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Abstract 

We study the stability properties of the sucker rod pumping systems. 
We show the existence . of a global attractor. Using results of nonau-
tonornous differential equations, dynamical systems and a-contractions, 

· we prove under very natural assumptions on the externai a-periodic 
force, that the a.ttractor is exactly a periodic orbit. 
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1 Introduction· 
ln (2] we proved the existence._ of a strong periodic solution for a mathematical 
model of sucker rod pumping systems given by: 

tltt - Uxx + CUt = i(t,x); Ü <X< f, t > 0, 
u(t,O) = µ(t), 
ux(t,l) = rn (1- H(ut(t.l))]. 

(1.1) 

Here u( t, x) denotes the displacement at time t > O of a material point 
at position x E [O, l] at reference configuration; l is the length of t½e rods; e 
is a positive constant that embodies the dissipation mechanisms; J(t,x) are 
externa] a-periodic forces, like gravity forces, acting on the body of the rods; 
µ(t) are the a - periodiç motion imparted by the engine on the top of the rods; 
,ri is a positive constant associated to the weight of the colurnn of fluid that 
acts on the rods when the walking valve closes; H(.) is the Heaviside function, 
that is // ( x) = l if x > O and li ( x) = O if x < O. 
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The systemii lan b·~ ma~e homogeneous at the end x = O~ ihrough a con-
venient changing of variable, the action of µ(t) can be incorporated to the 
externai force j ( t, x), and system the will became 

Utt - U,:,: + CUt = f(t,x); Ü <X< f, t > 0, 
u(t, O) = O, (1.2) 
u:r:(t,l) = m [1-:- JJ(ui(t.f))]. 

The mechanism will work imparted· by .the o--periodic force f(t, x ). We observe 
that, if the amplitude and frequency of f are small, the system can not work, 
that is, the down end, x = l can be stopped, u,( t, f) = O. It will be assumed, 
that is not the case, we will suppose 

H) J(t,x) is such that, for strong solutions, Ut(t,l) 
assume positive and negative values. 

therefore, in this way, at least for the strong solutions, we have u:r( t, l) assum-
ing the maximum value m, and the rninimum value O. 

ln_ this paper we will analyze the stability properties of the periodic solution 
of.the system (1.2). The point of view adopted here is the sarne of Bale [6], 
Se'll [3] and Ceron and Lopes [l] for nonautonomous equations and dissipative 
processes. 

We will work with the sarne abstract formulation used in [2], that is: 

w + Aw =(O,/) 

where A: V(A)' e 1i-+ 1i is the operator given by 

A( u, v) = (-v, -u" + cv ), 

on the domain: 

V(A) = {( u, v) E H 2(0, l) n H1,o x H1,o: ( v(i), u'(l)) E f}; 

where r is the graph 
u'(l) 

-------111 

V l) • 

w = (u,v) E 1i = 111,0 x L2(0,l), //1,0 = {u E /1 1(0,l): u(O) = O}, and 

llwll 2 = li ( u, v) 11 2 = lu'lh + lvlf1 
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2 The Abstract Theory 
Let X be a complete metric space, IR + = [O, oo ). A family of mappings 
S( t) : X -+ X, t > O, is sai d to be a dynamical systems ( or a Cº-semigroup) 
if: 

1. S(O) = 1, 

2. S(t + s) = S(t)S(s), 

3. S(t)x is continuous in t, x. 

Defini tion 2. I Por an y x E X, the orbit 1( x) through x is defiried as 1 ( x) = 
{S(t)x, t > O}, the w-limit set w(x) o/ x is defined as 

w(x) = íl (u S(t)x) , 
"~º t~.t 

and, a set B C X is said to attract a set C {under S(t)) if d(S(t)C, B) -+ O 
as t -+ oo. 

Defi11ition 2.2 Let a be the /(uratowski measure o/ noncompactness, that is, 
-

a(B) = inf {d: B has a finite cover by sets of diameter < d} 

The semigroup S(t), t > O, is said to be a a-contmction if there is a continuous 
function k : IR+ -+ IR+ such that k(t) -+ O as t -+ oo, and, for each t > O 
and each bounded set B C X we have { S( s )B, O < s < t} bounded and 
a(S(t)B) < k(t)o:(B) 

Definition 2.3 A pseudo-metric p is said to be precompact if any bounded 
sequence (with respect to the distance of X) has a subsequence which is Cauchy 
with respect to p. 

Theorem 2.1 Jf for each t > O, S(t) satisfies 

d(S(t)x,S(t)y) < k(t)d(x,y) + Pi(x,y), 

where k( t) > O and Pi is a precompact pseudo-metric, then 

a(S(t)B) < k(t)a(B) 

for any bounded set B. 

The proof of the theorem can be found in [l }. 
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Theore1n 2.2 If S(t), is a o:-contraction and B is a nonempty set in X such 
thal 1(B) is bounded, then w(B) is nonempty, compact, invariant , and w(B) 
attracts B. Jf, in additio'fl:? B is connected, then w( B) is connected. /n par-
ticular, if, for some x E X, 1 ( x) is bounded, then 1 ( x) is compact and w( x) is 
nonempety, compact, connected, and invariant. 

The proof can be found in [6]. 

3 Application to Sucker Rod Pumping Sys-
tems 

We proved in [2] that the operator given in ( 1.4), ( 1.5) is maximal monotone, 
so, if J E BV10 c(O, oo; L2(0, e)) we can apply the results of this theory (see, 
[4]), to obtain, for every initial condition w 0 = (u0, v0 ) E 1í, a unique (mild) 
solution w(t) = (u(t),v(t)), t > O, of (1.3) such that w(O) = w0 and, moreover, 
if w0 E V(A) then, w(t) E 'D(A), t > O, w(t) has a right derivative that satisfies 
d:t = f ( t + O) - Aw(t). . 

Defining T1(t)wo = w(t) = (u(t),v(t)), t > O, w0 E ri where w(.) is the 
solution of ( 1.3) such that w(O) = w0 , we have that T1( t)w0 is continuous in 
t and w0 [4, Theorem 3.16, pg 102), or more specifically, if Wn --+ w0 then 
T1(t)wn --+ T1(t)w0 uniformly for t in compact interval of IR+. For simplicity 
we will denote T1(t) by T(t). 

Theoren1 3.1 Jf f E Bl1i0 c(O,oo;L2 (0,e))nL00 (0,oo;L2 (0,f)), then the solu-
tions of ( 1. 3}, ~orr-esponding to initial values in a bounded set go exponentially 
to a bounded set, in padicular, lhe problem ( 1.3) is bounded dissipative and 
orbits of bounded sets are bounded. 

The proof is given in [2, remark on pg. 10]. 

Theoren1 3.2 // lV( w) is given by 

W(w) = W(u, v) = l [~(u') 2 + ~v' + 2/3uvjdx, 
2c 

/3 = 8 + c2e2' 

then, 
i) ( 1 u '1 2 + 1V1 2 ) < ~V ( u' V) < ( 1 H / 12 +_ 1 VI l) 1 

and, moreove1·, there exists a const ant À > O, s1.ic/1 lhat 

where p, is a pn:compact pscudo-metric, for every t > O. 
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Proof: The proof of fi rs t item i) ca n bc found in [2}. For thc th<' sccond one, 
if w1 , w2 E V( A), ,vc ca.n use lhe sa.mc kin d of computation of [2 , thcorcm 3. 1) 
to obt a.in 

vV (T(t)w 1 - T (l) w2) < e- '' 1Hl (w1 - w2 ) + t\(Jm fo' lu ,( .s, f ) - u2 (.s, l )l d.s . 

where ui(s, .) is the first component of T(s)wi . 
Since V( A) is dense in 1-í , we can conclude that this inequality remains true 
for every W 1, tv2 E 1-í. 

Set ting, for t > O . 

• Pt(w1, tv2) = 4/3m fot lu1(s, l)) - u2(s,l)jds . 

we have tha.t Pt is a precompact pseudo-metric. lndeed, if { wo,n} is a bounded 
sequence in H, then frmn theorern 3.1 we ha.ve for the corresponcling solu-
tions that llun ll u (o, t;/-fl (O, f. )) a.nd llún llL2(o,t;L2(o,1.)) are bounclecl, anel since the 
inclusion /{1 (O, f) C[O, f] is compact the Aubin-Lions lemma (Lions [7], 
theoren1 5.1, p. 58) implies that { un} is relatively con1pact in L2 (0, t; C[O.f]). 
Therefore, there is a Cauchy subsequence, that we keep denoting by { un}, in 
L2(0,t; C[O./!]). Therefore, since 

Pt(wn, wm) = 4/3rn fot lun(s,l)) -~ um(s,l)jds . 

< 4/3m l lun(s)) - Um(s)IL~:s < 4/3mt112 (l lu.(s)) - um(s)li,~ds )''2 

= 4,Bmt 112 llun - Um IIP~O,t;C(O.l])· 

we have Pt is a cornpact pseu<lo-metric, and the theorem is proved. 
Using the results of the two pre_vious theorems and the results of [5] and 

(6] w e can state lhe following result : 

Theoren1 3.3 Jf f E B11i 0 c(O, oo; L 2 (0 , f )) is q-periodic ÍTiot , the Poincaré map 
w --t T(a)w has a fixed po int (and therefore (1.3) a a-periodic solution) ~nd 
a global, compact, invariant attractor. 

• Given f E BV(O, a; L2 (0, f)) , <lefinecl in the interval [O, a] we will extend f 
periodically to IR , and consider the function space F, of all translates of f, 

:F = { J., : J., ( t) = J ( r + t)} e L 1 (o, u; L 2 (o, l)). 

Also, we aj ll denote ~y X the following metric space: 

X = 1-í X 1-í X :F. 

where the metric considered is the maximum one. Under this conditions we 
have: 
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Le1nn1a 3.1 The funclíon space FC L 1 (0, cr; L 2(0, e)) is compact 

Proof: Given a sequence JT", we can supposc, using the fact of / is cr-periodic 
that Tn E [O, a), and moreover, that Tn _. T in (01 a] taking a subsequence J 
necessary. Setling hn = lrn - ri and V1(t) == Va1·(J : [-a, t}), we can change 
the coordinates and use the a-pcriodicity of / to obtain 

• {" IJT,.(t) - fr(t)ldt = {" lf(rn + t) - J(r + t)ldt lo . lo 

= f:.A· 11(1 + h.) - f(t)ldt < L~A. v,(t + h.) - v1(t)dt 

< 1~hn V1(t)dt < hn ~J(o'). 

therefore Írn --+ Í-r E F. 
The next lemma is standard. 

Lemn1a 3.2 lf X and Y are Banach spaces,. then conside1·ing X x Y with the 
maximum norm, we have lhe following: • 

1. dia1n(B) = diam(Px(B) x Py(B)) 
= max{diam(Px(B)), diam(Py(B))} 

E~ a(B) = a(Px(B) x P1~(B)). = max{a(Px(B),a(Py(B))} 

where B C X X Y is a bounded set and Px . and Py are the respective projections. 
Moreover, if T1 ·: X --+ X and T2 : Y --+ Y satisfies 

then, T: X X Y--+ X x Y; T(x, y) = (T1x, T2y), satisfy 

where B e X x Y, B1 C X and B2 C Y are bounded sets. 

Theorem 3.4 The family of mappings S(t) : X --+ X, t > O, given by 

is a dynamical system 

Proof: X is a complete metric space. The Semi-group propriety S(t + s) = 
S(t)S(s) follows using the sarne arguments of Sell [3], and the continuity is a· 
consequence of Brezis [4, theorem 3.16, pg 102]. 
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Theore1n 3.5 Jf f E B V (O, a; L2 (0, C)) satisfies li), th en lhe periodic solution 
of {1.3) is globally asymptotically stable. 

Proof: Theoren1s 3.1, 3.2 and lcnm1as 3.1, 3.2 imply { S( l) : t > O} is a o-
contraction and orbits of bounded sets are bou nded, therefore , from theorcm 
2.2 we have tha.t ,(w1, w2, f) is pre-compact an<l, lhe w-lirnit set, w(wi, w2, /), 
is nonempty, compa.ct connected and, invarianl. 

Now we will consider the function V : X IR given by V( w1, w2, /) = 
llw1 - w2ll 2 , If tvi, w2 E V(A), and t > O, we have, since lhe graph ris non 

·increasing, that, 

d+ d+ 
dtV(S(t)(w1,w2,f)) = dtllT(t)w1 -T(t)w2ll 2 

= - < T(t)w 1 - T(t)w2, AT(t)w1 - AT(t)w2 > 

< -e fo\v1 - v2 ) 2 dx < O • 

where Vi is the second component of T(t)wi, i = 1, 2. 
Then, V(S(t)(w1,w2,f)) is non increasing, anda simple argument of density 
imply that this is also true for w1, w2 E 1í. Therefore, 

and 
V= d on w(w1, w2, J). 

If ( w1, w2, /) E w( wi, w2 , J) and ( üi, vi) = Tf(t)wi, i = 1, 2, we can approx-
imate w1 , w2 by sequences W1,n, w2,n E V(A) and therefore, since w( w1, W2, J) 
is invariant, 

as n -+ oo, uniformly for t in compact intervals. 
If Vi,n js the second component of TjWi,n (i = 1, 2), we have 

d+ f' 2 dtVn(t) <-elo (v1,n -v2,n) dx 

that imply 
.Vn(t) - V11 (0) < -e {' f\v1,n - V2,n)2dxds 

• Ío lo 
then, as n -+ oo, we have 
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Therefore, setting cp = Üt - fi2, we have cp, = v1 - v2 = O a.nd then Cf> is an 
equilibdum solution of lhe linear prob]cm: 

Utt - tL,-.r = 0 
tt(l,0)=0 
u,(t,e/1) = O 

that is cp( t, x) = kx, k constant, and 

therefore 
(üi)x(t,f) = (ü2)x(t,f) + k 

and t}1en k must be zero, since the maximum and mm1mum of (üi).r(t, l), 
i = 1, 2, are respectively m and O. Therefore tü1 = w2 and d= O. 
ln particular for w2 the initial condition of the strong periodic solution , of 
(1.3) and W1 arbitrary, we have V( S( t )( w1, w2, f)) -+ O, as t -+ oo, that is 
T( t )w1 -+ 1 , and the theorem is proved .. 
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