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1 Introduction 
The inexact-Newton method is one of the most successful techniques for solving 
nonlinear systems of equations 

F(x) = O, (1) 

where F: IR"-+ R" is differcntiable (we denote J(x) = F'(x), the Jacobian matrix 
of F). According to (3), at ach iteration k of the inexact-Newton method, an 
increment 3J. E IR" is computed such that 

(2) 

where Xk+t = Xk + ss. , 01c E (O , OJ for ali k E N and O < O < l. The increment s1i: is 
usua]]y obtaincd by means of an iterativc linear solver. So, matrix factorizations are 
avoided, which is an attractive feature for large problems. Many authors analyzed 
the inexact-Newton ideas from different points of view: affine invariancy ([23), (4)), 
preconditioning ([12], [13], {14]), global convergence [5], nonsmooth problems [15], 
etc. 

ln (3), the local convergence of (2) is analyzed. lf x. is a solution of (1) where 
J(x.) is nonsingular, loc-al linear convergence (in the norm /lz/1. = IIJ(x.)zll) takes 
place and, if B1c -+ O, the convergence is q-superlinear. 

ln this paper, we apply the inexact-Newton method to the computation of sin-
gular poínts of an homotopic path. See [19]. This is a subject of permanent interest 
in physical and engineering applications, as well as in the efficient computation of 
solution paths of 

H(y,l) ·o, (3) 
where H : JRm+l -t lRm. A singular point is a solution of (3) where the m x 
m Jacobian matrix Hy(y, t) is singular. When the rows of H'(y, t) are linearly 
independent (so, H,(y, t) does not belong to the range of Hy(Y, t)), the singular point 
is called a turning poinl. Severa] methods have been proposed for computing turning 
points where the system (3) is enlarged and the nonsingularity of the Jacobian matrix 
of the expanded system is guaranteed. See (17], (16), (1). AH these methods involve 
some type of factorization of matrices, which is inconvenient. in large problems. This 
motivates the use of the inexact-Newton method for these problems. 

In Section 2 of this paper we introduce a very general scheme, which allows us to 
define a globally convergent inexact-Newton algórithm. ln Section 3 we describe an 
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implementation of the algorithm. ln Section 4 we introduce new enlarged systems 
whose solutions correspond to singular points of (3). ln Section 5 we show numerical 
experiments using the globalized inexact-Newton methods for solving the enlarged 
systems of Section 4. Most of the experiments are taken from a collection of Melhem 
and Rheiriboldt [16]. Conclusions are stated in Section 6. 

2 Globally convergent algorithm 
ln this section we introduce a globally convergent algorithm for solving (1) which 
can be implemented with directions generated by the inexact-Newton method. Our 
approach is similar to the one of Eisenstat and Walker [5] and Martínez and Qi 
[15] but we are more general so that strategies not based on line-searches can be 
considered. 

As usually, the idea. is to consider the sum of squares of F(x) as merit function: 

1 
f(x) = 2IIF(x)ll2, (4) 

and to define an algorithm which, essentially, reduces monotonically J(x,,:). The 
description of the algorithm fol1ows. ln this section 11-11 represents the Euclidean 
norm. 

Algorithm 2.1. Assume that <J E (O, 1 ), 1 E (O, 1 ], TJ1, 1)2 E (O, 1 ), T/1 < T/2 are 
given independently of k. x 0 E IR" is an arbitrary initial approxima.tion and et0 = l. 
Given x1,; E IR'", ok E (O, 1 ], lhe steps for obtaining z1-+1 , 01-+1 are: 
Step 1. Choose 

(5) 

Step ~- If 
(6) 

compute xk+I = Xk + a1cd1c, If (6) does not hold, define Xk+t = x1c. 

Step 3. lf 
(7) 

define a1c+ 1 = 1. Otherwise, choose 

a1c+1 E [77101c, '1201c). (8) 
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Algorithm 2.1 is extremely general. No conditions are a.ssumed on the directions 
d1,. and, in fact, even the null directions d1, - O are admitted. However, a simple 
"global convergence lemma" can still be proved. 

Lemma 2.1. Le.t {xk} be lhe sequence generated by Algo.,-ithm 2.1. Let us cal/ 
1<1 = { k E N 1 (7) bolds}. // K1 is infinite and lim supl:EKi 01: > O then 

lim li F(x,:)11 = O. 
1.-00 

(9) 

Proof. Assume that K 1 is an infinite subset of K1 such that 

for all k E 1(2• Then 
1 - u101 < 1 - u10 = r < 1 

for all k E 1(2• Therefore {/(x1)} is a nonincreasing sequence such that f(x1c+i) < 
r f (xk) for all k E K 2. This implies that /(x1:) --+ O and, thus, (9) holds. D 

ln the following theorem, some conditions are imposed on the directions d1: so 
that a more interesting convergence result can be proved. 

Theorem 2.2. Assume that {x E JR:11 J(x) < J(xo)} is bounded. Let {xk} be the 
sequence generated by Algorithm 2.1. Assume that there exists M > O such that for 
ali k = O, 1,2, ... , 

(10) 
and 

(11) 

Then 
{a) Any limit point x. of {xk} satisfies F(~.) = O. 
{b) lf a limit point x. is an isolated solution o/ {1} and a:k --+ O, then { xk} converges 
to x •. 
{e) lf a Iimit point x. is an isolated solution o/ (1) and there exists· /3 > O such that 
lld.l:11 < PIIF(xk)II for ali k = O, 1, 2, ... , then {xk} converges to x,,,. 
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Proof. Let K1 be a:s. in Lemma 2..1. lf K1 is infin.ite and limsup1l-EK11 0~ > (i) the 
desired result fullows from Lemma 2,l and the oonlinuity of F. So., the foUowing 
possibilities rema.in to be oonsidered: (i) 

K 1 is fioite; 

fn) 
K1 is infinite hut ilim oi = O. 

,keK1 
(13,) 

Let us oonsider first ,(ii). By the compad.ness o{ lhe levei set of /,, Urere exi'st:s 
z. E F and K2, a.n infuüte subset of K1 such that 

Without loss of generality, ~ume t.hat 0 11 < l for ali i E Ki- So,, hy (8} and (i),, 
we have thal, for all k E K 2, 

a.nd 
J(z1i:-1 + a~1dc-1) > (1 - O,Q1i:-1)/(zl-1)-

By (13) and (14) we have that 

So, using ( 1 O), we see that 

lim ªJ:-1 = O. 
~K:, 

Now, by (15), 
J(x1:-1 + a1.-1d1.-1) - /(x.1,:-i) > /(· \ 

-(T"Y ' ~~H 
ºl:-1 

(14) 

for all k E K 2 • By the Mean Value Theorem, this implies that, .for ,all k E K 1 , there 
exisls {k-1 E (O, 1) such that 

(V /(xk-1 + ~-1ªJ:-1d>.-1),d1:-1} > -o;/(x,:_i). {16) 

Asrume, by contradiction, that F(x.) #- o. Then, by (11), the sequence {Hdi-1n,, k E 
K2 } is bounded away from zero. So, by (10), there exists K3 , a.n infinite subset o'f 
K 2 , and d#- O such that 
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Taking limits for J; E K 3 on both sides of (16), we obtain 

(V f(x.), d) > -<ryf(x.). 

So, for large enough k E K 3 , 

(\? f(xk_i), dk-1) > - "; 1 ,f(xk_i) > -,f(xk-1) = -; IIF(xk_i)ll 2 • (17) 

But 'v f(x) = J(x)T F(x), so 

('v f(xk-d, dk-1) = (J(x1:-i)T F(x1:-1), d1:-1) = (J(x1:_i)d1:-1, F(x1:-i)). 

Therefore, (17) contradicts (11). This proves that F(x.) = O. As a result, since 
{f(xk)} is monotone, we have-that any other limit point of {x.k} must be a solution 
of (1 ). 

Let us now assume (i). Since 1(1 is finite, there exists k0 EN such that (7) does 
not hold for ali k > k0 . Therefore, a1; --. O and we can repeat the preceeding proof, · 
with minor modifications, for proving that any limit point must be a solution of (1 ). 

Let us now prove (b ). Since x. is an isolated solution of (1 ), there exists ô > O 
such that x,. is the uni_que global minimizer of IIF(x)II for llx - x.11 < ô. Since 
o:k O, by (10), we have that llx1:+1 - xkll --. O. Let S' E (O, S). Let k0 E N be 
such that 1lxk+1 - xkll < ô - 6' whenever k > ko- Let µ > O be the minimum value 
of IIF(x)II on the region S' < llx - x.11 < ô. Let k1 > ko be such that llxk1 - x.11 < S' 
and IIF(xk1 )II < µ. Since IIF(x1c1+1)II < IIF(xk1 )II, we have that IIF(x1c1 +1 )11 < µ. 
But, since 

li X kt + 1 - X k1 li < 8 - S'' 
we also have that llxk1+1 - x.11 < ô. So, by the definition of µ, llxk1+1 - x.11 < ô'. It 
follows, by induction, that llxk - x.11 < h' and IIF(xk)II <µfor all k > k1 . Since x. 
is the '-!nique accumulation point of x,. in this region, it follows that { x1:} converges 
to {x.f This proves (b). 
The proof of (e) is similar. Define ô as in the proof of (b) and 6' E ( O, .5) such that 

whenever llxk _,, x.11 < {/. The proof is completed as in (b ). D 

Essentially, Theorem 2.2 says that, if we are able to compute search directions 
d1; such that the conditions (10) and (11) are satisfied at each iteration, then global 
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convergence to a solution of the system is ensured. If J(xk) is nonsingular, the 
Newton direction d'f = -J(xk)-1 F(xk) satisfies (11) with; = 1. More generally, if 
d1c satisfies · 

IIJ(xk)d1c + ·F(xk)ll 2 < tllF(x1c)ll2, 
with t E {O, 1) we ha.ve that 

So, 
t - l (J(xk)d1i:, F(xk)) < - 2-IIF(x1c)ll 2 , 

(18) 

that is, the condition (11) is sa.tisfied with , = I - t. The condition (18) is a 
"squared version" of the classical criterion given in (2) to define the inexact-Newton 
iteration. We see, by Theorem 2.2, that when Newton 's method ( or the inexact 
Newton generalization) fails to converge, using the globalization given by Algorithm 
2.1, then the generated sequence of dircctions dk is unbounded. ln this case, the 
method tends to converge to a point where the Jacobia.n is singular. This point is 
not necessarily a local minimizer, or even a stationary point of f(x), as the·following 
example shows. 

Define F(x) = (J1(x1,x2), f2(x1,xl)) 7 where 

x3 
/1 (x1, x2) = -f + Xi - x, + 2 , /,(x1, z2) = z2. 

This system has only one solution x. (2.35 0)7 . Thc Jacobian is singular if 
x 1 = l or x 1 = -1. Jf we apply Newton s mcthod with the globalization given by 
Algorithm 2.1, starting near (-1 ,0)r , the it cration converge to (-1,0)r, which is 
not a stationary point of f. Thc directiou d1c are unbounded as we approach to 
( -1, o)T. ln fact , Newton itcrations always satisfy the linear equation h( x 1 , x 2) = O, 
and this region does not contain stationary points of f. 

. 3 Implementation 
ln this section we describe a practical implementation of Algorithm 2.1. The idea 
is to choose, at each iteration, .s,. = a,.d,. as an approximate minimizer of 
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on a.n appropriate trust-region (see [6]) of the form llsl\ 00 < .ó.. If O is nota minimizer 
of 'l/J, that is, J(xk)T F(xk) f= O, we will be ab]e to obtain sk such that 

which impl.ies that 
(J(xk)dk, F(xk)) < O. 

independently of the value of ak > O. After the computation of sk, we test the 
inequalities (10) and (11). If one of them does not hold, we stop the execution (the 
algorithm breaks down). This necessarily happens when the problem has no solu-
tions. The choice of the 11-lloo norm instead of the Euclidean norm here obeys the 
necessity of considering possible bounds on the variables Xj. ln this case, the 11-lloo 
norrn fits well with the bounds and the approximate minirrúzers are not difficult to 
find. 

Algorithm 3.1 
Let u E (O, 1), , E (O, 1], 771,772 E (O, 1), 771 < TJ2, M > O, tol E (O, 1), max EN be 
given independently of k and let x0 E JRn be an arbitrary initial point, .ó.0 = M and 
a 0 = 1. Given Xk E JRn such that J(xk)T F(xk) =f:. O, .Ó.k > O and ak E (O, 1], the 
steps for obtaining xk+l·, .Ó.k+I and ak+I are the following: 
Step 1. Compute sk as an "approximate solution" of 

Minimize 'l/J(s) = illJ(x,.:)s + F(xk)ll 2 s.t. 11s11 00 < .Ó.k. (19) 

The approximate solution of (19) is obtained applying the method described in [7] 
(see also (8]) stopping when 

(20) 

( where 'fíJ p'1/J( s) is the projected gradient of 1/J on the box llslloo < .Ô.k) or when the 
number of iterations used by the algorithm [7] exceeds max. (This guarantees that, " 
at least IIJ(xk)sk + F(xk)II < IIF(xk)II,) 
Step 2. Define dk = sk/ak. If (11) and (10) hold, goto Step 3. Otherwise, stop 
(the algorithm breaks down, probably, by the proximity of a singular Jacobian). 
Step 3. The sarne as Step 2 of Algorithm 2.1. 
Step 4. The sarne as Step 3 of Algorithm 2.1. 
Step 5. If ªk+1 = 1, define .ó.k+ 1 = M. Otherwise, define .ó.k+l = llsk lloo/2. 
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The parameters used ~in our implementation were q = 10-5 , , = 10-4 , 1/i = ½, 
T} 2 = ½, M = 1010 , to/ = /0 , m.ax = n. The software used for this implementation 
was an adaptation of the algorithm for box constrained minimization introduced 
by Friedlander, Martínez and Santos [8]. The algorithm used for obtaining the 
approximate solution of (19) (see (7)) is an active set method that combines conjuga.te 
gradient iterations with projected and "chopped" gradient iterations in such a way 
that many active constraints can be added or dropped in a single iteration. The 
computer code was written in Fortran, using double precision, and is fairly portable. 

4 Computing singular points 
Given H: JR,m+l--+ JRm, H = H(y,t), H E C1(JR"1+ 1), we say (following (17)) that 
(y., t.) is a singular point of H(y, t) = O iff JI(y., t.) = O and Hy(y., t.) is singular. 
If rank (H'(y., t.)) = m we say that (y., t.) is a turning point. Singular points are 
solutions of 

'H(y,t) = O 

H.,(y, t)v = O 

IJvll:z = i 
for some v E JRm. The system (21) has 2m + l equations and unknowns. 

(21) 

The resolution of (21) by an inexact-Newton method requires computation of 
second deriva.tives of H. However, observe that 

. H(y+hv,t)-H(y-hv,t) 
Hy(y, t)v = hm 2h • 

h-D 

Tb~refore, it is natural to replace (21) hy the system 

H(y, t) = O 

H(y+hu,t)-H(y-hv,t) = Q 
:Zh 

Jlvl12 = i 

(22) 

(23) 

for h > O. Hopefully, the solutions of (23) for small h will he good approximations 
for the solutions of (21). 
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A second alternative is to consider, instead of (21 ), the system 

H(y, t) = O 

H,i(y, t)v = o· 
rT V= 1 

(24) 

where r E JR,m does not belong to R(H,Ay, t)) (the range of Hy(y, t)), which ensures 
that a solution of the last two equations of (24) exists. This system has been used 
by Moore and Spence [17) and Seydel [22]. Corresponding to (24), and using the 
approximation (22), we consider the systern 

H(y , t)=O 

H(v+hv ,t)-H(y-hv ,t} _ Q 
'2h - (25) 

rTv = 1 

The advantage of (25) over (23) is that the nonquadratic term (llvll 2 - 1 )2 in 
the merit function ( 4) _has been replaced by (rT v - 1)2 . However, if, by chance, 
we choose r E R,(Hy(y., t.)), where (y. , t.) is the turning point that we want 
to compute, the system (24) will have no solution. If the angle between r and 
R(Hy(y., t.)) is small, the problem of finding v satisfying H.y(y, t)v = O and rT v = 1 
can be very ill-conditioned, leading to unreliable results. ln our experiments we used 
r = v0 = (l, ... ,l)T/m½. . 

By direct calculation, we see that the Jacobian matrices J1 (y, t) and J2(y, t) of 
the systems (23) and (25) are, respectively, 

H'(y,t) o 
H'(i,+hv 1t)-H'(y-hv 1t) Hv(Y+hv,t)+H31 (y-hv,t) 

2h 2 
(26) 

o 
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and 
H'(y, t) o 

H'(y+hv,t)-H'(y-hv,t) H1(y+hv,t)+H1(y-hv,t) 
2h 2 (27) 

o 
Let us emphasize that in the implementation of Algorithm 3.1 no factorizations 

of matrices are used. ln fact we only need to provide subroutines that compute the 
products J1(Y, t)w and J2(y, t)w for arbitrary vectors w. Dueto (26) and (27), it is 
easy to see that fully advantage can be taken from the structure of these matrices. 

5 N umerical experiments 
We used six test problems described in (16] and an additional problem coming from 
the theory of radiative transfer (see [18], [2], [11]). We developed a specific code for 
each problem, using FORTRAN 77 ( douhle precision) in a PC 486 for prohlerns 1 
to 6. The tests for problem 7 were run in a SUN Sparc Station 10. 

Problem 1: A Two-bar Framework 
This is the first test.problern frorn [16] and was implernented with a slight rnodifica-
tion in the second load vector, in order to reproduce the results of [16]. lnstead of 
(0.3, 0.91) we used ( v"o.91, 0.3) . As regards the limit points relative to the first load 
vector, we observe that 2 + ,./3 corresponds to - 3JJ and 2 - F3 corresponds to + JfJ. 
Problem (La) corresponds to the load vector (1, O) and problem (1.b) corresponds 
to the load vector ( v"o.91, 0.3). 

Problem 2: The Freudenstein-Roth Function 
This is the second test problern from [16] and was implemented exactly as described 
in such a paper. 

Problem 3: A n A ircraft-Stability Problem 
This is the third test problem from [16) and was implernented with two worthwhile 
mentioning corrections, obtained from [21 ]: The element A31 is 0.0002 and, in the 
function c.p(y, u ), the term y4 y2 is, in fact, y4u2. We used five different values for the 
parameter , . 
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Problem -l: A Tri9ger Ci.rcuit 
This is the fourth test problem from [16] and was implemented with two correc-
tions., according to I20J and {22]. lnstead of -R.;1 , the element A17 is ~ 1 . The 
diode function is given by g1 (u) = (5~6 x 10-8 )lexp(25u) -1]. 

Problem 5: A Chemical Reaction Proble m 
This is the fifth test problem f:rom 1161 and was implementai With a trapezoidal rnle 
with the following weights: Wo = Wn = 0.5 ano w, = 1., i = l., .. ., n - l. 

Problem 6: Chandmsdhar 's Equation 
This problem., originally :introduced by Chandrasekhar J1960]., has been used as a 
test case by many authors {see if 1.8] f 11]). We deci<led to replace the s:ixth p:roblem 
from II6] (A Shallow, Circular Arch) by Chandrasekhar's equat.ion because we were 
not able to reprod.uce their result'S, probably dueto :non availability oi the cod~ used 
in f 16]. ln this experiment., M is the nlllllher o-f points use.d in the :numerica.l .i:nte-
grafion. 

Probkm 1: A Mildly-Nonlinear Boundary Value Problem 
This is the seventh test problem from '!16] and was i:mplemented exactly as described 
in such a paper. Problem 7.a oorresponds to g(u) = eu a:nd Problem 7.b corresponds 

• .2 

to g( u) = l + u+ .}2 . M is the number of points used in the discretization. 
1+ 100 

The resu ts of the numerjcal experiments are given in Table 1. ln the first column 
0 { this table we give the number of the problem considered. ln the econd column 
he initial apprmcimation y0 , t0 used in the experimenL ln the third column w 

repor the enlarged. system considered in the experim nt ( ( 23) o ( 25) ). ln column 
four to eigth we report the results of the experiments: obtaine<l value for t , 1 t 
singular va.lue of H" at the final approximation, largest singul value of Hy t thi 
approxima.tion, the sum of squa.res f (y., t ), number of iterat.ions d numb r of 
function evaluations used by Algoriihm 3.1, respectively. 
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Problern YO, to Syst . ,. o-1 H un H f Y•, t. !ter . Eval. 
la . (3, o), -3 {23) -3 .079205 4.869.30 E-6 6 .6 65 E-1 9 .87 E-9 9 10 

(25) -3.079213 1.23839 E-8 6 .66667 E-1 4.38 E-10 8 10 
(O, O) , 5 (23) 3.079201 5.70889 E-7 6.66666 E-1 3 .72 E-10 8 9 

(25) 3.079209 6.27195 E-5 6.66646 E-1 7.23 E-9 10 14 
lb {1,1), 1 (23) 1.933818 3.94483 E-6 4.76546 1.37 E-10 4 5 

(25) 1 .933836 1.30527 E-7 4.76544 9.97 E-14 5 6 
(3,1) -3 (23) -2 .307797 3.06106 E-5 2.48282 7.94 E-10 4 5 

(25) -2.307831 1.04685 E-6 2.48281 3.73 E-10 5 6 
(1,1), 1 {23) 5.875923 E-1 1.56757 E-6 1.89761 El 5.18 E-9 14 22 

(25) 5.875873 E-1 5.68896 E-6 1.89762 El 2.87E-11 20 36 
(50, 10) , -10 (23) -6.863575 E-1 6 .65021 E-5 7.73971 8.05 E-9 16 33 

(25) -6.863527 E-1 3.45522 E-8 7.73994 1.00 E-14 24 53 
::Y = -O.OS (-3,1,-. 1,.5,- .3) ,0.5 {23) 5.0 7968 E-1 1.26152 E-5 2.20649 E2 1.56 E-10 68 139 

(25) 5.087889 E-1 2.64036 E-6 2.20615 E2 1.04 E-9 341 561 
::Y = -0.00 (-3 ,-.2,- .1,.02, .1) , 0 .2 {23) 2.0 3399 E-1 5.17399 E-5 4.99307 El 9 .74 E-9 33 52 

(25) 2.065148 E-1 2.07148 E-6 4 .99492 5.07 E-9 49 73 
::y = o. (-3,-.2,-.1,.02 .1), 0.2 (23) 1.872326 E-1 1.09060 E-5 5.86032 E1 1.08 E-10 37 65 

(25) 3.887898 E-1 1.62702 E-3 4.70969 El 8 .62 E-4 500 950 
::y = o.os (-2 .5,- .8 ,.03,- .04) ,0 .3 {23) 2.929 19 E- 1 4.55929 E-5 l .840"4 E2 9.12 E-9 22 37 

{25) 2.929395 E- 1 7.84537 E-6 1.84049 E2 2.60 E-10 61 77 
:Y = 0.1 (-2.5 ,1.5,.06,- .08,.6) o. 7 (23) 9.227714 E-2 3.46267 E-1 7.96651 El 1.02 E-1 60 165 

{25) 2.789284 E-2 2.26696 E-2 1.04950 E2 1.59 E-1 105 214 
( .05,.5,.05,.05,.15 ,. 13) ,0.5 (23) 6.020 24 E-1 1.26527 E-4 1.03291 E-1 8.23 E-9 98 215 

(25) .013 2 E-1 7.28746 E-5 1 .03195 El 9 .74 E-9 118 148 
( .2,.6,.2 ,. 2 ,.6,9.5),0.3 (23) 3.326203 E- l 1.82771 E-5 2.08855 El 7.58 E-9 57 93 

(2 ) 3 .3 9312 E- 1 1 .94789 E-5 2.07835 El 8.57 E-9 27 43 
(1, .. -,1),0.2 (23) l.375316 E- 1 3.2 3 E-5 1 .00738 8.30 E-9 4 5 

(25) 1 .375395 E-1 2.22 22 E-6 8 .39 E-11 4 5 
(.5, .. .. S)P. l (23} 7. 91575 2 .4 140 E- 9 .50 E -11 6 11 

(2 5) 7.791559 E-6 1.0 061 .49 E-10 6 14 

M =8 (.6, ... ,.5),0.1 (23 ) l. E- E-1 3.6 E-10 6 9 
(2 5) 66 E-1 .30 E-12 7 10 

M = 16 (.5, . . . ,.5) 0.1 (23 ) E-1 . 6 E-11 9 12 
(25) 1 E-9 7 12 

M = 32 (.5 , ... ,.5) 0.1 (23) .29 E- 11 
(25) E- 13 

7a M = 49 (1, . . . ,1 ),8. (23) E- 7 
(2 5) E- 9 

7a M = 121 (1, ... , ) ),8. (23) E-1 9 
( 5) . SE-10 9 

7a M = 225 ( l , ... ,1) ( 3) El 1.03 E-9 9 10 
(25) El 1. E-9 7 8 

7b M = 49 (1 , . . . ,1) (23 ) El 2.90 E-11 15 30 
(25) E l 9.15 E-9 13 23 

7b M = 121 (1, . . . ,1),8. (23) .1 4425 El 2.76 E-10 23 52 
(25) 6 3 .1 25 El 1.30 E-10 24 54 

7b M = 225 (1, . .. ,1),8. (23) 1. 4 3.1 94 El 6.04 E-9 44 76 
25 7. 1612 8. 5 3.16894 El 5.44 E-9 23 40 

Table 1. umerical results 

e proc d to a brief anal , is of th num rical ex rimen s. Th valu eff tivelly 
u d for h incr m en h bo h in (23) and (2 ) was 10-4 • uch a choice is validated 
b , the ingular alues of Hy a Lh final approxim 10n can be n i Table 1. 

13 



Except for three cases of problem 3, the convergence crlterion reached by the 
sum of squares f(xk) = f(Yk, tk) in the final approximation was IIJ(xk)II < 10-8 . 

For problem 3 with , = O and using (25), the maximum number of iterations 
(500) was achieved. For 1 = 0.1, convergence was declared because the criterion 
llv7 P f(xk)II < 10-s max{ lf(xk) 1, 1} / max{ llxkll, 1} concerning the projected gradient 
on the box -10 < Yi < 10, i = 1, ... ,5 ,-1 < t < l was satisned. 

Comparing the performance of (23) and (25) in the experiments, none of them 
can be singled out as the best one. The behavior of both approaches depends not 
only on the initial point adopted, but also on the nonlinearity of the problem. 

6 Conclusions 
ln this paper we introduce a globally convergent algorithm for solving nonlinear 
systems of equations. We prove that if a sequence of iterates can be defined sat-
isfying certain conditions ((10) and (11)) then an approximate solution exists and 
can be computed by the algorithm. The method does not use line searches. ln 
fact, its generality makes it easily implemented by means of trust-region strategies. 
When a solution does not exist, we prove that the algorithm eventually fails (breaks 
down), that is, a direction with the properties (10) and (11) cannot be computed. 
ln the practical implementation of the general algorithm, we define a procedure 
that (very likely) finds directions satisfying (10) and (11) , when they exist. This 
procedure, borrowed from the well developed area of box constrained optimization, 
can, of course, fail to produce the desired directions. When this occurs, we stop the 
execution with the diagnostic of (practical) breakdown. 

We tested our method for computing singular points of homotopic curves. The 
results seem to be reliable. The key point of our formulation is to replace the equa-
tion which states that the null-space of the Jacobian has a nonnull vector by a finite 
difference equations where derivatives are not involved. The numerical e periment 
show that the method usually finds an accurate solution and that an empfrically 
optimal discretization parameter can be recommended. 

Acknoledgements. We are indebted to Professor W. C. Rheinboldt for hi helpful 
attention during the numerical experiment . 
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