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Abstract

We study the stability properties of the sucker rod pumping systems.
We show the existence of a global attractor. Using results of nonau-
tonomous differential equations, dynamical systems and a-contractions,
we prove under very natural assumptions on the external o-periodic
force, that the attractor is exactly a periodic orbit.
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1 Introduction

In (2] we proved the existence of a strong periodic solution for a mathematical
model of sucker rod pumping systems given by:

A

Uy — e+ = f(t,2); 0<z<E >0,
u(t,0) = u(l), (1.1)
uz(t, €) = m (1 — H(uy(t.£))).

"Here u(t,z) denotes the displacement at time ¢t > 0 of a material point
at position z € [0,¢) at reference configuration; ¢ is the length of the rods; ¢
is a positive constant that embodies the dissipation mechanisms; f(t,z) are
external o-periodic forces, like gravity forces, acting on the body of the rods;
u(t) are the o-periodic motion imparted by the engine on the top of the rods;
m is a positive constant associated to the weight of the column of fluid that
acts on the rods when the walking valve closes; H(.) is the Heaviside function,

that is H(z) =1if 2> 0 and H(z)=0ifz <0.



The systems can be made homogeneous at the end z = 0, through a con-
venient changing of variable, the action of u(t) can be incorporated to the
external force f(t,z), and system the will became

Uy — Uz +F ey ="f(t,2); 0<z<{ t>0,
u(t,0) =0, (1.2)
uz(t,€) = m (1 — H(u(t.0))].

The mechanism will work imparted by the o-periodic force f(t,z). We observe
that, if the amplitude and frequency of f are small, the system can not work,
that is, the down end, z = £ can be stopped, u(¢,£) = 0. It will be assumed,
that is not the case, we will suppose

H) f(t,z) is such that, for strong solutions, u(t,%)
assume positive and negative values.

therefore, in this way, at least for the strong solutions, we have u,(t,¢) assum-
~ ing the maximum value m, and the minimum value O.

In this paper we will analyze the stability properties of the periodic solution
of the system (1.2). The point of view adopted here is the same of Hale [6],
Sell [3] and Ceron and Lopes [1] for nonautonomous equations and dissipative

processes.
We will work with the same abstract formulation used in [2], that is:
|  +Aw = (0, f) (1.3)
where A : D(A) C H — H is the operator given by
A(u,v) = (—v, —u”" + cv), (1.4)
on the domain:
D(A) = {(u,v) € H*(0,0)N Hig x Hig: (v(f),u'(€)) €T};  (1.5)
where I is the graph
u'(¢)

v(¢)

w=(u,v) € H = Hyox L*0,€), Hyo= {u€ H0,¢) :u(0) =0}, and

lwll? = i (w, 0)II* = [u'[Zs + [vlis
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2 The Abstract Theory

Let X be a complete metric space, R+ = [0,00). A family of mappings
-i(t) : X — X, t >0, is said to be a dynamical systems (or a C°semigroup)
if:

1. $(0) =1,
2. S(t+s) = S(t)S(s),

-

3. S(t)z is continuous in ¢, z.

Definition 2.1 For any z € X, the orbit v(z) through z is defined as v(z) =
{S(t)z, t > 0}, the w-limit set w(z) of z is defined as

w(z) = () (U S(t)z) ,

s20 \t>s

and, a set B C X is said to attract a set C (under S(t)) if d(S(t)C,B) — 0

ast — oo.
Definition 2.2 Let a be the Kuratowski measure of noncompactness, that is,
a(B) =inf{d: B has a finite cover by sets of diameter < d}

The semigroup S(t), t >0, is said to be a a-contraction if there is a continuous
function k : R+ — IR™* such that k(t) — 0 as t — oo, and, for each t > 0
and each bounded set B C X we have {S(s)B, 0 < s < t} bounded and

a(S(t)B) < k(t)a(B)

Definition 2.3 A pseudo-metric p is said to be precompact if any bounded
sequence (with respect to the distance of X)) has a subsequence which is Cauchy

with respect to p.
Theorem 2.1 If for each t > 0, S(t) satisfies
d(S(t)z,S(t)y) < k(t)d(z,y) + pu(e,y),
where k(t) > 0 and p, is a precompact pseudo-metric, then
. oS(t)B) < k(t)a(B)
for any bounded set B.

The proof of the theorem can be found in [1].
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Theorem 2.2 If S(t), is a a-contraction and B is a nonempty set in X sych
that y(B) is bounded, then w(B) is nonempty, compact, invariant, and w(B)
attracts B. If, in addition, B is connected, then w(B) is connected. In par-

ticular, if, for some z € X, y(z) is bounded, then y(z)is compact and w(z) is
nonempety, compact, connected and invariant.

The proof can be found in [6].

3 Application to Sucker Rod Pumping Sys-
tems

We proved in [2] that the operator given in (1.4), (1.5) is maximal monotone,

so, if f € BVjy.(0,00;L%(0,¢€)) we can apply the results of this theory (see,

[4]), to obtain, for every initial condition wo = (uo, vo) € H, a unique (mild)

solution w(t) = (u(t),v(t)), t >0, of (1.3) such that w(0) = wp and, moreover,

1f wo € D(A) then, w(t) € D(A),t > 0, w(t) has a right derivative that satisfies
= f(t+0) — Aw( ). ;

Deﬁmng Ti(t)wo = w(t) = (u(t),v(t)), t 2 0, wog € H where w(.) is the
solution of (1.3) such that w(0) = wo, we have that T;(f)wo is continuous in
t and wy (4, Theorem 3.16, pg 102], or more specifically, if w, — wq then
Ty(t)wn, — Ty(t)we uniformly for ¢ in compact interval of IR *. For simplicity
we will denote T%(t) by T'(¢).

Theorem 3.1 If f € BWoc(0,00; L*(0,¢)) N L*°(0, 005 L2(0,¢)), then the solu-
tions of (1.3), corresponding to initial values in a bounded set go exponentially
to a bounded set, in particular, the problem (1.3) is bounded dissipative and
orbits of bounded sets are bounded.

The proof is given in 2, remark on pg. 10].

Theorem 3.2 If W(w) is given by

2¢
W (w) = W(u,v) /[ + v +2ﬂuv]d:c ﬂ=§:‘cg—[§’

then,

i) (0 + o) < Wi(w,0) < S+ 1ol

and, moreover, there ezists a constant X\ > 0, such that
i) W(T (0w, — T(t)w,;) < e MW (w, — w,y) + po(wy, wa)

where p, is a precompact pseudo-metric, for every t > 0.

4



Proof: The proof of first item 7) can be found in [2]. For the the second one,

if wy,w, € D(A), we can use the same kind of computation of (2, thecorem 3.1]
to obtain

W(T()wr — T(Dwy) < e MW (w, — wy) + flﬂm/ |y (8,€) — uy(s, €)|ds.

where u;(s,.) is the first component of 7'(s)w;.

Since D(A) is dense in H , we can conclude that this inequality remains true
for every wy, w2 € H.
Setting, for t > 0.

pe(wy, wy) = 4Bm /Ot lur(s, €)) — ua(s,?)|ds.

we have that p, is a precompact pseudo-metric. Indeed, if {wp .} is a bounded
sequence in l, then from theorem 3.1 we have for the corresponding solu-
tions that ||wnl|L2(0,611(0,0)) and ||tn|L2(01;22(0,)) are bounded, and since the
inclusion H'(0,() — C[0,(] is compact the Aubin-Lions lemma (Lions [7],
theorem 5.1, p. 58) implies that {u,} is relatively compact in L?(0,¢; C[0.£]).

Therefore, there is a Cauchy subsequence, that we keep denoting by {u,,}, in
L? O,t,C[O (}). Therefore, since

ptns ) = 48 [ Jun(5,6)) = (s, )lds.
Q

t ¢ 1/2
<4pm [ fun(s)) = um(s)lgwds < 48me'? ( [ tnts)) - um(s)ﬁwds)

= 4ﬂmt1/2||un_— um“L’(o,t,C[o.l])-
we have p, is a compact pseudo-metric, and the theorem is proved.

Using the results of the two previous theorems and the results of [5] and
[6] we can state the following result:

Theorem 3.3 If f € BV),.(0,00; L*(0,¢)) is g-periodic in.t, the Poincaré map
w — T(o)w has a fized point (and therefore (1.3) a o-periodic solution) and
a global, compact, invariant atiractor.

- Given f € BV(0,0; L*(0,¢)), defined in the interval [0,0] we will extend f
periodically to IR, and consider the function space F, of all translates of f,

F=A{fr: f-(t) = f(r +1)} C L'(0,0; L?(0,¢)).
Also, we wjll denote l3y X the following metric space:
X=HxXxHxZF.

where the metric considered is the maximum one. Under this conditions we
have:



Lemma 3.1 The function space F C L’((j,a; L*(0,¢)) is compact

Proof: Given a sequence f, , we can suppose, using the fact of f is ¢- periodic,
that 7, € [0,0), and moreover, that 7, — 7 in [0,0] taking a subsequence if
necessary. Setting h, = |tn — 7| and Vj(t) = Var(f : [~o,1]), we can change
the coordinates and use the o-periodicity of f to obtain

[ 1@ = SOt = [T 1S 0) = (7 + 1)

_ /_ S ) = SOl S / Vi(t + ha) = Vy(t)dt

< Vi(t)dt < h,V,
< /r:-h.. 7(t)dt < .f( o).
therefore f,, — fr € F.

The next lemma is standard.

Lemma 3.2 If X and Y are Banach spaces, then considering X x Y with the
mazimum norm, we have the following: -

1. diam(B) = diam(Px(B) x Py(B))
= maz{diam(Px(B)), diam(Py(B))}

2. a(B) = a(Px(B) x Py(B)) = maz{a(Px(B), a(Py(B))}

where B C X XY is a bounded set and Px and Py are the respective projections.
Moreover, if T1 : X — X and Ty : Y — Y satisfies

oTi(By) < qua(B1);  a(T3(B)) < g2 Bs)
then, T: X xY = X xY; T(z,y) = (Tiz, Tay), satisfy
a(T(B)) £ maz{q, ¢2}(B)
where BC X xY, By C X and B, CY are bounded sets.

Theorem 3.4 The family of mappings S(t) : X — X, t > 0, given by
| S(8)(wsy wa, f) = (Ty(t)wr, Ty (t)ws, o)

is a dynamical system

Proof: X is a complete metric space. The Semi-group propriety S(t + s) =
S(t)S(s) follows using the same arguments of Sell [3], and the continuity is a -
consequence of Brezis [4, theorem 3.16, pg 102].
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Theorem 3.5 If f € BV(0,03 L*(0,()) satisfies H), then the périodic solution
of (1.8) is globally asymptotically stable.

Proof: Theorems 3.1, 3.2 and lemmas 3.1, 3.2 imply {S(¢) : t > 0} is a a-
contraction and orbits of bounded sets are bounded, therefore, from theorem
2.2 we have that y(w,, w,, f) is pre-compact and, the w-limit set, w(w,, w,, f),
is nonempty, compact connected and, invariant.

Now we will consider the function V : X — IR given by V(wy,w,, f) =
lwi — we||?. If wy, wy € D(A), and t > 0, we have, since the graph I is non
‘increasing, that,

d+ dt 2
2V (5@ w02, 1)) = —|IT(t)wy = T(t)w

= — < T(t)w; — T(t)ws, AT(t)w; — AT(t)wg >

¢
< —-C/O (v; —vy)%dz < 0

where v; is the second component of T(t)w;, t=1,2,
Then, V(S(t)(w1,w,, f)) is non increasing, and a simple argument of density
imply that this is also true for w,,w; € H. Therefore,

V(S(t)(wh w?af)) — d _>. 0) . as L= 00,

and
V=d on w(w,uws,f).
If (0, W3, f) € w(wy, wy, f) and (4;,7;) = Tj(t)w;, ¢ = 1,2, we can approx-
imate 1,, w; by sequences wy n, wyn € D(A) and therefore, since w(wy, w,, f)
1s invariant,

Va(t) := V(S(t)(wip, wan, ) = V(E) := V(S(E)(@1, 2, f)) = d,

as n — oo, uniformly for t in compact intervals.
If v; », is the second component of Tjwia (¢ = 1,2), we have

+ 4
%V,.(t) <—c /0 (V10 — v2.0)2d2
that imply -
Vi(t) = Va(0) < —c /o /0 (V1.0 — U2,0) dzds

then, as n — oo, we have
t :
OS—C//(‘&-)l—"l—)Q) d$d8=>t_)1=‘52.
0 Jo
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Therefore, setting ¢ = @y — 15, we have ¢t = U1 — 02 = 0 and then ¢ is an
equilibrium solution of the linear problem:

Uy — Uppe = 0
u(t,0) =0
w(t, ell) = 0

that is (t,z) = kz, k constant, and
uy(t, z) = Uy(t, ) + kz
therefore
(1)z(2,€) = (82)=(t,0) + &

and then k must be zero, since the maximum and minimum of (i;),(t, ¢),
1 = 1,2, are respectively m and 0. Therefore w; = w, and d = 0.

In particular for w, the initial condition of the strong periodic solution ¥ of
(1.3) and w,; arbitrary, we have V(S(t)(w;,w,, f)) — 0, as t — oo, that is
T'(t)wy; — ~, and the theorem is proved. ,
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