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THE EQUATIONS OF A VISCOUS INCOMPRESSIBLE
CHEMICAL ACTIVE FLUID I: UNIQUENESS AND
EXISTENCE OF THE LOCAL SOLUTIONS

M.A. ROJAS-MEDAR and §. A. LORCA

UNICAMP - IMECC, C.P. 6065
13081-970, Campinas, SP, Brazil

Abstract

By using the spectral Galerkin method, we prove the existence and unique-
ness of strong local solutions for the motion of a chemical active fluid. We
also derive estimates of the solution that are useful for obtaining error hounds
for the approximate solutions.

AMS Classifications: 35Q30, 76D05,

Key Words: Chemical active fluid, local strong solutions, Galerkin method, Navier-

Stokes equations.

1 Introduction

In this work we study the initial value problem for the equations that
describe the motion of a viscous-chemically-active fluid in a bounded domain
C R‘, n = 2 or 3, in the time interval [0,T], 0 < T < +o0.

In the Oberbeck- Boussinesq approximation, the state of such a system 18

described by the equations (sce Joseph [14]).

*Short title: chemical active fuid.



%‘t‘.+u.vu-Au+vp=j+(5+1/3)g,
%+u-Vé—Aé=f

ot ) (1.1)
%b+u-v'lv—A'¢;=h

divu=20. J

Here u(t,z) € R" , 6(t,z) € R, 1/.)(t,.r) € IR and p(t,z) € IR denote
respectively the unknowns velocity, temperature, concentration of material in the
liquid and the pressure at a point z € Q at time t € [0,T); g(¢t,z), J(t,z), f(t,2)
and h(t, r) are given source functions.

On the boundary I', we assume that
u(t,z)=0; 6(t,z)=0,; ¥(t,z) =, (1.2)
where 8, and v, are known functions, and the initial conditions are expressed by
u(0,2) = uo(z) ; 0(0,2) =bo(z) 5  $(0,7) = Yo(2) (1.3)

where u,, fo and tﬁo are given functions on the variable z € 0.

The expression V, A and div, as usual, denote the gradient, Laplacian and
divergence operators, reﬁpectively;-the ith component of u.Vu is given by [u.Vu]; =
Eu,-g—: ; (u.V)g= jgu,-g%, for ¢ = 6 or ).

The main goal in this paper is to show existence and uniqueness of strong
solutions. Our strategy for setting this question consists of transforming problem
(1.1)-(1.3) into another initial-value problem with homogeneous boundary condi-
tion; next, this new initial value problem is treated by using spectral Galerkin ap-
proximation (spectral in the sense that the eigenfunctions of the Stokes and Lapla-
cian operators are used as basis, functions).

It is now appropriate to mention some earlier works on the initial boundary-
value problem (1.1)-(1.3), which are related to ours.

When chemical reactions are absent (¢ = 0), the problem (1.1)-(1.3) is

equivalent to the classical Boussinesq’s problem, which has been investigated by

.



several authors; see for instance Hishida (12], Korenev [15], Morimoto [19], Shirbret
and Kotorynski [24] and the references therein. Concerning the system (1.1)-(1.3),
Gil's [10] studied the stationary model, Belov and Kapitonov (3], the stability of the
solutions of the system (1.1)-(1.3) with diflerent boundary conditions. They used
linearization and fixed point arguments. The more constructive Galerkin method
was used by Morimoto [19], in the case of Boussinesq’s problem, to obtain global in
time weak solution for 2 < n < 4 and by Korenev [15], again in the Boussinesq's
problem, to obtain local and global in time strong solutions for 2 < n < 3, both
with different boundary conditions, and by Rojas-Medar and Lorca [21] by using the
Spectral Galerkin method to show the global existence in Lime of the weak solutions
for any n > 2.

In the case of the Classical Navier-Stokes equations (§ = i = 0), Prodi [20],
by using the eigenfunctions of the Stokes operator as basis for the Galerkin method,
obtained more regular solution, under weaker assumption on the data. Also, by
using this basis Heywood [11] showed the classical regularity of the solution in a
way that was easier and independent of potential theory (for this last technique see
for example Ito [13], Fujita and Kato (8], Ladyzhenskaya [16], Giga and Miyakawa
[91)-

In this paper we extend the ideas of Prodi [20] and Heywood (11] to the
system (1.1)-(1.3). We prove the local existence of strong solution of (1.1)-(1.3).
Our results also are valid in the case ¥ = 0 (Boussinesq's problem), and they
extend the results of Korenev [15] and Hishida [12], since the initial data can be
more irregular than theirs. Also, differently from Iishida [12], we will use the more
constructive Spectral Galerkin method of approximation. Thus. the results in this
paper form the theoretical basis for future numerical analysis of the problem: here
we will obtain estimates for the approximate solutions Lhat will be fundamental in a
paper in which we will obtain optimal error estimates for such approximations (see
[22]). These estimales will also play a rol in the prool of global existence of solutions
of (1.1)-(1.3). (See [23]). In another publication we will study the regularity for
{ > 0 of solution obtained in this paper.

Finally, the paper is organized as follows: In Section 2 we state the basic

assumptions and results that will be used later in the paper, we state the transform



problem and we also rewrite the transform problem in a more suitable weak form;
we describe the approximation method. In Section 3 we prove our first result of the
existence of strong solution. In Section 4 we prove ours second result of the existence

of strong solution; in Section 5 we state the results on the hydrostatic pression.

2 Preliminaires

Let Q C IR", n =2 or- 3, be a bounded domain with boundary T of class
C"!. Let H*(Q) be the usual Sobolev spaces on  with norm || - ||, (s' real),
(- - ) denote the usual inner product in L?(2) and | - | denote the L?-norm on 0.
By H;(f) we denote the completion of Cg?(?) under the norm || - ||y, the L?-norm
on ) is denoted by | - |, , 1 < p < co. If B is a Banach space, we denote by
L%(0,T; B) the Banach space of the B-valued functions defined is the interval (0, T)
that are L%integrable in the sense of Bochner. Let H”%(F), s = 1,2,... be the
usual trace space obtained as the image of H*(f2) by the boundary value mapping

on I', equipped with the norm
||‘7“Ha-}(r) =inf{||v||, ve H*(?), v=7 on T}

(see, Adams [1] for their properties of the above spaces).

H-Y¥T) and H=3/*T') denote the dual space of H'/*(T') and H3?*(T) re-

spectively.

The functions in this paper are either IR or IR"-valued and we will not

distinguish them in our notations.

We shall consider the following spaces of divergence-free functions.

or () = {ve Cy(R) / divv=0in N}
H = closure of Cg%, () in L*(Q)
V = closure of Cgo (Q) in H'(Q) .

We observe that the space V is characterized by
V={ue Hy(/divu=0inQ}.

The space L*(Q) has the decomposition L}(Q) = H @ H*, where H*
(¢ € L*(Q)/ exists p € H'(Q) with ¢ = Vp} (llelmholtz descomposition).
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Throughout the paper P will denote the orthogonal projection from 7.°\7)
onto . Then the operator A: H — H given by A = —PA with domain D(A) =
H*(Q) NV is called the Stokes operator. It is well known that the operator A is

positive definite, self-adjoint operator and is characterized by the relation

(Aw,v) = (Vw,Vv) forall we D(A),veV.

The operator A~! is linear continuous from H into D(A), and since the injection
of D(A) is H is compact, A~! can be considered as a compact operator in H. As
an operator in H it is also self-adjoint. By a well know theorem of Hilbert spaces,
there exists a sequence of positive numbers p; > 0,541 < p; and an orthonormal
basis of H, {w,}%, such that A~'w, = p;w;. We denote \; = ;. Since A™' has

range in D(A) we obtain that

0<A << £ X4 £+ limAj = 400 and {w,-};?‘;, are an orthonormal basis
of H. g

Therefore, {w,l\/x};‘;l and {w;|A;}32, form an orthonormal basis in V' (with
the inner product ((Vu,Vv),u,v € V) and H?*(Q) NV (with inner product
(Au, Av),u,v € D(A)), respectively. We denote by Vi = span[w’,...,w"].

We observe that for the regularity properties of the Stokes operator, it is usually
assumed that 0 is of class C? this being in order to use Cattabriga’s results [5].
We use instead the stronger results of Amrouche and Girault (2] which implies,
in particular, that when Au € L*(Q) then v € H?*(Q) and ||u||;z and ||Au|| are
equivalent norms when  is of class C'".

Similar considerations are true for the Laplacian operator B = —A : D(B) — L*(Q)
with the Dirichelet boundary conditions with domain D(B) = H*(Q) N H}(9) and
we w'ill denote *(z),7: by the eigenfunctions and eigenvalues of B, respectively.
We denote by Hy = span [¢!,...,¢"].

Before we define strong solution, we will transform problem (1.1) - (1.3) into another

one with homogeneous boundary value. In order to do it, we consider the following

problem:



=1 in (0,T)xT
¢(0) = wo.

By using spectral Galerkin method we can obtain the following results

Y —Ap =0 in (O,T)XQ}

Lemma 2.1. Let Q be a bounded domain of class C'!. .Assume that ¢

L*0,T; HY*(T)), n, € L*0,T; H-¥*T)) and o € L*(R). Then, there exists
an unique solution ¢ of (2.1) such that for any t € [0, T

¢ t
[(OF + [ V() Pds < C [ (Uliprmqey + el r-srey)ds + lol

Moreover, if n € L*0,T; H¥*T)), 5 € L*0,T; H~"/*(T)) and o €
H'(Q2) , n(0) = pp on T, then ¢ satisfy

t t
IVe()]? + /0 |Ap(s)|’ds < C /0 Uiy + el =120y s + Hepol [} -
for any t € [0, 7).

Also, if n € L=((0,T) x T') and ¢ € L*(12), then the following Maximum
Principle holds

l¢|Lee(o.)xa) < |n|Lee(o,1)xr) + lolL= () -
Applying the above Lemma for n = 6, and ¢, any function such that ¢o =

0,(0) on I' (we observe that such function exists by hypothesis done to n = 6,), we

obtain the existence of ¢ = 03 such that 8, is an unique solution of the problem

(2.1), moreover 8, satisfies the conclusions of Lemma 2.1.
Analogously, we can obtain the existence of ¥, such that i, is a unique
solution of the problem (2.1) and ¥, satisfying the conditions of Lemma 2.1.

Now. we can transform the equations (1.1)-(1.3) by introduction the new



variables 0 = 0 — 0, and ¥ = ) — Y2 we obtain
du )

-5-1-+uVu—-Au+Vp—(0+¢)g+gl

6—0-+uV0 Al = [ —u. Vb,

at | (2.2)
oy

Eﬁ-u.ng-Az,b:h—u-Vlbz

divu=0 m (0,7T) %9, !

u=2_0 - =0 z l,b=0 on (O,T)XF, (23)
Ule=o =t ; Olizo =00 ; ¥|i=o = Yo, (2.4)

where g, = (0, + ¥,)g + j; 60 = 6, — 02(0) and vy = '.Lo — 2(0).

Now, by using the properties of P, we can reformulate problem (2.2)-(2.4)
as follows: find

(u,0,%) € C([0,T]; V x (Hg(R))*) N L*(0, T; D(A) x (D(B))?)
such that

(ug,v) + (v.Vu,v) + (Au,v) = ((0 + ¥)g,v) + (91,v), YveV
(0,€) + (u.V0,€) + (B, €) = (f, &) — (u.V0,£) , V€€ Hy() (2.5)
(%1, @) + (u.V, 9) + (B, 8) = (h,¢) — (u.V,, ¢) , Vo € Hy(R)

(u(0), 0(0), ¥(0)) = (uo, bo, to) - (2.6)

The spectral Galerkin approximations for (u, 8, i) are definéd for each k € N
as the solution (u*, 8%, ¥*) € C*([0,T); Vi x (Hy)*) N C'([0,T) x Q) of

(u¥,v) + (uF.Vub, v) + (Au*,v) = ((6* + ¥*)g,v) + (g1,v), YwEV (2.7)
(6%, €) + (u*.VO*, &) + (BO*,€) = (f,€) — («*.V65,€), YE€ H,  (
(¥, 8) + (V5. V*, 8) + (By*, ¢) = (h, ) — («*. Vi, 4) , Vo€ He (2.
u*(0,z) = uf(z) , 0%(0,2) = 65(z) ,¥*(0,2) = ¥ (2) (2.10

Here, uX are the projections of ug on Vi, analogously, 0% and Yf are the

projections of 8y and ¥y on Hj, respectively.
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Equations (2.7)-(2.10) are equivalent to a system of ordinary differential
equations, which define u«*,6* and ¥* in an interval [0,(x). We will show some a
priori estimates independent on k and t, in order to take ty = 7. Also, we will
prove that the sequences by u*, 0% and ¥* converge in appropriate sense to a solu-

tion (u, 8, ¥) of (2.5)-(2.6). Our first result concern the local existence of solutions
(2.5)-(2.6) is the following,.

Theorem 2.2. Let Q2 be a bounded domain in IR"(n = 2 or 3) with boundary T of
class C"!. Suppose that

(02, %2) € L=(0, T; (H'(Q))?); (uo, 8o, o) € V x (HL(N))?;
j € L*(0,Ti L*(Q)); g € L*(0,T; L3(Q)); £, h € L*(0,T; L))

Then, there exists 7y > 0 with T} < T such that the problem (2.5)-(2.6) (or (2.2)-
(2.4)) has a unique solution in the interval [0,Ty).

Moreover the approximations
u*, 0¥ and * satisfy the estimates

t
[Vut? 4+ |V P + |OykP? + /o (AW +|BO*|* + | By*[?)ds < F(1)
t
Sk + 1657 + 1t s < Gy

]

The functions on the right hand sides depend on their argument ¢, and in

addition on T, T and the norms, ||uol|v, HHOHH';, %ol (s ,

T
JJ 41+ 1A 4+ lgl2)ds  and sup{l1€alhy + 14l )
0,

on the interval in question the functions are continuonsly differentiable with respect
to 1.

With stronger assumptions on the initial valyes and the external fields. we
are able Lo prove the following.

Theorem 2.3. Under the hypothesis of Theorem 2.2 and suppose the forces satisfy

T
Fi0 = [[(8l + 105 + 10,11 + aup)

8



and

Fat) = sup {00:(0)] + 100} + [ (100301 + 1000} ds < +o0
te(0,7) 0

and the initial data ug € D(A),60,% € D(B). Then the solution (u,0, ) obtained
in Theorem 2.2 belongs to C([0,Ty); D(A) x D(B)*) N C'([0,T3}; H X Praiingh

Furthermore, the approximations u*,6* and ¥* satisfy

t
[ub[? + 1657 + 1pE7 + [ (9l + [VOFP + [V )ds < H(;
0
|Au*|? + | BO*|* + | BY*|* < L(2).

The functions on the right hands sides depend as their argument ¢, and in

addition on T, T and the norms ||uo|lyz, ||0oll2, ||%olliz, Fi(t) and Fa(t). On

the interval in questions these functions are continuonsly differentiable with respect
to 1.

3 Proof of Theorem 2.2

Setting v = u* in (2.7), we obtain

o] -

d
Z I+ V6P = (6" + vh)g, uF) + (g1, u") (3.1)

since (u*.Vu* u¥) = 0. We observe that

)
(6" + ¥¥)g,u*)| < Colgls(10** + [W*1") + 21V u*[?
(g1, u¥)]

Il

1+ (02 + ¥2)g,u")|
. B 3
< Celil’ + Culgl3(102" + [gal) + 719w

So, we deduce of (3.1)

d
1 IV < Celgl5(10°F + 1WA + 1027 + [f?) + CLjif? + g]Vu"|2 . (3.2)

Moreover, setting £ = 0* in (2.8), we obtain

Y



1d
S g+ 190 = (1,05 + (u*.90,,0%)

since (u*.V6*,6%) = 0. Now, we observe that

|(u*.V6,,6%)|

|(u*. V6%, 6,)|
C|u“l3|02ls]V0"|
Celut| IVu] 10,13 + S| V0" ?

Ceslut P 102ls + VW + S|V O*?

IN A

IN

thanks to Holder’s, Sobolev’s and Young’s inequalities. By using the above estimate
in (3.3), we get

d )
0T+ VO S Celf? + Coglu*|als + | VOH* + 2| Vu*'.

Similarly, we obtain

(3.4)

d )
G+ IV S CAhl® + Ceslu*Plale + e VY[ + 2|Vu' (3.5)

By taking € > 0 and § > 0 small enough, by adding (3.2), (3.4) and (3.5),
we obtain

d
S 04+ 194) + D0t + |90 4 |7

< C(|g13 + 16218 + [wa2&) (u*|? + 1651+ 19*17) + Clal3(162)* + |2l*) + CIfIF + ClA|* + CliI%

Integrating this last inequality, we get for any t € (0,7

(O + 0O + W OF + [ (T + 1967 +[99P)ds

IA

(O + 10 Q)1 + WO + C [ (Igl3 + 16218 + [ald)(lu*[? + 107 + [0*F)ds
+C [ lal3U0 + Wal)ds +C [ US4 AP + i)
0 0
t
jwol? + 106f7 + [6ol? +C [ (1ol + 163l + [Wal8)(1u'[7 + 0°1 + 19* s

+C [ o007 + s + O A1+ 140+ iPds

IA

since |u"(0)| = | Piuo| < |uol, 10*(0)| = |Ribo| < |00, |*(0)] = | Retbo| < [ol-

10



Consequently, by using the Gronwall's inequality, we have
t
[WHOF + 10O + WO + [ (IVub() + 90 (5)P + [Vu*(s)'ds < C,

thanks our hypothesis and where C is a positive constant that only depends on
the regularity of ' and the initial datas, the above inequality implies that (u*), (0*)
and (¢*) exist globally in t and are uniformly bounded sequence in L*(0,T; H) N
L*(0,T; V) and L*=(0,T; L}()) N L2(0, T; HA(N)), respectively.

The next step of the proof consists of proving that there exist T} >
0,7y < T such that (u*, 6%, ¢*) is a sequence uniformly bounded in L*(0,T;; V) X
(L0, T: HID)2.

To this end, we put v = Au* in (2.7); we obtain

1 d .
5371 VH T+ 1AW = (6" + yb)g, Au*) + (g1, Au¥) = (u. Vb, Auh). (3.6)

Hoélder’s and Young’s inequalities, together with the Sobolev embedding
H' — L® imply
(6" + 9*)g, Au®)| < (VO + [V )|gl] + e| Au*[?
(g1, Au*)| = |G + (62 + 2)g, Au¥)| < Celi* + Ca(l102l1F + |wal|P)lgl? + e| Aub|?

where € > 0.
Also, by using the estimate given in Duff [7, p. 154], we have

[(u*. Vuk, Au¥)| < 3| Vu¥|® + | Auk|?.
Consequently, by setting ¢ = 1/6 in (3.6), we have

d '
E]Vuk|2 +|AuFP < C(IVO P + [VF )93 + CIVU¥(® + + C(10212 + |[wba]1?)]g) 2.
(3.7)
Now, we take { = B6* in (2.8) to get
1d
2 dt
Also, we observe that for all § > 0

|0%|> 4 | BO*|* = (f, BO¥) — (u*.V0*, BO¥) — (u*.V6,, BO*). (3.8)

(f, BO¥)| < Cs|f|* + 6| BO* .

11



The second term in the right-hand side of (3.8) will be estimate by means

of the incqualities of Holder, Sobolev and Young as follows

(u*. V6%, BO*) < |uk|s|VO* || BO|
< |Vut| |VO+ (2| V 04|12 Bo¥|
< C|BO*PI|Vuk| V0|1

< Cs|Vut['|VO*|? + 6| BO*|?

where 6 > 0.

The third term in the right-hand side of (3.8) will be estimate by means of
the inequalities of Holder, Sobolev, Young and the following inequality of Nirenberg
(7, p. 149]:

fuleee < C(lule|Vuls” + Jule)

as follows

|(«*.V8,, B8¥)|

IA

|u*|1=|V6,| | BO|
C(IVu* 2| Auk|'/? 4 |Vu¥|)|V8,| | B |
C(IVu* V2| Au*| 12| 8, | Bo¥|

+ C|Vu¥| |V8,| | Bo¥|
Cs|Vu*| |V8a|* |Aub| + 5| BO*|?

+ Cs|Vu*2|V0,* + 6| Bo|?
Coe|Vu* |V 0,]* + C5| V2| W0, ?

+ 26|VO*|* + e Aut|?,

IN A

IA

IN

where £,6 > 0.

Analogously the terms that involving y*

can be estimate as before. Conse-
quently, for appropriate ¢ and §, we obtain

d

gV P+ VO 4 1994 + | 4w 4 |BoH2 4 |Byhp

S CUVE' + 199 P)glE + CIVu* + Clj + C(jjoy)2 + 1¥:l1)lgl5
+Clvuk|4lvokl2 B C'fl? & CIVUkIZIVf)zl? Y Clvukl‘llvak|4

+C|Vu* || Vk? + Ch? + C|Vu* | Vy,)? + C|Vu* | vkt (3.9)

12



Selting n(t) = |Vu*(t)]? + IV05(1)]2 + |Vyk(1)]?, the above differential inequality

imply
i < Cn? “|2 2 2 2 2y( 12
" S+ Cn+ CG1E+ 117+ 1R + (1162117 + [12117)1913)

thanks to our hypothesis.
By applying Lemma 3 in Heywood [11, p. 656], we conclude that there

exists 7\ € (0, 7] such that
n(t) < Fo(t,n(0)) vt € [0,T]

where 7(0) = |Vuo|? + |V6o|? + |Vio|?, and Fp is the solution of the initial value
problem |
Fg = CF+CFo+CU5P+ If* + 1A + (116217 + [142113)1913)
Fo(0) = 2(0).

By returning to (3.9), we are left with

[uH O + VO OF + [V P + [ (Aol + [BO(s) + 1B (s))ds
< [Vuol + V00l + [Vl + CF(t,1(0)) + CFult,n(0))

€ [P + I + ks + € [ +Ia(o)Dlgls)Bds
= F(1). (3.10)

Thus,
u* is uniformly bounded in L*(0,7y; V) N L*(0,T; D(A)), 0%, * are uni-
formly bounded in L%(0,Ty; Hy()) N L*(0, T; D(B)).

Now, by taking v = uf,£ = 0f and ¢ = ¥ in (2.7), (2-8) and (2.9), respec-
tively, we get

= (6" + ¥*)g,uf) + (91, uf) = (. Vub up) — (A, ),

Juf|?
057 = (f,0F) — (u¥.V0,,0F) — (u*. V0", 07) — (BO", 07),
W2 = (b o) — (. T, 0f) — (R VF, ) = (BY ).

13



Irom this, we have
[uk)Pds < C [0V + 99 Dlglhs + o+l Tu[ + [Au s,
/u' 10§ (s)]*ds < C/O‘H”’-{-|u".V02|2+|u".V0k|1+|lJO“|7]d.s, (3.11)
[ ks < ¢ LR + 1t Tyl + b T+ s

Now, bearing in mind (3.10) and the Sobolev embedding //? — L*, we

obtain the following estimate:

|u*. Tu*|?

IN

[u* | | V)P < ClAUP| V¥
C sup F(t) |Ad¥)?,

0<t<T

IA

Analogously, we prove

[u*. V0,1 < C|V0,* |Au*|?* < C||0,]]s] Au*|?,
W . Oygl* < CIVY* | AWt < Cllalli| AuP,
|u¥ VO ? < C sup F(1)|Au*]?

OSIS'I.]
[u* Ok < C sup F(t)|Au¥|?.

0<t<Ty

By using this estimates in the inequality (3.11) together our hypothesis, we obtain
for all t € [0, 7))

( ] t
/ luf(s)|*ds < C|y|1,w(o.r-,u(n))/ (IVOF)? + |V¢k|2)d6+c/ lg1(s)*ds
0 . 0 0
t
+C( sup F(O)+1) [ |Aut(s)ds
0<t<Ty 0
= Gi(t)
Moreover, (u¥) is an uniformly bounded sequence in L?(0, T}; H).

Also, by using the above estimates together with the hypothesis we have
] 1 t
[t @rds < ¢ [V ()P + CUOlimiraniay + sup F() [ |Auk(s)Pds
0 (1] 0<t<T)y 0

t
+ c/ |BO*(s)[*ds
0
Gia(1)

i

14



forall t € [0, Ty), so, (0F) is an uniformly bounded sequence in L*(0,Ty; L*()). Anal-

ogously, we prove that (¥'%) is an uniformly bounded sequence is L(0, Ty; L*(R)).

Now, by standard methods (see for instance (17]. [11], [20]), these estimates

enable us to take the limit as k — +00 in (2.7)-(2.9)
for (2.5)

. We conclude that a solution
-(2.6) exists in stated class. We have also that w, € L*(0,T; H), (resp.
0, ¥ € L0, T; L*(N))). This condition, together with u ¢ L*(0,T; D(A))

, (resp.
0,v € L*0,T; D(BY)), implies by interpolation (See, Temam (25, p. 260), that u

(resp. 6,v) is almost everywhere equal to a continuous function from [0, T1] into

V' (resp. [0,7) into Hg(R)), consequently the initial conditions u(0) = ug (resp.

8(0) = 6y, ¢*(0) = Vg) are meaningful. -

4 Proof of Theorem 2.3
We w

ill need further estimates for the approximations u*, 6% ¥*. To this

end, we differentiable (2.7)-(2.9) with respect to { and set v = uf, € = 6% and
o = ;. We are left with

d
el +1Val = (0 + 4590 uh) + (6 + 4E)g, ub)

+ ((90)0ur) = (uf. Vb, uf) — (uh Puk, uby, (4.2)

| —

d
VP HIVOE = (£,04) — (ub. 0y, 0%)

B -

— (W V(G)00F) — (w00, 0%) — (a9, 0, (43)

SIGET 4 IR = (b ) = (uE.Dn, 0)
+ (0 V(Ya) ¥8) = (uh- V9, ) - (w908, 0. (4.4

eS| —

We observe that
(u*.Vug, up) = (u. V0, 6F) = (u*. VY, pk) =0
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Also, by using the Cauchy - Schwarz and Young inequalities, we obtain
I I
(01 < 511 + 51041
1 l
(e, ¥1)| < Slhe* + 51001
2 2
By using the Holder and Young inequalities, we get

[((0* + ¢*)ge, ub)| < C(IVO*? + |[V*D)ge)* + €] V|
1((0F + ¥F)g, u¥)| < C.(IVOEP + |wF1P)glls + <l Vu, .

Similarly, we have

|G + (02 + ¥2)90 + (02 + 2)ug, uf)|

[((g1)e, uf)l
< Celiel® + Ce(ll0211F + 1allD)lgel® + Col1(82)e]? + 1(62)el*) N9 lLs
+e|Vuf[’.

To estimate the fourth term in (4.1), we use the Hélder’s and Young’s inequalities

together with the Sobolev embedding H' — L*; we obtain for any ¢ > 0 and suitable
Ce > 0,
(ur- Vb, uf) < fug] [Vu¥]s gl

< CuPIAG + | Vuf? .

Similarly, we have for any § > 0 and suitable Cs > 0

[(uf. V0%, 0F)| < Cslufl* |BO*|* + 6|V 0%

[(uf.V02,05) = |(uf- V0, 0,)|
< |ufls]02]s| VOF]
< Csluf| [Vuf| 102)3 + 6|V 65|

< Coelui? 10215 + €| Vuf|® + 8| VOE[?

[(u*.(V0:),, 05) = |(u*. V0, (0:),)]
< Col AU P|(02)]* + 8|V OF|

16



Analogous estimates are valid for the terms that involve ¥*.
By taking ¢ > 0 and § > 0 small enough. by adding (4.1), (4.2) and (1.3) and
by using the above estimates, we are left with the {ollowing differential inequality

-—uu. P+ 16017 + 11 + (19w ] + V6] + V]

CUe* + £ + |he®) + C(IVE 2 4+ |Vt )2 4 |VE? + |Veu)))la)?
+ C>16 1 + )P + 1(02).1’ +1(¥2)e)lglds + C(luf (| Aut? + | BO*)? + | By*|?
+1621¢ + v2lg) + |Au 12 (|(82)(]® + I(w2)e}?)

Cer(t) + Cla?(1VE* > + [Ve*?) + Clal3(16F1* + [¢F?) + ClugPea(t) + (Au*pa(),

IA

IA

where o1(t) = [jel* + |/i* + |he]® + g 21V + |V¥a)?) + 1g3(1(62)e)* + 1(&2)il?).
wa(t) = |Au*]? + |BO*|? + (6,18 + |vld,
ea(t) = |(62))* + |(w2)? .

Consequently, for 0 <t < T;; we obtain
, .
[ (OF +168OF + [EOF + [((Vuk) + Ve ) + 99k ()P)ds
t
< It OF + 15O + IO +C [ ¢a(s)ds (45)
( t
+C [l IV + 199*(6))ds +C [ [u(s)Ppa(s)ds
t
+C [ 1Aut(s)Pes(s)ds.
0
We observe that by hypothesis ¢, € L'(0,T), 3 € L=(0,T), consequently
' ke 12 ‘ k()12
[ 1464 @)Pga(s)ds < lpalimom [ 14u*(s)Pds
< leslee@nF(t)

thanks to the estimate (3.10).

Moreover, by using the estimate (3.10), we conclude that

|V ()2 + |[VO*(t)]* < sup F(t) < C < +oo.

0<I<T;

t t
0, [a&)FIVOH(s) +|V¥H(s))ds S C [lals)ds < € < oo, since
g9 € L*(9 x (0,T)).
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Now, analogously as in Heywood (11, p. 665], we can prove that
k() + 105 Q) + Wi (O < Ly

where L > 0 is a constant independent of k.

Thus, by using the above estimates in (4.5), we get

; : k(o2
AR + B OF + [ OF + [ (TP + [THEP+ [TYi ()

t
<L+ C“P1|L7(o‘1) + C](p;;l[,oo(olr)p(t) +C+C /(; ‘u’,‘(s)lzgog(s)ds .
<Cc+C [ k)P d
<C+C [ luk(s)Ppa(s)ds
Therefore, applying Gronwall’s inequality to the above integral inequality, we obtain

WP + 1057 + WEOP + [ (Vubo) + Vo ) PIVUE () )ds
< Cefo‘ v2l8)d g
= H(t)

for all t € [0,T}]. By the estimate (3.10) and hypothesis imply

/0 pa(s)ds < Fi(t)

for all t € [0,T}), where Fy(t) is a continuous function independent of k. Conse-
quently, we conclude that uf is uniformly bounded in L*(0, T}; H) N L*(0,Ty; V)
and 0%, ¢F are uniformly bounded’in L**(0,Ty; L*(Q)) N L2(0, T}; H}(Q)).

Now, by taking v = Au*,{ = B0* and ¢ = By* in (2.7), (2.8) and (2.9),

respectively, we obtain

|Aut? = ((6* + v¥)g, Au¥) + (1, Au¥) — (u*. VuF, Auk) — (uk, Auk),
lBOk|2 = (f,Bok)—(uk-vo'hBok)_(uk‘vok‘BBk) - (ol:’Bok),
|B¢k|2

(hy BY*) = (u*. Vo, BYY) — (u*. V4, By*) — (¥, Byt),

In what follows, we observe that if o € LP(0,T; X) and ¢, € LP(0,T; X), where
X is a Banach space and 1 < p < oo, then v € C([0, T); X) (see, Lions 7], p.7).
Thus, we have g, € C([0,T); L*(R2)). This together with the estimates (3.10) and
(4.5) imply

lAut|? < Hy(1)
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for any t € [0,T3).

Similarly, and by using this last estimate we get
|BO*|* < Hy(t), |By*|* < Hy(t)

for any t € [0, T}].

Thus, u* is uniformly bounded in L%(0,T;D(A));0%,+* are uniformly
bounded in L*(0,T; D(B)). To prove the continuity of u,(¢) in the L?—norm, we
only need to show that uy is in L*(0,Ty; V*). In fact, if u,, € L*(0,Ty; V*) then the
fact that u is in L*(0,Ty; V), implies that u € C'([0, T); H) (Lemma 1.2, p. 260 in
Temam [25]).

To prove that w, € L?(0,Ty; V"), it is enough to show the existence of C' > 0
independent of k such that

T,
[ 1b(s)fids < C.
0

To this end, we differentiable equation (2.7) with respett to t; we obtain

ug = Pu((g1)e + (8F + ¥5)g + (0F + 9F)g — ub.Vu* — v Vi) — Auy,

= .

The above estimates for u*,0* and ¥* imply that G* is uniformly bounded
in L*(0,Ty; V*). In fact, we have

| Pe(uf.Vu)|ve sup |(Peug.Vu,v)|

julv <1

sup |(uf.Vu*, P)|
lvlv<1

< C sup [ub|VuH] ol

jvlv<1

C|Vufl.

IN

Here we have used the Sobolev embedding H' — L*, the estimates (4.5) and the
continuity of Py in L* (Von Wahl [26, p. XXIII)); C denotes a general constant

depending only the previous estimates. Consequently, due to estimate (4.5) we

obtain

T‘ E7uk)? "\ utpds < €
/ |Pe(uf.Vut)ds < C | |Vuk|?ds < C,
0
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where C > 0 is independent of k € N.
Also, we have
|Pe(u* . Vub)|ve = sup |(u*.Vuk, Pov)| < [ub|pe=| V| < C|Vu(|-
|"|-51
T .
Thus, /0 | Pi(u*.Vuf)|3.ds < C thanks to the estimate (4.5).
Also, from '

|Aufly. = sup [(Auf,v)| = sup |(Vuf,Vv) < |Vuk|,

lvly <1 [v]v <1

T
we conclude that / |Au¥|?.ds < C. The other terms in the G* are analogously
0

estimate.
To prove the continuity of 8,(¢) and 1,(t) in the L*—norm, we work exactly

as before.
To finish the proof we have to show the continuity of u(t),8(¢) and ¥(t) in

the H?(Q2)—norm. We will only prove the continuity of §(¢) and u(t); the proof of

¥(t) is quite similar.
Also, we will prove this continuity only at { = 0; for other {; > 0 the

argument is analogous.

We observe that € L*(0,Ty; D(B)) (resp. u € L>(0,Ty; D(A))). Thus,
given any sequence {t;}%2, C IRy, with {; — 0% we can extract a subsequence such
that 0(tx,) — @ weakly in H? for some 9 € H? (resp. u(ty,) — u weakly in H?
for some u € H?). Since we know (Theorem 2.2) that 0(ty,) — 0, strongly in H?,
(resp. u(tr,) — uo strongly in H'), the above implies that 0 =0, (resp. U = uy).
Moreover, since this holds for any sequence {{,}%2, with t, — 0%, we conclude that
8(t) — 0o weakly in H? as t — 0% (resp. u(t) — ug weakly in H? as t — Q+),
Consequently, due to the lower semicontinuity with respect to the weak topology of
the norm, we have |Bf,| < ‘E%q inf | BO(t)| (resp. |Aug| < ‘l_i.rgl inf | Au(t)]).

Now, if we are able to prove that
Jim sup |BO(t)| < |Bbol, (4.6)

(resp. lir(}l0 sup |Au(t)] < |Aug|) then we will have ‘lirgllBO(t)l = |BOy| (resp.
P i

lilrl]Au(t)l = |Aug|), which together with the fact that BO(t) — B0, weakly in

1~0
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L? (resp. Au(t) = Aug weakly in L?) will imply that BO(t) — B0, strongly in L?
(resp. Au(t) — Aug strongly in L?) (sce Brezis [4], p. 52).
In order to prove (4.6) we proceed as follows: put £ = B0 in (2.8) to obtain

VO + - —IBO"V = (f, B6%) — (u*.V0,, BO*) — (u*.V6*, BOY)

d

= 2/ — u*.V0, - u*.V 0", BO*)

— (fe = 5. VO, — v+ V(8;), — vk . VO — uF VOF, BOY).
t

By integration with respect to time, and by using our previous estimates for u* and
6%, we obtain

BO*(1)* < |BOof* +2{(f — u*. VO, — u*. V6", BOY)
= (J(0) = US.V(()Q)( ) — HOVOS,BO")} + M2

where M is a positive constant depending on the previous estimates. From this, we
conclude

|BO(t)|> < |B8o|* +2{(f — u.Vb, — v.V0, BY)
— (f(0) = 40.V(8,)(0) — uo. V8, B} + Mt/? .

Now, since u.Vl, — uo.V(6,)(0),u.V8 — uoVly, f — f(0) in L? and B — Bé,
weakly in L? as t — 0*. We obtain (4.6).

For the velocity u, working exactly as before, we have
|Au(t)]? < |Auol® +2{(0 + ¥)g + g1 — u.Vu, Au)
— ((80 + %0)9(0) + g1(0) — uo.Viug, Aug) + Mt*/?
observe that by the continuity of 6(t) and ¥(t) in the H*(©2)—norm, we have
((6 + ¥)g, Au) — ((0 + ¥)(0)g(0), Aug). as t — 0F (4.7)

The other terms are worked as before. Thus we obtain that lim sup |Au(t)| < |Aug|.
t—ot

This completes the proof of the Theorem. g
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Remark. We observe that we cannot obtain firstly the continuity of u(t) in the

H?—norm, since g € L*(0,T; L3(R)), 9. € L*(0, T} L*(Q)) implies only the continuity

of ¢ in L?% and it is not sufficient to obtain the convergence (4.7). g

5 Results on the pressure.

In a standar way we can obtain information on the pressure, in fact, we have

Proposition 5.1 Under the hypothesis of Theorem 2.2, there exist a unique func-
tion p € L*(0, Ty; H*(R)/IR) such that (u,8,,p) is solution of (2.2) - (2.4). Under
the hypothesis of Theorem 2.3, p € L*(0, Ty; H'(Q)/IR) N C([0, T1); L*(Q)/ R).

Proof. We observe that (2.2)(i) is equivalent to Au = P(F), where F' = g; + (0 +
¥)g —u — u.Vu.
Now, we observe that under the hypothesis of the Theorem 2.2 (resp. The-
orem 2.3), we have F' € L*(0,Ty; L*(Q)) (resp. F € L*(0,Ty; L*(2)).
Therefore, Amrouche and Girault’s results 2] imply that there is unique
p € L*0,Ty; H'(R)/R) (resp. p € L=(0,Ty; H'(Q)/R) N C([0, T3); L*(N)/R)) such
that
—Au+Vp=F
divu=0 in Q,
ulr=0,

thus, the Proposition is proved. g
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