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Shock formation for a system of
conservation laws in two space dimensions

M.C. Lopes-Filho

H.J. Nussenzveig Lopes®

Abstract

We study shock formation for the 2x 2 system u;+( u?);+(uv), =0
and v¢ +(uv)-+(v?), = 0. Our result is based on the argument, due to
J.Keller and L.Ting [1], about the evolution along a characteristic of
the compression rate of nearby-characteristics. This system is one of
a class of systems, called partially aligned, which exhibit a degenerate
characteristic structure where a pair of directions substitutes the usual
cone at'every point. Our analysis can be extended to a set of partially

aligned systems satisfying a sharp-algebraic constraint..
The system we will Iétudy,

v + (u?): + (v),,. = 0 |
{vz + (w): + (t;’),, = 0, | (1)

consists of the balance of momentum equations for an incompressible ho-
mogeneous, 2-dimensional fluid at constant pressure. One should not expect
these equations to model fluid behavior, but this fact motivates the consid-
eration of tHis particular system.

Tan and Zhang [7] studied the Riemann problem for this system and in-
troduced é-shock waves as components of their solution. In contrast, our
work is basically concerned with the smooth solutions of (1). The only gen-
eral result on the formation of singularities for multi-D systems is the work
of Sideris [5]. His theorem applies, however, to symmetrizable strictly hyper-
,bolic systems,-which excludes those under present consideration. .

*Research supported in part by FAPESP Grant 93/0812-0
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System (1) exhibits a degeneracy in characteristic structure which puts it
into a class we call partially aligned (see Definition 1). Our analysis applies
to other partially aligned systems, but a sharp algebraic constraint on the
fluxes, which system (1) happens to satisfy, is also required. We will discuss
some of the basic properties of partially aligned systems in a forthcoming
paper [3]. ‘

Let U = (u,v) denote a point in a state space domain @ C IR? and let
A and B be two smooth functions defined on 2, with values in the set of
2 x 2 matrices with real eigenvalues. We consider the quasilinear hyperbolic
systems

| Ui+ A(U)U, + BU)U, = 0. (2)
Definition 1 The system above is partially aligned at Uy € Q if A(Up) and
B(U,) have an eigenvector in common. We say it is partially aligned in
Qo C N if it is partially aligned at every state in y. We call a common
eigenspace of A and B a direction of alignment.

An important property of partially aligned systems is that they admit a
Riemann invariant, associated to the direction of alignment. It is easy to see
that system (1) is partially aligned. First we write it in quasilinear form (2),

with ou 0
u v u
a2 2w nafy 2] o
The eigenvalues 2u of A and 2v of B have left eigenvectors respectively (1,0)
and (0,1). The remaining eigenvalues, u of A and v of B have a common left
eigenvector (v, —u).

We will put system (1) in upper triangular form. Consider functions
h(u,v) with gradient spanning the direction of alignment at every point away
from the origin. The function A is called a Riemzann invariant for system (1)
and its local existence for arbitrary partially aligned systems follows from
state space being two-dimensional. The argument is identical to the one
used in 2 X 2 systems in one space dimension; sec [6] for details. In our case,
we will exhibit Riemann invariant functions explicitly.

Since the direction of alignment (v, —u) is linearly dependent with the
gradient of the Riemann invariants, they must be constant on rays departing
the origin. There are no smooth nonsingular functions defined everywhere in



'R’ —‘{(0, 0)} constant on rays. Thus, there are no globally smooth Riemann
invariants. We pick the angle function as Riemann invariant,

O(u,v) = arctan (E) R (4)

v

choosing the branch of the arctan(-) with values in the interval (—x, x). This
corresponds vo fixing a state space domain that does not contain the negative
u-axis. We also remove a closed neighborhood of the state (0,0) from the
domain. For € > 0 set

Q=R- ({(u,v):v=0,u <0} U {(u,v) : u® +0° S€2})- (5)

Other domains could be considered, by choosing different brenches for the
arctan(:), but our argument would not change in substance.

We choose another smooth function, which together with the Riemann
invariant © forms a new pair of dependent variables, in whi:h system (1)
becomes upper triangular. The only requirement the other coordinate must
satisfy is that its gradient be linearly independent from V@ everywhere in .
We use the radius variable R = v/u? + v?, as it is the familiar complement to
©, but calling attention that it is an arbitrary choice. In the new variables,

_[R
W = - ol
system (1) becomes
2Rsin® R%cos© [ 2Rcos® —R?*sin®
W, + W, + W, =0. (6)
0 Rsin© 0 Rcos©

Assume R(z,y,t) and ©(z,y,t) are smooth solutions of (6), defined on

D = IR? x (0, T), continuous on the closure D. The characteristics for system

(1) become evident when the system is written as above. The second equation
in (6) expresses the fact that the Riemann invariant © is constant along

characteristics determined by

( dz/dt = (Rsin©)(z,y,t)

dy/dt = (Rcos ©)(z,y,1) ‘ (7)

- -

(2(0),¥(0)) = (a1, @2).

\
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. Here a = (a,a;) is a Lagrangian marker, labelling the starting posi-
tion of the characteristic in physical space: The other characteristic wave-
field is given by the eigenvalues of A and B associated to the non-aligned
eigenspaces,

( dz/dt = (2R sin ©)(z,y,1)

{ dy/dt-= (2R cos O)(z,y,t)

[ (2(0),4(0)) = (au, @2).
This wavefield does not carry a conserved quantity.

System (1) is hyperbolic, but not strictly so. At each state (ug,vp) € R,
there is a direction where the two speeds of plane wave propagation coin-
cide, given by (—uvo, ug). This failure of strict hyperbolicity is a feature of
partially aligned systems in general, and it will be discussed in detail in [3].
The structure of the characteristic fields in this particular example exhibits
invariance under rotational symmetries of state space, which is a reflection
of the covariance of these equations with respect to simultaneous rotation
of dependent and independent variables. For a discussion of symmetry and
characteristics for multi-D systems see [2].

We will r.ow begin to discuss shock formation per se. For 2 x 2 systems
in one space dimension there is a well-known argument, due to Klainerman
and Majda, which can be used to prove shock formation (we refer the reader
to [4] rather than to the original source). Their idea relies on finite-time
decoupling of information transported along the two characteristic wavefields,
for sufficiently small compactly supported perturbations of a constant state.
Unless one requires global separation of the speeds of the two wavefields,
an argument of this kind fails in partially aligned systems because it is not
possible to propagate in time the initial separation of wavefields with only
one Riemann invariant. We will now show that the other classical shock
formation analysis for 2 x 2 systems in one space dimension can actually be
adapted to cur system. We refer the reader once more to [4] for details on

the one-dimensional case.

We are going to define a compression rate matrix, measuring the rela-
tive displacement of neighboring characteristics for the Riemann invariant
wavefield. An ordinary differential equation for the compression rate along
the characteristic will be derived (Lemma 2). We will show that as long as



the solution remains confined to €, smoothness will be lost through infinite
compression (shock formation) in finite time.

Definition 2 Let-(z(a,t),y(a,t)) be the characteristic curve, solution of
system (7). We define the compression rate matriz M by:

9z/d0, 9z/day
M(a,t) =

0y/0a; 0Oy/0a,

Note that M(a,0) is the identity, and hence invertible for ¢ small. Our

first result consists of the observation that when this matrix becomes singular
shocks will form.

Lemma 1 If M(a*,T) is singular, with n a nonzero vector in its kernel; if
the directional derivative < VOgq,n > is nonzero at a* and if the solution
W = (R, ©) is smooth in a tubular neighborhood of the characteristic em-
anating from a* for times t < T then |VO(z(a*,t),y(a",t),t)] — oo as
t—T.

Proof: This is a consequence of the transport equation
(V(es)©) M = V.8, (8)

which comes from © being constant along characteristics and is valid as long
as the solution W is C', i.e. as long as t < T by hypothesis. Multiply this
identity by n on the right, and pass to the limit ¢t — T.

[ |

Hereafter, we will denote the transpose of any matrix by (\)T. Vectors will
be represented by row matrices. Consequently, matrices operate on vectors
through multiplication on the right. If v; and v, are two vectors then v;(v;)”
denotes their euclidian inner product and (v;)Tv; denotes the matrix v, @ v.
Set A(R,©) = (Rsin®, Rcos @), the vector of eigenvalues of A and B (the
matrices defined in (3)), determining the Riemann invariant characteristic
speed. Our next Lemma is the derivation of the differential equation satisfied
by the compression rate matrix along the characteristic.



Lemma 2 Fiz a Lagrangian marker a. As in Lemma 1, assume that the
solution W is smooth in a tubular neighborhood of the characteristic given
by (7) with initial position a. Then the compression rate matriz M(a,-)
satisfies the following ordinary differential equation:

M OA A
dt _(aR) (VR)M = (%) VGOO-

Proof: The equation obtained by differentiating M along the characteristic

18:

dM  0A OA .1
The Lemma is proved using the transport identity (8) on the last term of the
right-hand side.

|
We have not yet used the particular form of system (1). In what follows

we restrict our attention to this system. Below we state the main result of
this paper.

Theorem Let Uo(z,y) = (uo(2,y),v0(z,y)) be compactly sup-
ported initial data; let Wy(z,y) = (Ro(z,y),Oo(z,y)) be this ini-
tial data expressed in W coordinates. Suppose the data satisfies
the properties below:

1. The vector field VOq has but a finite number of singular
points in the interior of the support of the data.

2. There exists a smooth solution U(z,y,t) of system (1), with
values in the domain (2, defined up to time T'(U,). This
is the maximal time of smoothness and will be determined
precisely in the proof.

Let m(z,y,t) = max{|Vu|,|Vv|}. Then there exists a point a* €
supp(Lo) such that

m(z(a', t),y(e*,t),t) — oo as t = T(Uo).

We will tee from the proof that the shock formation time T(Uo) depex.lds
on the derivatives of the initial data, and on precisely how far the solution

6
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U(z,y,1) is from blow-up (by blow-up we mean the solution leaves 1 in finite
time).

Proof: Put system (1) in the upper triangular form (6) and recall the defini-
tion of A, the Riemann invariant characteristic wavespeed vector. Consider
Af = (— cos ©,sin ©), a nonzero vector perpendicular to dA/dR everywhere.

The crucial property of this vector, for our purposes is that it does not depend
on R, in other words,

d
a5 (AR) = (9)
Take any simple, closed level curve of ©g, inverse image of a regular
value. The vector field A% is constant along this level curve and the outward
unit normal to a C'! Jordan curve such as this one is a surjective map onto
the unit circle. Hence there exists a* such that Af(a*,0) is parallel to the

vector VOo(a*) and has the same orientation. Therefore we can choose a
real constant C > 0 such that

Ag(a*,0) = C (VOo(a®)). : (10)

Define n(t) = Ak(e*,t). Along the direction spanned by n the equation
for the compression rate matrix M in Lemma 2 becomes a closed 2 x 2 system
which can be integrated explicitly. The important facts here are:

1. n is constant along the Riemann invariant characteristic,
2. n belongs to the left kernel of the matrix (9A/ OR)T(VR).
Multiply:ng the equation for M by n one gets:

dM OA . _O0A 7

n-zt— == Il('a—R) (VR)M = n(aa) Vaeo.

Since n was' chosen perpendicular to OA/OR, the second term on the left
hand side vanishes, leaving us with

n-c-l—t- = n( )TV Oo. (11)

We recall that the time derivative here is in fact a derivative along the
characteristic. Calculating this derivative for n gives

dn _ ondR ©OndO
dt ORdt 00 dt’
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The term dO/dt vanishes because the Riemann invariant is constant along
the characteristic, whereas On/8R vanishes in virtue of the algebraic relation
(9). Therefore we conclude that n is also constant along the characteristic,

or in other words,
; dn

i 0. (12)
Rewrite equation (11), using (12), obtaining an exact equation with the
form:
d OA .1
7 (™M) = n(z5)"VaOo.

We integrate this equation and get an explicit formula for nM along the
characteristic;

(nM)(t) = (C + /ot Aﬁ(g—g)rd.s) VOo(a*), (13)
which then becomes:
(nM)({) = (c -/ ' Rd.s) VOo(a®).

This expression vanishes after some time T'(U;) as long as R > ¢. This is
the case if the solution is to remain inside 2. The conclusion‘ follows from

Lemma 1.
1

Consider now general partially aligned systems cast in upper triangular
form as in (6). The Riemann invariant wavefield is determined by a vector,
which we still call A, whose components are the eigenvalues associated to
the common eigenvector. We call the Riemann invariant variable V and
its complementary variable V. An additional condition must be imposed in
order to make an argument similar to the one above hold true. We must
assume that there exists a smooth scalar function ¢(V, V') and a vector Z(V)

such that oA
— =¢V~,V:.V, ' 14

i.e. that the vector A/AV has direction independent of V. Granted that,
we can choose the vector n = A} independent of V' so that (12) holds in the

general case.

P S
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" Another necessary requirement is that the integrand in (13) have a distin-
guished sign, and be kept far from vanishing. This condition plays the rolcf of
genuine nonlinearity in our problem. For partially aligned systems satisfyl.ng
(14) and this genuine nonlinearity, a similar theorem holds. The singularity
at the state (0, 0) in system (1) can also be interpreted as coirncidence in the
sense defined in [3], and hence as failure of a condition structurally similar
to strict hyperbolicity for 1-D systems. Near the state (0,0), system (1) has
characteristics of variable multiplicity - a situation known to be difficult to
deal with even in the linear case.

What we have proved is that either shocks form or the solution leaves
the region €, which is not enough to guarantee shock formation. To prove
shock formation, an additional weak L® estimate would have to be added;
we intend to address this in future investigation. We have shown evidence
that for system (1) and a few others like it, shock formation is to be expected,
and quite frequently. It is a well-accepted heuristic principle that the multi-D
nonlinear waves such as those studied here tend to be less compressive than
their 1-D counterparts. We have shown that partially aligned system such as
ours are constrained to have 1-D type compressive behavior along a certain
direction, without losing their essential multi-D character.

Two relevant questions are left unanswered. The first one is how sharp
the present prediction of the direction of shock formation ic. This could
be addressed by suitable numerical investigation, running, however, into the
difficulties of placing precisely the position of shocks in a numerical solution
for a multi-D system of conservation laws. The second set of questions is
concerned with extending this argument for general partially aligned systems.
Condition (14) seems at this time more convenient than essential.

The authors thank Barbara L. Keyfitz for helpful comments and conver-
sations and the Instituto de Matematica Pura e Aplicada at Rio de Janeiro,
for its productive environment and generous hospitality.
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