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Multidimensional hyperbolic systems with
degenerate characteristic structure

M.C. Lopes-Filho
H.J. Nussenzveig Lopes*

Abstract
In this work we study 2 x 2 hyperbolic systems of the form U; +
A(U)U, + B(U)U, = 0 with degenerate characteristic structure. We
define partially aligned systems as those for which A and B have a
common eigenvector, and we show that the characteristic structure
degenerates into a pair of curves if and only if the system is partially
aligned. We describe examples and some basic properties of such

systems.

When studying multidimensional systems of conservation laws, the most
obvious difficulty one faces is the complexity of the wave propagation struc-
ture that even the simplest of these systems present. Most of what is known
applies to systems in one space dimension and scalar multi-D equations,
situations where information propagates along characteristic curves, rather
than the cones or more complicated geometric structures of the common
multi-D systems. This paper is dedicated to a third group of problems with
this property, two-dimensional 2 x 2 systems whose characteristic structures
degenerate into curves. These give a simplified wave propagation picture,
analogous to the known cases but complicated by their essential multi-D
character. We hope to convince the reader that these offer a natural starting
point for multidimensional theory for systems.

Examples of systems such as these have appeared in the literature, for
instance in the work by Tan and Zhang on Riemann problems for a system
related to the two-dimensional Euler equations for incompressible, ideal flu-
ids, [9]. The literature of multidimensional systems of conservation laws is
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not yet extensive. We mention the work of Lax [2,3] on hyperbolicity and
multi-D systems and the landmark monography by Majda [5] as basic liter-
ature leading to our set of concerns. Further related work includes the study
on symmetry in multi-D systems [1].

This paper is organized as follows. We begin with the definition of hy-

perbolicity and characteristics in two space dimensions, to fix notation. We
show that the characteristics being a pair of lines is equivalent to an alge-

braic condition (Lemma 1). We then introduce the class of partially aligned

systems. Our main result states that a system is partially aligned if and
only if the characteristics are a pair of curves. The characteristic structure
of partially aligned systems is a generalization of that of a pair of decou-
pled equations. In that case they consist of straight lines emanating from
every point in physical space. We also describe specific examples of partially
aligned systems and some ‘of their properties.

We start from the notion of hyperbolicity. Let A and B be a pair of
constant 2 X 2 matrices, and let { = (¢;,£;) be a nonzero vector in IR?.
Define C(§) = £, A + £3B. Consider the system of differential equations

- Ui+ AU, + BU, = 0. (1)
Definition 1 System (1) is hyperbolic in the direction § if C(€) has real

eigenvalues. It is strictly hyperbolic if C(€) has distinct real eigenvalues. We

will say that the system is (strictly) hyperbolic if it is (strictly) hyperbolic in
every direction.

Assume the system (1) to be hyperbolic. We define its symbol S to be
the matrix-valued function S(7,£) = 71 + C(¢). We will also consider the
homogeneous quadratic polynomial p(r,£) = det S(r,¢).

Definition 2 Define the co-characteristic variety
I'={(r,{) € (R x R*)"| p(r,£) = 0}
The characteristic variety is defined as

A={(t,z,y) € R x R*|(t,z,y) = Vp(,£), for some(r,§) €T}

"
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- Both A and T are conic subsets of R® and (JR®)*. This means that if a
Yecto.r 0 belongs to one of them, then any real multiple of v also belongs to
it. I'is con.ic because it is the zero set of a homogeneous function. A is conic
because p iz quadratic, and hence its gradient is linear. There is a natural
duality between A and T.
T.hé function p(r,¢) is a second degree polynomial in , for every ¢ fixed.
Looking at it this way we identify it with the characteristic polynomial of
the matrix C(—¢). We consider the even function of ¢

A(E) = (TrC(E))? — 4det C(¢), @

which is the discriminant of p(r,£) = 0. Clearly (strict) hyperbolicity in
the direction £ is equivalent to (strict) nonnegativity of A(—¢). Our first
result describes the kind of degenerate characteristic structure in which we
are interested, in terms of A.

Lemma 1 The characteristic variety A of system (1) consists of a pair of
straight lines through the origin if and only if the discriminant A(£) is the
square of a linear homogeneous function of €. The characteristic variety
consists of a single line if and only if A(£) is identically zero. -

Proof: We begin by observing that A consists of a pair of lines if and only
if ' consists of a pair of planes. Suppose that I' consists of a pair of planes
and let n; and na be their normal vectors. Since I' is the zero level set of
p(r,€) then Vp is normal to I'. Thus Vp(r,{) must be linearly dependent
with one of 1 or nz. By definition of A and by homogeneity of p we see that
A must contain the spaces spanned by n; and n3z, a pair of straight lines.
Conversely, assume A consists of a pair of lines and let n; and ns be their
generators. The set I' is hence normal to either ny or nz everywhere. Thus it
is contained in the planes normal to n1 and nz. Consider the intersection of
I' with the plane normal to ni. That must contain a point ¢ where (Vp)(q)
is not zero, since otherwise nj would not be in A. By the implicit function
theorem, I is a two-dimensional surface near g. So, p restricted to this plane
is a quadratic function vanishing on a nonempty open set. This implies p is
identically zero on the whole plane. The same argument applies to the plane
normal to nz, which proves our assertion. .

Clearly, the argument above also proves that I' reduces to a single plane if
and only if A reduces to a single line. It is thus enough to show that I consists
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of a pair of planes if and only if A is the square of a linear homogeneous
function of £. If A is the square of such a linear function, one may by
inspection conclude what we want immediately. The converse is a little more
delicate. ‘

Suppose that I' consists of a pair of planes, given by a;7 + b;{; + ;{2 = 0,
i = 1,2. Observe that both a; and a; must not be zero, because a vertical
plane cannot be contained in a level set of p since the coeffidient of 72 is
nonzero. Now we have expressions, 7; = —(1/a;)(bié1 + ¢i2). We compute A
explicitly, and obtain A = ((by/a; — ba/az)é1 + (c1/a1 — c2/a2)2)*.

If A =0, clearly T is a single plane. The converse hypothesis will mean

that the roots 7; above are identical, which implies the vanishing of A.
|

We now turn to the definition of partial alignment. Let A and B be
smooth functions, defined on a domain @ C IR? with values in the set of
2 x 2 real matrices. We will consider the quasilinear system

Ui+ A(U)U, + B(U)U, = 0. (3)

We assume that this system is hyperbolic, i.e. for any U;. € , the
linearized system U; + A(Uo)U. + B(Up)U, = 0 is hyperbolic.

Definition 3 System (3) is partially aligned at Uy € Q if A(Uy) and B(Up)
have an eigenvector in common. We say it is partially aligned in Q if it is
partially aligned at every state in (). We call a common eigenspace of A
and B a direction of alignment. If, for each U in Q, A(U) and B(U) have
two common linearly independent eigenvectors then the system is said to be
totally aligned.

We will discuss several properties of partially aligned systems. Assume
the choice of common eigenvector can be made smoothly in state space. The
most important property is the existence of a Riemann invariant associated

with the direction of alignment. The construction of Riemann invariants °

for hyperbolic 2 x 2 systems in one space dimension is possible due to the
fact that all smooth vector fields in a two-dimensional space are locally con-
formally equivalent to a gradient vector field (see [8]). Since state space is
two-dimensional, this fact can be applied to the smoothly varying family of
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common eigenvectors of the partially aligned matrices A and B. In Propo-
sition 1 we give a sufficient condition for existence of a smoothly varying
family of eigenvectors.

Let r = r(U) be a smooth function, defined on a domain 2 C R, such
that Vr(U) is a common left eigenvector of A(U) and B(U) for each U in
. In particular this vector field does not vanish. ‘

Let w(U) be a smooth function, defined on € above, and such that,
together, w and r form a new coordinate system for the neighborhood (2 in
state space. What is required for w is that the map V(U) = (w(U),r(U)) is a
diffeomorphism. In particular, Vw and Vr have to be linearly independent.
In these new coordinates, system (3) becomes upper triangular. We will

write it as:
w+ < f(V),Va>+<g(V),V,> =0 (4)
re + Aa(V)rz + As(V)r, =0.
Denote by f = (f?, f?) and g = (¢!, g?) the vectors that appear in the first
equation. The scalar functions A4 and Ap are the eigenvalues of A and B

respectively, associated with the common eigenvector. A
The main result in this paper is the following description of partial align-

ment in terms of the characteristic structure.

Theorem 1 System (8) is partially aligned if and only if its characteristic
structure consists of a pair of curves emanating from every point in physical

space.
Proof: Fix Uy € 0 and call A = A(Uy) and B = B(U,). By Lemma 1,

the proof is reduced to showing the equivalence of partial alignment and the
property that the discriminant A(£) be the square of a homogeneous linear

function of £.
First assume A and B have a common eigenvector n, associated to the

eigenvalues 24 and Ap. Set L = (A4, AB). Then lg =< L, £ > is an eigenvalue
of C(£), and n is its eigenvector. The other eigenvalue is Tr(C({)) — I, also
a linear function of £. The characteristic polynomial of C({ ) can be written

p(r,—€) = det(r1 = C(£)) = r* = Tx(C({))r + det(C({)),

with discriminant A = (TrC)?—4 det C. This expression is exactly the square
of the difference of the eigenvalues. In this case, A = (2l — TrC(£))?, as we

wanted.



_ Conversely, assume that the discriminant A is the square of a homoge-
neous linear function of ¢,

A = (mé; + nky)>. , (5)

First assume A is diagonalizable. Since the trace and determinant are

invariant under conjugation, we will rewrite the problem on a bagis of eigen- -
vectors of A. We denote the new matrices A and B by:

_|la&a O | b b2
A‘[o ag]a“dB‘[m bn]'

Now we write the discriminant of the characteristic polynomial of C(¢) =
§& 1A+ & B, with A and B above. We obtain the expression

A = £}(a1 — a2)* +2£162(01 — a2)(bay — bz2) + €2 [(bur — b22)? + dbuzb| . (6)

Matching the corresponding coefficients of the two expressiens (5) and (6)
for the quadratic polynomial A(¢{), we see that either a; = a, or byzb5; = 0.
In the case a; = a,, the matrix A was originally a scalar multiple of the
identity, and therefore, any eigenvector of B is a common eigenvector. In
the second case, if by; = 0, then the first basis element of the chosen basis of
eigenvectors of A is also an eigenvector of B and if b, vanished, the second
basis element would then be the common eigenvector.

Next suppose A is not diagonalizable. The matrix A must have repeated
eigenvalues and a one-dimensional eigenspace. Thus there is a basis on which
the problem can be rewritten with new matrices:

_ a 1 _ b11 blg
A-[o a]*‘““B‘ b bn]‘

The discriminant of the characteristic polynomial of C(£) ia this case is

A = Exbadba + & [(bu — b)) + 4buby| -

By matching coefficients again we see that by, has to be 0, hence the
vector (1,0) in the new basis is also an eigenvector of B. This completes the

proof. -



The degcnerate case where the characteristics reduce to a single line is
the case where both A and B have repcated cigenvalues. We call a state
with this kind of degeneracy coincident. A system that is totally aligned and
coincident has both dependent variables functioning as Riemann invariants,
propagating along the same characteristic. This implies that the character-
istic is a straight line. Thus, totally aligned, coincident systems behave very
much like scalar equations.

In studying partially aligned systems, a hypothesis of noun-coincidence
.may play the role that strict hyperbolicity plays in 1-D theory. Systems that
are everywhere coincident are nonlinear examples of constart multiplicity
multiple characteristic systems. Systems that possess both coincident and
non-coincident states are examples of systems with characteristics of variable
multiplicity, and are notoriously difficult to deal with (see [6] for some of the
linear theory of hyperbolic equations with multiple characteristics). Another

way of stressing the role of coincidence for the class of partially aligned
systems is the following Proposition.

Proposition 1 Let A(r) and B(t) be smooth one-parameter families of par-
tially aligned 2 x 2 matrices. Let 7o be such that A(mo) and B(7o) are not
coincident. Then there ezists a neighborhood I of 7o such that A(t) and
B(7) are not coincident in I. Furthermore, there exists a smooth vector-
valued function n(t) which is a common eigenvecior of A(7) and B(T) for
all T near 1.

Proof: The first statement is a trivial consequence of the characterization
of coincidence in terms of the vanishing of A. .

Let us proceed to the second conclusion. Assume, without loss of gen-
erality, that A(7) has distinct eigenvalues near To. Therefor'e t.ht?re are two
smoothly varying families of eigenvalues of A. The respec-tlve eigenvectors
can hence be chosen smoothly. One of these must necessarily be a common

eigenvector. n

Another important observation on partially aligned systems is that they
are always r;:onst.rict.ly hyperbolic, in the sense f.ha.t at every state Up t.h::lre
exists at least one direction ¢ where C(§) has: cc3mc1dent eigenvalues. We <;-
termine this direction by looking at the discriminant A(§) = (€1 +maé2)”.




We observe that it always vanishes on a straight line. Nonstrict hyperbolicity
in more than.one direction implies A vanishing and hence coincidence,
Consider a linearization of a partially aligned system at a constant state,
We can rotate physical space, to make the direction of non-strict hyper-
bolicity the z-axis. With that rotation, the matrix A will have repeated
eigenvalues, which after a Galilean transformation of physical variables, can
be assumed to be zero. In upper triangular form, this linearized systém has

the form:
0 a I3 b _

This is a particularly simple form for the linearized systems, that calls at-
tention to the non-strict hyperbolic nature of these.

Finally, we describe some examples of partially aligned systems of interest.

1. The first example is the particular class of totally aligned systems.
They have two linearly independent common eigenvectors and can be
put in diagonal form, with a pair of Riemann invariants constant along
each one of the wavefields. This provides local L estimates for smooth
solutions, and behavior similar to 1-D 2 x 2 systems. The nonlinear
sharp Huygens principle argument for shock formation, due to Klain-
erman and Majda (see [5]) works in this case, exactly as in the original
1-D case. Although they are nonstrictly hyperbolic they have better

analytic behavior than general strictly hyperbolic systems, as was ob-
served by Rauch in [7].

2. We describe a family of examples of partially aligned systems with
simple form. Consider the systems:

{ u; + (02'/2);-‘4- (f(u,v))v' =0 (7)
ve + (9(u,v))z + (v*/2), = 0.

If this system is partially aligned, and the alignment direction is neither
horizontal nor vertical, then the eigenvalues for the common eigenvector
-are u and v, and the following relation holds:

(90 — u)(fu - ”)'= 9ufo

“'Where the direction of alignment is either vertical or horizontal, the
eigenvalues change and the corresponding relation becomes f, = 0 or
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gu = 0 respectively. On the other hand, if either (g, —u)(fu —v) = gu fo
or f, =0 or g, = 0 then the system is partially aligned. For instance,
f(u,v) = eu? + (uv)/2 4 ev? and g(u,v) = —eu? + (uv)/2 — ev? are a
specific case af these examples.

3. A system of conservation laws can be obtained from the incompressible
2-D Euler equations, setting pressure and density constant in the mo-
mentum balance equations. This system was first studied by Tan and
Zhang [9) who discussed Riemann problems. The system has the form

w + (W) + (w), = 0
{vt + () + 07, = 0 (®)

This system is partially aligned, with a rather singular ccincident state
at (0,0), and non-coincident elsewhere." Its structure was used in [4] to
study shock formation, via a compression rate argument. In this shock
formation study, this system was used as a template for a small class
of partially aligned systems for which that analysis holds.

We add a few concluding remarks. What we have done can be generalized
to 2 X 2 systems in many space dimensions. The notion of partial alignment
is, however, far more singular in that context. The introduction of the class of
partially aligned systems poses a wealth of interesting problems, in terms of
generalizing known theory to them. There is enough structure to make some
interesting generalizations possible, as the authors have shown in [4]. If these
problems wi!l be interesting or not will depend on whether partially aligned
systems can be used as physically meaningful models, even if only in special
circumstances. We think this may well turn out to be the case. In our view,
the most important open problem is deciding if a-priori estimates for weak
solutions are available. We mentioned the work of Rauch (7], which shows
one cannot expect BV or L* estimates, p # 2, for multi-D systems, but the
only partially aligned systems that satisfy his hypothesis are totally aligned
ones, which are exactly the systems that turn out to admit BV estimates
after all. |

The authors are pleased to thank Barbara Keyfitz, for her encouragement,
her comments and, most importantly, for her scientific inspiration.
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