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REMOVABLE SINGULARITIES THEOREMS 
FOR THE YANG-MILLS FUNCTIONAL 

Abstract. 

ANTONELLA MARINI 

UNIVERSITY OF UTAH 

These notes are given as a reference for the minicourse on gauge theories and anal-
ysis presented by the author in UNICAMP, in August 1992. ln this course we define 
gauge theories and the very basic geometric ideas involved. We focus mostly on the 
analytical aspects of these theories and introduce concepts such as conforma! invari-
ance, subharmonicity and apriori estimates for the curvature F, gauge invariance 
( optirnal choice of gauge), weak-compactness of Sobolev spaces of connections. vVe 
use these tools to outline proofs of removable singularities theorems for Yang-Mills 
fields, also on manifolds with boundàry. 
The rninicourse is divided in four lectures, the first three corresponding to the three 
chapters of these notes. ln the fourth lecture, we explain Dirichlet and Neumann 

•:1 boundary value problems for Yang-Mills connection. vVe denote particular a.ttention 
i to the removable singularities theorem for boundary points. For the fourth lecture 
1 
I} we refer to [10] and the last section in [11]. These notes are mostly self-contained, 
11 but not completely detailed. For more details we give further ref<>rPnce to the reader. 
1 ,, 

Introduction. 
ln the first chapter we introduce gauge theories and the Yang-Mills equations as 

r they arose as an extension of the relativistically invariant formulation of Maxwell's 
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equations. We describe the main geometrical ingredients of- gauge theories, intro-
duce the concept of ·gauge invariance and construct different gauges that are known 
as "good gauges", in which the analysis can be carried out to prove smoothness 
properties of Y. M. potentials. 
We describe how gauge theories can be interpreted as a non-linear extension of 
Hodge theory and how the Y. • M. equations arise as the Euler-Lagrange equations 
for a suitable action functional. 
We also introduce the coupltng with electrons, i.e. the Yang-Mills Higgs functional. 
ln the second chapter, we state and outline the proof of the removable singularities 
theorem in dimension four [3) and the good gauge theorem [8), dueto K. Uhlenbeck. 
ln the third chaptet we give a direct method for minimizing the Yang-Mills functional 
over a compact manifold with no· boundary. 
The method is due to ·sedlacek (9). 
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~hapter 1. Gauge theories and the Yang-Mills equations. 
The Yang-Mills equations were introduced by physicits in the 1950's as a nnnlinear 
extension of Maxwell's equat.ions. 
Only in lhe 1970's they carne to the attention of mathematicians, starting with 
Michael Atyah [l]. 
Nowadays, gauge theories are considered very interesting from the mathematical 
point of view, even independently of applications in physics. 

§1. The Yang-Mills equations as a generalization of Maxwell's equations 
Maxwell equations form a first order system of p.d.e. that describes the electric fie]d . . 

E= (E1, E2 , E3) and the magnetic field B _ (B1, B2 , B3). 
Upon setting ali physical constants equal to one, they are written as follows 

div E 41r p (p = charge density) 
(1) , - a 

curl B - Dt E= 41rj (j = (ji,}2,j3) = vector current) 

(2) / 

div B = O 

a -
curl E + Bt B = _O • 

, . 

These equations can be written in a more compa.ct way, which is also relativisticaJly 
invariant , by introducing an electromagrietic fiel d F . = L Fjkdxi dxk. 

l1; The (xi)' s are coordinates on the four dimensional spacetime, and 
1 ,1 
li 

i1 

1 
1 

o -E1 E2 ~E3 

(Fjk) =. E1 o B3 -B2 j,k= 0,1,2,3 E2 ~Ba o B1 • 
E3 B2 , -Bi o 

(Note _that Fik = -Fkj; i.e. F is a two-form on spacetime). 
Let now J be a differential form that_ encodes ·the charge density and the vector 
current, 

J d o •dt •d2 •d3 = p X + Jt X + )2 X + }3 X , 
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. the Minkowski spacetime. 
a.nd * be the Hodge operator in . 

M xwell's equa.tions become 
Then, a. 3 a )d k = 4·nj 

( a ~--""7F;1c x 
ã F = - at Fok + ax' (1) 

a a F· ·) dxidxi dxk =o. 
, dF = ('Ç" F;1c + ax; Fki + axk ., (2) . - L- ax• 
- ·1. Let k = O in (1). Then (1) gives a 

(Some deta.1 s. a 8 E + E = 41rp. a a E+- '2 83 3 a 8 F + -F30 = -a 1 l ôx'2 X --Fi + -Fio+ a 2 20 ax3 X 8t 00 axl X 

Let k = 1 in ( 1). One obta.ins 

a E + ~B + ~(-B2) = 41rj' etc .•• - ât 1 ax2 3 8x3 

• • ( a 8 ~} . in Minkowski • Note that d* is the divergence operator "v. = - 8t' 8xl, 8x'2' 8x3 

;:!;on ( 1) depends on the metric a;,d can be generalized to a Riemannian metric 
and to k-forms (a.lso k -:f:. 2), 
lf the (k _ 1 )-form j = o, then F is called "harmonic". 
The study of solutions of the equations 

d*w = O 
dw = O 

is known as "linear Hodge-theory" - l21. 

(w a k-form) 

We will talk more about this later in the course. From Maxwel\'s equations, more 
precisely equation (2), we see that F is a closed 2-form. By Poincaré lemma, F can 
be locally written as F = dA, the differential o{ a one-form A. l{ we add an exact 
differential dU (U is a function), the curvature F = d(A + dU) = dA does no\ 
change. Hence A is not uniquely determined. 

The one-form A is called potential (or connection) and U represents the "choice of ga.uge". 
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F is also called "curvature" of the connection A. 
To have a better understanding of the mcaning of "gauge", we look at a more com-
plete physical description where the clectromagnetic field F interacts with matter. A 
beam of electrons is decribed as a complex function </>: M -. a:. (M = spacetime). 
The coupling is expressed by the term IDA<f>l 2 in the so-called Yang-Mills-Higgs 

" functional; here D_,,.</>;= (d+ iA)<f>;. 
Only the intensity of the beam, . l<Jil and relative angles between beams </>1 • 4,2 have 
physical mea.ning. 
If we choose a different angle J; = u-1 </>;, where u ; M -+ S1 , the new potential 
Â = A - iu-1du = A - id( lnu ), and the field Ê' = F is left unchanged. 
A simple computa.tion shows tha.t J5";<f> = DÂl The theory described so far is the 
abelian theory, since the arbitrariness of the potential A is the freedom of choice of 
the function u, valued in the abelia.n group S1 . 

Now, we generalize to the non-linear gauge theory, in which the structure group is 
G = SU(N), a non abelian group. 
The potential A = E Aidxi, where the Ai's are matrices in su(N), the Lie Algebra. 
of SU(N). The field F = E Fi;dxidx~, where Fi; are also valued in s~(N), is the 
curvature of the connection A, i.e. F = dA +A/\ A. 
Maxwell's equations extend to the non-linear equations 

(1) 

(: Here, w·e wrote (1) explicitely in the flat metric . 
. If we choose a different gauge u : M '-+ SU(N), the potential A and the field F 
.• 

transform as follows A...-. u-1du +u:-1Au 
F ...-. u:_.1 Fu. 

Equations (1) and (2) are gauge-invariant. 
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1 
Equations (1) are known as Yang-Mills equations and equations (2) are the Bianchi 
identity, always satisfied hy the curvature of a connection. 
Again, ( 1) depend on the metric considered. 

§2. The Yang-Mills functional 
The pure Yang-Mills functional is given hy 

(in the-flat rnetric) 

Here tr = trace, F;; are matrices in some Lie Algebra (for example su(N)), and Fh 
is the matrix adjoin t of F';;. 
The variation of the Yang-Mills functional is 

ôip(Y.M.(A)) = ! (first - order terms in t of Y.M.(A + tcp)) 
t 

= L _{dcp + [A, cp], F) = L {cp, n· F) . 

Hence, the Yang-Mills equations with J = O are the Euler-Lagrange equations for 
the pure Yang-Mills functional. 
Likewise, the coupled Yang-Mills equations are obtained as the Euler-Lagrange equa-
tions for the Yang-Mills-Higgs functional 

ln the following section, well as in the rest of the course, we consider the pure 

Yang-Mills functional. 
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§3. Construction of gauges 

Choosing the right gauge is very important from the analytical point of view to 
obtain smooth solutions . . 
ln the Abelian case, the Y.M. equations are written in the form 

.,.d _ ô (ôA; ôAi)d ; a A=~-8 . -8 . --8 . x=O. 
. . xª xª xª IJ 

(This is in coordinates and in the flat metric). 

Hence, if A is expressed in a gauge in which d* A = L 88A~ = O, the two equations 
. xª 
' combined give the elliptic equation 

Such gauge is called "Hodge" gauge, or "Coulomb" (by Physicists). 
Coulomb gauges can be found under certain hypotheses. To . prove existence of 
Coulomb gauges one uses the implicit function theorem between Banach spaces. 
Hence, the first step is finding a gauge in which A is small. 
More precisely, one needs an estimate of IIAll00 in terms of IIFlloo• 
Everything is clone locally (there is no global method for finding good gauges). 
We are going to construct exponential gauges on sn-1 , matched by a rotation along 
the equator and outline a similar construction on 

This material is needed in the next lecture to construcxt Coulomb gauges and to 
prove the removable singularities theorem in dimension four. 

Exponential gauges {Sj. 
Let us consider a geodesic bali centered at the origin, partametrized by coordinates 

(r,t/J). 
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It is possible to choose a gauge in which Ar = O. • 
ln a Euclidian ball, Ar( x) = E xi Ai ( x) = O. 

Fróm this equation, one finds that 

iF. '"' i(8A; 8Aí [A A ·J) _ 4' x ij = 4' x 8xi - 8xi + i, , -
1 1 

'"'( 8A • 8 • • ) 8A; A 8 ( A) = L., r-3 - -.(x'A') + 6i;Ai = r-8 + ; = r8r r ; , . 8r 8x' r 1 

and by integrating and estimating in the sup-norms one obtains 
1 IA;(x)I < -lxl sup IF(y)l -
2 h11:51xl 

The exponential gauges for sn-I centered at the north (south) pole are such that in 
these gauges A<p = O, where r.p E (O, 1r) is the polar angle. 
ln sn- 1 one has similar estimates that take into account the geometry of sn-t (here 
we use coordinates ( <p, O), r.p E (O, 1r ), and 0 E sn-2): 

IIA(<p,O)lloo < tan ~IIFlloo • 

The following lemm_a holds: 

Lemma· 3.1. There exist constants a 0 , 1( < oo depending on G such that if 

IIFllv»csn-1) < ªº' then thereexists agaugein which IIAlluX>(Sn-1) < KIIFllu)O(Sn-1), 

Proof. One chooses the exponential gauge based at the north pole <fJ +.Aº, and at 
the south pole d1r +A,... 
ln these gauges 

IIAºII < tan IIFlloo, 

IIA,..11 < tan(7r; cp) IIFlloo • 

O• these gauges are obtained by choosing frames at a point zo and parallel translating along 
geodesics departing from z0 . 
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•. 

On the overlap O • sA; - A~s = ;; ; i.e. s depends only on O, i.e. s(,p, O) 

So exp u( 0), where u : sn-2 --+ g. 

Assuming j u = O, the following estimate holds 
sn-z 

Jldulloo < .const(G)llds(1r/2, O)lloo < constl!Flloo. 

One can obtain a gauge globa.lly defined on sn-l by rotating Aº by 

h(cp, O) = s0 exp(sin2(cp/2)u(O)) 

and A,.. by 

q(cp,O) = exp(-cos2 (cp/2)u(O)). 

the new globally defined gauge is now 

and it s~tisfies 

and, for cp < 1r /2 

or, for cp > 1r/2 

Hence, the final result 
IIA(cp,B)lloo < J<IIFlloo, 

where K is a constant depending on the geometry of G. 
This completes the proof of lemrna 3.1. 
To construct a gauge in U that satisfies the sarne kind of estimates, the idea is to 
match transverse gauges constructed on the spheres S1 = {x s.t. lxl = l}, and 
S2 = {x s.t. Jxl = 2}. Similarly, one constructs a gauge in nn, by matching the 
exponential gauge at zero, with the transverse gauge at S1 [3]. 

9 



Chapter 2. Smoothness properties of Yang-Mills connections. 

ln this chapter we introduce a removable singularities theorem that uses the Yang-
Mills equations [3]. 
The ·most interesting case deals with a four-dimensional base manifold and with 
point singularities (these are the singularities that arise when finding Yang-Mills 
solutions via a directly minimizing procedure, in the hypothesis of finite action). 
This is historically the first removable singularities theorem in gauge-theories. It is 
conceptually easier, since it uses the equations, but somehow quite technical. 
(There are some more sophisticated theorems, which do not use Yang-Mills equa-
tions) [4] ~ 
The proof of this theorem is inspired by "the theory of harmonic maps by Sacks and 
Uhlenbeck [5]. 
The ingredients used in this th~rem are: . a local theory, working in suita.ble gauges 
(exponential gauge, broken harmonic gauge, harmonic gauge) Morrey's theorem (6] 
(for the purpose of bounding IIFlloo in terms of the bound on the action functional) 
standard elliptic theory for the final regularity •of A. 

§1 Statement of the result 
The following is a removable singularities theorem for Yang-Mills fields in dimension 
4. [3) 

Theorem 1. Let A be a. Y.M. connection in a bundle P over B4\ {O}, such tha.t 

JB4 IFl2 < 00 • 

Then, there exists a gauge in which (P, A) extends to a smooth bundle (P, A) over 
s•. 
The following corollary is a theorem of extension of a Y .M. field defined outside a 
ball, to the one-point compactification. 
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It 'is a direct consequence of thc removablc singulArities thcorem, sincc the Y.M. 
functional is confon11aJly invariant. 

Corollary 1. Let A be a. Y.M. connection in a bund)e P over 

Ext(N) = {x E lR4 s.t. lxl > N}, a.nd let 
/: -+ Ext(N) 

X 
x i-----+ N lxl2' 

such that f IFl2 < oo. 
ÍExt(N) 

Then (/* P, /* A) extend to (/• P, J• A) over B 4 in a. suitab)e gauge. 

Corollary 2. There is a ·natural bijection between Y.M. connections on bundles 
over 1Er with finite action and Y.M. connections on bundles over S4 . 

Prooí oí corollary 2. Let A be a connection over lR4, f : S4\ {p0 } IR4 the 
stereographic projection. 1 

Then, /* A is a connection over S4\ {p0 }. 

Let us consider a geodesic ball centered at p0 . 

By dilation we may assume that the metric is dose to the flat metric. We can use 
conformai invariance of the Y.M. functional and thcorem 1 to extend J* A across p0 , 

in a sui table gauge. 

Exan1ple. [7). 
Every bundle over lR4 is topologically trivial. Bund]es over M 4 , a compact Riem-
manian manifold are classified by the second Stiefe] Whitney class and the first 
Pontryagin class p1 (second Chern class c2), If M = S4 , H 2(M) = O with any 
coefficients. Hence, bundles over S4 are classified by Pi(P) = c2(P) = i(P) also 
called the instanton number. 
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':fà.ke a self-dual connection on JR:4, the extension obtained is classified by the in-
stanton number 

i(P) = c2(P) = - 1 /, /F/ 2 = - 1- Y.M.(A) 
. . 8,r2 R4 4,,.2 

Although any bundle on JR4 is trivial, the extensions to the compactification S4 are 
not necessarily so. 

On can consider a quaternion line line bundle P = R4 x .D/, D = d+ A\ where 
A>.=lm( xãx) 

_,P + lx/2 • 
The curvature of A>. is given by p>. = Jt 2dx /\ ãx 

:- (.-P + lx/2)2 
One can check that *p>. = F\ and Y.M.(D) = 41r 2. 

(Note that the metric on the· sp· here 1·s g1·ven by ds 2 • • 4/dx/ 2 where x 1· tl (l+/x/2)2' s 1e 
stereographic project~on). 
Hence, this bundle over lR4 extends to a non trivial bundle, with instanton number 
1 over S4 . 

For general connections, i(P) = c2 (P) = 8; 2 j F/\F, and Y.M.(A) = j F/\*F = 

i jlF/2. 

The second chern class ·is a topological Iower bound for the Yang-Mills functional. 
ln fact, the ·Hodge operator * : i\ 2 M -+ i\ 2 M is such that *2 = 1 and is an isometry. 
So, the space of two-forms splits into the ±1 orthogonal eigenspaces of *, i.e. F_4 = 
FJ + FÃ, where 

*Fj = Fj (instanton), and *FÃ = -FÃ (anti-instanton). 

(Note that *F = ±F are Y.M. fieJds. ln fact D( *F) = ±D F = O, by the Bianchi • 

identity ). 
One obtains 

_!_JF" F = _!_j(F+ + p->" (F+ + p-> = ~j1F+r2 - ,p-rl, 
8,r2 8,r2 8,r 
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thus 

and the minimum is achieved when F is either an instanton, or an anti-instanton. 

Proof of theore1n 1 ( outline): 
\Ve may assume without loss of generality that Y.M.(A) < ê (since Y.M. is confor-
mally invariant ). 
The proof divides in two parts: 
(1) Estimate IIFll00 over B 4\{0} in terms of action, 
(2) Use "harmonic gauges" to extend A smoothly across the origin. 
Part ( 1) is divided in three steps. 

t5t step. Finding an inequality for ÃIFI, by means of Bochner-Weitzenbock formu-
las. Estimating by means of Morrey's theorem. 
The Bochner-Weitzenbock formula for a differential form tp gives 

ltf,,IÃltt,I = (tt,, '\12t/J) + (\11/J, '\11/J) - ldlfll2 > (t/J, V2t/J) = (t/J, !:lt/J) + (t/J, [F, t/J]), (by 
defini tion). 

Here Â = D D'" + D'" D, and '\12 is the crude Laplacian, and 

[F, t/J] = í;:([Fi,j, 1PiJ.J - [t/JA:;, Fi;))dxidxk. 
} 

Substituting tp = F in this formula, one finds 

IFIÃIFI > (F, [F, F]) -, 

(since F satisfies the Yang Mills equations and the Bianchi identity). 

Hence, 
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and we are in the hypotheses of the following theorem by Morrey, for f = IFI = b. 

M~rrey's theoren1 [3], [6]. Let b E Lq(B:r0 , ao), q > n/2, J a non negative 

function such that I' E Li(B:ro; a0 ) for <; < 1, and -~/ < b J in a weak sense. 
Then for B:i:;a. e B:r0 ; a0, 

where .J( depends uniformly on n, q,;, a~-nt2 j lblq . 
B:r0 ;ao 

Uhlenbeck in [3] gives some technical lemmas a.nd some minor extensions of this 
theorem. • 
She sh~,ws that if j f~ < oo, for some p > ~' then f is uniformly bounded in terms 
of the Y .M. action. • 
If p = 2, there exist constan ts e, 1( such that 

2rd step. Choosing a suitable gauge, in which IIAlloo estimates in terms of IIFll00 • 

To find approximation to a good gauge ·o ver B4 \ {O}, one wor ks on ann ul i 

and constructs a broken gauge, as follows. 
By dilation, we can assume j IFl2 < ê. 

B• 

Hence IFI < eclxl-2, i.e., on Um IFI < ec2m+l. ln particular, if m - O than 
IFI < 2a:. 
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We construct the "exponcntial gauge" on S1 = { x E /R,'1 s.t. lxl = 1}. 
(Recall: two exponential gauges are constructcd, one bascd at the north pole, thc 
other based at the south pole and matched by a rotation at the equator). 
This gauge satisfies 

At this point, one extends trivially along radial lines to the annulus U0 . 

3rd step. Constructing a "broken harmonic gauge" on B4\ {O}. 
On U0 , we construct a. gauge in which d* A = O. 
This is done by means of the implicit function theorem between Banach spaces. 
The construction of this gauge is somehow technical. For this construction we refer 
to [3]. 
This gauge ( called Hodge, or Coulomb) is nearly harmonic (iri the Abelian case, or 
in the linearized problem (d*d + dd*)A = O, since d*dA = d* F = O and d* A= O). 
At this point, one dilates • by a factor 2 and repeats the process above, for the 
new annulus U0 . Working in the broken harmonic gauge, one shows that IFI is 
uniformly bounded in the punctured ball B4\ {O}, and the new connection satisfies 

IA(x)I < lxllF(x)I. 
Hence A is defined (continuous) over B 4• 
Part (2) consists of finding a Hodge gauge in B4 , yielding the final smoothness of Â. 
This completes the proof of theorem 1. 

§2. Good gauge theorem 
We sta~e now the good gauge theorem (Hodge gauge) for a connection A. 

For more details, we refer to [9]. 

Theorem 2. Let Bn be a geodesic bali, of radius one, G a. compact Lie group, 
< p < n D a connection that trivializes as d + A with A E L{. There exists 2 - , 

positive constants k(n),c(n) such that if jlFA/n/2 < !(, then A is gauge equivalent 
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to a connection Â E L~ satisfying: 

.... 
(ar . d• A= O. 
(b) A"= Oon S"-1 = 8B" 

IIAIILn/2 < c(n)IIFIILn/2. 
(A 11 = normal component of A). 

(e) 
(d) 

1 

IIAIILf <- c(n)IIFIILI'• 

Outline of the proof. One shows that the set of connections that satisfy the 
hypotheses of theorem 2 is connected. 
Then shows that the subset of those connections for which the theorem holds is open 
and closed. 
The openness argument is the harder one, and is the one that uses the implicit 
function theorem between Banach spaces. 
Let A be a connection for which the theorem is satisfied, and let 's also assume that 
IIAIIL" < l((n) (with no restriction). 
Then, there exists ê _ such that if 11>.IILP < €, and >.., = -O on 8B", the· non-linear 

l 

equation 

admits a solution g E L~. 
One considers the operator 

By linearization, one obtains 

AI • Lpl. --+ LPl. 
. A • 2,11 

t/J d*( dt/J + [A, t/J]) = ~t/J + (A, dt/J] . 

(Here .1 means J tp = O, and II means tp 11 = O at âB"). 
This operator is an isomorphism betwee'n these two spaces, if IIAlln is small enough. 
ln fact 
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with q = np 
n~p 

Now, the itnplkit function theorem yields existence oí a solution g = eu E L~. 
The solution g depends smoothly on .t 

§3. Chern classes of Sobolev connections - (4) 
There exist removable singularities theorems that do not use the Yang-Mills equa-
tions. 
ln §1, we show that Yang-Mills fields over JR4 , with finite action, arise from connec-
tions over S 4 • Hence, the Chern numbers are integers. 
There are reasons (from Physics) to inquire whether this is true for arbitrary con-
nections. 

lt has been proven, first with some growth hypothesis, then in general in [4), that the 
sarne is true for connections with finite action, over a bundle with fiber isomorphic 
to a compact Lie group G. 
The theorem is the following: 

Theorem 3. Let A E L;~!e(JR'\ g ). If,n is even, n -=/ 2, ~nd j IFln/2 < oo, then 
' nn = n th Chern number that arises from a representation p _: G-+ SU(N) is integral. 

Corollary. A is the pull-back of a connection over sn, via stereographic projection. 

For a proof of theorem 3, we refer the reader to .[4]. 
ln the fourth lecture, (10], (11] we give a removable singularities theorem for bound-
ary points, the proof of which does not ·use the_ Yang-Mills equations, for the first 
part, but uses similar arguments. 
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Chapter 3. A direct method for minizi~g the Yang-Mills functional over 
a four-dimensional manifold [8], [9]. 

ln this chapter we see how to apply the good gauge theorem and the removable 
singularities theorem to find a smooth solution of the Yang-Mills equations over a 
four-dimensional manifold. 
The method is due. to Sedlacek [9] and it is strongly based on Uhlenbeck's compact-
ness theorem {theorem 2.1 in [8]). 
It involves working locally and then patching together the local solutions to find a 
global solution that _lives on a smooth bundle. 

§1. Brief geometric background 
We work on a four-dimensional, Riemannian, compact manifold with no boundary, 
Atf. We consider a principal fiher bundle P over A1, with fiber isomorphic to the 
Lie group G; i.e. locally Plv0 Ua X G, where the · { U0} 's form a covering of M. 
The bundle P can be described {up to isomorphisms) by a collection of functions 
{gap},9aJ3 : Ua n U13 -+ G. 
They are the transition fÚnctions from the trivialization over U0 , to the one over Up 
and satisfy the cocycle conditions 

9o/39/3o = id , 
9af39(J--r9--r6 = id . 

We consider connections A, with curvature F = dA+AAA, and the pure Yang-Mills 
functional 

1 / 2 Y.M.(A) = 2 ÍM IFAI . 

Recall that the Yang-Mills equations are obtained from Y.M.(A) via a variational 
principie and they are D* F = O (in a weak sense; i.e. (D AW, F) = O, for any smooth 
one-form w). 
For reasons that will be explained later, we do not wish to fix the bundle we work on. 
We work with families of connections {Ai} defined on bundles Pi over M. These 
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bundle have fibers isomorphic to the sarne Lie group G, which is M nmcd t ó he 
compact (although this last hypolhesis can be removoo). 
Also, they have in common a topological obstructuion '7, which is defined via Cech 
cohomology. 

lf the Lie group G is simply connected this obstruction is zero. If G == S0(3), then 
T/ E H 2( M, Z2) is known as the second Stiefel-Whitney class. 

§2. A direct method of minimization - Analysis background. 
We consider the family F of all connections on principal G-bundles over M with 
given obstruction 77. Since the Y.M. functional is bounded below, we can define 

m(77) = inf Y.M.(A). 
AE.1' 

--

Vve look for a connection A such that Y.M.(A) == m(TJ). A direct method for fin<ling 
A is the following classical method. One takes a minimizing sequence, i.e. a sequence 
{Ai} such that 

and hopes to be able to pass to a _converging subsequence {AD, A~ -+ A 00 , such 
that the Y.M.(A00 ) = m(17). The good gauge theorem enables us to consider con-
nections in some Sobolev space. Hence, in order to be a.ble to pass to a converging 
subsequence, we need a compactness theorem for such Sobolev spaces of connections. 
For our purpose, it is enough have weak-convergence. 

Definition. Let X be a Banach space and x• its topological dual. We say Xn _. x 

(converges weakly to x) iff -X(xn)-+ ,\(x) for every À E X•. 
A basic theorem of functional analysis says that a ball of radius r in a Banach space 
is weakly-compact (i.e. compact in the weak-topology) iff x•• X. 
The Sobolev space L:( U) of vector functions over neighborhoods U C M are reflexive 

Bana.eh spaces. 
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Hence, the following theorem holds: 

Theorem. Any bounded, closed subset of Lt( U) is weakly compact. 

To prove the main theorem, stated and outlined in the next section, we 1:1se Sobolev 

embedding theorems and multiplication theorems. 
ln particular we use the embedding L~ e L and continuity of the mu)tiplication 

maps L~ EB L~ -+ L~ and L 4 EB L 4 -+ L2, in dimension four. 

§3. The main Theorem. 
The following theorem states existence of a limiting connection for a sequence that 
minimizes the Y.M. action, over a G-bundle over M except at most a finite number 
of points. 

Theorem 1 Let {Ai} be a sequence oC-smooth connections on G-bundles Pi, with 
obstruction TJ E Í/2(M, 1r, (G)). Suppose Y.M. (Ai) -+ m(17). Then there exists a 
subsequence {A:} anda countable cover {U0} of M minus at most a finite number 
of points, 91,··•,qlc, sections Ua(i): Ua-+ Pi, connections Aa E L~(J\'Ucr ®g), and 
functions 9a(J E LHUa n Up, G) such that 

Idea of the proof: 

Fa(i) -" Fa = dAa + Aa A Àcr (L2 ) 

9ap( i) -" 9a(J ( LD 

Âa = f;JAp9a(J + f;Jd90 13. 

One uses weak-compactness of closed and bounded subsets of Sobolev spaces LHU) 
and Uhlenbeck's good gauge theorem. 
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Since {A.} minimizes· the a.ction, if i is large enough Y.M. (Ai) are unifor"mly 
bounded. 
One takes a countable family of covers C; of radius 6;, with 6; -t O. 
Each C; is a finite cover of M and there are at most h balis in C; that have non-empty 
intersection, with h independent of j. 
The "bad" balls for Ai in a cover C; are those UE Cj for which fu1FAil 2 > J<(4). 
Let N,; = number of bad balis in C; for the connection A;. 
Then N,;l(( 4) < L 1 IFAi l2 < h f IFAi 12 < hL, where L is a uniform bound for 

uec,- u ÍM 
Y.M.(A;). 
Fixing C;, one finds a subsequence {AD for which the centers of the bad balls are 
eventually fixed. 
By diagonalization, one finds a new subsequence { AD such that the following holds: 
Vj, 3J s.t. the centers of the bad balis are fixed for every Aí, with i > J. 
By throwing away from every C; the "eventually" bad balls and taking everything 
that is left, one ends up with a cover C = {U0} i~, whi~h U0 is eventually good for 
the new sequence. 
By means of conformai invariance, ont! can apply the good gauge theorem to the 
ball of radius one and find good gauges for the connecti_ons Ai 1 . 

Ua 
ln these gauges the A0 (i) satisfy uniform estimates IIAa(i)IILf < _const IIFIIL:2 < 
const. 
At this point one uses weak-compactness to find local limiting connections. 
To show (2), (3), ( 4) one needs to use multiplication theorems and .Sobolev embed-
dings mentioned in the previous section. 

Remarks 
Why is the dimension four special? The L2-norm of curvature, i.e. the Y.M_. func-
tional is conformally invariant in dimension four. The covering procedure adopted 
barely works in dimension four, leaving some isolated singularities. _The multipli-
cation theorems used also barely work in dimension four. ln higher dimension, not 
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. . . . d k l 11 h t also patching the local so-only the mm1m1zmg procedure oes not wor oca Y, u • 
. . bl th b dle does not work. ln the lut1ons to form a connect10n on a reasona y smoo un . 

next section, we see more in details what can happen ov~r isolated points qi, • • • 'q1c. 

Theorem 2. Let A00 = { A0} be the connection on the bundle P oo = {9aP} over 

M\ { q1, ... , q1c} found in theorem 1. 
The following holds: 
(1) A00 satisfies the Yang-Mills equations. Moreover A 00 is in a Hodge gauge, i.e. 

d* A00 = O. 
(2) A00 can be extended to a. connection Â00 on a G-hundl_e Poo over M. 
(3) 11(P00 ) = 11 (theohstructions is preserved). 
(4) Y.M.(A00 ) = m(11) 

Idea of the proof: One shows that A00 satJ.sfies the Y Jv1. equations by contradic-
tion. 
The connection A00 must satisfy the Y .M. equations, otherwise one could construct 
a sequence of smooth connections that for indexes sufficiently large have energy less 
than m(17). 
ln fact, let o be such that (D Ao w, FAJ < O for some smooth one-forrn w with 
compact support on Uc:r 
One can think of w as the trivialization over Uo of one-forms w, on the bundles pi• 

The coonections Ai+ tw, differ from Ai only on U0 , and for i sufficiently large and 
t sma.ll Y.M. (Ai+ twi) = Y.M.(Ai) + t(DA 0 (i)W, Fo(i)) + { higher arder terrns in 
t} < Y.M.(Ai), 
This is a contradiction, since there is sufficient regularity to show tha.t a.11 terrns in 
the above inequality converge to the obvious limits. 

One obtains (2) as consequence of the removable singularities theorem for Ya.ng-Mills 
connections, proven in the previous chapter. 
The obstruction 'l does not see isolated points, hence (3) holds. 



On obtain ( ) 
tional. 

( ( ) An J 

. . ( i) = n ( 71) i pli 

1n 11 y f h 

§ . Wh an happ n over isola ed points q1, ... , q1c? (the bubble theorem) . 

f. f l 

that for an giv n Tf E H 2(M, 1r1G), there exista bundl nd a conn ction 
(P. A ) ith obstruction T/, such that A00 satisfies the Yang-Mi11s equations and is 
an ah olute minimum for th Yang-Mills functional over all bundle with obstruction 
17 . 

What happens if in the minitnizing procedure we fi x the bundle P and consider a 
sequence of connections {Ai} over P , that minimize action over P , i. e. Y. 1.(Ai)--+ 
m(p)? 

The minimizing procedure could be carríed out in a similar way, to find a crit icai 
point A00 (A00 satisfies Y.M. equations) on a bundle P00 , also with obstruction 
TJ = 11(P). 
Since the Y.M. functional is lower serríicontinuous, Y.M.(A00 ) < m(P). 
The bundle P 00 is in general different from the bundle P we start with, since the 
second Chern class is not preserved in the procedure. 
ln general, if {Ai} is a minimizing sequence over a fixed bundle P, one has 

and 

Thus, 

IM IFÁoo 12 < lim IM IF.t 12 , 

= f /Ft /2 + /Fi00 /
2 - J /FÃ; 12 + IF}oo 12 < 
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Changing orientation on M, one obtains 

ln other words , it is possible when minimizing on a fixed bundle that the lüniting 
connection correspond to a lower energy. This happens because energy is concen-
trating on the fibers over the points qi, . .. , qk , that are removed. 
This phenomenon is expressed in the following theorem (see pg. 64 in [7]): 

The bubble theorem: Let {Di} be a sequence of self-dual connections on a SU(2)-
bundle with instanton nu_mber 1, over a 4-dimensional, compact, Riemannian man-
ifold M, wjth no boundary, then {Di} admits a subsequence {DD such that one of 
the following holds: 

(1) { DD is gauge-equivalent to {DD , such that D~ -+ D in the moduli space 
M. 

(2) there exists a poin t q E M, and, Vé. > O, there exists a trivializatjon of 
the bundle over M\B9;~ = 1( such that { DD is gauge-equivalent to { DD, with 
í5: = d + Âi , Â~ -+ O on J(. 

On B9;~, there is a sequence of dilations 

anda qu n of conn tions {D~} gaug equi 1 nt t {D,~} 0 B r , uch that for 
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60me x0 E JR4 

rib d in (2) i know as bubbling. Wh t h pp n i that y 
taking m 11 r nd mall r n ighborhoods and a qu nc of blow-ups, th s q nc 
of onn tion i not co ve gi g to something with zero energy, but to the t Hooft 
in tan· on. ln th limit, the bundle w start with b com s flat and a four-sph r 
br k off at q, carrying th energy of an instanton. 
One can think of doing the inverse process, i.e. gluing instantons to Y .M. connec-
tions to obtain new solutions with higher energy. 
In the gluing process the new connection won 't be exaxt ly Yang-Mills, one needs to 
appl implicit function theorem arguments to find exact solu t ions. 
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