integra-

tions over τ and kz are equivalent as they are for spontaneous pair creation [38], with the

interval of kz covered corresponding (up to scaling) to the interval of τ covered,

asinh
kmax
z

k⊥
' ln

2kmax
z

k⊥
= ln

eEt

m
+ const. (23)

As the dependence is logarithmic, the differential relation is known only up to a constant

scaling,

dkz
k0

= C
eE

mc2
dτ. (24)
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No ~ appears since eE/m has units of acceleration. Comparison with the first-principles

calculation (Appendix A) checks that the constant scaling factor is C = 1.

Applying the variable change Eq. (24), we obtain in the limit of zero electron transverse

momentum

dN
(cl)
γ

d2k⊥dτ
=

e2

4π3ε0

1

a
(K1(k⊥/a))2 , (25)

where Kν(z) is a modified Bessel function of the second kind. No ~ appears in the classical

emission probability N cl
γ /dτd

2k⊥. By itself, the second moment of the transverse wave

number, 〈k2
⊥〉 =

∫
k2
⊥(dN/dtd2k⊥)d2k⊥, also remains a classical quantity. However to obtain

the mean square momentum transfer to the electron per unit time, we must multiply the

wave vector k by ~ to obtain the correct units, ∆p⊥ = ~k⊥. In fact, we need only one power

of ~ since kdN ∝ dE Eq. (19). The modified Bessel function diverges like Kν(z) ∼ z−ν

for small z, so the transverse wavenumber approaches the conformal limit at small k⊥, like

that of a free unaccelerated charge. The distribution Eq. (25) is exponentially suppressed at

high k⊥, with a temperature-like parameter proportional but not equal to Ta [12] (because

a is the only scale in the classical radiation problem). The integal of the modified Bessel

functions is analytic and yields a constant with the result

κcl =
d〈∆p2

⊥〉
dτ

=
1

~

∫
d2k⊥(~k⊥)2

dN cl
γ

dτd2k⊥

=
e2

6π2ε0

~
c6
a3. (26)

These properties of the emission probability support a picture of the radiation dynamics

like that in the accelerated frame, even without the hypothesis of a thermal bath. Specifically,

since collisions with small momentum transfer are frequent, causing dissipation known as

radiation reaction Eq. (16), and collisions with momentum transfer ∆p⊥ ∼ T are rare,

many collisions are required to significantly change the momentum and we might model

the interaction as dominated by dissipation and uncorrelated kicks. We could therefore

hypothesize a generalized Langevin equation for the transverse dynamics, with the LAD

radiation loss term replacing the dissipation term −pi/τD in Eq. (5),

dpi

dτ
= F i

ext +
e2

6πm

(
pi
(
dui

dτ

)2

+
dai

dτ

)
+ ξi, 〈ξi(τ)ξj(τ ′)〉 = κclδ(τ − τ ′)δij. (27)

The stochastic force ξi has the same form as for the Langevin equation because the kicks are

assumed to be uncorrelated. In principle, computing higher order correlation functions of
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the radiation, we should find higher order correlations in the noise, but these are suppressed

by the coupling. Combining Eq. (26) with Eq. (17), we find

κclτD = 2m
~a
2πc

= 2mTa, (28)

and integrating Eq. (27) would lead to 〈p2
⊥〉 = 2mTa upon using Eq. (28). According to

Eq. (10) the diffusion constant would be

Dcl =
κclτ

2
D

2m2
=

3ε0
e2a

~c4, (29)

with the ~ coming from κ. While the justification for Eq. (27) is a bit hand-waving at this

point, we can derive it rigorously with guidance from a different but closely related approach

to the electron-radiation interaction, namely considering Arad
µ as a quantized photon field.

B. Quantized photon dynamics

The original black hole and accelerated detector problems were formulated as the interac-

tion of a classical object or detector with a quantized field, and therefore it has been natural

for most authors to study the dynamics of the quantized radiation field, which is easily

compared between frames. However for the massless and uncharged photon field, it turns

out that calculations of the radiation distribution with a quantized radiation field from a

classical point source are equivalent to calculations within classical radiation theory [39].

The equivalence is highlighted by computing the probability of photon emission. The

action is the same as the classical action Eq. (11), modulo a gauge fixing term which we do

not need for the tree-level calculations here. Only the photon is quantized. The probability

of photon emission differential in photon wave number is related to the squared matrix

element for photon emission,

dW =
∑

ε,ε′

|M|2 d3k

(2π)32|~k|
(30)

M =

∫
d4x〈~k,~ε|j(x) · Â(x)|0〉 =

∫
d4x(j(x) · ε)e−i|~k|t+~k·~x. (31)

The current is classical, so the matrix element is straightforwardly evaluated in terms of

plane waves and the polarization vector εµ of the photon field, which satisfies k · ε = 0.

Rewriting the photon wavenumber phase space using a δ(k2), we have

dW =
∑

ε,ε′

∫
d4x

∫
d4x′(ε · j(x))(ε′ · j(x′))e−ik(x−x′)]

1

2
sgn(k0)δ(k2)

d4k

(2π)3
. (32)
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Then using the usual polarization sum identity
∑

ε,ε′ εµε
′
ν = −gµν and the definition of the

Fourier transform, we are back to the classically obtained expression Eq. (19).

Neither classical radiation theory nor the quantized radiation field have the power to

compute all observables. While Eq. (19) or Eq. (30) can be used to compute the spectrum

and moments of the photon distribution, they cannot compute the radiation intensity, which

relies on considering the emission as a continuous process and the radiation as a continuous

field. Extensions of the quantized photon approach using nonequilibrium quantum theory

methods enable investigation of the system-environment separation and the conditions and

dynamics of decoherence. Such more powerful methods are necessary to determine more

quantitatively when the intuitive picture of dynamics obtained here is valid.

Sacrificing some rigor for clarity, we can simplify the calculation of the feedback of the

radiation on the classical source to obtain a generalized Langevin equation of the form

Eq. (27). The leading order equation of motion for the current is the Lorentz force,

dpµ

dτ
= qF µνuν , (33)

which if we separate F µν into an external field and the photon field, F µν = F µν
ext + F̂ µν , can

be rewritten

dpµ

dτ
= F µ

ext + qF̂ µνuν , F µ
ext ≡ qF µν

extuν . (34)

The external field generates the leading order classical trajectory, around which we will

perturb. From the action, we construct an iterative solution for the photon field Âµ. With

the Lorenz gauge condition

∂µÂ
µ = 0, (35)

the equation of motion for Aµ is the Maxwell equation,

jν = ∂µF
µν = ∂2Aν (36)

with jν the classical current Eq. (12).

The general solution to Eq. (36) is Aµ(x) = Aµh(x) + Aµinh(x), the sum of a homogeneous

solution Aµh, which brings in the vacuum (free-field) dynamics of the photon, and an inho-

mogeneous solution Aµinh, which brings in the excitation of the photon field by the classical

source current. Assuming the initial state of the radiation field is gaussian, consistent with
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a free field state uncoupled to the charge, the homogeneous solution contributes a stochastic

field with a nominally classical probability distribution, whereas the inhomogeneous solu-

tion contributes the history-dependent dissipation [20, 40]. The reason for this separation is

analyticity: the propagator for the radiation field can be separated into real and imaginary

parts, which under causal construction devolve respectively to the Hadamard and retarded

propagators.

Formally, we obtain the same result by inserting the homogeneous solution and inho-

mogeneous solution into Eq. (34) [28]. The homogeneous solution, solving ∂2A = 0, is a

complete set of plane waves,

Aµh(x) =

∫
d3k

(2π)3

1√
2k0

(
εµkake

−ikνxν + ε∗µk a
†
ke
ikνxν

)
, (37)

satisfying the usual on-shell condition k0 = |~k|. The polarization vectors satisfy k · εk = 0

and the mode functions ak, a
†
k are classical amplitudes. The inhomogeneous solution is

constructed from the retarded Green’s function,

Aµinh(x) =

∫
d4x′GR(x, x′)jµ(x′) (38)

where the Green’s function satisfies

∂2
xGR(x, x′) = δ4(x− x′) (39)

and. With this Ansatz for Aµ(x), using the δ functions in Eq. (12) to reduce the x′ integral

and regularizing the singular contributions from the τ ′ → τ limit [22, 23], we obtain

dpµ

dτ
= F µ

ext + q(∂µÂνh − ∂νÂµh)uν +
e2

6πm

(
pµ
(
duµ

dτ

)2

+
daµ

dτ

)
. (40)

Like the Langevin equation, this equation describes the dynamics of an observable; phys-

ical quantities are expectation values of the observable and its moments. The expecta-

tion value defines the contribution of the stochastic field Âh, which has the properties of a

noise field 〈Âh(x)〉 = 0 and must be symmetrized before evaluating the two-point function

〈Âh(x)Âh(y)〉 → 1
2
〈{Âh(x), Âh(y)}〉 corresponding to the Hadamard propagator arising in

the more rigorous derivation.

To investigate small transverse fluctuations, we linearize around the zeroth order solution,

pµ = pµ(0) + δpµ, that satisfies the external force dpµ(0)/dτ − F
µ
ext = 0. In agreement with the
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classical estimate, the solution to the stochastic equation of motion for transverse motion

shows the damping time scale for transverse dynamics to be τD = c2/a2τe identical to

Eq. (17). Further, it is verified by explicit calculation that mean square momentum converges

after long times τ � τD to (Eq. 5.15 of Ref. [28])

1

2m
〈δpiδpj〉 =

1

2
TUδ

ij

(
1 +O

(
a2

m2

))
. (41)

By analysis similar to the Langevin dynamics, we obtain the diffusion constant from the

long time dynamics of the mean square transverse displacement. The result is

D =
3

e2a
(42)

in agreement with Eq. (29) [41]. The mean square momentum transfer κ is not explicitly

defined as such in this approach, but it can be read off from from the calculation of the field

correlator (Eq. 3.11 of [28]) and multiplying by factors of e2 (for the coupling) and 2 (for

the 2 polarizations of the photon)

κ =
e2a3

6π2
(43)

in agreement with Eq. (26).

Although this approach yields the same observable results as classical radiation theory,

it provides a more rigorous basis for introducing the Langevin dynamics and understanding

its origin in neglecting higher order correlations in the radiation field.

C. Quantum electrodynamics

To obtain corrections at high acceleration a/m → 1 we must start from a theory that

accounts for recoil from photon emission. The electron must be quantized in order to

conserve momentum at each emission. As the constant electric field generates dynamics

identical to uniform acceleration, we quantize the electron in the classical gauge potential

Aµcl = −eEtδµ3 corresponding to a homogeneous and static electric field in the ẑ direction.

The time-dependent gauge is chosen for this time-dependent problem. The hard work of

constructing wavefunctions and simplifying the matrix element has been done [37] and salient

aspects of the calculation reviewed in Appendix B. The fully differential probability, at



16

p⊥ = 0, is

dW =
d3k

(2π)32k0

1

2

∑

σ,σ′
ε,ε′

∫
d3p′

(2π)32Ep′

∣∣M[e~p → e~p′γ~k]
∣∣2

≡ d3k

k0

1

|eE|w(k2
⊥, |eE|) (44)

w(k2
⊥, |eE|) =

α

2π

e−π
k2⊥
eE

(1− e−π
k2⊥+m2

eE )2 sinh(πm
2

eE
)

k2
⊥

k2
⊥ +m2

[(
2 +

k2
⊥
m2

)
|Ψ′|2 + |Ψ|2 + 2Re[Ψ′Ψ∗]

]

Ψ = Ψ

(
im2

2eE
, 1− ik2

⊥
2eE

;
−ik2

⊥
2eE

)
(45)

where Ψ(a, b; z) is the second confluent hypergeometric (see Eq. (B15)) and the prime denotes

differentiation with respect to the argument z, Ψ′(a, b; z) = dΨ/dz. For notational brevity,

we have suppressed the ~s in this expression. From this, we need to compute two quantities

for comparison, the dissipation time τD and the mean-squared momentum transfer per unit

time κ.

The first, τD encounters the difficulty pointed out in the previous section: in quantized

radiation dynamics, we do not have a definition of continuous momentum flux in the radi-

ation field, since it is composed of the probabilities of finding quanta in a given mode. To

obtain a definition of the energy loss rate, we extend the semiclassical analysis of Sec. III A.

The discussion above Eq. (24) showed that the probability of emission in a given kz mode

is dominated by a saddle-point on the electron’s trajectory determined by the electron’s

momentum. Therefore we can say that the energy lost over a given finite interval is given

by integrating over the corresponding kz (and all k⊥) and dividing by the duration of the

interval [37],

∆E

∆t
=

∫
d2k⊥

1

∆ts.p.

∫ kmax
z

−kmax
z

dkz
1

|eE|w(k2
⊥, |eE|) (46)

∆ts.p. =
m

eE

2kmax
z

k⊥
.

Since this is an estimate expected to be valid to within a constant of order unity, we introduce

a constant in the time interval ∆t→ Ct∆t with which we match to the classical result. Since

k0dNγ is independent of kz, the integral yields 2kmax
z , which cancels with the same factor in

∆ts.p.. The result is

∆E

∆t

∣∣∣∣
QED

=
1

Ctm

∫
d2k⊥k⊥w(k2

⊥, |eE|). (47)
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To determine the constant Ct, we take the classical limit ~ → 0. The limit is clar-

ified by writing all parameters in terms of the dimensionless quantities k⊥`a and λe/`a

where `a = c2/a = mec
2/eE is the length scale associated with the classical accelera-

tion and λe = ~/mec. Thus the ~ → 0 limit is manifestly the limit of a point-like

electron, i.e. the Compton wavelength vanishes relative to the acceleration length scale,

λe/`a = (~/mec)/(mec
2/eE) → 0. As expected from the Euler-Heisenberg effective action,

quantum effects become important as a/m ∼ 1 [42], which is equivalent to the electric field

approaching the “critical field” eE ∼ m2
ec

3/~. Using Eq 8.14 of Ref. [37], the limit is

lim
~→0

∆E

∆t

∣∣∣∣
QED

=
e2

2π2

1

Cta

∫ ∞

0

(K1(k⊥/a))2 k2
⊥dk⊥ =

9π

32Ct

e2

6π
a2, (48)

which fixes Ct = 9π/32. The relaxation time is then defined paralleling the classical estimate

Eq. (17),

τ−1
Dq =

1

E

∆E

∆t

∣∣∣∣
QED

, (49)

which we evaluate numerically below.

Second, to evaluate the mean-square transverse momentum transfer, we need dN/dτd2k⊥.

The derivation proceeds in parallel to the previous. We use the change of variables described

in the classical case Eq. (24). We keep the scaling constant C, this time determining its

value by taking the classical limit with the result that C = 1 (again). Thus we obtain

dW

dtd2k⊥
=

1

m
w(k2

⊥, |eE|) (50)

Then the mean-square transverse momentum transfer is simply

2κq =

∫
dW

dtd2k⊥
k2
⊥d

2k⊥. (51)

The classical limit commutes with the small k⊥ limit, which could also be used to determine

the scaling constant. In the small k⊥ region, k2
⊥ � m2, eE, we find that QED predicts

greater emission probability,

dW/dtd2k⊥
dN cl

γ /dtd
2k⊥

=
1

1− e−πm2c3/eE~ (1 + ...) , (52)

which is a quantum effect (disappearing with ~ → 0) and only becomes significant for

eE~/m2c3 = a/m ∼ 1. Similar to the Bose factor in the accelerated detector calculations
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[3], it arises from the normalization of the wavefunctions which in turn is related to the

hyperbolic functions in the classical particle action as recognized in analysis of spontaneous

pair production [43, 44].

As we shall see in numerical evaluations of the differential emission rate, the phenomenol-

ogy of photon emission does not change qualitatively with inclusion of electron recoil in QED.

As a ∼ m, the rate of small k⊥ emission is slightly enhanced Eq. (52). For this reason–and

ignoring the novel phenomena at strong fields E ' m2
ec

3/e~ especially pair creation–we

argue that a Langevin equation should continue to model the electron-radiation dynamics.

We define the diffusion constant from the Langevin relation,

Dq =
κqτ

2
Dq

2m2
. (53)

IV. COMPARISON OF RESULTS AND DISCUSSION

We now make quantitative comparisons of the observables computed in the previous sec-

tion. To establish intuition for the diffusion-related observables, we start with the photon

emission rate differential in transverse momentum. As shown in Figure 1, the small k⊥

behaviour is the same dN/dtd2k ⊥∼ k−2
⊥ for classical and QED calculations, with the nor-

malization of the QED result enhanced by the Bose-like factor Eq. (52) visible for larger

acceleration a/m > 1. However for high k⊥ & 1/`a, QED predicts a significantly lower

emission probability especially for a/m & 0.1.

In classical calculations, the acceleration is the only variable scale and quantities such

as the rate of energy loss and transverse momentum transfer should vanish as a → 0. The

only other scale that can be involved is the LAD time scale τe Eq. (18). Considering first

the damping time τD in Figure 2, we find that QED predicts an enhancement from the

classical result for a/m < 40 and a suppression for a/m & 40. Since the differential emission

rate Eq. (44) is isotropic in transverse wavenumber, d2k⊥ = 2πk⊥dk⊥, and the resulting k2
⊥

weight in the integrand cancels the 1/k2
⊥ divergence of the emission rate at small k⊥. This

increases the importance of larger k⊥ to the integral, where the QED differential probability

is smaller, thus decreasing the energy loss rate. The keen reader may notice small variations

in the calculated value of τD around a/m ' 0.1 and later in κ and derived quantities; these

are numerical artifacts that seem to arise from challenges in finding a sufficiently accurate

representation of the confluent hypergeometric functions in the differential QED emission
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FIG. 1. The rate of photon emission per unit transverse momentum. The wavenumber is

normalized to the acceleration length scale `a = c2/a = m/eE, with curves comparing different

magnitude of acceleration, normalized to m.

rate.

In dimensionful units, the damping time is of order 1 femtosecond for an acceleration

a/m ' 0.01 corresponding to an electric field |E| ' 1016 V/m. As observed in Ref. [28],

this is the timescale and therefore the electric field strength that would be required if ther-

malization were desired within a single cycle of a laser pulse, as proposed by Ref. [15].

However, more recent calculations for oscillating trajectories show that a model detector

does not converge to equilibrium at the temperature Ta [27]. Laser wakefield acceleration

utilizes (co-moving) quasi-stationary longitudinal electric fields, which persist over ∼10 cm

of propagation or 0.3 ns. If we require thermalization within half of that acceleration time

(150 picoseconds), the electric field should be |E| ' 2.4× 1013 V/m. The longitudinal fields

generated during laser wakefield acceleration ∼ 1011 V/m remain orders of magnitude lower.

Conversely, for | ~E| ' 1011 V/m, the acceleration would have to persist for ∼ 10 microseconds

to exceed the dissipation time, corresponding to an acceleration length of 3 km. Conven-

tional radio-frequency accelerators that are actually 3 km long fare worse, with maximum

accelerating gradients of ∼ 108 V/m, which due to the a−2 scaling of τD would require an

acceleration time of 10 seconds or length of 3 × 106 km. This estimate obviously assumes

that focusing elements interspersed between ∼ 1-2 m accelerator chambers do not interfere

with considering the acceleration approximately constant, and every accelerator chamber

provides the same accelerating gradient.
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FIG. 2. Left: The dissipation time τD as a function of acceleration, classical radiation Eq. (17) and

QED Eq. (49) predictions. Right: The mean-square momentum transfer to the electron obtained

from classical Eq. (26) and QED Eq. (51).

In the classical limit, the mean-square momentum transfer per unit time is a function of

only a. In the comparison to QED, the k3
⊥ weight in the integrand ensures that the high-k⊥

region is still more important in determining the integral and the QED result κq is less than

the classical result κcl for all values of a.

Aside from the dissipation time setting the scale for the required duration of the accelera-

tion, the diffusion constant is next most important step toward a measurement. For a heavy

particle in a thermal bath, the diffusion constant describes the linear growth of the mean

square displacement in time. In the present dynamics, it describes the linear growth of the

transverse size of a hypothetical electron beam being accelerated. However in accelerator

physics the mean square displacement alone is typically not measured, and the calculation

here should be consider a stepping-stone to more specialized observables.

The diffusion constant is a combination of τD and κ, and since τD ∝ a−2 and κ ∝ a3

the diffusion constant D ∼ a−1 = T−1. This inverse proportionality contrasts with diffusion

associated with nonrelativistic Brownian motion but is typical for diffusion in massless gauge

theories. An intuitive reason for this inverse proportionality is that, as massless particles, the

number density of photons increases with temperature. Therefore the density of scatterers

rises with temperature and increases the rate of soft, largely dissipative scattering events.

This picture is consistent with the finding that QED further enhances the emission rate at

small k⊥ and results in a smaller diffusion constant, shown in Figure 3.
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FIG. 3. Diffusion constant derived from classical Eq. (29) and QED Eq. (53) radiation dynamics.

However electron diffusion in a low temperature (T � me) QED plasma or heavy quark

diffusion in a QCD plasma (ΛQCD � T � mQ) differ from the results for constant accelera-

tion in their manifest dependence on the coupling constant e2. Statistical definitions of the

dissipation time and mean-square momentum transfer involve squared matrix elements (as

they did implicitly in Sec. III B Sec. III C), schematically [35, 45, 46]

1

τD
=

1

|~v|
dE

dt
=

∫
[dk][dk′][dp′](p′0 − p0)|M|2nb(~k⊥)

(
1 + nb(~k

′
⊥)
)

(54)

Ndκ =
1

2m

∫
[dk][dk′][dp′](~p′⊥ − ~p⊥)2|M|2nb(~k⊥)

(
1 + nb(~k

′
⊥)
)

(55)

where the phase space integrals [dk] ≡ d3k/(2π)3 come also with momentum conserving

δ functions. The matrix elements are 2 → 2 scattering amplitudes, e.g. linear Compton

scattering for an electron in a QED plasma. The phase space integrals therefore involve an

incoming photon momentum k and outgoing photon momentum k′, each matrix element is

proportional to e2, and the observables τ−1
D , κ are proportional to α2. In Eq. (29), one power

of e is hidden in the acceleration, D ∝ (e2a)−1 ∼ (e3E)−1, and one might argue that the

missing power of e would be restored on considering the source of the ~E field from Maxwell’s

equation ∂µF
µν = jν ∼ enuν .

Last, we plot the product of the damping time and mean-square momentum transfer,

τDκ/2mTa. In the classical limit, this combination is a constant equal to 1 Eq. (28). Com-

bining the QED results, we find that the ratio is suppressed from the classical value for all

values of a, approaching zero for a � m. This combination of observables, related by the

Langevin dynamics to the mean-squared transverse momentum in equilibrium 〈p2
⊥〉, shows
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FIG. 4. The product κqτq normalized to its classical value 2mTa.

the fastest deviation from the classical result as a increases.

The mean-square transverse momentum Figure 4 or the transverse diffusion Figure 3

likely provide the most useful observables to study experimentally. Though we have found

quite small QED corrections, we could with sufficient statistics and precise control at least

verify the classical radiation predictions. An experiment based on laser wakefield acceler-

ation requires substantial improvements in the control and consistency of the acceleration

dynamics to be successful. Transverse momentum oscillations, which can approach |p⊥| ∼ m

in magnitude, will have to be accounted for, though it is possible that radiation reaction

Eq. (16) gradually suppresses the oscillations in the absence of a driving force.

The description here of particle dynamics in strong-field QED regime is of course incom-

plete. The characteristic timescale for the dissipation of field energy into electron-positron

pairs is exponential in the electric field strength, with a field providing an acceleration

a & 0.2m decaying on the order of 3 ps [47]. Higher order in α processes, such as the direct

bremsstrahlung of a pair by the electron are not likely to be important until a ∼ m. These

dynamics are expected to correct the calculations here in the a & m regime.

In summary, we have found that thermalization of a probe particle (electron) undergoing

constant acceleration is due to its classical radiation. Nonzero variance in the mean-square

transverse momentum (chosen for being invariant under boosts compatible with the symme-

try of constant acceleration) is explained by computing the second momentum of the radi-

ation distribution, and ~ only enters as a matter of converting units of photon wavenumber

to electron momentum. We expect that the diffusion-related observables obtained here by
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way of the classical photon number can also be obtained from the appropriate correlator of

the classical radiation field, similar to QED and QCD calculations [48]. Such a calculation

would be interesting in revealing how ~ enters. Building on the work of Refs. [22, 28],

our discussion emphasizes the origin of the characteristic features of a thermal system in

the model of the radiation dynamics. Specifically, the uncorrelated nature of the noise is

valid in the classical regime where most emission is soft and dissipative while rarer hard

emissions drive the momentum fluctuations. It follows that any more nuanced description

of the radiation dynamics, e.g. bringing in higher order correlations from the trajectory, will

generally break the perfectly thermal relations obtained here. The quantitative results give

an idea of the experimental challenge in observing effects of the acceleration temperature.

Laser wakefield accelerators provide the best combination of field strength and acceleration

length, but are still a factor ∼ 100 too weak field or too short duration. Although some

increase of both may be possible in wakefield accelerators e.g. by using “flying focus” laser

wakefield schemes or a combination of laser and beam-driven wakefields, these numbers sug-

gest that we will require more precise calculations of well-defined electron beam observables

and high-statistics measurements to distinguish the impact of this “thermalization” effect

for constant acceleration.
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Appendix A: Transverse photon emission rate: classical calculation

The calculation of the photon emission rate is available from many references [12, 14, 37],

so we here just highlight the small refinements in our derivations with respect to present

goals. For an electron in a constant electric field ~E = | ~E|ẑ, the 4-velocity uµ and trajectory
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ξµ is equivalent to that under constant acceleration,

uµ =
(

cosh(aτ/c), ux(0), uy(0), c sinh(aτ/c)
)

(A1)

ξµ(τ) =
(
(c/a) sinh(aτ/c), ux(0)τ, uy(0)τ, (c2/a) cosh(aτ/c)

)
. (A2)

For notational simplicity we continue with the electron p⊥ = 0 case. We start from the

classical formula for the emitted photon number [49]

dN cl
γ =

e2

8π2c|~k|2
| ~A(~k)|2d3k (A3)

with the Fourier transformed vector potential determined by the Lienard-Wiechert poten-

tials,

A(~k) =

∫
eiϕ(t) d

dt

[
~n× (~n× ~β)

1− ~n · ~β

]
dt (A4)

ϕ(t) = k(ct− ~n · ~ξ), c~β =
d~ξ

dt
,

where ~β = ~u/u0 is the normalized 3-velocity of the electron, ~n is the unit vector in the

direction of the emission and k = |~k| is the magnitude of the wave vector. It is convenient

to change variables to electron rapidity y, linearly related to the proper time τ , and photon

rapidity η, related to the angle of emission,

tanh y = |~β| = tanh(aτ/c), (A5)

tanh η = ~n · ~β = kz/k (A6)

so that the phase factor in Eq. (A4) reads simply

ϕ(y) =
c2k⊥
a

sinh(y − η). (A7)

Changing integration variables dt→ dy, the vector cross product in the integrand is written

in terms of (constant) transverse polarization vectors on the unit sphere ~εΩ, such that vector

in square brackets in Eq. (A4) is

d

dy

[
~n× (~n× ~β)

1− ~n · ~β

]
= ~εΩ

cosh η

cosh2(y − η)
. (A8)

Rather than using these two expressions to evaluate the integral in Eq. (A4), we write out

the squared vector potential in Eq. (A3),

dN cl
γ =

e2

4π2c|~k|2
d3k

∫
dydy′

exp (i(k⊥/a)(sinh(y − η)− sinh(y′ − η))

cosh2(y − η) cosh2(y′ − η)
(A9)
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and change variables to average 2ȳ = y + y′ and relative rapidity r = y − y′. After some

algebra, the integrand depends only ȳ − η,

dN cl
γ =

e2

4π2c|~k|2
d2k⊥dkz

∫
dȳdr

exp (2i(k⊥/a) sinh(r/2) cosh(ȳ − η))

(cosh(2(ȳ − η)) + cosh(r))2
, (A10)

where kz = k⊥ sinh η. Changing the integration variable for the photon longitudinal

wavenumber to the photon rapidity, dkz = ck⊥ cosh ηdη, we integrate over η first, shift-

ing η → ȳ − η with no change to the integrand since the integration domain is (−∞,∞).

Having eliminated dependence on ȳ, we undo much of the algebra and change variables

(r, η) 7→ (z = η + r/2, z′ = η − r/2) to obtain two decoupled complex conjugate integrals.

The result is

dN cl
γ =

e2

4π2
d2k⊥dȳ

∣∣∣∣
∫ ∞

−∞
dz

exp (i(k⊥/a) sinh z)

cosh2(z)

∣∣∣∣
2

(A11)

The integral then yields the modified Bessel function K ′0(k⊥/a) = −K1(k⊥/a).

The mean square momentum transfer integral is made dimensionless by scaling k⊥ =

|~k⊥| → k⊥/a,

2κcl =
1

~

∫
d2k⊥(~k⊥)2

dN cl
γ

dτd2k⊥
=

2α

π
a3~2

c

∫ ∞

0

x3|K1(x)|2dx (A12)

and evaluated using Eq. 6.576 of Ref. [50],
∫ ∞

0

x−λKµ(ax)Kν(bx)dx =
2−2−λa−ν+λ−1bν

Γ(1− λ)
Γ

(
1− λ+ µ+ ν

2

)
Γ

(
1− λ− µ+ ν

2

)

× Γ

(
1− λ+ µ− ν

2

)
Γ

(
1− λ− µ− ν

2

)

× 2F1

(
1− λ+ µ+ ν

2
,
1− λ− µ+ ν

2
; 1− λ; 1− b2

a2

)
(A13)

Re(a+ b) > 0 Reλ < 1− |Reµ| − |Reν|

Since the a = b = 1 in our case, the confluent hypergeometric function is evaluated at 0,

which for all values of the parameters reduces to 1. The product of Γ(z) functions and 2−1

reduces to the constant 2/3, to arrive at the result quoted in the text Eq. (26).

Appendix B: Transverse photon emission rate: QED calculation

We wish to compute the emitted photon distribution fully differential in photon momen-

tum,

dW =
d3k

(2π)32k0

1

2

∑

σ,σ′

∑

ε,ε′

∫
d3p′

(2π)32Ep′

∣∣M[e~p → e~p′γ~k]
∣∣2 , (B1)
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summed over final electron spin and photon polarization and averaged over initial electron

spin. The matrix element is

− iM[ep → ep′γk] = −ie
∫
d4xψ̄

(+)
σ′,p′(x)/ε∗

eikx√
2k0

ψσ,p(+)(x). (B2)

where ψσ,p(+)(x) is the incoming electron wavefunction and ψ̄
(+)
σ′,p′(x) is the outgoing electron

wavefunction. The wavefunctions are solutions to the Dirac equation with a classical external

vector potential corresponding to an electric field in the ẑ direction,

(
i/∂x − e /Acl(x)−m

)
ψ(x) = 0, Aµcl(x) = δµ3Et. (B3)

Going to the second order equation with the Ansatz ψ(x) =
(
i/∂ − e /Acl +m

)
ψ(2)(x) and

changing variables to u =
√

2/eE(pz−eEt) leads the parabolic cylinder differential equation

(
∂2
u + λ± i

2
+
u2

4

)
fλ(u) = 0. (B4)

The complete set of solutions isDiλ(−e−iπ/4u), Diλ−1(e−iπ/4u), D−iλ(−eiπ/4u), D−iλ−1(eiπ/4u).

A detailed derivation of the wavefunctions with updated notation in Ref. [51] and the results

are [37]

ψσλ(±)(x) = Nλ

√
2eEe−πλ/4±iζλei~p·~xχσλ(±)(u), (B5)

√
2eEχλ,1(+)(x) = eiπ/4(iλ)Diλ−1(−ξ)u2 +

p1u3+(m−ip2)u1√
2eE

Diλ(−ξ), (B6)

√
2eEχλ,2(+)(x) = −eiπ/4Diλ(−ξ)u1 +

p1u4 + (m+ ip2)u2√
2eE

Diλ−1(−ξ), (B7)

√
2eEχλ,1(−)(x) = e−iπ/4D−iλ(−ξ∗)u2 +

p1u3+(m−ip2)u1√
2eE

D−iλ−1(−ξ∗), (B8)

√
2eEχλ,2(−)(x) = e−iπ/4iλD−iλ−1(−ξ∗)u1 +

p1u4 + (m+ ip2)u2√
2eE

D−iλ(−ξ∗). (B9)

where we have defined for notational simplicity, ξ = e−iπ/4u, ζλ = (λ/2)(1 − lnλ) and an

orthogonal and complete basis of spinors,

u1 =




1

0

0

1



, u2 =




0

1

1

0



, u3 =




1

0

0

−1



, u4 =




0

1

−1

0



. (B10)
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Using that the outgoing electron solution is equivalent to the time-reversed incoming positron

solution, ψ(+)(t, ~x) = ψ(−)(−t, ~x), we have

−iM =
−ie√
2k0

NλN
∗
λ′(2eE)e−(λ+λ′)π/4+i(ζλ′+ζλ)

∫
d4xeikxei(~p

′−~p)·~xχ†σ′λ′(−)(−u)γ0/ε∗χσ,λ(+)(u)

(B11)

The spatial integrals can be done immediately to yield 3-momentum conservation ~p′ = ~p−~k.

Integrating over the final state momentum with the δ function, and after extensive algebra

to reduce the remaining t integral, the fully differential rate is [37]

dW =
d3k

(2π)32k0

∫
d3p′

(2π)32p′0

1

2

∑

ε,ε′,σ,σ′

|M|2

=
d3k

(2π)32k0

Nπe− 3π
4

k2⊥−2p⊥·k⊥
eE

{(
2E2
⊥ + k2

⊥ − 2p⊥ · k⊥
) k2
⊥
E2
⊥
|Ψ′|2 (B12)

+(2p2
⊥ + k2

⊥ − 2p⊥ · k⊥)|Ψ|2 −
(

2p2
⊥k

2
⊥

E2
⊥

+
2(2p⊥ · k⊥ − k2

⊥)

E2
⊥

(E2
⊥ − p⊥ · k⊥)

)
Re[Ψ′Ψ∗]

}

where E2
⊥ = p2

⊥ +m2. The wavefunction normalizations have been combined into

N =
2e2 exp

(
− π(λ+ λ′)/2)

)

2λ′(eE)2(1− e−2πλ)(1− e−2πλ′)
, (B13)

and Ψ is the confluent hypergeometric of the second kind, evaluated at

Ψ ≡ Ψ

(
iE2
⊥

2eE
, 1− i(k2

⊥ − 2p⊥ · k⊥)

2eE
;
−ik2

⊥
2eE

)
, (B14)

which is related to the confluent hypergeometric 1F1(a, b; z) by

Ψ(a, b; z) =
Γ(1− b)

Γ(a− b+ 1)
1F1(a, b; z) +

Γ(b− 1)

Γ(a)
z1−b

1F1(a− b+ 1, 2− b; z) (B15)

The ~→ 0 limit yields the classical result [37].

Appendix C: Results for a scalar radiation field

The number of particles emitted by a classical source J(x) on a general scalar field ϕ can

be found in standard textbooks [52, Chapter 2], and is given by
∫
dN =

∫
d3p

(2π)3

1

2Ep
|J(p)|2 . (C1)

For a classical charged particle source following an accelerated trajectory Eq. (A1), we have

J(x; ξ) = e

∫
dτ
√
u2(τ)δ4(x− ξ(τ)), (C2)
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and the Fourier transform of the source for the localized particle is given by

J(p) = e

∫
dτ exp(i(Ep/a) sinh aτ − i(pz/a) cosh aτ). (C3)

We are interested in the number of photons emitted per unit transverse momentum and per

unit proper-time dN/dτd2p⊥, which can be obtained from the evaluation of the differential

in 3-momentum
dN

d3p
=

1

(2π)32Ep
|J(p)|2 . (C4)

Changing into relative coordinates τ̄ ≡ 1
2
(τ + τ ′) and δτ ≡ 1

2
(τ − τ ′), we can write the

expression for the square of the current’s Fourier transform as

|J(p)|2 = e2

∫
dτdτ ′ exp [(2i/a) sinh aδτ(Ep cosh aτ̄ − pz sinh aτ̄)] . (C5)

Now we parametrize the particle’s momentum by new hyperbolic variables Ep = p⊥ cosh η,

pz = p⊥ sinh η, and obtain the alternative representation

|J(p)|2 = 2e2

∫
dδτdτ̄ exp [(2ip⊥/a) sinh(aδτ) cosh(η − aτ̄)] , (C6)

which makes clear that the integral is independent of the rapidity η. We can remove η directly

from the integral, which would yield an exact expression [50, Eq. 8.432-5] for |J(p)|2 as

|J(p)|2 = e2

∣∣∣∣
∫
dτ exp (i(p⊥/a) sinh aτ)

∣∣∣∣
2

=
4e2

a2
K2

0(p⊥/a). (C7)

where K0 is a modified Bessel functions of the second kind. In terms of the η coordinate,

the dN differential takes the form

dN

dη d2p⊥
=

1

2(2π)3
|J(p⊥)|2 , (C8)

and the final expression is given by

dN

dη d2p⊥
=

e2

4π3a2
K2

0(p⊥/a). (C9)

We can also obtain the same espression in terms of a differential on the mean proper-time

τ̄ . First we integrate over all longitudinal momenta
∫
dpz

dN

d3p
=

1

(2π)3

∫
dpz
2Ep
|J(p)|2 . (C10)

In terms of the momentum rapidity η, we get

dN

d2p⊥
=

e2

(2π)3

∫
dη dδτdτ̄ exp [(2ip⊥/a) sinh(aδτ) cosh(η − aτ̄)] . (C11)
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Changing variables for the η-integral and extracting the linearly divergent total proper-time
∫
dτ̄ , we get

dN

dτ̄d2p⊥
=

e2

(2π)3

∫
dη dδτ exp [(2ip⊥/a) sinh(aδτ) cosh(η)] . (C12)

Again from Eq. 8.432-5 of Ref. [50], we get an exact expression for the integral in terms of

another modified Bessel function of the second kind

∫
dδτ exp [(2ip⊥/a) sinh(aδτ) cosh(η)] =

2

a
K0(2(p⊥/a) cosh η), (C13)

and the remaining η integral can be evaluated to (cf. Eq. 6.663-1 of [50])

∫
dη K0(2(p⊥/a) cosh η) = K2

0(p⊥/a). (C14)

The final result for the distribution of scalar particles created per transverse momentum and

proper time is thus
dN

dτ̄d2p⊥
=

e2

4π3a
K2

0(p⊥/a), (C15)

which coincides with the previous direct calculation from the “momentum rapidity” η by

the direct substitution η ↔ aτ̄ .

We are interested in the mean squared transverse momentum transfer for the theory, so

we calculate

2κscalar =

∫
d2p⊥p

2
⊥

dN

dτ̄d2p⊥
=

e2

4π3a

∫
d2p⊥p

2
⊥K

2
0(p⊥/a). (C16)

From Eq. 6.576-4 of Ref. [50], we get

∫
d2p⊥p

2
⊥K

2
0(p⊥/a) = 2π

∫
dp⊥p

3
⊥K

2
0(p⊥/a) =

2πa4

3
, (C17)

which yields the final expression

κ =
e2a3

12π2
, (C18)

in agreement with the previous results when taking into account the spin degrees of freedom

of the underlying field.
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Chapter 5

The strong CP problem, general
covariance, and horizons

In this chapter, we present our article discussing the vacuum structure of
topologically non-trivial gauge theories in the context of the causal structure of spacetime.
In it, we discuss how the vacuum structure of quantum fields are sensitive to spacetime
topology, and connect this discussion with the well-known strong CP problem in quantum
chromodynamics. We argue that since observers bounded by horizons have limited access
to spacetime, one must be very careful in how you treat the vacuum of a quantum field,
since it is, in a sense, a “global” object. We discuss and speculate on the implications of
treating the horizon as a source of decoherence for the topologically non-trivial sectors
of the gauge theory, with applications to the CP-breaking phase θ of QCD4. Finally,
we propose an analogy between this horizon decoherence mechanism and a dissipative
toy model in condensed matter physics—the quantum particle in a periodic potential
interacting with a dissipative environment—and discuss possible experimental scenarios
where these ideas can be explored quantitively.
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We discuss the strong CP problem in the context of quantum field theory in the

presence of horizons. We argue that general covariance places constraints on the

topological structure of the theory. In particular, it means that coherence between

different topological sectors must have no observable consequence, because the de-

grees of freedom beyond a causal horizon must be traced over for general covariance

to apply. Since the only way for this to occur in QCD is for θ = 0, this might lead

to a solution of the strong CP problem without extra observable dynamics.
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I. INTRODUCTION TO THE STRONG CP PROBLEM

The strong CP problem [1–9] is the only fundamental naturalness problem connected

to QCD. It arises generically in Yang-Mills theories as a consequence of the existence of

an internal direction in the “color-symmetry” gauge group G, where the vector potential

Aµ → Aa
µ is allowed to twist in topologically non-trivial ways. The non-trivial twisting of

Aµ means that finite-action field configurations are separated into topologically separated

equivalence classes, labeled by how they twist in gauge space over the asymptotic region

Aµ(r → ∞) in Euclidean space [7, 8]. The label for these equivalence classes is an integer

n[A] ∈ Z, called the winding number of Aµ, given by

n[A] =
1

32π2

∫
d4xF a

µνF̃
a
µν , F̃ a

µν ≡ 1

2
ǫµνλσFλσ, (1)

and all classical solutions of the Euclidean equations of motion of the theory with finite

action fall within one of these winding sectors.

Classically, the winding number cannot be changed due to energy conservation. Quantum

mechanically, however, that can happen due to the existence of tunneling solutions of the

classical Euclidean equations of motion (called instantons) that interpolate between two

given equivalence classes n→ n + 1, having the form (up to a parameter ρ)

Aa
µ = 2

xν
x2

(
ηaµνρ

2

x2 + ρ2

)
, (2)

where a is the gauge index and ǫµνa mixes internal and spacetime degrees of freedom.

This means the winding number is only conserved perturbatively. Field strength fluctu-

ations

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] (3)

corresponding to field configurations of the type of Eq. (2) occur locally, suppressed non-

perturbatively by the field’s action content Γ

Γ ∼ exp

[
− 1

4g2

∫
d4xF a

µνF
a
µν

]
, (4)

and change the field’s winding number by one unit.

Note that winding numbers are global properties of given field configurations defined over

all space. Since the topological charge density FµνF̃µν can be written in terms of a total
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derivative ∂µKµ (the so-called Chern-Simons current), they are only “observable” (not in

practice but with QFT sources, see footnote 3) by probing the celestial sphere at at infinity

n ∼
∫
d4xFµνF̃

µν ∼ lim
r→∞

∮
d3S ǫµνρσnµTr

(
Aν∂ρAσ +

2

3
AνAρAσ

)
. (5)

Instantons, however, are localized, and dominate at a scale in momentum space (parametrized

by ρ in Eq. (2)) where the theory becomes non-perturbative.

Instantons break the degeneracy of the classical vacuum solutions with different winding

numbers, and their presence means that the Yang-Mills vacuum will be in general a su-

perposition of the different topological sectors weighted by expansion coefficients cn. This

coefficients are fixed to a phase cn = exp(inθ) by the homogeneity of Minkowski space

[2], where the arbitrary constant θ parametrizes the coherent superposition of states with

topological winding number n

Z[θ] =
∑

n

einθZn ⇐⇒ |θ〉 = N
∑

n

einθ |n〉 . (6)

This superposition of winding sectors in the vacuum is equivalent, via imposing the first

relation in Eq. (5) as a constraint in the partition function, to an additional gauge-invariant

[9] term in the Euclidean effective Lagrangian

Leff ≡ lnZ = LYM +
iθ

16π2
Tr(FµνF̃µν), (7)

which breaks the CP symmetry of the original Yang-Mills Lagrangian. In QCD, for example,

this CP symmetry breaking gives rise to observable effects, such as θ-dependent electric

dipole moments for neutral particles. Experiments, however, have constrained this CP-

violating parameter to the small bound of |θ| ≤ 10−9 (the experimental limit of the neutron’s

dipole moment is 10−18 e.m.), beyond naturalness, and the explanation for such a small value

is called the strong CP problem.

A variety of solutions [1] were proposed for this problem, most involving beyond the

standard model dynamics coupling to θ (“axions”) or extra symmetries that fix θ to zero.

Phenomenologically, no signature suggestive of such models has so far been detected.

In this work, we will try to “go back to the basics” of quantum field theory and reflect

on the nature of the quantum vacuum. In the following three sections, we will make a

series related arguments that link the strong CP problem to the interplay between quantum

field theory and general coordinate transformations. Section III argues that a theory with
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a non-zero θ will likely lose general covariance of any observables depending on θ. We shall

also show that this constraint on θ will not affect “local” topology fluctuations necessary

for phenomenology (such as [3, 5, 10–12]). Section IV will show that the “toy model” often

used to describe θ vacua together with the tracing over of trans-horizon degrees of freedom

leads to θ = 0 asymptotic states independently of the “real” θ value. While our work is

new, approaches incorporating some ideas discussed below, such as

• Constraints from general covariance on local physics [13–20]

• The coherence of instantons [21]

• Infrared fixed points in the running of θ [22]

• The effect of analytical continuation in curved spacetime [23–25]

• The stability of periodic states against decoherence [26–28]

• The non-invariance of semiclassical states under non-inertial transformations [29, 30]

have been investigated before. The appendices will also discuss the relationship of our idea

to exactly solvable toy models [31, 32].

II. QUANTUM FIELD THEORY AT DIFFERENT SCALES: BACKGROUND

INDEPENDENCE AS AN INFRARED SYMMETRY

At first sight the claim at the end of the last section appears far-fetched. We are expected

to believe that something as “global” as the topology of the universe plays an important role

in local physics, the effective Lagrangian of QCD1. To justify and also sharpen this claim,

we need to discuss a little bit more the sensitivity of quantum field theory observables to

different scales.

Analogously to quantum mechanics, in quantum field theory all information about the

vacuum state is encoded in the generating functional, and perturbations generated by sources

1 There is a lot of discussion about weather General relativity is “Machian”, although Mach’s principle

played a big role in constructing it. However the Gibbons-Hawking boundary term looks conceptually

like a quantum field version of Mach’s principle [50, 51]. The fact Machian-type reasoning can affect local

observables was realized in [13] with regard to the gravitomagnetic moment form factor.
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can be used to calculate correlations around this state. In terms of fields φ and source

functions J(x), the generating functional is given by the expression

Z =

∫
[Dφ] exp

[∫ √−gd4x [L(φ) + J(x)φ]

]
. (8)

For fields of any given spin, both φ and J acquire the Lorentz and internal symmetry

properties necessary for J(x)φ to be a Lorentz scalar.

Unlike quantum mechanics, quantum field theory [2] has a continuous infinity of degrees

of freedom. As a result, key theorems behind quantum mechanics, such as the Stone-

Von Neumann theorem, stop being valid, and we are left with the possibility of unitarily

inequivalent representations of the canonical commutation relations (symmetry breaking in

field theory is a particularly important example of this). Mathematically, the construction

of observables can be beset by ambiguities, such as divergences.

The main way physicists deal with these issues is in the language of the renormalization

group. Observables in quantum mechanics are not “states” but time ordered field correlators

of operators Ô, 〈Ô(x1)Ô(x2)〉, measured at a scale Q ∼ |x1 − x2|−1. Thus, unlike in quantum

mechanics, even fundamental parameters of the Lagrangian of the theory become ambiguous,

related to an observable and sensitive to Q. Provided a stable vacuum is well-defined, if one

calls the scale of the detector interaction Q ∼ µ and chooses a scale Λ ≫ µ, one can evolve

correlators from Λ to µ and separate the Lagrangian into a finite number of renormalizable

terms for which Λ can be absorbed into unobservable divergences, and a series in Q/Λ.

(For correlators, equations of this form are called Callan-Symanzik equations [2], while for

Lagrangians they are called the Wetterich equations [33–35]).

This construction has, however, some limitations. For one, it is only well-defined in

Euclidean rather than Minkowski space [36, 37], which is obviously an issue when analytical

continuation is non-trivial. As a related point, it has yet not been univocally and generally

extended to fully cover infrared physics, for which Q is much smaller than µ, the inverse of

the “detector size”. Within a locally Minkowski spacetime, this infrared limit could exhibit

a non-trivial horizon and causal structure, and evolving from a scale k ≪ µ to a scale k ∼ µ

could depend on this.

For instance, it has long been known that the energy of a vacuum with the boundary

is very sensitive to the shape of that boundary, to the effect that it even changes sign

[38] in ways different from naive dimensional analysis [39, 42]. Within the context of the
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cosmological constant and inflation these topics are subject of active study [39–41]. While the

cosmological constant is a super-renormalizable operator, and dimensionally θ is superficially

a marginal coupling, topological terms are also known to depend on infrared wavelengths [43];

the relationship with vacuum energy made explicit in color counting [6] and the dependence

on the metric topology of Eq. (5).

In the case of the θ vacuum, this mixing between IR and measured scales can be seen in

the instanton liquid model by calculating the energy expectation value, as was done in [8]

< 0|H|0 >θ∼
∫

0

dρ

ρ5
F (ρΛ) , (9)

where F (...) can qualitatively depend on both the measured and IR limit non-trivially. Phys-

ically, this mixing of scales is generated by the fact that these configurations are dominated

by high occupation numbers of ground state quanta.

Since effective field theory techniques rely on a Q ≪ µ expansion, these subtleties are

generally incorporated in the O (1) terms of the effective Lagrangian. For instance, the

calculation of the θ-dependence of the vacuum energy in [44] has no trace of the integral in

Eq. (9) and appears to only be set by dimensionful parameters of the order of ΛQCD.

The arguments above show that, while one must be careful with infrared scales, effective

field theories can be a useful guide because they can indicate which terms are compatible

with symmetries at the infrared. For instance, in QED and linearized gravity the fact that

emission of quanta of the order Q≪ µ does not effect observables at Q ∼ µ is related to the

symmetries of the theory [45]. The full consequences of this have been the subject of a lot

of theoretical development [37, 45, 46], and the topology of the space in question (the BMS

group in asymptotically flat space) is crucial to this.

We therefore turn to the other ingredient necessary to construct effective field theories:

Unbroken symmetries in the infrared and in the semiclassical approximation. The obvious

symmetry mentioned previously is the equivalence principle, built out of general covariance

of observables. Extending general covariance to the non-linear gravitational and quantum

regime is of course a central, unsolved problem of theoretical physics. It has long been

known that at one loop in the effective theory correlators do not transform covariantly (for

a particular example, see the light-bending calculations at [47]). It has also been known

that quantum vacua with different topologies fall into unitarily inequivalent representations

(the “black hole information paradox” is a direct consequence of this, as can be seen from
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[49–51]).

However, from a semiclassical effective theory point of view, the problem does appear

more tractable. It can be argued [17, 18] that if general covariance is to be fundamental one

must give up unitarity and treat the degrees of freedom behind the horizon in the language

of open quantum systems. In this case, the vacuum’s “state purity” is ill-defined, since

it is frame dependent, but observables could acquire general covariance via the boundary

term. Instead of unitarity, a fluctuation-dissipation theorem would constrain the partition

function [48]. Several lines of evidence point to the fact that such a construction might

be achievable. The soft graviton theorems mentioned earlier [45] relate the independence

of infrared physics to Lorentz invariance. To first order, it has been known for a while

that correlators along Rindler paths [15, 49] transform covariantly once boundary terms are

added. For a correlator 〈ψ(xµ1 (τ1)ψ(xµ2 (τ2)X〉,where xµ1,2, τ1,2 are along a Rindler trajectory

and X is either a photon in QED [14] or a neutrino in Fermi theory [16] one can calculate the

Minkowski correlator in terms of interactions with a classical field and the Rindler correlator

in terms of interactions with the Unruh bath. The “interpretation” of the calculation will

be different but the calculated matrix elements will be the same.

It is therefore worth thinking about the form that a “generally covariant” interacting

quantum field theory would have, and in particular if, in analogy with renormalization

requirements, some terms in the Lagrangian would be forbidden by imposing background

independence as an infrared symmetry. In [13], it was shown, for example, that a non-zero

gravitomagnetic moment would violate local covariance of observables under rotations.

In this regard, the θ term looks suspicious. The vacuum energy density depends on the

boundary and on θ separately. The effective θ, ∼ δ lnZ
δF F̃

will also depend on the boundary

and on the temperature. Hence, there is no a priori reason for the effective θ calculated

from a Rindler boundary to be the same as the effective θ at finite temperature, something

already clear from group theory arguments [29] in a generic scenario with degenerate vacua

constructed from conformal zero modes (semiclassical instantons are similar in this respect).

But local Lorentz invariance forces this equivalence [52, 53], leading to non-zero θ being

forbidden.

This suspicious is is complemented, in effective theory language, by the scale separation

necessary for both the Unruh effect and instantons to be properly defined. Topological

configurations are dominated by high occupation numbers of ground state quanta. In the
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moving mirror picture mentioned earlier [30], if one were to construct topologically non-

trivial configurations in such a setup, the relation between Minkowski and mirror boundary

conditions would map “soft quanta” carrying topological information into harder ones which,

because of asymptotic freedom, are insensitive to the presence of instantons in the vacuum.

Acceleration and force are by their nature semiclassical concepts, since they consider

momentum a differentiable number rather than an operator. This means that accelera-

tion’s lifetime T needs to be long-lived compared to its scale a, and also smaller than the

fundamental scale of the detector, for example its mass M

1/T ≪ a≪ M ⇒︸︷︷︸
instanton

µ ≪ a≪ ρ (10)

in this context, the instanton’s bulk of the action is in the peak, of size ∼ ρ (Eq. (2)), yet

the topology information will be in the tail, dominated by a diverging occupation number

of quanta of characteristic frequency ≪ 1/ρ. One can therefore have an acceleration small

enough w.r.t. the instanton size, long enough to maintain the semiclassical approximation,

where the semiclassical expansion will break down at the tail. The first hierarchy in Eq. (10)

is therefore far more dubious in its applicability than the second2.

This insight can be sharpened in lower-dimensional theories, where the non-trivial in-

terplay of asymptotic global symmetry properties of the theory and topological terms is

well-known [58]. Appendix A1 describes in detail a quantum particle on a ring with a

magnetic field in thermal equilibrium. The different geometric and thermodynamic temper-

ature in this system can be mocked up by a device that changes the magnetic field based

on the system’s heat capacity. While such a setup can be engineered to add no entropy

(no microstates are measured, and the adiabatic limit is maintained) in this case, the ther-

modynamic temperature is different from the geometric temperature (given by the time

periodicity) by a generally non-perturbative factor, Eq. (A42). Note that the difference is

not necessarily connected to a scale separation, since the two dimensionful scales combine

non-perturbatively.

Section A2 summarizes an equivalent 1+1 dimensional topological theory. As shown

there, while in such a theory the θ term is set as a boundary condition, a source “communi-

2 One can choose a gauge, such as the “singular gauge” [4], where the Winding number is not asymptotic, at

the price of having a singularity in the center, Aµ ∼ ∂µ ln
(
1 + ρ2(x− x0)

−2
)
. However, the continuation

of this Gauge in Minkowski and Rindler space, discussed in the next section as well as [23], is probably

impossible for obvious reasons
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cating” with a boundary could modify the temperature from the Unruh value by arbitrary

amounts. Dynamics spontaneously creating such topological terms in 3+1 theory, therefore,

could potentially mean that the geometric temperature of an accelerating observer would

be different from the temperature the observer would measure from the background. A dy-

namical symmetry breaking would be equivalent to assuming an effective 〈JL〉 in Eq. (A55),

coinciding with that of Eq. (5). As the next section III will argue, unless θ = 0 it is im-

possible to make such a term truly background independent. Section IV will further show,

using the often-used periodic potential analogy, how the IR tracing out could wash out an

arbitrary θ to an effective θ = 0.

Summarizing, a “background-independent quantum field theory”’s requirement would be

the separation of local physics (at scale µ) from scales sensitive to the topology of space.

This is very different from saying the latter are relevant to observable physics (indeed, as [44]

shows explicitly, they are not). Analogously to counter-terms in Wilsonian renormalization

enforcing independence of detectable physics from its UV completion, infrared constraints

enforce independence of local physics from the topological features of the chosen coordinate

system. One such constraint would be θ = 0.

III. THE TOPOLOGICAL TERM FROM THE PARTITION FUNCTION

As can be seen in the previous section, the question of the general covariance of quantum

field theories is a subtle one. It is straightforward to write an action invariant under general

coordinate transformations, since
√−gd4x is generally covariant and L can be made so by

the use of covariant derivatives. Indeed, a θ term can also arise within an effective theory

extension of general relativity [59].

The issue is the role of the integration measure Dφ. What configurations are counted

if the coordinate system contains singularities, or the spacetime is divided into causally

disconnected regions? We note that, as shown in [60], Hawking radiation can be thought

of as an anomaly, i.e. a tension between the fundamental symmetry of the theory and the

integration measure – in this case provoked by the boundary structure of the Schwarzschild

spacetime at the horizon.

At the partition function level, it has long been known [50, 51] that the partition function

for general coordinate systems with causal horizons will necessitate of a surface term, which
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for a timelike Killing horizon can be modeled by a thermal bath. This is the essence of the

Unruh effect, and, in 1+1D, can be rigorously connected to topological terms (see appendix

and [31]).

In [17], it was proposed that perhaps promoting the partition function with a source

to a dynamical object would generate a generally covariant quantum theory. Since bulk

general relativity is always holographic [18] (something that can be seen as a consequence

of Lovelock’s theorem [19]), a general non-inertial transformation will alter both bulk and

boundary, but there is a possibility that, with Lagrangians describing both, the total parti-

tion function will be invariant under general coordinate transformations. In [17] we argued

that imposing this must lead to treating all quantum states as open, since such general

coordinate transformations necessarily break unitarity.

This extension, however, is unobservable in experiments done so far as it concerns situ-

ations with strong classical accelerations. Such an approach, as we argued, could be used

to write down an effective quantum field theory covariant under general coordinate trans-

formations. Not quantum gravity, of course, but a field theory respecting the symmetries of

gravity at quantum level.

In this spirit, let us try to define θ as a running parameter. We immediately see that

Eq. (7) and Eq. (5) are only valid in flat Euclidean space, but any infrared subtlety, like the

presence of a horizon, would change the asymptotic shape of the instanton and hence the

k ≪ µ dynamics. Put it differently, while of course FµνF̃
µν is a generally covariant scalar

the equation 5 does not transform covariantly and hence the constraint leading to Eq. (7)

is not generally covariant.

We can however circumvent this problem remembering the effective action can be defined

also in terms of a source in Eq. (8). The winding number will be related to the infrared

limit of a probe such as a “loop” of “color sources” Jµ
a placed at infinity3, while θ will be

related to the entanglement of such winding numbers

n ∝ lim
r0→∞

Tr

∮
dSd−1.J

aδ(r − r0)Aa , θ ∝ −i 〈n〉 (11)

3 A technical note: of course it is impossible even in principle to put a probe at infinity. However, one can

define such a measurement in terms of Bayesian limits. Here, by “a probe at infinity” we mean a probe

placed at a sequence of larger and larger distances. The chance of the winding number not being inferred

correctly by the measurement goes down with distance in a calculable way. Such a sequence can be used

to define something like Eq. (5)
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however, in Minkowski space Sd−1 can be oriented in either a time-like or a space-like direc-

tion. In the first case, we will be projecting on θ, as it commutes with the Hamiltonian and

relation Eq. (5) holds. As a particular case, if instead of an isotropic dSd−1 we consider a

“long thin sausage”, our observable coincides with the dipole moment of a neutral particle

antiparticle combination. This measurement is in fact “asymptotic”, since observing the

neutron for any amount of finite time there is a finite probability that topological fluctu-

ations will give us an effective non-zero dipole moment (of course this is irrelevant for the

macroscopic scales where the neutron dipole moment is measured).

In the second, spacelike loop, we will be sensitive to the topological number |n > of our

system, rather than θ. This ambiguity is unique for “topological terms”, and suggests that

general topological terms are not generally covariant. Indeed, it is obvious that the boundary

integral has the same structure of equation (5); A function of Aa
µ integrated over the surface

dSd−1 which in turn is the edge of a particular geometry. A non-zero θ term means that

different n’s are coherently entangled, and the degree of this coherence would be modified

by the boundary term. Hence, the entanglement entropy, and all of its derivatives (θ is

proportional to the first derivative, the topological susceptibility to the second), would be

modified by the boundary term in a way that is very sensitive to the geometry in question.

In fact, calculating Eq. (5) using the WKB approximation [61] and a path crossing the

horizon can easily be seen to be boundary-dependent.

This suggestion has been put on a firmer footing within [23], following an unsuccessful

attempt by the same author [24] to argue, in a manner similar to [25], that Yang-Mills

instantons are incompatible with a Schwarzschild geometry. As it turns out [23] this is not

quite correct. However, unlike in Minkowski the instanton in Euclidean Schwarzschild space

cannot be gauge transformed into a smooth temporal gauge; By looking at a Rindler patch

of this space, it is clear that a Minkowski and a Rindler observer, or a Schwarzschild vs a

Lemaitre observer, will see a different instanton content and a different n. As n is a scalar,

the only way to preserve an undetermined n (required by local quantum mechanics) that

transforms covariantly is to make sure the summation over |n〉 was incoherent even in the

freely falling frame, where geometry is closest to Minkowski. This corresponds to the case

of θ = 0. Note that this argument only applies to the average topological value
〈
FF̃
〉
.

Phenomenologically useful fluctuations ∼
〈
FF̃F F̃

〉
[10] are not affected because of the

time-ordered nature of the product in the fluctuation [6], which isolates the local (instanton
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peak, always in causal contact with the observer) over the global asymptotic state (possibly

affected by the horizon). In a Euclidean spacetime, without horizons, the infrared limit of〈
FF̃F F̃

〉
is related to

〈
FF̃
〉

lim
k→0

∫
d4xeik(x−x′)

〈
FF̃ (x′)FF̃ (x)

〉
∼
〈
FF̃
〉

(12)

but in locally Minkowski spacetime, whose global causality structure (set of points where

kµ(x − x′)µ = 0 of Eq. (12)) is non-trivial, the two could be different (See the discussion

about time orderings in [6]). The analogy here is the cosmological constant (of which FF̃

is the “topological” QCD part, [6]) and local gravitational physics. Background indepen-

dence requires that infrared physics could get corrections from quantum fluctuations and

decoherence [39], but the same symmetry requires that locally physics is unaffected. This

can happen if all local physics is sensitive to the second derivative and the first derivative is

zero, as indeed seems to be the case.

Let us explore this argument in more detail, but concentrating on Rindler patches. For

static and quasi-static spacetimes this is equivalent to filling the manifold with a bath of

quanta with the temperature Th ∼ 1/Rh, where Rh is the horizon scale (the Schwarzschild

radius for black holes, the Hubble radius for dS space, the acceleration for Rindler space

and so on). Thermality appears as a consequence of the symmetries of the quasi-static

accelerated spacetime [29, 62], and hence can be thought of as as embedded in the effective

action

Seff ∼ ln




∫
Dφ exp

∫ √−gd4x
︸ ︷︷ ︸

→
∮
dt

∫
d3x∼T

∑
n δ(t− n

T )

[L(φ) + J(x)φ]



. (13)

As shown in [52, 53], for axiomatic field theory (defined in terms of correlators), Lorentz

invariance implies this relation is exact.

As further shown in [15, 49] and references therein, one can derive the Unruh effect by

tracing over degrees of freedom beyond the horizon. The two pictures are complementary

since, at least for Rindler patches [63, 64], tracing over in Minkowski space can be achieved

by complexifying the action and appropriately choosing contours constructed to respect the

periodicity of the time coordinate. This way we can write, up to a normalization factor, the
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FIG. 1. The asymptotic horizons of Minkowski and Rindler observers, on which winding numbers

are measured (middle and right panels). As shown in [49], a rigorous dictionary between the two

partition functions can be established by complexifying coordinates and a choice of contours, shown

on the left

generating functional for a field as

Z[J ] ∼
∫

DCφ exp

{
i

∫

C

√−gd4x (L[φ, ∂φ] + Jφ)

}
, (14)

where C corresponds to a contour choice in complex coordinate space – analogous to the

Schwinger-Keldysh and thermofield-dynamical formalisms of usual finite-temperature quan-

tum field theory. An extension of Rindler to Minkowski spacetime can be realized, in Rindler

null-coordinates l± = τ ± ξ, by the horizontal patches C1, C2 of the contour shown in figure

(1), defined by

C1 ≡ l±, C2 ≡ l± − iβ

2
, l± ∈ R. (15)

In this way, all four wedges W±,F,P of Minkowski space correspond to different combinations

of horizontal sections of the Rindler null-coordinate contours. The fields associated with

the horizontal sections l± ∈ C2 (with non-zero imaginary part ℑC 6= 0) correspond to the

causally inaccessible regions of spacetime W−,F,P , and act as invisible fields from the point

of view of an accelerated observer. In other words: The extension of the fields from Rindler

to Minkowski spacetimes acts as a purification of the Hawking-Unruh thermal state4.

4 Contour choice has also been contentious in the question of whether de-Sitter space evaporates or not.

The instability of de-Sitter space was argued for in [40], while [41] argues de Sitter space is stable. At the

heart of the disagreement is the contour definition, with [39, 40] relying on a Feynman type locally causal

quantization, and the definition of the “stable” Bunch-Davies vacuum [41] relying on a time-symmetric

contour constructed not to evaporate. This work takes the first of these two approaches.
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Extending such a calculation to a topologically non-trivial Yang-Mills theory is a

formidable project. However, the arguments in [23] make it clear that the fact that winding

numbers can be both in the observed and the hidden patches will generally change the

topological structure of the resulting partition function. A physical reason is that for real

positive quark masses, the partition function in equation (6) admits a quasi-probabilistic

interpretation

Z =
∑

n

Zne
inθ, Pn ∼ Zn

Z(θ = 0)
, (16)

with Pn is the “probability” to “measure” a winding number n [44]. Note that [44] this is a

Wigner Quasi-probability [65] rather than a probability, since for generic θ it might not be

real-valued. However, it expresses the quantum uncertainty of winding numbers when θ is

fixed, and it obeys Wigner’s quasi-probability axioms. The winding number, in this picture,

is measurable via the probe in equation (5).

In the quasi-probabilistic interpretation motivated in equation (6), Zn and the topological

susceptibility ∂2 lnZ/∂2θ will transform between Minkowski and Rindler space with a factor

representing the ratio of visible to invisible fields. By Bayes’s theorem

Zn = Z(θ = 0)
∑

µ

Zµ

Z(θ = 0)
× P (m− n ∈ C2) , (17)

and the P (...) term will be directly proportional to the proportion of the given Rindler

time-slice covering each section of Rindler space. This is not unity, and will depend on

the proper time of the Rindler observer. It will also be an observable, measurable in a

Gedankenexperiment by repeated applications of the operator defined in equation (5).

This lack of covariance has a root in two issues: the winding number is not a conserved

quantum number, and hence is expected to change with the Hamiltonian. However, “time”

is not just a coordinate but also defines the order in which the co-moving observer makes ob-

servations (“collapses the wavefunction”, or, rather, samples correlators). If one sequentially

“observes it”, over time intervals of the order of an instanton size, one expects it to change

by one unit. However, this change in Hamiltonians will also affect the partition function

according to

Z = 〈0| exp
[
i

∫
dtĤ

]
|0〉 , (18)

and so the procedure ∫
dt→ 1

N

∑

n

∫ (n+1)T/N

nT/N

dt
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would break down. If the winding number is observed along a Minkowski vs. a Rindler

trajectory, the degree of quantum coherence, and P (...) will vary. The only way to make

equation (17) generally covariant appears to be for P (m− n ∈ C2) to be a unity operator

in the winding numbers basis, which is equivalent to assuming θ = 0.

Note that, since we are describing the vacuum rather than correlators, axiomatic field

theory results regarding the equivalence of thermal and accelerated dynamics [52, 53] need

not apply. In fact, symmetry arguments can be used to understand how non-perturbative

vacuum degeneracies change the Unruh state w.r.t. a thermal state [29] (note that the θ

state there is not a QCD one but a generic zero mode condensate). The result of [29] and

the qualitative discussion here would imply the accelerated effective θ is not the same of the

effective θ at finite temperature.

To get a physical feeling of what is going on here, consider the case of accelerated photon

“Bremsstrahlung” emission, or the famous p→ ne+ν decay examined in [15]. As [15] makes

the case, the “interpretation” in inertial and comoving frames is different (in one case the

decay is a quantum reaction to a semiclassical field, in the other it is interaction with the

Unruh bath) the decay matrix elements calculated in both cases will be the same. Neutrino

oscillations somewhat complicate this last point, and there is no consensus to resolve this5.

The equivalent Gedankenexperiment would have us compare the EDM measured on an

accelerated neutron, interpreted by a Minkowski observer (who sees the effect of acceleration)

and the comoving observer (who sees a finite temperature θ). Because the causal structure

of the two observers are different, so the EDM operator sampled by Eq. (11) will contain

a different combination of winding numbers and θ. In fact, the violation of the equivalence

principle at finite temperature, long known and recently calculated in [20], makes it quite

likely from thermal considerations alone. Hence, a Minkowski observer and a comoving

observer will see different Zn, and hence different effective θ’s and topological susceptibilities.

The only way general covariance is to be a fundamental principle, θ must be equal to zero,

so the sum of different topological sectors appears incoherent in all frames.

This looks quite an abstract argument, but it has been known for some time in the con-

text of lower dimensional Chern-Simons theories, known as the “finite temperature puzzle”

5 In particular [54] argues that general covariance implies fundamental states mass be the usual mass-

shell irreducible representations of the Lorentz group, while [55, 56] argues that on the contrary flavor

states are fundamental, with the latter paper showing CP violation would generate an extra violation of

general covariance in the mass basis. Finally [57] argues that a generally covariant effective action, taking

condensates into account, is necessary to resolve the issue.
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(see section 5.4 of [58] and references therein), where finite temperature breaking of Lorentz

invariance introduces violations of large Gauge invariance order by order. In [58], the break-

ing of Lorentz invariance is physical, because the system is prepared at finite temperature.

However, such a “finite temperature” state could never describe the ground state from the

vantage point of a reference frame.

The above discussion can also be incorporated into the effective theory [66] because in

such local models “local” and “large” Gauge transformations are separated, and the former

handled perturbatively by adding a Wilson line U∞ at infinity to each color charge. This

way, in the perturbative limit, topological transformations completely decouple from local

transformations and only the latter are relevant for Feynman diagram expansion. The

problem is that once a horizon exists, U∞ will span both “visible” and “invisible” fields.

Hence, no effective theory, perturbative or otherwise, can be made from visible fields alone

and topological and local transformations are inseparable. Naively we can speculate that

since (as argued in [66]) local color-charged objects are forbidden by confinement, this means

the θ angle should also go to zero. Note that the association between confinement and θ

can be made using renormalization group arguments [22]. Of course, as argued in section

4.1 of [34, 35], there is a case for relating these arguments, with renormalization scheme

independence taking the role of general covariance. If one wants, the symmetry of general

covariance and the arguments in section II provide a theoretical justification for the infrared

fixed point to be of the form of [22].

To summarize this section, we made a heuristic and speculative argument that the only

way to restore general covariance is for θ to be equal to zero. The crux is that only for

θ = 0 the coefficient cm = eimθ does not change between a coherent and an incoherent sum.

In the next section we shall show, using a toy model from condensed matter physics solved

in the 80’s [27, 28], that explicitly tracing over degrees of freedom beyond the horizon will

generally confirm this conclusion.

IV. THE PERIODIC POTENTIAL WELLS PICTURE OF θ

Since it is fashionable to illustrate the θ problem using the periodic potential well [3, 7, 8],

let us try to get some additional understanding using such a toy model. The models are

physically completely different, in the sense that the periodic potential well is “engineered”
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(trans−horizon DOFs)
bath

~topological barrier

~"instanton" (localized,UV)

gauge configurations
(IR)

Asymptotic

FIG. 2. A schematic illustration of the periodic well analogy of instantons, and the role that

horizon radiation plays in them. The QCD solution is represented by a periodic potential, whose

wavefunction is represented by a tunneling process (corresponding to a localized field configura-

tion, the instanton) and a dominant “peak” (corresponding to the asymptotic field configuration,

delocalized). Horizon radiation decoheres the IR peak without altering the localized tunneling.

Top image from [7]

to have a θ-like parameter characterizing the eigenstates of the Hamiltonian and topological

terms have no kinetic modes. Nevertheless, we think that a dictionary between these prob-

lems is useful enough to extend it to an open quantum system. Let us consider a system

consisting of a quantum mechanical particle moving through potential wells satisfying the

periodicity condition V (x ± a) = V (x), shown by the black lines in Figure (2). The wells,

in this example, represent topological configurations (winding numbers) of a non-abelian

gauge theory at the horizon. The Hamiltonian for this system is given by the kinetic and

potential terms

ĤS =
p̂2

2M
+ V (x̂). (19)

The solution for these kinds of systems is well known [67], and given in terms of the energy

eigenstates

|θ〉 =
∑

n∈Z
exp(inθ) |n〉 , (20)

where |n〉 is state of the particle localized at the nthe site (or winding number, in the Yang-

Mills correspondence), and θ is a parameter that labels the simultaneous eigenstates of the

Hamiltonian and the a-translation operator T †(a)V (x)T (a) = V (x + a). The associated



18

density matrix for such θ state is given by

ρ̂ =
∑

m,n∈Z
exp(i(m− n)θ) |m〉 〈n| . (21)

If the potential barriers are tall with respect to the energy of the system, we can use the

tight-binding approximation and obtain an approximation to the θ-state energy

E(θ) = E0 − 2∆ cos θ (22)

from the energy of the localized states E0 = 〈n| Ĥ |n〉 and the splitting energy between

adjacent sites ∆ = | 〈n± 1| Ĥ |n〉 |. The ground-state wavefunction ψθ(x) = 〈x|θ〉 takes the
Bloch form

ψθ(x) = eikxuk(x), k = θ/a, (23)

where uk a periodic function with period a and k = θ/a is the “Bloch momentum” associated

with the periodic potential.

We now need to add to the toy model of the θ vacuum a toy model of the thermal bath

due to the horizon, and the interactions of the system with the bath. Following [27, 28], let

us add a “bath” consisting of an infinite number harmonic oscillators interacting with the

particle in the periodic potential as

Ĥ = ĤS + ĤB (24)

where ĤB is the Hamiltonian for the simple harmonic oscillators of the thermal bath together

with a linear interaction term between the bath and the particle, given by

ĤB =
∑

n∈Z

(
1

2mn
p̂2n +

1

2
mnω

2
n

(
q̂n +

Cnx̂

mnω2
n

)2
)
. (25)

For convenience, we define the pure interacting Hamiltonian by ĤI =
∑

n∈ZCnq̂nx̂.

In the interaction picture, the equation of motion for the reduced density matrix of the

particle is given by
dρ̂S
dt

= −iTrB
[
ĤI(t), ρ̂S+B(t)

]
. (26)

When the couplings Cn are equal to zero one recovers equation (20) for the ground state of the

particle, since ρ̂S and ρ̂B decouple and evolve, respectively, under ĤS and ĤB separately. If

Cn are not equal to zero, the toy model can only be solved in very particular cases and under
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certain approximations. Analytical solutions can be found for simple potential profiles, such

as the double well potential [27], and the (biased) periodic potential [28]. These solutions

hinges on the fact that the interaction of the Brownian particle couples to the thermal bath

frequencies via the spectral density function

J(ω) =
π

2

∑

n

C2
n

mnωn
δ(ω − ωn), ω > 0. (27)

Exact solutions can be found by limiting the particle’s response to the particular case of a

thermal bath with ohmic profile and a high-frequency cutoff Λ > 0, given by

J(ω) = ηω, 0 < ω < Λ. (28)

This means that for these kinds of toy models, the dissipative dynamics induced by envi-

ronment interactions mostly involves the low-frequency modes of the environment. In the

Yang-Mills correspondence, that means topological information (associated with infrared

degrees of freedom) decoheres, while localized field configurations, such as instantons, would

remain intact.

In the particular case of a double-well potential [27], for example, we can map the high-

frequency dynamics of the model to an effective two-level system. The degrees of freedom

in this case are the symmetric and anti-symmetric combinations of the damped harmonic

oscillator states centered at the bottom of each potential well

Ψ±(x, {qn}) =
1√
2
[ΨR(x, {qn})±ΨL(x, {qn})]. (29)

Generally one can separate the associated density matrix into a coherent and an incoherent

part, where the coherent part can be rotated as the projection part within a certain direction

Ŝz for the two-level system above [27]

ρ̂S =
∑

n

An |n〉 〈n|+ P (t)
∑

m6=n

Bmn |m〉 〈n| . (30)

Since HI does not commute with HS, the equation of motion for the reduced density matrix

of the system becomes an initial value problem, with all time dependence can put into P (t)

(which could be a matrix in the “winding number” basis). It can be shown then that P (t)

obeys the damped harmonic oscillator equation

P̈ + T−1Ṗ +∆2P = 0, (31)
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with T−1 and ∆ functions of the original parameters.

The exact form of the parameters can be an involved calculation, but their dependence

on the length scales of the problem is universal. As shown in [27], while ∆ is dominated

by short-range physics (in our context this means instantons equation (2), hence ∆−1 ∼ ρ),

the damping time-scale T depends on the softest scale connected to the size of the reservoir

(in our context, this is the horizon radius). The latter can be removed from the system by

“adiabatic renormalization”, where all dimensionful parameters are presented as a ratio of

the cutoff frequency. In the limit we want to reach, where the cutoff frequency dependence is

very small, one needs α→ 0 (defined in chapter 9 of [27]). In fact, if one compares the scales

in Eq. (10) to the running of Eq. (31) one sees that the applicability of the Unruh EFT in

an instanton context is equivalent to the theory being near the α → 1 infrared fixed point.

This means in a theory having a generally covariant infrared limit, the effective P (∼ θ) will

decay to zero on a time-scale set and inversely proportional to the lowest frequency.

To compare our models to a real quantum field theory vacuum, either Yang-Mills or

its effective theory implementation, we need to be a bit more rigorous. The path integral

formalism can be connected to density matrix language via [69], where the similarity between

QCD and the periodic potential setup is more clear.

The density matrix is related to the partition function via

〈x| ρ |x′〉 = 1

Z

∫
Dφ(t = t0, x) < φ|Ψ >< Ψ|φ > (32)

=
1

Z

∫ τ=∞

τ=−∞

∫
[Dφ,Dy(τ)Dy′(τ)] e−iS(φy,y′) · δ

[
y(0+)− x′

]
δ
[
y′(0−)− x

]
,

where |Ψ > is some eigenstate basis and ψ are field configurations to be integrated over.

Let us now consider expand Ψ in terms of Ψn, the wave functional corresponding to

equation (16). In both the QCD case and the periodic potential case,

ρ̂ →
∫

Dφ
︸ ︷︷ ︸

limx→0+−O− Dφ(t=t0,x)

< φ|Ψn >< Ψm|φ > exp [θ(n−m)] (33)

where Ψn are Eigenstates of the Hamiltonian with, additionally, boundary condition set by

the winding number (For the periodic potential, it is a fixed number of turns around N

wells, for the QCD case it is a given winding number).

Now, the previous section has argued that background independence implies indepen-

dence from horizon terms. In this section, the tracing over the horizon terms was argued to
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be equivalent to tracing over the “infrared” degrees of freedom k ∼ (0+ − 0−)−1 in equation

(32).

Our mechanism adds to the system (S) a thermal bath (B) and in both cases

ρ̂QCD = TrB ρ̂S+B, ρ̂S+B ∼ ckk′ |k〉 〈k′| , kB ∼ (0+ − 0−)−1 ≪ kS, (34)

where k refers to momentum and ckk′ encode all structure of the vacuum. The arguments

of the previous section make it clear that for background independence to be achieved, the

tracing of the bath degrees of freedom must make no difference to the effective Lagrangian.

Let us, as above, refer to Ψm as physical states in flat space of winding number m and

Φm as Ψm with the infrared limit decohered (all dependence of kB removed, and kS ∼ ρ−1

of equation (2) unchanged). While Ψm and Ψn are not Eigenstates of the Hamiltonian, they

do form an orthogonal set. In contrast, the decoherence of kbath means that

〈Φm|Φn〉 ∼ Trkck∼kBath
6= 0, (35)

with the fact that instanton states have diverging infrared Fourier coefficients and infinite

occupation numbers ensuring a finite overlap even if the ultraviolet part of the instanton is

unchanged.

Thus, the decohered density matrix ρ̂D, will not be diagonal in the |n〉 basis. Shifting

them to a diagonal basis |Ψ′〉 will involve a generally complex rotation in phase space, whose

jth eigenvalue can be represented as complex numbers rje
iαj . Putting these together we get,

from equation (33), (34) and (35),

ρ̂ ∝
∑

n,m,j

ei(θn+
∑

j αj)Dφ 〈φ|Ψ′
n〉 〈Ψ′

n|φ〉 (36)

|Ψ′
n〉 and |Ψn〉 are distinguishable only via the IR part of the partition function and an

unobservable renormalization parameter given by rj . The phase, however, was rotated by

an “infinite” number of angles αj, and hence can be safely assumed to decohere.

Considering the density matrix to evolve dynamically, we would conclude the infrared

form of the dynamics of this decoherence will be controlled by a damped equation of the type

equation (31), with the damping time of the order of the horizon parameter (the cosmological

constant in a de-Sitter space, acceleration for Rindler space and so on). This “coincidence”

can actually be seen from the form of equation (8) and the argument, made in [48], that

general covariance of the time parameter requires correlated fluctuation (“many outcomes
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for an initial condition”) and dissipation (“one outcome for many initial conditions”) that

transform covariantly. Topological quantum fluctuations that fix the θ term are “the softest

scale”, set at the horizon scale. They must be matched by an equally soft dissipation,

making such “slow” dynamics is unobservable. This implies θ damping is irrelevant for any

measurement k ∼ kBath.

Finally, the interpretation of decoherence as the effect of unmeasured degrees of freedom

can connect this section to the previous section III. Because the horizon hides the information

allowing the winding number to be instantaneously measured, the density matrix in the basis

of |n〉 becomes

einθ |n〉 〈m| δmn →
∑

m′,n′

einθP (n′, n)P (m′, m) |n′〉 〈m′| δm′n′, (37)

where P (n′, n) represent semi-classical probabilities of winding numbers disappearing behind

a horizon. Rotating bases will add complex coefficients, parametrized by the rje
iαj of the

previous equation equation (36). The rj’s reflect the normalization of the field strength in

response to the horizon changing the configuration space. It should be unobservable for

frequencies higher than the horizon radius. The phases αj however remains and rotates θ

chaotically for each momentum mode, equivalent to decoherence (see a good discussion of

“coherent” and “chaotic” sources here [70]).

In conclusion, we note that a similar mechanism to what we suggest was proposed in

the 80’s as an origin of spontaneously broken symmetries [26]. The success of the Higgs

model and chiral symmetry breaking invalidated further development of this idea, but for

anomalously broken symmetries it has potential.

V. DISCUSSION

The previous section IV makes it clear that any tracing over of degrees of freedom outside

a causal horizon generally results in the asymptotic relaxation of a density matrix of a theory

with connected topological sectors to a density matrix where they are connected incoherently.

This means that equation (6) is therefore updated to

∑

m,n

ei(m−n)θ |m〉 〈n| →
∑

n

cn |n〉 〈n| (38)
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where cn doesn’t depend on θ and is put to unity via field strength renormalization. θ = 0

in this regard is “special” because coherent and incoherent summation is indistinguishable.

Note that instantons, as any “UV” degrees of freedom, are preserved (as they should be

if there is any hope of the idea presented in this paper to be correct, since they are necessary

for phenomenology (the η′ mass issue) [3, 5, 6], seen on the lattice [10] and hinted at in

experiment [11, 12]).

This can be seen as a consequence of local Lorentz invariance, since, unlike the local

Euclidean signature (where Eq. (12) holds), the infrared limit is determined by the spacetime

global horizon structure as well as the local quantum field theory correlations. Thus, Eq. (38)

only modifies the infrared sector of the theory, where the infrared scale could be affected by

the curvature as per Eq. (10), while local instanton fluctuations and topological susceptibility

should therefore not be different from analytical continuations from Euclidean space used in

[3, 10–12]. This also means that theories where CP violation is due to a condensate, such as

the electroweak sector of the standard model, do not suffer from the ambiguities discussed in

this paper, since there the hyerarchy defined in Eq. (10) is well defined, with the equivalent

of µ in Eq. (10) being absent and the condensate gap energy taking the place of ρ−1. In that

situation, to check general covariance one just has to take interactions with the condensate

into account properly in both the inertial and the co-moving frame, a non-trivial procedure

discussed in [56, 57].

If a universe is “prepared” with a finite θ and a horizon, the timescale for the θ to relax to

its effectively zero value can be given by the methods of section IV. The asymptotic density

matrix picture is also covariant under general coordinate transformations, at least for non-

inertial transformations having an acceleration smaller than the horizon size, according to

section III.

The mechanism described here could be valid, however, even if general covariance is bro-

ken by quantum effects. For instance, it could arise dynamically in a cosmological scenario.

In a “long” high cosmological constant phase in the early universe, natural in the slow-roll

inflation scenario [68], the topological sector of the QCD vacuum would have time to deco-

here if this phase is also deconfined (either due to temperature of a dS constant above Tc).

Afterwards, the decohered θ = 0 state would be “locked”, since long wavelength colored

perturbations which cause tunneling would be below the confinement mass gap. Such a

dynamical non-perturbative QFT problem is of course well outside this work’s scope, but
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qualitatively this scenario might be implementable.

An obvious drawback of the explanation presented here is its lack of falsifiability. Unlike

with more traditional mechanisms of the resolution of the θ problem, we do not predict

new particles, and is founded on a fundamental modification of the quantum field theory

vacuum state [17] that in turn generally does not produce verifiable predictions. However,

one might be able to experimentally test our model with analogue systems. Provided a fluid

with internal symmetries exhibiting topological properties similar to Yang-Mills theory is

found (for example a fluid with polarization [71]), one might be able to put this fluid in

Minkowski and de-Sitter configurations [72]. An effective θ term could then appear in the

former and disappear in the latter, decohered by Hawking sound. The violation of unitarity

that we believe is implicit in the structure of spacetime would here arise out of the fluid

dynamics limit. In this regard,the impossibility of relativistic local equilibrium in “polymeric

fluids” where spin and vorticity are not parallel at thermal equilibrium, pointed out in [71]

is a useful analogy, as in this system local equilibrium is impossible because of topologically

constrained local Goldstone modes. If the reasoning in this paper is broadly correct, we

would predict that no topological insulators are possible which are also perfect liquids. As

far as we know this is indeed the case to date.

Since the effect suggested here involves integrating out infrared degrees of freedom, there

might be a parallel to non-perturbative renormalization group approaches, investigated else-

where [22] and motivated by the analogy between renormalization group scheme indepen-

dence and general covariance [34, 35]. In both cases, the approach does not rely on new

physics, but rather on making sure the underlying theory’s local physics is insensitive to

unobserved infrared perturbations.

In conclusion, we have heuristically discussed the topology of a quantum field theory in

curved space. We have argued that the presence of causal horizons, or, equivalently, the

expectation of general covariance of the theory at the quantum level, generally require the

asymptotic wave functional of the theory to have different topological sectors incoherently

summed. This is just what one needs to require the θ angle of the theory to vanish, in

accordance with observations. While we are very far from proving that this is the correct

explanation of the strong CP problem, it is a suggestion that merits further development.
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Appendix A: Toy models

In this section we shall describe toy models which include a boundary term and the

possibility to calculate the density matrix and the various forms of entropy explicitly. They

are limited in that they do not allow us to fully understand how topological terms are

generated by the dynamics, since for such 1+1 theories topology arises out of boundary

conditions rather than dynamics, and is decoupled from the bulk.

However, dynamical coupling between bulk and boundary can be put in by hand in an

adiabatic way which generates no entropy. In this case, it becomes clear that the “geometric”

and “statistical” definitions of entropy do not match, thereby giving an example of the

tension between general covariance and topological terms.

1. Quantum particle on a ring with a magnetic field

We will base ourselves on [49] and Gregory Moore’s lectures on Chen-Simons theory [73].

We consider the quantum mechanical system of a particle in a ring S1, characterized by

the Euclidean action

iS =

∫
dt

(
1

2
Iφ̇2 + Bφ̇

)
−→ −SE = −

∫
dτ

(
1

2
Iφ̇2 − iBφ̇

)
(A1)

for the angular variable φ. The periodic-boundary conditions characterizing the system are

given by φ(τ+β) = φ(τ) and φ ∼ φ+2πn. This theory then represents a (0+1) dimensional

field theory φ : S1 → S1, which is a topological theory since π1(S
1) = Z. The topological

charge is represented by how many times around the circle the particle runs on the course

of one period β – counted by the iBφ̇ term on the action.

We use this model as a toy example for the Laflamme procedure [49] of obtaining a

description for the density matrix of a (free) field theory in an accelerated frame. This

procedure is described as follows: The comoving-time of an accelerated observer is periodic

in Euclidean signature, due to the natural invariance of Minkowski spacetime under boosts

with imaginary-boost parameter. That means the accelerated observer’s proper-time is rep-

resented in Euclidean signature by the angular variable in a polar-coordinate representation
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B

FIG. 3. Figure from [49], representing the Euclidean section of spacetime representing an acceler-

ated observer. M± are the pieces representing the right and left wedges respectively, and Sk the

boundaries associated with the presence of causal horizons. The circumference of the circle is β,

and τS2 = τS1 + β/2.

We also include the magnetic field term B and the boundary regulator described at the end of

this section, leading to Eq. (A42). These are represented by the circuit connecting B to S1,2

of spacetime. The presence of causal horizons for the accelerated observer is reflected on the

fact that you can’t cover the circle with a single coordinate chart: That can be seen from

the transformation τ → τ + π on the circle, which maps the points (τ + π, r) → (τ,−r).
Under reverse Wick rotation τ → iτ , that transformation maps a Rindler wedge into its

causal complement (that means mapping the right wedge into left wedge and vice versa).

Now we can describe the causally disconnected regions of Minkowski space by considering

a division of the circle into two sections, with the common boundary (shown in figure (3))

representing the causal horizon structure of the accelerated frame. To obtain a description of

physics from the point of view of the accelerated observer, we integrate out the contributions

from the inaccessible region.

In mathematical terms, that corresponds to describing the theory on M+ by the path-

integral summing over the complementary region M−: Let Ψ±(φ̃1, φ̃2) be the partition

function for the fields onM± satisfying the boundary conditions φ(S1) = φ̃1 and φ(S2) = φ̃2.

The path integral we are interested in evaluating is, then, given by

ρ(φ̃1, φ̃
′
1) =

∫
Dφ̃2Ψ+(φ̃1, φ̃2)Ψ−(φ̃

′
1, φ̃2), (A2)

where ρ is the density matrix associated with the states φ̃1, φ̃
′
1 ∈ M+ accessible to the

observer.

In the context of quantum field theory, figure (3) is only a representation of the true
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Euclidean section of spacetime, whose spatial dimensions compose the correct picture in

higher dimensions. However, for free theories such as the scalar field

S =
1

2

∫
dD+1x

√
g
(
gµν∇µΦ∇νΦ+m2Φ2

)
, (A3)

we can make use of the Fourier transform and study a single mode of the field [49]

Sλ
E =

1

2

∫
dτ
(
φ̇2
λ + λφ2

λ

)
, (A4)

which reduces to a quantum harmonic oscillator in a ring. Given the close connection with

Euclidean-signature quantum mechanics on a ring with the physics of accelerated observers,

we use this analogy to study the topological system from equation (A1) in an accelerated

frame.

Our target is therefore calculating the density matrix in equation (A2) for the model

described by the action (A1) for the particle in the ring. First, then, we calculate the

partition functions

Ψ±(φ̃1, φ̃2) =

∫

C[M±]

Dφ e−SE (A5)

for the (0 + 1)-dimensional field φ with corresponding boundary conditions

C[M±] ≡ {φ(S1) = φ̃1 and φ(S2) = φ̃2}. (A6)

Being a free theory, the path-integral can be solved by means of the solutions to the Euclidean

equations of motion
d2

dτ 2
φcl(τ) = 0 (A7)

that extremizes the action. By virtue of the topological nature of the theory, the solutions

of this classical equation of motion are parametrized by an integer n ∈ Z that counts how

many times the particle winds around the circle for given boundary conditions. Let φ±
cl be

the classical solutions to the Euclidean equations of motion (A7)

φ+
cl(τ) = φ̃1 +

2

β

(
φ̃2 − φ̃1 + 2πn+

)
τ

φ−
cl(τ) = 2φ̃2 − φ̃1 − 2πn− +

2

β

(
φ̃1 − φ̃2 + 2πn−

)
τ

(A8)

satisfying the boundary conditions (A6). The integers n± ∈ Z are the winding numbers of

the field configurations, which appear in the combination 2πn± since φ(τ) lives on the circle

S1. The field configurations

exp
{
iφ±

cl(τ)
}
∈ S1 (A9)
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are called instantons, and they interpolate between the classical, τ -independent, zero-action

“vacuum” solutions φ̃vac
cl (τ) = φ̃1/2, on each M± manifold.

The angular velocity of the classical solutions take the form

φ̇±
cl(τ) =

4π

β

(
n± ± φ̃2 − φ̃1

2π

)
, (A10)

and the classical action for each instanton solution is given by the expression

−S±
E = −

∫

C[M±]

dτ




1

2
I

(
4π

β

)2
(
n± ± φ̃2 − φ̃1

2π

)2

− 4πiB
β

(
n± ± φ̃2 − φ̃1

2π

)


= −4π2I

β

(
n± ± φ̃2 − φ̃1

2π

)2

+ 2πiB
(
n± ± φ̃2 − φ̃1

2π

)
.

(A11)

Now, the partition functions Ψ±(φ̃1, φ̃2) are given by the sum over all possible field con-

figurations φ±, and all such field configurations falls under a particular equivalence class

determined by its winding number n[φ±] ∈ Z. That means we must sum over all classical

instanton solutions, taken to be the representatives of each winding-sector, as well as all

possible fluctuations

δφ± = φ− φ±
cl (A12)

around these classical backgrounds. The fluctuating fields δφ± are topologically trivial,

meaning n[δφ±] = 0, and satisfy the boundary conditions

δφ±(Si) = 0. (A13)

Since we are expanding around the solutions to the classical equations of motion, the total

action is merely the sum

S[φ] = S[φ±
cl] + S[δφ±], (A14)

and therefore we obtain the factorization

Ψ±(φ̃1, φ̃2) =

∫
Dφ e−SE ∼ Zδφ±

∑

n±∈Z
e−SE [φ±

cl], (A15)

with Zδφ± the (topologically trivial) partition function for the fluctuating field δφ±

Zδφ± =

∫ δφ±(S2)=0

δφ±(S1)=0

Dδφ±e−S[δφ±]. (A16)
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Since we are interested in the topological properties of the reduced density matrix, and

Zδφ± is only part of the normalization of Ψ±, we only deal with the instanton sum of equation

(A15). Substituting the expression for the classical action of each instanton solution (A11),

we get

Ψ±(φ̃1, φ̃2) ∼
∑

n±

exp



−4π2I

β

(
n± ± φ̃2 − φ̃1

2π

)2

+ 2πiB
(
n± ± φ̃2 − φ̃1

2π

)
 . (A17)

Now we are in a position to evaluate the reduced density matrix (A2) obtained by inte-

grating out all M− fields. An elegant approach is to make use of the representation of the

partition functions Ψ± in terms of the Riemann’s theta function

R


n0

z0


 (z, τ) =

∑

n∈Z
exp

(
iπτ(n + n0)

2 + 2πi(n+ n0)(z + z0)
)
. (A18)

Writing ∆ω̃ = (φ2−φ1)/2π, we get the compact expression for the wedge partition functions

Ψ±(φ̃1, φ̃2) ∼ R


±∆ω̃

B



(
0,

4πiI

β

)
. (A19)

Using the transformation property of the R function under modular transformations

R


n0

z0


 (z, τ) = (−iτ)−1/2e2πiz0n0e−iπz2/τR


 z0

−n0



(−z
τ
,
−1

τ

)
, (A20)

we obtain an alternative and equivalent representation

R


±∆ω̃

B



(
0,

4πiI

β

)
=

(
4πI

β

)−1/2

e∓2πiB∆ω̃R


 B
∓∆ω̃



(
0,− β

4πiI

)
. (A21)

Expanding this expression in terms of the sum representation of R we end up with the

relationship

Ψ±(φ̃1, φ̃2) ∼
∑

n±

exp

{
−4π2I

β
(n± ±∆ω̃)2 + 2πiB (n± ±∆ω̃)

}
=

=

(
4πI

β

)−1/2∑

n±

exp

{
− β

4I
(n± − B)2 ± 2πin±∆ω̃

}
. (A22)
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Now we can proceed to integrate out φ̃2 using the new representation of Ψ±. In this

representation, the reduced density matrix is given by the expression

ρ(φ̃1, φ̃
′
1) ∼

∫ 2π

0

dφ̃2Ψ+(φ̃1, φ̃2)Ψ−(φ̃
′
1, φ̃2) ∼

∼
(

β

4πI

)∫ 2π

0

dφ̃2

∑

n±∈Z
exp

{
− β

4I
(n+ − B)2 + in+

(
φ̃2 − φ̃1

)}
×

× exp

{
− β

4I
(n− − B)2 − in−

(
φ̃2 − φ̃′

1

)}
, (A23)

and by using the integral representation of the Kronecker delta

δmn =
1

2π

∫ 2π

0

dφ̃2 e
i(m−n)φ̃2 (A24)

we obtain

ρ(φ̃1, φ̃
′
1) ∼

(
β

2I

)∑

n∈Z
exp

{
− β

2I
(n− B)2 − in

(
φ̃1 − φ̃′

1

)}
. (A25)

Once again we normalizing the density matrix by demanding unity trace

Tr ρ =

∫ 2π

0

dφ̃ ρ(φ̃, φ̃) = 1, (A26)

and that yields the expression for the matrix elements of the density matrix

ρ(φ̃1, φ̃
′
1) =

1

2πZ

∑

n∈Z
exp

{
− β

2I
(n− B)2 − in

(
φ̃1 − φ̃′

1

)}
, (A27)

Z =
∑

n∈Z
exp

{
− β

2I
(n− B)2

}
. (A28)

We could have obtained this result more directly from the expression of the Euclidean

propagator

〈φ̃′
1|e−βH |φ̃1〉 =

1

2π

∑

n∈Z
exp

{
− β

2I
(n− B)2 − in(φ̃1 − φ̃′

1)

}
. (A29)

This propagator can be obtained from the system Hamiltonian

H =
1

2I
(−i∂φ − B)2 (A30)

whose spectrum consists in the eigenvectors {|m〉 , m ∈ Z}, given by

〈φ|m〉 = Φm(φ) =
1√
2π
eimφ. (A31)
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The procedure of integrating out half of the spacetime circle corresponds to the process of

separating β = β
2
+ β

2
and introducing a complete set of states in between

〈φ̃′
1|e−βH |φ̃1〉 =

∫ 2π

0

dφ̃2 〈φ̃′
1|e−

1
2
βH |φ̃2〉〈φ̃2|e−

1
2
βH |φ̃1〉

=

∫ 2π

0

dφ̃2Ψ+(φ̃1, φ̃2)Ψ−(φ̃
′
1, φ̃2) ∼ ρ(φ̃1, φ̃

′
1). (A32)

Following this, we proceed to calculate thermodynamical quantities from the model. First,

we note that we can write the identity in two equivalent ways
∫ 2π

0

dφ|φ〉〈φ| =
∑

m∈Z
|m〉〈m| = I. (A33)

For convenience, we note that (A27) can be rewritten in terms of the eigenfunctions

Φm(φ) of the Hamiltonian

〈φ′|ρ|φ〉 = 1

2πZ

∑

n∈Z
exp

{
− β

2I
(n− B)2 − in (φ− φ′)

}
=

1

Z

∑

n∈Z
e−βEnΦn(φ)Φ

∗
n(φ

′). (A34)

We can also find the matrix elements of the density matrix in the Hamiltonian eigenstate

basis

〈m|ρ|n〉 = 1

Z
e−βEmδmn. (A35)

Note that in the basis of Hamiltonian eigenstates ρ is diagonal, and we find that

ρ =
1

Z
e−βH , (A36)

which indeed confirms that ρ represents a finite temperature system of excitations of H .

The energy and entropy of the system are obtained by using the diagonal representation of

ρ in the basis of eigenstates of H , and are given by

E ≡ 〈H〉 ≡ Tr ρH =
1

Z

∑

m∈Z
Eme

−βEm (A37)

in this picture we can calculate the Von Neumann entropy and recover the usual thermody-

namic relation

S ≡ −〈ln ρ〉 ≡ −Tr ρ ln ρ = β〈H〉+ lnZ. (A38)

Differentiating the entropy with respect to the internal energy we get the expected relation

∂S

∂E
= β, (A39)
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Confirming that indeed β−1 = T represents the temperature of the system. Taking the

entropy to be an explicit function of both β and B we obtain the usual thermodynamical

expression

dS =

(
∂S

∂β

)

B
dβ +

(
dS

dB

)

β

dB = β dE +

(
∂S

∂B

)

E

dB. (A40)

Observing equations (A27), it would appear that that the B-term on the density matrix

doesn’t depend on the temperature of the field β ∼ T−1. That means the topological sector,

in this particular case, does not seem to be sensitive to the Hawking-Unruh temperature

associated with the Euclidean-periodicity in proper-time. In this toy-model, the magnetic

field B takes the role of the theta-parameter in other scenarios, such as Chern-Simons theory

and the CP-violating θQCD4 scenario.

On the other hand, in real 3+1 field theory B is determined dynamically from the theory.

While we cannot reproduce this effect explicitly, we can “mock it up” and study its conse-

quences in the following way: let us hook up a system prepared as in Fig. 3, a quantum

particle on a circle in equilibrium, to an adiabatic device measuring heat capacity. This

device in turn regulates a magnetic solenoid generating the field B. This device is adiabatic

and does not measure any microstates, so, unlike “Maxwell’s demon type setups”, its added

entropy content is negligible.

What it does, however, is bring the system away from the thermodynamic limit, so the

thermodynamic entropy is not automatically the Legendre transform of the energy. Instead,

it is defined by

β ′ =
dS

dE

∣∣∣∣
n̂

(A41)

where n̂ is the direction in B, E space where two systems hooked up in parallel stop.

Considering the tangent vector n̂ as the derivative of a curve γ(λ) = (E(λ),B(λ)) at

λ = 0, we get β ′ = γ′(0) · ∇S. Parameterizing the curve with the internal energy we get

that the equilibrium configuration of such a system is related to the usual equilibrium as

β ′(E,B) ≡ n̂ · ∇S = β +

(
∂S

∂B

)

E

dB
dE

. (A42)

The moral of the story here is that if there is coupling between bulk and topological degrees

of freedom, one could expect that geometric and thermodynamic temperatures are different.

While this was a quantum problem without a “real” Unruh effect, in the next section we

shall generalize this reasoning to a one dimensional quantum field theory.



33

2. Maxwell theory in (1+1) dimensions

Let us now consider the 1+1D Maxwell theory examined in [9, 31, 32]. This is a quantum

field theory, where the Unruh effect is possible. At first site, the equivalence of Eq. 2.28

of [31] for the topological configuration with Eq. 49 of [29], together with the discussion

following Eq. 49, would seal our case that a non-trivial topological charge will spoil the

Unruh effect. However, this is not the case, since the theory examined in [31] has no

propagating degrees of freedom.

In fact, this theory can be mapped on the problem examined in the previous section,

since pure electrodynamics in (1+1) dimensions is a topological theory, since π1(U(1)) = Z.

This means pure electrodynamics admits a topological θ term, similar in nature to the QCD

case, given by

L = −1

4
FµνF

µν − eθ

4π
ǫµνF

µν ≡ 1

2
E2 +

eθ

2π
E , (A43)

where E ≡ F01. Since the Lagrangian only depends on E , we can treat it like the canonical

field and find its equation of motion

E = − eθ

2π
. (A44)

Since the field is just a constant C-number, the theory is trivial. That means there is only

one physical state, the vacuum state |θ〉, satisfying

E |θ〉 = − eθ

2π
|θ〉 , H |θ〉 = 1

2

(
eθ

2π

)2

|θ〉 , Ḟ = 0 (A45)

In other words, θ is the simultaneous eigenstate of the Hamiltonian density and the electric

field, and θ can be interpreted as a constant background electric field E = eθ
2π
. In terms of

E , that means the Hamiltonian density takes the form

H |E〉 = E2

2
|E〉 . (A46)

Furthermore, as shown in [32], this theory on a disk can be mapped exactly to the particle

on a ring problem of the previous section. From the electromagnetic duality in (1 + 1)

dimensions, the Euclidean partition function of the theory in Eq. (A43) is related to the
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particle in a ring by

Z =

∫
DA exp

{
−
∫
d2x

(
1

4
FµνFµν − i

eθ

2π
ǫµνFµν

)}

=

∫
DEδ(Ė) exp

{
−
∫ β

0

dτ

(
a

2
E2 − i

eθ

2π
E
)}

≡
∫

Dφ exp
{
−
∫ β

0

dτ

(
1

2a
φ̇2 − i

eθ

2π
φ̇

)}
,

(A47)

where a is defined in relation to the area enclosed by the ring a = β−1
∫ √

g. Thus, the

correspondence becomes

E → φ̇, a→ I−1, and
eθ

2π
→ B. (A48)

As seen in [69] the partition function requires asymptotic states as well as the action. How-

ever, we can use this equivalence as a starting point to calculate exactly the vacua in in-

equivalent frames.

Let us consider such a field prepared to be in a Minkowski vacuum state. By means of

equation (4.24) of [31], defining the action of the Wilson line on the wedge-decomposition

of a state as

We |Ψ〉 = We
1

Z

∑

E
e−A E2

2 |E〉L ⊗ |E〉R =
1

Z

∑

E
e−A E2

2 |E + e〉L ⊗ |E + e〉R , (A49)

we can reconstruct the Minkowskian wavefunctional for E = 0, given in equation (4.30) of

[31], using the Wilson line for an electric field E = E0 as

WE0 |Ψ〉 = WE0
1

Z

∑

E
e−

πR2

2
E2
2 |E〉L ⊗ |E〉R =

1

Z

∑

E
e−

πR2

2
E2
2 |E + E0〉L ⊗ |E + E0〉R

=
1

Z

∑

E
e−

πR2

4
(E−E0)2 |E〉L ⊗ |E〉R . (A50)

On the limit R → ∞, we get a delta function e−
πR2

4
(E−E0)2 → δ(E − E0) around E0 on the

exponential and thus obtain

|E0〉 = |E0〉L ⊗ |E0〉R . (A51)

Remembering that such constant electric fields are corresponding to θ originally, we get

|θ〉M = |θ〉L ⊗ |θ〉R . (A52)
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The separation of spacetime into right and left wedges correspond to a separation of the

state into two sectors, both corresponding to the same parameter θ. That result can also be

obtained directly from equation (4.31) on [31] by applying the Wilson line operator WE

|E〉M = WE |0〉M = WE |0〉L ⊗ |0〉R ≡ |E〉L ⊗ |E〉R . (A53)

These results were calculated using a vacuum prepared as an Eigenstate of the field theory

in Minkowski space. Hence, in this particular example (of (1 + 1)-dimensional pure pho-

todynamics) the θ’s seem to just factorize into right and left sectors, without having to be

constrained to the θ = 0 case.

As a consequence, take a localized observable O with support on the right Rindler wedge.

Then O is non-zero only on x ∈ MR, and therefore completely accessible to both an inertial

and a right-accelerated observer that has MR as its causal region. Then

〈O〉Ψ =

∫

B(Ψ)

[DA]O e−SE → Tr[O e−βHR], (A54)

because the functional integral reduces to a sum over field configurations supported on MR.

With HR the Rindler Hamiltonian associated with the θ-dependent action above.

The discussion above is specific to the 1+1 theory because of the relation [9] between the

topological current ǫµνA
µ and the charge at the horizon

∫
dxA1. The charge at the horizon

introduces a local Gauss-law constraint which can be defined and changed locally. As the

Reissner-Nordstrom black holes (where the charge is also ”local” at the singularity) show,

this constraint is valid across horizons. In 3+1 dimensions there is no Gauss constraint on

θ and Kµ is controlled by Eq. (5), which has no equivalent local gauge constraint.

We can make the 1+1 theory a bit more ”3D like” if, in analogy to the previous section

A1 we add the following source terms to the Lagrangian in Eq. (A43)

L → L+ Jθ × (θ + JL(θ)) (A55)

corresponding to a Rindler-type detector that measures θ and a device positioned asymp-

totically at the lest wedge that tunes θ according to some function (this of course breaks the

Gauge constraint). In this case, we reproduce the same situation as in Eq. (A42). Equation

A54 still holds, but the entropy density calculated via Eq. (32) from

s(β ′) ≡ TrR

[
[ρ̂ ln ρ̂]β′ − [ρ̂ ln ρ̂]β′→∞

]
∝ (β ′)

−2
, ρ̂ = ρ̂L × ρ̂R
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will not scale with the same β ′−1 = a/(2π) as expected from the Unruh effect but will instead

obey an equation such as A42. As a consequence, the ratio of β ′ and β is not necessarily set

by the microscopic scale,which in this case is the acceleration

Of course, axiomatic quantum field theory [52, 53] is not violated here because the source

terms Jθ, JL introduce a preferred coordinate system which breaks local Lorentz invariance.

However, the effect of topological dynamics in 3D can be argued to be equivalent to a

spontaneous generation of Jθ, JL. While the scale of Jθ is local (instanton peak) and of

JL is global (instanton tail), as shown in Eq. (A42) scale separation in such a case is not

automatically perturbative. This illustrates that, as argued in section II topological terms

can provide a mixing between “local” detector-scale physics and infrared scales.
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Chapter 6

Discussion

6.1 On the electron response to radiation under linear acceleration
In the article presented in Chapter 4, we talked about how to construct electron

observables in order to probe the thermality of acceleration. The main idea is to start
from a general, effective description of how a classical relativistic electron responds to
a a field thermalized into a KMS state, such as in the Unruh effect. Based on general
thermodynamical grounds, we expect that any degree of freedom of the electron that
is sensitive to the radiating field’s vacuum fluctuations should thermalize at the Unruh
temperature if the electron is uniformly accelerating. Despite the subtleties involved in
what it means to be a “finite temperature” state in an accelerated frame, we can still make
these considerations due to the fact that the vacuum noise spectrum of a massless field
seen by an uniformly accelerated observer can be directly related to the noise spectrum of
an inertial observer immersed within a usual thermal bath of field excitations.

This connection is expressed by Eq. (1.6), where in four spacetime dimensions
n “ 4 the power noise spectra Faccel and Fmink of the electromagnetic field s “ 1 are
related by [15]

Faccelpωq »

ˆ

1 `
a2

ω2

˙

Fminkpωq. (6.1)

Deviation from equality only happens in the low-frequency range of the spectrum, ω ă a.
Low frequencies in the spectrum are sensitive to the presence of the Rindler horizon,
whose characteristic length scale is L „ a´1. This means that the low frequency part of
the spectrum is what differentiates between electrons that accelerate for a finite amount
of time and electrons that accelerate eternally. Since we are interested in electrons that
are accelerated for a long-enough time for thermalization to occur, differences between
the power spectrum at low-frequency does not affect the qualitative arguments we make.
Therefore, for all intents and purposes, the uniformly accelerated electron behaves, at first
approximation, just like a stationary charge interacting with a thermal distribution of
photons viewed from the point of view of an inertial observer.
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Under these conditions, we’ve proposed the study of fluctuations around uniform
acceleration to act as a thermometer for acceleration temperature, following similar ideas
found in [51, 52, 53]. In particular, we focus on the known signal of such thermal contribution
coming from the thermalization of the transverse-momentum fluctuations of the classical
electron’s trajectory [53],

1
2mxδpiKδp

j
Ky “

1
2TUδ

ij
` O

ˆ

a2

m2

˙

, (6.2)

which is the equipartition relation between the fluctuations of the transverse momentum
at the Unruh temperature TU 9 a. This equipartition relation is defined on the model
where the electron is represented by a classical, point-like relativistic charge coupled to
the electromagnetic field, as in Eq. (3.11).

From general thermodynamical considerations we expect that, in this model,
the dynamics of the probe on the transverse plane to be described by Brownian motion,
which is described by a Langevin equation of the form

dδpiK
dτ

“ ´
1
τD
δpiK ` ξi, xξipτqξjpτ 1

qy “ κδpτ ´ τ 1
qδij. (6.3)

Associated with the Langevin equation (6.3), we established the observable quantities
relevant to the fluctuation and dissipation dynamics of accelerated electrons: the mean-
squared momentum transfer per unit proper-time, represented (up to a factor) by the
amplitude of the ξ-noise,

κ “
1
2
d

dτ
xδp2

Ky, (6.4)

the diffusion constant D associated with the stochastic dynamics of the electron on the
transverse plane,

D “
1
4τ xδx2

Kpτqy, (6.5)

and the dissipation time scale τD, corresponding to the scale where initial correlations of
transverse-momentum fluctuations washout,

τD “
2mTU
κ

“
mD

TU
. (6.6)

From the thermodynamical relations in Eq. (6.6), we only need to calculate one
of the quantities κ,D, τD in order to completely specify all of them. We calculate these
thermodynamical quantities from three major microscopic theories that model accelerated
electrons: classical electromagnetism, quantized photodynamics with classical electrons,
and full quantum electrodynamics. We’ve shown that both the classical electromagnetic
calculations and the quantized photodynamical calculations with a classical source agree on
their predictions for the observables, while the fully-quantized QED calculation, where we
consider the internal structure of the electron as a fermionic particle, shows deviation from
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the classical and semiclassical predictions as the acceleration gets close to the scale of the
mass of the electron, a{m „ 1. The deviation between the fully quantum electrodynamical
treatment and the classical and semiclassical predictions are summarized in Figure 4.
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Figure 4 – Summary of the quantum-to-classical diffusion observables. On the top right
is the mean transverse-momentum transfer κ; on the top right is the diffusion
coefficient for the transverse plane D; on the bottom is the dissipation timescale
τD. All plots are with respect to the adimensional scale λC{ℓa, where λC “ ℏ{mc
is the Compton wavelength of the electron and ℓa “ c2

{a is the length parameter
for the acceleration.

Quantitative deviations from the classical and semiclassical predictions are
expected around the critical scale a{m „ 1. Since the acceleration being impressed on
the electron by an external electric field E “ Ez ẑ, that means the electric field is close to
the Schwinger limit a{m „ Ez{Ecrit „ 1, where Ecrit “ m2c3

{eℏ. This corresponds to the
critical acceleration acrit “ eEcrit{m where the electric field begins probing the quantum
nature of the electron—in particular, it gets close to the onset of electron-positron pair
production by the external field. In this regime, we cannot justify the applicability of
a point-particle description of the electron by a semiclassical current, such as in (3.3),
but we can still make sense of the quantities defined in the QED approach. Since the
quantitative diffferences between the classical and quantum approaches don’t change the
qualitative physics of the phenomenon, we take the QED results as an extension of the
Brownian motion interpretation of the electron dynamics to “quantum” scales. This means
the accelerated electron’s transverse momentum fluctuations is well approximated by a
Langevin-type equation associated with an Unruh temperature of the vacuum, even in the
QED approach to the problem.
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What is really interesting about the quantitative predictions for the fluctuation-
dissipation observables is that we can give well-defined estimations for the “thermalization
time” τD as a function of the acceleration-to-mass ratio a{m. Using this relation, we can
compare the magnitude of the electric fields necessary to impose the acceleration, |E|, with
the time needed to maintain the field approximately constant for the uniform-acceleration
approximation to be valid. As we’ve discussed on the paper, acceleration magnitudes
a{m » 0.01, associated with electric fields of the order |E| » 10´16 V{m, correspond to
a dissipation time τD of 1 femtosecond. This means any experimental setup designed to
measure this effects should be able to generate electric fields of this order for at least 1
femtosecond in order for the Langevin-dynamics on the transverse plane of the acceleration
axis to thermalize and pick up the signal of the vacuum acceleration temperature.

At the moment, the most promising methods for reaching high electron accel-
eration profiles come from high-intensity laser pulses, but the current laser technology
[54, 55, 56] is still a few orders of magnitude too weak to probe the effect with enough
sensitivity: either the electric field magnitudes and linear acceleration is too low, which
means low Unruh temperature and a weak signal, or the duration of the laser pulses are
too short compared to the dissipative timescale, not leaving enough time for the electron
to thermalize with the acceleration temperature of the vacuum. Thus, experimental efforts
to observe these effects must focus on improving accelerator precision and control. Addi-
tionally, future work should aim to refine the observables that can distinguish between
classical and quantum predictions more clearly.

6.2 On the strong CP problem, general covariance, and horizons
In the article presented in Chapter 5, we talked about how the topology of

spacetime plays a major role in the structure of the vacuum of non-abelian Yang-Mills
theories. The main motivation for our study was the so-called strong CP problem: In the
usual treatment of quantum chromodynamics, it is well known that the total-derivative
term

Lθ “
θg2

16π2 tr
`

FaµνF̃
µν
a

˘

“
θg2

32π2 B
µJ5

µ (6.7)

has non-perturbative effects on the observables of the theory. The θ-term Lθ breaks the
CP-symmetry in the strong sector of the standard model, which has as its most famous
consequence the generation of a small electric dipole moment (EDM) for the neutron [57],
Dn “ 3.6 ˆ 10´26 e ¨ cm. The EDM of the neutron is very well-determined by experiments,
which imposes the bound |θ| ă 10´10 on the CP-breaking phase in the strong sector.
Trying to understand why this phase is so small is the so-called strong CP problem.

Many proposals have been put forth to try to explain why the θ-term in the
QCD4 Lagrangian is so close to zero. The most popular solution is perhaps the Peccei-
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Quinn symmetry [58], which introduces a new field that couples to the quarks and relaxes
the value of θ to zero by means of spontaneous symmetry breaking. This mechanism
generates a new particle the Nambu-Goldstone boson corresponding to the breaking of
the Peccei-Quinn symmetry, which is called the axion. So far, no particle resembling an
axion has been found, which lead us to search for a first-principles explanation for the
CP-symmetry of the strong sector.

The main interest of the article was to think about how the presence of horizons
would interfere with the usual description of how non-abelian Yang-Mills theories pick up
the CP-breaking θ-term Lθ. In the usual approach, the mechanism that introduces the
θ-term in the QCD4 Lagrangian comes from the study of the Euclidean partition function,

Z “

ż

rDAs exp
ˆ

´

ż

d4xLErAs

˙

, (6.8)

where A is the gauge-potential for the gluon field and LE is the associated Euclidean
Lagrangian. This integral receives its dominant contributions from the saddle points of the
Euclidean action SErAs “

ż

d4xLErAs, which are field configurations of finite action. The
field configurations of finite action are described by the gauge-fields that fall-off sufficiently
fast at infinity, F a

µνp|x|q “ Op|x|
´3

q, which are given by the gauge-potentials that fall off at
infinity to pure-gauge configurations Aµp|x| Ñ 8q “ gBµg

´1
`Op|x|

´2
q. These finite-action

gauge-field configurations are classified by a topological charge called the winding number
of the configuration,

nrAs “ ´
1

16π2

ż

d4xF a
aµνF̃

µν
a P Z, (6.9)

and they can be used to construct the representation of eigenstates of the Hamiltonian of
the theory by summing over the winding sectors

Zrθs “
ÿ

nPZ

ż

rDAs einθ exp
ˆ

´

ż

d4xLErAs

˙

. (6.10)

This expression for the new partition function Zrθs is interpreted as the vacuum expectation
value xθ|e´Ht

|θy in the energy eigenstate

|θy “
ÿ

nPZ
einθ|ny, (6.11)

which is the coherent sum of the pure-gauge field configurations with winding number
n P Z.

The main idea is to notice how dependent of the topology of spacetime all
this procedure is. It is built on the Wick-rotated Euclidean section of Minkowski space,
and it relies heavily on the topology of flat spacetime in global, inertial coordinates to
make the arguments, such as the vanishing of the fields in the asymptotic regions |x| Ñ 8.
Thus, there is reason to believe that things might change if the background spacetime is
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different from flat Minkowski spacetime, or if we are dealing with non-inertial observers
which experience causal horizons on their rest-frame.

Thoughts about whether the strong CP problem survives in more general
spacetimes are not new. The idea that maybe the presence of the cosmological horizon
might decohere the state (6.11), inspired by Hawking’s idea of averaging over the states
of the system over the horizon, had already been proposed by Linde in the 80s [59].
In the article, we especulate that this might be relevant even when considering causal
horizons, which are not caused by the curvature of spacetime but by the rest-frame of
a given observer. We argue that because an observer bounded by a causal horizon loses
information of large sections of spacetime that get hidden behind the horizon. That means
that topological information about both spacetime and the gauge field might be hidden
behind his own horizon, which in turn forces the observer to sum over the winding sectors
in an incoherent manner. That would be tantamount to decohering the θ-vacuum into a
density matrix representing the incoherent mix of winding sectors,

|θyxθ| “
ÿ

m,nPZ
eipm´nqθ

|nyxm| Ñ
ÿ

nPZ
|cn|

2
|nyxn|. (6.12)

In fact, the incoherent sum over the states at the horizon is one of the ways
we can represent the Unruh effect in Euclidean signature [60]: if the Euclidean manifold
ME is divided into two disjoint regions ME

“ WE
R Y WE

L , then the reduced density
matrix for the field configurations φR P WE

R , obtained by integrating out the fields in the
complementary region WE

L is given by

ρpÃR, Ã
1
Rq “

ż

rDÃLs ΨRrÃR, ÃLsΨLrÃ1
R, ÃLs, (6.13)

where ΨR{LrÃR, ÃLs is the “partition function” of the WE
R{L sector for field configurations

that take the values ÃR and ÃL at the boundary BpWE
R X WE

L q,

Ψ˘rÃR, ÃLs “

ż

C˘rÃR,ÃLs

rDAs e´SErAs. (6.14)

This procedure, when applied to the Euclidean Rindler space, yields the formal Gibbs
density matrix for the reduced density matrix ρ at the Unruh temperature. This suggests
that the same decoherence mechanism that can represent the Unruh (and Hawking) effects
may be capable to transform the coherent sum of the Yang-Mills θ-vacua into an incoherent
superposition of pure-winding sectors, and thus washing out any θ-dependent observable
to zero.

Since non-abelian Yang-Mills theories are generally self-interacting, it is very
hard to carry out these kind of calculations exactly except for very contrived toy models
that don’t present all the physics of the original QCD4 problem. To give a picture of how
this mechanism would occur, we proposed an analogy with the famous toy model of a
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one-dimensional quantum mechanical particle q̂ in a periodic potential V pq̂q. This analogy
is very well known: the ground-states of the quantum mechanical particle in a periodic
potential are given by the Bloch-waves, which have the same coherent structure as the
QCD4 θ-vacua (6.11). The Bloch-states are represented in Figure 5.

V (q)

q

V (q)

q

V (q)

q

V (q)

q

Figure 5 – A representation of the states of a particle q̂ in a periodic potential V pqq. Above
are the localized states |ny that correspond to the local sites at the minima of
the potential, while below is the representation of the Bloch-wave |θy that is
composed of a coherent superposition of |ny.

In the analog model, the particle q̂ represents the topological configurations of
a non-abelian gauge theory A with winding number n, while the potential represent the
barrier for tunneling between winding sectors, which in Yang-Mills is enacted by instantons.
We model the dissipation due to the horizon by coupling the particle to N Ñ 8 harmonic
oscillators Q̂k at finite Hawking-Unruh temperature, which yield a Caldeira-Legget type
of Lagrangian

L “
1
2 9q2

´ V pqq `
ÿ

k

1
2r 9Q2

k ´ ω2
kQ

2
ks. (6.15)

The dissipative behavior of these kind of theories is well known [61, 62, 63, 64].
Even though the quantitative details vary depending on the model of choice, qualitatively
we observe that the interaction of the thermal bath tQku can break the coherence of Bloch-
type states such as |θy, leaving the system in a totally incoherent mixture of states localized
at the minima of the potential and emulating the horizon decoherence we speculated on
Eq. (6.12).

Admittedly, since we don’t have direct access to exact calculations for a non-
trivial Yang-Mills theory, the arguments we make on the paper are merely heuristic. Despite
that, we still argue that the same mechanism can be investigated in analogue models,
provided they exhibit similar topological properties to Yang-Mills theories. One possible
candidate is the theory of fluids with polarization, where the search for θ-decoherence by
the horizon would be similar to the experiments on acoustic black holes, as first proposed
by Unruh [65]. Even though the operational viability of such an experiment seems very



Chapter 6. Discussion 120

far-fetched at the present, it still remains as valuable way of verifying experimentally the
soundness of the ideas put forth.

Summarizing, the failure to detect axions that solve the strong CP problem
[66] forces us to keep an open mind regarding the solution of this issue. In particular,
perhaps the answer is in the infrared (IR) limit with respect to scales usually relevant to
QCD4. Our solution is of this kind, but others of a similar kind are possible. Two recent
examples focus on IR fixed points with instanton interactions [67], as well as the correct
limit of the QFT wave functional [68, 69]. Perhaps these solutions are all related, and say
something general about the global structure of the wave functional of QCD4.
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Chapter 7

Conclusion

In this thesis, we have discussed several aspects of quantum field theory in the
context of accelerated systems, such as the consequences of the thermality of the vacuum
from an accelerated observer’s point of view and the consequences of causal horizons to
topologically non-trivial gauge theories.

In the first part, dealing with the study of the thermodynamics of the vacuum
under acceleration, we discussed the Unruh temperature under general thermodynamical
considerations, connecting the dynamics of accelerated charges with the Brownian-motion
dynamics typical of particles interacting with external systems. Since Brownian-motion
type of dynamics is a natural place to the discussion of fluctuation and dissipation, we
proposed observables connected to the fluctuation-dissipation theorem that are sensitive
to the thermality of the quantum vacuum at the Unruh temperature.

We calculated the dissipative time-scale, the diffusion constant, and the mean-
squared momentum transfer for the electron’s momentum fluctuations in the plane trans-
verse to the acceleration axis. These observables were calculated in the classical electro-
magnetic regime, the semiclassical regime where only photons are quantized, and the
fully quantum electrodynamical regime. We found that for accelerations lower than the
scale set by the mass of the electron, a{m ! 1, all these approaches coincide and are
well-described by a dissipative Langevin-type of dynamics typical of Brownian motion.
For higher accelerations, a{m Á 1, we have found that the quantum electrodynamical
prediction deviates from the classical and semiclassical counterparts, even without consid-
ering non-perturbative effects that happen at that scale, such as electron-positron pair
production due to the Schwinger mechanism. Still, we found that QED gives corrections to
the classical predictions even as soon as a{m „ 0.1, where we can still argue for strong-field
dynamical corrections while having suppressed contributions to the electron dynamics
from backreaction due to pair production.

Since one of the observables obtained was the dissipative time-scale for the
effective Langevin dynamics of the electron’s transverse momentum, we have quantitative
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predictions for the minimum acceleration duration necessary for the sufficient thermaliza-
tion of the electron’s transverse momentum distribution at the Unruh temperature TU 9 a.
This imposes constraints to the external background field that accelerated the electron. In
order for the Langevin approximation to be valid, we need an electric field profile that
can imprint linear acceleration for sufficiently long acceleration duration ∆τ Á τD, which
provides a lower bound on the magnitude of the background electric field used to accelerate
the charge. We have found that for the particular observables we studied, the best fit for
the magnitude and duration scales—given by laser wakefield technology—is still a few
orders of magnitude outside the range where sufficient thermalization of the observables is
expected.

In the second part, dealing with the study of the vacuum structure of gauge
theories bounded by horizons, we discussed how the structure of the vacuum can be
impacted by the spacetime topology and by the presence of said causal/event horizons. In
particular, we focused on the possible consequences that the causal structure of spacetime
can have on the strong CP problem: Since the strong CP problem is connected with a
θ-term in the effective QCD4 action that is given by the topological charge of the field,
the presence of this term crucially depends on the specific topological structure of the
spacetime under consideration.

In particular we argue that, since the inaccessibility of degrees of freedom
beyond horizons forces us to trace-out their contributions on the partition function for
the observer bounded by it, then we expect that the vacuum structure of a topologically
non-trivial theory only sums its topological sectors incoherently. Since the strong CP
problem crucially depends on the vacuum structure of the theory to coherently sum over
the topological sectors in order to introduce the famous CP breaking θ-term, this idea
has the potential to explain why the strong sector of the standard model conserves CP
while still maintaining non-trivial topological structures—such as instantons—that can be
observed in lattice simulations.

Since non-abelian gauge theories are generally self-interacting, we drew from the
well-known analogy between the Yang-Mills vacuum structure and the condensed-matter
model of a particle in a periodic potential to investigate how the decoherence process might
look like. We introduce the horizon-induced dissipation by means of a Caldeira-Leggett
type model, coupling the particle linearly to an infinite number of harmonic oscillators that
induce the decoherence between superpositions of localized states. In this model, we find
that the dissipation time-scale T depends on the softest scale within the problem, which,
refering back to the original problem, should be given by the horizon radious. We view
this as a way to understand how a θ-vacuum state would dissipate towards a mixed state
with respect to its winding sectors, and thus washing out any θ dependency in physical
observables.
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Since these ideas are not based on new symmetries and particles, but on the
behaviors of quantum fields in non-trivial background spacetimes, we also propose that we
may view the effects discussed on the paper by means of analogue models with similar
topological properties as the Yang-Mills fields. Despite being a speculative idea, the recent
successes on acoustic black hole experiments and simulations [70, 71] allow us to hope
that, in the future, this kinds of questions about the vacuum structure of gauge fields can
be studied in the same context.

In conclusion, we have studied the effects of the effects of the “acceleration
temperature” of the vacuum of quantum field theory in the contexts of both strong-field
electrodynamics and in non-abelian Yang-Mills theories, and found that non-trivial conse-
quences can be studied from the point of view of accelerated observer’s thermodynamical
considerations. Despite the technical difficulties of probing linear acceleration in the lab-
oratory, we’ve still found ways of studying its effects in experimental contexts, both in
currently available scenarios such as electron-laser experiments and in speculative but
feasible scenarios such as acoustic black hole evaporation experiments. The avenues to
explore the thermodynamical effects of acceleration and horizons are now reaching the
point where they are accessible to laboratory, which gives us hope that soon we will
be able to test some of the ideas presented in this in a concrete experimental setting.
Other possible paths to expand the ideas presented here are manyfold: we can extend
the analysis of linear acceleration to more general acceleration profiles, such as circular
[27] and non-uniform [72] acceleration profiles; we can extend the analysis to other initial
inertial states that are not the Poincaré vacuum [73]; we can study and compare the
horizon dissipation picture with other current proposals to solve the strong CP problem
[69] that appeal to boundary-condition arguments. The roads are open to exploration, and
we hope that the present work may have helped to pave at least a bit of the path forward
to the understanding of acceleration and horizon thermodynamical effects.
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APPENDIX A

Citations to previously published
work

The work in this thesis is in collaboration with Donato Giorgio Torrieri, Lance
Labun, Ou Z. Labun, and Manuel Hegelich. Chapter 4 appeared in [33], and Chapter 5
appeared in [35].
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