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Reducing the number of floating point
operations in the Jacobi method

Walter F. Mascarenhas
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Abstract

We present a strategy for reducing the number of floating point operations
required by the Jacobi method for finding eigenvalues of symmetric matrices.
Experiments show that our strategy can reduce the execution time of this
method in practice.

key words. Jacobi method for eigenvalues.

1. Introduction

This paper presents a strategy for reducing the number of floating point op-
erations (flops) required by the classical Jacobi method for finding eigenvalues of
symmetric matrices. Similar ideas can be applied to one sided Jacobi methods.
We assume that the reader is familiar with the Jacobi method. [P]. This paper is
based on the observation that, for matrices of the same size, one sweep of the Jacobi
method requires twice as many flops as matrix multiplication. In order to describe
our strategy we need the concept of principal submatriz. We say that a k x k matrix
B is principal submatrix of a n x n matrix A if B can be obtained by choosing a
set D € {1,...,n} withn—k indices and deleting the rows and columns of A with
index in D. Our strategy consists in roughly halfing the operation count for the
Jacobi method by decomposing the matrix in principal submatrices, accumulating
the rotations with pivots in these submatrices and using matrix multiplication to
apply these rotations to the rest of the matrix. By analogy with the traditional
block Jacobi methods, we call such strategy a submatriz Jacobi method.

Recursive submatrix Jacobi methods lead to orderings for which one sweep can
be applied using only O(ns—fzﬁ) flops, where a < 2.37 is the smallest exponent for




which we can multiply n x n matrices in O(n®) flops, instead of the usual O(n:")
flops. As expected, the constants hidden in the O(n®) mak.e them useless. We \.\'111
not pursue this kind of result. More realistically, we can still save a factor ranging
from 2 to 2, depending on how our machine performs az + b. If we count az + b as
one operation, or count only multiplies and neglect adds, then the proposed stritegy
reduces the number of operations in one sweep from 2n° + O(n?) to n® + o(n”). If
we count az + b as two operations, then the strategy leads to a reduction of the
number of operations in one sweep from 3n° + O(n?) to 2n° + o(n?).

The rest of the paper is organized as follows. In the next section we present our
basic idea. In section 3 we present some suggestions on how to implement it and
in section 4 we show experin{ents comparing its performance and accuracy with a
traditional Jacobi method on an IRIX station.

A note of caution: doubling the performance is well within reach of usual op-
timizing techniques. The experiments in section 4 show that our idea may win or
loose, depending for example on how the compiler optimizes. The purpose of this
paper is to present a simple idea, not to discuss the myriad of factors involved in
practical implementations.

2. The basic idea

We restrict ourselves to machines that perform az + b as the basic floating point
operation. - Let us count the number of flops in one rotation of the Jacobi method.
We first compute the angle, which requires @ = O(1) flops. Next we update 2n
entries (because of symmetry) using the expression _

@y, = COS @y £ sin @y, = cos(a,, £ tan Qyy),

requiring 2 flops perlentry. Thus, one rotation requires 4n + a flops. Since one sweep

3 Y - sraa Dhnd n(n—-1 _
corresponds to ™5 rotatlox.ls, it requires 2n° + aJT—l flops. Therefore, in the
case when a < n, one sweep is roughly equivalent to two matrix multiplications.

A=| n| B
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Figure 1. Entries affected by rotations in B.

' Let us now analyze what happens when we perform all the rotations in the
dlago.nal l‘)lock B, of size n, of the matrix A, which has size N, accumulate these
rotzlxtnolns in the n X n matrix Jg, and then apply all the rotations to A at once, using
multiplicati e 'S L Ul i

iplication by Jg. One sweep for B takes 2n° -+ a—‘%—'—) flops and forming Jg
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requires an extra 2n® flops. We need then to update the other entries of A. Entries
above B (see Figure 1), are updated via & = r - JJ, and entries to the right of B,
are updated using the formula ¢ = Jg.c. Thus, updating either r or ¢ requires n?
flops and, since the total number of vectors r’s and ¢'s is equal to N = n, the overall
work, in flops, is

°
n(n — 1)

4n® 4 (N =n)n’ + a 5

= Nn2+3n3+an—(nz;lz. (2.1)

On the other hand, applying one Jacobi rotation at a time to A would require

n(n—1)

2n(n — 1)N + a 5

(2.2)

_ flops. Thus the ratio of the work performed when accumulating the rotations to the

work performed by applying one rotation at a time is

Nn? +3n® + aﬂ%:—l
2n(n — 1)N + aﬂ"{—l)-.

p= (2.3)

In the case o € N we have
1 3%

n

and if 1 K n < N then p = 1/2. As a conclusion, in the case ¢ K n << N we can
save roughly half of the flops by accumulating the rotations.
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Figure 2. Entries affected by rotations in B.

It is important to have a diagonal block in the argument above, because if B
is not ‘diagonal (Figure 2) then the rotations in B act upon 2n rows and columns
of A, whereas one sweep on a diagonal block acts only in n rows and columns of
A. Accumulating the rotations is not as efficient in this case. However, the same
analysis holds if B is a principal submatrix of A, because principal submatrices are
nothing but diagonal blocks disguised by a permutation of rows and columns.

Here our approach diverges from usual block Jacobi methods:




We decompose the matrix as a union of principal submatrices Sk, of
size ny, with 1 € ny € N, and apply the rotations in each submatrix by
first accumulating them and then using matrix vector multiplication to
update the rest of the matrix.

In order to apply this idea efficiently, we need a simple scheme to decompose the
off-diagonal part of A in principal submatrices S, i.e., finding Dy = { i ] (,4) € Sk }
such that for every pair (1, ), ¢ # j, there exists exactly one D containing i and
J- It turns out that this can be easily done if NV = p?, where p is a prime number,
and we describe now a simple method to achieve that. The method is based on the
so called finite plane geometries EG(2,p*) (see [BM].) We think of the p? diagonal
entries as being points in a “plane mod p”, associating d; with (1 —p BJ : [jJ) (lz]
is the biggest integer less than or equal to z ). In other words, the first coordinate
of the point associated with d; is the remainder in the division of ¢ by p and the

second coordinate is the quocient.

dpz_p_, = (0,}) -1) . dp2 =(p—Lp-1)

dl = (0, 0) ,
Figure 3: EG(2,p?), i.e., Z x Z with coordinates taken mod p,

and a (single) straight line, with inclination 2.

The Di's can be taken to be the straight lines in this finite plane. There are two
kinds of straight lines: vertical and inclined. The vertical lines are determined by
their intersection with the r axis. The vertical line that contains (k, 0) is formed by
the points (k,pit) for i =0,...,p = L. (Keep in mind that we are thinking mod p.)
Each inclined straight line is determined by its intersection with the y axis and by
its inclination A, which is between 0 and p — 1 (inclusive). The inclined straight
line with inclination \ that contains (0, %) is formed by the points (i, k + \i), for

i =0,...,p— 1. There are p vertical and p? inclined straight lines, given a total

1al Euclidean geometry, two distinct straight

of p* + p straight lines. As for the ust at the

lines in EG(2,p?) can have at most one point in common, which implies th .
off-diagonal of the Si's are disjoint. Any two points are connected by some straight
line, which implies that the union of the Sy’s is indeed A. (sce [BM] for proofs of

these results.) . . ; .
The natural question is then what to do if N # p*. We propose L'he fo“own;g.
find the smallest prime p for which N < p?, which we call py, and consider only the

N points in EG(2, pk) forming a region R as in the ligure 4.

4
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Figure 4: EG(2,p}) and a truncated straight line with inclination 2.

The Dy« are now built as truncated straight lines, containing only the points in R.
To be more precise, we exclude from the straight lines points in the set

, N | N
A = { (J,y)\y> \;};} } U { (J\l‘\ + l)‘I > PN — PN ‘:pl—J } (2‘)

PN

!

This method works because py is not much bigger than v/N. To be more precise,

Lemma 1. If N <10* | then py < 1.6V/N .

proof: The proof is by brute force: we wrote a computer program that verified
the lemma above for all 1 < N < 108. '

The restriction N < 10® in Lemma 1 is superfluous. However, to prove lemma
1 without it would require some Analytic Number theory. Since the Jacobi method
is used for dense matrices, 10® suffices for practical applications and we decided to

state the lemma 1 as above. The interested reader can use the results in [A] to prove
Lemma 1 for N arbitrary and to show that

|
lim \/—K- = 1 (2.5)

N=c py

Let us now analyze, for N < 10%, what happens when we remove the points in X
from the straight lines in EG(2,p}). The top py — | N/pn] — | horizontal straight
lines will become empty. The horizontal line passing through (0, | N/pn|) can also
be significantly reduced. However, the other truncated straight lines will have on
the order of VN points. In fact, let r be one of these straight lines and let n, be
the number of points left in r after deleting the points in X. Since r is a straight
line in EG(2,p%), it has py points. Therefore n, < 1.61/N. On the other hand, r
intercepts each of the py — l;"i—] top horizontal straight lines in at most one point.

Therefore, the intersection of X and r has at most py — L,%] points. Since r has
pN points,

N lN
n, > pn —(pNn — L)—N}) =i

)

1.6

4
> l b J > 0.62V'N - 1.
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Summarizing, py — [ﬂJ lines will be completely removed, the horizontal line through
(0 l;}:—J) may be truncated to any size, and the other truncated lines will have on -

the order of v/N points. In fact, using (2.5), it can be shown that asymptotically, as
N — oo, they will have v/N points. Therefore, 1 < n, < N for all the remaining
straight lines but one and the analysis of the case N = p? is valid for all V.

Most of the work in pivoting the entries in Sy according to our strategy is per-
formed when applying the rotation to the rest of A. We could apply several sweeps
to Sk, accumulate the rotations, apply them to A at once, and still pay roughly the
same number of flops. Since we are performing more rotations, we would expect
faster convergence. Unfortunately, experiments show that the resultirig improve-

ment in convergence is not worth the extra work.

3. Implementation

In this section we describe how we implemented the algorithm. As before, N
denotes the dimension of the matrix and py is the smallest prime bigger than or equal
to V/N. The diagonal entry d; is associated to (1 — py [ﬁJ : lif) € EG(2,pX).
The algorithm loops over all the straight lines in EG(2, p%,). For each straight line, it
creates a vector of diagonals, DIAG, by associating to each point (z,y) € FG(2, p%),
with 0 < z,y < pn, the diagonal z + ypy and discarding the diagonals bigger than

or equal ta NV.
Each instance of the vector DIAG may have a different number of entries, n,

with n < py. If n > 2, then we move the submatrix corresponding to the rows and
columns of M with indices in DIAG to a n X n auxiliary matrix MAUX. We then
apply one sweep of the usal Jacobi method to MAUX, accumulating the rotations
in a n x n matrix ROT. In other to apply the rotations to the remaining entries of
M, we perform a loop in which we gather n of them in a vector VAUX at a time,
make VAUX = ROT x VAUX and scatter the entries of VAUX back to the original
matrix. Since py = O(V/N), the size of the work space is O(p%) = O(N) and is

negligible compared to the size of M ( N? )

4. Experiments

In this séction we present experimental results that give a fair view of the per-
. formance of our idea: it can work but it is sensitive, for example, to the way the
compiler optimizes. The experiments also show that, at least for random matrices,
our strategy is as accurate as the usual ones. Our test matrices were obtained by
adding random matrices, with entries taken from a uniform distribution in [0, 1], to
their transpose. For the matrices with size up to 200 we used 200 samples and ff)r
the matrices of size 400 we used 20 samples. The routines were coded in G'++; m



double precision, and executed on an IRIX station. We stopped iterating when the
Frobenius norm of the off-diagonal dropped below 10715,

Average Performance _
time in seconds Number of
n Default optimization | Level 2 optimization Sweeps
row submatrix row submatrix row submatrix
50 | 0.61 2.13 0.61 1.02 8.01 7.96
100 (| 4.98 17.0 4.97 5.07 8.96 3.39
200 || 46.8 99.3 1 46.5 37.8 9.32 9.02
400 (| 603 885 563 313 10 10

In the performance experiments, we compared our strategy with the traditional
ordering by rows. The column with the number of sweeps indicates that submatrix
Jacobi methods converge slightly faster than the usual strategies, but we do not have
an explanation for this fact and we do not believe it is significant. “optimization”
indicates the leve] of optimization used when compiling both routines. Notice how
optimization affects the relative costs of the row and submatrix Jacobi methods.
With level 2 optimization it pays to use the submatrix Jacobi method for dimension
n > 200. In comparison, with default optimization n = 400 is not big enough to
amortize the overhead associated with the submatrix Jacobi method. This hap-
pens because optimization changes the relative costs of the crucial operations in the
usual and submatrix Jacobi methods. Most of the time in usual methods is spent

evaluating the expression

a;; = cos #(a;; £ tan *a;,), (1.6)
whereas in submatrix Jacobi methods
r=r+xx*xy (4.7)

accounts for most of the work. The optimized version of (4.6) costs about three
times more than the optimized version of (4.7). However, the default version of
(4.6) is only 1.27 times more expensive than the default version of (4.7).

Accuracy

Maximum Absolute | Maximum Relative
n difference difference

column  submatrix | column submatrix
50 || -13.7 -13.4 -11.8 -11.9
100 -13.3 -13.1 -11.6 -11.7
200 12.8 -12.8 -11.2 -11.3
400 -12.6 -12.5 -11.9 -11.8




In the accuracy experiments we compared

be —max]oawl)\‘c) /\,("l and 6, —maxlwwl/\() Af"j,

l—-‘n

where Aﬁ"’ 1s the ith eigenvalue computed using ordering #, which can be the ordering
by rows (r), by columns (c) or come from a submatrix Jacobi method (m). In the
first column of the accuracy table, we have the maximum value attained by é.. In
the second column, we list the maximum value of §,,. The third and fourth columns

present the maximum of

[ Al — Al (A _ A‘-;)]
pc = max log,o—lz-(r—)l— and pm = max log,, o

Since the ordering by columns is as accurate as the ordering by rows. and the
experiments show that 6. = §,, and p. = p,., we conclude that submatrix Jacobi
methods do not sacrifice accuracy for this class of matrices.
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