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1 Introduction

The inexact-Newton method is one of the most successful techniques for solving

nonlinear systems of equations

F(z) =0, (1)

where F' : IR® — R" is differentiable (we denote J(z) = F”(z), the Jacobian matrix
of F). According to [3], at cach iteration k of the inexact-Newton method, an

increment sy € IR" is computed such that

|J(x)se + F(ze)l| < Ol F(zi)]l, (2)

where z41 = zx + si. 0 € [0,0] for all k € N and 0 < § < 1. The increment sj is
usually obtained by means of an iterative linear solver. So, matrix factorizations are
avoided, which is an attractive feature for large problems. Many authors analyzed
the inexact-Newton ideas from different points of view: affine invariancy ((23], [4]),
preconditioning ([12], [13], [14]), global convergence [5], nonsmooth problems [15],
etc.
In [3], the local convergence of (2) is analyzed. If z. is a solution of (1) where
J(z.) is nonsingular, local linear convergence (in the norm ||z||. = [|J(z.)z]|) takes

place and, if 8, — 0, the convergence is g-superlinear.
In this paper, we apply the inexact-Newton method to the computation of sin-

gular points of an homotopic path. See [19]. This is a subject of permanent interest
in physical and engineering applications, as well as in the efficient computation of

solution paths of
H(y,t) =0, (3)

where H : R™' — IRR™. A singular point is a solution of (3) where the m x
m Jacobian matrix H,(y,t) is singular. When the rows of H'(y,t) are linearly
independent (so, H;(y,t) does not belong to the range of H,(y,t)), the singular point
is called a turning point. Several methods have been proposed for computing turning
points where the system (3) is enlarged and the nonsingularity of the Jacobian matrix
of the expanded system is guaranteed. See [17], [16], [1]. All these methods involve
some type of factorization of matrices, which is inconvenient. in large problems. This
motivates the use of the inexact-Newton method for these problems.

In Section 2 of this paper we introduce a very general scheme, which allows us to
define a globally convergent inexact-Newton algorithm. In Section 3 we describe an



implementation of the algorithm. In Section 4 we introduce new enlarged systems
whose solutions correspond to singular points of (3). In Section 5 we show numerical
experiments using the globalized inexact-Newton methods for solving the enlarged
systems of Section 4. Most of the experiments are taken from a collection of Melhem
and Rheinboldt [16]. Conclusions are stated in Section 6.

2 Globally convergent algorithm

In this section we introduce a globally convergent algorithm for solving (1) which
can be implemented with directions generated by the inexact-Newton method. Our
approach is similar to the one of Eisenstat and Walker [5] and Martinez and Qi
[15] but we are more general so that strategies not based on line-searches can be
considered.

As usually, the idea is to consider the sum of squares of F(z) as merit function:

1
1) = SIF@I, (4
and to define an algorithm which, essentially, reduces monotonically f(zi). The
description of the algorithm follows. In this section |.|| represents the Euclidean
norm.

Algorithm 2.1. Assume that ¢ € (0,1), v € (0, 1], m,m2 € (0,1), ;m < n are
given independently of k. zo € IR" is an arbitrary initial approximation and ag = 1.
Given z, € IR", i € (0,1], the steps for obtaining Zy4y, x4y are:
Step 1. Choose
dx € IR". (5)
Step 2. If
f(zx + ardi) < f(z4) (6)
compute Tiy; = Tk + akdi. If (6) does not hold, define zxy; = z;.
Step 3. If
f(zx41) £ (1 = oyax) f(zk) (7)

define axyy = 1. Otherwise, choose

ar41 € [mak, mag). (8)



Algorithm 2.1 is extremely general. No conditions are assumed on the directions
dy and, in fact, even the null directions di = 0 are admitted. However, a simple
“global convergence lemma” can still be proved.

Lemma 2.1. Let {z,} be the sequence generated by Algorithm 2.1. Let us call
Ky = {k € N | (7) holds}. If K, is infinite and lim sup,¢x, ar > 0 then

Jlim [|F(zy)] = . Q

Proof. Assume that K, is an infinite subset of K, such that
ap2>2a>0

for all k € K;. Then
l—oyapy Ll —-0oya=r<l1

for all k € K;. Therefore {f(zx)} is a nonincreasing sequence such that f(zr4;) <
rf(z) for all k € K,. This implies that f(zx) — 0 and, thus, (9) holds. D

In the following theorem, some conditions are imposed on the directions d; so
that a more interesting convergence result can be proved.

Theorem 2.2. Assume that {z € R" | f(z) < f(zo)} is bounded. Let {z,} be the
sequence generated by Algorithm 2.1. Assume that there ezists M > 0 such that for
all b=0.1,2

|| < M (10)

and

(J(@e)dr, Fzr)) < =S IF (oI (11)

Then |

(a) Any limit point z. of {z}} satisfies F(z,) = 0.

(b) If a limit point z, is an isolated solution of (1) and ay — 0, then {z)} converges
to z,.

(c) If a limit point z, is an isolated solution of (1) and there ezists-f > 0 such that
ldll < BIIF(zk)|| for all k = 0,1,2,..., then {zx} converges to ..



Proof. Let K, be as in Lemma 2.1. If K, is infinite and lim sup,¢x, oz > 0 the
desired result follows from Lemma 2.1 and the continuity of . So, the following

possibilities remain to be considered: (i)

K, is finite; (12)
G |
K, is infinite but lim oy = 0. (13)
k€K,

Let us consider first {ii). By the compactness of the level set of f, there exists
z. € IR" and K3, an infinite subset of K; such that

Im z; = z..
X .

Without loss of generality, assume that a; < 1 for all k € X,. So, by (8) and (7),
we have that, for all £ € K,

a; € [moan-y, N2ox-] | (14)
and |
f(ze1 + eradia) > (1 — oyoua ) f(ze-)- (15)
By (13) and (14) we have that

Iim a3, =0.
kK, 1

So, using (10), we see that

hm z3_, = z..
k€K? *

Now, by (15),
f(ze-1 + ap—1di-1) — f(Zx-1)
Qg
for all k € K,. By the Mean Value Theorem, this implies that, for all k € K5, there
exists £y € [0, 1] such that

(Vf(ze-1 + &a-r0x-1di-1), dx—1) > =0y f(24-1)- (18)

Assume, by contradiction, that F(z,) # 0. Then, by (11), the sequence {||di— ||, % €
K,} is bounded away from zero. So, by (10), there exists K3, an infinite subset of

K,, and d # 0 such that

> —oyf(zx-1)

&lg\ns di_y =d.
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Taking limits for k € K3 on both sides of (16), we obtain
(Vf(z.),d) 2 —o7f(z.).
So, for large enough k € Kj,

o '2i‘ 1’7f($k-1) > —"yf(a:k_l) = —%"F(xk—l)llz- (17)

(Vf(zk-1),di-1) 2 -
But Vf(z) = J(z)TF(z), so

(Vf(zx-1), dr-1) = (J(@k-1)T F(2k-1), di-1) = (J(zk-1)dk—1, F(Tx-1))-

Therefore, (17) contradicts (11). This proves that F(z.) = 0. As a result, since
{f(zx)} is monotone, we have that any other limit point of {zx} must be a solution
of (1).

Let us now assume (i). Since K is finite, there exists kg € N such that (7) does
not hold for all £ > ky. Therefore, ay — 0 and we can repeat the preceeding proof,
with minor modifications, for proving that any limit point must be a solution of (1).

Let us now prove (b). Since z, is an isolated solution of (1), there exists § > 0
such that z, is the unique global minimizer of |F(z)| for ||z — z.|| < é. Since
ap — 0, by (10), we have that ||zx4, — zk|| — 0. Let & € (0,6). Let kg € N be
such that ||zr41 — zk]| < é§ — §’ whenever k > ky. Let u > 0 be the minimum value
of || F(z)|| on the region ¢’ < ||z —z.|| < 6. Let ky > ko be such that ||zy, — z.|| < &
and |[F(z)|| < . Since [F(oks0)ll < [|IF(zi)], we have that |[F(zxsn)] <

But, since
lzk41 — 20 || S 8- 8,

we also have that ||z, 41 — z.]| < 8. So, by the definition of u, ||zy, 4y — z.[| < &. It
follows, by induction, that ||zx — .|| < 6’ and |F(z})|| < p for all k¥ > k,. Since .
is the unique accumulation point of zj in this region, it follows that {z;} converges
to {z.}. This proves (b).

The proof of (c) is similar. Define é as in the proof of (b) and & € (0, 8) such that

loker = zill < ldell < BIF (i)l < 6 - &

whenever ||zy — z,|| < §. The proof is completed as in (b). O

Essentially, Theorem 2.2 says that, if we are able to compute search directions
di such that the conditions (10) and (11) are satisfied at each iteration, then global

6



convergence to a solution of the system is ensured. If J(z;) is nonsingular, the
Newton direction df = —J(zx)~' F(z}) satisfies (11) with 4 = 1. More generally, if

dj satisfies
7 (zk)dx + F(zx)[1* < ¢ F (=)l (18)

with ¢ € [0,1) we have that
(J(zr)dx, J(zx)di) + 2(J (z)dr, F(z1)) < (t = 1)||F(z4)]®

So,
t—1
(J(zx)dr, F(2i)) < ——=1F(ze)ll",
that is, the condition (11) is satisfied with 4 = 1 —¢. The condition (18) is a
“squared version” of the classical criterion given in (2) to define the inexact-Newton
iteration. We see, by Theorem 2.2, that when Newton’s method (or the inexact
Newton generalization) fails to converge, using the globalization given by Algorithm
2.1, then the generated sequence of directions d; is unbounded. In this case, the
method tends to converge to a point where the Jacobian is singular. This point is

not necessarily a local minimizer, or even a stationary point of f(z), as the following

example shows.

Define F(z) = (fi(z1, z2), fa(z1,22))T where

3
I
fl(xh't?) — '—?" +1'] i 4 +2, /2(Ilv12) = Ij.

This system has only one solution z. = (2.35,0)7. The Jacobian is singular if
z, = 1 or z; = —1. If we apply Newton’s method with the globalization given by
Algorithm 2.1, starting near (—l,O)T, the iterations converge to (—1,0)7, which is
not a stationary point of f. The directions dy are unbounded as we approach to
(—1,0)7. In fact, Newton iterations always satisfy the linear equation f3(z,,z2) =0,

and this region does not contain stationary points of f.

3 Implementation
In this section we describe a practical implementation of Algorithm 2.1. The idea

is to choose, at each iteration, sy = aid; as an approrimate minimizer of

U(s) = |1 (ze)s + Flzi)|?

D | —

|



on an appropriate trust-region (see [6]) of the form ||s||ec < A. If 0 is not a minimizer
of 9, that is, J(zx)T F(z}) # 0, we will be able to obtain s; such that

1T (2x)sk + F(zp)|[* < [|F(2i)]?

which implies that ,

(J(zk)dk, F(zk)) < 0.

independently of the value of a;y > 0. After the computation of s, we test the
inequalities (10) and (11). If one of them does not hold, we stop the execution (the
algorithm breaks down). This necessarily happens when the problem has no solu-
tions. The choice of the ||.||, norm instead of the Euclidean norm here obeys the
necessity of considering possible bounds on the variables z;. In this case, the ||.||c
norm fits well with the bounds and the approximate minimizers are not difficult to

find.

Algorithm 3.1

Let o € (0,1), v € (0,1), 7,72 € (0,1), ;1 < 92, M > 0, tol € (0,1), maz € N be
given independently of k and let o € IR™ be an arbitrary initial point, Ay = M and
ao = 1. Given z; € IR" such that J(zx)TF(zx) # 0, Ax > 0 and oy € (0,1], the
steps for obtaining x4y, Ax41 and agyq are the following:

Step 1. Compute s, as an “approximate solution” of

Mz i) = -;—HJ(xk)s + F@)|? st [s]le < A (19)

The approximate solution of (19) is obtained applying the method described in (7]
(see also [8]) stopping when

V()| < tol [|Vep(0)], - (20)

(where Vpi)(s) is the projected gradient of 1 on the box ||s|lcc £ Ax) or when the
number of iterations used by the algorithm [7] exceeds maz. (This guarantees that,
at least ||J(zx)sk + F(zi)|| < || F(zk)]]-)

Step 2. Define dy = s;/ay. If (11) and (10) hold, go to Step 3. Otherwise, stop
(the algorithm breaks down, probably, by the proximity of a singular Jacobian).
Step 3. The same as Step 2 of Algorithm 2.1.

Step 4. The same as Step 3 of Algorithm 2.1.

Step 5. If ay4y = 1, define Ay, = M. Otherwise, define Agyy = ||8k|o0/2-



The parameters used ‘in our implementation were ¢ = 107%, v = 1074, , = %,

Ny = %, M = 10'°, tol = 11—0, maz = n. The software used for this implementation
was an adaptation of the algorithm for box constrained minimization introduced
by Friedlander, Martinez and Santos [8]. The algorithm used for obtaining the
approximate solution of (19) (see (7]) is an active set method that combines conjugate
gradient iterations with projected and “chopped” gradient iterations in such a way
that many active constraints can be added or dropped in a single iteration. The
computer code was written in Fortran, using double precision, and is fairly portable.

4 Computing singular points

Given H : R™' — R™, H = H(y,t), H € C'(JR™*"), we say (following [17]) that
(Yay ts) is a singular point of H(y,t) = 0 iff H(y.,t.) = 0 and Hy(y.,t.) is singular.
If rank (H'(y.,t.)) = m we say that (y.,t.) is a turning point. Singular points are
solutions of

‘H(y,t)=0 )
Hy(y,t)v=0 (21)
ol =1 )

for some v € IR™. The system (21) has 2m + 1 equations and unknowns.
The resolution of (21) by an inexact-Newton method requires computation of

second derivatives of H. However, observe that

. H(y + hv,t) — H(y — hv, t)
Hy(y,t)v = lim T : (22)
Therefore, it is natural to replace (21) by the system
H(y,t)=0 ’
H(y+hu,t)2—hH(y-hv,l) =0 (23)
lofl* =1 |

for A > 0. Hopefully, the solutions of (23) for small A will be good approximations
for the solutions of (21).



A second alternative is to consider, instead of (21), the system
H{y,)y=0 ]

Hv(yst)v = 0

—

(24)

T

rry=1

/

where r € IR™ does not belong to R(H,(y,t)) (the range of H,(y,t)), which ensures
that a solution of the last two equations of (24) exists. This system has been used

by Moore and Spence [17] and Seydel [22]. Corresponding to (24), and using the
approximation (22), we consider the system

H(y,t) =0 ’
H(y+hvt)—H(y=hv,t) _

vthvt)-Hiy =0 ) (25)
rfv=1 {

The advantage of (25) over (23) is that the nonquadratic term (]|v||? — 1)? in
the merit function (4) has been replaced by (rTv — 1)2. However, if, by chance,

we choose r € R(Hy(y.,t.)), where (y. ,t.) is the turning point that we want
" to compute, the system (24) will have no solution. If the angle between r and
R(Hy(y.,t.)) is small, the problem of finding v satisfying H,(y,t)v =0 and rTv =1
can be very ill-conditioned, leading to unreliable results. In our experiments we used
r=v=(1,...,1)T/mi.

By direct calculation, we see that the Jacobian matrices J(y,t) and Jy(y,t) of
the systems (23) and (25) are, respectively,

H'(y,t) 0 )
I (:c) — H’(v+hv,t);‘H'(y—hu,t) H,,(y+hu,t)42rH,1y-hv,¢) (26)
L 0 T
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and

[ H'(y,1) 0 ]
i A (J:) - ”'(y+hv.i)2-h’ﬂv-h"") &(y+hv.t);rﬂg(y—hv,l) (27)
0 rT ]

Let us emphasize that in the implementation of Algorithm 3.1 no factorizations
of matrices are used. In fact we only need to provide subroutines that compute the
products Ji(y,¢)w and J5(y,t)w for arbitrary vectors w. Due to (26) and (27), it is
easy to see that fully advantage can be taken from the structure of these matrices.

5 Numerical experiments

We used six test problems described in [16] and an additional problem coming from
the theory of radiative transfer (see [18], [2], [11]). We developed a specific code for
each problem, using FORTRAN 77 (double precision) in a PC 486 for problems 1
to 6. The tests for problem 7 were run in a SUN Sparc Station 10.

Problem 1: A Two-bar Framework

This is the first test problem from [16] and was implemented with a slight modifica-
tion in the second load vector, in order to reproduce the results of [16]. Instead of
(0.3,0.91) we used (1/0.91,0.3). As regards the limit points relative to the first load
vector, we observe that 2+ % corresponds to —% and 2 — % corresponds to +§L}5.

Problem (1.a) corresponds to the load vector (1,0) and problem (1.b) corresponds
to the load vector (1/0.91,0.3).

Problem 2: The Freudenstein-Roth Function
This is the second test problem from [16] and was implemented exactly as described

in such a paper.

Problem 3: An Aircraft-Stability Problem
This is the third test problem from [16] and was implemented with two worthwhile

mentioning corrections, obtained from [21]): The element Agz, is 0.0002 and, in the
function ¢(y, u), the term y,y, is, in fact, y4u;. We used five different values for the

parameter 7.

1L .



Problem §: A Trigger Circuit

This is the fourth test problem from [16] and was implemented with two correc-
tions, according to [20] and [22]. Instead of —R;', the element A,7 is R;'. The
diode function is given by g,(u) = (5.6 x 10~8)[ezp(25u) — 1].

Problem 5: A Chemical Reaction Problem
This is the fifth test problem from [16] and was implemented with a trapezoidal rule
with the following weights: wg = w, =05and w; =1,i=1,...,n — 1.

Problem 6: Chandrasekhar’s Equation

This problem, originally introduced by Chandrasekhar [1960], has been used as a
test case by many authors (see [18] [11]). We decided to replace the sixth problem
from [16] (A Shallow, Circular Arch ) by Chandrasekhar’s equation because we were
not able to reproduce their results, probably due to non availability of the code used
in [16]. In this experiment, M is the number of points used in the numerical inte-
gration.

Problem 7: A Mildly-Nonlinear Boundary Value Problem
This is the seventh test problem from [16] and was implemented exactly as described
in such a paper. Problem 7.a corresponds to g(u) = e* and Problem 7.b corresponds

2
to g(u) =1+ 5—?;— M is the number of points used in the discretization.
100

The results of the numerical experiments are given in Table 1. In the first column
of this table we give the number of the problem considered. In the second column
the initial approximation yo,fo used in the experiment. In the third column we
report the enlarged system considered in the experiment ((23) or (25)). In columns
fourth to eigth we report the results of the experiments: obtained value for t., lowest
singular value of H, at the final approximation, largest singular value of H, at this
approximation, the sum of squares f(y.,t.), number of iterations and number of
function evaluations used by Algorithm 3.1, respectively.
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roblem (vo, to) Syst. te ai(Hy) an(Hy) | f(ys,ts) [Iter.|Eval.
la .(3,0),-3 (23)| -3.079205 [4.86930 E-6/6.66665 E-1{ 9.87 E-9 [ 9 | 10
(25)| -3.079213 [1.23839 E-8/6.66667 E-1|4.38 E-10| 8 | 10

(0,0), 5 (23)| 3.079201 [5.70889 E-7|6.66666 E-1{3.72 E-10( 8 | 9

(25) 3.079209 [6.27195 E-5/6.66646 E-1| 7.23 E-9 | 10 | 14

1b {1,1),1 (23) 1.933818 [3.94483 E-6| 4.76546 |1.37 E-10{ 4 | 5

(25)| 1.933836 |1.30527 E-7| 4.76544 |9.97E-14| 5 | 6

(3,1), -3 (23)| -2.307797 [3.06106 E-5| 2.48282 |7.94 E-10| 4 | 5

(25)| -2.307831 [1.04685 E-6{ 2.48281 |3.73E-10{ 5 | 6

2 (1,1),1 (23) |5.875923 B-1[1.56757 E-6|1.89761 E1| 5.18 E-9 | 14 | 22
(25)|5.875873 E-1(5.68896 E-6|1.89762 E1|2.87 E-11| 20 | 36

(50, 10), -10 (23) |-6.863575 E-1|6.65021 E-5| 7.73971 | 8.05 E-9 |16 | 33

2 (25)|-6.863527 E-1[3.45522 E-8| 7.73994 [1.00 E-14| 24 | 53
35y = —0.05 (-3,1,-.1,.5,-.3),0.5 (23)|5.087968 E-1{1.26152 E-5/2.20649 E2|1.56 E-10| 68 | 139
o (25)|5.087889 E-1(2.64036 E-6(2.20615 E2| 1.04 E-9 [341] 561
35 = —0.008 (-3,-.2,-.1,.02,.1), 0.2 [(23)]2.063399 E-1(5.17399 E-5/4.99307 E1| 9.74 E-9 | 33 | 52
y (25)]2.065148 E-1{2.07148 E-6[ 4.99492 | 5.07 E-9 | 49 | 73
By=0 (-3,-2,-.1,.02,.1), 0.2 |(23)|1.872326 E-1 (1.09060 E-5|5.86032 E1[1.08 E-10| 37 | 65
(25)]3.887898 E-1(1.62702 E-3[4.70969 E1| 8.62 E-4 |500| 950

35 = 0.05 (-2.5,-.8,.03,-.04),0.3 |(23)|2.929449 E-1(4.55929 E-5|1.84044 E2| 9.12 E-9 | 22 | 37
N (25)[2.929395 E-1|7.84537 E-6|1.84049 E2(2.60 E-10{ 61 | 77
35 =0.1 (-2.5,1.5,.06,-.08,.6),0.7 |(23)[9.227714 E-2[3.46267 E-1|7.96651 E1| 1.02 E-1 | 60 | 165
(25) [2.789284 E-2[2.26696 E-2|1.04950 E2| 1.59 E-1 [105] 214

4 (.05,.5,.05,.05,.15,.13),0.5| (23) | 6.020924 E-1[1.26527 E-4|1.03291 E-1| 8.23 E-9 | 98 | 215
(25)|6.013642 E-1(7.28746 E-5[1.03195 E1| 9.74 E-9 118 148

(.2,6,.2,.2,.6,9.5),0.3 |(23)|3.326203 E-11.82771 E-5/2.08855 E1| 7.58 E-9 | 57 | 93

(25)|3.329312 E-11.94789 E-5(2.07835 E1| 8.57 E-9 | 27 | 43

Ls (1,+:%.1)02 (23)|1.375316 E-1/3.28343 E-5| 1.00738 |8.30E-9| 4 | 5

(25)|1.375395 E-1[2.22622 E-6| 1.00737 |8.39 E-11] 4 | 5

(-5,. - --5)0.1 (23)|7.791575 E-2|8.48140 E-6( 1.09061 [9.50 E -11] 6 | 11

(25)|7.791559 E-2|4.60560 E-6| 1.09061 |5.49 E-10| 6 | 14

6 M =28 (.6,...,.5),0.1 (23)| 1.000003 [3.42256 E-6/8.88266 E-1|3.67 E-10| 6 | 9
(25)| 1.000000 |[1.80806 E-8/8.88266 E-1(4.30 E-12| 7 | 10

6 M =16 (.5, -»-5)0:1 (23)| 1.000000 |4.48221 E-7/9.35484 E-1/4.66 E-11| 9 | 12

(25)| 1.000004 |6.43785 E-5/9.35479 E-1| 347 E-9 | 7 | 12

6 M = 32 (.5,.. --5)0:1 (23)| 1.000000 |1.67478 E-6/9.63297 E-1{ 1.29 E-9 | 8 | 11

(25)| 1.000000 [9.12465 E-8/9.63297 E-1/2.21 E-11| 8 | 13

7a M = 49 (1,...,1)8. (23)| 6.807507 [8.35879 E-7|3.07280 E1{ 1.93E-9 | 6 | 7

(25)| 6.807504 [9.44063 E-7|3.07280 E1|1.44 E-10( 8 | 9

7a M = 121 1,...,1)8. (23)| 6.808005 [1.25211 E-6{3.14486 E1|3.39 E-10| 8 | 9

(25)| 6.808005 |1.44243 E-6/3.14486 E1(2.85 E-10| 8 | 9

7a M = 225 (1,...,1)8. (23)| 6.808096 [3.73244 E-6{3.14365 E1| 1.03 E-9 | 9 | 10

(25)| 6.808045 [1.04390 E-6{3.16927 E1| 168E-9| 7 | 8

7b M = 49 (1,...1)8. (23)| 7.980354 |5.52905 E-7|3.07123 E12.90 E-11{ 15 | 30

(25)| 7.980359 [1.14418 E-4|3.07123 E1| 9.15E-9 [ 13| 23

b M = 121 (1,...,1)8. (23)| 7.981427 [2.06899 E-5|3.14425 E1|2.76 E-10| 23 | 52

(25)| 7.981423 [1.16229 E-6|3.14425 E1(1.30 E-10| 24 | 54

b M = 225 (R DA (23)| 7.981605 [1.07876 E-4|3.16894 E1| 6.04 E-9 | 44 | 76
(25)| 7.981612 |8.60734 E-5/3.16894 E1| 544 E-9| 23| 40

Table 1. Numerical results

We proceed to a brief analysis of the numerical experiments. The value effectivelly
used for the increment h both in (23) and (25) was 10™. Such a choice is validated
by the singular values of H, at the final approximation, as can be seen in Table 1.
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Except for three cases of problem 3, the convergence criterion reached by the
sum of squares f(zx) = f(yk, k) in the final approximation was | f(z:)| < 1075.
For problem 3 with ¥ = 0 and using (25), the maximum number of iterations
(500) was achieved. For § = 0.1, convergence was declared because the criterion
IVef(zi)l| < 107° max{|f(z)|,1}/ max{||z«||, 1} concerning the projected gradient
on the box —10 <y; <10,:=1,...,5,—1 <t < 1 was satisfied.

Comparing the performance of (23) and (25) in the experiments, none of them
can be singled out as the best one. The behavior of both approaches depends not
only on the initial point adopted, but also on the nonlinearity of the problem.

6 Conclusions

In this paper we introduce a globally convergent algorithm for solving nonlinear
systems of equations. We prove that if a sequence of iterates can be defined sat-
isfying certain conditions ((10) and (11)) then an approximate solution exists and
can be computed by the algorithm. The method does not use line searches. In
fact, its generality makes it easily implemented by means of trust-region strategies.
When a solution does not exist, we prove that the algorithm eventually fails (breaks
down), that is, a direction with the properties (10) and (11) cannot be computed.
In the practical implementation of the general algorithm, we define a procedure
that (very likely) finds directions satisfying (10) and (11), when they exist. This
procedure, borrowed from the well developed area of box constrained optimization,
can, of course, fail to produce the desired directions. When this occurs, we stop the
execution with the diagnostic of (practical) breakdown.

We tested our method for computing singular points of homotopic curves. The
results seem to be reliable. The key point of our formulation is to replace the equa-
tion which states that the null-space of the Jacobian has a nonnull vector by a finite
difference equations where derivatives are not involved. The numerical experiments
show that the method usually finds an accurate solution and that an empirically

optimal discretization parameter can be recommended.

Acknoledgements. We are indebted to Professor W. C. Rheinboldt for his helpful
attention during the numerical experiments.
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