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Abstract

We present two ideas that help in the analysis of the dual affine scaling
algorithm: sorting the slacks and taking a QR factorization of the constrains.
Using these ideas, we prove that the iterates always converge. The proof holds
if at each iteration we move an arbitrary fraction of the step to the boundary
of the feasible region and it needs no hypothesis on degeneracy. However, it
does not show that the iterates converge to an optimal solution. We present a
new proof of convergence to the optimum for primal nondegenerate programs
and for programs with two variables.
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1. Introduction

We discuss the convergence of the dual affine scaling algorithm [T, used for
solving linear programs II(A, b, c) of the form

minimize z(z) = c'z, subjéct to A'r >b. (1.1)

The matrix Aisnxm (n < m.) The feasible region of ITis F; = { z € R" s.t. Alz >
b } and Fjf is its interior. As [MTW], we are interested in programs II with an
optimal solution and such that ¢ # 0, F} # 0, and A has full rank. We call such
programs acceptable. We denote the fraction of the step to the boundary taken
at each iteration by A\. We assume that the reader is familiar with the dual affine



scaling-algorithm. In resume, the results of [MTW], when adapted to the dual affine
scaling algorithm, show that the iterates converge regardless of ‘de.generac}’ of IT and
the size of A. With the additional assumption that A < 2/3, 1.t is also s.hown- that
the dual estimates converge and the iterates converge to an optimal solution. In [M]
we present a primal degenerate example in which some iterates converge to a vertex
that is not optimal if A = 0.999. _

In this paper, we present a new proof of convergence for arbitrary programs
and X's and prove convergence to the optimum for primal nondegenerate programs
and for programs with only two variables. We hope that our ideas can help in the
analysis of the behavior of other interior point methods near the boundf).ry of Fn,
which we call 8Fy. Things get complicated near dFn because the algorithm ste]?s
in the direction d(Il,z) = (A[A'z — b]2A")~'c, where [v] is the diagonal matrix
with diagonal equal to v. Some of the slacks ¢ = A'z — b vanish at 0Fn and d(I1, z)
is singular there. This is the main difficulty in the analysis of the algorithm. To
simplify this analysis, we introduce the permutation P such that P¢ is sorted in
increasing order and the QR factorization AP* = QR. The direction d(II,z) can
then be written as

d(IL,z) = Q(RIPEI?RY ' Q'e. (1.2)

This equation shows that we do not loose generality if we assume that the slacks
are sorted in increasing order and A is upper triangular, if we want to analyze a
single step. (This argument does not work for multiple steps because the order of

the slacks may change from one iteration to the next.) Using (1.2) we prove the
following lemma:

Lemma 1. If the program I1 is acceptable, then there exists Ky € IR such that
ld(I1, z)|| £ Kn c'd(Il, z) for all z € Ff.

Lemma 1 relates ||z**! —z*|| to the decay of the objective function, which cannot

be too big because c'z* is bounded from below. The reference [MTW] presents a
different proof of Lemma 1 and shows how it implies the following Theorem:

Theorem 1.  For any acceptable program II, z° ¢ FE and ) € (0,1), the
sequence {z*} converges to z(z° A, I1) in the boundary of F. ’

. As it can be seen in [MTW], it is straightforward to use Lemma 1 to show that z*
is a (?auchy sequence and prove Theorem 1. Therefore, we will not present a proof
of this Theorem. Our proof of Lemma 1, in section 2, is self-contained. Theorem

1 does not clainlx that Z is optimum. We can guarantee the optimality of 7 for all
A € (0,1) for primal nondegenerate problems:

Theorem 2. [f the program 1 is acceptable, z° € Ff, \ € (0,1), and the bind-



ing restrictions at z(z° A, I1) are linearly independent, then #(2° )\, 11) is optimal.

Theorem 2 is proved in section 3. In section 4 we prove convergence for problems

with only two variables:

Theorem 3. If the program Il is acceptable, z° € Ff C IR? and ) € (0,1),
then z(2° A, 11) is optimal.

The example of convergence to a non-optimal solution in [M] has three variables
and five restrictions. Therefore, this example is minimal and the three theorems
above are the best results we can hope for the convergence of z* for an arbitrary
A € (0,1). The appendix of [T] shows how to adapt these results to the primal affine
scaling algorithm.

2. Convergence

Proof of Lemima 1. In this proof, z and II are fixed and we omit their depen-
dencies from several functions. We start by taking a permutation P € IR™*™ such
that P¢ is sorted in increasing order, that is, 1y = P¢ satisfies 1¥;4; > ¥;. Next, we
take the QR factorization of AP, i.e., A = QRP, with Q orthogonal and R upper
triangular. Notice that rank(R) = rank(A). Since II is acceptable, R has full rank.

The statements in this proof are easy to verify in examples. However, the details
needed to cover all cases are tedious. To motivate our arguments, we will illustrate

them with the example

0 r2 T3 T4 Tis Tie
R=10 0 7 ry T35 726 |- (2.3)
0 0 0 0 1r9s rag

The r;; indicated above are different from 0. This example is quite general and if the
reader understands the proof in this case, then it should not be hard to extended it
to arbitrary R’s. Although we use the example as motivation, the proof bellow is
general.

For each 7 < n, the ith row of R has a first non-zero entry. We call j(R,?) the
index j of this entry. Formally, rijr:) # 0 and if j < j(R,1) then ri; = 0. Notice
that j(R,2+ 1) > j(R,1) > i. Let ¢ € IR" be given by ¢; = Yj(Rr,i)- From (1.2) we
get

d = Ql¢l (MR R])” [#Q'c=Ql¢] (BB [g)Qc.  (24)

where B = [¢]R[¢]™". In the example (2.3), j(R,1) = 2,j(R,2) = 3, and j(R, 3) =



5. The vector ¢ equals (’d)g., V3, ¥5)t and

0 2 7‘13’,‘% 714% Tlsﬁf 7‘16%
B=10 0 oy 7'24%3‘ "253,% 1’26%}

0 0 0 0 T35 726%:
Notice that if j < j(R,?), then b;; = r;; = 0. Otherwise,
¢ _ ViR
bij =rijo— =rij—_ .
J J '»bj J ¢'j

The vector 1 is sorted in increasing order and j(R,i) < j. Therefore, b7; < r% and
|Bllr < ||R||F- Here ||M||F is the Frobenius norm of the matrix M, which is given
by \/>-m;. Since Q and P are orthogonal, ||R||r = ||Al|r and the biggest singular
value of B, omax(B), satisfies omax(B) < ||B||F < ||R||F = ||Al|r- Let B = UXV! be
the singular value decomposition of B. It follows from (2.4) that

| U@ ® _ Il |®  ¢un” 0.5
Tl BV~ am(BF 2 NATE 20
where 7) is the smallest absolute value of a nonzero entry of Qtc and u is the biggest
index for which (Q'c), # 0.
From (1.2) we get
d=(Q ¢4 RPIEI?P'RQ') ™ c= Q ([#*RI¥]2R )™ [4]°Qtc

and, calling omin(M) the smallest singular value of the matrix M,

lPQell Sl
Smin (PR R) ~ oin ( [OPRWTR )’

c'd = c'Q[4] U L2 U* [4]Qc > |

Il <

In the example (2.3),

0 rz2 73 (%)2 T4 (%1 )
[¢PR[¥]*=|0 0 T23 ra4 (ﬁf) T2s (h)z 6 (
0 0 0 0 T3s T2 (

We now use the following lemma:

‘Lemma 2 If R € R™™ is an upper triangular matriz with rank n, then there
exists Kg > 0 such that if ¢y € R™, ¢ > 0, is sorted in increasing order and ¢ € R"
18 defined by ¢; = Yj(n,i) then o4, ( (¢)R[¥])2R') > Kpg.
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There are m! possible permutations of m columns. Therefore, there are at most
m! matrices Q and R that can be generated from A and there exists kn > 0 such
that K'g,n > k for all possible R's and @’s. From (2.5) and (2.6), we get

g llcll _ licl ”A”F < lell 1Al 1Al
i < 2o oy < Zelel < DDA g o Il LAE

To complete the proof of Lemma 1, take Kn = ||c|| ||A||}/k
Proof of Lemma 2. Let C be equal to [#]2R[]~2. Its entries are

B (%)2 (2.7)

For j > j(R,1), let B; be the biggest k such that j(R, k) < j. For j < j(R,1), take
B; = 0. In the example (2.3), 8 = (0,1,2,2,3,3)". Making [[;_, px = 1if s <r, and
noticing that r;; = 0 if j < j(R, 1), it follows from (2.7) that

¢a,~)’ £ ( b )2
S e :
T (‘/):‘ I:cl;[: P(k+1)
For example, if R is given by (2.3), then 8 = 3 and

e (&) (&) (2] (8 (2)
16 16 1,/)6 16 ¢6 16 ¢6 ¢2 ¢3 16

e
Ve Y3 Vvs)
Let us define ® € IR" by ®, =1 and, for £ < n,

¢k=( P )2. | (2.8)

P(k+1)

Let ¥ € IR™ be given by ¥; =1 for j < j(R,1) and, for j > j(R, 1),

45\
v, =(-—2) .
’ (¢,- ) (29)
In the example (2.3),

(( =¥, ( ;’)2,1) and U= (1 1,1, (ij) 1, (%)2)

Notice that ¥;r ;) = 1, because B(j(R,1)) = i. Therefore, (¥, ¥) belongs to the
set :

S(R) = {(u,v) € R™™ s.t. Vi,vjri)=tn=1 and 0<u;,v;<1}. (2.10)

)




Let ‘us define F(R,u,v) € R™", for (u,v) € S(R), by

Bj-1 .
f;,-(R,u,v) =Ti V; H Ug. (2-11)
k=1
Thus, C = F(R, V¥, 9).
In the example (2.3) we have

(2.12)

0 ry2 riguy TqUvg TisUsU Uz Ti1eVsU1Ur
¥ (R7 u, U) =10 0 T23 T24V4 T25V5U2 T26VeU2
0 0 0 0 T35 T26Vs

The set S(R) is compact and omin(F(R,u,v)R!) depends continuously on (u,v).
Therefore, omin( F(R,u,v)R') has a minimum (@,v) in S(R). If we take Kr =
Omin(F (4, D) R"), then omin(CR') > Kp. We have then the following lemma

Lemma 3. If R € IR"™™ is an upper triangular matriz with rank n and
(u,v) € S(R), then F(R,u,v)R" is nonsingular.

It follows from Lemma 3 that Kz > 0 and the proof of Lemma 2 is complete o

Proof of Lemma 3. We use induction on nz(u), the number of zero entries of
u. Let us start with the case nz(u) = 0. We can assume that v > 0. Otherwise,
if v; = 0 for some j’s then j # j(R,¢) for all 7, since v; g, = 1. We drop the
corresponding columns of R and entries of v and get R’, with rank n, and v > 0
such that F(R,u,v)R' = F(R ,u,v")(R').

The idea now is to bring back the ¢’s and %’s. Take ¢, = 1 and use use (2.8)
to find ¢x for k < n: ¢r = Suk@iy1. Then use (2.9) to define - e = 1 for
j < j(R,1) and ¢; = /v;/¢s, otherwise. We have that F(R,u,v)R* = [¢]*R[¢]™
and F(R,u,v)R' is nonsingular, because R has rank n and ¢,% > 0. Thus, we are
done with nz(u) = 0.

Suppose now that Lemma 3 is true if nz(u) < k and assume that nz(u) = k.
Let u, be one of the zero components of u. We must have s < n, because u, = 1.
Let us look at example (2.12) with s = 2. Notice that u, appears in Fys, Fis, Fas
and Fy. Therefore,

0 Fy2 Ti3Uy T4u V4 0 0
F(R, u, U) = 0 0 o ro4V4 0 0
0 0 0 0 r3s Taels

and F(R,u,v)R" has the form

F(U,u_,v_) Ut 0
F(Ryuw)R = *, '
(Hri) ( F(W,uy,0,) VO F(W,uy,0,) W )
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where u_ = (uhuQ)‘a Uy = (“3) . (1), v. = (vhvh 03,04)‘ = (1,1,1,04)‘, Uy
(vs, v6)' = (1,v6)", and

_ [0 ra ."13 T4 [ Tis Te _
U_(O 0 ra 7‘24)' V—("ns "26)’ W_(r;,s r”)'
By induction, F(U,u_,v_)U* and F(W, us,v4y)W* are nonsingular. Therefore,

F(R,u,v)R' is nonsingular and we are done with the proof in this example.
In the general case, partition R as

v v
(6 w)

where U has s rows and j(R,s + 1) — 1 columns. Partition £ accordingly:

F(R,u,v) = ( R R -] ) |

If 7> j(R,s+1) then 8; > s+1and B; —1 > s. Therefore, if i < s and j >
J(R,s+1), then the term u, is present in the product in (2.11) and f;;(R, u,v) = 0.
This shows that Y (R, u,v) = 0 and

X(R,u,v) U* 0
(R, 0) R = ( Z(R,u,v) V' Z(R,u,v) Wt. )

We leave to the reader the proof that j(U,7) =j(R,:)and X (R, u,v) = F(W,u_,v_),
for v- = (v1,...,9-1),1) and u_ = (uy,...,u,-1),1)". Moreover, (u_,v_) €
S(U). Similarly, Z(R,u,v) = F(U,vs,uy), for vy = (vjRrs41)s---,0n)" and uy =
(U(st1)s---+0n)"y and (uy,vy) € S(W). Since nz(u_) and nz(uy) are smaller than

nz(u), it follows from the induction hypothesis that X (R, u,v)U* and Z(R,u,v)W"*
are nonsingular. Therefore, F(R,u,v)R" is nonsingular and the proof of Lemma 3
i1s complete o

3. Convergence to the optimum

Proof of Theorem 2. Let z = z(z% \,1I) € O0Fn be the limit of the se-
quence z*, let & be the number of zero components of { = A'T — b, and let P be a
permutation such that the first a components of ¢'= P¢ are equal to 0. Notice that

= PE= P(A'z — b) = (AP*) z — Pb



and the first & columns of AP* correspond to Li:- binding restrictions at Z. Therefore,
the first & columns of AP! are linearly independent and there exists a matrix B such

that I R '
t—_p=|? : ol
BAP'=D ( o S ) (3.13)
It follows that A = B-*DP and d(Il,z) = B'(D[¢] 2D")™" B, for $ = P{. Since
geHl = gk _ )\ [xk Atd* and P'A = D'(B*)~!, we have that
1
X+
Let us partition ¥* as (¢*,7*) € R* x IR™~®, and partition (D[4*]72D")"'Bc
as (u*,v*).€ R* x R™"°. It follows that

P = gk — A—PA'd* = ¢F — A-Xl—kD‘(D[zb"]”D‘)"Bc.

$ = g —A—=uf, (3.14)
X
1

nk+l - nk_/\;Evk. (315)

Partitioning Bc = (w',w?) accordingly, we obtain
(172 + Rin*)?R') v* + R[n*]*S'ox = w0, (3.16)
S[*) 2 R* + S[pF]) 7280 = Wl (3.17)

Let us make the change of variables r* = [¢*]~2u*. The last equations become

(2)- (st ) (2)

Since ¢¢ — 0 and 7* — 7 > 0, it follows that (¥ v*) converges to

_ (1 RS\ (w' _ [ w' - R[]72S% .

= 0 S[ﬁ]-2st w2 ia (S[ﬁ]—25t)—lw2 . (3~1b)
This shows that u* = [¢*]?r* converges to 0. It also shows that [¢*]~'u* — 0 and
[7*]7*v* — [i7]~'9. Therefore the sequence x* = max{max([¢*]~'u*), max([n*]~'v*)},
converges to max{0, max([f]~'9)}. Since n* converges, it follows from (3.15) that

v* /x* converges to zero. Since x* converges, this implies that v* — 0. Using (3.18)
we conclude that w? =0 and 7 = w'.

We claim that all the components of w' are bigger than or equal to 0. In fact,
suppose that w! < 0 for some 1 <1 < a. It follows that #; < 0 and there exists ko

[~ {11

8
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such that k > ko = r* < 0. Therefore, if k > ko then u} = [¢]*r} < 0 and (301}

shows that ¢**' > ¢*. However, #* > 0 and this implies that ¢ does not convergs
to 0. This is an absurd and all the components of w' must be bigger than or equal

to 0.
1 b
e (2)n ()

Notice that
Equation (3.13) shows that B~'(I,,0)" is formed by the columns of A corresponding
to the binding restrictions at z. Therefore, c is a positive linear combination of these
columns and Z is optimal. This concludes the proof of Theorem 2 o

4. Convergence for two variables

Proof of Theorem 3. Let 7 € 0Fp; be the limit of z* and let o be the number
of binding restrictions at . Take a permutation P such that the first a columns of
AP? correspond to these a restrictions. Let B be the matrix formed by the first o
columns of AP'. The restrictions of I, A'z > b, are equivalent to PA'z > Pb. The
first a inequalities in this last expression give B'z > f, where f € IR* is the vector
with the first @ components of Pb.

The proof proceeds by contradiction: suppose that Z is not optimal. This implies
that the linear program

II,: minimize v'y subjectto By =c¢ and y >0,
where v = B*(Z — z°), has.no feasible solution. The dual of II, is
I, : maximize c'z subject to B'z <.

The restrictions of II} are satisfied by z = Z — z° Since Il is infeasible, IT} is

unbounded and there exists h € IR? such that c¢'h > 0 and B'h < v. Let p # 0 be
a vector orthogonal to ¢ such that (B'p); > 0. Since c'h > 0, h and p are linearly

independent. The matrix
1 pt
D= ( C‘l’;‘h ) .
1s nonsingular and
. rt oot 1
DAP' = F = ot | and Dc= 0 (4.19)

where r = B'h/cth = v/cth, s = B'p, and the vectors u and v are in JR™*. Notice
that v = f — B'z° < 0, because z° € F{{. Therefore, r < 0.

9




Take y* = (D*)~1z* and § = (D*)~'z. Sinee Bz* > f,

r 4 ybe> /. (4.20
Analogously,

nr+g:s = f. (4.21)
Moreover, 2* = ctz* = (De)(D*)~'z* = y*. Since z* < z**1, we have

i > ot > . (4.22)

It follows from (4.20) and (4.21) that (y* — g;)r + (5 —2)s > 0 for all k. Therefore,
(y3 — ¥2)s > 0, because r < 0 and yf — &1 > 0. This implies that all the components

of s have the same sign. By the way we have chosen p, s; = (B'p); > 0. Therefore,
s> 0.

Let us analyze the evolution of ¥ = P¢* and y*. Some algebra show that

y*t o= - %A", (4.23)
A t
P o= g - FE A¥, (4.24)
x* = max ([p*]EtAF), (4.25)
where
AF = (D)"Y (D'EP[¢F)P'EY(DY) ™) e = (E[¢*]2E) ' De. (4.26)

Let us partition ¢* as (¢*,7%) € R* x R™°, Multiplying (4.26) by E[¢*]-2E!
and using that Dc = (1,0), we get
("‘ [¢k]_2" + “‘[’71‘]-2“) A} + ("‘[fﬁk]'zs + u'[r)"]'zv) AY =, (4.27)
(s'(6*)7%r + v'[n*]%u) AF + (s'[#4] 2 +v'0*] ) A5 = 0. (4.28)

Since s, $*,n* > 0, we can use (4.28) to conclude that

sl[¢k]—2r + vl[”k]—‘lu Ak

k -
A2 . s‘[¢l‘]'2s + v‘[q"]‘Qv 1

Equations (4.19) and (4.24) imply that

A, 8 (5 s'[o*]r + v‘[u“]"u)

A
o = gt (Bt Als) = ot - =57 (T

si (k] 725 + vi[nk] 2w

10
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It follows from (4.22) and (4.23) that AA,/x* > 0. Since 3; > 0, ¢* — ¢**! has the
same Sign as

N S > T MM UL > R
si s s + v [P0 (478 + vt [t '

which has the same sign as

g(:—— 5) (21)2 S (1) + o' [}

1

Since ¢f > 0 and limy_,, ¢ = 0, for every ko € IN there exists k > ko such that
oF — @k“ > 0. Therefore, for every ky € IN, there exists k > ko such that

a r. r 2
Z (—ei B —J> (:51) i ‘[TI 7% + o' [p*]%u > 0.

Take v such that r,/s, = min{r;/s;, i = 1,...,a}. For all k, € IN, there exists
k > ko such that

> (D‘ - r—J) (Sﬂ:k)z > (u)’ C—:v‘[n"]‘zv % v‘[nk]“zu) , (4.30)

J

where pu* = max( ) Since u* — 0 and n* — 7 > 0, the left hand side of (4.30)
converges to 0 and for every € > 0, there exist k such that

o Py = T s]-pk #
0> Z S_— —_ :S— —F > —E€.
3=1 v J )

Therefore, r;/s; = r,/s, for all j, because sj;z"/qﬁf > s; > 0. Thus, r = s, for

B=r./s..
Some algebra and (4.29) show that

[¢k] lﬁvl[g,n:]l 2y—v '[[7?"‘]'2 .
. k _ t 2,+vt n 2y
[¢k] 1EAR = A, [17"] ot ( — 553 ) .

A}

(4.31)

Since s > 0, (4.31) and (4 29) imply that limy_ . [¢*] " E*A% = (0, [7]7* (u — Bv))’
and (4.25) shows that y* converges to some (finite) x.

11




Solving (4.27) and (4.28) and using that » = fBs, we get

‘U‘ k —zu .
L+ sers S (4.32)
) il e G ).

(u - ﬂv)‘ [nk]—2 (u -- ﬂv) + S [¢F] 22 |

The matrix £ in (4.19) has the same rank as A: 2. Since r = Bs, we must have
u # Pv. Taking the limit in (4.32) we obtain

A

|
lim Af = > 0.
ke "1 (u = Bo)' 7] (u - Bo)
This shows that z¥+1 — 2% = yf+! — ¥ = AA*/x* does not converge to zero, which

is absurd since z¥ = c'z* converges to c'z. Therefore Z must be optimal and the
proof of Theorem 3 is complete o
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