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Abstract 

We present two ideas that help in the analysis of the dual affine scaling 
algorithm: sorting the slacks and taking a Q R factorization of the constrains. 
Using these ideas, we prove that the iterates always converge. The proof holds 
if at each iteration we move an arbitrary fraction of the step tô the boundary 
of the feasible region and it needs no hypothesis on degeneracy. However, it 
does not show that the iterates converge to an optimal solution. We present a 
new proof of convergence to the optimum for primai nondegenerate programs 
and for programs wi th two variables. 

key words. affine scaling algorithm, convergence, degeneracy. 

1. Introduction 

We discuss the convergence of the dual affine scaling algorithm [T], used for 
solving linear programs II(A, b, e) of the form 

minimize z(x) = ctx, (1.1) 

The matrix A is nx m (n < m.) The feasible region of TI is Fn = { x E m_n s.t. Atx > 
b } and Frt is its interior. As [MTWJ, we are interested in programs II with an 
optimal solution and such that e -:/- O, Frt -:/- 0, and A . has full rank . We call such 
programs acceptable. We denote the fraction of the step to the boundary taken 
at each iteration by À. We assume that the reader is familiar with the dual affine 
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scaling:_algorithm. ln resume, the results of [?víTW], when a.dapted to the dual affine 
scaling~a:Igorithm, show that the iterates converge regardless of degeneracy of TI and 
the size of À. With the additional assumption that ,\ < 2/3, it is also shown that 
the dual estimates converge and the iterates converge to an optimal solution. ln [MJ 
we present a primai degenera.te example in which some iterates converge to a vertex 
that is not optimal if ,\ = 0.999. 

ln this paper, we present a new proof of convergence for arbitrary programs 
and ,\'s and prove convergence to the optimum for primal nondegenera.t~e programs 
and for programs with only two variables. We hope that our ideas can help in the 
analysis of the behavior of other interior point methods near the boundary of Fn, J 

which we call 8.rn. Things get complicated near 8.rn beca.use the algorithm steps 
in the direction d(Il,x) = (A[Atx - bJ-2 At)- 1 c, where [v] is the diagonal matrix 
with diagonal equal to v. Some of the slacks ç = Atx - b vanish at 8:Fn and d(Il, x) 
is singular there. This is the main difficulty in the analysis of the algorithm. To 
simplify this analysis, we introduce the permutation P such that Pf, is sorted in 
increasing order and the QR factorization APt = QR. The direction d(TI, x) can 
then be wri t ten as 

(1.2) 

This equation shows that we do not loose generality if we assume that the slacks 
are sorted in increasing order and A is upper triangular, if we want to analyze a 
single step. (This argument does not work for multiple steps beca.use the order of 
the slacks may change from one iteration to the next.) Using (1.2) we prove the 
following lemma: 

Lemma 1. // the program TI is acceptable, then there exists Kn E JR such that 
lld(II,x)II < Kn dd(Il,x) for ai/ x E :FJ. 

Lemma 1 relates llxk+I -xk li to the decay of the obJ' ective functi'on h ' h t 
be b. b t k . , w 1c canno 

too 1g ecause e x is bounded from below The referen [MTW) . • ce presen ts a 
d1fferent proof of Lemma 1 and shows how it implies the following Theorern: 

Theorem 1. For any acceptable program TI, xº E FJ and ,\ E (O 1) the 
sequence {x*} converges to x(xº, À, II) in lhe boundary of F. ' ' 

. As it can be seen in [MTW], it is straightforward to use Lemma 1 to show that x* 
1s a Cauchy sequence and prove Theorem 1. Therefore we w·u t f of th · Th o f , 1 no present a. proo 

is eorem. ur proo of Lemma 1, in section 2 is sei(- t • ed Th 
l does not claim that i • t • ' con ai n • • eorem 
). E (O l) f . l d1s op imum. We can guarantee the optimality of i: for all 

, or pnma non egenerate problems: 

Theorem 2. // the program íl is acceptable xº E:,:.+ \ E (O 1) . d th b' d 
1 n, "' , , an e an -
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1. 

ing resfrictions ai x(xº,). íl) are lincady índc,,cndenl, Ili n i(xº,,\, íl) ··" opfimal. 

Theorem 2 is provcd in scction 3. ln scdion 4 wc prove convergcncc for problcms 
with only t.wo varia bles: 

Theore111 3. lf the program IT is acceptable, x 0 E .rrt C IR2 and À E (O, 1), 
then x(xº, À, II) is optimal. 

The example of convergence to a non-optimal solution in [M] has three variables 
and five restrictions. Tberefore, this example is minimal a.nd the three theorems 
above are the best results we can hope for the convergence o{ xk for an arbitrary 
..\ E (O, l ). The appendix of [T] shows how to adapt these results to the primai affine 
scaling algorithm. 

2. Convergence 

Proof of Len1ma 1. ln this proof, x and IT are fixed and we omit their depen-
dencies from severa! functions. We start by taking a permutation P E mmxm such 
that Pç is sorted in increasing order, that is, t/; = Pç satisfies 1Pi+l > 1Pi· Next, we 
take the QR factorization of AP', i.e., A= QRP, with Q orthogonal and R upper 
triangular. Notice that rank(R) = rank(A). Since Il is acceptable, R has full rank. 

The statements in this proof are easy to verify in examples. However, the details 
needed to cover ali cases are tedious. To motivate our arguments, we will illustrate 
them with the example 

(2.3) 

The rii indicated above are different from O. This example is quite general and if the 
reader understands the proof in this case, then it should not be hard to extended it 
to arbitrary R's. Although we use the example as motivation, the proof bellow is 
general. 

For each i < n, the ith row of R has a first n·on-zero entry. We call j(R, i) the 
index j of this entry. Forma1ly, r;j(R,i) :/: O and if j < j ( R, i) then r;j = O. Notice 
that j(R, i + 1) > j(R, i) > i. Let </> E IRn be given by </>i = 1Pi(R,i)• From (1.2) we 
get 

d = Q[</>] ( [</>]R[t/;J- 2 Rt[</>] )- 1 [</>]Qtc = Q[</>] ( BBt)- 1 [</>]Qtc. (2.4) 

where B = [</>]R[VJJ-1 • ln the example (2.3), j(R, 1) = 2,j(R, 2) = 3, and j(R; 3) ·:-'. 
.. ·. •· 
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5. The:vector e/> equals ( 1/,2, 1/,3, 1/J5)t and 
' ' r13.b. T14 b r1sb r12 1/,t, 

B=O 
r16.b.) 'PJ 1/,4 ,J,s 

o r23 r24n r2s!b. r26t . 1/,4 ,J,s 
o o o r3s r26n ,J,t, 

Notice that if j < j(R, i), then bi; = ri; = O. Otherwise, 

b <Pi 1P j(R,í) 
ij = Tjj ,Pj = Tjj 1P; • 

The vector 1/J is sorted in increasing order and j ( R, i) < j. Therefore, bf; < r;; and 
IIBIIF IIRIIF• Here IIMIIF is the Frobenius norm of the matrix M, which is given 
by Jr:, m;;, Since Q and P are orthogonal, IIRIIF = IIAIIF and the biggest singular 
value of B, ªmax(B), satisfies amax(B) < IIBIIF < IIRIIF = IIAIIF· Let B = ur;vt be 
the singular value decomposition of B. lt follows from (2.4) that 

where 7J is the smallest absolute value of a nonzero entry of Qtc and µ is the biggest 
index for which ( Qtc)" ;/ O. 

From (1.2) we get 

d= ( Q [</>J-2(</>]2 RP[çJ-2PtRtQt )-1 e= Q ( [</>]2R[1/J]-2Rt )-1 [</>]2Qtc 

and, calling ami0 (M) the smallest singular value of the matrix M, 

li [</>] 2Qtc li < . 4>! llcll 
lldll < 11min ( [</>]2 R['l/J]-2 ]li ) - 11min ( [</>]2 R['l/J)-2 ]li )" (2.6) 

ln the example (2.3), 

o r12 r13 (~) 2 
T14 (~)

2 
T15 (~)

2 r16 (;;) 2 

[</>]2 R['l/JJ-2 = o o r23 r24 ( t) 2 
T25 ( ~) 2 r26 (;;) 2 

o o o o T35 r26 ( t) 2 

'Ne now use the following lemma: 

Lemma 2 // R E Jlr1Xm is an upper triangular matrix with mnk n, then lhere 
e:rists K R > O suclt tltal if l/J E /1("', l/J > O, is sorted in increasing onle-r and </> E 1/r' 
is defined by <Pi::; V'j(R,i) lhen anún ( (</>J 2 R[1/JJ-2R') > l{n. 
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There arem! possible permulations of m columns. Therefore, there are at mo!t 
m! mat.rices Q and R t.hat. can be generat.ed from A and there exists kn > O such 
that KR, 'l > kn for a.li possible R 1s and Q's. From (2.5) and (2.6), we get 

ll dll < <I>! llcll < <I>! llcll < llcll IIAII} c'd < llcll IIAII} c'd. 
- kR - kn - kn 1/ 2 - kft 

To complete the proof of Lemma 1, take I<n = llcll IIAll}/ki • 
Proof of Lenuna 2. Let C be equal to [ipJ 2R[l/,J- 2 . Its entries are 

C;j = r;; (tJ (2.7) 

For j > j(R, 1), let /3j be the biggest k such that j(R, k) < j. For j < j(R, 1), take 
/3i = O. ln the example (2.3), /3 = (O, 1, 2, 2, 3, 3)t. Making fH=r Pk = 1 if s < r, and 
noticing that rij = O if j < j(R, i), it follows from (2.7) that 

( </>13,)2/3,-1 ·( </>1. )2 
C;.; = ri; - II t/J; k=i 'P(k+l) 

For example, if Ris given by (2.3), then /36 = 3 and 

Let us define <I> E JR:1 by <I>n = 1 and, for k < n, 

<f>k - ( <p1. )2 
- <J>(k+I) 

(2.8) 

Let \V E 1R"1 be given by W; = 1 for j < j(R, I) and, for j > j(R, 1), 

~,= (~r . (2.9) 

ln the example (2.3), 

Notice that 'V i(R.i) = 1, because f3(j(R, i)) = i. Therefore, ( <I>, \JI) belongs to the 
set 

S(R) = {( u, v) E 11r+m s.t. Vi, Vj(R,i) = Un = 1 and O < Ui, Vi < 1}. (2.10) 
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Le~:;us ~efine F(R, u,v) E R'x", for (u,v) E S(R), by 

/J;-1 
Íi;(R, u, v) = ri; v; II uk. 

k=i 

Thus, C = F(R, '11, 4> ). 
ln the exarnple (2.3) we have 

r14U1V4 r15V5U1U2 r16V6U1U-z ) 

r24V4 T25V5U2 r26V6U2 

O r 35 r:rnV6 

(2.11) 

(2.12) 

The set S(R) is compact and amin(F(R, u, v )Rt) depends continuously on ( u, v). 
Therefore; arrún(F(R,u,v)Rt) has a minimum (ü,v) in S(R). If we take KR = 
amin(F(ü,v)Rt), then arrun(CRt) > J{R· We havc then the following lemma 

Lemma 3. JJ R E /F?_T'·xm is ·an upper triangular matríx with rank n and . 
(u, v) E S(R), then F(R, u, v)Rt is nonsingular. 

It follows from Lemma 3 that /{ R > O and the proof of Lemrna 2 is complete • 
Proof of Lemma 3. We use induction on nz( u ), the number of zero entries of 

u. Let us start with the case nz( u) = O. \Ve can assume that v > O. Otherwise, 
if v; = O for sorrie j's then j =f. j ( R, i) for all i, since Vj(R ,i) = 1. We drop the 
corresponding columns of R and entries of v and get R!, with rank n, and v' > O 
such that F( R, u, v )Rt = F( R', u, v')( R')'. 

The idea now is to bring back the c/>'s and 1/J's. Take <f>n = 1 a.nd use use (2.8) 
to find <Pk for k < n: <Pk = VÚk<Pk+1. Then use (2.9) to define 1/J: 1Pj = 1 for 
j < j(R,l) a.nd 1/J; = .jvj/</>p1 otherwise. We have that F(R,u ,v)Rt = [4>]2R[1j)J- 2 

and F(R 1 u, v)Rt is nonsingular, because R has rank n and </>, ljJ > O. Thus, we are 
<lone with nz( u) = O. 

Suppose now that Lemma 3 is true if nz( u) < k and assume that nz( u) = k. 
Let u ., be one of the zero components of u. We must have s < n, because un = 1. 
Let us look at example (2.12) with s = 2. Notice that u'2 appears in F15 , F16, F25 

and F26. Therefore, 

and F(R, u, v)R' has the form 

F(R , u,v)R' = ( F(V, tL,v_) U'1 O ) 
F(~V,u+,u+) V F(~V,u+,•u+) \V '. ' 
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where u_ = ( ui, u2)', u+ = ( u3) - ( 1 ), v_ - ( Vi, v2, v3, v4)' 
(vs, v6)t = (1, v 6 )' , and 

(1, 1, 1, V-4)', V+ -

W = ( r35 r36 ) . 

By induction, F(U, u_, v_)U' a.nd F(W, '-'+, v+)W' are nonsingular. Therefore, 
F(R, u , v)R' is nonsingula.r and we are clone with the proof in this example. 

ln the general case, pa.rtition R as 

where U has s rows and j(R, s + l) - 1 colurnns. Partition F accordingly: 

F(R ) _ ( X(R, u, v) Y(R, u, v) ) 
' u' V - o ' z ( R, u' V). • 

If j > j(R,s + 1) then /3i > s + l and /3i -1 > s. Therefore, if i < s and j > 
j ( R, s + l ), then the term u 3 is present in the product in (2.11) and f;;(R, u, v) = O. 
This shows that Y(R, u, v) = O and 

F(R )Rt ( X(R, u, v) U' O ) 
, u, v = z ( R, u, v) V' z ( R, u, v) wc. • 

We leave to the rea.der the proof thatj(U, i) =j(R, i)andX(R, u, v) =F(W, u_, v_), 
for v_ = (v1, . . . ,v(.,-I),l) and u_ = (u1, ... ,U(a-1),l)t. Moreover, (u_,v_) E 
S(U). Similarly, Z(R, u, v) = F(U, V+, u+), for V+ • (vj(R,.,+1), .. ~, Vn/ and u+ = 
(uc.,+i), ... , vnf, and (u+, v+) E S(W). Since nz(u_) and nz(u+) are smaller than 
nz(u), it follow c:- from the induction hypothesis that X(R,u,v)U' and Z(R,u,v)W' 
are nonsingular. Therefore, F( R, u, v )Rt is nonsingular and the proof of Lemma 3 
is complete • 

3. Convergence to the optimum 

Proof of Theorem 2. Let x = x(xº, À, TI) E 8:Fn be the limit of the se-
quence xk, le_t ó be the number of zero components of ( = A'x - b, and let P be a 
permutation· such that the first a components of f = P( are equal to O. Notice that 

{; = P( = P(Atx - b) = (APt)' x - Pb 
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and the first o columns of AP' correspond to ti, c binding restrictions a.ti. Therefore, 
the first a columns of APt are linearly independent and there exists a matrix B such 
that 

BAP' = D = ( ; ) . (3.13) 

It follows that A= n-1vp and d(TI,x) = B'(D[tµJ-2 Dt)- 1 Bc, for TP_ = P{. Since 
ek+l = e" - 'A/xk A'dk and pt A= Dt(B')-1 , we have that 

tpk+t = 'Pie - À_!:._PA'dk = tpk - ,\_!_D'(D[tj)k]-2 D')-1 Bc. 
x1c x1c 

Let us partition 1Pk as (<ti,,,k) f IRª X IR"'-ª, and partition (D[vi]-2 nt)-1 Bc 
as ( uk, vk)-E IRª >:< }Rffl-a. It follows that 

Partitioning Bc = ( w1 , w2 ) accordingly, we obtain 

([<t>ki-2 + R[r/J-2 Rt) uk + R[11kr2 stvk 

S[r('"J- 2 R'u/c + S[1/)-2 stvk 

Wl 
' 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

Let us make the change of variables rk = [</>kJ- 2uk. The last equations become 

Since </>k -+ o and 7Jk -+ ij > o, it follows that ( rk' vk) converges to 

(3.18) 

This shows that u* = [</>k]2rk converges to O. lt also shows that [<tlJ- 1 u-" -+ O and 
[r,-'=J- 1vk-+ {,·n- 1v. Thereforethesequencex&,; = max{max([</>kJ-luk) , max([r/J-1v.1.- )}, 
converges to max{O,max([;;]- 1 ü)}. Since 11"' converges, it follows from (3.15) that 
vk Jxlc converges to zero. Since xk converges, this implies that v'- -+ O. Using (3.18) 
we conclude that w'l = O and r = w1 . 

We claim that ali lhe components of w1 a.re bigger than or equal to O. ln fact, 
suppose that wf < O for some 1 < i < o. ll follows that ri < O an<l there exists ko 
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such that k > ko => r·t < O. Thcrcfore, if k > ko then u~ = (tj,)2r~ < O An<l (3.: 1 ) 
shows thal 4>k+ 1 > 4,1c. HO\vcvcr, </>1 > O and this implics that <f, does not convcrg<: 
to O. This i~ a.n absurd and all lhe components of w 1 must be bigger th .. n or equal 
to O. 

Notice that 
_ s-• ( w1 ) _ B-1 ( /, ) 1 e - w2 - O w. 

. Equation {3.13) shows that s- 1(J,, O)t is formed by the columns of A corresponding 
to the binding restrictions at i. Therefore, e is a positive linear combination of these 
columns and i is optimal. This concludes the proof of Theorem 2 • 

4. Convergence for two variables 

Proof of Theoren1 3. Let x E 8:Fn be the limit of x" and let o be the number 
of binding restrictions at i. Take a permutation P such that the first o columns of 
APt correspond to these o restrictions. Let B ·be the matrix formed by the first o 
columns of AP1 • The restrictions of II, Atx > b, are equivalent to P Atx > Pb. The 
first o inequalities in this last expression give Btx > f, where f E IRª is the vector 
with the first o components of P b. 

The proof proceeds by contradiction: suppose that x is not optimal. This implies 
that the linear program 

Il2 : rmnuruze vty subject to By = e and y > O, 

where v = Bt(x - xº), has -no feasible solution. The dual of TI2 is 

rr; : rnax1m1ze ctx subject to Btx < V. 

The restrictions of rr; are satisfied by x = i - x0 • Since Il2 is infeasible, rr; is 
unbounded and there exists h E JR.2 such that ct h > O and Bt h < v. Let p -=/ O be 
a vector orthogonal to e such that (Btp)i > O. Since cth > O, h and pare linearly 
independent. The matrix 

is nonsingular and 

DAPt =E= and ( 4.19) 

where r = Bt h/ e' h = v/ ct h, s = Btp, and the vectors u and v are in _mm-a. Notice 
tbat v = J - Btxo < O, because x 0 E Frt. Therefore, r < O. 
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Take yk = (Dt)-1zA: and y = (Dt)- 1x. Sin,:-" Btxk > /, 

y~r+y;s>f. 

Analogously, 

Y1r + Y2S = f. 
Moreover, z1c = c'zA: = (Dc)t(Dt)- 1x" = yt. Since zJ: < zk+t, we have 

k k+l -Yt > Y1 > Yt· 

( 4.20) 

( 4.21) 

( 4.22) 

It follows from ( 4.20) and ( 4.21) that (yf - y1)r + (y~ -y2)s > O for all k. Therefore, 
(y~ - Y2)s > O, hecause r < O and y} - y1 > O. This implies that all the components 
of s have the sarne sign. By the way we have chosen p, s1 = (Btp)i > O. Therefore, 
s > o. 

Let us analyze the e.volution of t/Jk = Pe" and y". Some algebra show that 

yk+l Yk _ !_Âk ( 4.23) k ' X 
tpk+I - tpk - ~Etôk ( 4.24) k ' X 

Xk max ( [ tpkJ-1 Et À k) ' ( 4.25) 

where 

Let us partition tpk as ( </>\ r/')' E X JR:"- 0 • Multiplying ( 4.26) by E[t/,kJ-2 Et 
and using that De= (1, O)t, we get 

(r'f<PkJ-2r + utf,/J-2u) Ât + (rtfef,kJ-2s + u1[r/J-2v) À; 

( s'( <Pkt2r + v'f ,/J-2u) À~ + ( st[ ef>kJ-2 s + v' f 1/J-2v) À; 

Since s,</>'',q" > O, we can use (4.28) to conclude that 

Âk - - s'[ef>"J-2r + v'[77kJ-2u Âk 
2 - S t [ tpk 1-2 S + V t [ r/] - 2 V l 

Equations (4.19) and (4.24) impJy that 

1, 

o. 
( 4.27) 

( 4.28) 

( 4.29) 

" À " 1 . _ _ ÀÂ1 3i (ri _ s '[<ti J- 1r + v'[11kJ - 2u) 
4it+1 == <Pi - x• (ôari + Ó2s,) - <P, x" S j 3 'l',hkj -'lj + v'[11kJ-lv • 
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lt follows from ( 4 .22) and ( 4.23) that ')...6.i/ x" > O. Since s, > O, 4>~ - </>~+ 1 ha.s the 
sarne s1gn as 

r · 
' 

S · 
' 

which ha.s lhe sarne sign as 

Since <Pf > O and limk-oo 4>7 = O, for every k0 E JN there exists k > k0 such that 
cP7 - cp7+ 1 > O. Therefore, for every ko E JN, there exists k > k0 such that 

Take v such that rvfsv = min{rã/si, i = l, ... ,a}. For all k0 E JN, there exists 
k > k0 such that 

( 4.30) 

where µk = max ( cpk). Since µk --t O and 17k --t ij > O, the. left hand side _of ( 4.30) 
converges to O and for every E > O, there exist k such that 

Therefore, ri/si= rv/s 11 for all j, because SjµkJ</>j > s; > O. Thus, r = f,s, for 
/3=rv/sv. 

Some algebra and ( 4.29) show that 

( 4.31) 

Since s > O, (4.31) and (4.29) imply that limk_00 [tt,kJ-1Et6.k = (O, [ryJ-1 (u -(3v))t 
and (4.2,5) shows that xk converges to some (finite) X· 
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Solving ( 4.27) and ( 4.28) and using that r = /3s, we get 

vt['1kJ-2v 
k _ 1 + .,1[4>kJ-2a 2 . 

Â1 - u'['1k]-2u tr['1k]2v-(v'[11•J-1u) 
( u - /3v )t (71kJ-2 ( u - /3v) + .,1[4i•J 26 

(4.32) 

The matrix E in ( 4.19) has the sarne rank as A: 2. Since r = /3s, we must have 
u -:/:- /3v. Taking the_ limit in ( 4.32) we obtain 

. /,; 1 o hm Ã 1 = t > · 
k-oo (u-/3v) [~J-2 (u-/3v) 

This shows that zk+t - zk = yf+ 1 - y: = ÀÃi/xk does not converge to zero, which 
is absurd since zk = ctxk converges to ctx. Therefore x must be optimal and the 
proof of Theorem 3 is complete • 
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