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Abstract—In recent years, the demand for developing low
computational cost methods to deal with uncertainties in fore-
casting has been increased. Probabilistic forecasting is a class of
forecasting in which the method provides intervals or probability
distributions as outcomes of its forecasting. The aim of this paper
is, therefore, proposing a new forecasting approach based on fuzzy
time series (FTS) that takes advantage of fuzzy and stochastic
patterns on data and is capable to deal with point, interval, and
distribution forecasts. The method proposed was empirically
tested with typical financial time series, and the results were
compared with other standard FTS and statistical methods. The
results show that the proposed method obtained accurate results
and outperformed standard FTS methods. The proposed method
also combines versatility, scalability, and low computational cost,
making it useful on a wide range of application scenarios.

Index Terms—Forecast uncertainty, fuzzy systems, fuzzy time
series (FTS), probabilistic forecasting, time series analysis.

I. INTRODUCTION

M
ANY scientific and engineering applications demand the
measurement of forecasting uncertainty inherent in nat-

ural and economic processes. In these processes, the uncertainty
can be intrinsic or extrinsic and is classified in two categories:
1) the epistemic uncertainty; and 2) the ontological uncertainty
[1]. The epistemic uncertainty represents the vagueness, lack of
information, and imprecision (aggregations, measurement er-
rors, sensor calibration, and other unknown factors) and can be
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modeled by the fuzzy theory. The ontological uncertainty rep-
resents the randomness, and the stochastic behavior and can be
modeled by the probability theory.

Despite these points, the majority of forecasting methods are
concerned with one step ahead point forecasting without out-
putting uncertainty measures. When the n-step ahead forecast-
ing is considered, the uncertainty increases and the accuracy and
reliability of models is affected. This effect becomes even worse
as the forecasting horizon increases.

This fact led to the development of methods for probabilistic
forecasting [2] and interval forecasting [3], to deal with forecast-
ing uncertainty by estimating the distributions of possible values
instead of a unique point forecast. The interval forecasting can be
viewed as a particular case of the probabilistic forecasting where
the probabilities are assumed to be uniform inside the bounds
of the interval forecast. However, traditional methods of prob-
abilistic forecasting require the use of parametric models with
distribution assumptions, as in Bayesian inference, or costly es-
timation techniques and Monte-Carlo simulations. Probabilistic
forecasting has been used in areas such as weather forecast-
ing (see [4] and [5]), electric load forecasting (see [6], [7], and
[8]), wind power generation (see [9] and [10]), and hydrology
forecasting (see [11]).

With the recent phenomenon of the Big Data, other concerns
were added to the requirements of forecasting methods: scalabil-
ity, low computational cost, and self-adaptability. Some of these
are the characteristics of the fuzzy time series (FTS) methods
[12], which have been drawing more attention and relevance in
recent years due to many studies reporting their good accuracy
compared with other models [13]. FTS is also an approach to
deal with the epistemic uncertainty, as with the time-aggregation
case of the financial time series. The fuzzification of data gives
a more flexible representation to the individual measures, em-
bracing the range of possible value fluctuations not covered by
the single values.

FTS methods have been commonly used for the forecasting
of university enrollments (see [12], [14], and [15]), stock mar-
kets (see [16]–[21]), tourism (see [22]), electric load (see [23]
and [24]), seasonal time series (see [25]–[27]), among many
others. There are still some gaps in FTS methods (see [28] and
[29]) related with methodological problems, but many of them
have been approached in more recent studies [30]. But, the most
notable lack in these methods is the absence of probabilistic
forecasting approaches.

Taking these FTS drawbacks into consideration, this research
presents the probabilistic weighted (PWFTS), a new method
family that exploits both types of uncertainty to capture time
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series patterns and translate them into the rule-based knowl-
edge system (the probabilistic weighted fuzzy logical relation-
ship groups). PWFTS is capable of forecasting points for one
step ahead, intervals for one or many steps ahead, and proba-
bilistic distributions for many steps ahead. This method does not
make any parametric assumptions about the data and is compu-
tationally cheaper. The rules generated by the method are easy
to update, human-readable, and their parameters make it flexible
for several use cases.

The following are the main contributions of this paper:
1) development of the PWFTS, which is a new nonparamet-

ric, data driven, and highly accurate forecasting method;
2) a new representation method for fuzzy temporal rules, with

weights on the precedent and the consequent of the rules,
reflecting its a priori and a posteriori empirical probabil-
ities;

3) new defuzzification methods capable of producing prob-
ability distributions, prediction intervals, and point fore-
casts. This is the first FTS method in the literature, which
integrates point, interval, and probabilistic forecasting in
the same model.

The method proposed was empirically tested with typical fi-
nancial time series, and the results were compared with other
standard FTS and statistical methods. The results show that the
proposed method obtained accurate results and outperformed
standard FTS methods. The proposed method also combines
versatility, scalability, and low computational cost, making it
useful on a wide range of application scenarios.

To explain the details of the method, this paper is organized
as follows: Section II presents the related literature of FTS
and probabilistic forecasting; Section III introduces the PWFTS
method for generating the rules and a method for point fore-
casting one step ahead; Section IV describes the extensions for
the standard method. In Section V, an empirical analysis is em-
ployed to validate the proposed method and compare its perfor-
mance with that of other methods. Finally, Section VI concludes
this paper.

II. LITERATURE REVIEW

A. FTS Models

FTS models are nonparametric models introduced by Song
and Chissom [12] and based on fuzzy set theory [31]. These
methods are easy to implement and very flexible, providing ways
to deal with numeric and nonnumeric data. Some of FTS meth-
ods produce compact and human readable models of the time
series behavior by using fuzzy rules, which could, in principle,
be used by business experts and researchers.

There are several categories of FTS methods, varying mainly
by their order and time-variance. The order indicates how
many time-delays (lags) are used in modeling the time se-
ries. Given the time series data F , the first-order models use
F (t− 1) data to predict F (t), and the high-order models use
F (t− 1), F (t− 2), . . . , F (t− k) data to predict F (t). Time
varying models require the updates of the current model with
time to produce new forecasts.

Song and Chissom [12] proposed the main steps of all FTS
methods, but its computation demanded many matrix operations
for each forecasting, making the process computationally expen-
sive. Later, Chen [32] simplified Song and Chissom’s algorithm
by creating the fuzzy logical rule groups (FLRGs), making the
forecasting process cheaper by avoiding the use of matrix ma-
nipulations. FLRGs represent the knowledge base (rule base) of
the model and are human readable and easy to interpret. Both
the methods are known as conventional FTS models.

The initial step of training an FTS model is the partitioning of
the universe of discourse, U , that is, the range of values covered
by the training data. This is certainly one of the most crucial
steps in FTS methods due to their influence on the forecasting
accuracy and model over-fitting. The number of intervals, the
length of these intervals, and their midpoints are all the param-
eters that should be chosen carefully or indeed optimized. The
partitioning scheme initially proposed in the conventional FTS is
just the division of the data range in k equal length intervals, the
same method adopted hereafter in this paper just for simplicity.

However, more accurate methods have been proposed in the
literature. Huarng [33] proposed an empirical method to find
the ideal partition lengths. Li et al. [34] applied the fuzzy
c-means clustering algorithm to find the best partitions’ mid-
points. Cheng [35] used the entropy of data to find the
best partitions’ midpoints. Enayatifar et al. [36] used an
evolutionary algorithm to achieve the optimal partitioning
scheme.

The generation of FLRG from the fuzzyfied data in FTS model
has, at least, two drawbacks: 1) the loss of rule’s recurrence; and
2) their chronological order. Thus, at the forecasting process, a
very recurrent pattern of data has the same importance as that of a
unique occurrence pattern. Moreover, newer and older patterns
also have the same weight in the forecast. To fix these draw-
backs, Yu [37] proposed the weighted FTS (WFTS) model by
including weights on FLRGs. These weights are monotonically
increasing and have a smoothing effect, giving more importance
to the most recent data in the forecasting process. The work in
[15] and [21] has presented the improved weighted FTS (IWFTS)
model and changed the way in which the weights are assigned to
the right-hand side (RHS) of the rules in Yu’s model. The main
difference is that the weights are calculated by the recurrence
of each rule, discarding the chronological order. The exponen-
tially weighted FTS (EWFTS) method, proposed in [38] and
[20], replaces the linear weight growth of the WFTS model by
an exponential growth. Lee et al. [39] proposed a broad general-
ization of the weighted methods with the polynomial FTS. This
method demands the coefficient fitting by using optimization
techniques but is capable to approximate WFTS, IWFTS, and
EWFTS methods.

Above methods are first-order models. Higher order methods
include [18], [40], and [41], and approaches that deal with the
order, lag, and rule optimization as in [42]. Seasonal models
include [43]. There are also hybrid FTS approaches such as
[40], which proposes a high-order multivariable FTS algorithm
based on fuzzy clustering; [30] combines statistical ARFIMA
models with FTS for forecasting of long-memory time series;
[44] uses genetic algorithms and neural networks coupled with
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FTS. Several recent works are using the F-Transform defined
in [45] as a method to represent and decompose the time series
signal, as can be found in [46], [47], and [43].

All these models have some common drawbacks. First, in the
forecasting step, just one FLRG from the rule base is chosen
for computing the result, based on the maximum membership
between the input value and all the FLRGs. This does not take
advantage of the “smoothing” effect of fuzzy methods, which
demands mixing many sets according to their fuzzy membership
values. Second, these models are point-based forecasters and
give no uncertainty measures about their results.

The first works to make the relationship of probabilities with
fuzzy sets came from Zadeh, [48], [49], who defined the fuzzy
set probability as the expectation of the membership function.
Also, Klement et al. [50] and Dubois and Prade [51] explore
the relationships between the fuzzy membership functions and
the probability measures based on the measure theory. These
theoretical works form the base of the fuzzy stochastic FTS in
Song, et al. [52], where three models were presented, but unfor-
tunately there is no empirical analysis of their results. In [53], the
multivariate stochastic fuzzy forecasting is proposed based on
the exponential smoothing among the diverse variables. Gang-
war and Kumar [54] proposed the probabilistic and intuitionis-
tic FTS method, strongly based on data normality and explicit
Gaussian process assumption.

The fuzzy stochastic methods presented depend on knowing
the data distribution beforehand, and some of them depend on
the data normality. These assumptions make them less general,
restricting their usability.

B. Probabilistic Forecasting

Gneiting and Katzfuss [2] define probabilistic forecasting
as “the form of a predictive probability distribution over fu-
ture quantities or events of interest.” This definition encloses
two main forecasting types: 1) intervals and 2) probability
butions.

Interval forecasts take the form I = [a, b], where a represents
the lower bound and b the upper bound of uncertainty and usu-
ally represent the quantiles of an estimate Ŷ (t) or the conditional
variance V ar[y(t) | y(t− 1), y(t− 2), . . .]. A simple method
for creating prediction intervals for generic forecasting models
was proposed in [55], namely the mean-variance model. From
the point forecast, µ = E[Yt+1 |Yt, Yt−1, . . .] with the variance
of the residuals, σǫ =

√

V AR[ǫ], by assuming that these resid-
uals follow ǫ ∼ N (0, 1). The prediction interval is calculated
as I = [µ− zα/2σǫ , µ+ zα/2σǫ], and zα/2 = Φ((1− α)/2)
is the standard normal distribution function.

The main probabilistic approach for interval forecasting is
the quantile auto regression (QAR) [56], based on the quantile
regression [57]. QAR approaches have been used in many appli-
cation fields, for instance, energy load forecasting [6] and wind
forecasting [9]. Each QAR model is fitted for a specific τ , the
quantile value; hence, for a certain confidence level α, two QAR
models are needed (α and 1−α). The independence of quantiles
also allows one to create asymmetric interquantile intervals, if
needed.

In the FTS literature, Silva et al. [58] proposed the Inter-
val FTS (IFTS). In this method, the length of forecasting inter-
val is the measure of the fuzzy uncertainty, where wide inter-
vals mean high uncertainty, and thin intervals mean low uncer-
tainty. The main drawback of this method is considering only the
fuzzy uncertainty, discarding the stochastic behavior of the time
series.

On the other hand, in the probability distribution forecast
methods, there is a probability distribution function (PDf)
P (y(t)), where P : U → [0, 1], and U is the sample space of
time series Y (t), which associates an occurrence probability for
each y(t) ∈ Y (t). A common approach for probabilistic fore-
casting is the use of ensembles of models and forecast combina-
tion. This is not a new concept, see for instance [59], and start
on the assumption that mixing different forecasting sources may
improve overall forecasting. This is slightly close to the concept
of the ensemble methods defined in [60] as “an ensemble pre-
diction system consists of multiple runs of numerical weather
prediction models, which differ in the initial conditions.” Also,
Leutbecher and Palmer [5] states that “The ultimate goal of en-
semble forecasting is to predict quantitatively the probability
density.”

These ensembles based on Monte Carlo methods can be
homogeneous (same method with different parameters) or
hybrid (different methods with different parameters). The
internal methods are executed several times, and the larger
is the sample, the better are the approximations made. After
n runs, the empirical distribution P (Yi) of the outputs is
available. Initially, ensemble learning methods were developed
to produce point forecasts as a combination of the individual
models forecasts by a weighted average or more complex
methods such as the Bayesian model averaging; see for instance
[61]. Soon after, these methods were adapted for probabilistic
forecasting as in [5], [62], and [63]. In [64], a methodol-
ogy for electric load probabilistic forecasting is proposed,
combining point forecasting and scenario-based probabilistic
forecasting.

Several other nonparametric approaches are possible, for in-
stance, machine learning models such as k-Nearest Neighbors
(kNN) and kernel density estimators (KDEs). Both the ap-
proaches smooth the discrete values in a continuous function,
the kernel function, which approximates the empirical distri-
bution of data. A review of density estimation methods can be
found in [65], and a specific study on estimation of the kernel’s
parameters can be found in [66].

Some other non-FTS based and soft-computing modeling ap-
proaches exist in the literature, to solve similar problems. For
instance, the use of nature-inspired optimization algorithms to
induce fuzzy type-2 rules and to generate prediction intervals is
presented in [67]. The projectional neural networks are used in
[68] to forecast complex nonlinear systems. Bayesian filters are
used in [69] to create probabilistic forecasts. When compared
with these and other approaches, some advantages of PWFTS
become clear: It is a white box and data-driven method that does
not require computationally expensive optimization methods for
training its models or even making parametric assumptions on
its forecasts.
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Previous work of the present authors tackled the interval
forecasting by using FTS, in [58], and by using general fuzzy
rules based systems, in [70]. In [71], the authors proposed the
ensemble FTS. In this method, the point forecasting results of
individual FTS models are combined using a KDE to produce
a probability density. The main drawback of this method is the
computational cost involved in training and using the ensem-
ble. The probabilistic forecasting was also tackled using an
evolutionary algorithm in [10], using Monte Carlo simulation.
However, these approaches are limited in their application when
compared to the proposed method, whose flexibility allows it
to be used in a wider range of applications.

III. PROBABILISTIC WEIGHTED FUZZY TIME SERIES

The PWFTS is a nonparametric and rule-based method that
extends previous WFTS approaches. More importantly, the
method revises methodological aspects to fix the known draw-
backs in FTS methods. First, it proposes to separate the model
training procedure of the forecasting procedure, also renaming
the controversial terms in the FTS literature [such as fuzzy logi-
cal relationships (FLRs) and FLRG] to new ones. The proposed
PWFTS, also, is a truly fuzzy method, fixing the maximum mem-
bership trick of several FTS methods and taking into account all
the active fuzzy rules that have membership values greater than
zero.

The core concept of PWFTS is the fuzzy empirical probability,
used to compute the weights of the model, whose intuition is
discussed in the next section.

A. Fuzzy Empirical Probabilities

The initial Zadeh’s proposition of fuzzy probability, P (A) =
E[µA], proposed in [48], demands the previous knowledge of
the probability distribution over the universe of discourse. Since
this distribution is unknown, an empirical distribution must take
place. The simplest definition of empirical probability is the rel-
ative frequency of a discrete value or of a range of continuous
values. The fuzzy theory provides a different look on the tradi-
tional probability theory because it affects the way the events
are counted. On fuzzy sets, the notion of event is more complex
because the same value can belong to several sets with differ-
ent degrees of membership. In that case, instead of accounting
the integral (i.e., unary) occurrence of the event, their partial
occurrence is accounted as the membership value. This method
is known by fuzzy frequency and was first developed in [72].
A related formulation can be found in [45], with the concept
of F-Transform, which decomposes the original domain of the
time series into fuzzy frequencies over the fuzzy sets. This de-
composition can also recreate the time series using the inverse
transform.

Given the sample space U ⊂ R and the fuzzy sets A, the
empirical probability of a fuzzy set Ai ∈ A is the sum of their
memberships µAi

(y) ∀y ∈ U divided by the sum of the parti-
tion functions ZAi

of all fuzzy sets Aj ∈ A, as presented in (1).
The partition function ZAi

is the integral (or some approxima-
tion) of the membership function µAi

over the sample space
U , or ZAi

=
∫

U µAi
(y)dy, or a simple discrete approximation

ZAi
=

∑

y∈U µAi
(y). The intuition behind this formula is that

the empirical probability P (Ai) is evenly spread over the shape
of the fuzzy membership function of Ai and that point y is a
slice of this shape whose area is equal to value µAi

(y), and the
area of µAi

is ZAi
. One has the following:

P (Ai) =

∑

y∈U µAi
(y)

∑

Aj∈A
ZAj

. (1)

P (Ai) is measured from a sample of U , and this empirical
value is an approximation of the real probability. This approx-
imation is used in (2) to approximate the conditional probabil-
ity of a value y ∈ U , given a fuzzy set Ai ∈ A. One has the
following:

P (y|Ai) = P (Ai) ·
µAi

(y)

ZAi

. (2)

Using (1) and (2) and the law of total probability, the empirical
probability P (y) can be approximated as

P (y,A) =
∑

Ai∈A

P (y|Ai) · P (Ai). (3)

The advantage of this approach is the convenience in obtaining
P (Ai) from a time series dataset Y . The accuracy of P (Ai) will
be determined by k, the number of partitions of the universe of
discourse U .

B. Training Procedure

The training procedure is a seven-step method, illustrated
in Fig. 1, to learn the temporal dynamics of the time series
training data Y and represent it on a fuzzy-probabilistic model,
namely the probabilistic weighted fuzzy temporal pattern group
(PWFTPG). The steps of the method are listed in the following.

Step 1 Define the universe of discourse: Define U as
the sample space of in-sample training data Y ,
such that U = [min(Y )−D1,max(Y ) +D2], where
[min(Y ),max(Y )] is the range of in-sample data
and D1 and D2 the numbers used to extrapo-
late this range; for instance, D1 = 0.1 ·min(Y ) and
D2 = 0.1 ·max(Y ).

Step 2 Partitioning: Split U in k even length intervals ui, for
i = 1, . . . , k, with midpoints mpi.

Step 3 Define the linguistic variable A: Create k overlapping
fuzzy sets Ai, with membership functions µAi

, related
to an interval ui, and midpoints mpi. Each fuzzy set
Ai ∈ A is a linguistic term of the linguistic variable A.

Step 4 Fuzzification: Transform the original numeric time se-
ries Y into FTSF , whose each data point f(t) ∈ F is a
k-tuple with the membership value of y(t)with respect
to each linguistic term Ai ∈ A, such that

f(t) = [µA1
(y(t)), µA2

(y(t)), . . . , µAk
(y(t))] .

(4)
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Fig. 1. PWFTS training procedure.

Step 5 Generate the fuzzy temporal pattern (FTP) set: The
FTP1 is a fuzzy rule with format Ai → Ak that indi-
cates a temporal succession where the precedent [or
the left-hand side (LHS)] is Ai ∈ f(t), and the conse-
quent (or the RHS) is Ak ∈ f(t+ 1), for each possible
pair of Ai ×Ak of membership values greater than
zero; i.e., {Ai → Ak} ∀Ai ∈ f(t) | µAi

(y(t)) > 0
and ∀Ak ∈ f(t+ 1) | µAk

(y(t+ 1)) > 0. Therefore,
Ai → Ak can be read as “IF y(t) is Ai THEN y(t+ 1)
is Ak.” As each f(t) ∈ F is a sparse k-vector of
membership values, there will be many possible fuzzy
sets’ combinations of two sequential vectors f(t) and
f(t+ 1). Then, for each sequential pair on F , possibly
more than one FTP will be generated.

Step 6 Generate the fuzzy temporal pattern group (FTPG) set:
An FTPG2 represents the set of all the FTPs with the
same LHS and the union of their RHS, with the format
Ai → Ak, Aj , . . ., where the LHS is f(t) = Ai and the
RHS is f(t+ 1) ∈ {Ak, Aj , . . .}. Each FTPG can be
understood as the set of possibilities that may happen
at time t+ 1 (the consequent) when a certain set Ai is
identified at time t (the precedent).

Step 7 Calculate empirical probabilities: The PWFTPG adds
weights on the LHS and RHS that measure their fuzzy
empirical probabilities. Each PWFTPG has the format
as

Pi ·Ai → wi0 ·A0, . . . , wik ·Ak

for i = 1, . . . , k. Each weightPi is the normalized sum
of all the LHS memberships of all FTPs where the

1This nomenclature is adopted in the replacement of the FLRs used in [12], to
avoid misunderstandings with the terms “logical” and “relationship” with their
classical meanings in fuzzy theory literature.

2In the replacement of FLRG used in [73].

LHS is fuzzy set Ai, as in (1). Pi can be understood
as the empirical a priori probability of fuzzy set Ai

independent of time, orP (Ai), such that
∑

i∈A Pi = 1.
Each weight wij is associated with a fuzzy set Aj on
the RHS of the FTP whose LHS is Ai, and it is the
normalized sum of all the RHS memberships of all
FTPs where the LHS = Ai and RHS = Aj . There-
fore, weight wij can be understood as the empirical
conditional probability of the fuzzy set Aj on time
t+ 1 when the fuzzy set Ai is identified on time t,
or P (At+1

j | At
i), such that

∑

j∈A wij = 1 for each Ai

in the LHS.
The final PWFTPG set is shown in (5). Its size depends on

the number of partitions k, and it could be represented in matrix
form, but weights wij form a very sparse matrix, which justifies
using optimized data structures for its representation. One has
the following:

P1 ·A1 → w11 ·A1, . . . , w1k ·Ak

. . . . . . . . .

Pk ·Ak → wk1 ·A1, . . . , wkk ·Ak. (5)

The outcome of the training procedure is the PWFTPG set,
and it represents the temporal dynamics of the original data. It
is an empirical probability distribution of linguistic variable A
over time series Y with sample space U , where each rule con-
tains the unconditional probability P (Ai) = Pi and conditional
probabilities P (Aj |Ai) = wij , for Ai, Aj ∈ A.

C. Probabilistic Forecasting Procedure

The forecasting procedure is a four-step procedure listed in
this section, which takes as input a sample y(t) ∈ U and uses
the PWFTPG model learned in the previous section to generate
the output, which depends on the type of forecasting.
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In this section, a probability distribution P (·|y(t), A), for all
y(t+ 1) ∈ U will be computed using a mixture distribution ap-
proach to transform each PWFTPG probability into a continuous
distribution, as described in (7).

A mixture distribution is defined as P (y) =
∑

ωj · πj(y),
where πj : U → [0, 1] are specific PDFs and ωj a weight asso-
ciated with each PDF, such that

∑

ωj = 1. Given an input value
y(t) ∈ Y and the PWFTPG set, the probability distribution for
eachy(t+ 1) ∈ U is given by (7), whereωj is replaced by proba-
bilityP (y(t)|Ai), the LHS probability, given the input value, and
distribution πj is replaced by probability P (y(t+ 1)|Aj , Ai)
∀Aj ∈ RHS.

Looking back to (2), it is pretty obvious that

k
∑

i=1

P (y(t)|Ai) < 1.

Once P (Ai) is the probability of the whole fuzzy set and y(t)
just a small slice of it, it does not comply with the

∑

ωj = 1
restriction of the mixture distribution. To work around this issue,
P (y(t)|Ai) is rescaled to

P (y(t)|Ai)
∑

j∈A P (y(t)|Aj)
.

Therefore, considering x = y(t+ 1)

P (x|y(t), A) =
k

∑

i=1

P (y(t)|Ai)
(

∑k
j=1 P (x|Aj , Ai)

)

∑k
j=1 P (y(t)|Aj)

(6)

P (x|y(t), A) =
k

∑

i=1

Pi
µAi

(y(t))

ZAi

(

∑k
j=1 wij

µAj
(x)

ZAj

)

∑k
j=1 Pj

µAj
(y(t))

ZAj

. (7)

The complete forecasting procedure is presented in the
following.

Step 1 Fuzzification: For a given input value y(t) ∈ Y , find
the fuzzyfied values f(t) = {Ai | µAi

(y(t)) > 0}.
Step 2 Pattern matching: Locate all the PWFTPGs whose

LHS is f(t).
Step 3 Forecast: The distribution of f(t+ 1) is given by the

RHS sets of each PWFTPG matched.
Step 4 Defuzzification: Build the probability distribution

P (y(t+ 1)|y(t)) ∀y(t+ 1) ∈ U applying (7).
The PWFTS overall forecasting method is summarized in

Algorithm 1, which takes as input the forecasting type, a sample
y(t) ∈ U , and uses the PWFTPG model M learned in the pre-
vious section to generate the output, which depends on the type
of forecasting (probabilistic, interval, or point forecasting).

D. Interval Forecasting Procedure

With P (·|y(t)), it is possible to build a cumulative density
function F (·|y(t)) and use it to construct the quantile function
Q(τ) : [0, 1] → U as

Q(τ) = min{x ∈ U | F (x|y(t)) = τ} (8)

where τ ∈ [0, 1] is the desired quantile. Then, for a certain confi-
dence level α ∈ [0, 1], it is possible to compute an interquantile
interval If = [Q(α), Q(1− α)].

However, the above method demands the computation of the
whole PDF. A simpler and fast heuristic for generating intervals
is to compute the maximum uncertainty interval, i.e., the inter-
val over the bounds of each fuzzy set. Each PWFTPG will be
represented by an interval I whose bounds are the expectation
of the bounds of its RHS fuzzy sets, such that Ai and Ai repre-
sent the lower and upper bounds of fuzzy set Ai, and E[Ai] is
the expectation of the PWFTPG where the LHS is Ai. The fore-
casting interval I(t+ 1), then, is the sum of these expectations
weighted by P (y(t)|Ai) probabilities, as in (10). One has the
following:

Ii = [E[Ai] , E[Ai]]

E[Ai] =
∑

Aj∈ARHS
i

wij ·Aj

E[Ai] =
∑

Aj∈ARHS
i

wij ·Aj (9)

I(t+ 1|y(t), A) =

[

∑k
i=1 P (y(t)|Ai) · Ii
∑k

i=1 P (y(t)|Ai)
,

∑k
i=1 P (y(t)|Ai) · Ii
∑k

i=1 P (y(t)|Ai)

]

. (10)

Equation (10) is used in line 15 of Algorithm 1 to obtain the
interval forecast I(t+ 1).

E. Point Forecasting Procedure

To produce point forecasts from the existing distribution
P (·|y(t)), it is only needed to apply the expectation operator,
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such that y(t+ 1) = E[P (·|y(t))]. This is also computationally
expensive due to the computation of P (·|y(t)). A simple heuris-
tic for producing point forecasts is to compute the expectation
E[Ai] of each PWFTPG, as presented in (11), where mpj is the
midpoint of each fuzzy set Aj ∈ RHS. The expectation E[Ai]
for each PWFTPG Ai is constant and can be precomputed. The
final forecast y(t+ 1), then, is the sum of these expectations
weighted by P (y(t)|Ai) probability, as shown in (12). One has
the following:

E[Ai] =
∑

j∈ARHS
i

wij ·mpj (11)

y(t+ 1|y(t), A) =
k

∑

i=1

P (y(t)|Ai) · E[Ai]
∑k

i=1 P (y(t)|Ai)
. (12)

Equation (12) is used in line 17 of Algorithm 1 and to de-
fuzzify the point forecast y(t+ 1).

IV. PWFTS EXTENSIONS

A. Multistep Ahead Forecasting

The forecasting procedures listed in Section III are one step
ahead methods. To extend the forecasting procedures to multi-
step ahead forecasting, an iterative approach is adopted, in which
the (t+ 1)th step is computed with the previous presented meth-
ods, and its output is fed back as an input to the next m steps.
From the (t+ 2)th step onward, let s ∈ [t+ 2, t+m] be the
new time indexer. The simpler approach is to perform the point
forecast of y(s+ 1) with input y(s).

The interval procedure requires a few more modifications.
Given the input I(s), the same interval forecasting procedure
will be executed with inputs I(s) and I(s), producing two new

intervals I(s+ 1) and I(s+ 1). Then, the final forecasting in-

terval will be I(s+ 1) = [min{I(s+ 1)},max{I(s+ 1)}].
Finally, the probabilistic forecasting for P (·|y(s)), given the

input, will change to (13), instead of (7). This equation replaces
P (y(s)|Ai) for the previous probability distribution P (·|y(s)).
One has the following:

P (y(s+ 1)|y(s)) =
k

∑

i=1

P (y(s)|y(s− 1), Ai)
∑k

j=1 P (y(s)|y(s− 1), Aj)

×

(

k
∑

z=1

P (y(s+ 1)|Az, Ai)

)

. (13)

B. High-Order Models

The PWFTS method described in Section III is a first-order
method; i.e., it just needs y(t) to forecast y(t+ 1), while high-
order models use m time lags. To extend the standard approach
to high order, a modification in Step 5 of the training procedure
is needed to adapt the FTPs and FTPGs to store m fuzzy sets on
their LHS.

Once the fuzzyfied value f(t) has multiple fuzzy sets (with
different membership values greater than zero), a set of fuzzy-
fied values f(t−m), . . . , f(t)must be represented with all pos-
sible combinations between the fuzzy sets of each lag, such
as f(t−m)× f(t−m− 1)× · · · × f(t), where × represents
the Cartesian product operator.

In Step 5, the FTPs will have the format Am
i , Am−1

i ,
. . . , A0

i → Aj , which can be read as “IF f(t−m) is Am
i

AND f(t−m− 1) is Am−1
i AND . . . AND f(t) is A0

i THEN
f(t+ 1) is Aj .” In Step 6, the high-order FTPGs gather all the
high-order FTPs with the same LHS.

In Step 7, Pi weight is replaced by PLHS that aggregates
the µLHS memberships of each FTPG for the samples. Given
a sample y(t−m), . . . , y(t) ∈ Y with m lags, their member-
ship grades with a FTPG is the product T-norm between all the
memberships of the LHS. One has the following:

µLHS(y(t−m), . . . , y(t)) =

0
⋂

i=m

µAi
(y(t− i)). (14)

In the forecasting procedure, Step 1 requires a sample with
m lags that will generate m fuzzyfied values. In Step 2, all the
combinations between the fuzzy sets of each fuzzyfied lag will
be the LHS of the affected PWFTPGs. In Step 3, in (7), (10), and
(12), the empirical conditional probability P (y(t)|Ai) will be
replaced by P (y(t−m), . . . , y(t)|LHS), the empirical condi-
tional probability of sample y(t−m), . . . , y(t), given the LHS
of the PWFTPG. One has the following:

P (y(t−m) . . . y(t)|LHS) = PLHS
µLHS(y(t−m) . . . , y(t))

∑

Ai∈LHS ZAi

.

(15)

V. COMPUTATIONAL EXPERIMENTS

To measure the performance of the proposed models, three
well-known financial time series data [the Taiwan Stock Ex-
change Capitalization Weighted Stock Index (TAIEX), Standard
& Poor’s 500 (S&P 500), and National Association of Securi-
ties Dealers Automated Quotations (NASDAQ) datasets] were
selected, each of them with 5000 instances. A rolling window
cross-validation methodology [74] was applied, using a work-
ing set of 1000 instances, 800 for training (80%), 200 for testing
(20%), and a sliding increment of 200 instances, totaling 23
experiments, and all the measurements were performed out of
sample.

The TAIEX3 is a well-known economic time series data com-
monly used in the FTS literature (see, for instance, [37], [75],
[76], [17], [77], [30], etc.). This dataset is sampled from 1995 to
2014 time window and has the averaged daily index by business
day. This is a stationary time series dataset whose augmented
Dickey–Fuller (ADF) statistic is −2.65, where the critical value
for α = 0.05 is −2.86.

3[Online]. Available: http://www.twse.com.tw/en/products/indices/Index_
Series.php. Accessed on May 23, 2016.
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The NASDAQ8–Composite Index (NASDAQ ÎXIC)4 is an
economical index already used in the FTS literature (see [75],
[28], [78], and [20]). The historical data were sampled from
2000 to 2016 time window and have the averaged daily index by
business day. This is a stationary time series dataset whose ADF
statistic is 0.04, where the critical value for α = 0.05 is −2.86.

The S&P5005 is a market index composed by 500 assets
quoted on the New York Stock Exchange and the NASDAQ.
This dataset was already used in [78] and [77] and contains the
averaged daily index, by business day, from 1950 to 2017 with
16 000 instances. This is a stationary dataset whose ADF statistic
is 0.00, where critical value for α = 0.05 is −2.86.

For all these datasets, PWFTS models were obtained for or-
ders n ∈ {1, 2, 3} and several different numbers of partitions.
The TAIEX and NASDAQ datasets were tested with the orig-
inal data and with differentiation transformed data, generally
obtaining more accurate results. For saving space, only the best
results of each method were reported in this paper. Therefore, all
the methods are compared by taking the best performing model
of each method, instead of fixing the same hyper-parameters for
all the methods.

In the following sections, the benchmarks for point, interval,
and distribution forecasts will be presented, where the evaluation
metrics are discussed, and the presented models are compared
with other models in the FTS literature.

The hypothesis testing procedures adopted best practices dis-
cussed in [79]–[81]. The Friedman aligned ranks test [82] non-
parametric procedure was adopted to test the equality of the
means, where the null hypothesis H0 stands for the equality
of all means and the inability to distinguish between the meth-
ods, and alternative hypothesis H1 stands for the difference of
the means and the distinguishability between the models. The
paired post hoc procedure adopted was the Finner test [83], in
a one-versus-all design, where the PWFTS method is taken as
control method. In Finner test, the null hypothesis H0 stands for
the equality between the control and the test methods, and the
alternative hypothesis H1 stands for the significant difference
between the control and test methods. All the tests adopted the
significance level α = .05 and were performed on STAC frame-
work [84], and all FTS methods were tested with the pyFTS
library6 [85].

In order to contribute to the replication of all the results in this
paper, the data of the instances, full results, and all the source
codes for this paper are provided as the supplementary material.
All this will also be made available online.7

In the experiments with other FTS models, the universe of
discourse was partitioned in a grid scheme, where all the parti-
tions have the same length. Each model was trained and tested
with the number of partitions on the [10,100] range for original
data and on the [3, 30] range for differentiated data. The models
trained with differentiated data generally perform better than the

4[Online]. Available: http://www.nasdaq.com/aspx/flashquotes.aspx?symbol=
IXIC&selected=IXIC. Access in May 23, 2016.

5[Online]. Available: https://finance.yahoo.com/quote/%5EGSPC/history?p=
%5EGSPC. Accessed on Mar. 19, 2017.

6[Online]. Available: https://pyfts.github.io/pyFTS/. Accessed in Jul. 1, 2018.
7[Online]. Available: https://github.com/petroniocandido/PWFTS

Fig. 2. Example PWFTPG set.

ones trained with original data, and only their best results were
selected.

A. Method Parameterization

All FTS methods are affected mainly by the partitioning of
the universe of discourse and data transformations, and their per-
formances also depend on the stationarity of the data. There is
a tradeoff between the complexity and accuracy directly related
with the partitioning scheme. Less partitions make the model
simpler but also less accurate, and decreasing the partition num-
ber can lead to under-fitting. Increasing the number of partitions
also increases the accuracy until the model is lead to over-fitting.
The best fit, generally, is data dependent and is achieved through
grid search. However, transformations that make data stationary
and homoscedastic can reduce or minimize this effect.

To assess the sensitivity of the proposed method to these pa-
rameters, several experiments were performed, where the num-
ber of partitions has more impact for nontransformed data and
the overall best partition number is 35. With the transformed
data, less partitions produce better accuracy, though the dif-
ference is not remarkable. The Occam’s razor principle can
be adopted to choose the simplest partitioning scheme. It is
also important to note that the number of partitions affects
also the length of the prediction intervals and the probabilistic
forecasting.

A simple PWFTPG model, with the 10 even-length partition
scheme, is shown in Fig. 2, where the empirical probabilities
distribution for the TAIEX dataset is represented. One has the
following:

(0.004)A0 → (0.4)A0, (0.6)A1

(0.032)A1 → (0.1)A0, (0.6)A1, (0.3)A2

(0.15)A2 → (0.1)A1, (0.7)A2, (0.2)A3

(0.181)A3 → (0.2)A2, (0.6)A3, (0.2)A4

(0.182)A4 → (0.15)A3, (0.7)A4, (0.15)A5

(0.134)A5 → (0.2)A4, (0.6)A5, (0.2)A6

(0.16)A6 → (0.15)A5, (0.7)A6, (0.15)A7
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Fig. 3. Sample of multiple step forecasting for the TAIEX dataset.

(0.101)A7 → (0.25)A6, (0.6)A7, (0.15)A8

(0.045)A8 → (0.25)A7, (0.6)A8, (0.15)A9

(0.01)A9 → (0.6)A8, (0.4)A9. (16)

The forecasting horizon affects the accuracy; that is, the er-
ror and the uncertainty both increase as the forecasting horizon
grows, see Fig. 3. The point forecasts tend to the unconditional
expected value of the model as the horizon increases, and the
prediction intervals tend to reach the bounds of the universe of
discourse.

The relation between all kinds of forecasting provided by the
model is illustrated in Fig. 4. For a given sample of the TAIEX
dataset, the probabilistic forecast for each point was calculated,
and with the probability distribution, the interval quantile fore-
casts for τ = [0.05, 0.95] and τ = [0.25, 0.75] and the point in-
terval with the expected value of the distribution were generated.
Additionally, the heuristic methods for interval and point fore-
casts were calculated. Visually, the probabilistic forecast is well
suited around the target data. The heuristic intervals fall between
the [0.05, 0.95] and [0.25, 0.75] quantile intervals, and the ex-
pected value and the heuristic point forecasts are similar with
the residual difference between them.

B. Probabilistic Forecasting

To evaluate the probabilistic forecasting methods, the contin-
uous ranked probability score (CRPS) was chosen. The CRPS,
defined in [86], is a proper measure for probabilistic forecasts. It
provides a direct way to benchmark probabilistic forecast since
it is expressed in the same unit as the observed variable and is
a generalization of the mean absolute error (MAE). Thus, the
perfect score for the CRPS, as in the MAE, is 0.

The chosen methods for comparison were the ARIMA mean-
variance model [55], Ensemble FTS [87], kNN with KDE
(kNN + KDE) [88], [89] and QAR [56], [57]. For the ARIMA
model, the standard Box–Jenkins methodology was employed
for the identification of the model’s parameters, and the prob-
ability distribution was built from the prediction intervals with
α ∈ {0.05, 0.15, 0.25, 0.35, 0.45}. Ensemble FTS was trained
with the main FTS methods, for orders 1, 2, and 3. The
kNN + KDE method uses k = 30, with the Epanechnikov ker-
nel and bandwidth h = 0.55. The QAR model was tested with

orders 1 and 2, and the probability distribution was built from
the prediction intervals with α ∈ {0.05, 0.15, 0.25, 0.35, 0.45}.

The experiments results of the best performing models are
presented in Table I. The equality of means statistical analysis
rejected the null hypothesis with the test statistic of 11.31693
and p-value of 0.02322. The results of post hoc tests in Table II
show significant differences between PWFTS and k-NN and
ensemble FTS. Although PWFTS obtained better average rank
than those of ARIMA and QAR, the test did not show significant
difference between them.

C. Interval Forecasting

Usually three metrics are used to evaluate prediction intervals:
1) coverage rate; 2) calibration; and 3) sharpness [9], [90].
The coverage refers to the statistical consistency between the
forecasts and the observations, and it measures which proportion
of the observations are inside the prediction interval, in which the
ideal value is 100%. The properties of sharpness and resolution
refer to the concentration of the predictive distribution, or how
wide and variable are the intervals and refer uniquely to the
forecasts. The sharpness is the average size of the intervals and
the resolution the variability of the intervals.

While small values of sharpness are desirable, meaning a com-
pact interval, wide values of resolution are better, meaning the
capability of the model to adapt the length of interval with the
increase in uncertainty. There are no absolute reference values
for sharpness and resolution, which depend on the statistical
properties of the data. Empirically, when the sharpness is re-
duced to make the intervals thinner and more precise, the risk of
reducing the coverage increases, and that is why the resolution
is important.

However, using three separate metrics makes the analysis of
interval forecasters more complex. The most common option in
these cases is the Winkler score [91], which encompasses the
three characteristics in only one measure. Given a target value
y and a prediction interval I = [L,U ] with nominal probability
(1− α), the Winkler score is defined in (17), where δ = U − L.
The score value is the interval width, but it increases when the
target value is not covered by the interval and the penalty is
proportional to the error, given the nominal probability. Lower
values, therefore, represent better prediction intervals. The mean
score is defined in (18), where n is the sample size

S(α, y, I) =

⎧

⎨

⎩

δ if L ≤ y ≤ U
δ + 2(L− y)/α if y < L
δ + 2(y − U)/α if U < y

(17)

Sα =
n
∑

i=1

S(α, yi, Ii). (18)

The chosen benchmarking methods were the ARIMA mean-
variance model, IFTS [58], and QAR. For the ARIMA model,
the standard Box–Jenkins methodology was employed for the
identification of the model’s parameters, and the prediction in-
tervals with α = 0.05. The QAR model was tested with orders
1 and 2 and prediction intervals with α = 0.05.

The experiments results of the best performing models are
presented in Table III. The equality of means statistical analysis
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Fig. 4. All PWFTS forecasting methods applied on a TAIEX sample.

TABLE I
CRPS RESULTS FOR PROBABILISTIC FORECASTS

TABLE II
CRPS POST HOC TESTS USING PWFTS AS CONTROL METHOD

TABLE III
MEAN WINKLER SCORE RESULTS FOR 95% PREDICTION INTERVALS

TABLE IV
RMSE RESULTS FOR POINT FORECASTS

accepted the null hypothesis with the test statistic of 6.94595 and
p-value of 0.07364; hence, no multiple post hoc tests were em-
ployed. The results show the equilibrium of PWFTS intervals,
laying between QAR and ARIMA prediction intervals, where
QAR has wider and less reliable intervals and ARIMA has thin-
ner and more precise ones.
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TABLE V
RMSE POST HOC TESTS USING PWFTS AS CONTROL METHOD

Fig. 5. Point forecasting error by prediction horizon.

D. Point Forecasting

The standard accuracy metric used to evaluate point forecast-
ing methods is the root mean squared error (RMSE), described
in (19), where y are the target values, ŷ the forecast values, and
n sample size. One has the following:

RMSE =

√

∑n
i=1(yi − ŷi)2

n
. (19)

The chosen benchmark models were the Naïve method (just
repeat the last value), ARIMA, traditional FTS [12], conven-
tional FTS (CFTS) [32], WFTS [37], IWFTS [15], EWFTS [28],
high-order FTS (HOFTS) [41], Hwang [92], and trend weighted
FTS (TWFTS) [93]; these last ones are the most cited FTS meth-
ods in the literature.

The experiments results of the best performing models are
presented in Table IV. The equality of means statistical analysis
rejected the null hypothesis with the test statistic of 22.65328
and p-value of 0.01210. The results of multiple post hoc tests
in Table V show significant differences between PWFTS and
Naïve, and Hwang and CFTS, with no significant difference
between the others, though PWFTS has the best average rank
among all the competing methods. It can be seen from Fig. 5
that it is possible to note how the error grows as the forecasting
horizon increases, using the best PWFTS model for each dataset.

VI. CONCLUSION

In the time series forecasting research field, dealing with un-
certainties is somehow mandatory, yet many of the forecasting
methods are only concerned with point forecasting. The point
forecasting methods have as their main general drawback the in-
ability to measure the uncertainty of their results, and depending
on the field of application, this is crucial information. Although

FTS methods represent a growing field, there is also a gap of
probabilistic forecasting methods based on FTS.

The aim of this paper was to propose a new univariate and
time-invariant FTS method—the PWFTS, which is a data-driven
approach, which splits the universe of discourse of a time series
in overlapping fuzzy sets, represents their temporal patterns as
fuzzy rules, and associates with them an empirical probability—
based on the proposed concept of fuzzy frequency. The PWFTS
rule model—the PWFTPG—describes fuzzy and stochastic be-
havior of time series and combines them to produce forecasts.
This model is used to produce probability densities, prediction
intervals, and point forecasting. Extensions for high-order mod-
els and multiple step ahead forecasting were also proposed.

Computational experiments were performed to evaluate the
accuracy of the proposed model by using three financial time
series: 1) TAIEX; 2) S&P 500; and 3) NASDAQ. The model’s
accuracy is directly related with the number of partitions of the
universe of discourse, but if the data are preprocessed with a
differentiation data transformation, this effect is almost null.
PWFTS was compared with traditional statistical methods, such
as ARIMA, QAR, kNN, and KDE, and with other standard FTS
methods for probabilistic, interval, and point forecasting one
step ahead. The proposed method for probabilistic forecasting
tied with QAR and ARIMA regarding the CRPS metric and out-
performed kNN + KDE and ensemble FTS. For interval fore-
casting, the performance of the method tied with ARIMA, QAR,
regarding point forecasting.

The proposed PWFTS method extends FTS methods to deal
with interval and probabilistic forecasting applications, which
is a major contribution of this paper. Moreover, PWFTS im-
proves on former FTS methods in the literature by considering
the concept of fuzzy frequency and empirical probabilities in the
generation of the rule knowledge base. The proposed method im-
proves the previous FTS methods by aggregating probabilistic
and interval forecasting capabilities into a single model, being
useful for a wide range of applications and user needs.

A. Main Contributions

This paper uses the concept of fuzzy frequency to approximate
the empirical probabilities of fuzzy sets, given sample crisp data.
With these empirical probabilities, it is possible to calculate the
probability of a crisp number, given a fuzzy set, and, therefore, a
probability distribution for the original data described by a fuzzy
linguistic variable.

The main contribution of PWFTS is to combine versatility,
accuracy, scalability, and human readability. PWFTS is a versa-
tile, data-driven, nonparametric approach that integrates point,
interval, and probabilistic forecasting for one or multiple steps
ahead, for first or higher orders. The measured accuracy shows
its compatibility with, when it is not better than, standard ap-
proaches in the literature.

The PWFTPG rule model is human-readable, easy to un-
derstand, and interchangeable, which allows its assessment by
experts and also by nontechnical people. The PWFTPG rule
set can be viewed as the conditional probability distribution of
the fuzzy sets, and its visualization can even be used for data
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description and comprehension tasks. PWFTS method can be
easily adapted for distributed environments, which can scale its
training for high data volumes. Additionally, due to its empirical
probabilities based on fuzzy frequencies, the model is easy to
update when new data are presented.

B. Method Limitations

The presented method lacks the abilities on heteroscedastic
time series, demanding data preprocessing (as Box–Cox trans-
formation) to deal with this kind of data. The generated model
is time invariant and, despite being easily trained, needs to be
frequently updated to follow new data behaviors. The choice of
parameters (order and partitioning scheme) demands a heuris-
tic search, and this is highly recommended to achieve the best
results.

C. Future Work

Future works include the extensions of the proposed method
to 1) support multivariate and spatial–temporal time series, espe-
cially by using clustering and granular approaches; 2) increase
the robustness of the method to nonstationarity and concept-drift
with incremental/online learning; 3) implement the distributed
training and execution to support big data; 4) employ the pro-
posed method in the forecasting of chaotic time series; and 5) de-
velop a new fuzzy Markov chain method based on the proposed
empirical fuzzy probabilities and defuzzification methods.
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