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Resumo
Nesta tese, estudamos a relação entre formulações Lagrangianas e clássicas para as equações
de Euler incompressíveis rough. Primeiramente, baseando-nos na fórmula de Itô-Kunita-
Wentzell e em técnicas de análise estocástica, estabelecemos uma formulação Lagrangiana
para as equações de Euler incompressíveis estocásticas. Em segundo lugar, estabelecemos
uma formulação Lagrangiana para as equações de Euler incompressíveis conduzidas por
um caminho Hölder. A prova é baseada na fórmula de Itô-Kunita-Wentzell para a integral
de Young. Além disso, em ambos os casos, demonstramos um resultado de existência local
para a formulação Lagrangiana em espaços de Sobolev adequados.
Finalmente, demonstramos que a equação de Euler incompressível conduzida por um rough
path verifica a formulação Lagrangiana, e novamente a prova é baseada na fórmula de
Itô-Wentzell para rough paths.

Palavras-chave: Equação de Euler, formulação Lagrangiana, formula de Itô-Kunita-
Wentzell, rough paths, integral de Young, movimento Browniano, espaços de Sobolev.



Abstract
In this thesis, we study the relationship between Lagrangian and classical formulations
for the rough incompressible Euler equations. Firstly, based on the Itô-Kunita-Wentzell
formula and stochastic analysis techniques, we establish a Lagrangian formulation for
stochastic incompressible Euler equations. Secondly, we establish a Lagrangian formulation
for incompressible Euler equations driven by a Hölder path. The proof is based on
Itô–Kunita-Wentzell’s formula for the Young integral. Furthermore, in both cases, we show
a local existence result for the Lagrangian formulation in suitable Sobolev spaces.
Finally, we prove that the incompressible Euler equation driven by a rough path satisfies
the Lagrangian formulation, and again, the proof is based on the Itô-Wentzell formula for
rough paths.

Keywords: Euler equation, Lagrangian formulation, Itô-Kunita-Wentzell’s formula, rough
paths, Young integral, Brownian motion, Sobolev spaces.
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INTRODUCTION

This thesis deals with the Euler-Lagrangian formulation, called also Constantin-
Iyer representation after [Con01], [CI08], (following [Con01], [FL19a] and [PR16]) of the
rough incompressible Euler equations on the torus Td.

First, we consider the incompressible flows of homogeneous fluids on the torus
Td in the absence of external forcing. Consider the system of equations$&

%Btu� pu �∇qu� ν∆u�∇p � 0

∇ � u � 0, u|t�0 � u0,
(1)

where u is the fluid velocity, p is the scalar pressure, and ν ¥ 0 is the kinematic constant
viscocity. For ν ¡ 0, system (1) is called the Navier-Stokes equations; for ν � 0 it reduces
to the Euler equations. The difference between the closely related Euler equations and the
Navier–Stokes equations are that the latter take viscosity into account while the former only
model the inviscid flow. Such equations always attract the attention of many researchers,
with enormous quantity of publications in the literature. There are books ([AK21], [Che98],
[CM93], [MB02], [MP94]) and expository articles ([BT07], [Con06], [ES06]) on the subject,
too numerous to all be listed here.

The Lagrangian formulation is a way of describing the dynamics of a fluid or a
physical system by following individual fluid particles as they move through space and
time. More precisely, the Lagrangian formulation for the incompressible Euler equations is
stated as follows: $'''&

'''%

dX

dt
pt, xq � upt,Xpt, xqq, Xp0, xq � x,

Apt, �q � X�1pt, �q,

utpxq � P rp∇Atq�u0pAtqs pxq

(2)

for each x P Td. Here P is the Leray-Hodge projector.
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For the Euler-Lagrangian form in the deterministic setting, in 2001 Constantin
[Con01] showed the equivalence between the incompressible Euler equations and the
Lagrangian form (2), involving the back-to-labels map (the inverse of the trajectory
map for each fixed time) and proved a local existence result in certain Hölder spaces on
R3 satisfying suitable decay conditions, or for solutions that are periodic. Pooley and
Robinson [PR16] in 2016 showed that the Lagrangian formulation is equivalent to the
usual formulation of the Euler equations and prove an existence and uniqueness result for
the Lagrangian formulation in C0pr0, T s;HspTdqq with s ¡ d

2 � 1.
In 2008, Constantin [CI08] established a probabilistic Lagrangian representation formula
for the deterministic three-dimensional Navier-Stokes equations using stochastic flows.
They show that u is a classical solution to the Navier-Stokes equations (1) if and only if u
satisfies the stochastic system.

Xtpxq � x�

» t

0
urpXrpxqqdr �Wt, (3)

utpxq � EP
�
p∇X�1

t q�u0pX
�1
t q

�
, (4)

where Wt is a standard Brownian motion, E is the expectation and � denotes the transpo-
sition of matrix. We mention that in 2018, Fang and Luo [FL18] established the formula
(4) on compact Riemannian manifolds. Rezakhanlou [Rez16], in 2016, proved the represen-
tation (4) in the context of symplectic geometry, and in 2021, Olivera [Oli21] obtained the
formula (4) for mild solutions of the Navier-Stokes equations on Rd.

The Euler equations serve as the traditional model for describing the motion
of an inviscid, incompressible fluid. By incorporating stochastic terms into these governing
equations, we can better account for numerical, empirical, and physical uncertainties.
This approach is particularly useful in various applications, including climatology and
turbulence theory, where the stochastic flows, are essential for capturing the statistical
properties and long-term behavior of turbulent systems, which deterministic models often
fail to do. We refer to [AOBdL20], [Bes23], [BCF92], [BFM16], [CM23], [CFH19], [CT15],
[FGP11], [FL19b], [LC23] for works considering stochastic Euler equations.

In this thesis, we study the rough incompressible Euler equations on a torus
Td driven by the rough signal Bj

t , which can be written as$'&
'%
dut � pput �∇qut �∇ptqdt�

¸
k

L�
σjutdB

j
t � 0

∇ � ut � 0, u|t�0 � u0,

(5)

which describe the evolution of the velocity u of an incompressible inviscid fluid, as well
as the internal pressure p, L�

σju :� pσj � ∇qu �
�
∇σj

��
u is the dual operator of the Lie

derivative Lσju � pσj �∇qu� pu �∇qσj and we assume, to avoid technical difficulties, that
there are finitely many smooth and divergence free vector fields

 
σj
(
j
.
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The study of fluid dynamics equations with a "Lie noise", as in equation (5), is relevant
in the study of some stochastic energy functionals. A variational approach to the full
theory of stochastic ideal fluid dynamics was derived by Darryl Holm in [Hol15], by using
transformation theory from geometric mechanics based on the Lagrange-to-Euler map for
stochastic Lagrangian particle trajectories. Equations related to fluid dynamics with Lie
noise appeared in several other works, see for instance [Bes23], [DHL20], [FGV01], [Fla11],
[LC23] and many others.

And finally, a Lagrangian representation of the rough incompressible Euler
equations using noisy flow paths is written as follows:$''''&

''''%

dXt �
¸
j

σjpXtqdB
j
t � utpXtqdt,

Apt, �q � X�1pt, �q,

utpxq � P rp∇Atq�u0pAtqs pxq.

The Lagrangian approach often simplifies the analysis of equations by transforming complex
partial differential equations (PDEs) into stochastic ordinary differential equations (SDEs).
This can make it easier to study properties like existence, uniqueness, and regularity
of solutions. Finally, we refer to the work of Flandoli and Luo in 2019 [FL19a] for the
Lagrangian representation formula of the three-dimensional Euler equation with Lie noise,
using the vorticity equation, as in system (5), and the work of Drivas and Holm in 2020
[DH20] for a discussion of Kelvin circulation theorems for stochastic Euler equations.

The main purpose of this thesis is to establish the relation between Lagrangian
and classical (Eulerian) formulations for rough incompressible Euler equations (5) in any
dimension, considering three cases: the first where Bj

t is a Brownian motion, the second
where Bj

t is an α-Hölder path with α P p1{2, 1s, and finally, the case where Bj
t is a weakly

geometric rough path. Furthermore, using the Lagrangian formulation, we demonstrate a
local-in-time existence result for solutions in C0pr0, T s ; pHspTdqqdq with s ¡ d

2 � 1, which
is novel for the
system (5) in both the stochastic case and the Young case.
The order in which the results of this work will be presented can be read below.

Structure of the thesis

I have tried, as much as possible, to present the topics included in this thesis
in their most natural logical order, with each chapter being presented chronologically
with respect to when the work was done. Each chapter has its own brief introduction,
explaining the main motivations, as well as the notations and conventions adopted in it.
For this reason, here I will only give a very short overview of the contents of the chapters.

In the first chapter, we recall definitions, notations, and basic properties of
spaces of functions, Leray projector, stochastic processes, stochastic integrals, Itô’s formula,
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Itô-Kunita-Wentzell’s formula, and stochastic differential equations that are fundamental
for the development of the work.

In chapter 2, considering Bj
t as a Wiener process, and integration in the

Stratonovich sense, we study the Euler-Lagrangian formulation and discuss how it is
formally equivalent to the usual stohastic Euler equations for any dimension. The La-
grangian formulation is subsequently employed to establish a local-in-time existence result
for solutions in appropriate Sobolev spaces, which is a novel result for the system (5).

In chapter 3, we extends the results from chapter 2, considering Bj
t an α-Hölder

path in Rd with α P p1{2, 1s, and integration in the Young sense. First we show the
Euler-Lagrangian formulation is equivalent to the incompressible Euler equations (5). The
Lagrangian formulation is then used to prove a local in time existence result for solutions
in suitable Sobolev spaces, new for the system (5).

Finally, in Chapter 4, our aim is to demonstrate that the Lagrangian formulation
is satisfied by the solution of the incompressible Euler equations (5), considering Bj

t � Zt

an α-Hölder weakly geometric rough path with α P p13 ,
1
2s.
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CHAPTER 1

PRELIMINARIES

In this chapter, we briefly introduce the mathematics needed in this thesis,
which contains Hölder spaces, Sobolev spaces, Lp-spaces, stochastic processes, Brownian
motion and Itô-Kunita-Wentzell’s formula. These are widely used in mathematics. Based
on them, we will develop our work (a more detailed introduction to such aspects of the
theory can be found in [BCD11], [Bau14], [Cho15], and [Kun84]).

1.1 Spaces of functions

1.1.1 Cm,α-functions

The spatial dimension will sometimes be denoted by d and, when it is, we will
always assume that d ¥ 2. We remark that we restrict ourselves to the (flat) d-torus by
Td :� Rd{2πZd for simplicity.
Let U � Rd, Td or the whole space, we denote by C0pUq the set of continuous functions
on U and by CcpUq the subspace consisting of those continuous functions with compact
support. In certain situations we may simplify notation by omitting the set U .
More generally, for m P N Y t0u, we will denote by CmpUq the space of functions on U
with continuous derivatives up to order m, and by Cm

c pUq the space of those with compact
support. Of course C8 and C8

c will denote the spaces of functions for which all derivatives
exist and, in the latter case, that also have compact support.

Now the set of bounded continuous functions on U forms a normed vector
space with the supremum norm, which we denote by

}f}8 :� sup
xPU

|fpxq|.

In addition, we say that f : U Ñ R satisfies the α-Hölder condition (or "f is α-Hölder")
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for some α P p0, 1s if there exists C ¡ 0 such that

|fpxq � fpyq| ¤ C|x� y|α (1.1)

for all x, y P U . We then define spaces of α-Hölder continuous functions by:

C0,αpUq :� tf : U Ñ R : f satisfies a α-Hölder condition for some C ¡ 0u .

In particular C0,1 is the space of Lipschitz functions.
We define a seminorn on C0,α to encapsulate the α-Hölder property (1.1):

|f |C0,α :� inf tC ¡ 0 : f is α-Hölder, with coefficient Cu

Now bounded Hölder-continuous functions form a normed vector space with the norm

}f}α � }f}C0,α :� }f}8 � |f |C0,α .

More generally, if f P C0,α has α-Hölder derivatives up to order m, i.e. Dβf P C0,α if
|β| ¤ m, then we say f P Cm,αpUq. In the case that f is bounded we also define a norm

}f}m,α :� }f}8 �
¸

0¤|β|¤m
|Dβf |C0,α

Since any Hölder-continuous function is continuous we have, of course, that Cm,αpUq �

CmpUq.
Note that when we discuss vector-valued functions f : U Ñ Rd, statements like "f P V ",
for a normed space V , should be understood in a componentwise sense. In this case, the
norm } � }V should be understood as a norm on |f |:

}f}V :� }|f |}V .

We will consider U � Td or U � Rd throughout this work.

1.1.2 Lp-spaces

Much of the analysis in this work will concern functions in certain Lebesgue
spaces or Sobolev spaces based upon them. In this subsection we will set out the notation
we will use when working with these spaces and recall a few standard facts. More detailed
discussion can be found in countless textbooks, for example [AF03] or [BCD11].
Unless otherwise specified, all integrals over subsets of Rd will be written with respect to
the Lebesgue measure µ in the corresponding dimension.

For 1 ¤ p   8 and any µ-measurable set U � Rd the space LppUq (which
will usually be denoted by Lp, when the choice of domain is clear) denotes the set of all
measurable functions f : U Ñ R such that»

U

|fpxq|pdx   8,
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For the endpoint p � 8, we define L8 to be the set of all measurable functions that are
essentially bounded:

ess sup
U

|f | :� inf tsup t|fpxq| : x P UzEu : µpEq � 0u   8

That is, there exists a µ-null set E such that sup
UzE

|f |   8.

The set Lp forms a linear space under the pointwise addition of functions and moreover is
a Banach space with the norm

}f}LppUq :�
�»

U

|f |p

1{p

if 1 ¤ p   8, or
}f}L8pUq :� ess sup

U
|f |

for p � 8.
In the following we shall use }f}p and }f}8 for }f}LppUq and }f}L8pUq, respectively, when
there is no ambiguity.
We shall need the following inequalities in dealing with integral estimates:

• Young’s inequality
ab ¤

ap

p
�
bq

q
;

this holds for positive real numbers a, b, p, q satisfying p�1 � q�1 � 1.

• Hölder’s inequality. »
U

fgdx ¤ }f}p}g}q;

this holds for function f P LppUq, g P LqpUq, p�1 � q�1 � 1 and is a consequence of
Young’s inequality.

Finally L2pUq is a Hilbert space under the inner product

pf, gqL2 :�
»
U

fgdx,

or
pu, vqL2 :�

¸
i

pui, viqL2 ,

in the case of vector valued functions u and v.
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1.1.3 Sobolev spaces

A significant amount of the analysis in this work will be carried out in Sobolev
spaces. Loosely speaking these are spaces of Lp functions with weak derivatives in Lp.
More precisely, for m P N0 and 1 ¤ p   8, the space Wm,p consists of functions u P Lp

such that the weak derivatives Dβu exists and are in Lp for all multi-indices β such that
|β| ¤ m. On this space we define the Sobolev norm

}u}Wm,p :�
� ¸
|β|¤m

}Dβu}p

�1{p

.

In the case that p � 2, we use the notation Hm :� Wm,2 since this is a Hilbert space with
the inner product

pf, gqHm :�
¸

|β|¤m

�
Dβf,Dβg

�
L2 .

For (non-integer) s ¥ 0, we use the following definition of the (inhomogeneous) Sobolev
space HspTdq. The space Hs coincides with the Sobolev space W s,2, see Section 7.62 of
[AF03]. For f P L2pTdq, we say f P HspTdq if the Fourier coefficients satisfy

¸
kPZd

|k|2s|f̂pkq|2   8.

(f̂ will be defined in the next section).

For f P HspTdq, we define "modulus of s derivatives" Λs by

Λsfpxq :� p2πq�d{2
¸
kPZd

|k|sf̂pkq exppik � xq P L2pTdq.

In particular Λ2fpxq � p�∆qf for any f P H2. Moreover, the norm in Hs is given by

} � }s :�
�
} � }2

L2 � }Λs � }2
L2

�1{2
.

Note that we will sometimes use the fact that this is equivalent to the norm } �}L2�}Λs � }L2 .
We will also make use of the fact that for a function f P HrpTdq, }Λsf}L2 ¤ }Λrf}L2 if
0   s ¤ r. Almost analogously, one can define HspRdq, using Fourier transforms (see for
example [BCD11]).

1.2 Fourier Transforms
The Fourier basis for L2pTdq consists of periodic functions of the form

x ÞÑ
1

p2πqd{2 exppix � kq
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where k P Zd, and the Fourier coefficients of a function f P L2pTdq will be denoted by
f̂pkq P C (or f̂pkq P Cd if f is vector valued). The formula that defines f̂pkq is

f̂pkq :� 1
p2πqd{2

»
Td
fpxq expp�ik � xqdx,

and the corresponding decomposition of f is

fpxq �
1

p2πqd{2
¸
kPZd

f̂pkq exppix � kq.

Note that if all components of f are real valued then f̂pkq � f̂p�kq for all k P Zd where x
denotes the complex conjugate.

1.3 The Helmholtz-Weyl decomposition and the Leray projector
A well-known family of results, most commonly attributed to [Hel70], show

that a smooth vector field on R3 with sufficiently fast decay (or compact support) can be
decomposed into a divergence-free part, and a curl-free (gradient) part:

u � ∇� h�∇g.

For our purposes it will suffice to consider the cases of L2pTdq, and L2pRdq, for d ¥ 2. In
either domain we have

L2 � H `G,

where H is the closure of the set of smooth divergence-free functions in L2, and G is the
space of gradients of H1 functions. By considering Fourier series, this decomposition can
be written explicitly (see, for example Chapter 2 of [RRS16]). Indeed for u P L2pTdq,

upxq � p2πq�d{2
¸
kPZd

ûpkq exppix � kq � p2πq�d{2
¸
kPZd

�
ĝpkq � ĥpkq

	
exppix � kq

where
ĝpkq :� ûpkq � k

|k|2
k, for k � 0; ĝp0q :� 0, and ĥpkq :� ûpkq � ĝpkq.

It is straihgtforward to check that ĝ and ĥ are the coefficients of convergent
Fourier series, let us call the corresponding limits g and h, respectively. It is also not
difficult to see that g is te weak derivative of the scalar-valued H1 function f , with Fourier
coefficients

f̂pkq � �i
ûpkq � k

|k|2
, f̂p0q � 0.

Moreover, it can be seen that h P H since ĥpkq � k � 0 for all k P Zd.

To see that the decomposition of a given function u is unique, it suffices to
consider u � 0. In that case h � �g � ∇f , in a weak sense for some f P H1. Formal
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consideration of the Fourier series of f , assuming that ∇ � h � 0, implies that f̂pkq|k|2 � 0
for all k P Zd, hence h � g � 0. This can be justified by considering the Fourier series of a
sequence of smooth divergence-free approximations to h. The projection of L2 onto H will
play an important role in the analysis herein; we will denote it by P : L2 Ñ H.
On L2pTdq, P can be calculated explicitly in Fourier space, following the discussion above.
For example, on Td we have

P

�¸
kPZd

ûpkq exppix � kq
�
pxq � ûp0q �

¸
kPZdzt0u

�
ûpkq �

ûpkq � k

|k|2
k



exppix � kq

This is usually called the Leray projection (or sometimes the Helmholtz projection). Clearly
P is a bounded operator on L2, moreover it follows easily from the Fourier-series definition
that for any s ¥ 0 and any u P HspTdq

}ΛsPu}L2 ¤ }Λsu}L2 .

Furthermore P and Λs commute on HspTdq (this is discussed in [CM93], [MB02], and in
the aforementioned references).

1.4 Stochastic analysis
In this section we recall the basic vocabulary and results of probability theory.

A probability space associated with a random experiment is a triple pΩ,F , P q where Ω is
the set of all possible outcomes of the random experiment, F is a σ-algebra of subsets of
Ω, and P is a probability measure on F .
If pΩ,F , P q is a given probability space, then a function f : Ω Ñ Rd is called F-measurable
if

f�1pUq :� tω P Ω : fpωq P Uu P F

for all open sets U � Rd (or, equivalently, for all Borel sets U � Rd). A random variable
X is a F -measurable function X : Ω Ñ Rd

1.4.1 Stochastic Processes

We fix a probability space pΩ,F , P q.

Definition 1.1. On pΩ,F , P q, a (d-dimensional) stochastic process is a sequence pXtqt¥0

of Rd-valued random variables that are F-measurable

For every fixed ω P Ω, the applications tÑ Xtpωq are called the paths of the
process
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Definition 1.2. A process pXtqt¥0 is said to be measurable if the application

pt, ωq ÞÑ Xtpωq

is measurable with respect to the σ-algebra Bpr0,�8qq b F , that is, if

@A P BpRdq, tpt, ωq, Xtpωq P Au P Bpr0,�8qq b F .

The paths of a measurable process are, of course, measurable functions r0,�8q Ñ R.

The process Xt is called continuous process if Xtpωq is a continuous function
of t for almost all ω. Moreover, a continuous process is measurable in the sense of the
Definition 1.2, see Proposition 1.8. of [Bau14].

A stochastic process pXtqt¥0 may also be seen as a random system evolving in
time. This system carries some information. More precisely, if one observes the paths of a
stochastic process up to a time t ¡ 0, one is able to decide if an event

A P σpXr, r ¤ tq

has occured (here and in the sequel σpXr, r ¤ tq denotes the smallest σ-field that makes
all the random variables tpXt1 , � � � , Xtnq, 0 ¤ t1 ¤ � � � ¤ tn ¤ tu measurable). This notion
of information carried by a stochastic process is modeled by filtrations.

Definition 1.3. Let pΩ,F , P q be a probability space. A filtration pFtqt¥0 is a non-decreasing
family of sub-σ-algebras of F .

As a basic example, if pXtqt¥0 is a stochastic process defined on pΩ,F , P q, then

Ft � σpXr, r ¤ tq

is a filtration. This filtration is called the natural filtration of the process X and often
denoted by pFX

t qt¥0.

A filtered probability space pΩ, pFtq¥0,F , P q consists of a probability space
pΩ,F , P q and a filtration pFtqt¥0 contained in F . The filtered probability space is said to
satisfy the usual conditions if the following conditions are met:

1. The probability space pΩ,F , P q is complete,

2. The filtration pFtqt¥0 is right continuous, that is, for every t ¥ 0

Ft �
£
ε¡0

Ft�ε.

Definition 1.4. A stochastic process pXtqt¥0 is said to be adapted to a filtration pFtqt¥0

if for every t ¥ 0, the random variable Xt is measurable with respect to Ft.
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Of course, a stochastic process is always adapted with respect to its natural filtration. We
may observe that if a stochastic process pXtqt¥0 is adapted to a filtration pFtqt¥0 and that
if F0 contains all the subsets of F that have a zero probability, then every process pX̃tqt¥0

that satisfies
P pX̃t � Xtq � 1, t ¥ 0,

is still adapted to the filtration pFtqt¥0.

Quite often, it is important to be able to evaluate the statistics of solutions
to stochastic differential equations (SDEs) at appropriate random times, the so-called
stopping times.

Definition 1.5. Let pFtqt¥0 be a filtration on a probability space pΩ,F , P q. Let τ : Ω Ñ

r0,8s be a random variable, measurable with respect to F . We say that τ is a stopping
time of the filtration pFtqt¥0 if for t ¥ 0,

tω : τpωq ¤ tu P Ft

Often, a stopping time will be the time during which a stochastic process
adapted to the filtration pFtqt¥0 satisfies a given property. The above definition means
that for any t ¥ 0, at time t, one is able to decide if this property is satisfied or not.

1.4.2 Martingales and Semimartingales

We introduce and study in this section martingales in continuous time.

Definition 1.6. Let pFtqt¥0 be a filtration defined on a probability space pΩ,F , P q. A
process pMtqt¥0 that is adapted to pFtqt¥0 is called a submartingale with respect to this
filtration if:

1. For every t ¥ 0, Ep|Mt|q   �8;

2. For every t ¥ r ¥ 0
EpMt|Frq ¥Mr.

A stochastic process pMtqt¥0 that is adapted to pFtqt¥0 and such that p�Mtqt¥0

is a submartingale, is called a supermartingale.
Finally, a stochastic process pMtqt¥0 that is adapted to pFtqt¥0 and that is at the same
time a submartingale and a supermartingale is called a martingale. If Xt is a Rd-valued
martingale with E|Xt|

p   8, t P r0,�8q, for some p ¥ 1, then it is called a Lp-martingale.

Definition 1.7 (Local martingale). A stochastic process pMtqt¥0 is called a local martingale
(with respect to the filtration pFtqt¥0) if there is a sequence of stopping times pτnqn¥0 such
that:
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1. The sequence pτnqn¥0 is increasing and almost surely satisfies lim
nÑ8

τn � �8;

2. For n ¥ 1, the process pMt^τnqt¥0 is a uniformly integrable martingale with respect
to the filtration pFtqt¥0

Of course, any martingale turns out to be a local martingale. But, in general
the converse is not true.

Definition 1.8 (Semimartingale). Let pXtqt¥0 be an adapted continuous stochastic process
on the filtered probability space pΩ, pFtqt¥0,F , P q. We say that pXtqt¥0 is a semimartingale
with respect to the filtration pFtqt¥0 if pXtqt¥0 may be writtten as:

Xt � X0 � At �Mt,

where pAtqt¥0 is a bounded variation process and pMtqt¥0 is a continuous local martingale
such that M0 � 0. If exists, the previous decomposition is unique.

1.4.3 Brownian motion and stochastic integrals

The most well-known example of a continuous martingale is the Brownian
motion tWt, t ¥ 0u. The mathematical definition of a Brownian motion is the following.

Definition 1.9. A stochastic process tWt, t ¥ 0u is called a Brownian motion if it satisfies
the following conditions:

i) W0 � 0

ii) For all 0 ¤ t1   � � �   tn the increments Wtn �Wtn�1 , ...,Wt2 �Wt1, are independent
random variables.

iii) If 0 ¤ r   t, the increment Wt �Wr has the normal distribution Np0, t� rq

iv) tWt, t ¥ 0u is a continuous process.

A d-dimensional stochastic process pWtqt¥0 is called a Brownian motion if

pWtqt¥0 � pW 1
t , � � � ,W

d
t qt¥0,

where the process pW i
t qt¥0 are independent Brownian motions.

The inception of the stochastic integral is credited to K. Itô, who originally
formulated it in relation to a standard Brownian motion. Subsequently, it was extended to
include local martingales and semimartingales.
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Let Xt, t P r0, T s, be a continuous real-valued Ft-adapted stochastic process.
Let πt � t0 � t0   t1   � � �   tm � T u be a partition of r0, T s with |πT | � max

1¤k¤m
ptk� tk�1q.

Define ξmt pπT q as

ξmt pπT q �
m̧

k�1

�
Xtk^t �Xtk�1^t

�2
.

If, for any sequence of partitions πnT , ξtpπnT q converges in probability to a limit xXyt, or
xXty, as |πnT | Ñ 0 (as nnÑ 8) for t P r0, T s, then xXyt is called the quadratic variation of
Xt. For instance, if Xt � Wt is a Brownian motion, then xW yt � t a.s. If Xt is a process of
bounded variation, then xXyt � 0 a.s. Similarly, let Xt, Yt, 0 ¤ t ¤ T be two continuous
real-valued Ft-adapted processes. Define

ηtpπT q �
m̧

k�1

�
Xtk^t �Xtk�1^t

� �
Ytk^t � Ytk�1^t

�
.

Then the covariation of Xt and Yt, denoted by xX, Y yt or xXt, Yty is defined as the limit
of ηtpπnT q in probability as |πnT | Ñ 0.

Let Mt be a continuous, real-valued L2-martingale and let fptq be a continuous
adapted process in R for 0 ¤ t ¤ T . For any partition ∆n

T � t0 � t0   t1   � � �   tn � T u,
define

Int �
ņ

k�1
ftk�1^t

�
Mtk^t �Mtk�1^t

�
. (1.2)

Then Int is a continuous martingale with the quadratic variation

xInyt �

» t

0
|fnr |

2dxMyr,

where fnt � ftk�1 for tk�1 ¤ t   tk. Suposse that
» T

0
|fr|

2dxMyr   8, a.s. Then the
sequence Int will converge uniformly in probability as |∆n

T | Ñ 0 (as nÑ 8) to a limit

It �

» t

0
frdMr,

which is independent of the choice of the partition. The limit It is called the Itô integral
of ft with respect to the martingale Mt. Instead of Int given by (1.2), define

Jnt �
ņ

k�1

1
2
�
ftk�1^t � ftk^t

� �
Mtk^t �Mtk�1^t

�
. (1.3)

The corresponding limit Jt of Jnt as

Jt �

» t

0
fr � dMr,

is known as the Stratonovich integral of ft with respect to Mt. Similar to the Itô integral,
the Stratonovich integral (1.3) is a generalization from the case when Mt � Wt is a
Brownian motion.
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Theorem 1.1. Let Mt and ft be given as above. Then the Itô integral It �
» t

0
frdMr is a

continuous local martingale satisfying EpItq � 0 and

xIyt �

» t

0
|fr|

2dxMyr, a.s.

Moreover, the Stratonovich integral is related to the Itô integral as follows» t

0
fr � dMr �

» t

0
frdMr �

1
2xf,Myt (1.4)

1.4.4 Itô’s Formula and Itô-Kunita-Wentzell’s Formula

The Itô’s formula is certainly the most important and useful formula of stochas-
tic calculus. It is the change of variable formula for stochastic integrals.
Our starting point is precisely the Itô’s formula for continuous semimartingales:

Theorem 1.2 (Itô’s Formula). Let Xt � pX1
t , ..., X

d
t q be a continuous semimartingale.

Suposse that Φ : Rd Ñ R be a twice continuously differentiable function. Then the following
formula holds:

ΦpXtq � ΦpX0q �
ḑ

i�1

» t

0

BΦ
Bxi

pr,XrqdX
i
r �

1
2

ḑ

i,j�1

» t

0

B2Φ
BxiBxj

pr,XrqdxX
i, Xjyr.

If, in addition, Φ is three-time differentiable function, then the above formula can be written
simply as

Φpt,Xtq � Φp0, X0q �
ḑ

i�1

» t

0

BΦ
Bxi

pr,Xrq � dX
i
r.

An immediate consequence of this result is the well-known integration by parts
formula for semimartingales:

Corollary 1.1 (Itô’s formula for the product). Let pXtqt¥0 and pYtqt¥0 be two continuous
semimartingales, then the process pXtYtqt¥0 is a continuous semimartingale and we have:

XtYt � X0Y0 �

» t

0
XrdYr �

» t

0
YrdXr � xX, Y yt, t ¥ 0

Proof. See Theorem 5.39 of [Bau14].

One of the fundamental tools to develop our work is the so-called Itô-Kunita-
Wentzell’s Formula, which describes the differential rule for change of variables. We present
here a differential rule for the composition of two semimartingales, which is a generalization
of the well known Itô’s Formula (see Theorem 8.3. in Chapter I of [Kun84]).

Theorem 1.3 (Itô-Kunita-Wentzell’s formula). Let Φtpxq, t P r0, T s, x P Rd be a random
field continuous in pt, xq a.s., satisfying
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1. For each t, Φtp�q is a C3-map from Rd into R a.s. ω

2. For each x, Φtpxq is a continuous semimartingale and it satisfies

Φtpxq � Φ0pxq �
m̧

j�1

» t

0
f jr pxq � dY

j
r , for all x P Rd a.s., (1.5)

where Y 1
r , ..., Y

m
r are continuous semimartingales, f jr pxq with r P r0, T s, x P Rd are random

fields which are continuous in pr, xq and satisfy

i) f jr pxq are twice continuously differentiable in x,

ii) for each x, f jr pxq are adapted processes.

Let now Xt � pX1
t , ..., X

d
t q be a continuous semimartingales. Then we have

ΦtpXtq � Φ0pX0q �
m̧

j�1

» t

0
f jr pXrq � dY

j
r �

ḑ

i�1

» t

0

BΦr

Bxi
pXrq � dX

i
r. (1.6)

1.5 Stochastic Differential Equations
We will concerned with the SDEs

dXtpxq � bpt,Xtpxqqdt� σpt,XtpxqqdWt, X0 � x0 P Rd, (1.7)

where b : r0, T s � Rd Ñ Rd and σ : r0, T s � Rd Ñ Rd�d are measurable vector-valued and
matrix-valued functions, respectively, and pWtqtPr0,T s is a d-dimensional Brownian motion
on a probability space pΩ,F , P q endowed with the filtration pFW

t qtPr0,T s. We assume that
the initial condition is a random variable that is independent of the Brownian motion Wt.

We will say that (1.7) has strong solution if there exists continuous adapted
process Xt to the filtration pFW

t qtPr0,T s, such that verifies the stochastic integral equation

Xtpxq � x0 �

» t

0
bpr,Xrpxqqdr �

» t

0
σpr,XrpxqqdWr,

with bp�, X�q P L
1pr0, T s;Rdq and σp�, X�q P L

2pr0, T s;Rd�dq almost surely.
We will state the existence and uniqueness when the coefficients b and σ satisfy the
following two assumptions: there exists a constant C ¡ 0 such that for all x P Rd and
t P r0, T s,

|bpt, xq| � |σpt, xq| ¤ Cp1 � |x|q, (1.8)

and for all x, y P Rd and t P r0, T s,

|bpt, xq � bpt, yq| � |σpt, xq � σpt, yq| ¤ C|x� y|. (1.9)

Under these assumptions, a global, unique solution exists for the SDE (1.7).
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Theorem 1.4. Let b and σ satisfy assumptions (1.8) and (1.9). Then, for every initial
condition x0 P Rd, the SDE (1.7) has a unique solution Xt with

E
�

sup
0¤r¤t

|Xr|
2dr

�
  8

for all t ¡ 0.

Proof. See Theorem 5.2.1. of [Øks03].

1.5.1 Flow Properties

We recall the relevant definition from [Kun84]

Definition 1.10. A stochastic flow of diffeomorphisms (resp. the Cm,α), associated to
equation (1.7) is a map ps, t, x, ωq ÞÑ φs,tpxqpωq defined for 0 ¤ s ¤ t, x P Rd ω P Ω with
values in Rd such that

• given any s ¥ 0, x P Rd the process Xs,x
t � φs,tpxq is continuous Fs,t measurable

solution of the equation (1.7),

• P -a.s, for 0 ¤ s ¤ t the function, φs,t is a diffeomorphisms, and the functions
φs,t, φ

�1
s,t , D

mφs,t, D
mφ�1

s,t , are continuous in ps, t, xq (resp. the Cm,α class in x uni-
formly in 0 ¤ s ¤ t ¤ T ),

• P -a.s, φs,t � φu,tpφs,uq for all 0 ¤ s ¤ u ¤ t, x P Rd and φs,s � x

We present the following relevant theorem on stochastic flows without proof.
Unfortunately the rigorous proof contains a lot technical difficulties and is very long to
be demonstrated here, as it falls outside the scope of this work. A proof can be read at
[Kun84].

Theorem 1.5. if b, σ P L8pr0, T s, Cm,α
b pRdqq. Then the map x ÞÑ Xtpxq is a stochastic

flow of Cm,α1-diffeomorphisms with α1   α.

This concludes the mathematical background for this work. In the remaining
chapters we discuss the main content of this thesis.
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CHAPTER 2

THE BROWNIAN CASE

In this chapter, we consider the stochastic Euler equations$'&
'%
du� ppu �∇uq �∇pqdt�

¸
j

L�
σju � dW

j
t � 0

∇ � u � 0, u|t�0 � u0,

(2.1)

where W j
t is a family of independent real-valued Brownian motions, L�

σju :� pσj �∇qu��
∇σj

��
u is the dual operator of the Lie derivative Lσju � pσj �∇qu� pu �∇qσj and the

integration is in the Stratonovich sense.

First, we show the Euler-Lagrangian formulation is equivalent to the stochastic
Euler equations (2.1), see Proposition 2.1. The proof is based on Itô-Kunita-Wentzell’s
formula and stochastic analysis techniques. Furthermore, we use the stochastic flow
decomposition of the Lagrangian formulation to obtain a deterministic fixed-point prob-
lem, and apply this result to demonstrate a time-local existence result for solutions in
C0pr0, T s ; pHspTdqqdq with s ¡ d

2 � 1.

2.1 Equivalent formulations.
Let L�

σj be the adjoint operator of the Lie derivative Lσj with respect to the
inner product in L2pTd,Rdq:

xL�
σjv, wyL2 � �xv,LσjwyL2 ,

for all smooth vector fields v, w, σj . When σj is divergence free, the adjoint Lie operator is
given by

L�
σjv �

�
σj �∇

�
v �

�
∇σj

��
v,
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or in vector components by

pL�
σjvqi �

¸
k

�
σjkBkvi � vkBiσ

j
k

�
.

In fact, by integration by parts and using ∇ � σj � 0

xu,LσjwyL2 �
¸
i

»
Td
uipxqpLσjwqipxqdx

�
¸
i

»
Td
uipxq

�
pσj �∇qw � pw �∇qσj

�
i
dx

�
¸
i

¸
k

»
Td
uipxq

�
σjkBkwi � wkBkσ

j
i

�
pxqdx

�
¸
i

¸
k

»
Td

�
�pσjkBkuiqpxqwipxq � wkpxqBkσ

j
i pxquipxq

�
dx

�
¸
i

¸
k

»
Td

�
�
�
σjkBkui � ukBiσ

j
k

�
pxqwipxq

�ukpxqBiσ
j
kpxqwipxq � uipxqBkσ

j
i pxqwkpxq

�
dx

� �
¸
i

»
Td

�
pσj �∇quipxq �

��
∇σj

��
u
�
i

�
wipxqdx

� �
¸
i

»
Td
pL�

σjqi pxqwipxqdx

� �xL�
σju,wyL2 .

We assume that the vector fields σj P HrpRd,Rdq and satisfy the condition
¸
j

}σj}2
tru,θ   8 (2.2)

for some r P R with r ¡ d

2 � 3. Here tru is the integer part of r and θ � r � tru.

Definition 2.1. Given a (divergence free) velocity u and a semimartingale
γ P C0pr0, T s; pC1pTdqqdq, we define the material differential D by

Dγ :� dγ � pu �∇q γdt�
¸
j

�
σj �∇

�
γ � dW j

t

Note that if γ, β P C1 (scalar valued) then

Bipγβq � pBiγqβ � γpBiβq,

for i � 1, 2, ..., d. Therefore, for γ, β P C0pr0, T s;C1q we have

D pγβq � pDγq β � γ pDβq . (2.3)
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Moreover, if γ P C2,

r∇ppu �∇qγqsi � Bi

�¸
j

ujBjγ

�

�
¸
j

BjγBiuj �
¸
j

ujBjBiγ

� pp∇uq�∇γqi � ppu �∇q∇γqi,

for i � 1, 2, ..., d.
Hence the commutation relation

D∇γ � ∇Dγ � p∇uq� ∇γdt�
¸
j

�
∇σj

�� ∇γ � dW j
t . (2.4)

holds when γ P C1pr0, T s;C2q. We use the notation P for the Leray-Hodge projection onto
the space of divergence-free functions.

Let us now define what we mean by solution of the stochastic differential
equation (2.1):

Definition 2.2. Given u P C0pr0, T s;C1pTd,Rdqq a semimartingale and divergence-free
vector field (i.e. ∇ � u � 0), and

 
W j
t , t ¥ 0

(
be a family of d-dimensional independent

Brownian motions. We have that u is solution of (2.1) if verifies

utpxq � u0pxq �

» t

0
purpxq �∇qurpxqdr �

» t

0
∇prpxqdr �

¸
j

» t

0
L�
σjurpxq � dW

j
r , (2.5)

where p P C0pr0, T s;C1pTd,Rqq is a scalar potential representing internal pressure and the
integration is in the Stratonovich sense.

Proposition 2.1. Let α P p0, 1q. Assume (2.2) and that u is C3,α-continuous semimartin-
gale. Then u is solution of the equation (2.1) if and only if the pair pX, uq verifies the
Lagrangian formulation

dXt �
¸
j

σjpXtq � dW
j
t � utpXtqdt (2.6)

utpxq � P rp∇Atq�u0pAtqs pxq, (2.7)

where � means the transposition of matrices and the back-to-labels map A is denoted by
A p�, tq � X�1 p�, tq.

Proof. pñq We have

upt, xq � u0pxq �

» t

0
pu �∇qupr, xqdr �

¸
j

» t

0
L�
σjupr, xq � dW

j
r �

» t

0
∇ppr, xqdr (2.8)
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and
Xt � x�

» t

0
u pr,Xrq dr �

¸
j

» t

0
σj pXrq � dW

j
r . (2.9)

Then, from Itô-Kunita-Wentzell’s formula, see Theorem 1.3, the k-th component of the
process upt,Xtq is given by

uk pt,Xtq �u
k
0 pxq �

» t

0

�
pu �∇quk pr,Xrq �

�
Bp

Bxk



pr,Xrq



dr

�

» t

0

¸
j

�
pσj �∇quk pr,Xrq �

Bσj

Bxk
pXrq � u pr,Xrq



� dW j

r (2.10)

�
ḑ

i�1

» t

0

Buk

Bxi
pr,Xrqu

ipr,Xrqdr �
ḑ

i�1

¸
j

» t

0

Buk

Bxi
pr,Xrqσ

j
i pXrq � dW

j
r .

We observe that » t

0
pu �∇qukpr,Xrqds �

» t

0

ḑ

i�1
ui
Buk

Bxi

��
Xr
dr

�
ḑ

i�1

» t

0
uipr,Xrq

Buk

Bxi
pr,Xrqdr (2.11)

�
ḑ

i�1

» t

0

Buk

Bxi
pr,Xrqu

ipr,Xrqdr

and » t

0

¸
j

pσj �∇qukpr,Xrq � dW
j
r �

¸
j

» t

0

ḑ

i�1
σji
Buk

Bxi

��
Xr
� dW j

r (2.12)

�
¸
j

ḑ

i�1

» t

0

Buk

Bxi
pr,Xrqσ

j
i pXrq � dW

j
r .

Making obvious cancellation we obtain

ukpt,Xtq � uk0pxq �

» t

0

�
Bp

Bxk



pr,Xrqdr �

¸
j

» t

0

Bσj

Bxk
pXrq � u pr,Xrq � dW

j
r ,

i.e.,

upt,Xtq � u0pxq �

» t

0
p∇pq pr,Xrq dr �

¸
j

» t

0

�
∇σj

��
ur
��
Xr
� dW j

r .

Now, we observe that
ḑ

i�1

BX i

Bxk
ui is the k-th coordinate of p∇Xq� u, and

BX i

Bxk
� δik �

» t

0
∇uipr,Xrq �

BXr

Bxk
dr �

¸
j

» t

0
∇σji pXrq �

BXr

Bxk
� dW j

r .

Thus from Itô’s formula for the product of two semimartingales we deduce
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BX i

Bxk
ui pt,Xtq � δiku

i
0pxq �

» t

0
uipr,Xrq∇uipr,Xrq �

BXr

Bxk
dr

�

» t

0
uipr,Xrq

�¸
j

∇σji pXrq �
BXr

Bxk

�
� dW j

r �

» t

0

BX i

Bxk

�
Bp

Bxi



pr,Xrqdr

�

» t

0

BX i

Bxk

�¸
j

�
Bσj

Bxi



pXrq � upr,Xrq

�
� dW j

r .

Note that
ḑ

i�1

BX i

Bxk

��
Bσj

Bxi



� u

�
�

ḑ

i�1

BX i

Bxk

ḑ

n�1

Bσjn
Bxi

un

�
ḑ

i�1

ḑ

n�1

BX i

Bxk

Bσjn
Bxi

un.

On the other hand, we have
ḑ

i�1
ui
�
∇σji �

BXr

Bxk

�
�

ḑ

i�1
ui

ḑ

m�1

Bσji
Bxm

BXm
r

Bxk

�
ḑ

i�1

ḑ

m�1
ui
Bσji
Bxm

BXm
r

Bxk
.

Thus we obtain
ḑ

i�1

» t

0
uipr,Xrq

�¸
j

∇σji pXrq �
BXr

Bxk

�
� dW j

r

�
ḑ

i�1

» t

0

BX i

Bxk

�¸
j

�
Bσj

Bxi



pXrq � upr,Xrq

�
� dW j

r

Then the k�th term of p∇Xtq
� u pt,Xtq is

ḑ

i�1

BX i

Bxk
ui pt,Xtq �

ḑ

i�1
δiku

i
0pxq �

ḑ

i�1

» t

0

BX i

Bxk

�
Bp

Bxi



pr,Xrqdr

�
ḑ

i�1

» t

0
ui pr,Xrq∇ui pr,Xrq �

BXr

Bxk
dr,

i.e.,

p∇Xtq
� u pt,Xtq � u0pxq �

» t

0
p∇Xrq

� p∇upr,Xrqq
� u pr,Xrq dr

�

» t

0
p∇Xrq

� p∇pq pr,Xrqdr

� u0pxq �
1
2

» t

0
∇
�
|ur|

2 �Xr

�
dr �

» t

0
∇ ppr �Xrq dr

� u0 �∇q̃,
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where q̃ :�
» t

0

�
1
2
�
|ur|

2 �Xr

�
� pr �Xr

�
dr.

Then, if we denote Mt :� p∇Xtq
�, it follows that

ut �Xt � u pt,Xtq �M�1
t u0 �M�1

t ∇q̃

� p∇At
��
Xt
q�u0 � p∇At

��
Xt
q�∇q̃.

Finally we conclude

ut � p∇Atq�u0 � At � p∇Atq�p∇q̃qpAtq

� p∇Atq�u0 � At �∇q,

where q :� q̃ � A. Therefore, ut � P
�
p∇Atq� u0 � At

�
.

pðq We follow directly from Proposition 2 in [PR16], where the authors showed
this implication for the deterministic case. We shall also show an alternative formal proof.
We set v � u0 � A, then by Theorem 2.3.2 of [Cho15] we have DA � 0 and Dv � 0.
Since u satisfies (2.7) there exists a function q such that

u � p∇Aq� v �∇q.

Then by (2.3) and (2.4) we have

Du � D
�
p∇Aq� v �∇q

�
� D

�
p∇Aq� v

�
�D∇q

�
�
D p∇Aq�

�
v � p∇Aq� Dv �D∇q

�
�
∇DA� p∇uq� p∇Aq dt�

�
∇σj

�� ∇A � dW j
t

��
v

�∇Dq � p∇uq� ∇qdt�
�
∇σj

�� ∇q � dW j
t .

Hence, after a calculation and a rearrangement of the terms, we get

Du � �p∇uq� p∇Aq� vdt� p∇uq� ∇qdt�∇Dq

�
�
∇σj

�� �
p∇Aq� v �∇q

�
� dW j

t

� �p∇uq� udt�∇Dq �
�
∇σj

��
u � dW j

t

� �∇ |u|2

2 dt�∇Dq �
�
∇σj

��
u � dW j

t .

Then,

upt, xq � u0pxq �

» t

0
pu �∇qudr �

» t

0
pσj �∇qu � dW j

r

�∇
» t

0

|u|2

2 dr �∇
» t

0
Dq �

» t

0

�
∇σj

��
u � dW i

r

� u0pxq �

» t

0
pu �∇qudr �

» t

0
L�
σju � dW

j
r �

» t

0
∇pdt,
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where formally we have

p �
|u|2

2 � Btq � pu �∇qq � pσj �∇qq BtW j
t .

Therefore we conclude that u is solution of the Euler equation (2.1).

Remark 2.1. After submitting the paper [OL23] we was alerted that similar calculations
were made in [DH20] to show circulation theorem. However, we prove the equivalence
between both formulations and an existence result in Sobolev spaces.

2.2 An Existence Theorem

2.2.1 Decomposition of the Flow

We use the idea of [FL19a] to decompose the stochastic flow in the system
(2.6)-(2.7). More precisely, we consider the stochastic equation without drift:

dϕt �
¸
j

σj pϕtq � dW
j
t , ϕ0 � I, (2.13)

where I is the identity diffeomorphism of Td. Under the assumption that (2.2) and r ¡ d

2�3,
the above equation generates a stochastic flow tϕtut¥0 of Ctru,β�diffeomorphisms on Td,
where β P p0, θq.
We denote by ω a generic random element in a probability space Ω. For a given random
vector field u : Ω � r0, T s � Td Ñ Rd, we define

ũt pω, xq �
��
ϕt pω, �q

�1�
�
ut pω, �q

�
pxq (2.14)

which is the pull-back of the field ut pω, �q by the stochastic flow tϕt pω, �qut¥0. If we denote
by Kt pω, xq � p∇ϕt pω, xqq�1, i.e., the inverse of the Jacobi matrix, then

ũt pω, xq � Kt pω, xqut pω, ϕt pω, xqq . (2.15)

From this expression we see that if u P C0 pr0, T s ;Hrq a.s., then one also has
a.s. ũ P C0 pr0, T s ;Hrq. Moreover, if the process u is adapted, then so is ũ. Now, we
consider the random ODE

9Yt � ũt pYtq , Y0 � I. (2.16)

Applying the Itô-Kunita-Wentzell’s formula, we see that

Xt � ϕt � Yt

is the flow of Ctru,β�diffeomorphisms associated to the SDE in (2.6)-(2.7).
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2.2.2 Sobolev Estimations

All notations and results in this subsection we follow from [PR16]. For s ¥ 0,
we will use the notation Hs variously for scalar or vector valued functions in Hs

�
Td

�
(componentwise), where this does not cause ambiguity. We will often consider functions in
spaces of the norm C0pr0, T s ; pHspTdqqdq.
To simplify notation we define Σs pT q (usually denoted Σs) for T ¥ 0 and s ¥ 0 by

Σs pT q :� C0pr0, T s ; pHspTdqqdq.

We consider the natural norm on Σs:

}u}Σs � sup
tPr0,T s

}uptq}s

We begin by stating two inequalities concerning the advection term pu �∇qv,
using the notation Bpu, vq :� pu �∇qv. The following two results are taken from Lemma 1
and Lemma 2 of [PR16].

Lemma 2.1. For s ¡ d

2 there exists C1 ¡ 0 such that if u P Hs and v P Hs�1 then
B pu, vq P Hs and

}B pu, vq }s ¤ C1}u}s}v}s�1.

Lemma 2.2. If s ¡ d

2 � 1 there exists C2 ¡ 0 such that for u P Hs, v P Hs�1 with
divergence-free we have

|pB pu, vq , vqs | ¤ C2}u}s}v}
2
s

We use the following shorthand for closed balls in Σs:

BM � B}�}Σs
p0,Mq,

i.e., BM is the closed ball centred at the origin of radius M ¡ 0 with respect to the norm
} � }Σs . Where ambiguity could arise we write BM pT q for the closed ball in Σs pT q.

We need the following key technical result, see Lemma 3 of [PR16].

Lemma 2.3. If s ¡ d

2 � 1 and η, v P Σs pT q then P
�
p∇ηq� v

�
P ΣspT q and there exists a

constant C3 ¡ 0 (independent of η, v, t and T ) such that for fixed t,

}P
�
p∇ηq� v

�
}r ¤ C3}η}s}v}r, (2.17)

where r � s or r � s� 1. Furthermore, there exists C 1
3 ¡ 0 such that for any M ¡ 0 and

T ¡ 0, the following bounds hold uniformly with respect to t P r0, T s for any η1, η2, v1, v2 P

BM pT q:
}P

�
p∇η1q

� v1 � p∇η2q
� v2

�
}X ¤ C 1

3 p}η1 � η2}X � }v1 � v2}Xq , (2.18)

where X is L2 �Td� or Hs�1.
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The next lemma gives uniform bounds on the Hs norms of solutions to the
transport equations (2.23) and (2.24), see Lemma 4 of [FL19a]. We will consider the
following system: $&

% Btf � pu �∇q f � g,

fp0q � f0.
(2.19)

where f, g : r0, T s � Td Ñ Td and u is divergence-free.

Lemma 2.4. Let s ¡ d

2 � 1 and fix f0 P H
s, g P Σs. If u P Σs is non-zero and divergence

free then there exists a unique solution f to (2.19). Furthermore, the solution f P Σs X

C1pr0, T s;Hs�1q X C1pr0, T s � Tdq and there exists C4 ¡ 0 (from Lemma 2.2) such that if
r, t P r0, T s we have:

}fptq}s ¤

�
}fprq}s �

}g}Σs
C4}u}Σs



exp pC4|t� r|}u}Σsq �

}g}Σs
C4}u}Σs

. (2.20)

The following result, see Lemma 5 of [FL19a], is key to demonstrate the main
result of this chapter.

Lemma 2.5. For s ¡ d

2 � 1 fix u1, u1 P Σs and f0 P H
s. Let g1 � g2 � 0 or gi � �ui for

i � 1, 2. If f1, f2 are the solutions of (2.19) corresponding to u1, u2, g1, g2 respectively,
then in the case that g1 � g2 � 0, there exists C5 ¡ 0 depending only of s such that

}f1ptq � f2ptq}L2 ¤ C5}f1 � f2}Σs}u1 � u2}Σ0t (2.21)

for all t P r0, T s. In the case that gi � �ui for i � 1, 2 we instead have

}f1ptq � f2ptq}L2 ¤ pC5}f1 � f2}Σs � 1q }u1 � u2}Σ0t. (2.22)

We consider the following transport equation:

BtB � pũ �∇qB � 0, (2.23)

Btv � pũ �∇q v � 0, (2.24)

where ũt pxq �
��
ϕ�1
t

�
�
ut
�
pxq.

Given an initial divergence-free velocity u0 for the classic equations, we choose initial
conditions for the above system as follows:

B px, 0q � x, (2.25)

u px, 0q � v px, 0q � u0 pxq . (2.26)
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Also η px, tq :� B px, tq � x and replace (2.23) and (2.25) with the equations

Btη � pũ �∇q η � ũ � 0, (2.27)

η px, 0q � 0, (2.28)

respectively. We do this because the identity map (hence B) does not have sufficient
Sobolev regularity when considered as a function on the torus with values in Rd (i.e.
without accounting for the topology of the target torus).

2.2.3 Contraction

The objective of the remainder of this chapter is to demonstrate the following
theorem. In this outcome, we shall prove that a map (defined by Su in (2.29) below) has
a fixed point in a close ball in ΣspT q.

Theorem 2.1. Assume that r ¥ s� 1. If d ¥ 2, s ¡ d

2 � 1 and u0 P H
s is divergence free,

then there exists T pωq ¡ 0 such that

u � P
�
p∇Aq� u0pAq

�
has solution u P ΣspT q.

Proof. For u P Σs, we consider the following system:

$''''''&
''''''%

ũt pxq �
��
ϕ�1
t

�
�
ut
�
pxq ,

9Yt � ũt pYtq , Y0 � I,

Xt � ϕt pYtq ,

Sut pxq � P
��

∇X�1
t

��
u0

�
X�1
t

��
pxq .

(2.29)

Here, we assume ϕt is the solution of the equation (2.13), and that we are given a family of
diffeomorphisms tϕtutPr0,T s of T

d satisfying ϕ P C0pr0, T s;Ctru,βq and ϕ0 � I. As mentioned
above, β P p0, θq and θ � r � tru.
From Chapter 3 of [AF03] we have that there exist positive constants C0 :� C0pt, d, s, ϕq,
C1 :� C1pt, d, s, ϕq, C2 :� C2pt, d, s, ϕq such that

}ϕ�1}s ¤ C1; (2.30)
}ũ}s � }

�
∇ϕ�1� pϕqupϕq}s ¤ C0}u}s; (2.31)

}η � ϕ�1}s ¤ C2}η}s and }v � ϕ�1}s ¤ C2}v}s. (2.32)
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Fix s ¡ d

2 � 1 and let C3, C4 be the constants in (2.17), (2.20) (from Lemmas
2.3 and 2.4) respectively. Fix }u0}s  M and T ¡ 0 so that

C}u0}s exp pC4C0TMq

�
C2

2
C1C4

pexp pC4C0TMq � 1q � 1
�
¤M,

where C is a constant to be defined later.
Let u P BMpT q be a divergence free vector field and let η � Y �1

t � x is unique solution of
(2.27) with initial data η0 � 0. Let v � u0pY

�1
t q be the unique solution of (2.24) for initial

data v0 � u0.

From (2.31) it follows that

}ũ}Σs � sup
tPr0,T s

}ũ}s ¤ sup
tPr0,T s

C0}u}s ¤ C0M,

Then by Lemma 2.4,

}vptq}s ¤ }u0}s exp pC4t}ũ}Σsq ¤ }u0}s exp pC0C4TMq (2.33)

and
}ηptq}s ¤

1
C4

pexp pC0C4TMq � 1q . (2.34)

Hence, with C � C1C2C3, (the constants C1, C2, C3 are given by (2.30), (2.32) and Lemma
2.3 respectively)

}Suptq}s ¤ }P
�
p∇pη � ϕ�1qq�vpϕ�1q

�
}s � }P

�
p∇ϕ�1q�vpϕ�1q

�
}s

¤ C3}η � ϕ
�1}s}vpϕ

�1q}s � C3}ϕ
�1}s}vpϕ

�1q}s

¤ C3C
2
2}η}s}v}s � C3C1C2}v}s

� C3C2}v}s pC2}η}s � C1q ,

here the third inequality follows from (2.30) and (2.32). Then by (2.33) and (2.34)

}Suptq}s ¤ }u0}s exp pC4C0tMq

�
C3C

2
2

C4
pexp pC4C0tMq � 1q � C3C1C2

�

� C}u0}s exp pC4C0tMq

�
C2

2
C1C4

pexp pC4C0tMq � 1q � 1
�
¤M (2.35)

for all t P r0, T s. Hence S : BMpT q Ñ BMpT q.
Before proving that the map S is a contraction in a certain space, we need to prove a
couple of inequalities. By Lemmas 2.3, 2.4 and 2.5 we have
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��P ��∇ �
η1 � ϕ

�1��� v1
�
ϕ�1�� �

∇
�
η2 � ϕ

�1��� v2
�
ϕ�1����

L2

¤ C3M
���η1 � ϕ

�1 � η2 � ϕ
�1��

L2 �
��v1 � ϕ

�1 � v2 � ϕ
�1��

L2

�
� C3M r}η1 � η2}L2 � }v1 � v2}L2s

¤ C3M
��
C5 }η1 � η2}Σs � 1

�
}ũ1 � ũ2}Σ0

t� C5 }v1 � v2}Σs }ũ1 � ũ2}Σ0
t
�

¤ C3M

��
2C5

C4
pexp pC4C0tMq � 1q � 1



t }ũ1 � ũ2}Σ0

�2C5Mt }u0}s exp pC4C0tMq }ũ1 � ũ2}Σ0

�
¤ C3M

��
2C5

C4
pexp pC4C0TMq � 1q � 1



t� 2C5t }u0}s exp pC4C0TMq

�
}ũ1 � ũ2}Σ0

,

and��P ��∇ϕ�1�� �v1pϕ
�1q � v2pϕ

�1q
����

L2 ¤ C3M
��v1pϕ

�1q � v2pϕ
�1q

��
L2

� C3M }v1 � v2}L2

¤ C3C5M }v1 � v2}Σs }ũ1 � ũ2}Σ0
t

¤ 2C3C5Mt }u0}s exp pC4tC0Mq }ũ1 � ũ2}Σ0
,

where C3, C4, C5 are the constants from Lemmas 2.3, 2.4 and 2.5, respectively.

Now we will show that the map S is a contraction on BMpT q in the L2-norm
if T is sufficiently small. For u1, u2 P BMpT q we construct vi and ηi from ui as above for
i � 1, 2 with v1p�, 0q � v2p�, 0q � u0. Then by the inequalities above

}Su1 � Su2}L2 ¤
��P ��∇ �

η1 � ϕ
�1��� v1

�
ϕ�1�� �

∇
�
η2 � ϕ

�1��� v2
�
ϕ�1����

L2

�
��P ��∇ϕ�1�� �v1pϕ

�1q � v2pϕ
�1q

����
L2

¤ C3M

�
2C5

C4
pexp pC4C0TMq � 1q � 1



t }ũ1 � ũ2}Σ0

(2.36)

� 4C3C5Mt }u0}s exp pC4C0TMq }ũ1 � ũ2}Σ0

¤ 2TMC3C6

�
C5

�
2}u0}s �

1
C4



exp pC4C0TMq �

1
2 �

C5

C4



}u1 � u2}Σ0

� Cpu0, ω, M, T q }u1 � u2}Σ0
,

where the third inequality follows from a change of variables and Hölder’s inequality

}ũ1 � ũ2}Σ0
� sup

tPr0,T s
}ũ1 � ũ2}L2 � sup

tPr0,T s

��p∇ϕq�1 u1pϕq � p∇ϕq�1 u2pϕq
��
L2

� sup
tPr0,T s

���∇ϕ�1� pϕq pu1 � u2q pϕq
��
L2

� sup
tPr0,T s

���∇ϕ�1� pu1 � u2q
��
L2 ¤ sup

tPr0,T s

���∇ϕ�1��
L8

}u1 � u2}L2

�
¤ C6 }u1 � u2}Σ0

,



Chapter 2. The Brownian case 39

where C6 :� sup
tPr0,T s

��∇ϕ�1��
L8

.

We observe that Cpu0, ω, M, T q is given by the formula

Cpu0, ω, M, T q :� 2T
�
C5MC3C6

�
2 }u0}s �

1
C4



exp pC4C0TMq (2.37)

�C3C6M

�
1
2 �

C5

C4


�
.

Note that the smoothness of the diffeomorphisms ϕ implies that the constants C0, C1, C2

and C6 are limited uniformly in time. Then taking the supremum of (2.36) with respect
to t and choosing T ¡ 0 small enough, we see that S is a contraction in the required
sense. With the above preparations, the proof is the same as that in [PR16]. The Banach
fixed-point Theorem guarantees the existence and uniqueness of a fixed point u for S in the
closure of BMpT q with respect to } � }Σ0 . We conclude that S has a unique accumulation
point u in the closure of BM with respect to } � }Σ0 . Now, since BMpT q is convex and closed
in Σs then by the Mazur’s Theorem it is weakly closed, hence u P BMpT q is a fixed point
of S with respect to } � }Σs . A fixed point of S, along with associated back-to-labels map
and virtual velocity, clearly give a solution to the Eulerian-Lagrangian formulation of the
Euler equations with the required regularity.
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CHAPTER 3

THE YOUNG CASE

We will prove the equivalence of the Eulerian-Lagrangian formulation with the
classical Euler equations

dut � put �∇ut �∇ptq dt�
¸
j

L�
σj
utdY

j
t � 0, (3.1)

where for each j, Y j
t is an α-Hölder paths with α P p1{2, 1s, and the integration is in the

Young sense. Again, as in the previous chapter, we consider L�
σju :� pσj �∇qu�

�
∇σj

��
u

is the dual operator of the Lie derivative Lσju � pσj �∇qu� pu �∇qσj.

Using this formulation we prove a local in time existence result for solutions in
C0pr0, T s ; pHspTdqqdq with s ¡ d

2 � 1, new for equation (3.1). Our work also includes a
solution theory for fractional Brownian motion driven equations, which enables memory
effects to be introduced through our formulation.

3.1 The Young’s integral
We will introduce α-Hölder paths, which play a fundamental role in the theory

of continuous stochastic processes, including the fractional Brownian motion, which we
will mention later on. More precisely, we have the following definition. Let U , V and W
be Banach spaces. Given a path φ : r0, T s Ñ V and s, t P r0, T s we write φst � φt � φs.

Definition 3.1. Let 0   α ¤ 1. Cαpr0, T s;V q is the space of functions on r0, T s taking
values in V such that the following α-Hölder seminorm

|φ|α :� sup
0¤s t¤T

}φst}V
|t� s|α

.

is finite.
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The space Cαpr0, T s;V q is a Banach space with the norm

}φ}α � |φ|α � }φ}8,

where, as usual, }φ}8 � sup
tPr0,T s

}φptq}V .

We note here that the product of Hölder continuous functions is again Hölder continuous,
in fact.

Theorem 3.1. If φ, γ P Cα pr0, T s;V q then φγ P Cα pr0, T s;V q and exist a constant c ¡ 0
such that

}φγ}α ¤ c}φ}α}γ}α

Proof. From the definition of α-Hölder seminorm and properties of supremum we have

|φγ|α � sup
0¤s t¤T

�
}pφγqst}V
|t� s|α



� sup

0¤s t¤T

�
}φptqγptq � φpsqγpsq}V

|t� s|α




¤ sup
0¤s t¤T

�
}φptq}V

}γptq � γpsq}V
|t� s|α

� }γpsq}V
}φptq � φpsq}V

|t� s|α



¤ }φ}8|γ|α � }γ}8|φ|α.

For this inequality and the definition of α-Hölder norm, the relation indeed holds since

}φγ}α � |φγ|α � }φγ}8

¤ }φ}8|γ|α � }γ}8|φ|α � }φ}8}γ}8

¤ }φ}8 p|γ|α � }γ}8q � }γ}α|φ|α

¤ c}γ}α p}φ}8 � |φ|αq

� c}φ}α}γ}α.

We will denote by LpU, V q the space of continuous linear operators from U to
V equipped with the operator norm, and

∆T :�
 
ps, tq P r0, T s2 : 0 ¤ s ¤ t ¤ T

(
.

We define the Young’s integral
»
XdY when Y P Cαpr0, T s;V q andX P Cβpr0, T s;LpV,W qq

with α � β ¡ 1. The cornerstone of this theory is the following Young-Loeve estimative,
see Proposition 3 in [Gub04] and [You36].

Theorem 3.2. Let Y P Cαpr0, T s;V q and X P Cβpr0, T s;LpV,W qq for some α, β P p0, 1s
with α � β ¡ 1. Then the limit» t

0
XrdYr :� lim

|π|Ñ0

¸
rr,ssPπ

XrYrs
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exists for every t P r0, T s, where the limit is taken over any π P Ppr0, tsq, and Ppr0, tsq the
set of all partitions π of the interval r0, ts. This limit is called the Young integral of X
against Y . Moreover it holds the following estimative����

» t

s

XrdYr �XsYst

����
W

¤ Cα�β|Y |α|X|β|t� s|α�β (3.2)

for all ps, tq P ∆T .

We recall the independence of the Young integral with respect to the choice of
the partitioning points. Let r P rs, θs denote an arbitrary point in the interval rs, θs. The
Young integral of X against Y is equal to the limit» t

0
XsdYs :� lim

|π|Ñ0

¸
rs,θsPπ

XrYsθ

for any t P r0, T s.

Example of Hölder noise: The fractional Brownian motion, which was
introduced by Kolmogorov in [Kol40] and further developed by Mandelbrot and Van Ness
in [MVN68], is a stochastic process that significantly differs from classical Brownian motion
and semimartingales, which are commonly used in stochastic calculus. It is a centered
Gaussian process distinguished by the stationarity of its increments and its medium- or
long-memory property, contrasting sharply with the properties of martingales and Markov
processes.

We have that pYtqtPr0,T s, a fractional Brownian motion (fBm in short) with
Hurst (or self-similarity) parameter H P p0, 1q, is a centered continuous Gaussian process
with covariance

ErYtYss �
1
2
�
t2H � s2H � |t� s|2H

�
for every s, t P r0, T s.

According to Proposition 1.6 of [Nou12], fractional Brownian motion will exists
and has Hölder continuous paths of order α P p0, Hq.

The Hurst parameter of fractional Brownian motion determines the degree of
roughness of the fBm path:

• When H � 1{2, the fBm reduces to standard Brownian motion, which exhibits no
long-range dependence.

• When H ¡ 1{2, the fBm path is smoother than Brownian motion, and the process
exhibits positive long-range dependence. This means that large fluctuations are more
likely to be followed by large fluctuations and vice versa.
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• When H   1{2, the fBm path becomes rougher, and the process exhibits negative
long-range dependence. In this case, large fluctuations are more likely to be followed
by small fluctuations and vice versa.

As the next lemma shows that Young integration satisfies the classical integra-
tion by parts formula.

Lemma 3.1. Let X P Cα and Y P Cβ for some α, β P p0, 1s with α � β ¡ 1. Then

XTYT � X0Y0 �

» T

0
XudYu �

» T

0
YudXu.

Lemma 3.2. Let X P Cαpr0, T s, V q and f P C1�βpV,W q for some α, β P p0, 1s, such that

αp1 � βq ¡ 1. Then
» T

0
DfpXrqdXr is well-defined Young integral, and

fpXT q � fpX0q �

» T

0
DfpXrqdXr.

Remark 3.1. Composition of a differentiable function with an α-Hölder path is also an
α-Hölder path.

Here is the main result of this section: the generalized Itô-Wentzell’s formula
for the Young integral, see Theorem 3.1 of [CC22].

Theorem 3.3. Let α P p12 , 1s, Y P Cαpr0, T s;V q and h : r0, T s�U Ñ LpV,W q continuous
and differentiable in U such that

1. pt, xq Ñ Dxhtpxq is continuous,

2. h P C0pU,Cβpr0, T s;LpV,W qqq for some β P p12 , 1s.

Let
gtpxq � g0pxq �

» t

0
hrpxqdYr. (3.3)

Asssume that g : r0, T s � U Ñ W is twice differentiable in Uand the functions pt, xq ÞÑ
D2
xgtpxq are continuous. Then for any X P Cαpr0, T s;Uq,

gtpXtq � g0pX0q �

» t

0
hrpXrqdYr �

» t

0
DxgrpXrqdXr, (3.4)

where the integral
» t

0
DxgrpXrqdXr is understood in the Riemann-Stieltjes sense.

If Dxg P C
0pU,Cγpr0, T s;LpV,W qqq for some γ P p12 , 1s we have that the integral» t

0
DxgrpXrqdXr is a Young integral, and t ÞÑ gtpXtq P C

αpr0, T s;W q.
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Now, we assume that σj P HrpRd,Rdq and¸
j

}σj}2
tru,θ   8 (3.5)

for some r P R with r ¡ d

2 � 3. Here tru is the integer part of r and θ � r � tru.

Finally, let’s see what we mean by a solution of the stochastic differential
equation (3.1). But before that, let us consider the following remark:

Remark 3.2. Let us consider σj : Rd Ñ Rd a sequence of continuous, divergence free
vector fields, and tY j

t uj a sequence of α-Hölder paths on Rd. The following condition on
the σj and Y j

t should hold¸
j

}σj}8,x|Y
j
t |α �

¸
j

}∇σj}8,x|Y j
t |α   8.

This ensures that the integration in the following definition is well-defined.

Definition 3.2. Given u : r0, T s � Td Ñ Rd divergence–free vector field (i.e. ∇ � u � 0)
with u P Cαpr0, T s;C1pTd,Rdqq and Y j : r0, T s Ñ Rd α-Hölder paths with α P p1{2, 1s, we
say that u is solution of (3.1) if verifies

utpxq � u0pxq �

» t

0
purpxq �∇qurpxqdr �

» t

0
∇prpxqdr �

¸
j

» t

0
L�
σjurpxqdY

j
r , (3.6)

where p P C0pr0, T s;C1pRd,Rqq is a scalar potential representing internal pressure and the
last integration is in the Young sense.

3.2 Equivalent formulations
Let L�

σj , as in the previous chapter, be the adjoint operator of Lσj with respect
to the inner product in L2pTd,Rdq.

Definition 3.3. Given a (divergence free) velocity u P C0pr0, T s; pC0pTdqqdq and γ P

Cαpr0, T s; pC1pTdqqdq, we define the material differential D by (with summation over
repeated indices)

Dγ :� dγ � pu �∇q γdt�
�
σj �∇

�
γdY j

t

Analogously to the stochastic and deterministic cases discussed in the previous
chapter and Proposition 2 in [PR16], respectively, through simple calculation, we obtain
the identities.

D pγβq � pDγq β � γ pDβq , (3.7)
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D∇γ � ∇Dγ � p∇uq� ∇γdt�
�
∇σj

�� ∇γdY j
t , (3.8)

for the last identity (3.8) we must consider γ P Cαpr0, T s; pC2pTdqqdq, so that the Young
integration is well defined.

The proof of the following result is based on Itô-Kunita-Wentzell’s formula for
Young’s integral and the continuity properties of Young’s integral.

Proposition 3.1. Assume that u P Cα
�
r0, T s;C3 �Td,Rd

��
and (3.5) holds. Then u is

solution of equation (3.1) if and only if the pair pX, uq verifies the Lagrangian formulation

dXt � σjpXtqdY
j
t � utpXtqdt (3.9)

utpxq � P rp∇Atq�u0pAtqs pxq, (3.10)

where � means the transposition of matrices and the back-to-labels map A is given A p�, tq �
X�1 p�, tq.

Proof. pñq We have

upt, xq � u0pxq �

» t

0
pu �∇qupr, xqdr �

¸
j

» t

0
L�
σjupr, xqdY

j
r �

» t

0
∇ppr, xqdr (3.11)

and
Xt � x�

» t

0
u pr,Xrq dr �

¸
j

» t

0
σj pXrq dY

j
r . (3.12)

Then, from Itô-Kunita-Wentzell’s formula for the Young’s integral, see Theorem 3.3, we
have that upt,Xtq is given by

u pt,Xtq �u0 pX0q �

» t

0
rpu �∇qu pr,Xrq �∇p pr,Xrqs dr �

¸
j

» t

0
L�
σju pr,Xrq dY

j
r

�

» t

0
p∇urq pXrq

�¸
j

σj pXrq dY
j
r � ur pXrq dr

�

Analogously to previously chapter, see equations (2.11) and (2.12), we have
the identities » t

0
pu �∇qupr,Xrqdr �

» t

0
rp∇urqurs

��
Xr
dr

and ¸
j

» t

0
pσj �∇qupr,XrqdY

j
r �

¸
j

» t

0

�
p∇urqσj

� ��
Xr
dY j

r .
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Then we deduce

u pt,Xtq �u0pxq �

» t

0
∇p pr,Xrq dr �

¸
j

» t

0

�
∇σj

��
ur
��
Xr
dY j

r . (3.13)

Now, from the Proposition 8 of [Lej10] we have

∇Xt � I �

» t

0
p∇ur pXrqq∇Xrdr �

¸
j

» t

0

�
∇σj

��
pXrq∇XrdY

j
r .

From Lemma 3.1 we have

p∇Xtq
� ut pXtq � u0pxq �

» t

0
p∇Xrq

�

�
p∇pq pr,Xrq dr �

¸
j

�
∇σj pXrq

��
ur pXrq dY

j
r

�

�

» t

0
ur pXrq

�
p∇Xrq

� p∇ur pXrqq
� dr �

¸
j

p∇Xrq
� �∇σj� pXrq dY

j
r

�
.

We observe that

¸
j

» t

0
p∇Xrq

� �∇σj� pXrqur pXrq dY
j
r �

¸
j

» t

0
p∇Xrq

� �∇σj pXrq
��
ur pXrq dY

j
r .

Then we deduce

p∇Xtq
� u pt,Xtq � u0pxq �

» t

0
p∇Xrq

� p∇urpXrqq
� u pr,Xrq dr �

» t

0
p∇Xrq

� p∇pq pr,Xrqdr

� u0pxq �
1
2

» t

0
∇
�
|ur|

2 �Xr

�
dr �

» t

0
∇ ppr �Xrq dr

� u0 �∇q̃,

where q̃ :�
» t

0

�
1
2
�
|ur|

2 �Xr

�
� pr �Xr

�
dr.

Then, if we denote Mt :� p∇Xtq
�, it follows that

ut �Xt � u pt,Xtq �M�1
t u0 �M�1

t ∇q̃

� p∇At
��
Xt
q�u0 � p∇At

��
Xt
q�∇q̃.

Finally we conclude

ut � p∇Atq�u0 � At � p∇Atq�p∇q̃qpAtq

� p∇Atq�u0 � At �∇q,
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where q :� q̃ � A. Therefore, ut � P
�
p∇Atq� u0 � At

�
.

pðq For each j let
�
Y j,n

�
nPN be a sequence on C1 �r0, T s;Rd

�
such that

Y j,n Ñ Y j, as nÑ 8

with respect to α-Hölder norm. Then from Theorem 3 of [CF09]

Xn Ñ X

in α-Hölder norm.
Consider the transport equation

vnt � u0 �

» t

0
pur �∇q vnr dr �

¸
j

» t

0

�
σj �∇

�
vnr dY

j,n
r .

Now, from the Theorem 11.12 and Theorem 11.13 of [FV10] we have that

An Ñ A and ∇An Ñ ∇A, (3.14)

in α-Hölder norm.
Set vn :� u0 � A

n, where the initial function u0 is assumed to be C2 �Td;Rd
�
, then by

(3.14) and Remark 3.1 we have

vn Ñ u0 � A �: v.

Furthermore, by the triangle inequality and Theorem 3.1 we have

}∇vn �∇v}α � }Du0 pA
nq∇An �Du0 pAq∇A}α

¤ }Du0 pA
nq∇An �Du0 pAq∇An}α � }Du0 pAq∇An �Du0 pAq∇A}α

� } pDu0 pA
nq �Du0 pAqq∇An}α � }Du0 pAq p∇An �∇Aq }α

¤ }Du0 pA
nq �Du0 pAq }α}∇An}α � }Du0 pAq }α}∇An �∇A}α

¤ }∇An}α
�
}Du0}8 � }D2u0}8

�
}An � A}α � }Du0 pAq }α}∇An �∇A}α

If we let nÑ 8, we deduce from (3.14) and the continuity of Du0, that ∇vn converge in
α-Hölder norm to ∇v. Hence we get that v is a solution of

vt � u0 �

» t

0
pur �∇q vrdr �

¸
j

» t

0

�
σj �∇

�
vrdY

j
r . (3.15)

Therefore, A and v satisfy the equation (3.15) with initial conditions x and u0, respectively.
Thus, we conclude that DA � 0 and Dv � 0.

Since u satisfies (3.10) there exists a function q such that

u � p∇Aq� v �∇q.
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Then by (3.7) and (3.8) we have

Du � D
�
p∇Aq� v �∇q

�
� D

�
p∇Aq� v

�
�D∇q

�
�
D p∇Aq�

�
v � p∇Aq� Dv �D∇q

�
�
∇DA� p∇uq� p∇Aq dt�

�
∇σj

�� ∇AdY j
t

��
v

�∇Dq � p∇uq� ∇qdt�
�
∇σj

�� ∇qdY j
t .

Hence, after a calculation and a rearrangement of the terms, we get

Du � �p∇uq� p∇Aq� vdt� p∇uq� ∇qdt�∇Dq

�
�
∇σj

�� �
p∇Aq� v �∇q

�
dY j

t

� �p∇uq� udt�∇Dq �
�
∇σj

��
udY j

t

� �∇ |u|2

2 dt�∇Dq �
�
∇σj

��
udY j

t .

Then,

upt, xq � u0pxq �

» t

0
pu �∇qupr, xqdr �

» t

0
pσj �∇qupr, xqdY j

r �∇
» t

0

|u|2

2 pr, xqdr

�∇
» t

0
Dqr �

» t

0
p
�
∇σj

��
uqpr, xqdY j

r

� u0pxq �

» t

0
pu �∇qupr, xqdr �

» t

0
L�
σjupr, xqdY

j
r �

» t

0
∇ppr, xqdt,

where formally we have

p �
|u|2

2 � Btq � u �∇q � σj �∇q BtY j
t .

Therefore we conclude that u is solution of the Euler equation (3.1).

3.3 An Existence Theorem

3.3.1 Decomposition of the Flow

We use the idea of [FL19a] to decompose the Young flow in the system (3.9)-
(3.10). More precisely, we consider the Young differential equation (YDE) without drift:

dϕt �
¸
j

σj pϕtq dY
j
t , ϕ0 � I, (3.16)
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where I is the identity diffeomorphism of Td. Under the assumption that (3.5) and r ¡ d

2�3,
the above equation generates a Young flow tϕtut¥0 of Ctru,β�diffeomorphisms on Td, where
β P p0, θq.

For a given vector field u : r0, T s � Td Ñ Rd, we define

ũt pxq �
��
ϕt p�q

�1�
�
ut p�q

�
pxq (3.17)

which is the pull-back of the field ut p�q by the Young flow tϕt p�qut¥0. If we denote by
Kt pxq � p∇ϕt pxqq�1, i.e., the inverse of the Jacobi matrix, then

ũt pxq � Kt pxqut pϕt pxqq . (3.18)

From this expression we see that if u P C0 pr0, T s , Hrq a.s., then one also has
a.s. ũ P C0 pr0, T s , Hrq. Now we consider the ODE

9Zt � ũt pZtq , Z0 � I. (3.19)

Applying Theorem 3.4 of [CLR23] we have

Xt � ϕt � Zt (3.20)

is the flow of Ctru,β�diffeomorphisms associated to the YDE in (3.9)-(3.10).

From the above discussions, we can observe that an advantage of using this
decomposition is the fact that it yields a deterministic fixed-point problem, without needing
to resort to Young integration.

3.3.2 Contraction

The aim of the rest of this chapter is to show the existence of a fixed point
within the closed ball in ΣspT q for a mapping (denoted by Su as described in equation
(3.21) below). The proof is based on the decomposition of flow (3.20) and Theorem 2.1.

Theorem 3.4. Assume r ¥ s� 1. If d ¥ 2, s ¡ d

2 � 1 and u0 P H
s is divergence free then

there exists T ¡ 0, such that (3.10) has solution u P ΣspT q.

Proof. For u P Σs, we consider the following system:

$''''''&
''''''%

ũt pxq �
��
ϕ�1
t

�
�
ut
�
pxq ,

9Zt � ũt pZtq , Z0 � I,

Xt � ϕt pZtq ,

Sut pxq � P
��

∇X�1
t

��
u0

�
X�1
t

��
pxq ,

(3.21)
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where ϕt is the solution of the equation (3.16).

Analogously to the previous chapter, we have that there exist positive constants
C0 :� C0pt, d, s, ϕq, C1 :� C1pt, d, s, ϕq, C2 :� C2pt, d, s, ϕq such that

}ϕ�1}s ¤ C1; (3.22)
}ũ}s � }

�
∇ϕ�1� pϕqupϕq}s ¤ C0}u}s; (3.23)

}η � ϕ�1}s ¤ C2}η}s and }v � ϕ�1}s ¤ C2}v}s. (3.24)

Fix s ¡ d

2 � 1 and let C3, C4 be the constants in (2.17), (2.20) (from Lemmas
2.3 and 2.4), respectively. Fix }u0}s  M and T ¡ 0 so that

C}u0}s exp pC4C0TMq

�
C2

2
C1C4

pexp pC4C0TMq � 1q � 1
�
¤M,

where C is a constant to be defined later.
Let u P BMpT q be a divergence free vector field and let ηt � Z�1

t � x be unique solution
of (2.27) with initial data η0 � 0. Let vt � u0pZ

�1
t q be the unique solution of (2.24) for

initial data v0 � u0.

From (3.23) we have

}ũ}Σs � sup
tPr0,T s

}ũ}s ¤ C0M,

Then by Lemma 2.4,

}vptq}s ¤ }u0}s exp pC4t}ũ}Σsq ¤ }u0}s exp pC0C4TMq (3.25)

and
}ηptq}s ¤

1
C4

pexp pC0C4TMq � 1q . (3.26)

Hence, with C � C1C2C3, (the constants C1, C2, C3 are given by (3.22), (3.24) and Lemma
2.3, respectively)

}Suptq}s ¤ }P
�
p∇pη � ϕ�1qq�vpϕ�1q

�
}s � }P

�
p∇ϕ�1q�vpϕ�1q

�
}s

¤ C3}η � ϕ
�1}s}vpϕ

�1q}s � C3}ϕ
�1}s}vpϕ

�1q}s

¤ C3C
2
2}η}s}v}s � C3C1C2}v}s

� C3C2}v}s pC2}η}s � C1q ,

here the third inequality follows from (3.22) and (3.24). Thus by (3.25) and (3.26)

}Suptq}s ¤ }u0}s exp pC4C0tMq

�
C3C

2
2

C4
pexp pC4C0tMq � 1q � C3C1C2

�

� C}u0}s exp pC4C0tMq

�
C2

2
C1C4

pexp pC4C0tMq � 1q � 1
�
¤M (3.27)
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for all t P r0, T s. Hence S : BMpT q Ñ BMpT q.

By Lemmas 2.3, 2.4 and 2.5 we deduce

��P ��∇ �
η1 � ϕ

�1��� v1
�
ϕ�1�� �

∇
�
η2 � ϕ

�1��� v2
�
ϕ�1����

L2

¤ C3M
���η1 � ϕ

�1 � η2 � ϕ
�1��

L2 �
��v1 � ϕ

�1 � v2 � ϕ
�1��

L2

�
� C3M r}η1 � η2}L2 � }v1 � v2}L2s

¤ C3M
��
C5 }η1 � η2}Σs � 1

�
}ũ1 � ũ2}Σ0

t� C5 }v1 � v2}Σs }ũ1 � ũ2}Σ0
t
�

¤ C3M

��
2C5

C4
pexp pC4C0tMq � 1q � 1



t }ũ1 � ũ2}Σ0

�2C5Mt }u0}s exp pC4C0tMq }ũ1 � ũ2}Σ0

�
¤ C3M

��
2C5

C4
pexp pC4C0TMq � 1q � 1



t� 2C5t }u0}s exp pC4C0TMq

�
}ũ1 � ũ2}Σ0

,

and
��P ��∇ϕ�1�� �v1pϕ

�1q � v2pϕ
�1q

����
L2 ¤ C3M

��v1pϕ
�1q � v2pϕ

�1q
��
L2

� C3M }v1 � v2}L2

¤ C3C5M }v1 � v2}Σs }ũ1 � ũ2}Σ0
t

¤ 2C3C5Mt }u0}s exp pC4tC0Mq }ũ1 � ũ2}Σ0
,

where C3, C4, C5 are the constants from Lemmas 2.3, 2.4 and 2.5, respectively.

Now, we will show that the map S is a contraction on BMpT q in the L2-norm
if T is sufficiently small. For u1, u2 P BMpT q we construct vi and ηi from ui as above for
i � 1, 2 with v1p�, 0q � v2p�, 0q � u0. Then by the inequalities above

}Su1 � Su2}L2 ¤
��P ��∇ �

η1 � ϕ
�1��� v1

�
ϕ�1�� �

∇
�
η2 � ϕ

�1��� v2
�
ϕ�1����

L2

�
��P ��∇ϕ�1�� �v1pϕ

�1q � v2pϕ
�1q

����
L2

¤ C3M

�
2C5

C4
pexp pC4C0TMq � 1q � 1



t }ũ1 � ũ2}Σ0

(3.28)

� 4C3C5Mt }u0}s exp pC4C0TMq }ũ1 � ũ2}Σ0

¤ 2TMC3C6

�
C5

�
2}u0}s �

1
C4



exp pC4C0TMq �

1
2 �

C5

C4



}u1 � u2}Σ0

� Cpu0,M, T q }u1 � u2}Σ0
,
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where the third inequality follows from a change of variables and Hölder’s inequality, and

}ũ1 � ũ2}Σ0
� sup

tPr0,T s
}ũ1 � ũ2}L2 � sup

tPr0,T s

��p∇ϕq�1 u1pϕq � p∇ϕq�1 u2pϕq
��
L2

� sup
tPr0,T s

���∇ϕ�1� pϕq pu1 � u2q pϕq
��
L2

� sup
tPr0,T s

���∇ϕ�1� pu1 � u2q
��
L2 ¤ sup

tPr0,T s

���∇ϕ�1��
L8

}u1 � u2}L2

�
¤ C6 }u1 � u2}Σ0

,

where C6 :� sup
tPr0,T s

��∇ϕ�1��
L8

.

We observe that Cpu0,M, T q is given by the formula

Cpu0,M, T q :� 2T
�
C5MC3C6

�
2 }u0}s �

1
C4



exp pC4C0TMq � C3C6M

�
1
2 �

C5

C4


�
.

(3.29)

We observe that ϕ P C0pr0, T s, Ctru,βpTd,Tdqq then this implies that C0, C1, C2

and C6 are limited uniformly in time. Then taking the supremum of (3.28) with respect
to t and choosing T ¡ 0 small enough, we see that S is a contraction in the required
sense. With the above preparations, the proof is the same as that in the Theorem 2.1. We
conclude that S has a unique accumulation point u in the closure of BM with respect to
} � }Σ0 . Since BMpT q is convex and closed in Σs it is weakly closed, hence u P BM is a fixed
point of S.

Finally, we will state and prove a α-Hölder regularity result for the fix point of
the mapping (3.21).

Lemma 3.3. Let u be the fix point of the contraction (3.21). Then u P Cα pr0, T s;Hsq. T
here must be sufficiently small so that the constant C in (3.29) is less than 1.

Proof. We use the notation εptq :� ηt�ϕ
�1
t and wptq :� vt�ϕ

�1
t . Note that ηt � Z�1

t �x and
vt � u0 � Z

�1
t are, from equation (3.20) and smoothness of u0, at least twice differentiable.

Now, by the equation (3.16) and the time reversal path defined in [CF09], we have that
ϕ�1
t is solution for

dψt �
¸
j

σj pψtq dY
j
t�r, (3.30)

where Y j
t�r is a α-Hölder path with r P r0, ts. Hence by the equation (3.30), ϕ�1 P

Cα pr0, T s;Hsq. Then by Remark 3.1 we have that ε and w belong to Cα pr0, T s;Hsq.
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Now

}uptq � uprq}s
|t� r|α

�
1

|t� r|α
��P �p∇εptqq�wptq � wptq

�
� P

�
p∇εprqq�wprq � wprq

���
s

�
1

|t� r|α
��P �p∇εptqq� pwptq � wprqq � wptq

�
� P

�
p∇εptqq�wprq

�
�P

�
p∇εprqq�wprq � wprq

���
s

�
1

|t� r|α
��P �p∇εptqq� pwptq � wprqq

�
� P

�
p∇εptq �∇εprqq�wprq

�
� P rwptq � wprqs

��
s
,

from Lemma 2.3 and Leray-Hodge projector properties, we have

��P �p∇εptqq� pwptq � wprqq
���
s
¤ C3 }εptq}s }wptq � wprq}s ,

��P �p∇εptq �∇εprqq�wprq
���
s
¤ C3 }wprq}s }εptq � εprq}s

and
}P rwptq � wprqs}s ¤ }wptq � wprq}s .

Hence, taking supremum over 0 ¤ s   t ¤ T we have

sup
0¤r t¤T

}uptq � uprq}s
|t� r|α

� |u|Cαpr0,T s;Hsq

¤ C3 sup
0¤r t¤T

�
}εptq}s

}wptq � wprq}s
|t� r|α

� }wprq}s
}εptq � εprq}s

|t� r|α

�

� sup
0¤r t¤T

}wptq � wprq}s
|t� r|α

� C3|w|Cαpr0,T s;Hsq sup
0¤r t¤T

}εptq}s � C3|ε|Cαpr0,T s;Hsq sup
0¤r t¤T

}wprq}s

� |w|Cαpr0,T s;Hsq

¤ C
�
|w|Cαpr0,T s;Hsq

�
}ε}L8pr0,T s;Hsq � 1

	
� |ε|Cαpr0,T s;Hsq }w}L8pr0,T s;Hsq

�
Since ε, w P Cα pr0, T s;Hsq, the right-hand side is finite. Therefore u P Cα pr0, T s;Hsq.
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CHAPTER 4

THE ROUGH PATH CASE: LAGRANGIAN FORMULATION

In this chapter we consider the following rough incompressible Euler equation

dut � put �∇ut �∇ptq dt� L�
σutdZt � 0, (4.1)

where Zt is a weakly geometric rough path. Here, again, we consider L�
σu :� pσ �∇qu�

p∇σq� u (L is the Lie derivative defined as Lσu � pσ �∇qu� pu �∇qσ).

The main objective of this chapter is to show that the solution of the rough
incompressible Euler equation (4.1) satisfies the Lagrangian formulation.

4.1 Introduction to rough paths
We will provide an overview of the theory of rough paths. We shall use freely

concepts and notations of [FH20]. We invite the reader to consult [CCH22], [FV10] for
more thorough expositions.
Rough path theory, originally developed by Terry Lyons in his seminal work [Lyo98] in 1998,
is an analytic theory of differential equations driven by multidimensional irregular paths
(e.g. Brownian motion). Its development is partly motivated by the pathwise integration
of Hölder paths.

Indeed, let X : r0, T s Ñ V , Z : r0, ts Ñ U , f : V Ñ LpU, V q, and consider the
equation $&

%dXt � fpXtqdZt, t P r0, T s

X0 � x P V,

where the path driving the equation is non-differentiable. Such a restriction is not imposed
for the pleasure of generalization, but rather a reality. Since differential equations are
often interpreted and solved in integral form, it is natural to first address the question of
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constructing the integral

ItpX,Zq �

» t

0
fpXrqdZr,

where f be a smooth function, and X, Z come from a suitable class of continuous paths
that is at least rich enough to include generic Brownian sample paths. In the context
of integration, one might suggest that for general continuous paths X, Z, one could
simply take an approximating sequence of smooth paths with Xn Ñ X and Zn Ñ Z,

and then define ItpX,Zq by the limit lim
nÑ8

» t

0
fpXn

r qdZ
n
r , since each of the approximations» t

0
fpXn

r qdZ
n
r is already well understood. Although this is in principle possible, the problem

is knowing in which topology to take the limit. A natural candidate of path topology is
the uniform topology. However, the following negative example shows that it fails to be
continuous with respect to the uniform topology.

Example 4.1. For each n ¥ 1, define Xn
t , Z

n
t : r0, 2πs Ñ R by

Xn
t �

1
n

sinn2t and Zn
t �

1
n

cosn2t

It is clear that Xn, Zn both converge to zero uniformly. However, from explicit calculation
one finds that

ItpX
n, Znq �

» t

0
Xn
r dZ

n
r �

t

2 �
1

4n2 sin2n2t,

which does not converge to the zero path.

As suggested by Young’s integration theory, the α-Hölder topology with α P
p1{2, 1s does work. However, the completion of smooth paths with respect to this topology
is not rich enough to at least cover the Brownian motion case. Unfortunately, the following
negative result (cf. Proposition 1.1. of [FH20]) indicates that there is not a clever choice of
path topology which on the one hand ensures the continuity of It and on the other hand
is weak enough to contain Brownian sample paths in the completion of smooth paths.

Proposition 4.1. There exists no separable Banach space E � Cpr0, T s;Rdq with the
following properties:

1. Sample paths of Brownian motions lie in E almost surely.

2. The map pX,Zq ÞÑ I�pX,Zq defined on the smooth functions extends to a continuous
map from E � E into the space of continuous functions on r0, T s.

Therefore, if this strategy is to work we would need a topology considerably
stronger than that of uniform convergence.

The following formal calculation reveals why paths need to be enhanced to
include higher order structure that is not encoded in the original trajectory Z. Let us
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assume for now that Xr has the form Xr � Zr being an α-Hölder continuous path for
some α P p0, 1s. By a formal Taylor expansion of f , we have that

fpZrq � fpZsq �DfpZsqpZr � Zsq � � � �

Integrating with respect to Z, we obtain» t

s

fpZrqdZr � fpZsqpZt � Zsq �DfpZsq

» t

s

pZr � Zsq b dZr � � � �

It turns out that, provided α ¡ 1{3, the higher order terms we have omitted in the above
expansion vanish upon applying lim

|π|Ñ0

¸
rs,tsPπ

, where the limit is taken over any partition π

of the interval r0, T s. In fact, if α ¡ 1{2, then one can show that

lim
|π|Ñ0

¸
rs,tsPπ

» t

s

pZr � Zsq b dZr � 0. (4.2)

In this case we simply obtain» T

0
fpZrqdZr � lim

|π|Ñ0

¸
rs,tsPπ

» t

s

fpZrqdZr � lim
|π|Ñ0

¸
rs,tsPπ

fpZsqpZt � Zsq,

which we recognise as the definition of the Young integral of fpZq against Z.

However, when α ¤ 1{2 the equality (4.2) does not necessarily hold, and this
"second order" terms remains:» T

0
fpZrqdZr � lim

|π|Ñ0

¸
rs,tsPπ

» t

s

fpZrqdZr

� lim
|π|Ñ0

¸
rs,tsPπ

�
fpZsqpZt � Zsq �DfpZsq

» t

s

pZr � Zsq b dZr



.

This suggest that, for α P p1{3, 1{2s, in order to compute the integral of fpZq against Z, we

need as inputs both the path increments Zt�Zs as well as the integrals
» t

s

pZr�Zsqb dZr

for each pair of times s   t. We therefore make the definition:» t

s

pZr � Zsq b dZr :� Zst. (4.3)

By a rough path, we mean the pair pZ,Zq. But to be clear, when we come later to the
proper definition of a rough path we will abandon the equality in (4.3), and instead provide
analytical and algebraic conditions which must be satisfied by Z. One should therefore
just think of (4.3) as motivation for the “information” encoded by Z.

Fix a time interval r0, T s. Assume that α P p
1
3 ,

1
2s. Let U and V be Banach

spaces. We follow the construction of [FH20](Chapters 2, 4) to introduce the basic frame-
work of the theory of rough paths. We will denote

∆T :�
 
ps, tq P r0, T s2 : 0 ¤ s ¤ t ¤ T

(
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and
∆2
T :�

 
ps, θ, tq P r0, T s3 : 0 ¤ s ¤ θ ¤ t ¤ T

(
.

Given a path X : r0, T s Ñ V and s, t P r0, T s we write Xst � Xt �Xs.

Definition 4.1. Cα2 p∆T ;Uq is the space of functions on ∆T taking values in U and such
that the following α-Hölder seminorm is finite

|ϕ|α :� sup
s,t

|ϕst|

|t� s|α

A V-valued rough path, introduced below, is defined as a pair of a rough
function and a double integral term.

Definition 4.2. The space of rough paths C αpr0, T s;V q is the collection of pairs Z � pZ,Zq
satisfying the following properties:

(i) Z P Cαpr0, T s;V q.

(ii) Z P C2α
2 p∆T ;V b V q, where V b V is the tensor product space equipped with the

projective norm.

(iii) pZ,Zq satisfies Chen’s relation: for all ps, θ, tq P ∆2
T ,

Zst � Zsθ � Zθt � Zsθ b Zθt. (4.4)

Definition 4.3. Let Z � pZ,Zq be an α-Hölder rough paths. The bracket of Z is defined
by

rZsst � Zst b Zst � 2SympZstq,

where SympZstq :� 1
2pZst � Z�

stq denotes the symmetric part of Zst. If rZs � 0, we say
that Z is a weak geometric rough path. We denote the set of all α-Hölder weakly geometric
rough paths with respect to Z by C α

g pr0, T s;V q.

Given a path Z P Cαpr0, T s;V q. We define rough paths controlled by Z as
follows:

Definition 4.4. Let Z P Cαpr0, T s;V q. We say that X P Cαpr0, T s;Uq is controlled by Z
if there exists X 1 P Cαpr0, T s;LpV ;Uqq so that the remainder term RX P C2α

2 p∆T ;Uq given
implicitly through the relation

Xst � X 1
spZstq �RX

st . (4.5)

This defines the space of controlled rough paths pX,X 1q P D2α
Z pr0, T s;Uq. The path X 1 is

called a Gubinelli derivative of X with respect to Z.
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Note that, given paths X and Z, the Gubinelli derivative X 1, when it exists, is
not unique in general. For instance, if it happens that Z P C2α and X P C2α, then any
continuous path X 1 would satisfy (4.5) with }RX}2α   8. On the other hand, as shown
in the Chapter 6 of [FH20], if Z is far from smooth, i.e. genuinely rough in all directions,
then X 1 is uniquely determined by X. More precisely, suppose that we are in the one
dimensional case d � 1, and for 0 ¤ s ¤ T

lim
tÑs�

|Zst|

|t� s|2α
� 8. (4.6)

The X 1 is uniquely determined. Indeed, it is given by the equality

X 1
s � lim

tÑs�

Xst

Zst
. (4.7)

In fact, by (4.6)
|RX

st |

|Zst|
¤ }RX}2α

|t� s|2α

|Zst|
Ñ 0,

so that, by using RX
st � Xst �X 1

sZst, the limit in (4.7) exists and is equal to X 1
s.

In [FH20] the authors say that a rough path which verifies (4.6) is a "really
rough" path. In fact, this condition is really necessary for getting uniqueness: suppose
that the limit in (4.6) is finite uniformly. Then Z P C2α and consequently, for every r P R,
we have the decomposition Xst � pX 1

s � rqZst � pRX
st � rZstq and RX

st � rZst is a "good
remainder". This means that X 1

s � r may also be used as a Gubinelli derivative.

With an abuse of notations, we sometimes write X P D2α
Z pr0, T s;Uq instead of

pX,X 1q P D2α
Z pr0, T s;Uq.

Suppose that Z P Cαpr0, T s;V q and pX,X 1q P D2α
Z pLpV ;Uqq. Then X 1 takes values in

LpV ;LpV ;Uqq, which can be identified with LpV b V ;Uq via

Φpxqpyq � Φpxb yq,

where Φ P LpV, LpV, Uqq and x, y P V .
The next theorem defines the rough integral of a controlled path against the rough path
Z � pZ,Zq.

Theorem 4.1. Let Z � pZ,Zq P C αpr0, T s;V q. Suppose that pX,X 1q P D2α
Z pr0, T s;LpV ;Uqq

and denote Ξtiti�1 :� Xti�1pZti�1tiq � X 1
ti�1

pZti�1tiq. Then the following "compensated
Riemann-Stieltjes sum"

ņ

i�1
Ξti�1ti , (4.8)

converges as |π| Ñ 0, where π � ps � t1   t2   � � �   tnq and |π| � max
1¤i¤n

|ti � ti�1|.
Denote by IstpΞq the limit of (4.8). Then, IstpΞq is additive, that is Ist � Isθ � Iθt for any
ps, θ, tq P ∆2

T . Moreover, the following estimate is satisfied for all ps, tq P ∆T ,

}IstpΞq � Ξst}U ¤ C
�
|Z|α|R

X |2α � |Z|2α|X 1|α
�
|t� s|3α, (4.9)
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where C is a constant depending only on α. By definition, the rough integral of X against
Z � pZ,Zq is defined as follows, for all ps, tq P ∆T ,» t

s

XrdZr :� IstpΞq. (4.10)

Similarly we can define the rough integral
» t

s

Xr b dZr P LpV ;Uq, for any

Z � pZ,Zq P C αpr0, T s;V q and pX,X 1q P D2α
Z pr0, T s;LpV ;Uqq. Theorem 4.1 can be

proved by using the Sewing Lemma.

Theorem 4.2 (Sewing Lemma). Let α P p0, 1s, and let Ξ P Cα2 p∆T ;Uq. Suppose there
exist C ¡ 0 and γ ¡ 1 such that the following inequality holds:

}δΞps, θ, tq}U :� }Ξst � Ξsθ � Ξθt}U ¤ C|t� s|γ,

for any ps, θ, tq P ∆2
T . Then there exists a unique (up to additive constant) function

IpΞq P Cαpr0, T s;V q, such that the following inequality holds

}IstpΞq � Ξst}U � }ItpΞq � IspΞq � Ξst}U ¤ p1 � 21�γq�1C|t� s|γ.

Moreover, IstpΞq can be represented as follows,

IstpΞq � lim
|π|Ñ0

ņ

k�1
Ξtk�1tk ,

where π � ps � t0   t1   � � �   tn � tq and the limit is independent of the choice of π.

Proof of Theorem 4.1. For s ¤ θ ¤ t. We have

δΞps, θ, tq � Ξst � Ξsθ � Ξθt

� XsZst �XsZsθ �XθZθt �X 1
sZst �X 1

sZsθ �X 1
θZθt

� XsZθt �XθZθt �X 1
spZst � Zsθq �X 1

θZθt
� �XsθZθt �X 1

spZθt � Zsθ b Zθtq �X 1
θZθt

� p�Xsθ �X 1
sZsθqZθt �X 1

sθZθt
� RX

sθZθt �X 1
sθZθt,

and hence

}δΞps, θ, tq}U � }RX
sθZθt �X 1

sθZθt}U ¤ p|RX |2α|Z|α � |X 1|α|Z|2αq|t� s|3α.

Since 3α ¡ 1, it follows from the Sewing lemma that there exists a α-Hölder continuous
path IpΞq �:

» �

0
XrdZr with the desired properties.

The next proposition stablishes the integral of a controlled path with respect
to another controlled path, see [FH20]. The proof is a consequence of the Sewing Lemma.
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Proposition 4.2. Suppose that Z � pZ,Zq P C αpr0, T s;W q

and pY, Y 1q P D2α
Z pr0, T s;LpV ;Uqq. Let pX,X 1q P D2α

Z pr0, T s;V q. Then the limit» t

0
YrdXr � lim

|π|Ñ0

ņ

i�1

�
Yti�1Xti�1ti � Y 1

ti�1
�X 1

ti�1
Zti�1ti

�
(4.11)

there exists for all t P r0, T s, where π � ps � t1   t2   � � �   tnq and |π| � max
1¤i¤n

|ti � ti�1|.
We call this limit the integral of the controlled path pY, Y 1q with respect to the controlled
path pX,X 1q. Also the following estimative holds for all s ¤ t,����

» t

s

YrdXr � YsXst � Y 1
s �X

1
sZst

����
U

¤ C
 
}RY }2α}X}α � }Y 1}8}Z}α

�
}RX}2α � }X 1}α}Z}α

�
� }Y 1X 1}α}X}2α

(
|t� s|3α,

where the constant C depends only of α.

We observe that the integrals (4.10) and (4.11) are controlled paths, in fact

p

» �

0
XrdZr, Xrq P D2α

Z pr0, T s;Uq and p

» �

0
YrdXr, Y X

1q P D2α
Z pr0, T s;Uq.

Itô’s formula is among the most valuable outcomes in stochastic calculus,
serving as the stochastic counterpart to the chain rule and the fundamental theorem of
calculus. In the setting of rough paths, we have the following analogous result.

Proposition 4.3. Let Z � pZ,Zq P C α
g pr0, T s;V q be a weakly geometric rough path, and

suppose that pY, Y 1q P D2α
Z pLpV ;Uqq be a controlled path. Suppose further that

Yt � Y0 �

» t

0
Y 1
rdZr

for all t P r0, T s. Let F P C3, then

F pYtq � F pY0q �

» t

0
DF pYrqY

1
rdZr

The following result is a particular case of Theorem 4.1. of [CCH22] applied to
weakly geometric rough paths, and stablishes the Itô-Wentzell’s formula for rough paths.

Theorem 4.3 (Itô-Wentzell’s formula). Let α P p
1
3 ,

1
2s, Z � pZ,Zq P C α

g pr0, T s;V q and
ph, h1q P C

�
U,D2α

Z pr0, T s, LpV ;W qq
�
. We assume that

1. h : r0, T s � U Ñ L pV,W q is continuous and twice differentiable in U .

2. ∇h : r0, T s � U Ñ LpU,LpV,W qq is continuous and differentiable in U .

3. For each t P r0, T s, h1 pt, �q P C1 pU,L pV, L pV,W qqq.
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4.
�
∇h, p∇hq1

�
P C

�
U,D2α

Z pr0, T s, LpU,LpV ;W qq
�
.

Let
gpt, xq � gp0, xq �

» t

0
hpr, xqdZr.

Assume that g : r0, T s�U Ñ W is continuous and twice differentiable in U and the functions
pt, xq ÞÑ ∇gpt, xq and pt, xq ÞÑ ∇2gpt, xq are continuous. Then for any X P Dα

Z pr0, T s;Uq,

gpt,Xtq � gp0, X0q �

» t

0
hpr,XrqdZr �

» t

0
∇gpr,XrqdXr. (4.12)

We recall that Z̃ � pZ̃, Z̃q as (canonical) space-time rough path extension
of Z P C α

g pr0, T s,Rdq where Z̃ � pt, Ztq and Z̃ is given by Z and the "remaining cross
integrals" of Zt and t, given by usual Riemann-Stieltjes integration; see Chapter 8 of
[FH20]. We know that Z̃ P C α

g pr0, T s,Rd�1q as discussed in Section 9.4 of [FV10].

Definition 4.5. Let α P p
1
3 ,

1
2s, Z � pZ,Zq P C α

g pr0, T s;Rdq and σ P C l,β
�
Rd,Rd

�
divergence–free vector field (i.e. ∇ � u � 0), that is }σ}2

l,β   8 for β P p0, 1q and some

l P N with l ¥
d

2 � 3. Given u P C0
b pr0, T s;C1pRd,Rdqq divergence–free vector field

with pu, u1q P D2α
Z pr0, T s, LpRd,Rdqq, and p∇u, p∇uq1q P D2α

Z pr0, T s, LpRd, LpRd,Rdqq. u is
solution of (4.1) if verify

utpxq � u0pxq �

» t

0
puspxq �∇quspxqds�

» t

0
∇pspxqds�

» t

0
L�
σurpxqdZr, (4.13)

where p is a scalar potential representing internal pressure with p P C0
b pr0, T s;C1pRd,Rqq.

Here the last integral is understood in the rough path sense.

4.2 Lagrangian formulation
Let’s demonstrate the main result of this Chapter: the solution to the Euler

equation (4.1) satisfies the Lagrangian formulation.

Theorem 4.4. Let Z � pZ,Zq P C α
g pr0, T s,Rdq. Let x P Rd Ñ pup�, xq, u1p�, xqq be a

continuous family of controlled rough path respect to Z with values in LpRd,Rdq. We
assume that u P C0 �r0, T s;C3 �Rd,Rd

��
and p P C0 �r0, T s;C3 �Rd,R

��
.

If u is solution of the equation (4.1) then the pair pX, uq verifies the Lagrangian
formulation

dXt � σpXtqdZt � utpXtqdt (4.14)
utpxq � P rp∇Atq�u0pAtqs pxq, (4.15)

where � means the transposition of matrices and denote the back-to-labels map A by setting
A p�, tq � X�1 p�, tq.
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Proof. With the assumptions above, we have

upt, xq � u0pxq �

» t

0
purpxq �∇qurpxqdr �

» t

0
∇prpxqdr �

» t

0
L�
σurpxqdZr (4.16)

� u0pxq �

» t

0
hpr, xqdZ̃r, (4.17)

where h � p�pu �∇qu�∇p,�L�
σuq. Furthermore, we consider

Xtpxq � X0pxq �

» t

0
urpXrpxqqdr �

» t

0
σpXrpxqqdZr, (4.18)

where pX,X 1q P D2α
Z

�
r0, T s, LpRd,Rdq

�
.

From Itô-Wentzell’s formula for the weakly geometric rough paths, see Theorem 4.3, we
have that upt,Xtq is given by

u pt,Xtq �u0 pxq �

» t

0
hr pXrq dZ̃r �

» t

0
∇ur pXrq dXr

�u0pxq �

» t

0
ppu �∇qur pXrq � p∇pq pXrqq dr �

» t

0
L�
σur pXrq dZr (4.19)

�

» t

0
∇ur pXrq pur pXrq dr � σ pXrq dZrq .

Analogously to chapter 2, see equations (2.11) and (2.12), we have the identities» t

0
pu�∇qupr,Xrqdr �

» t

0
pp∇urqurq

��
Xr
dr and

» t

0
pσ�∇qurpXrqdZr �

» t

0
pp∇urqσq

��
Xr
dZr.

Then we deduce

u pt,Xtq � u0pxq �

» t

0
∇p pXrq dr �

» t

0
p∇σq� ur

��
Xr
dZr. (4.20)

Now, from [FH20] we have

∇Xt � I �

» t

0
p∇Xrq

� ∇ur pXrq dr �

» t

0
p∇Xrq

� p∇σq pXrq dZr.

Then
p∇Xtq

� � I �

» t

0
p∇ur pXrqq

� ∇Xrdr �

» t

0
p∇σ pXrqq

� ∇XrdZr.

From Proposition 4.3 applied to the product function, we conclude that

p∇Xtq
� ut pXtq � u0pxq �

» t

0
ur pXrq

�
p∇ur pXrqq

� ∇Xrdr � p∇σ pXrqq
� ∇XrdZr

�
�

» t

0
p∇Xrq

� �p∇pq pXrq dr � p∇σ pXrqq
� ur pXrq dZr

�
.
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We observe that» t

0
ur pXrq p∇σ pXrqq

� ∇XrdZr �

» t

0
p∇Xrq

� p∇σ pXrqq
� ur pXrq dZr.

Then we deduce

p∇Xtq
� u pt,Xtq � u0pxq �

» t

0
u pr,Xrq p∇urpXrqq

� ∇Xrdr �

» t

0
p∇Xrq

� p∇pq pXrqdr

� u0pxq �

» t

0
p∇Xrq

� p∇urpXrqq
� u pr,Xrq dr �

» t

0
p∇Xrq

� p∇pq pXrqdr

� u0pxq �
1
2

» t

0
∇
�
|ur|

2 �Xr

�
dr �

» t

0
∇ pp �Xrq dr

� u0 �∇q̃,

where q̃ :�
» t

0

�
1
2
�
|us|

2 �Xr

�
� p �X

�
dr. Then, if we denote Mt :� p∇Xtq

�, it follows
that

ut �Xt � u pt,Xtq �M�1
t u0 �M�1

t ∇q̃ � p∇At
��
Xt
q�u0 � p∇At

��
Xt
q�∇q̃.

Finally we conclude

ut � p∇Atq�u0 � At � p∇Atq�p∇q̃qpAtq

� p∇Atq�u0 � At �∇q,

where q :� q̃ � A. Therefore, ut � P
�
p∇Atq� u0 � At

�
.
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