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Shock. formation for a system · of 
conser.vation· laws in two space dimensions 

M.C. Lopes-Filho 
H.J. Nussenzveig Lopes• 

Abstract 
We atudy shock forma.tion for the 2x 2 system u,+( u2)a-+( uv), = O 

and v, + ( uv )z-+ ( v2), = O. Our result ia baaed on the argument, due to 
J .. Keller anel. L.Ting (1), a~ut th~ evolution alonga characteristic of 
the compression-rate of -near];>y.--celfâ.racteristics. This system is one of 
a class l)f systems, called partially aligned., ~filch exhibit a degenerate 
characteristic structure where a pair of directions substitutes the· usual 

. L . . 

cone at'every -point. Our analysis can be extended to a set of partially 
aligned systems satisfying ·a sharp-algebraic constraint .. _ ., 

• ' 
The system we will ,study, 

{ u + (u 1)z + (uv), - O 
v: + (uv)z + (v1), - O, (I) 

consists of the. balance of momentum equations for an incoppressible ho-
mogeneot.U1, 2-dimensional fluid at cóhstant pressure. One shotdd not' expect 
these equations to mo_del fluid beh-avior, but this fact motivates the consid-
eratioJJ. of tl1is particular system. 

Tân and Zhang (7] stq_d.ied the Riemann problem for this system and in-
troduced 8-shock waves as components of their solution. ln contia.st, our 
work is basically concerned with the smooth solutions of (1 ). The ónly gen-
eral result ou the formation of singularities for multi-D systems is the work 
o{ Sideris (5J. His theorem applies, howcver, to symmetrizable strictly hyper-
½~ic system~,-which exdudes those under present c_onsiq~~ation. -

-Rcsea.rch supported in part by FAPESP Grant _93/0812-0 
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System ( 1) exhibits a degeneracy in cha.racteristic structure which puta it 
into a class we call partially aligned (see Definition 1 ). Our analysis applies 
to other partially aligned systems, but a sharp algebraic constràint on the 
fluxes, which system. (1) happens to satisfy, is also required. V/e will di8CU88 
some of the basic properties of partially aligned ·systems in a forthcoming 
pãper (3). • 

Let .U = (u, v) denote a point in a state space domain n C R 2 and let 
A and B be two smooth functions defined on. n, with values in the set of 
2 X 2 matrices with real eigenvalues . . We consider the quasilinear hyperbolic 
systems 

U, + A(U)Ux + B(U)U31 = O. (2) 

Definition l The system above is partially aligned at U0 E n i/ A(U0 ) and 
B(U0 ) have an eigenvector in common. We say it is partially aligned in 
n0 e n i/ it is partially aligned at every state in n0 . We call a common 
eigenspace o/ A and·B a direction o/ alignment. 

An important property of partially aligned systems is that they admit a 
Riemann invariant, associated to the direction of alignment. It is easy to eee 
that system ( 1) is partially aligned. First • we write it in quasilinear íorm (2), 
with 

(3) 

The eigenvalues 2u of A and 2v of B have left' eigenvectors respectively (1, O) 
and (O, 1 ). The remaining eigenvalues, u of A and v of B have a common left 
eigenvector (v, -u). 

We will put system (1) in upper triangular form. Consider functions 
h(u, v) with gradi~nt spanning the <lirection of eJignment a.t every point away 
írom the origin. The function h is c~Hed a Riern.ê.nn invariant for system (1) 
and its locaj existence for arbitrary partially alig~ed systems follows from 
ata.te space • being two-dimensiona.l. The a.rgurnent is id~ntical to the one 
used in 2 x 2 systems in one space dimension; see [6) for details. ln our case, 
we will exhibit Riemann invariant functions explicitly. 

Since the direction of alignmcnt (v, - u) is linearly ~ependent with ~he 
gradient of the Riemann invariants 1 they must b~ constant on rays departing 
the origin. There are no smooth nonsingular functions defined everywhere in 
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B.2 - {(O, O)} consta.nt on rays . . Thus, there are no globally smooth lliemann 
invariants. We pick the angle function • as Riemann invariant, 

0(u,v) = arctan (:), (4) 

choosing the hranch of the arctan(•) with values in the interval ( -;r, '11'"). This 
corresponds to fixing a state space domain that does not coritain the negative 
u-axis. We also remove a closed neighborhood of the state (O, O) from the 
domain. F.or e > O set 

n = JR.2 - ({(u,v): V= O,u < O} u {(u,v): u2 + v2 < t:2}). (5) 

Other doma:ns could be considered, by choosing different brc:,nches for the 
arctan(·), but our argument would not change in substance. 

We choose another smooth function, which together with the Riemann 
invariant . 0 forms a new pair of dependent variables, in whi.:h system (1) 
becomes upper triangular. The only reqttlr_ement the other coordinate must 
satisfy is that its gradient be linearly independent from ~ -everywhere in n. 
We use the .rad-ius variable R =·· Ju 2 + v2, as it is the familiar complément to 
0, but calling attention- that it is an arbitrary choice. ln the new variables, 

system ( 1) becomes 

• [ 2R sin 0 R2 cos 0 ] [ 2R cos 0 
W, + Wr+ 

O Rsin0 O 

-R2 sin 0] 
Wy =0. 

Rcos 0 · 
(6) 

Assume R(x,y, t) and 0(x,y,t) are smooth solutions of (6), defined on 

V = m,2 x (O, T), continuous on the closure V. The characteristics for system 
(1) become evident when the system is written as a.bove. The se~ond equation 
in (6) expresses the fact that the Riemann invaria.nt 0 is coostant along 
characteristics determined by 

dx / dt = ( R sin 0) ( x, y, t) 

dy / dt = ( R cos 0 )( x, y, t) 

(x(O),y(O)) = (a1,a2), 
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, .. Here o = (a1, ol) is a ·:Lagrangian marker, labelling. the starting posi-
tion of the characteristic in physical space: The other characteristic wave-
field is given by the eigenvalues of A and B associated to the non-aligned . e1genspaces, 

dx/dt = (2R sin 0)(x, y, t) 

dy/dt ·= (2Rcos 0)(x,y, t) 

(x(O), y(O)) = (01, 02). 

This wavefield does not carry a conserved quantity. 
System (1) is hyperbolic, but not strictly so. At each state (u0 , vo) E íl, 

there is a direction where the two speeds of plane wave propagation coin-
cide, given by (-u0 , u0). This failure of strict hyperbolicity is a feature of 
partially aligned systems in general, and it will be discussed in detail in [3). 
The structure of the characteristic fields in this particular example exhibits 
invariance under rotational symmetries of state space, which is a reflection 
of the covaljiance of these equations with respect to simultaneous rotation 
of dependent and independent variables. For a discussion of symmetry and 
characteristics for multi-D systems see [2]. 

We will r,ow begin to discuss shock formation per se. For 2 x 2 systems 
in one space dimension there is a well-known argument, dueto Klainerman 
and Majda, which can be used to prove shock formation (we refer the reader 
to [4] rather than to the original source). Their idea relies Jn finite-time 
decoupling of information transported along the two characteristic wavefields, 
for sufficiently small compactly supported perturbations of a constant state. 
Unless one requires global separation of the speeds of the two wavefields, 
an argument of this kind fails in partially aligned systems because it is not 
possible to propagat~ in time the initial separation of wavefields with only 
one Riemann invariant. We will now show that the other classical shock 
formation analysis for 2 x 2 systems in one ·space dimension can actually be 
a.dapted to 0ur system. We refer the reader once more to (4] for deta.ils on 
the one-dimensional case. 

We are going to define a compression rate matrix, measuring the rela-
tive displa.cement of neighboring characteristics for the Rierr:ann invariant 
wavefield. Ân ordinary differential equatiou for the compression rate along 
the characteristic will be dcrived (Lemma. 2). Wc will show t_l:at as long as 
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the solution remains confined to n, smoothness will be lost through infinite 
compression {shock formation) in finite time. 

Definition 2 Let·(x(a,t),y(a,t)) be the characteristic curve, aolution of 
system (7). We define the compression rote matriz M by: 

Note that M(a, O) is the identity, and hence invertible for t small. Our 
first result consists of tlíe observation that when this matrix becomes singular 
shocks will iorm. 

Lemma 1 lf M (a*, T) is singular, with n a nonzero vector ir, its kernel; if 
the directional derivative < V00 , n > is nonzero at a* and if the solution 
W = (R, 0) is smooth in a tubular neighborhood of the characteristic em-
anating from a* for times t < T then lv'0(x(a•, t), y(o*, t), t)I -+ oo as 
t-+ T. 

Proof: This is a consequence o{ the transport equation 

(8) 

which comes from 0 being constant along cha.racteristics and is va.lid as long 
as the solution W is C1, i.e. as long as t < T by hypothesis. Multiply this 
identity by n on the right, and pa.ss to the limit t -+ T. 

1 
Hereafter, we will denote the transpose of a.ny matrix by ( • )T. Vectors will 

be represented by row matrices. Consequently, matrices operate on vectors 
through multiplication on the right. lf v1 and v2 are two vectors then v1(v1)T 
denotes their euclidian inner product and ( v1)T v2 denotes the inatrix v1 ® V:z. 
Set A(R, 9) = (R sin 0, R cos 0), the vector o{ eigenvalue~ o{ _A a.nd B (the 
matrices defined in (3) ), determining the Riemann invariant cha.racteristic 
speed. Our next Lemma is the derivation o{ the differential equation satisfied 
by the compression rate matrix along the characteristic. • 
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Lemma 2 Fiz a Lagrangian marker a. As in Lemma 1, assume that the 
solution W is smooth in a tubular neighborhood of the characteristic given 
by (1) with initial position a. Then the comprest!ion rate matriz M(a, •) 
satisfies the . /ollowing ordinary diff erential equation: 

- (ôA)T(VR)M = (ôA)TV 0 
dt ÔR ô0 ª O• 

Proof: The equation obtained by differentiating M along the characteristic . 1s: 
dM = ( ôA )T(VR)M ( ôA )T(V0)M 
dt . ôR + ae • 

The Lemma is proved using the transport identity (8) on the last term of the 
right-hand side. 

1 
We have not yet used the particular forro of system (1 ). ln what follows 

we res,trict our attention to. this system. Below . we state the main result of 
this paper. 

Theorem Let Uo(x,y) = (uo(x,y),vo(x,y)) be compactly sup-
' ported initial data; let Wo(x,y) = (Rofx,y),00 (x,y)) be this ini-

tial dé'.ta expressed in W coordinates. Suppose the data satisfies 
the properties below: 

1. The vector field V00 has but a finite number of singular 
points in the interior of the support of the data. 

2. There exists a smooth solution U(x, y, t) of system (1), with 
values in the domain íl, defined up to time T( Uo), This 
is the maximal time of smoothness and will be determined 
precisely in the proof. 

Let m(x, y, t) = max{IVul, IVvl}. Then there exists a point a• E 
supp( U0 ) such that 

m(x(a•,t),y(a-,t),t)-+ oo as t T(Uo), 

We will from the proof that the shock formation time T(Uo) depends • 
on the deriv~tives of the initial data, and on precisely how far the solution 
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U(x, y, t) is from blow-up (by blow-up we mean the eolution leaves n in finite 
time). 
Prooí: Put system (1) in the upper triangular form (6) a.nd roca.li the defini-
tion of A, the lliemann invaria.nt characteristic wavespeed vector. Consider 
A-A= (- cos 0, sin 0), a nonzero .vector perpendicular to ôA/ôR everywhere. 
The crucial property of this vector, for our purposes is that it does not depend 

f • on R, in other words, 
(9) 

Take any simple, dosed level curve of 0 0 , inverse image of a regular 
value. The vector field A~ is 'constailt along this levei curve and the outward 
unit normal to a C 1 Jordan curve such as this one is a surjective map onto 
the uni t cirde. Hence there exists a• such that A~ ( a*, O) is parallel to the 
vector v70o( o*) and ha.s the sarne orientation. Therefore we can choose a 
real constant C > O such that 

Define n( t) = Ah (o•, t). Along the dire-ction spanned by n the equation 
for the compression rate matrix in Lemma 2 becomes a closed 2 x 2 system 
which can be integrated explitjtly.· -The important-facts here are: 

1. n is constant along the Riemann invariant char~teristic, 

2. n belongs to the left kemel of the matrix ( ôA/ ô_R)T (V R). 

Multiply:ng the equation for M by n one gets: . 

dM ôA ôA T 
ndf - n( 8R)T(VR)M = n( 80.) V 0 0o. 

Since n was · chosen perpendicular to ôA/ôR, the second term on the left 
hand side vanishes; leaving us with 

(11) 

We recall that the time derivative here is in fact a derivative along the 
characteristic. Calculating this derivative for n gives 

dn ôn dR ôn d0 
dt = 8Rdt + 80 dt' 
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The term d0 / dt va.nishes because the Riemann invariant is constant along 
the cha.ra.cteristic, wherea.s 8n/8R vanishes in virtue of the algebraic relation 
(9). Therefore we conclude that n ie also consta.nt a.long the cha.racteristic, 
or in other worda, • 

dn = O. 
dt (12) 

Rewrite equa.tion {11 ), using {12), obtaining an exact equation with the 
form: 

d ôA T 
dt (nM) = n( 80) V a9o. 

We integrate this equation and get a.n explicit formula for nM a.long the 
characteristic; 

(13) 

which then becomes: 

(nM)(t) = ( C - Lt Rds) V0o(a*). 

This expression vanishes after some time T(Uo) as long as R > ~- This is 
the case if the solution is to remain inside n. The conclusion follows from 
Lemma 1. ' 

1 
Consider· now general partially aligned systems cast in up;>er triangular 

fonn as in (6). The Riemann invariant wavefield is determined by a vector, 
which we still call A, whose components are the eigenvalues associated to 
the cornrnon eigenvector. We call the Riemann invariant variable V and 
its cornplernentary variable V. An additional condition must be irnposecl in 
order to make an argurnent similar to the one above hold true. We rnust 
assume that there exists a smooth scalar function </>(V, V) and a vector 3(V) 
such that 

âA - _.. -- = </>(V, V)=.(V), 
âV 

(14) 

i.e. that the;. vector ôA/ âV has direction independent of V. Granted that, 
we can choose the vector n = At independent of V so that {12) holds in the 
general case. 
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. Another necessary requirement is that the integrand in (13) have a distin-
guish~d sigo, and·be kept far from vanishing. This condition plays the role of 
genuine nonHnearity in our problem. For partially aligned systems satisfying 
(14) and this genuine nonlinea.rity, a similar theorem holds. Tne si_ngularity 
at the state (O, O) in system (1) ca.n also be interpreted as coir.cidence in the 
sense defined in [3], and hence as failure of a condition structurally similar 
to strict hyperbolicity for 1-D systerns. Near the state (O, O), system (1) ha.s 
characteri~tics of variable multiplicity - a situation known to be difficult to 
dea.l with even in the linear case. 

What we have proved is that either shocks forro or the solution leaves 
the region n, which is not enough to guarantee shock formation. To prove 
shock forma~ion, an additional weak L00 estimate would have to be added; 
we intend to address this in future investigation. We have shown evidence 
that for system (1) anda few others like it, shock formation is to be expected, 
and quite frequently. lt is a well-accepted heuristic principie that the multi-D 
nonlinear waves such as those studied here tend to be less compressive than 
their 1-D counterparts. We ha.ve shown that partially aligned system such as 
ours are constrained to have 1-D type compressive behavior .along a certain 
direction, without losing their essential multi-D character. . 

Two relevant questions are left unanswered. The first one is how sharp 
the present prediction of the direction of shock formation ir. This could 
be addressed by suitable numerical investigation, running, however, into the 
difficulties of placing precisely the position of shocks in a numerical solution 
for a multi-D system of conservation laws. The second set of questions is 
concerned with extending this argument for general parti~lly aligned systems. 
Condition n4) seems at this time more convenient than essential. 

The authors thank Barbara. L. Keyfitz for helpful comments a.nd conver-
sations and the Instituto de Matematica Pura e Aplicada at Rio de Janeiro, 
for its prodtictive environment and generous hospitality. 
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