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REMOVABLE SINGULARITIES THEOREMS
FOR THE YANG-MILLS FUNCTIONAL

ANTONELLA MARINI
UNIVERSITY OF UTAH

Abstract.

These notes are given as a reference for the minicourse on gauge theories and anal-
ysis presented by the author in UNICAMP, in August 1992. In this course we define
gauge theories and the very basic geometric ideas involved. We focus mostly on the
analytical aspects of these theories and introduce concepts such as conformal invari-
ance, subharmonicity and apriori estimates for the curvature F, gauge invariance
(optimal choice of gauge), weak-compactness of Sobolev spaces of connections. We
use these tools to outline proofs of removable singularities theorems for Yang-Mills
fields, also on manifolds with boundary.

The minicourse is divided in four lectures, the first three corresponding to the three
chapters of these notes. In the fourth lecture, we explain Dirichlet and Neumann
boundary value problems for Yang-Mills connection. We denote particular attention
to the removable singularities theorem for boundary points. For the fourth lecture
we refer to [10] and the last section in [11]. These notes are mostly self-contained,

but not completely detailed. For more details we give further reference to the reader.

Introduction.
In the first chapter we introduce gauge theories and the Yang-Mills equations as

they arose as an extension of the relativistically invariant formulation of Maxwell’s



equations. We describe the main geometrical ingredients of gauge theories, intro-
duce the concept of gauge invariance and construct different gauges that are known
as “good gauges”, in which the analysis can be carried out to prove smoothness
properties of Y. M. potentials.

We describe how gauge theories can be interpreted as a non-linear extension of
Hodge theory and how the Y. M. equations arise as the Euler-Lagrange equations
for a suitable action functional.

We also introduce the coupling with electrons, i.e. the Yang-Mills Higgs functional.
In the second chapter, we state and outline the proof of the removable singularities
theorem in dimension four [3] and the good gauge theorem [8], due to K. Uhlenbeck.

In the third chapter we give a direct method for minimizing the Yang-Mills functional
over a compact manifold with no boundary.

The method is due to Sedlacek [9).



Chapter 1. Gauge theories and the Yang-Mills equations.

The Yang-Mills equations were introduced by physicits in the 1950’s as a nonlinear
extension of Maxwell's equations.

Only in the 1970’s they came to the attention of mathematicians, starting with
Michael Atyah [1].

Nowadays, gauge theories are considered very interesting from the mathematical

point of view, even independently of applications in physics.

§1. The Yang-Mills equations as a generalization of Maxwell's equations

Maxwell equations form a first order system of p.d.e. that describes the electric field
E = (E,, E,, E3) and the magnetic field B = (B, B,, Bs).

Upon setting all physical constants equal to one, they are written as follows

div E = 4rxp (p = charge density)

(1) .

curl B — %E =4rj5 (7 = (J1,J2,J3) = vector current)
divB=0

(2)

9
curlE+aB—.0.

These equations can be written in a more compact way, which is also relativistically
invariant, by introducing an electromagnetic field F = ¥ Fjdx?dz*.
The (z')’s are coordinates on the four dimensional spacetime, and

0 —E, E, =E |

F=| g 5 0 B sk=0123

B B, ~B 0
(Note that Fj, = —Fjj; i.e. F'is a two-form on spacetime).
Let now J be a differential form that encodes the charge density and the vector

current,
J = pd&'o - j]d.’l‘l + j2d$2 + j3d.‘t3 y
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- 1owski spacetime.
d * be the Hodge operator in the Minkowsk1 SP
and *

] e
Then, Maxwell’s equations becom

3.9 E— axi

: a —""'F'k dz” = J
= | ——=For + - L'j
(1) - d.F"( ap o 2;82:3
0 igoidek = 0.
Y __a_.. ; -——-F,">d3 dz’dz

(2) ‘ dF = (EB?FJ';‘-*' 6:1:ij‘ ozt Y
(Some details: Let k =0 in (1). Then (1) gives , ,

—-(,)B—-Foo+§;F1o+ E%on+ﬁF30= '5$'TE1 i 9z2 ' 9z3

t T
Let k =1 in (1). One obtains
0 .
o o 0 0

Note that d* is the divergence operator V. =
space). »

~ 350 521’ 322’ 923) in Minkowski
i oz x T

Equation (1) depends on the metric and can be generalized to a Riemannian metric
and to k-forms (also k # 2).

If the (k — 1)-form J = 0, then F is called “harmonic”.

The study of solutions of the equations

d'w =0
dw =0
is known as “linear Hodge-theory” - [2).

We will talk more about this later in the course. From Maxwe

precisely equation (2), we see that F is a closed 2-
be locally written as F

(w a k—form)

I’s equations, more

form. By Poincaré lemma, F can
= dA, the differential of 2 one-

differential dU (U is a function), the curvature f —
change. Hence A s not uni

d(A + dU) = dA does not
quely determined.
The one-

gauge”,

form A. If we add an exact

f i : .
orm A is called potential (or connection) and U represents the “choice of



£ is also called “curvature” of the connection A.

To have a better understanding of the meaning of “gauge”, we look at a more com-
plete physical description where the clectromagnetic field F interacts with matter. A
beam of electrons is decribed as a complex function ¢ : M — €. (M = spacetime).
The coupling is expressed by the term [D4¢|? in the so-called Yang-Mills-Higgs
functional; here Dj¢; = (d + 1A)d;.

Only the intensity of the beam, |¢| and relative angles between beams ¢, - , have
physical meaning.

If we choose a different angle $_,- = u~l¢;, where u : M — S*, the new potential
A= A—iu'du = A —id(Inu), and the field F' = F is left unchanged.

A simple computation shows that 15,4\ ¢=D ;{Q';. The theory described so far is the
abelian theory, since the arbitrariness of the potential A is the freedom of choice of

the function u, valued in the abelian group S’.

- Now, we generalize to the non-linear gauge theory, in which the structure group is

G = SU(N), a non abelian group.

The potential A = 3 A;dz’, where the A;’s are matrices in su(N) the Lie Algebra
of SU(N). The field F = ¥ F;jdz'dz’, where F;; are also valued in su(N), is the
curvature of the connection A, ie. F=dA+AAA.

Maxwell’s equations extend to the non-linear equations

1) D = 35 + s Fulda* =

(2) | DaF = }‘;( ,k+[A.,FJk])d:c'd:c’da: —0

Here, we wrote (1) explicitely in the flat metric.

If we choose a different gauge u : M — SU(N), the potential A and the field F

foll
transform as follows A uldu + u=t Au
Fr— u1Fu.

Equations (1) and (2) are gauge-invariant.
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Equations (1) are known as Yang-Mills equations and equations (2) are the Bianchi
identity, always satisfied by the curvature of a connection.

Again, (1) depend on the metric considered.
§2. The Yang-Mills functional
The pure Yang-Mills functional is given by
4 1 1
Y.M. A = - _— 2 —
(4) = 5 /Mtr(FA A+Fa) = /M;F,,f dVol

(in the flat metric)

1
=5/ (};trﬂjﬂ;)dvoz.
Here tr = trace, F;; are matrices in some Lie Algebra (for example su(N)), and F};

is the matrix adjoint of Fj;.
The variation of the Yang-Mills functional is

8,(Y.M.(A)) = % (first — order terms in t of Y.M.(A + ty))

= F)= ,D'F .
[ (e +1AgLF) = [ (0, 0°F)
Hence, the Yang-Mills equations with J = 0 are the Euler-Lagrange equations for

the pure Yang-Mills functional.
Likewise, the coupled Yang-Mills equations are obtained as the Euler-Lagrange equa-

tions for the Yang-Mills-Higgs functional
1
(A== [ (1FAP +|Dadl® + 201 - “)dVoI.
YM(A)= 5 [ (IFAP +1Dagl + X1 = 19P)

In the following section, as well as in the rest of the course, we consider the pure

K =
t

Yang-Mills functional.

) -



§3. Construction of gauges
Choosing the right gauge is very important from the analytical point of view to
obtain smooth solutions.

In the Abelian case, the Y.M. equations are written in the form

_ 0 6Aj 0A; i
d.dA—}';‘ax‘(Ba:‘ 8x‘>dz =i

(This is in coordinates and in the flat metric).
I : : : dA; ;
Hence, if A is expressed in a gauge in which d*A = > i = 0, the two equations
~ Oz
combined give the elliptic equation

82
(0z')?

A= (@d+dd)A= T (3 o d;)ded = 0.
i N

Such gauge is called “Hodge” gauge, or “Coulomb” (by Physicists).

Coulomb gauges can be found under certain hypotheses. To prove existence of

Coulomb gauges one uses the implicit function theorem between Banach spaces.

Hence, the first step is finding a gauge in which A is small.

More precisely, one needs an estimate of ||A||c in terms of [|F|o-

Everything is done locally (there is no global method for finding good géuges).

We are going to construct exponential gauges on "=, matched by a rotation along

the equator and outline a similar construction on
Ur={z€ D" st. p<|z|<pa}.

This material is needed in the next lecture to construcxt Coulomb gauges and to

prove the removable singularities theorem in dimension four.

Ezponential gauges [3]. |
Let us consider a geodesic ball centered at the origin, partametrized by coordinates

(r,%)-



It is possible to choose a gauge in which A, = 0. *
In a Euclidian ball, A,(z) = ¥ z*Ai(z) = 0.
From this equation, one finds that

0A; 0A;

ZI Fij —Z (F - EE_,—'{'[AHAJ])

_ 0 i 294 4904
Z( SO (A + 8 hs) = r o+ A= ro(rAy),

and by integrating and estimating in the sup-norms one obtains
|4;(z)| < -lxl sup |F(y)].
lvl<i=l
The exponential gauges for S™~! centered at the north (south) pole are such that in
these gauges A, = 0, where ¢ € (0, 7) is the polar angle.
In S™~! one has similar estimates that take into account the geometry of S*~! (here

we use coordinates (p,8), ¢ € (0,7), and 6 € S™2):

d
142, 0)llo < tan 2] Fl

The following lemma holds:

Lemma 3.1. There exist constants ag, { < oo depending on G such that if

|| F'||zeo(sm-1) < a0, then there exists a gauge in which || A||peo(sn-1) < K||F||Leo(sn-1)-

Proof. One chooses the exponential gauge based at the north pole d° + A°, and at
the south pole d™ + A”.

In these gauges
@
14%) < tan 211,

n
14711 < tan(“52)1Flle

%* these gauges are obtained by choosing frames at a point zo and parallel translating along
geodesics departing from z.




On the overlap 0 = sA} — A}s = ?i; i.e. s depends only on 8, i.e. 3(p,0)

Oy

soexp u(#), where u : S"~? — g.

Assuming /s--?u = 0, the following estimate holds

[|dt||oo < const(G)||ds(7/2,0)||e < const||F||eo -

One can obtain a gauge globally defined on S™~! by rotating A° by
h(e,8) = so exp(sin’(¢/2)u(0))

and A™ by _
4(p, 8) = exp(— cos*(p/2)u(9)).

the new globally defined gauge is now
A=h"1A% 4+ b 'dh = ¢"'A"q + ¢ ' dg,

and it satisfies 1
|Ag(,0)| = 5 sin @lu(8)| < const ||F||co,

4

and, for ¢ < 7/2

or, for ¢ > 7/2
|As(, 0)] < |A™(p,0)| + |doql-

Hence, the final result
|A(2,0)leo < K| F oo

where K is a constant depending on the geometry of G.

This completes the proof of lemma 3.1.

To construct a gauge in U that satisfies the same kind of estimates, the idea is to

match transverse gauges constructed on the spheres 5 = {z s.t. |z| = 1}, and
S, = {z s.t. |z| = 2}. Similarly, one constructs a gauge in D", by matching the

exponential gauge at zero, with the transverse gauge at S; [3].

)



Chapter 2. Smoothness properties of Yang-Mills connections.

In this chapter we introduce a removable singularities theorem that uses the Yang-
Mills equations [3].

The most interesting case deals with a four-dimensional base manifold and with
point singularities (these are the singularities that arise when finding Yang-Mills
solutions via a directly minimizing procedure, in the hypothesis of finite action).
This is historically the first removable singularities theorem in gauge-theories. It is
conceptually easier, since it uses the equations, but somehow quite technical.
(There are some more sophisticated theorems, which do not use Yang-Mills equa-
tions) [4]. o

The proof of this theorem is inspired by the theory of harmonic maps by Sacks and
Uhlenbeck [5]. 2ot

The ingredients used in this theorem are: a local theory, working in suitable gauges
(exponential gauge, broken harmonic géﬁge, harmonic gauge) Morrey’s theorem (6]
(for the purpose of bounding || F||. in terms of the bound on the action functional)

standard elliptic theory for the final regularity of A.

§1 Statement of the result
- The following is a removable singularities theorem for Yang-Mills fields in dimension

4. [3]

Theorem 1. Let A be a Y.M. connection in a bundle P over B*\{0}, such that

/ |IF|? < .
Bt

Then, there exists a gauge in which (P, A) extends to a smooth bundle (P, A) over
) o
The following corollary is a theorem of extension of a Y.M. field defined outside a

ball, to the one-point compactification.
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It is a direct consequence of the removable singularities theorem, since the Y.M.

functional is conformally invariant.

Corollary 1. Let A be a Y.M. connection in a bundle P over

Ext(N) = {z € R s.t. |z| > N}, and let
f:B"\{0} — Ext(N)
T

== Nop

such that |F|? < oo,
Ext(N)

Then (f*P, f*A) extend to (f*P, f~A) over B* in a suitable gauge.

Corollary 2. There is a natural bijection between Y.M. connections on bundles

over IR* with finite action and Y.M. connections on bundles over S¥.

Proof of corollary 2. Let A be a connection over R*, f : 5*\{po} — R' the

’

stereographic projection.
Then, f*A is a connection over S*\{po}.

Let us consider a geodesic ball centered at py.

By dilation we may assume that the metric is close to the flat metric. We can use

conformal invariance of the Y.M. functional and theorem 1 to extend f*A across po,

in a suitable gauge.

Example. [7].
Every bundle over IR* is topologically trivial. Bundles over M 4, a compact Riem-

manian manifold are classified by the second Stiefel Whitney class and the first
Pontryagin class p; (second Chern class ¢;). If M = §*, H*(M) = 0 with any
coefficients. Hence, bundles over S* are classified by p,(P) = c;(P) = i(P) also

called the instanton number.

11




Take a self-dual connection on IR*, the extension obtained is classified by the in-
stanton number

. 1 1

i(P)=eP)= o [ IFP=—5 Y.M.

P =alP) = [ IFF = 5 Y M)
Although any bundle on R* is trivial, the extensions to the compactification S* are
not necessarily so.
On can consider a quaternion line line bundle P = R* x H, D = d + A, where
(/\2 -+ ]1'[2)
Adz A dz

A A =

The curvature of A” is given by F m

One can check that *#* = F* and Y.M.(D) = 4=2.
4]dz[?
(Note that the metric on the sphere is given by ds? = (_i_—%lix’l_;);’ where z is the

stereographic projection).
Hence, this bundle over JR* extends to a non trivial bundle, with instanton number

1 over S4.

For general connections, z(P) =¢(P) = —/F/\F and Y.M.(A) = /FA*F =

! et

The second chern class is a topological lower bound for the Yang-Mills functional
In fact, the Hodge operator * : A2M — A?M is such that ¥* = 1 and is an isometry

?
So, the space of two-forms splits into the £1 orthogonal eigenspaces of *, i.e. F

F} + F;, where
«F} = F} (instanton), and *F; = —F (anti-instanton)
(Note that *F = £F are Y.M. fields. In fact D(*F) = £DF = 0, by the Bianchi

identity).

One obtains
I _ Ll p PVA (R + ) = — [IFHE=1FR,
L PR = [+ F)AF + = /

12



thus
Y.M.(A) > 4n?|cy ,

and the minimum is achieved when F is either an instanton, or an anti-instanton.

Proof of theorem 1 (outline):

We may assume without loss of generality that Y.M.(A) < ¢ (since Y.M. is confor-
mally invariant).

The proof divides in two parts:

(1) Estimate ||F||o, over B*\{0} in terms of action,

(2) Use “harmonic gauges” to extend A smoothly across the origin.

Part (1) is divided in three steps.

1% step. Finding an inequality for A|F|, by means of Bochner-Weitzenbock formu-
las. Estimating by means of Morrey’s theorem.

The Bochner-Weitzenbock formula for a differential form 1 gives

[blAIY| = (¥, V) + (V, V) — [dg]]* 2 (4, V) = (b, Ay) + (%, [F, ¥]), (by
definition).

Here A = DD* + D*D, and V? is the crude Laplacian, and

(7, 9) = 3 ([P i) = s, Fil ) da'da*

J

Substituting ¥ = F in this formula, one finds
|F|A|F| 2 (F, [F, F]),

(since F satisfies the Yang Mills equations and the Bianchi identity).

Hence,

AIFI 2 -4lFI2 ’

13



and we are in the hypotheses of the following theorem by Morrey, for f = |F| = b,

Morrey’s theorem [3], [6]. Let b € L%(By,a0),9 > n/2, f a non negative
function such that f7 € L3(B,,;ao) for 3 <q<1l,and —Af <b f in a weak sense.
Then for B;,, C B;,,; ao,

f(z) < Ka™ / £,

Bro 120

where K depends uniformly on n, g, v, al "/ / b9 .
70130

Uhlenbeck in [3] gives some technical lemmas and some minor extensions of this
theorem. ’
She shows that if /f” < oo, for some p > 2, then f is uniformly bounded in terms
of the Y.M. action. , | |
If p = 2, there exist constants ¢, K such that .

: , £

if /B‘f2<K,then f25r—4/3 I

. .‘lo;r
for all Bz,;y C Bzg;1/2-

2™ step. Choosing a suitable gauge, in which ||A||,, estimates in terms of ||F|co-

To find approximation to a good gauge over B*\{0}, one works on annuli

and constructs a broken gauge, as follows.

By dilation, we can assume /34 |F|? < e.

Hence |F| < ec|z|™?, i.e., on Upn |F| < €c2™'. In particular, if m = 0 than
|F| < 2ce.

14



We construct the “exponential gauge” on S, = {z € R* st. |z|=1)}.

(Recall: two exponential gauges are constructed, one based at the north pole, the
other based at the south pole and matched by a rotation at the equator).

This gauge satisfies
”Al”oo S I\'IHFIHOO .

At this point, one extends trivially along radial lines to the annulus Uj.

3™ step. Constructing a “broken harmonic gauge” on B*\{0}.

On Uy, we construct a gauge in which d*A = 0.

This is done by means of the implicit function theorem between Banach spaces.
The construction of this gauge is somehow technical. For this construction we refer
to [3].

This gauge (called Hodge, or Coulomb) is nearly harmonic (in the Abelian case, or
in the linearized problem (d*d + dd*)A = 0, since d*dA = d"F =0 and d*A = 0).
At this point, one dilates by a factor 2 and repeats the process above, for the
new annulus Us. Working in the broken harmonic gauge, one shows that |F| is
uniformly bounded in the punctured ball B*\{0}, and the new connection satisfies
|A(2)| < |z]|F(=z)]. |

Hence A is defined (continuous) over B*.

Part (2) consists of finding a Hodge gauge in B*, yielding the final smoothness of A.

This completes the proof of theorem 1.

§2. Good gauge theorem
We state now the good gauge theorem (Hodge gauge) for a connection A.

For more details, we refer to [9].

- Theorem 2. Let B™ be a geodesic ball, of radius one, G a compact Lie group,
g < p < n, D a connection that trivializes as d + A with A € L]. There exists
positive constants k(n), c(n) such that if /IFAI"/2 < K, then A is gauge equivalent

15



to a connection A € L} satisfying:

(a). d*A=0.

(b) A,=0o0nS"1=09B" (A, = normal component of A).
©  NAllgzn < cln)lIFllgen.

@ Allr < cm)lIF

Outline of the proof. One shows that the set of connections that satisfy the
hypotheses of theorem 2 is connected.

Then shows that the subset of those connections for which the theorem holds is open
and closed.

The openness argument is the harder one, and is the one that uses the implicit
function theorem between Banach spaces.

Let A be a connection for which the theorem is satisfied, and let’s also assume that
||A|lL» £ K(n) (with no restriction).

Then, there exists € such that if [|[A||z» < €, and A, = 0 on dB", the non-linear

equation
d*(g7'dg + g7 (A+X)g) =0
admits a solution g € L5.

One considers the operator
A:(u,A) — d*(e7de" + €7 (A + N)eY).
By linearization, one obtains
ARED 7 e / o
Y — d'(dy+[A,4]) = Ay + [A,dy).
(Here L means [¢ =0, and v means ¥, = 0 at dB").

This operator is an isomorphism between these two spaces, if || A||, is small enough.

In fact

AZ(Op 2 ld”dill, — || Alladllg = |||l (K — || AL K”)

16
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A 1
Now, the implicit function theorem yields existence of a solution g = e* € L.

with ¢ =
The solution g depends smoothly on .

§3. Chern classes of Sobolev connections - [4]

There exist removable singularities theorems that do not use the Yang-Mills equa-
tions.

In §1, we show that Yang-Mills fields over IR*, with finite action, arise from connec-
tions over S*. Hence, the Chern numbers are integers.

There are reasons (from Physics) to inquire whether this is true for arbitrary con-
nections.

It has been proven, first with some growth hypothesis, thendn general in [4], that the
same is true for connections with finite action, over a bundle with fiber isomorphic
to a compact Lie group G.

The theorem is the follow-ing:l

1,loe

Theorem 3. Let A € L™’ (R",g). Ifrn is even, n # 2, and /R |F|*/? < oo, then

¢, = n'* Chern number that arises from a representation p : G — SU(N) is integral.
Corollary. A is the pull-back of a connection over S™, via stereographic projection.
For a proof of theorem 3, we refer the reader to [4].

In the fourth lecture, [10], [11] we give a removable singularities theorem for bound-

ary points, the proof of which does not use the Yang-Mills equations, for the first

part, but uses similar arguments.

17



Chapter 3. A direct method for minizing the Yang-Mills functional over

a four-dimensional manifold [8], [9].

In this chapter we see how to apply the good gauge theorem and the removable
singularities theorem to find a smooth solution of the Yang-Mills equations over a
four-dimensional manifold.

The method is due to Sedlacek [9] and it is strongly based on Uhlenbeck’s compact-
ness theorem (theorem 2.1 in [8]).

It involves working locally and then patching together the local solutions to find a

global solution that lives on a smooth bundle.

§1. Brief geometric background
We work on a four-dimensional, Riemannian, compact manifold with no boundary,
M. We consider a principal fiber bundle P over M, with fiber isomorphic to the
Lie group Gj i.e. locally P|y, ~ U, x G, where the {U,}’s form a covering of M.
The bundle P can be described (up to isomorphisms) by a collection of functions
{908}, 90 : Ua N Uﬁ_ 2 G
They are the transition functions from the trivialization over U,, to the one over Uy
and satisfy the cocycle conditions "

9op9pa = 1d ,

9apYprgns = 1d.
We consider connections A, with curvature F' = dA+ AA A, and the pure Yang-Mills
functional ,

Y.M.(A) = -2-/M IFal?. |

Recall that the Yang-Mills equations are obtained from Y.M.(A) via a variational
principle and they are D*F =0 (in a weak sense; i.e. (Djqw, F) = 0, for any smooth
one-form w).
For reasons that will be explained later, we do not wish to fix the bundle we work on.

We work with families of connections {A;} defined on bundles P: over M. These

18



bundle have fibers isomorphic to the same Lie group G, which is assnmed 1o be
compact (although this last hypothesis can be removed).

Also, they have in common a topological obstructuion 5, which is defined via Cech
cohomology.

If the Lie group G is simply connected this obstruction is zero. If G = S0O(3), then
n € H*(M, Z,) is known as the second Stiefel-Whitney class.

§2. A direct method of minimization - Analysis background.
We consider the family F of all connections on principal G-bundles over M with

given obstruction 7. Since the Y.M. functional is bounded below, we can define
m(n) = AIGI;Y.M.(A).

We look for a connection A such that Y.M.(A) = m(n). A direct method for finding
A is the following classical method. One takes a minimizing sequence, i.e. a sequence
{A;} such that

Y.M.(A’,-) — m(7n)

and hopes to be able to pass to a converging subsequence {A!}, A! — A, such
that the Y.M.(Aw) = m(n). The good gauge theorem enables us to consider con-
nections in some Sobolev space. Hence, in order to be able to pass to a converging

subsequence, we need a compactness theorem for such Sobolev spaces of connections.

For our purpose, it is enough have weak-convergence.

Definition. Let X be a Banach space and X™* its topological dual. We say z, — z

(converges weakly to z) iff A\(z,) — A(z) for every A € Xx,
A basic theorem of functional analysis says that a ball of radius r in a Banach space

is weakly-compact (i.e. compact in the weak-topology) iff X** =~ X.
The Sobolev space L%(U) of vector functions over neighborhoods U C M are reflexive

Banach spaces.
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Hence, the following theorem holds:
Theorem. Any bounded, closed subset of L;(U) is weakly compact.

To prove the main theorem, stated and outlined in the next section, we use Sobolev

embedding theorems and multiplication theorems.
In particular we use the embedding L? C L* and continuity of the multiplication

maps L3 @® L3 — L? and L* @ L* — L2, in dimension four.

§3. The main Theorem.
The following theorem states existence of a limiting connection for a sequence that

minimizes the Y.M. action, over a G-bundle over M except at most a finite number

of points.

Theorem 1 Let {A;} be a sequence of smooth connections on G-bundles P;, with
obstruction 5 € H*(M,,(G)). Suppose Y.M. (A;) — m(n). Then there exists a

subsequence {A!} and a countable cover {U,} of M minus at most a finite number

" of points, qi, ..., gk, sections a,(i) : Uy, = P;, connections A, € L}(A'U, ® g), and

functions g3 € L2(U, N Upg, G) such that

oa(i)"Ai|l =AY = A, (LY
Fo(t) = Fa =dAa+ Ad AN A, (LP)
9op(i) = gop (L)

Aa = g;ﬁlAﬁgaﬂ v 2 g;[}dgaﬁ-

Idea of the proof:

One uses weak-compactness of closed and bounded subsets of Sobolev spaces L}(U)

and Uhlenbeck’s good gauge theorem.
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Since {A:} minimizes-the action, if i is large enough Y.M. (A;) arc uniformly
bounded.

One takes a countable family of covers C; of radius §;, with §; — 0.

Each C; is a finite cover of M and there are at most A balls in C; that have non-empty
intersection, with A independent of ;.

The “bad” balls for A; in a cover C; are those U € C; for which LIFAiIQ > K(4).
Let N;; = number of bad balls in C; for the connection A;.

Then Ni;K(4) < ) /IF'A‘.I2 = h/ |Fa;|* < hL, where L is a uniform bound for
UecC, v M

Y.M.(A).

Fixing C;, one finds a subsequence {4’} for which the centers of the bad balls are
eventually fixed.

By diagonalization, one finds a new subsequence {A!} such that the following holds:
Vj, 3J s.t. the centers of the bad balls are fixed for every A;, with : > J.

By throwing away from every C; the “eventually” bad balls and taking everything
that is left, one ends up with a cover C = {U,} in which U, is eventually good for
the new sequence. |

By means of conformal invariance, ont can apply the good gauge theorem to the
ball of radius one and find good gauges for the connections A;

In these gauges the A,(¢) satisfy uniform estimates HAa(z')”LgUGS const ||F||2 <
const.

At this point one uses weak-compactness to find local limiting connections.

To show (2), (3), (4) one needs to use multiplication theorems and Sobolev embed-

dings mentioned in the previous section.

Remarks
Why is the dimension four special? The L?-norm of curvature, i.e. the Y.M. func-

tional is conformally invariant in dimension four. The covering procedure adopted
barely works in dimension four, leaving some isolated singularities. The multipli-

cation theorems used also barely work in dimension four. In higher dimension, not
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only the minimizing procedure does not work locally, but also patching the local :;:'
e
lutions to form a connection on a reasonably smooth bundle does not work. In

next section, we see more in details what can happen over isolated points g1, - - -5 qk

Theorem 2. Let A, = {A,} be the connection on the bundle P = {gap} Over
M\{q,-..,q} found in theorem 1.
The following holds:

(1) A satisfies the Yang-Mills equations. Moreover Ao, is In a Hodge gauge, i.e.
d*x A, = 0.

(2) Ac can be extended to a connection A, on a G-bundle P, over M.

(3) 7(P) = n (the obstructions is preserved).

(4) Y.M.(Ac0) = m(n)

Idea of the proof: One shows that A, satisfies the Y.M. equations by_ contradic-
tion.

The connection Ao, must satisfy the Y.M. equations, otherwise one could construct
a sequence of smooth connections that for indexes sufficiently large have energy less

than m(n).

In fact, let a be such that (Dy w,F,,) < 0 for some smooth one-form w with
compact support on U,.

One can think of w as the trivialization over U, of one-forms w; on the bundles P:.
The connections A; + tw; differ from A; only on U,, and for i sufficiently large and

t small Y.M. (A; + tw;) = Y.M.(A) + t(Dg,yw, Fu(1)) + { higher order terms in -
i} < YM(A,)

This is a contradiction, since there is sufficient regularity to show that all terms n

the above inequality converge to the obvious limits.

One obtains (2) as consequence of the removable singularities theorem for Yang-Mills
connections, proven in the previous chapter.

The obstruction n does not see isolated points, hence (3) holds.

[ ]
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One obtains (4) as consequence of (3) and lower semicontinuity of the Y.M. func

tional.

In fact, Y.M.(As) < limY.M.(A;) = m(n) implies Y.M.(Ax) = m(n).

§4. What can happen over isolated points g, . .. yqk? (the bubble theorem).

We showed that for any given n € H?(M, m1G), there exist a bundle and a connection
(Pooy Aco) with obstruction 5, such that A, satisfies the Yang-Mills equations and is
an absolute minimum for the Yang-Mills functional over all bundles with obstruction
n.

What happens if in the minimizing procedure we fix the bundle P and consider a
sequence of connections {A;} over P, that minimize action over P, i.e. Y.M.(4;) —

m(p)?
The minimizing procedure could be carried out in a similar way, to find a critical

point A, (A satisfies Y.M. equations) on a bundle P, also with obstruction

n = n(P).
Since the Y.M. functional is lower semicontinuous, Y.M.(As) < m(P).

The bundle P is in general different from the bundle P we start with, since the

second Chern class is not preserved in the procedure.

In general, if {A;} is a minimizing sequence over a fixed bundle P, one has
F+ 2 <l / F+. 2 ,
JFLP <lim | 13

and

[ VFs P <lim [ 1FAF-

Thus,

4x(p(P) = pr(Po)) = [IF4I = [FA [ = |+ |Fi [ =
= [IELP +1F5l = [IFRP +IFLP <
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< [IFLP +lim [ 1F5 P - Bml PR + 1AL <
< [1F5P+ [1Fal - [1F2 P+ IFLP =

= Y.M.(A) = Y.M.(Ay,) < m(P) — Y.M.(Ax).

Changing orientation on M, one obtains

In other words, it is possible when minimizing on a fixed bundle that the limiting

connection correspond to a lower energy. This happens because energy is concen-

trating on the fibers over the points ¢y, ..., gk, that are removed.

This phenomenon is expressed in the following theorem (see pg. 64 in [7]):

The bubble theorem: Let {D;} be a sequence of self-dual connections on a SU (2)-
bundle with instanton number 1, over a 4-dimensional, compact, Riemannian man-
ifold M, with no boundary, then {D;} admits a subsequence { D!} such that one of
the following holds:

(1) {D!} is gauge-equivalent to {5{}, such that 5: — D in the moduli space
M.

(2) there exists a point ¢ € M, and, Ve > 0, there exists a trivialization of

the bundle over M\B,,. = K such that {D!} is gauge-equivalent to {5’} with
D§=d+ﬁ§, A\:-—oOonK.

On B,,., there is a sequence of dilations
. o 8
pi(z) = 6— with & — 0,

and a sequence of connections {D'} gauge equivalent to { D!} over B,, such that for
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some To € IR,

(x — x0)dT )

pi A; = lm(l + |z — 2o|?

The phenomenon described in (2) is known as bubbling. What happens is that, by
taking smaller and smaller neighborhoods and a sequence of blow-ups, the sequence
of connections is not converging to something with zero energy, but to the t’Hooft
instanton. In the limit, the bundle we start with becomes flat and a four-sphere
breaks off at g, carrying the energy of an instanton.

One can think of doing the inverse process, i.e. gluing instantons to Y.M. connec-
tions, to obtain new solutions with higher energy.

In the gluing process the new connection won’t be exaxtly Yang-Mills, one needs to

apply implicit function theorem arguments to find exact solutions.
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