

UNIVERSIDADE ESTADUAL DE CAMPINAS SISTEMA DE BIBLIOTECAS DA UNICAMP REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website: https://www.sciencedirect.com/science/article/pii/S0304885324009429

DOI: 10.1016/j.jmmm.2024.172651

Direitos autorais / Publisher's copyright statement:

©2025 by Elsevier. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo CEP 13083-970 – Campinas SP Fone: (19) 3521-6493 http://www.repositorio.unicamp.br Contents lists available at ScienceDirect

Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier.com/locate/jmmm

Electron Spin Resonance (ESR) studies on $GdCuBi_2$ intermetallic antiferromagnet

G.S. Freitas ^{a,b,*}, H. Pizzi ^a, F.B. Carneiro ^{b,c}, M.H. Carvalho ^{a,b}, E.M. Bittar ^{b,c}, E.D. Bauer ^b, J.D. Thompson ^b, F. Ronning ^b, S.M. Thomas ^b, P.F.S. Rosa ^b, S.M. Greer ^b, P.G. Pagliuso ^{a,b}

^a Instituto de Física "Gleb Wataghin", UNICAMP, 13083-859, Campinas, SP, Brazil

^b Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

^c Brazilian Center for Research in Physics, Rio de Janeiro-RJ, Brazil

ARTICLE INFO

Rare-earth antiferromagnetic compound

Intermetallic compounds

Gd ESR measurements

Keywords:

ABSTRACT

We report temperature dependent X-Band ($\nu \approx 9.5$ GHz) Electron Spin Resonance (ESR) on the GdCuBi₂ intermetallic compound. This compound presents a metallic Curie–Weiss paramagnetic behavior at high temperatures and orders antiferromagnetically at $T_N = 14.3$ K. Well above T_N (T > 250 K), the ESR experiments revealed temperature independent *g*-values spectra composed of a single Dysonian Gd³⁺ ESR line for the studied compound. Within the same temperature range, the Gd³⁺ ESR linewidth ΔH presents a linear broadening temperature dependence known as Korringa behavior. The obtained Korringa rate ($\Delta H/\Delta T$) and *g*-shift (Δg) from the ESR measurements, along with the study of the macroscopic properties of GdCuBi₂ (e.g. specific heat data and magnetic susceptibility) made it possible to explore Gd³⁺ spin dynamics in this system based on evaluation of the exchange parameters between the Gd³⁺ ESR probes and the conduction-electrons (*ce*) in this compound. Our results indicate that the exchange bottleneck effects and a **q**-dependent exchange interaction ($J_{fs}(\mathbf{q})$) between the Gd³⁺ 4f and the *ce* are likely to be present in GdCuBi₂. Disregarding the bottleneck effects in the simplest approximation, we extract the exchange parameters $J_{fs}(\mathbf{q} = 0) \approx 380$ meV and $J_{fs}^2(\mathbf{q}) >^{1/2} \approx 3.0$ meV for the Gd³⁺ spin dynamics in GdCuBi₂. These values of $J_{fs}(\mathbf{q}) = 0.008$ suggests a strongly anisotropic (or quasi-2D) Fermi surface for GdCuBi₂.

1. Introduction

Complex quantum materials include several classes of intermetallic materials containing rare-earths that commonly present an intricate interplay between crystalline electrical field (CEF) effects, Ruderman-Kittel-Kasuya-Yoshida (RKKY) magnetic coupling, and Fermi surface effects.[1] In particular, the series of intermetallic compounds RTX_2 (R = Rare-earth, T = Cu and Au and X = Sb and Bi) (R-112) has been the focus of intense scientific investigation in the last decades due to the emergence of many distinct interesting physical properties such as superconductivity (SC), heavy-fermion (HF) behavior, competing anisotropic exchange interactions and CEF effects, multiple fieldinduced transitions, anomalous Hall effect, putative nematicity, and complex magnetic structures that were reported for this family of compounds [2-12]. Along the R-112 series, the Gd-based compounds are singular because the Gd^{3+} ions possess an S-state (S = 7/2, L = 0) ground state, which makes the CEF effects become a high order effect. Thus, the Gd-based compounds can be treated as a reference compound along a series of *R*-based intermetallic analogs, where the magnetic properties of the Gd-materials purely reflect important aspects of the RKKY magnetic interaction and Fermi surface effects presented in the series [11,13–20]. In addition, the Gd³⁺ ions are suitable probes for Electron Spin Resonance (ESR) studies, which can unveil important information regarding the microscopic interaction J_{fs} between the Gd³⁺ 4*f* ESR probes and the conduction electrons (*ce*) and the related spin dynamics of the system.

Here, we report temperature-dependent X-Band Gd³⁺ ESR in the high-*T* paramagnetic state of the GdCuBi₂ intermetallic antiferromagnetic compound. This compound presented, for T > 250 K, a single Dysonian Gd³⁺ ESR spectrum with a roughly temperature independent *g*-value and a Korringa thermal broadening of the Gd³⁺ ESR ΔH . The obtained Korringa rate ($\Delta H/\Delta T$) and *g*-shift (Δg) from the ESR experiments along with analysis of the specific heat and magnetic susceptibility data for GdCuBi₂, allowed us to investigate Gd³⁺ spin dynamics in these systems by extracting the values of the exchange parameters between the Gd³⁺ ESR probes and the *ce* in these compounds.

https://doi.org/10.1016/j.jmmm.2024.172651

Received 11 June 2024; Received in revised form 31 October 2024; Accepted 7 November 2024 Available online 16 November 2024 0304-8853/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Research article

^{*} Corresponding author at: Instituto de Física "Gleb Wataghin", UNICAMP, 13083-859, Campinas, SP, Brazil. *E-mail address*: gabrielf@ifi.unicamp.br (G.S. Freitas).

The extracted values for the exchange parameters and the suggested strongly anisotropic (or quasi-2D) Fermi surface for $GdCuBi_2$ can help to understand the complex anisotropic RKKY interactions commonly observed in the *R*CuBi₂ family.

2. Experiment

Single crystals of the GdCuBi₂ intermetallic system were grown using the Bi-flux method [4,5]. The crystal structure and single phase character of GdCuBi₂ were checked by X-ray powder diffraction. This compound crystallizes in the tetragonal P4/nmm structure with a stacking arrangement of GdBi-Cu-GdBi-Bi layers. Several single crystals were also submitted to elemental analysis using a commercial Energy Dispersive Spectroscopy (EDS) microprobe coupled to scanning electron microscopy. The EDS analysis revealed the stoichiometry to be close to 1:1:2 for all studied samples, namely GdCu_{0.95(5)}Bi₂. As such, along the text, when we referred to the compound GdCuBi₂, we are considering the real stoichiometry of GdCu_{0.95(5)}Bi₂. Furthermore, it is important to point out that the vacancies are absence of Cu atoms and cannot be directly associated with presence of Cu²⁺. This defect could be spin-less or could have a free 1/2 spin (not obviously Cu²⁺). From the low-T (T < 7 K) Curie tail in the magnetic susceptibility data in the Fig. 1, we estimated that the free 1/2 spin defects are not larger than 1%. As such, it is very unlikely that these free spins could give any contribution to the ESR of 100% of Gd (S = 7/2) at very high temperature.

The ESR experiments were performed in a commercial bench-top ESR spectrometer equipped with a TE₁₀₂ cavity operated at room temperature, and temperature-dependent ESR experiments were done using a N₂ gas-flux temperature controller. Specific heat experiments were done using a commercial small-mass calorimeter, which employs a quasi-adiabatic thermal relaxation technique. The temperature-dependent magnetic susceptibility data were acquired using a commercial superconducting quantum interference device. The electrical resistivity experiments were done using a commercial low-frequency AC resistance bridge and samples mounted with a four-contact configuration. To increase the ESR signal-to-noise ratio, large GdCuBi₂ single crystals (several mm to cm in size) were crushed into fine powder (\sim 10 µm grain size) to be used in the ESR measurements.

3. Results and discussions

Temperature dependent magnetic susceptibility taken for a magnetic field of H = 3 kOe applied parallel $(\chi_{//})$ and perpendicular (χ_{\perp}) to the *c*-axis for a single crystal of GdCuBi₂ is shown in Fig. 1. An antiferromagnetic (AFM) phase transition can be found at $T_N = 14.3$ K for GdCuBi₂. In the paramagnetic state, for T > 200 K, Curie–Weiss (CW) linear fits of the inverse of the magnetic susceptibility, shown in the inset of Fig. 1, yield an effective moment $p = 8.1(2) \mu_B$ for Gd³⁺ for both directions, slightly larger than its theoretical value (7.94 μ_B). In addition, the Curie–Weiss temperature $\theta_{CW} \approx -46$ K ($\chi_{//}$) and $\theta_{CW} \approx -36$ K (χ_{\perp}) extracted from the CW fits indicate the presence of magnetic frustration, with a frustration parameter $F = \theta_{CW}/T_N = 3.2$ and 2.5 for the ($\chi_{//}$) and (χ_{\perp}) of GdCuBi₂, respectively. The temperature dependence of the magnetic susceptibility in similar conditions for the non-magnetic analog LaCuBi₂ is also shown for reference.

The electrical resistivity data as a function of temperature for single crystals of GdCuBi₂ are displayed in Fig. 2, panel 2(a). A linear metalliclike temperature dependence is observed in the paramagnetic state, and an obvious kink can be identified at the T_N values for all studied crystals. The residual resistivity ρ_0 ranged from 15–40 $\mu\Omega$ cm and the RRR values within 2–3.

The magnetic specific heat per mol of Gd divided by temperature (C_m/T) and the associated magnetic entropy are presented in panel 2(b) of Fig. 2 (2 K $\leq T \leq 50$ K) for GdCuBi₂. To calculate (C_m/T) and the magnetic entropy, the phonon contribution was taken into account using the specific heat data of LaCuBi₂ and subtracted from the total

Fig. 1. Magnetic susceptibility as a function of temperature and its inverse (inset) measured with H = 3 kOe applied parallel $(\chi_{//})$ and perpendicular (χ_{\perp}) to the *c*-axis for GdCuBi₂. The temperature dependence of the magnetic susceptibility with H = 3 kOe applied parallel to the *c*-axis for the non-magnetic analog LaCuBi₂ compound is also shown. The solid blue line is the calculated $\chi_e \approx 0.04 \times 10^{-3}$ emu/mol (see text) while the red lines in the inset are the Curie–Weiss fittings to the data of GdCuBi₂.

specific heat of the GdCuBi₂ system. A sharp peak-like anomaly in C_m/T is observed at $T_N = 14.3$ K in excellent agreement with the temperature of the appearance of the magnetic susceptibility maximum in Fig. 1. It is possible to identify small additional anomalies in C_m/T data around 10 K and 4 K that could be associated with a secondary magnetic phase within the ordered state or related to peculiarities of the exchange interaction and small crystal-field splitting, as frequently observed in heat capacity data of Eu²⁺ and Gd³⁺-based magnetic intermetallic compounds with S = 7/2 [17,21–24]. Above T_N , the magnetic entropy reaches the value of *R*ln8, as expected for the Gd³⁺ S = 7/2 multiplet in GdCuBi₂ around 35 K. The fact that S does not saturate above this temperature is probably related to small discrepancies between the GdCuBi₂ and LaCuBi₂ phonon contributions.

The Gd³⁺ ESR powder spectra measured at T = 300 K and the temperature dependence of the Gd³⁺ ESR ΔH for GdCuBi₂ are displayed in Figs. 3(a) and 3(b), respectively. In the paramagnetic state, for T > 250 K, Dysonian [25] ESR lineshapes expected for localized ESR probes in a lattice with a skin depth smaller than the sample size were measured. By fitting the ESR spectra to the adequate admixture of absorption and dispersion [25], the Gd³⁺ ESR *g*-value and ΔH were extracted for GdCuBi₂.

For $T \gtrsim 250$ K, a single ESR line with a roughly temperature independent g = 2.177(6) was found, and the Gd³⁺ ESR linewidth follows a Korringa-like linear thermal broadening as a function of temperature. At lower temperatures, the Gd³⁺ ESR *AH* starts to broaden. The Gd³⁺ ESR *g*-value decreases due to the emergence of AFM short-range Gd-Gd magnetic correlations in GdCuBi₂ (inset of Fig. 3(b)). This behavior is typically observed in the paramagnetic state for concentrated Gd-and/or Eu-based magnetically ordered materials [17–21,26]. The high-*T* linear ESR linewidth thermal broadening was fitted to the expression $\Delta H = a + bT$, with a = 1760(20) Oe and b = 1.0(2) Oe/K for GdCuBi₂. Using the simplest approximation to describe the exchange interaction, J_{fs} **S.s**, between a localized 4f electron spin (**S**) (Gd³⁺) and the free *ce*'s spin (**s**) of the intermetallic host, the ESR *g*-shift (Knight shift) [27,28] and the linewidth Korringa rate [29], when "*dynamic*" and"*bottleneck*" effects are not significant [30], can be expressed by:

$$\Delta g = J_{fs} \eta \left(E_F \right), \tag{1}$$

and

$$\frac{d\left(\Delta H\right)}{dT} = \frac{\pi k}{g\mu_B} J_{fs}^2 \eta^2 \left(E_F\right),\tag{2}$$

Fig. 2. Temperature dependence of (a) the electrical resistivity measured with the current applied along the [110] direction; (b) the specific heat per mole of Gd divided by temperature and the related magnetic entropy for GdCuBi₂.

where J_{fs} is the exchange interaction between the Gd³⁺ 4*f* ESR probes and the *ce* in the absence of *ce* momentum transfer [31], $\eta(E_F)$ is the "*bare*" density of states for one spin direction at the Fermi surface, μ_B is the Bohr magneton, *k* is the Boltzmann constant and *g* is the *g*-value for Gd³⁺.

It important to emphasize that below 350 K, the ESR linewidth starts to broaden significantly due to the spin–spin interaction reaching values much larger than 3 kOe for the T < 250 K. Since this temperature range is not of interest, we choose the scales of Fig. 3(b) to show the Korringa rate at high temperature in greater detail. On the other hand, the *g*-value (which is the more accurate information of an ESR experiment) becomes T-dependent below ≈ 270 K, so it is useful to show the *g*-value data in a lower temperature range.

Eqs. (1) and (2) are usually employed to describe the ESR data for rare-earths magnetic moments highly diluted in intermetallic hosts with the presence of c - e spin-flip scattering. In this situation, it might be expected that the relation below would hold:

$$\frac{d\left(\Delta H\right)}{dT} = \frac{\pi k}{g\mu_B} \left(\Delta g\right)^2,\tag{3}$$

As such, taken the *g*-value of Gd^{3+} in insulators as 1.993(2) [32], $(\pi k/g\mu_B) = 2.34 \times 10^4 \text{ Oe/K}$, the measured *g*-shifts and Korringa rate, *b*, for the Gd^{3+} ESR in GdCuBi_2 , after replacing $\Delta g \approx 0.184(3)$ in Eq. (3), we extract a thermal broadening of ΔH , $b \approx 790 \text{ Oe/K}$. This value is, actually, much larger than the one measured, $b \approx 1.0(2) \text{ Oe/K}$. As such, one can conclude that the simplest treatment used in Eqs.

Fig. 3. (a) Gd^{3+} ESR powder spectra at T = 300 K with the red solid lines as the best fit of the resonance to a Dyson lineshape. (b) Temperature dependence of the ESR linewidth (and *g*-value in the inset) for GdCuBi₂. The solid red line in (b) is the best fit to $\Delta H = a + bT$, yielding a = 1760(20) Oe and b = 1.0(2) Oe/K.

1 and 2 are not valid for a dense system such as GdCuBi₂, and Gd-Gd interactions, conduction electron–electron correlations [33,34], **q**-dependence of the exchange interaction, $J_{fs}(\mathbf{q})$ [31], and exchange bottleneck effects [30] may need to be considered in the analysis of the ESR data for GdCuBi₂".

Therefore, to further analyze our ESR data for GdCuBi₂, one is required to obtain the "*bare*" density of states for one spin direction at the Fermi surface, $\eta(E_F)$ for GdCuBi₂. Considering a free *ce* gas model and using the expression $\gamma = (2/3)\pi k^2 \eta(E_F)$, $\eta(E_F)$ can be extracted from the specific heat and taken into account the electronic contribution to the specific heat.

However, as can be seen in Fig. 2(b), a significant non-obvious magnon contribution to the low-*T* specific heat of GdCuBi₂ makes it difficult to estimate the correct γ value from the specific heat of GdCuBi₂. Alternatively, we have used the specific heat data of LaCuBi₂ [11] to estimate a value for $\eta(E_F)$ for GdCuBi₂. This is justified because both Gd³⁺ and La³⁺ are trivalent, and they similarly contribute with one 5*d* and two 6*s* electrons to the conduction band. An electronic specific heat $\gamma = 2.3(2)$ mJ/mol La-K² for LaCuBi₂ [11] yields $\eta(E_F) = 0.48(5)$ states/eV mol spin. Using this value of $\eta(E_F)$, one could extract an electronic spin susceptibility $\chi_e = 2\mu_B^2\eta(E_F) \approx 0.04 \times 10^{-3}$ emu/mol. This value of χ_e is of the order of the Pauli susceptibility (corrected for the core-diamagnetism) obtained for LaCuBi₂ [11] (see Fig. 1). As such, one can disregard the conduction electron–electron correlations [33,34] in the analyses of our ESR data for GdCuBi₂.

Considering now the presence of a **q**-dependence of the exchange interaction in an unbottlenecked regime, $J_{fs}(\mathbf{q})$, the *g*-shift (Eq. (1)) and

the thermal broadening of the linewidth (Eq. (2)) may be re-written as: [30,33–35]

$$\Delta g = J_{fs}(\mathbf{0}) \ \eta \left(E_F \right), \tag{4}$$

and

$$\frac{d\left(\Delta H\right)}{dT} = \frac{\pi k}{g\mu_B} < J_{f_s}^2(\mathbf{q}) > \eta^2 \left(E_F\right).$$
(5)

Using $\eta(E_F) = 0.48(5)$ states/eV mol spin and Eqs. (4) and (5), we calculated $J_{fs}(\mathbf{q} = 0) \approx 380$ meV and $\langle J_{fs}^2(\mathbf{q}) \rangle^{1/2} \approx 3.0$ meV for GdCuBi₂. This yields an exchange interaction ratio $[\langle J_{fs}^2(\mathbf{q}) \rangle$ $/J_{fs}^2(\mathbf{0})] \approx 0.008$ for GdCuBi₂. This value is much smaller than that found for cubic materials [36–38]. The small value of the exchange interaction ratio and the Gd³⁺ ESR positive *g*-shift found here suggest a strongly anisotropic (or quasi-2D) Fermi surface, with large *s* and *dce* contributions for GdCuBi₂. [39]. In fact, ESR experiments in doped BaFe₂As₂ could clearly provide evidence of how $\langle J_{fs}^2(\mathbf{q}) \rangle^{1/2}$ can capture the dimensionality of the electronic bands in real space [39]. In particular, the Eu²⁺ ESR Korringa rate and the $\langle J_{fs}^2(\mathbf{q}) \rangle^{1/2}$ were found to decrease (while $J_{fs}(0)$ remained nearly constant) as the electronic bands move further away from the Eu²⁺ sites in real space as they assume a more planar/xy-orbital character. This seems to be the case for the *s* and *d* – *ce* electronic contributions for GdCuBi₂.

ESR experiments of dilute Gd^{3+} in LaCuBi₂ will be valuable to confirm the above results and allow the exchange bottleneck effects to be accounted for. As bottleneck effects are potentially important, the above values should be taken as a lower limit for the values of $J_{fs}(\mathbf{q})$ and $< J_{fs}^2(\mathbf{q}) >^{1/2}$ in GdCuBi₂.

and $\langle J_{fs}^2(\mathbf{q}) \rangle^{1/2}$ in GdCuBi₂. The values of $J_{fs}(\mathbf{q})$ and $\langle J_{fs}^2(\mathbf{q}) \rangle^{1/2}$ and the strongly anisotropic (or quasi-2D) with large *s* and *d*-*ce* contributions of GdCuBi₂ may help the efforts on the comprehensive study of the magnetic properties and/or the HF behavior along the *R*-112 series, bringing microscopic insights to the understanding of the complex RKKY magnetic interactions found in these series. [2–12].

4. Conclusions

In conclusion, we report temperature-dependent X-Band ($\nu \sim$ 9.5 GHz) Electron Spin Resonance (ESR) on the GdCuBi₂ intermetallic compound. This material is a metallic Curie-Weiss paramagnet at high temperature and evolves to an antiferromagnetic ordered state below $T_{\rm N}$ = 14.3 K. In the paramagnetic regime, for T > 250 K, a single Dysonian Gd³⁺ ESR spectrum with a roughly temperature independent g-value is observed for the studied samples. At high-T, the Gd³⁺ ESR linewidth of the GdCuBi2 compound follows a Korringa-like temperature dependence. The obtained Korringa rate ($\Delta H/\Delta T$) and g-shift (Δg) from the ESR experiments supported by magnetic susceptibility and specific heat experiments for GdCuBi₂, allowed us to explore Gd³⁺ spin dynamics in this system and extract the exchange parameters between the Gd³⁺ ESR probes and the *ce* for this compound. Our results indicate a **q**-dependent exchange interaction $(J_{fs}(\mathbf{q}))$ between the Gd³⁺ 4f and the conduction electrons (ce) and exchange bottleneck effects and are likely to be present in GdCuBi₂. Disregarding the bottleneck effects in the simplest approximation, we could extract the exchange parameters $J_{fs}(\mathbf{q}=0) \approx 380 \text{ meV}$ and $\langle J_{fs}^2(\mathbf{q}) \rangle^{1/2} \approx 3.0 \text{ meV}$ for the Gd³⁺ spin dynamics in GdCuBi₂.

CRediT authorship contribution statement

G.S. Freitas: Writing – review & editing, Writing – original draft, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. H. Pizzi: Investigation. F.B. Carneiro: Investigation. M.H. Carvalho: Investigation. E.M. Bittar: Investigation. E.D. Bauer: Investigation. J.D. Thompson: Methodology, Investigation, Formal analysis, Data curation, Conceptualization. F. Ronning: Investigation. S.M. Thomas: Investigation. P.F.S. Rosa: Supervision, Resources, Methodology, Investigation, Conceptualization. **S.M. Greer:** Resources, Methodology, Investigation, Funding acquisition, Data curation, Conceptualization. **P.G. Pagliuso:** Writing – review & editing, Writing – original draft, Visualization, Supervision, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We acknowledge funding from FAPESP, Brazil (grants No 2017/ 10581-1, 2019/26247-9, 2022/09240-3), CAPES, Brazil, CNPq, Brazil (Grants No. 405408/2023-4 and 311783/2021-0) and FINEP-Brazil. Work at Los Alamos was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering project "Quantum Fluctuations in Narrow-Band Systems".

Data availability

Data will be made available on request.

References

- Robert Cava, Nathalie de Leon, Weiwei Xie, Introduction: Quantum materials, Chem. Rev. 121 (2021) 2777.
- [2] K.D. Myers, S.L. Bud'ko, I.R. Fisher, Z. Islam, H. Kleinke, A.H. Lacerda, P.C. Canfield, Systematic study of anisotropic transport and magnetic properties of RAgSb₂, (R = Y, La, Nd, Sm, Gd–Tm), J. Magn. Magn. Mater. 205 (1999) 27–52.
- [3] C. Petrovic, S.L. Bud'ko, J.D. Strand, P.C. Canfield, Anisotropic properties of rare earth silver dibismites, J. Magn. Magn. Mater. 261 (2003) 210–221.
- [4] C.B.R. Jesus, M.M. Piva, P.F.S. Rosa, C. Adriano, P.G. Pagliuso, Evolution of the magnetic properties along the RCuBi₂ (R=Ce, Pr, Nd, Gd, Sm) series of intermetallic compounds, J. Appl. Phys. 115 (2014) 17E115.
- [5] C.B.R. Jesus, M.M. Piva, P.F.S. Rosa, C. Adriano, Z. Fisk, P.G. Pagliuso, Magnetic properties of the RAuBi₂ (R=Ce, Pr, Nd, Gd, Sm) series of intermetallic compounds, Physics Procedia 75 (2015) 618–624.
- [6] S.M. Thomas, P.F.S. Rosa, S.B. Lee, S.A. Parameswaran, Z. Fisk, J. Xia, Hall effect anomaly and low-temperature metamagnetism in the Kondo compound CeAgBi₂, Phys. Rev. B 93 (2016) 075149.
- [7] S. Seo, Xiaoyu. Wang, S.M. Thomas, M.C. Rahn, D. Carmo, F. Ronning, E.D. Bauer, R.D. dos Reis, M. Janoschek, J.D. Thompson, R.M. Fernandes, P.F.S. Rosa, Nematic State in CeAuSb₂, Phys. Rev. X 10 (2020) 011035.
- [8] G.S. Freitas, M.M. Piva, R. Grossi, C.B.R. Jesus, J.C. Souza, D.S. Christovam, N.F. Oliveira Jr., J.B. Leão, C. Adriano, J.W. Lynn, P.G. Pagliuso, Tuning the crystalline electric field and magnetic anisotropy along the CeCuBi_{2-x}Sb_x series, Phys. Rev. B 102 (2020) 155129.
- [9] M.M. Piva, R. Tartaglia, G.S. Freitas, J.C. Souza, D.S. Christovam, S.M. Thomas, J.B. Leão, W. Ratcliff, J.W. Lynn, C. Lane, J.-X. Zhu, J.D. Thompson, P.F.S. Rosa, C. Adriano, E. Granado, P.G. Pagliuso, Electronic and magnetic properties of stoichiometric CeAuBi₂, Phys. Rev. B 101 (2020) 214431.
- [10] C. Adriano, P.F.S. Rosa, C.B.R. Jesus, J.R.L. Mardegan, T.M. Garitezi, T. Grant, Z. Fisk, D.J. Garcia, A.P. Reyes, P.L. Kuhns, R.R. Urbano, C. Giles, P.G. Pagliuso, Physical properties and magnetic structure of the intermetallic CeCuBi₂ compound, Phys. Rev. B 90 (2014) 235120.
- [11] G.S. Freitas, S.G. Mercena, C.B.R. Jesus, C. Adriano, M.M. Piva, J.C. Souza, H.B. Pizzi, A.M. Caffer, F.B. Carneiro, M.H. Carvalho, C. Girod, M.M. Bordelon, X. Gratens, E.D. Bauer, F. Ronning, J.D. Thompson, S.M. Thomas, Z. Fisk, N.F. Oliveira Jr., D.J. Garcia, P.F.S. Rosa, P.G. Pagliuso, De Gennes scaling breakdown in the *RTBi*₂ (*R*=Ce, Pr, Nd; *T*=Cu, Au) series: the role of crystal field effects and anisotropic magnetic interactions, Phys. Rev. B (2024) submitted for publication.
- [12] M.M. Bordelon, C. Girod, F. Ronning, K. Rubi, N. Harrison, J.D. Thompson, C. dela Cruz, S.M. Thomas, E.D. Bauer, P.F.S. Rosa, Interwoven atypical quantum states in CeLiBi₂, Phys. Rev. B 106 (2022) 214433.
- [13] P.G. Pagliuso, J.D. Thompson, M.F. Hundley, J.L. Sarrao, Z. Fisk, Crystal structure and low-temperature magnetic properties of R_mMIn_{3m+2} compounds (M = Rh or Ir; m = 1,2; R=Sm or Gd), Phys. Rev. B 63 (2001) 054426.

- [14] E. Granado, P.G. Pagliuso, C. Giles, R. Lora-Serrano, F. Yokaichiya, J.L. Sarrao, Magnetic structure and fluctuations of Gd₂IrIn₈: A resonant x-ray diffraction study, Phys. Rev. B 69 (2004) 144411.
- [15] E. Granado, B. Uchoa, A. Malachias, R. Lora-Serrano, P.G. Pagliuso, H. Westfahl Jr., Magnetic structure and critical behavior of GdRhIn₅: Resonant x-ray diffraction and renormalization group analysis, Phys. Rev. B 74 (2006) 214428.
- [16] A. Malachias, E. Granado, R. Lora-Serrano, P.G. Pagliuso, C.A. Pérez, H. Westfahl Jr., Spin structure and first-order transition of GdIn₃: Near-surface magnetism, buried amplitude-modulated phase, and interface delocalization, Phys. Rev. B 77 (2008) 094425.
- [17] C.B.R. Jesus, P.F.S. Rosa, T.M. Garitezi, G.G. Lesseux, R.R. Urbano, C. Rettori, P.G. Pagliuso, Electron spin resonance of the half-Heusler antiferromagnet GdPdBi, Solid State Commun. 177 (2014) 95.
- [18] M.A. Pires, L. Mendonça Ferreira, J.G.S. Duque, R.R. Urbano, O. Agüero, I. Torriani, C. Rettori, E.M. Bittar, P.G. Pagliuso, Crystal structure and physical properties of Gd₃Co₄Sn₁₃ intermetallic antiferromagnet, J. Appl. Phys. 99 (2006) 08J311.
- [19] J.G.S. Duque, C. Adriano, R. Lora-Serrano, C. Rettori, R.R. Urbano, J.L. Sarrao, S.B. Oseroff, P.G. Pagliuso, Electron spin resonance of Gd³⁺ in Gd_m M_nIn_{3m+2n} (M = Rh,Ir; n = 0,1; m = 1,2) antiferromagnets, J. Appl. Phys. 103 (2008) 07B733.
- [20] J.G.S. Duque, E. Miranda, A.M.O. Belon, L. Bufaiçal, C. Rettori, P.G. Pagliuso, Magnetic properties of frustrated Y-doped GdInCu₄, Physica B 398 (2007) 430.
- [21] P.G. Pagliuso, J.L. Sarrao, J.D. Thompson, M.F. Hundley, M.S. Sercheli, R.R. Urbano, C. Rettori, Z. Fisk, S.B. Oseroff, Antiferromagnetic ordering of divalent Eu in EuCu₂Si₂ single crystals, Phys. Rev. B 63 (2001) 092406.
- [22] M. Bouvier, P. Lethuillier, D. Schmitt, Specific heat in some gadolinium compounds. I. Experimental, Phys. Rev. B 43 (1991) 13137.
- [23] S. Süllow, I. Prasad, M.C. Aronson, J.L. Sarrao, Z. Fisk, D. Hristova, A.H. Lacerda, M.F. Hundley, A. Vigliante, D. Gibbs, Structure and magnetic order of EuB₆, Phys. Rev. B 57 (1998) 5860.
- [24] M. Radaelli, M.M. Piva, J.C. Souza, G.G. Lesseux, C.B.R. Jesus, D. Tobia, R.R. Urbano, P.F.S. Rosa, P.G. Pagliuso, Probing putative orbital differentiation effects via Eu²⁺ spin dynamics in Sr_{1-x}Eu_xFe₂As₂, Phys. Rev. B 107 (2023) 134512.
- [25] F.J. Dyson, Electron spin resonance absorption in metals. II. Theory of electron diffusion and the skin effect, Phys. Rev. 98 (1955) 349.

- [26] P.F.S. Rosa, C. Adriano, T.M. Garitezi, R.A. Ribeiro, Z. Fisk, P.G. Pagliuso, Electron spin resonance of the intermetallic antiferromagnet EuIn₂As₂, Phys. Rev. B 86 (2012) 094408.
- [27] K. Yosida, Magnetic properties of Cu-Mn alloys, Phys. Rev. 106 (1957) 893.
- [28] P.G. Pagliuso, C. Rettori, J.L. Sarrao, A. Cornelius, M.F. Hundley, Z. Fisk, S.B. Oseroff, Electron spin resonance of Gd³+ and Nd³+ in LuInA₄ (A=Cu, Ni), Phys. Rev. B 60 (1999) 13515.
- [29] J. Korringa, Nuclear magnetic relaxation and resonnance line shift in metals, Physica 16 (1950) 601.
- [30] C. Rettori, H.M. Kim, E.P. Chock, D. Davidov, Dynamic behavior of paramagnetic ions and conduction electrons in intermetallic compounds: Gd_xLu_{1-x}Al₂, Phys. Rev. B 10 (1974) 1826.
- [31] D. Davidov, K. Maki, R. Orbach, C. Rettori, E.P. Chock, Electron spin resonance of Gd in the intermetallic compounds YCu, YAg, and LaAg: Wave vector dependence of the exchange interaction, Solid State Commun. 12 (1973) 621.
- [32] A. Abragam, B. Bleaney, EPR of Transition Ions, Clarendon Press, Oxford, 1970.
- [33] T. Moriya, The effect of electron-electron interaction on the nuclear spin relaxation in metals, J. Phys. Soc. Japan 18 (1963) 516.
- [34] A. Narath, Nuclear magnetic resonance and relaxation of ¹⁹⁷Au in gold metal and ¹⁰⁹Ag in gold-silver alloys, Phys. Rev. 163 (1967) 232.
- [35] D. Davidov, R. Orbach, C. Rettori, D. Shaltiel, L.J. Tao, B. Ricks, Hyperfine splitting in the electron spin resonance of Dy and Er in the transition metal-Rh, Phys. Lett. A 35 (1971) 339.
- [36] P.G. Pagliuso, C. Rettori, S.B. Oseroff, J. Sarrao, Z. Fisk, A. Cornelius, M.F. Hundley, ESR of Gd³+ in the Kondo-lattice compound YbAgCu₄ and its reference compounds RAgCu₄ (*R* = Y, Lu), Phys. Rev. 56 (1997) 8933.
- [37] C. Rettori, S.B. Oseroff, D. Rao, P.G. Pagliuso, G.E. Barberis, J. Sarrao, Z. Fisk, M. Hundley, ESR of Gd³⁺ in the intermediate-valence YbInCu₄ and its reference compound YInCu₄, Phys. Rev. B 55 (1997) 1016.
- [38] E.M. Bittar, C. Adriano, C. Giles, C. Rettori, Z. Fisk, P.G. Pagliuso, Probing the localized to itinerant behavior of the 4f electron in CeIn_{3-x}Sn_x by Gd³⁺ electron spin resonance, Phys. Rev. B 86 (2012) 125108.
- [39] P.F.S. Rosa, C. Adriano, T.M. Garitezi, T. Grant, Z. Fisk, R.R. Urbano, P.G. Pagliuso, Site-specific spin dynamics in BaFe₂As₂: tuning the ground state by orbital differentiation, Sci. Rep. 4 (2014) 6543, For a better understanding of this reasoning, please see, and references therein.