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Resumo

Nesta tese, estudamos a relagao entre formulagoes Lagrangianas e classicas para as equagoes
de Euler incompressiveis rough. Primeiramente, baseando-nos na férmula de It6-Kunita-
Wentzell e em técnicas de andlise estocéastica, estabelecemos uma formulacao Lagrangiana
para as equacoes de Euler incompressiveis estocasticas. Em segundo lugar, estabelecemos
uma formulacao Lagrangiana para as equagoes de Euler incompressiveis conduzidas por
um caminho Holder. A prova é baseada na formula de It6-Kunita-Wentzell para a integral
de Young. Além disso, em ambos os casos, demonstramos um resultado de existéncia local
para a formulagao Lagrangiana em espacos de Sobolev adequados.

Finalmente, demonstramos que a equacao de Euler incompressivel conduzida por um rough
path verifica a formulacdo Lagrangiana, e novamente a prova é baseada na férmula de

[t6-Wentzell para rough paths.

Palavras-chave: Equagao de Euler, formulacao Lagrangiana, formula de It6-Kunita-

Wentzell, rough paths, integral de Young, movimento Browniano, espacos de Sobolev.



Abstract

In this thesis, we study the relationship between Lagrangian and classical formulations
for the rough incompressible Euler equations. Firstly, based on the Ito-Kunita-Wentzell
formula and stochastic analysis techniques, we establish a Lagrangian formulation for
stochastic incompressible Euler equations. Secondly, we establish a Lagrangian formulation
for incompressible Euler equations driven by a Holder path. The proof is based on
[t6-Kunita-Wentzell’s formula for the Young integral. Furthermore, in both cases, we show
a local existence result for the Lagrangian formulation in suitable Sobolev spaces.

Finally, we prove that the incompressible Euler equation driven by a rough path satisfies
the Lagrangian formulation, and again, the proof is based on the It6-Wentzell formula for

rough paths.

Keywords: Euler equation, Lagrangian formulation, It6-Kunita-Wentzell’s formula, rough

paths, Young integral, Brownian motion, Sobolev spaces.
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INTRODUCTION

This thesis deals with the Euler-Lagrangian formulation, called also Constantin-
Iyer representation after [Con01], [CI08], (following [Con01], [FL19a] and [PR16]) of the

rough incompressible Euler equations on the torus T¢.

First, we consider the incompressible flows of homogeneous fluids on the torus

T? in the absence of external forcing. Consider the system of equations

o+ (u-Viu—vAu+Vp =0 )

Vou= 07 u|t=0 = U,
where u is the fluid velocity, p is the scalar pressure, and v > 0 is the kinematic constant
viscocity. For v > 0, system (1) is called the Navier-Stokes equations; for v = 0 it reduces
to the Euler equations. The difference between the closely related Euler equations and the
Navier—Stokes equations are that the latter take viscosity into account while the former only
model the inviscid flow. Such equations always attract the attention of many researchers,
with enormous quantity of publications in the literature. There are books ([AK21], [Che98],
[CM93], [MB02], [MP94]) and expository articles ([BT07], [Con06], [ES06]) on the subject,

too numerous to all be listed here.

The Lagrangian formulation is a way of describing the dynamics of a fluid or a
physical system by following individual fluid particles as they move through space and
time. More precisely, the Lagrangian formulation for the incompressible Euler equations is
stated as follows:

dX

E(t’@ = u(t, X (t,2)), X(0,2)=x,

At = X7, ), (2)
u(2) = P[(VA) uo(Ar)] (2)

for each = € T¢. Here P is the Leray-Hodge projector.
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For the Euler-Lagrangian form in the deterministic setting, in 2001 Constantin
[Con01] showed the equivalence between the incompressible Euler equations and the
Lagrangian form (2), involving the back-to-labels map (the inverse of the trajectory
map for each fixed time) and proved a local existence result in certain Holder spaces on
R? satisfying suitable decay conditions, or for solutions that are periodic. Pooley and
Robinson [PR16] in 2016 showed that the Lagrangian formulation is equivalent to the
usual formulation of the Euler equations and prove an existence and uniqueness result for
the Lagrangian formulation in C°([0, T]; H*(T%)) with s > ;i + 1.
In 2008, Constantin [CI08] established a probabilistic Lagrangian representation formula
for the deterministic three-dimensional Navier-Stokes equations using stochastic flows.
They show that u is a classical solution to the Navier-Stokes equations (1) if and only if u

satisfies the stochastic system.

t

Xi(x) =+ L ur (X, (z))dr + Wi, (3)

() = EP[(VX7 ) uo(XH)] (4)

where W, is a standard Brownian motion, [E is the expectation and = denotes the transpo-
sition of matrix. We mention that in 2018, Fang and Luo [FL18] established the formula
(4) on compact Riemannian manifolds. Rezakhanlou [Rez16], in 2016, proved the represen-
tation (4) in the context of symplectic geometry, and in 2021, Olivera [Oli21] obtained the

formula (4) for mild solutions of the Navier-Stokes equations on R?.

The Euler equations serve as the traditional model for describing the motion
of an inviscid, incompressible fluid. By incorporating stochastic terms into these governing
equations, we can better account for numerical, empirical, and physical uncertainties.
This approach is particularly useful in various applications, including climatology and
turbulence theory, where the stochastic flows, are essential for capturing the statistical
properties and long-term behavior of turbulent systems, which deterministic models often
fail to do. We refer to [AOBdL20], [Bes23], [BCF92], [BFM16], [CM23], [CFH19], [CT15],
[FGP11], [FL19b], [LC23] for works considering stochastic Euler equations.

In this thesis, we study the rough incompressible Euler equations on a torus

T¢ driven by the rough signal B/, which can be written as

duy + ((w - V)uy + Vpy)dt + Z‘C:J’utng —0 N
* 5

V.- Uy = 07 u|t=0 = Uy,

which describe the evolution of the velocity u of an incompressible inviscid fluid, as well
as the internal pressure p, L*;u := (¢7 - V)u + (Vaj)* u is the dual operator of the Lie
derivative L,;u = (07 - V)u — (u - V)o’ and we assume, to avoid technical difficulties, that

there are finitely many smooth and divergence free vector fields {O‘j }j.
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The study of fluid dynamics equations with a "Lie noise", as in equation (5), is relevant
in the study of some stochastic energy functionals. A variational approach to the full
theory of stochastic ideal fluid dynamics was derived by Darryl Holm in [Holl5], by using
transformation theory from geometric mechanics based on the Lagrange-to-Euler map for
stochastic Lagrangian particle trajectories. Equations related to fluid dynamics with Lie
noise appeared in several other works, see for instance [Bes23], [DHL20], [FGV01], [Flal1],
[LC23] and many others.

And finally, a Lagrangian representation of the rough incompressible Euler

equations using noisy flow paths is written as follows:

dXt = Z O'j (Xt)ng + ut(Xt)dt,
J

At ) = X7t ),
w(x) = PI(VA) uo(Ar)] ().

The Lagrangian approach often simplifies the analysis of equations by transforming complex
partial differential equations (PDEs) into stochastic ordinary differential equations (SDEs).
This can make it easier to study properties like existence, uniqueness, and regularity
of solutions. Finally, we refer to the work of Flandoli and Luo in 2019 [FL19a] for the
Lagrangian representation formula of the three-dimensional Euler equation with Lie noise,
using the vorticity equation, as in system (5), and the work of Drivas and Holm in 2020

[DH20] for a discussion of Kelvin circulation theorems for stochastic Euler equations.

The main purpose of this thesis is to establish the relation between Lagrangian
and classical (Eulerian) formulations for rough incompressible Euler equations (5) in any
dimension, considering three cases: the first where B} is a Brownian motion, the second
where B} is an a-Holder path with o € (1/2,1], and finally, the case where B/ is a weakly
geometric rough path. Furthermore, using the Lagrangian formulation, we demonstrate a
local-in-time existence result for solutions in C°([0,T]; (H*(T%))?) with s > ;l + 1, which
is novel for the
system (5) in both the stochastic case and the Young case.

The order in which the results of this work will be presented can be read below.
Structure of the thesis

I have tried, as much as possible, to present the topics included in this thesis
in their most natural logical order, with each chapter being presented chronologically
with respect to when the work was done. Each chapter has its own brief introduction,
explaining the main motivations, as well as the notations and conventions adopted in it.

For this reason, here I will only give a very short overview of the contents of the chapters.

In the first chapter, we recall definitions, notations, and basic properties of

spaces of functions, Leray projector, stochastic processes, stochastic integrals, [t6’s formula,
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[t0-Kunita-Wentzell’s formula, and stochastic differential equations that are fundamental

for the development of the work.

In chapter 2, considering B! as a Wiener process, and integration in the
Stratonovich sense, we study the Euler-Lagrangian formulation and discuss how it is
formally equivalent to the usual stohastic Euler equations for any dimension. The La-
grangian formulation is subsequently employed to establish a local-in-time existence result

for solutions in appropriate Sobolev spaces, which is a novel result for the system (5).

In chapter 3, we extends the results from chapter 2, considering B/ an a-Hélder
path in R? with o € (1/2,1], and integration in the Young sense. First we show the
Euler-Lagrangian formulation is equivalent to the incompressible Euler equations (5). The
Lagrangian formulation is then used to prove a local in time existence result for solutions

in suitable Sobolev spaces, new for the system (5).

Finally, in Chapter 4, our aim is to demonstrate that the Lagrangian formulation

is satisfied by the solution of the incompressible Euler equations (5), considering Bl =17,

an a-Holder weakly geometric rough path with « € (5’ 5]
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CHAPTER 1

PRELIMINARIES

In this chapter, we briefly introduce the mathematics needed in this thesis,
which contains Holder spaces, Sobolev spaces, LP-spaces, stochastic processes, Brownian
motion and [to-Kunita-Wentzell’s formula. These are widely used in mathematics. Based
on them, we will develop our work (a more detailed introduction to such aspects of the
theory can be found in [BCD11], [Baul4], [Chol5], and [Kun84]).

1.1 Spaces of functions

1.1.1 C"™%“-functions

The spatial dimension will sometimes be denoted by d and, when it is, we will
always assume that d > 2. We remark that we restrict ourselves to the (flat) d-torus by
T := R?/277Z% for simplicity.

Let U < R% T? or the whole space, we denote by C°(U) the set of continuous functions
on U and by C,(U) the subspace consisting of those continuous functions with compact
support. In certain situations we may simplify notation by omitting the set U.

More generally, for m € N u {0}, we will denote by C™(U) the space of functions on U
with continuous derivatives up to order m, and by C*(U) the space of those with compact
support. Of course C™ and C° will denote the spaces of functions for which all derivatives

exist and, in the latter case, that also have compact support.

Now the set of bounded continuous functions on U forms a normed vector

space with the supremum norm, which we denote by

[l := sup [f ()]
zeU

In addition, we say that f : U — R satisfies the a-Hélder condition (or "f is a-Hdolder")
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for some a € (0, 1] if there exists C' > 0 such that
[f(x) = f(y)] < Clz =yl (1.1)
for all z,y € U. We then define spaces of a-Holder continuous functions by:
COU) :={f: U - R: f satisfies a a-Holder condition for some C' > 0} .

In particular C%! is the space of Lipschitz functions.

We define a seminorn on C%* to encapsulate the a-Hélder property (1.1):
|flcoe :=inf {C' > 0: fis a-Holder, with coefficient C'}

Now bounded Hoélder-continuous functions form a normed vector space with the norm

[flla = f o :=[floo + [ flco.

More generally, if f € C*® has a-Holder derivatives up to order m, i.e. D?f € C%% if

|B] < m, then we say f e C™*(U). In the case that f is bounded we also define a norm

1 flma = 1l + Z |Dﬁf|00,a

0<|Blsm

Since any Holder-continuous function is continuous we have, of course, that C"™(U) <
c™(U).

Note that when we discuss vector-valued functions f : U — RY, statements like "f € V",
for a normed space V', should be understood in a componentwise sense. In this case, the

norm | - ||y should be understood as a norm on |f|:

[l == A1l

We will consider U = T¢ or U = R? throughout this work.

1.1.2 LP-spaces

Much of the analysis in this work will concern functions in certain Lebesgue
spaces or Sobolev spaces based upon them. In this subsection we will set out the notation
we will use when working with these spaces and recall a few standard facts. More detailed
discussion can be found in countless textbooks, for example [AF03] or [BCD11].

Unless otherwise specified, all integrals over subsets of R? will be written with respect to

the Lebesgue measure p in the corresponding dimension.

For 1 < p < o0 and any p-measurable set U < R? the space LP(U) (which
will usually be denoted by L, when the choice of domain is clear) denotes the set of all

measurable functions f : U — R such that

f f@)Pde < o,
U
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For the endpoint p = oo, we define L™ to be the set of all measurable functions that are

essentially bounded:
esssup |f| :=inf {sup {|f(z)| : x € U\E} : p(F) =0} < ©
U

That is, there exists a p-null set £ such that sup |f| < o0.
U\E

The set L? forms a linear space under the pointwise addition of functions and moreover is

1/p
1w = ([ 1r7)

[fle = esssup S

a Banach space with the norm

if 1 <p<oo,or

for p = co.
In the following we shall use | f|, and | f|e for | f| zrwy and | f| =), respectively, when
there is no ambiguity.

We shall need the following inequalities in dealing with integral estimates:

o Young’s inequality
a? bl
ab < — + —;
p q

this holds for positive real numbers a, b, p, ¢ satisfying p~ ' + ¢ ' = 1.

o Holder’s inequality.

|, foae <11l
this holds for function f € LP(U), g e LY(U), p~* + ¢ = 1 and is a consequence of
Young’s inequality.

Finally L*(U) is a Hilbert space under the inner product

(f7 g)L2 = J;] fgd:c,

or

(u,v)p2 1= Z(Ui,vi)m,

i

in the case of vector valued functions v and v.
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1.1.3 Sobolev spaces

A significant amount of the analysis in this work will be carried out in Sobolev
spaces. Loosely speaking these are spaces of L” functions with weak derivatives in L?.
More precisely, for m € Ny and 1 < p < oo, the space W™? consists of functions u € L”
such that the weak derivatives D?u exists and are in L? for all multi-indices § such that

|3] < m. On this space we define the Sobolev norm

1/p
lu|wmp = ( > ID’BUIIp> :

|Bl<m

In the case that p = 2, we use the notation H™ := W™? since this is a Hilbert space with

the inner product

(f.9)um = Y, (D°f,D%),,.

|Bl<m
For (non-integer) s = 0, we use the following definition of the (inhomogeneous) Sobolev
space H*(T?). The space H*® coincides with the Sobolev space W*?, see Section 7.62 of
[AF03]. For f e L*(T%), we say f e H*(T?) if the Fourier coefficients satisfy

2 K R)P < co.

keZd

( f will be defined in the next section).
For f e H*(T?), we define "modulus of s derivatives" A* by
A f(z) := (2m) ™42 Z \k|° f (k) exp(ik - x) € L*(T%).
kez4

In particular A?f(z) = (—A)f for any f € H?. Moreover, the norm in H* is given by

o2\
[l = (1 122 + 0A" - 22) ™

Note that we will sometimes use the fact that this is equivalent to the norm |||z +||A® | z2.
We will also make use of the fact that for a function f e H"(T%), |A%f|lz2 < |A"f| 2 if
0 < s <. Almost analogously, one can define H*(R?), using Fourier transforms (see for
example [BCD11]).

1.2 Fourier Transforms

The Fourier basis for L*(T?) consists of periodic functions of the form

1
(2m) 42

€T —>

exp(iz - k)
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where k € Z%, and the Fourier coefficients of a function f e L?*(T?) will be denoted by
f(k) € C (or f(k) e C?if fis vector valued). The formula that defines f(k) is

A

1 :
) = i |, S@) expli- ),
and the corresponding decomposition of f is

1 A .
f(z) = (2m)iP > f(k)expliz - k).

kezd

Note that if all components of f are real valued then f(k) = f(—k) for all k € Z? where T

denotes the complex conjugate.

1.3  The Helmholtz-Weyl decomposition and the Leray projector

A well-known family of results, most commonly attributed to [Hel70], show
that a smooth vector field on R* with sufficiently fast decay (or compact support) can be

decomposed into a divergence-free part, and a curl-free (gradient) part:
u=V xh+Vg.

For our purposes it will suffice to consider the cases of L*(T%), and L*(R?), for d > 2. In
either domain we have

I’ =H®G,

where H is the closure of the set of smooth divergence-free functions in L?, and G is the
space of gradients of H' functions. By considering Fourier series, this decomposition can
be written explicitly (see, for example Chapter 2 of [RRS16]). Indeed for u e L*(T?),

~

u(z) = (277)—d/2 Z (k) exp(iz - k) = (27r)—d/2 Z (g(k) + h(/{i)) exp(ix - k)

kezd kezd
where Rk
gk) = “(|k)|2' k, for k # 0; §(0) := 0, and h(k) := a(k) — §(k).

It is straihgtforward to check that g and h are the coefficients of convergent
Fourier series, let us call the corresponding limits g and h, respectively. It is also not
difficult to see that ¢ is te weak derivative of the scalar-valued H' function f, with Fourier
coefficients

o) = "R Fo =

Moreover, it can be seen that h € H since h(k) -k = 0 for all k € Z°.

To see that the decomposition of a given function w is unique, it suffices to

consider u = 0. In that case h = —g = V[, in a weak sense for some f € H'. Formal
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consideration of the Fourier series of f, assuming that V - h = 0, implies that f (K)|k|*=0
for all k € Z%, hence h = g = 0. This can be justified by considering the Fourier series of a
sequence of smooth divergence-free approximations to k. The projection of L* onto H will
play an important role in the analysis herein; we will denote it by P : L* — H.

On L*(T%), P can be calculated explicitly in Fourier space, following the discussion above.

For example, on T we have

P (2 a(k) exp(iz - k)) (x) = a(0) + > (ﬁ(k) - a(|kk)|? h k) exp(iz - k)

kezd kezZa\{0}

This is usually called the Leray projection (or sometimes the Helmholtz projection). Clearly
PP is a bounded operator on L?, moreover it follows easily from the Fourier-series definition
that for any s > 0 and any u e H*(T?)

|APulz2 < [|A%u| 2.

Furthermore P and A* commute on H*(T?) (this is discussed in [CM93], [MB02], and in

the aforementioned references).

1.4 Stochastic analysis

In this section we recall the basic vocabulary and results of probability theory.
A probability space associated with a random experiment is a triple (2, F, P) where € is
the set of all possible outcomes of the random experiment, F is a o-algebra of subsets of
), and P is a probability measure on F.
If (Q, F, P) is a given probability space, then a function f : Q — R? is called F-measurable
if

fRU)={weQ: fweU}eF

for all open sets U = R? (or, equivalently, for all Borel sets U < R?). A random variable

X is a F-measurable function X : Q — R?

1.4.1 Stochastic Processes
We fix a probability space (2, F, P).

Definition 1.1. On (2, F, P), a (d-dimensional) stochastic process is a sequence (X¢)i=o

of Re-valued random variables that are F-measurable

For every fixed w € 2, the applications t — X;(w) are called the paths of the

process
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Definition 1.2. A process (X)i=o is said to be measurable if the application
(t,w) = Xi(w)
is measurable with respect to the o-algebra B([0, +0)) ® F, that is, if
VA e B(RY), {(t,w), X;(w) € A} € B([0, +x0)) ® F.

The paths of a measurable process are, of course, measurable functions [0, +o0) — R.

The process X; is called continuous process if X;(w) is a continuous function
of t for almost all w. Moreover, a continuous process is measurable in the sense of the
Definition 1.2, see Proposition 1.8. of [Baul4].

A stochastic process (X;);=0 may also be seen as a random system evolving in
time. This system carries some information. More precisely, if one observes the paths of a

stochastic process up to a time ¢ > 0, one is able to decide if an event
Aeo(X,,r<t)

has occured (here and in the sequel o(X,.,r < t) denotes the smallest o-field that makes
all the random variables {(X;,, -+, X},),0 <t; < --- <t, <t} measurable). This notion

of information carried by a stochastic process is modeled by filtrations.
Definition 1.3. Let (Q, F, P) be a probability space. A filtration (F;)i=o0 is a non-decreasing
family of sub-o-algebras of F.

As a basic example, if (X;)i>o is a stochastic process defined on (€2, F, P), then
-Ft = O'(XT,T' < t)
is a filtration. This filtration is called the natural filtration of the process X and often

denoted by (F;¥);=o.

A filtered probability space (2, (Fi)so,F, P) consists of a probability space
(Q, F, P) and a filtration (F;);»o contained in F. The filtered probability space is said to

satisfy the usual conditions if the following conditions are met:

1. The probability space (€, F, P) is complete,

2. The filtration (F;);=0 is right continuous, that is, for every ¢t = 0
JT_;& = ﬂ JT:t-&-a-
e>0

Definition 1.4. A stochastic process (Xi)i=o is said to be adapted to a filtration (Fi)i=o

if for every t = 0, the random variable X, is measurable with respect to JF;.
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Of course, a stochastic process is always adapted with respect to its natural filtration. We
may observe that if a stochastic process (X;);>o is adapted to a filtration (F;);=0 and that
if Fo contains all the subsets of F that have a zero probability, then every process (Xt)t>0
that satisfies
P(Xt:Xt):l, tZO,
is still adapted to the filtration (F;);=o-
Quite often, it is important to be able to evaluate the statistics of solutions

to stochastic differential equations (SDEs) at appropriate random times, the so-called

stopping times.

Definition 1.5. Let (F;)i=o be a filtration on a probability space (Q, F, P). Let T : Q —
[0, 0] be a random variable, measurable with respect to F. We say that T is a stopping
time of the filtration (F;)=o if fort =0,

{w:T(w) <tteF

Often, a stopping time will be the time during which a stochastic process
adapted to the filtration (F;);>0 satisfies a given property. The above definition means

that for any ¢ > 0, at time ¢, one is able to decide if this property is satisfied or not.

1.4.2 Martingales and Semimartingales
We introduce and study in this section martingales in continuous time.

Definition 1.6. Let (F;);=0 be a filtration defined on a probability space (2, F,P). A
process (My)i=o that is adapted to (Fi)i=o s called a submartingale with respect to this
filtration if:

1. For every t = 0, E(|M;|) < 4o0;

2. For everyt =r =10
E(M|F,) = M,.

A stochastic process (M;);>o that is adapted to (F;)i=0 and such that (—M;);=0
is a submartingale, is called a supermartingale.
Finally, a stochastic process (M;);=o that is adapted to (F;)i=0 and that is at the same
time a submartingale and a supermartingale is called a martingale. If X, is a R%valued

martingale with E|X;|? < oo, t € [0, +00), for some p > 1, then it is called a LP-martingale.

Definition 1.7 (Local martingale). A stochastic process (My);=¢ is called a local martingale
(with respect to the filtration (Fy)e=o) if there is a sequence of stopping times (T,)n=0 Such
that:
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1. The sequence (T,)n=0 is increasing and almost surely satisfies lirglo Tp = +00;
n—

2. Forn =1, the process (My., )i=o0 is a uniformly integrable martingale with respect
to the filtration (Fi)i=o0

Of course, any martingale turns out to be a local martingale. But, in general

the converse is not true.

Definition 1.8 (Semimartingale). Let (X;)i=o be an adapted continuous stochastic process
on the filtered probability space (2, (Fy)i=0, F, P). We say that (X;)i=o0 is a semimartingale
with respect to the filtration (Fi)i=o if (Xi)i=0 may be writtten as:

Xt:X0+At+Mt,

where (A¢)i=o is a bounded variation process and (My)i=o is a continuous local martingale

such that My = 0. If exists, the previous decomposition is unique.

1.4.3 Brownian motion and stochastic integrals

The most well-known example of a continuous martingale is the Brownian

motion {W;, ¢t > 0}. The mathematical definition of a Brownian motion is the following.

Definition 1.9. A stochastic process {Wy,t = 0} is called a Brownian motion if it satisfies

the following conditions:

i) Wy =0

it) For all0 <ty < --- <t, the increments Wy, — W, ... Wy, — Wy, are independent

random variables.
i) If 0 < r < t, the increment Wy — W, has the normal distribution N(0,t —r)

iv) {Wi,t = 0} is a continuous process.

A d-dimensional stochastic process (W;);>¢ is called a Brownian motion if
(Woizo = (W)=, Wm0,

where the process (W} );>o are independent Brownian motions.

The inception of the stochastic integral is credited to K. It6, who originally
formulated it in relation to a standard Brownian motion. Subsequently, it was extended to

include local martingales and semimartingales.
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Let X;, t € [0,T], be a continuous real-valued Fi-adapted stochastic process.
Let mp = {0 =ty <t; <--- <ty =T} bea partition of [0,T] with |rp| = nax (t —tr—1).
Define & (77) as

m

SZH(WT) = Z (th/\t - th—1/\t)2-

k=1

If, for any sequence of partitions 7, &(7/.) converges in probability to a limit (X ), or
(Xyp), as |7} — 0 (as nn — o) for ¢ € [0, 7], then (X); is called the quadratic variation of
X;. For instance, if X; = W, is a Brownian motion, then (W), = t a.s. If X; is a process of
bounded variation, then (X ), = 0 a.s. Similarly, let X;,Y;, 0 <t < T be two continuous

real-valued F;-adapted processes. Define

NgE

77t(7TT) = (th./\t - th_l/\t) (Ytkmt - Y%k_lmt) .

k

Then the covariation of X; and Y}, denoted by (X, Y); or (X;,Y}) is defined as the limit

of n:(m) in probability as |77| — 0.

1

Let M, be a continuous, real-valued L*-martingale and let f(¢) be a continuous
adapted process in R for 0 < ¢ < T'. For any partition A7 = {0 =ty <t; <--- <t, =T},
define

Itn = Z ftk_u\t (Mtk/\t - Mtk_lx\t) . (12)

k=1
Then [;" is a continuous martingale with the quadratic variation

(I = f Py,

T
where f' = f;,_, for ty_1 <t < t;. Suposse that J |f,]?d{M), < oo, a.s. Then the

0
sequence ;" will converge uniformly in probability as |A7| — 0 (as n — o0) to a limit

t
Iy = f frd M,
0

which is independent of the choice of the partition. The limit [; is called the [to integral
of f; with respect to the martingale M,. Instead of I}* given by (1.2), define

=
k=1

The corresponding limit J; of J;" as

(ftk_l at T fti /\t) (Mtk at — My, /\t) . (1.3)

N | —

t
Jt=f £ 0 dM,,
0

is known as the Stratonovich integral of f; with respect to M;. Similar to the It6 integral,
the Stratonovich integral (1.3) is a generalization from the case when M; = W; is a

Brownian motion.
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t
Theorem 1.1. Let M, and f; be given as above. Then the Ito integral I; = J frdM, is a
0

continuous local martingale satisfying E(I;) = 0 and

(Iy = J;|ja|2d<ﬂ4>r, 0.s

Moreover, the Stratonovich integral is related to the Ito integral as follows
t t 1
J fr @) dMT = J f,«dMT + §<f, M>t (14)
0 0

1.4.4 1t6's Formula and It6-Kunita-Wentzell's Formula

The It6’s formula is certainly the most important and useful formula of stochas-
tic calculus. It is the change of variable formula for stochastic integrals.

Our starting point is precisely the It6’s formula for continuous semimartingales:

Theorem 1.2 (Itd’s Formula). Let X, = (X}, ..., X?) be a continuous semimartingale.
Suposse that ® : R? — R be a twice continuously differentiable function. Then the following

formula holds:

O(X;) = D(Xo) +ZJ — (X, )X + Zja (r, X,)d(XT, X,

1] 1
If, in addition, ® is three-time differentiable function, then the above formula can be written

simply as
4t oo .
d(t, X;) = (0, Xo) + —(r, X,) 0dX,.
(X0 = #0.X0) + 3] | T ) o ax;
An immediate consequence of this result is the well-known integration by parts
formula for semimartingales:

Corollary 1.1 (Itd’s formula for the product). Let (X;)i=0 and (Y;)i=0 be two continuous

semimartingales, then the process (X;Y;)i=o0 i a continuous semimartingale and we have:
t t
X\Y; = XoY +f X.dY, +f Y,dX, + (X, Yy, t20
0 0
Proof. See Theorem 5.39 of [Baul4]. O

One of the fundamental tools to develop our work is the so-called It6-Kunita-
Wentzell’s Formula, which describes the differential rule for change of variables. We present
here a differential rule for the composition of two semimartingales, which is a generalization
of the well known It6’s Formula (see Theorem 8.3. in Chapter I of [Kun84]).

Theorem 1.3 (Ito-Kunita-Wentzell’s formula). Let ®,(z), t € [0,T], = € R? be a random

field continuous in (t,x) a.s., satisfying
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1. For each t, ®(-) is a C*-map from R? into R a.s. w

2. For each x, ®,(x) is a continuous semimartingale and it satisfies

O, (1) = Po(z) + i Lt fi(x) odY?, forall zeR? a.s., (1.5)
j—1

where Y!, ..., Y™ are continuous semimartingales, f7(z) withr € [0,T], = € R? are random

fields which are continuous in (r,z) and satisfy

i) fI(x) are twice continuously differentiable in x,

ii) for each x, fI(x) are adapted processes.

Let now X, = (X}, ..., X%) be a continuous semimartingales. Then we have

mooto ‘ d tﬁ(l) '
Dy(X,) = Po(Xo) + I(X,) o dY/ + f "(X,) 0 dX.. 1.6
(000 = @00 + 33 || ) ey + 33| FE0x) (16)
1.5 Stochastic Differential Equations
We will concerned with the SDEs
dX(x) = b(t, Xo(x))dt + o (t, Xi(x))dW,;, Xo = 20€ R?, (1.7)

where b: [0,7] x R - R% and ¢ : [0,T] x R? — R**¢ are measurable vector-valued and
matrix-valued functions, respectively, and (W;)seqo,r] is a d-dimensional Brownian motion
on a probability space (Q2, F, P) endowed with the filtration (F}"),ep0.77. We assume that

the initial condition is a random variable that is independent of the Brownian motion W;.

We will say that (1.7) has strong solution if there exists continuous adapted

process X; to the filtration (ftW)te[QT], such that verifies the stochastic integral equation

t t

b(r, X, (x))dr + L o(r, X, (x))dW,,

Xi(x) = o + J

0

with b(-, X.) € L' ([0, T];R?) and o (-, X.) € L*([0, T]; R**?) almost surely.
We will state the existence and uniqueness when the coefficients b and o satisfy the
following two assumptions: there exists a constant C' > 0 such that for all z € R? and
te 0,71,

b(t, )| + |o(t,x)| < C(1 + |x|), (1.8)

and for all z,y € R? and t € [0, T],
b(t, ) — bt )| + o(t,2) — o (t,9)] < Clz — o] (19)

Under these assumptions, a global, unique solution exists for the SDE (1.7).
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Theorem 1.4. Let b and o satisfy assumptions (1.8) and (1.9). Then, for every initial
condition xo € R, the SDE (1.7) has a unique solution X, with

E [ sup |XT|2dr] < o
0<r<t

for allt > 0.

Proof. See Theorem 5.2.1. of [Oks03]. O

1.5.1 Flow Properties

We recall the relevant definition from [Kun84]

Definition 1.10. A stochastic flow of diffeomorphisms (resp. the C™), associated to
equation (1.7) is a map (s,t,z,w) = ¢g(7)(w) defined for 0 < s <t, v € R we Q with

values in R? such that

e given any s = 0, z € R? the process X" = ¢si(x) is continuous Fsy measurable

solution of the equation (1.7),

e P-a.s, for 0 < s < t the function, ¢s; is a diffeomorphisms, and the functions
Gsit, gzﬁs_tl, D" g, quﬁs_,tl, are continuous in (s,t,x) (resp. the C™ class in x uni-

formly in0 < s<t<T),

o P-a.s, st = Gut(Psn) forall0 < s<u<t, ze R? and Pss =T

We present the following relevant theorem on stochastic flows without proof.
Unfortunately the rigorous proof contains a lot technical difficulties and is very long to
be demonstrated here, as it falls outside the scope of this work. A proof can be read at
[Kun8&4].

Theorem 1.5. if b, € L*([0,T],C;"*(RY)). Then the map = ~ X,(z) is a stochastic

flow of C™ -diffeomorphisms with ' < a.

This concludes the mathematical background for this work. In the remaining

chapters we discuss the main content of this thesis.
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CHAPTER 2

THE BROWNIAN CASE

In this chapter, we consider the stochastic Euler equations

du+ ((u-Vu) + Vp)dt + Y. LiuodWi =0
j (2.1)
Veu= 07 u|t=0 = Uo,

where W/ is a family of independent real-valued Brownian motions, £;u := (¢7 - V)u +
(V(fj)* u is the dual operator of the Lie derivative L ;u = (07 - V)u — (u - V)0’ and the

integration is in the Stratonovich sense.

First, we show the Euler-Lagrangian formulation is equivalent to the stochastic
Euler equations (2.1), see Proposition 2.1. The proof is based on It6-Kunita-Wentzell’s
formula and stochastic analysis techniques. Furthermore, we use the stochastic flow
decomposition of the Lagrangian formulation to obtain a deterministic fixed-point prob-

lem, and apply this result to demonstrate a time-local existence result for solutions in

C°([0,T]; (H*(T%)?) with s > g + 1.

2.1 Equivalent formulations.

Let L; be the adjoint operator of the Lie derivative £,; with respect to the
inner product in L*(T% R?):

<£Zjvv w>L2 = _<U7 £0’jw>L27

for all smooth vector fields v, w, 0?. When o” is divergence free, the adjoint Lie operator is
given by
Liv=(c!-V)v+ (Vaj)* v,
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or in vector components by

(Lrjv), = Z (aié‘kvi + Ukﬁiai) )
k
In fact, by integration by parts and using V - ¢? = 0

G, Lopwyre =Y. Ld s(@) (Lo w)s () d

= ZZ J;d w;(x) (ai&kwi — wkﬁkaf) (x)dx
- Y5 [ COlan) @) @] ) do
= ZZ J;d (— (Uiﬁkui + ukﬁia‘,i) (x)w;(z)

()00 (2)w; (x) — uy(x) o] (2)wy(x)) da
= —ZJ (07 V)ui(z) + ((Vo?)" u),) wi(x)de
i YT
= — ZJ (L), (x)w;(x)dx
i YT
= —(Lru,wre.
We assume that the vector fields o/ € H"(R?,R?) and satisfy the condition

Dl < 0 (2.2)
j

d
for some r € R with r > 5t 3. Here |r| is the integer part of r and 6 = r — |r|.

Definition 2.1. Given a (divergence free) velocity w and a semimartingale

v e C°([0, T]; (CH(T))), we define the material differential D by

Dy i=dy + (u-V)rdt + Y. (07 - V) 7 0 dW}
J

Note that if 7, 3 € C' (scalar valued) then
ai(v8) = (07)B + v(9:B),
for i = 1,2, ...,d. Therefore, for v, 3 € C°([0,T]; C') we have

D(vB) = (D) 6+~ (Dp). (2.3)
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Moreover, if v € C?,

[V((u-V))]; = 0 (Z Wﬂ)
= > 0v0u; + Y 100y
= ((Vu)* V)i + ((u - V)V7);,

fori=1,2,....d.

Hence the commutation relation
DVy = VDy — (Vu)* Vrdt — Y (Vo?)* Vy o dWy. (2.4)
J
holds when v € C*([0, T]; C*). We use the notation P for the Leray-Hodge projection onto
the space of divergence-free functions.
Let us now define what we mean by solution of the stochastic differential

equation (2.1):

Definition 2.2. Given u e C°([0,T]; C'(T% RY)) a semimartingale and divergence-free
vector field (i.e. V-u = 0), and {Wtj,t > O} be a family of d-dimensional independent

Brownian motions. We have that u is solution of (2.1) if verifies

() = () — f( (@) V(o )dr—f Vp, ( dr—ZJ DodWi,  (2.5)

0

where p e C°([0,T]; CY (T, R)) is a scalar potential representing internal pressure and the

integration is in the Stratonovich sense.

Proposition 2.1. Let a € (0,1). Assume (2.2) and that u is C**-continuous semimartin-
gale. Then u is solution of the equation (2.1) if and only if the pair (X, u) verifies the

Lagrangian formulation
dX; =) 07(X) 0 dW] + uy(X,)dt (2.6)
ue(x) = PI(VA) uo(Ar)] (z), (2.7)

where = means the transposition of matrices and the back-to-labels map A is denoted by
A(vt) = X_l (at)

Proof. (=) We have

u(t, ) = up(r) — J(uV rxdr—ZfE u(r,z) o dW? — JVprx)d (2.8)
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and
Xt=:c+f (r, X,) dr+2faj Yo dWi. (2.9)

Then, from Ito-Kunita-Wentzell’s formula, see Theorem 1.3, the k-th component of the
process u(t, X;) is given by

ub (t, X;) =ul (z) — f t ((u V) u” (r, X,) + <6p) (r, X,,)> dr

0 a:ﬂk

f Z ( (o7 - V)u' (r, X;) + (?ZZ (Xr) - u(r, Xr)> o dW} (2.10)

—|—ZJ 2;(7“)( “(r, X,) dr—i—ZZj ol (X,) o dW.

We observe that

I
5—
ﬁ&
=
&
Sk
@ o
i
3
&
U
S

(2.11)
i=1+0
d t k
- ZZZIL ?;Z (r, X, )u'(r, X,.)dr
and
t , , td o ouk .
f Do - V)uk(r, X,) 0 dW] = ZJ ol ——|, odW/ (2.12)
0 ; —Jo i 5@ T

Making obvious cancellation we obtain

L/ op 607
u®(t, Xy) = ug(x) Jo (5£Uk) E J (%ck (r, X,) o dW?,

ie.,

u(t, Xy) = up(x) — L (Vp) (r, X,.) dr — ZL (Vol)* UT‘XT o dW?.

d
Xl
Now, we observe that ; gxk (VX)*u, and
X'
= 0; X X,) o dWy.
22 ik —i—f vu'(r, X,) - é‘xk J VJ 59%

Thus from [t6’s formula for the product of two semimartingales we deduce
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oX' i i ' i i OXr
éTsku (t, X¢) = dpug(x) + L u'(r, Xp)Vu'(r, Xy) - oxy, dr
- ‘ 0X . toxt op
; j _OAy J_
+ | wix) (Z Vo () am) cawy = [ 5 (5) o
t &X’L ao—j ]
_ X)) . X, dW?7.
fo - <2 (%) (X,) - u(r, )) o IV
Note that

= O i=1 n=1
B Zdl Zdl 0X' o),
i=1n=1 Oy, Or;
On the other hand, we have
d d d j
0X, ; dol OX]"
; [ ﬁxk] —;u mz_]l 0Ty, Oxy
B Zdl Zdl i 0ol OX!
B 0%y, Ok

Thus we obtain

d

;f u'(r, X,) (Z Vol (X,)- gfk> o dW?
<Z <ZZJ> (X;) - u(r, XT)> o dW}

J
Then the k—th term of (VX;)" u (¢, X;) is

L(ox
B ilL o,
aX 4 rtoxt [ op
Z o2 (t, Xy) Z(Szkuo ;j o2, (5@) (r, X,)dr

=1

+ 2 J u' (r, X,) V' (r, X,) - %dr,
: k

ie.,

(VX))  u (b X)) = uo(x) + J (VX)) (Vulr, X,)" u(r, X,) dr

0

f (r, X,)dr
0

1 t
+2JV (Jur* o X,) dr—JV 0 X,)

0 0
= uo—erq,

dr
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t
1
where G := J l2 (Jur* 0 X;) = pr o X, | dr.

0

Then, if we denote M; := (VX;)*, it follows that

ug o Xy = u(t, X;) = M; 'ug + M, 'V§

= (VA ) uo + (VA )*Va.

Finally we conclude

u = (VA ug o Ay + (VA" (V) (Ay)
= (VA)*ug o Ay + Vg,

where g := ¢ o A. Therefore, u, = P [(VAt)* Ug © At].

(<) We follow directly from Proposition 2 in [PR16], where the authors showed
this implication for the deterministic case. We shall also show an alternative formal proof.
We set v = uy o A, then by Theorem 2.3.2 of [Chol5] we have DA = 0 and Dv = 0.

Since u satisfies (2.7) there exists a function ¢ such that
= (VA)* v - Vq.

Then by (2.3) and (2.4) we have

(VA)
=D [(VA)" v] —DVq
= [D(VA)*]v+ (VA)*Dv —DVq
= [VDA — (Vu)* (VA)dt — (Vo?) VAo dW{] v
— VDq + (Vu)* Vadt + (Vo?)* Vg o dWy.

Hence, after a calculation and a rearrangement of the terms, we get

Du = — (Vu)* (VA)* vdt + (Vu)* Vqdt — VDq
— (Vo?)* [(VA)* v — Vq] o dW}
= — (Vu)*udt — VDq — (Vo’) uodW/

Juf?

= =V -dt = VDq - (Vo?) wodWy.

Then,

t t

(u-V)udr — J (07 - V)uodW?

0

ult,a) = wfa) - |

0

ame ¢ ¢ - .
—VJ er—VJDq—J(VJJ) uodW,;
0 0

0

t t t
= up(z) — J (u- V)udr — L L¥uodW? — L Vpdt,

0
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where formally we have
Juf® : j
p= T—I—ﬁtq—i—(u-V)q—l—(aj-V)q oWy,

Therefore we conclude that u is solution of the Euler equation (2.1).

]

Remark 2.1. After submitting the paper [OL23] we was alerted that similar calculations
were made in [DH20] to show circulation theorem. However, we prove the equivalence

between both formulations and an ezistence result in Sobolev spaces.

2.2 An Existence Theorem

2.2.1 Decomposition of the Flow

We use the idea of [FL19a] to decompose the stochastic flow in the system
(2.6)-(2.7). More precisely, we consider the stochastic equation without drift:

dpy = Zaj (1) © dWi, o =1, (2.13)

J

d
where I is the identity diffeomorphism of T?. Under the assumption that (2.2) and r > 3 +3,

the above equation generates a stochastic flow {¢},., of C Ir}:5 _diffeomorphisms on T¢,
where [ € (0,0).

We denote by w a generic random element in a probability space €2. For a given random
vector field u : Q x [0,T] x T? — R?, we define

i (w,) = [(r @, ) Y) e (w,9)] (@) (2.14)

which is the pull-back of the field u, (w, -) by the stochastic flow {¢; (w, )}, If we denote
by K, (w,z) = (Vg (w,x)) ", i.e., the inverse of the Jacobi matrix, then

U (w,x) = Ky (w, ) ug (w, r (w, x)) . (2.15)
From this expression we see that if uw e C°([0,7]; H") a.s., then one also has
a.s. @ € CU([0,T]; H"). Moreover, if the process u is adapted, then so is @. Now, we

consider the random ODE
Yi=i,(Y,), Yo=1 (2.16)

Applying the It6-Kunita-Wentzell’s formula, we see that
Xy =y oY,

is the flow of Ol —diffeomorphisms associated to the SDE in (2.6)-(2.7).
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2.2.2 Sobolev Estimations

All notations and results in this subsection we follow from [PR16]. For s > 0,
we will use the notation H*® variously for scalar or vector valued functions in H*® (’]I‘d)
(componentwise), where this does not cause ambiguity. We will often consider functions in
spaces of the norm C°([0, T]; (H*(T))%).

To simplify notation we define ¥4 (T") (usually denoted X;) for 7> 0 and s = 0 by

2 (T) := C°([0, 7] (H°(T9))).
We consider the natural norm on X,:

luls, = sup [lu(®)]s
te[0,7]

We begin by stating two inequalities concerning the advection term (u - V)v,
using the notation B(u,v) := (u- V)v. The following two results are taken from Lemma 1
and Lemma 2 of [PR16].

d
Lemma 2.1. For s > 5 there exists C, > 0 such that if v € H® and v € H*™ then
B (u,v) € H® and
|B (u,v) ls < Crlulls|[v]ls+1-

d
Lemma 2.2. If s > 2 + 1 there exists Cy > 0 such that for v € H®, v e H™ with
divergence-free we have
(B (u,0),v), | < Collulls[lv];

We use the following shorthand for closed balls in X,:
By = Byjs, (0, M),

i.e., By is the closed ball centred at the origin of radius M > 0 with respect to the norm
| - |s.. Where ambiguity could arise we write By, (T') for the closed ball in 3 (7).

We need the following key technical result, see Lemma 3 of [PR16].

d x
Lemma 2.3. If s > 5t 1 and n, ve X, (T) then P [(Vn)* v] € B(T) and there exists a
constant C3 > 0 (independent of n, v, t and T') such that for fized t,

IP[(Vm)* o] I < Cslnlls[v]).. (2.17)

where r = s or r = s — 1. Furthermore, there exists C > 0 such that for any M > 0 and
T > 0, the following bounds hold uniformly with respect to t € [0,T] for any ny, n2, v1, v €
By (T):

[P[(Vn)* o1r = (Vna)" va] | x < G5 (I — meflx + lor — w2 x) (2.18)
where X is L? (Td) or H¥ 1,
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The next lemma gives uniform bounds on the H® norms of solutions to the
transport equations (2.23) and (2.24), see Lemma 4 of [FL19a]. We will consider the

following system:
f(0) = fo.

where f, g : [0,T] x T4 — T¢ and u is divergence-free.

(2.19)

Lemma 2.4. Let s > ;i + 1 and fir foe H°, ge X,. If u e Xy is non-zero and divergence
free then there exists a unique solution f to (2.19). Furthermore, the solution f € ¥ N
CY[0,T); HY) n C'([0,T] x T?) and there exists Cy > 0 (from Lemma 2.2) such that if
r, t € [0,T] we have:

lglls
— =, 2.20
Zs) C4Hu - ( )

101 < (0 + G F5 ) e (Cule = rl

s

s

The following result, see Lemma 5 of [FL19a], is key to demonstrate the main

result of this chapter.

d
Lemma 2.5. For s > 3 + 1 fir uy, uy € X and fo € H®. Let g1 = go =0 or g; = —u; for
i =1, 2. If f1, fo are the solutions of (2.19) corresponding to uy, us, g1, g2 respectively,
then in the case that g = go = 0, there exists Cs > 0 depending only of s such that

s

[/1() = fo(D)l> < C5[[ 1 + fo

Uy — ’UQ”EOt (221)
for allt € [0, T]. In the case that g; = —u; fori =1, 2 we instead have

[/1(t) = fo(Dll> < (C5[lfy + f2

PN + 1) Hu1 — UQHEOt' (222)

We consider the following transport equation:

OB+ (i-V)B =0, (2.23)

o+ (G- V)v =0, (2.24)

where @ (z) = [(cpt_l)* ut] (x).
Given an initial divergence-free velocity u for the classic equations, we choose initial

conditions for the above system as follows:

B (z,0) =z, (2.25)

u(x,0) =v(x,0) = ug (). (2.26)
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Also n(x,t) := B (x,t) — x and replace (2.23) and (2.25) with the equations

om~+(u-V)yn+ua=0, (2.27)

n(z,0) =0, (2.28)

respectively. We do this because the identity map (hence B) does not have sufficient
Sobolev regularity when considered as a function on the torus with values in R? (i.e.

without accounting for the topology of the target torus).

2.2.3 Contraction

The objective of the remainder of this chapter is to demonstrate the following
theorem. In this outcome, we shall prove that a map (defined by Su in (2.29) below) has
a fixed point in a close ball in 34(T).

d
Theorem 2.1. Assume thatr > s+ 1. Ifd =2, s > 3 + 1 and ug € H? is divergence free,
then there exists T'(w) > 0 such that

u="P[(VA) u(A4)]
has solution uw € 34(T).

Proof. For u € ¥, we consider the following system:

a (2) = [(¢7), w] (@),

K:ﬂt(yt): Yo =1,

) (2.29)
X = o (Yt) )

Sug (x) =P[(VX, 1) uo (X, )] (2).

Here, we assume ¢, is the solution of the equation (2.13), and that we are given a family of
diffeomorphisms {1}, 7 of T4 satisfying ¢ € C°([0, T]; CI"#) and o = I. As mentioned
above, € (0,0) and 6 = r — |r|.

From Chapter 3 of [AF03] we have that there exist positive constants Cy := Cy(t, d, s, ¢),
Cy = Cy(t,d, s, ), Cy := Co(t,d, s, ) such that

lo™ s < O (2.30)

lals = 11 (Ve ) (e)ule)ls < Collulls; (2.31)
[ne@ s < Callnlls and [vo e s < Coluls. (2.32)
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d
Fix s > 5t 1 and let C3, Cy be the constants in (2.17), (2.20) (from Lemmas
2.3 and 2.4) respectively. Fix ||uglls < M and T > 0 so that
2

C
Cluoll, exp (C1CoT M) [ % (exp (C4CaTM) ~ 1) + 1] <M,

1V“4

where C is a constant to be defined later.
Let u € By(T) be a divergence free vector field and let n = Y, ! — x is unique solution of
(2.27) with initial data 7o = 0. Let v = uo(Y;™") be the unique solution of (2.24) for initial

data Vo = UgQ.

From (2.31) it follows that

la|s, = sup |afs < sup Coluls < CoM,
te[0,T] te[0,T7]

Then by Lemma 2.4,

lo(@)s < lluols exp (Cat[lls,) < |uols exp (CoCiTM) (2.33)
and )
In(®)]s < a (exp (CoCyTM) —1). (2.34)

Hence, with C' = C,C5Cj, (the constants Cy, Cy, Cy are given by (2.30), (2.32) and Lemma
2.3 respectively)

[Su®)]s < IP[(V(noe D) vle H]ls +[P[(Ve ) vl D] s
< Cslno ™ slv(e™)ls + Cslle™ slv(e™)]s
< C3C3Inllsllvlls + CsCLCafv]s
= CsCafvlls (Cafnlls + C1)

here the third inequality follows from (2.30) and (2.32). Then by (2.33) and (2.34)

C5C3
ISu(Bl. < Jual.exp (1ot | 42
2

= C’HuoHsexp (C4CotM) [Ccé (eXp (C4CotM) — 1) + 1:| < M (235)
1V4

(eXp (C400tM) — 1) + 030102]

for all t € [0, T]. Hence S : By (T) — By (T).
Before proving that the map S is a contraction in a certain space, we need to prove a

couple of inequalities. By Lemmas 2.3, 2.4 and 2.5 we have
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[PI(V (moe™) v (™) = (V(moe™)) v (¢)]]
M ([[nioe™ =mog™ |+ oo™ w2007 ,]
= CsM [|m — mal 2 + |v1 — va 2]
CsM [(Cs |n1 + 12

2
< CsM ( Cs (exp (C4CotM) — 1) + 1) t|a, — u2”2

s, +1) [t — gy, t + Cs o1 — va|g_[|i1 — Gy, ]

Cy
+205Mt H’LLOHS exp (O4ootM) Hﬂl — ’&2“20]

[ [ 2C5
< CgM ( C (eXp (C4CoTM) — 1) + 1> t+ 205t ||U()|| exp (C4COTM):| ||ﬁ1 — 'lNLQHEO 5
4
and
|P [(stl)* (vi(p ") — U2(9071))]HL2 < CsM |vi(p7h) = U2(9071)HL2

= C3M [v1 — va 12
< C3C5M v — vl |61 — @iy, t
< 203C5Mt ||U0HS exp (C4tCOM) ||1~L1 - ’ZLQHZO s

where (3, Cy4, C5 are the constants from Lemmas 2.3, 2.4 and 2.5, respectively.

Now we will show that the map S is a contraction on By(T) in the L*norm
if T' is sufficiently small. For uy, us € By(T') we construct v; and »; from u; as above for

i =1, 2 with v1(+,0) = v3(+,0) = ug. Then by the inequalities above

[Sur = Suala < [PL(V (mo9™)) 1 (¢71) = (V (o 9™)) 2 (¢7)]] e
+[P[(Ve™)" (ale™) —va(e™)]] 2

2C5
< CgM ( C (eXp (C4COTM) — 1) + 1) t Hul — Ug”z (236)
4
+ 403C5Mt HU()HS exXp (C4COTM) Hﬂl — ’&2”20
1 1 C
< 2T MC3Cy 20uplls + = | exp (CaCoTM) + = — =2 ) ug — us
Cy 2 Oy 0

= C(u07 w, M7 T) ||u1 - u2||20 )
where the third inequality follows from a change of variables and Holder’s inequality
|t — day, = Sup |ty — a2 = Sup [(Vo) ™ ui(p) = (Vo) ua()|
(S

= sup (V™) (¢) (w1 —u2) (¢ HL2
te[0,T]

= sup [(Ve™) (w —ua)| o < sup ([Ve™| . fur —ual2)
te[0,T] te[0,T7]

x C’6 Hul - u2||20 5
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where Cy := sup HVgp’lHLw.
te[0,T]

We observe that C(ug, w, M, T) is given by the formula

C(Uo, W, M, T) =27 lCSMCBCG (2 ||UO||S + 1) exXp (C4COTM) (237)

Cy
1 Cs
e (1-9)]

Note that the smoothness of the diffeomorphisms ¢ implies that the constants Cy, C, Cs
and Cg are limited uniformly in time. Then taking the supremum of (2.36) with respect
to t and choosing T" > 0 small enough, we see that S is a contraction in the required
sense. With the above preparations, the proof is the same as that in [PR16]. The Banach
fixed-point Theorem guarantees the existence and uniqueness of a fixed point w for S in the
closure of By (T') with respect to | - ||s,. We conclude that S has a unique accumulation
point u in the closure of By, with respect to | - |s,. Now, since By (T") is convex and closed
in ¥, then by the Mazur’s Theorem it is weakly closed, hence u € By (T) is a fixed point
of S with respect to | - |x,. A fixed point of S, along with associated back-to-labels map
and virtual velocity, clearly give a solution to the Eulerian-Lagrangian formulation of the

Euler equations with the required regularity.
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CHAPTER 3

THE YOUNG CASE

We will prove the equivalence of the Eulerian-Lagrangian formulation with the

classical Euler equations

duy + (wy - Vg + Vpy) dt + L2 wdY{ =0, (3.1)
J

where for each j, Y/ is an a-Holder paths with o € (1/2,1], and the integration is in the
Young sense. Again, as in the previous chapter, we consider £*;u := (¢ - V)u + (Vaj )* U
is the dual operator of the Lie derivative L,iu = (¢7 - V)u — (u - V)o?.

Using this formulation we prove a local in time existence result for solutions in

d
C([0,T]; (H*(T4)%) with s > 5t 1, new for equation (3.1). Our work also includes a
solution theory for fractional Brownian motion driven equations, which enables memory

effects to be introduced through our formulation.

3.1 The Young's integral

We will introduce a-Holder paths, which play a fundamental role in the theory
of continuous stochastic processes, including the fractional Brownian motion, which we
will mention later on. More precisely, we have the following definition. Let U, V and W
be Banach spaces. Given a path ¢ : [0,7] — V and s,t € [0, T] we write ¢5 = ¢ — ¢s.

Definition 3.1. Let 0 < a < 1. C*([0,T|; V) is the space of functions on [0,T] taking

values in V' such that the following a-Holder seminorm

|¢| = sup ”gbstHV

0<s<t<T |t — s|*

is finite.
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The space C*([0,7T]; V') is a Banach space with the norm

[6lla = [6la + [&]eo,

where, as usual, |¢]o = sup [@(t)[v.
te[0,7]
We note here that the product of Hélder continuous functions is again Holder continuous,

in fact.

Theorem 3.1. If ¢,y € C*([0,T]; V) then ¢y € C*([0,T]; V) and exist a constant ¢ > 0
such that

[67]e < el @lal o

Proof. From the definition of a-Hélder seminorm and properties of supremum we have

G7le = sup <<¢v>v> - (ch(t)v(t) - ¢(8)7(8)||v)

o<s<t<T \ |t — s|® |t — s|*
(&) = (s)]v [9(t) — o(s)lv
< S <¢(t)||v s [v(s)llv £ o] )

< [@leolla + [V]wlfla-

For this inequality and the definition of a-Ho6lder norm, the relation indeed holds since

19Va = 197]a + 197 ]w

< 9]Vl + [Vlleol@la + [@ ool lloo
[@loo (IVla + 17]10) + 7]l l®]a
clvlla (Il + [8]a)
= [ ¢]alV]a-

N

N

]

We will denote by L(U, V') the space of continuous linear operators from U to

V' equipped with the operator norm, and
Ar:={(s,t) e [0,TP:0<s<t<T}.

We define the Young’s integral fXdY when Y € C*([0,T]; V) and X € C?([0, T]; L(V,W))
with a + 8 > 1. The cornerstone of this theory is the following Young-Loeve estimative,
see Proposition 3 in [Gub04] and [You36].

Theorem 3.2. Let Y € C*([0,T]; V) and X € C*([0,T]; L(V,W)) for some o, B € (0,1]
with o + 8 > 1. Then the limit

t
X,dY, := lim Z X, Y.
[r,s]em

7| —0
0 || =0 <
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exists for every t € [0, T], where the limit is taken over any m € P([0,t]), and P([0,t]) the
set of all partitions 7 of the interval [0,t]. This limit is called the Young integral of X

against Y. Moreover it holds the following estimative

< CosplY o] X|slt — 7 (3.2)

t
f erY;“ - XsY:et
s w

for all (s,t) € Arp.

We recall the independence of the Young integral with respect to the choice of
the partitioning points. Let r € s, 8] denote an arbitrary point in the interval [s, 8]. The
Young integral of X against Y is equal to the limit

for any ¢ € [0,T].

Example of Ho6lder noise: The fractional Brownian motion, which was
introduced by Kolmogorov in [Kol40] and further developed by Mandelbrot and Van Ness
in [MVNG8], is a stochastic process that significantly differs from classical Brownian motion
and semimartingales, which are commonly used in stochastic calculus. It is a centered
Gaussian process distinguished by the stationarity of its increments and its medium- or
long-memory property, contrasting sharply with the properties of martingales and Markov

processes.

We have that (Y;t)te[O,T]a a fractional Brownian motion (fBm in short) with
Hurst (or self-similarity) parameter H € (0, 1), is a centered continuous Gaussian process

with covariance

E[V,Y,] = = (" + s* — |t — s[*") for every s,t € [0,T].

DN | —

According to Proposition 1.6 of [Noul2], fractional Brownian motion will exists

and has Holder continuous paths of order o € (0, H).

The Hurst parameter of fractional Brownian motion determines the degree of

roughness of the fBm path:

e When H = 1/2, the fBm reduces to standard Brownian motion, which exhibits no

long-range dependence.

e When H > 1/2, the fBm path is smoother than Brownian motion, and the process
exhibits positive long-range dependence. This means that large fluctuations are more

likely to be followed by large fluctuations and vice versa.
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o When H < 1/2, the fBm path becomes rougher, and the process exhibits negative
long-range dependence. In this case, large fluctuations are more likely to be followed

by small fluctuations and vice versa.

As the next lemma shows that Young integration satisfies the classical integra-

tion by parts formula.

Lemma 3.1. Let X € C* and Y € C? for some o, B € (0,1] with a + § > 1. Then
T T
XrYr = XoYo + J XudY, + J Y.dX,.
0 0
Lemma 3.2. Let X € C*([0,T],V) and f € C**P(V, W) for some a, 3 € (0,1], such that
T
a(l+ ) > 1. Then f Df(X,)dX, is well-defined Young integral, and
0

F(Xr) = F(Xo) + L Df(X,)dX,.

Remark 3.1. Composition of a differentiable function with an a-Hélder path is also an
a-Holder path.

Here is the main result of this section: the generalized It6-Wentzell’s formula
for the Young integral, see Theorem 3.1 of [CC22].

1
Theorem 3.3. Let o € (5, 1], YeC¥0,T];V) and h : [0, T]| xU — L(V,W) continuous
and differentiable in U such that

1. (t,x) = Dyh(x) is continuous,

2. he C°(U,CP([0,T); L(V,W))) for some f3 € (;, 1].

Let

t

(@) = go(x) + fo hy (2)dY, (3.3)

Asssume that g = [0, T] x U — W is twice differentiable in Uand the functions (t,x) —
D2g,(z) are continuous. Then for any X € C*([0,T];U),

t

0(X0) = go(X0) + J ha(X,)dY; + L ' Dog (X)X, (3.4)

0
t
where the integral f D,g.(X,)dX, is understood in the Riemann-Stieltjes sense.
0
1
If D,g € C°(U,C7([0,T]; L(V,W))) for some ~ € (5, 1] we have that the integral

¢
J D,g,(X,)dX, is a Young integral, and t — g,(X;) € C*([0,T]; W).
0
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Now, we assume that o/ € H"(R?, R%) and

Dol < oo (3.5)
J

d
for some r € R with r > 5t 3. Here || is the integer part of r and 6 = r — |r|.

Finally, let’s see what we mean by a solution of the stochastic differential

equation (3.1). But before that, let us consider the following remark:

Remark 3.2. Let us consider o’ : R? — R? a sequence of continuous, divergence free

vector fields, and {Ytj}j a sequence of a-Holder paths on R%. The following condition on

the o7 and Y/ should hold

207 ol Y la + D1V ooV | < 0.
J J

This ensures that the integration in the following definition is well-defined.

Definition 3.2. Given u : [0,T] x T? — R? divergence—free vector field (i.e. V -u =0)
with uw e C*([0,T]; CY(T* R?Y) and Y7 : [0,T] — R? a-Hélder paths with o € (1/2,1], we
say that u is solution of (3.1) if verifies

t t t
w () = up(z) — j (up(z) - V)u,(x)dr — f Vp,(x)dr — ZJ L*u,(z)dY?, (3.6)
0 0 = Jo
where p e C°([0,T]; C*(R%, R)) is a scalar potential representing internal pressure and the

last integration is in the Young sense.

3.2 Equivalent formulations

Let £7;, as in the previous chapter, be the adjoint operator of £,; with respect

to the inner product in L*(T¢, R?).
Definition 3.3. Given a (divergence free) velocity u € C°([0,T]; (C°(T)%) and v €
C*([0,T]; (CYHT))?), we define the material differential D by (with summation over

repeated indices)

Dy :=dy+ (u-V)ydt + (07 - V) ydY/

Analogously to the stochastic and deterministic cases discussed in the previous
chapter and Proposition 2 in [PR16], respectively, through simple calculation, we obtain
the identities.

D(B) = (D) B+~ (DP), (3.7)
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DVy = VDy — (Vu)* Vrdt — (Vo' )" VydY/, (3.8)

for the last identity (3.8) we must consider v € C*([0,T]; (C*(T%))%), so that the Young

integration is well defined.

The proof of the following result is based on Ito-Kunita-Wentzell’s formula for

Young’s integral and the continuity properties of Young’s integral.

Proposition 3.1. Assume that u € C* ([0,T]; C* (T*,R?)) and (3.5) holds. Then u is
solution of equation (3.1) if and only if the pair (X, u) verifies the Lagrangian formulation

dX, = o7 (X})dY{ + uy(X,)dt (3.9)
u(x) = P[(VA) uo(Ar)] (), (3.10)

where » means the transposition of matrices and the back-to-labels map A is given A (-,t) =

X 1.

Proof. (=) We have

t
LEu(r, z)dY/! —J Vo(r, z)dr (3.11)
0

u(t, ) = up(x) — J

0 j YO

and

Xt=x+f (r, X,) dr—l—ZJa] )dY?. (3.12)

Then, from It6-Kunita-Wentzell’s formula for the Young’s integral, see Theorem 3.3, we

have that u(t, X;) is given by

w (L X)) = (Xo) — f [ 9)u(r, X,) + Vp (r, X)) dr = L £2u(r, X,) dY?

Z o/ (X,)dY? +u, (X,) dr]

Analogously to previously chapter, see equations (2.11) and (2.12), we have
the identities . .
J (w0 V)u(r, X, )dr — J (Vi) ] |, dr
0 0 "
and

oy

j 0

(@Dl X)57 = 3 [ [(Fur) o] | Y7
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Then we deduce

u (t, Xy) =up(x J Vp(r, X,) dT—ZJ (Vo?) UT‘X dy?. (3.13)

Now, from the Proposition 8 of [Lejl10] we have

t

(Vu, (X)) VX,dr + Z f (Vo!)* (X,) VX,dY/.
0

From Lemma 3.1 we have

t

(VX)) s (X)) = uo(x) — J

(v’ [(Vp) (r. X, dr + Y (Vo (X)), (X,) Y

+ L ur (X,) [(VXT)* (Vu, (X)) dr + Y (VX,)" (Vo) (X,)dY;

We observe that

t

| ) (F0) () () 037 = 3 [ (VX (Ve (40)" s (X)) .

j 0

Then we deduce

t

(VX)) 0t X) = uo(x +f0 (VX (T (X)) u (r, X,.) dr — L (VX.)* (Vp) (r, X, )dr
1

+JV |uT|20X dT—JV » 0 X)) dr
0

[\

=u0+Vq,

‘11
where ¢ := J lz (|ur|2 o Xr) — oX,,] dr.
0

Then, if we denote M; := (VX;)*, it follows that

Ut OXt = u(t,Xt) = M71U0 + Mﬁlvq

= (VA ) uo + (VA )* V3.

Finally we conclude

u = (VA ug o Ay + (VA" (V) (Ay)
= (VA)*ug o Ay + Vg,



Chapter 3. The Young case 47

where q := ¢ o A. Therefore, u; =P [(VAt)* Ug O At].
(<) For each j let (Yj’")neN be a sequence on C' ([0, T]; R?) such that

Y Y7 asn —
with respect to a-Holder norm. Then from Theorem 3 of [CF09]
X" > X

in a-Holder norm.

Consider the transport equation

t t
v = up — f (ur - V) vtdr — ZJ (o7 - V) urdy) ™.
j J0

0

Now, from the Theorem 11.12 and Theorem 11.13 of [FV10] we have that

A" > A and VA" > VA, (3.14)

in a-Holder norm.
Set v™ := ug o A", where the initial function ug is assumed to be C? (Td;Rd), then by

(3.14) and Remark 3.1 we have
V" —>ugo A =:w.
Furthermore, by the triangle inequality and Theorem 3.1 we have

V" = Vvlq = [Dug (A") VA" — Dug (A) VA[4
< || Dug (A™) VA" — Dug (A) VA" o + | Duo (A) VA" — Dug (A) VA,
= || (Duo (A") = Dug (A)) VA" [ + [Dug (A) (VA" = VA) [a
< |Dug (A") = Dug (A) [o| VA" [ + [Duo (A) [o| VA™ = VA[,
< VA" (IDuollo + [ D*uoleo) |A™ = Alla + | Do (A) o[ VA" = VAl

If we let n — o0, we deduce from (3.14) and the continuity of Dug, that Vo™ converge in

a-Holder norm to Vou. Hence we get that v is a solution of

¢ ¢
vy = ug — J (u, - V) vpdr — ZJ (07 - V) v,dY/. (3.15)
g 0

0

Therefore, A and v satisfy the equation (3.15) with initial conditions = and wyg, respectively.
Thus, we conclude that DA = 0 and Dv = 0.

Since u satisfies (3.10) there exists a function ¢ such that

u=(VA)*v—Vq.
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Then by (3.7) and (3.8) we have

= [D(VA)*|v+ (VA) Dv—DVq
= [VDA — (Vu)* (VA)dt — (Vo) VAdY?] v
— VDq + (Vu)* Vgdt + (Vo) VadYy .

Hence, after a calculation and a rearrangement of the terms, we get

Du = — (Vu)* (VA)* vdt + (Vu)* Vqdt — VDq
— (Vo))" [(VA)*v — Vq] dY
= — (V)" udt — VDg — (Vo?)" udY/
[ul®
2

= -V -dt — VDq — (Vo’) udY?.

Then,

t t t||2

(07 - V)u(r,z)dY? — VJ %(r, x)dr

0

u(t, z) = up(z) — J

0

(u-V)u(r,z)dr — J

0

t t
— VJ Dg, — f ((Vaj)* u)(r, x)dY;
’ t ° t ] t
= up(z) — J (u-V)u(r,z)dr — f Lriu(r,x)dY,! — f Vp(r, z)dt,
0 0 0
where formally we have

2
u j j

Therefore we conclude that u is solution of the Euler equation (3.1).

3.3 An Existence Theorem

3.3.1 Decomposition of the Flow

We use the idea of [FL19a] to decompose the Young flow in the system (3.9)-
(3.10). More precisely, we consider the Young differential equation (YDE) without drift:

dp =Y 07 (pr)dY{, po=1. (3.16)

J
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d
where [ is the identity diffeomorphism of T¢. Under the assumption that (3.5) and r > 5 +3,

the above equation generates a Young flow {},., of C' Ir}:5 _diffeomorphisms on T%, where
B e (0,0).
For a given vector field u : [0, 7] x T¢ — R?, we define
() = [(pe ()7, u ()] (@) (3.17)

which is the pull-back of the field u, (-) by the Young flow {¢; ()}, If we denote by
K, (z) = (Vg (z)) ", ie., the inverse of the Jacobi matrix, then

() = Ky () ug (¢ (). (3.18)

From this expression we see that if u € C° ([0,7], H") a.s., then one also has
a.s. e C'([0,T],H"). Now we consider the ODE

Zt - ﬁt (Zt) ; Z(] == I (319)
Applying Theorem 3.4 of [CLR23] we have
Xt = ¢ O Zt (320)

is the flow of Cl"¥ —diffeomorphisms associated to the YDE in (3.9)-(3.10).

From the above discussions, we can observe that an advantage of using this
decomposition is the fact that it yields a deterministic fixed-point problem, without needing

to resort to Young integration.

3.3.2 Contraction

The aim of the rest of this chapter is to show the existence of a fixed point
within the closed ball in ¥4(7") for a mapping (denoted by Su as described in equation
(3.21) below). The proof is based on the decomposition of flow (3.20) and Theorem 2.1.

d
Theorem 3.4. Assumer = s+ 1. Ifd>=2, s> —+1 and uy € H® is divergence free then
there exists T > 0, such that (3.10) has solution u € 34(T).

Proof. For u € X, we consider the following system:

i () = [ (o0 7), we] (@),

Z.t=ﬂt(Zt), ZO=Ia

) (3.21)
Xy = ot (Zt) )

Sug (x) =P[(VX; 1) uo (X, )] (2),
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where ¢; is the solution of the equation (3.16).

Analogously to the previous chapter, we have that there exist positive constants
Co = Cy(t,d, s, ), C1 :=Cy(t,d,s,p), Cy := Cy(t,d, s, ) such that

lo™ s < Cy; (3.22)
lals =1 (V™) (p)u(e)ls < Collulls; (3.23)
[0 s < Calnlls and [l o™, < Coflv]s. (3.24)

d
Fix s > 3 + 1 and let C3, Cy be the constants in (2.17), (2.20) (from Lemmas
2.3 and 2.4), respectively. Fix [luglls < M and T' > 0 so that
2

C
Clluolls exp (CoCoTM) | &5 (exp (C1aCoTM) — 1) + 1| < M,

1Y4

where C is a constant to be defined later.
Let u € By (T) be a divergence free vector field and let 1, = Z;* — x be unique solution
of (2.27) with initial data 1y = 0. Let v; = uo(Z; ") be the unique solution of (2.24) for

initial data vg = uy.

From (3.23) we have

lals, = sup [als < CoM,
te[0,T]

Then by Lemma 2.4,

lo(@)s < lluols exp (Cat[lls,) < |uols exp (CoCsTM) (3.25)
and .
In(®)]s < a (exp (CoCyTM) —1). (3.26)

Hence, with C' = C1CyC5, (the constants C, Cy, C5 are given by (3.22), (3.24) and Lemma
2.3, respectively)

[Su®)ls < [P [(V(noe ) *vle™)] s + [P [(Ve ) *vle™H] s
< Callno™slo(e™ s + Csle™Hslvle™)]s
< C3C3|nllslv] s + CsCrCallv] s
= C3Cavl|s (Callnlls + C1)

here the third inequality follows from (3.22) and (3.24). Thus by (3.25) and (3.26)

C5C3
[Su(t)||s < |Juolls exp (C4Cot M) [ é 2 (exp (C4Cot M) — 1) + 030102]
4
2

= Clug| s exp (C4Cot M) [ &, (exp (C4Cot M) — 1) + 1] <M (3.27)

C1Cy
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for all t € [0,T]. Hence S : By(T) — By (T).

By Lemmas 2.3, 2.4 and 2.5 we deduce

[PL(V (moe™) v (™) = (V(row™) v (¢ )],
<CM([[mop™ —mop™ |+ Juiop™ —vop™| ]
= C3M [|m — mal 2 + |v1 — va 2]

< CsM [(Cs my + 2

g, +1) [t — sy, t + Cs oy — w2 [|i1 — Gy, ]

2C
< CgM ( 05 (GXp (C40otM) - 1) + 1) t Hal — ﬂg”zo
| 4

+205Mt HUOHS €xXp (C4COtM) H&l - ﬂg“zo]

[/ 2C.
< 03M ( 05 (eXp (C4COTM) - 1) + 1> t+ 2C5t ||’LL0||S exp (C4COTM):| ||'L~L1 — &QHZO s
| 4

and

[PL(Ve™)" (nile™) = vale D] < CsM [or(e™) = vl
= C3M oy — |2
< C3C5M |vg — ve 5,
< 20305 Mt |ug |, exp (CatCoM) |y — QQHZO ,

iy — gy, t
where ('3, Cy4, C5 are the constants from Lemmas 2.3, 2.4 and 2.5, respectively.

Now, we will show that the map S is a contraction on By (T) in the L*-norm
if T is sufficiently small. For uy, uy € By (T) we construct v; and n; from u; as above for

i =1, 2 with v1(-,0) = v3(+,0) = up. Then by the inequalities above

[Sur = Suala < [PV (mow™)) o (7)) = (V(now ) v ()]l
+[PL(Ve ) (nale) —oale D) 2

2
05 (exp (C4COTM) - 1) + 1> t Hfbl — 7]/2”20 (328)

<COM [ =2
v (5
+ 40305Mt ||U()HS exp (C4C(]TM) Hﬂl - ﬂg”zo
1 1 C
< 2TMCsCq | Cs  2luolls + = ) exp (CLCoTM) + = — =2 ) |luy — ua s
Cy 2 (4 0
= Cuo, M, T) |ur — ualls, ,
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where the third inequality follows from a change of variables and Hoélder’s inequality, and

|y — Ug|g, = sup ||tn — g = S[%I;] (Vo) ui(p) — (Vo) " ua(9)] .
telo,

te[0,7]
= sup | (Ve™) () (w1 — u2) (9)] 2
te[0,T]
= i 7 s < s (190~

< G |ur — ually,

where Cg := sup HVgp‘lHL%.
te[0,T]

We observe that C(ug, M,T') is given by the formula

1 1
O(u()) M’ T) = 2T lC5M0306 (2 ||u0”$ —+ C’) exp (O4COTM) 4 C?,CﬁM (2 . 2:5)] ‘
4 4

(3.29)

We observe that ¢ € C°([0, T], CI"1#(T?,T¢)) then this implies that Cy, Cy, Cs

and Cg are limited uniformly in time. Then taking the supremum of (3.28) with respect
to t and choosing T' > 0 small enough, we see that S is a contraction in the required
sense. With the above preparations, the proof is the same as that in the Theorem 2.1. We
conclude that S has a unique accumulation point u in the closure of B); with respect to
|+ |5, Since By (T') is convex and closed in 3 it is weakly closed, hence u € By is a fixed
point of S. O

Finally, we will state and prove a a-Holder regularity result for the fix point of

the mapping (3.21).

Lemma 3.3. Let u be the fix point of the contraction (3.21). Then uwe C*([0,T]; H*). T
here must be sufficiently small so that the constant C' in (3.29) is less than 1.

Proof. We use the notation e(t) := n,00; * and w(t) := v;o¢; '. Note that n, = Z; ' —z and
v, = ug o Z, ! are, from equation (3.20) and smoothness of ug, at least twice differentiable.
Now, by the equation (3.16) and the time reversal path defined in [CF09], we have that

@; ! is solution for

dipy = o7 () AV, (3.30)

where Y/, is a a-Hélder path with r € [0,¢]. Hence by the equation (3.30), ¢~ €
C*([0,T]; H?). Then by Remark 3.1 we have that € and w belong to C* ([0, T]; H®).
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Now

Jut) = u(r)],

i —TI“

= o [P LT w0 + 0] =P [(Ve()" w(r) + )]

7’|a

= | 7’|a HIP’[ (Ve®)" (w(t) —w(r)) + w(t)] +P [(Ve(t))* w(r)]
—P [(Vs(r))* w(r) + w(r)] HS
= |t — T|a HIP [ (Ve()* (w(t) — w(r))] +P [(Vs(t) — Ve(r))* w(r)] + Plw(t) — w(r)]

s

from Lemma 2.3 and Leray-Hodge projector properties, we have

[P[(Ve@)" (w(t) —wm)]|, < Cs @), [w(®) —w(r)l,,

[P[(Ve(®) = Ve(r)" wr)]], < Cslwr)], le(t) — ()l

and
[P [w(t) = w(r)]l, < |w(t) —w(r)],.
Hence, taking supremum over 0 < s <t < T we have
u(t) — ulr
sup M = [ulceqoryme)
o<r<t<T [t —7|

[w(t) — w(r)], le(t) —e(r)l

<cu swp e, L U
0<r<t<T |t —rl |t —r|
R ORI GIR
0<r<t<T |t — |~

= Cslwloeqorymsy sup e, + Csleloaqoryns) sup Jw(r)f,

o<r<t<T o<r<t<T
+ |wleeo,ryme)

< C |lwlospomyar (el e oy + 1) + lelesqoryare

wl e ([o,T];Hs)]

Since e, w € C ([0, T]; H?), the right-hand side is finite. Therefore u € C ([0,T]; H®). O
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CHAPTER 4

THE ROUGH PATH CASE: LAGRANGIAN FORMULATION

In this chapter we consider the following rough incompressible Euler equation
dut + (Ut : Vut + th) dt + E;utdzt = 07 (41)

where Z, is a weakly geometric rough path. Here, again, we consider Lu := (0 - V)u +
(Vo) u (L is the Lie derivative defined as L,u = (0 - V)u — (u-V)o).

The main objective of this chapter is to show that the solution of the rough

incompressible Euler equation (4.1) satisfies the Lagrangian formulation.

4.1 Introduction to rough paths

We will provide an overview of the theory of rough paths. We shall use freely

concepts and notations of [FH20]. We invite the reader to consult [CCH22], [FV10] for
more thorough expositions.
Rough path theory, originally developed by Terry Lyons in his seminal work [Lyo98] in 1998,
is an analytic theory of differential equations driven by multidimensional irregular paths
(e.g. Brownian motion). Its development is partly motivated by the pathwise integration
of Holder paths.

Indeed, let X : [0,T] -V, Z:[0,t] - U, f:V — L(U,V), and consider the
equation
dX; = f(Xy)dZ;, t€|0,T]
Xo=x€V,
where the path driving the equation is non-differentiable. Such a restriction is not imposed
for the pleasure of generalization, but rather a reality. Since differential equations are

often interpreted and solved in integral form, it is natural to first address the question of
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(X, Z) = th(X dz

where f be a smooth function, and X, Z come from a suitable class of continuous paths

constructing the integral

that is at least rich enough to include generic Brownian sample paths. In the context
of integration, one might suggest that for general continuous paths X, Z, one could

simply take an approximating sequence of smooth paths with X" — X and Z" — Z,
t

and then define I;,(X, Z) by the limit lirn J F(XM)dZ?, since each of the approximations

J F(XMdZ" is already well understood. Although this is in principle possible, the problem
is knowing in which topology to take the limit. A natural candidate of path topology is

the uniform topology. However, the following negative example shows that it fails to be

continuous with respect to the uniform topology.

Example 4.1. For each n = 1, define X', Z" : |0,27] — R by
n 1 : 2 n 1 2
X' = —sinn’t and Z]' = —cosn’t
n n

It is clear that X™, Z" both converge to zero uniformly. However, from explicit calculation
one finds that

t t 1
L(X™,Z") = | X"dZ" = — + —sin2n’t,
t( ) J;) r r 2 4n281n n

which does not converge to the zero path.

As suggested by Young’s integration theory, the a-Holder topology with « €
(1/2,1] does work. However, the completion of smooth paths with respect to this topology
is not rich enough to at least cover the Brownian motion case. Unfortunately, the following
negative result (cf. Proposition 1.1. of [FH20]) indicates that there is not a clever choice of
path topology which on the one hand ensures the continuity of I; and on the other hand

is weak enough to contain Brownian sample paths in the completion of smooth paths.

Proposition 4.1. There exists no separable Banach space E < C([0,T];R?) with the

following properties:

1. Sample paths of Brownian motions lie in E almost surely.

2. The map (X, Z) — 1.(X, Z) defined on the smooth functions extends to a continuous

map from E x E into the space of continuous functions on [0,T].

Therefore, if this strategy is to work we would need a topology considerably

stronger than that of uniform convergence.

The following formal calculation reveals why paths need to be enhanced to

include higher order structure that is not encoded in the original trajectory Z. Let us
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assume for now that X, has the form X, = Z, being an a-Hoélder continuous path for

some « € (0,1]. By a formal Taylor expansion of f, we have that

f(Z) = £(Z) + DF(Z)(Zr — Zs) + - --

Integrating with respect to Z, we obtain

t

[ rzaz, = sz - 20+ p1(2) [ (2 - )@z, 4 -

It turns out that, provided a > 1/3, the higher order terms we have omitted in the above

expansion vanish upon applying |li‘m0 Z , where the limit is taken over any partition m
|
[s,t]em

of the interval [0,T]. In fact, if & > 1/2, then one can show that

[w|—0

t
lim > J (Z, — Z,) ® dZ, = 0. (4.2)
[s,t]em 'S

In this case we simply obtain

|| —0

T t
L f(2)az, = i 3 | f(2)iZ, =l 3 f(Z)(Z - 2.),
[s,t]em V'S

which we recognise as the definition of the Young integral of f(Z) against Z.

However, when «a < 1/2 the equality (4.2) does not necessarily hold, and this

"'second order" terms remains:

t

= lim iy ( f(Z)(Zy— Zs) + Df(Z,) f

s

(Z, — Z5) ® er> :

This suggest that, for a € (1/3,1/2], in order to compute the integral of f(Z) against Z, we
t
need as inputs both the path increments Z; — Z, as well as the integrals | (7, — Z,) ® dZ,

for each pair of times s < t. We therefore make the definition: ’

Jt(ZT - Zs) ® er = Zst‘ (43)

By a rough path, we mean the pair (Z,7Z). But to be clear, when we come later to the
proper definition of a rough path we will abandon the equality in (4.3), and instead provide
analytical and algebraic conditions which must be satisfied by Z. One should therefore

just think of (4.3) as motivation for the “information” encoded by Z.

11
Fix a time interval [0, T]. Assume that a € (g, 5] Let U and V' be Banach
spaces. We follow the construction of [FH20](Chapters 2, 4) to introduce the basic frame-
work of the theory of rough paths. We will denote

Ap:={(s,) e [0,T]?:0<s<t<T}
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and
A% ={(s,0,) e [0,TP:0<s<f<t

VAN

T}.
Given a path X : [0,7] — V and s,t € [0,T] we write Xy = X; — X,.

Definition 4.1. C5(Ar; U) is the space of functions on Ar taking values in U and such

that the following a-Hélder seminorm is finite

|90|a ‘= sup |‘108t|
st |t_3|a

A V-valued rough path, introduced below, is defined as a pair of a rough

function and a double integral term.

Definition 4.2. The space of rough paths €([0,T]; V') is the collection of pairs Z = (Z,7)
satisfying the following properties:
(i) Zec™([0.T] V).

(ii) Z € C3*(Ar;V ® V), where V. ® V is the tensor product space equipped with the

projective norm.
(iii) (Z,7) satisfies Chen’s relation: for all (s,0,t) € A,
Zst - ZSG - Zet = ZSB ® Zﬂt' (44)

Definition 4.3. Let Z = (Z,7) be an a-Holder rough paths. The bracket of Z is defined
by

[Z]st =14 Q Ly — 2Sym(Zst)a
where Sym(Zg) = ;(Zst + Z%,) denotes the symmetric part of Zg. If [Z] = 0, we say
that Z is a weak geometric rough path. We denote the set of all a-Hélder weakly geometric
rough paths with respect to Z by €,*([0, T]; V).

Given a path Z € C*([0,T]; V). We define rough paths controlled by Z as

follows:

Definition 4.4. Let Z € C*([0,T]; V). We say that X € C*([0,T];U) is controlled by Z
if there exists X' € C*([0,T]; L(V;U)) so that the remainder term RX € C3*(Ar; U) given
implicitly through the relation

Xu = X!(Za) + RY. (4.5)

This defines the space of controlled rough paths (X, X") € 22*([0,T];U). The path X' is
called a Gubinelli derivative of X with respect to Z.
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Note that, given paths X and Z, the Gubinelli derivative X', when it exists, is
not unique in general. For instance, if it happens that Z € C** and X € C?“, then any
continuous path X’ would satisfy (4.5) with |[R¥[|o < 0. On the other hand, as shown
in the Chapter 6 of [FH20], if Z is far from smooth, i.e. genuinely rough in all directions,
then X’ is uniquely determined by X. More precisely, suppose that we are in the one

dimensional case d = 1, and for 0 < s < T

2t o (4.6)

t—st |t — S|2a

The X' is uniquely determined. Indeed, it is given by the equality
Xst

'
X, = tlirsr}r 7, (4.7)
In fact, by (4.6)
R3] Xy lE=sl*
- < |R @ _)07
|Zst| H ”2 |Zst|

so that, by using RYX = X, — X/ Z,, the limit in (4.7) exists and is equal to X/,

In [FH20] the authors say that a rough path which verifies (4.6) is a "really
rough" path. In fact, this condition is really necessary for getting uniqueness: suppose
that the limit in (4.6) is finite uniformly. Then Z € C** and consequently, for every r € R,
we have the decomposition X, = (X! 4+ 7)Zy + (RY —rZy) and RX —rZy is a "good

remainder'. This means that X! + r may also be used as a Gubinelli derivative.

With an abuse of notations, we sometimes write X € 22*([0,T]; U) instead of
(X, X") e 7210, TT: U).
Suppose that Z € C*([0,T];V) and (X, X") € 22*(L(V;U)). Then X' takes values in
L(V;L(V;U)), which can be identified with L(V @ V;U) via

(z)(y) = 2(r®v),

where ® € L(V, L(V,U)) and z,y € V.
The next theorem defines the rough integral of a controlled path against the rough path
Z=(Z17).

Theorem 4.1. Let Z = (Z,7) € €*([0,T]; V). Suppose that (X, X") € 22*([0,T]; L(V;U))
and denote Zyy,_, = Xy (Zy_v,) + X{_ (Zy,_,1,). Then the following "compensated

Riemann-Stieltjes sum"
Z Eti—ltﬂ (48)
i=1

converges as |m| — 0, where m = (s = t; <ty < --- < t,) and |n| = max |t — ti 1]
Denote by Iy (Z) the limit of (4.8). Then, Iy(Z) is additive, that is Ty = Lsg + Ly for any
(s,0,t) € AZ. Moreover, the following estimate is satisfied for all (s,t) € Ap,

1Z:t(2) = Zstllv < C (121l B |20 + 1 Zl2al X)) [t = s>, (4.9)
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where C' is a constant depending only on «. By definition, the rough integral of X against
Z = (Z,7) is defined as follows, for all (s,t) € Ar,

t
Jxﬂﬁa@@. (4.10)

t
Similarly we can define the rough integral f X, ®dZ, € L(V;U), for any

Z = (Z,2) € €*([0,T);V) and (X,X') € 227([0,T]; L(V;U)). Theorem 4.1 can be

proved by using the Sewing Lemma.

Theorem 4.2 (Sewing Lemma). Let a € (0,1], and let = € C3(Ar;U). Suppose there
exist C' > 0 and v > 1 such that the following inequality holds:

102(s,0, 1) v := |2t — Zs0 — Zaello < Clt — 5[,

for any (s,0,t) € A2%. Then there exists a unique (up to additive constant) function

Z(Z) e C([0,T); V), such that the following inequality holds
|Z:t(2) = Zatllv = 1Z(E) = Z,(E) — St < A =2"7) 7 CJt — 5",

Moreover, Ty(Z) can be represented as follows,

where m = (s =ty < t; < --- <t, =t) and the limit is independent of the choice of 7.

Proof of Theorem 4.1. For s < 6 <t. We have

6=(s,0,t) = Sy — Ze9 — Zan
= X Zy — X Z— XoZop + XLy — X' Lo — X T
= X, Zoy — XoZgs + X (L — Lgy) — XZoy
= X Zo + X (Zoy + Zoog @ Zoy) — X Ty
= (—Xop + X' Zsp) Zor — X' o709,
= RYZg — X'y g,

and hence
[6=(5,0,t)|lv = | RagZoe — XipZot|v < (1R [2alZ]a + | X |a|Z20) [t — ]
Since 3a > 1, it follows from the Sewing lemma that there exists a a-Hoélder continuous

path Z(Z) =: f X,dZ, with the desired properties. ]
0

The next proposition stablishes the integral of a controlled path with respect

to another controlled path, see [FH20]. The proof is a consequence of the Sewing Lemma.
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Proposition 4.2. Suppose that Z = (Z,7) € €*(|0,T]; W)
and (Y,Y") e 222([0,T]; L(V; U)). Let (X, X") e 27([0,T]; V). Then the limit

7| —0 4
1=

t n
Jv }/rer == |11IH |:§/ti—1Xti—1ti + Yti’—l . Xt/i_lzti—lti] (411)
0 1

there exists for allt € [0,T], where m = (s =11 <ty < --- <t,) and |7| = max |t — ti_1]-
We call this limit the integral of the controlled path (Y,Y") with respect to the controlled
path (X, X"). Also the following estimative holds for all s < t,

t
f }/rer - )/sXst - }/5, ) X;Zst

s

U
< C{IR ol Xla + 1Yol Zla (| B 20 + 1X Nal Z] o) + 1Y X ol X20} [t = sI*,

where the constant C' depends only of «.
We observe that the integrals (4.10) and (4.11) are controlled paths, in fact

(f X,dZ., X,) e 22*([0,T];U) and (J Y,dX,,YX') e 222([0,T]; U).
0 0

[t6’s formula is among the most valuable outcomes in stochastic calculus,
serving as the stochastic counterpart to the chain rule and the fundamental theorem of

calculus. In the setting of rough paths, we have the following analogous result.

Proposition 4.3. Let Z = (Z,Z) € ¢, ([0,T]; V) be a weakly geometric rough path, and
suppose that (Y,Y") € 222(L(V;U)) be a controlled path. Suppose further that

t
n=m+fﬂwr
0

for allt € [0,T]. Let F e C?, then

t
F(Y) = F(¥0) + | DFO7)Y/iz,
0
The following result is a particular case of Theorem 4.1. of [CCH22| applied to
weakly geometric rough paths, and stablishes the It6-Wentzell’s formula for rough paths.
11
Theorem 4.3 (It6-Wentzell’s formula). Let « € (g, 5], Z=(217)e¢,([0,T];V) and
(h,h'ye C (U, 25([0,T], L(V;W))). We assume that
1. h: [0, T] x U — L(V,W) is continuous and twice differentiable in U.
2. Vh:[0,T] x U — L(U, L(V,W)) is continuous and differentiable in U.

3. For eachte [0,T], W (t,-) e C* (U, L(V,L(V,W))).
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4. (Vh,(VR)) e C(U,2([0,T), L(U, L(V; W))).

Let

t

g(t,x) = g(0,z) + fo h(r, z)dZ,.

Assume that g : [0, T xU — W is continuous and twice differentiable in U and the functions
(t,x) = Vg(t,z) and (t,z) — V3g(t, ) are continuous. Then for any X € 25 ([0,T];U),

t t

h(r, X,)dZ, + J Vy(r, X,)dX,. (4.12)

g(t, Xy) = ¢(0, Xo) + J )

0

We recall that Z = (Z,Z) as (canonical) space-time rough path extension
of Z € €,([0, T1],RY) where Z = (t, Z;) and Z is given by Z and the "remaining cross
integrals" of Z; and ¢, given by usual Riemann-Stieltjes integration; see Chapter 8 of
[FH20]. We know that Z e ([0, T],R™") as discussed in Section 9.4 of [FV10].

11
Definition 4.5. Let o € (§’§]’

Z = (2,72) € €[0,T;RY) and o € C*’ (R*,R?)
divergence—free vector field (i.e. V -u = 0), that is ”‘7”12,5 < oo for € (0,1) and some
Il € N with | > ;l—i- 3. Given u € CP([0,T]; C*(R%,R?Y)) divergence-free vector field
with (u,u') € 22°([0, T], LR, RY)), and (Vu, (Vu)') € 22*([0,T], L(R?, L(RY R%). u is
solution of (4.1) if verify
u () = up(x) — f(us(:v) -V)us(z)ds — Jt Vps(z)ds — f Liu(x)dZ,, (4.13)
0 0 0

where p is a scalar potential representing internal pressure with p e CL([0, T]; C*(R%, R)).

Here the last integral is understood in the rough path sense.

4.2 Lagrangian formulation

Let’s demonstrate the main result of this Chapter: the solution to the Euler

equation (4.1) satisfies the Lagrangian formulation.

Theorem 4.4. Let Z = (Z,Z) € €. ([0,T],RY). Let x € R? — (u(-,x),u'(-,x)) be a
continuous family of controlled rough path respect to Z with values in L(Rd,Rd). We
assume that u € C° ([0,T]; C* (Rd,Rd)) and p € C° ([0,T); C? (Rd,R)).

If w is solution of the equation (4.1) then the pair (X, u) verifies the Lagrangian

formulation

dX; = o(Xy)dZy + u(Xy)dt (4.14)
w(x) = PI(VA) uo(A)] (2), (4.15)

where = means the transposition of matrices and denote the back-to-labels map A by setting

A1) =X1(,1).
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Proof. With the assumptions above, we have
t t t
u(t, ) = up(r) — J (up(z) - V)u,(z)dr — J Vo, (z)dr — J Liu,(x)dZ, (4.16)
0 0 0
t
= up(z) + J h(r,z)dZ,, (4.17)
0
where h = (—(u - V)u — Vp, —L:u). Furthermore, we consider
t t
Xi(z) = Xo(x) + J ur (X, (z))dr + J o(X,(x))dZ,, (4.18)

0 0

where (X, X') € 2* ([0,T1], L(R?,R%)).

From It6-Wentzell’s formula for the weakly geometric rough paths, see Theorem 4.3, we

have that u(t, X;) is given by

t

wlt.X) = @)+ [ (X2 [ 'V (X,) X,

0

() — j (- V) uy (X) + (V) (X,)) dr — j Cou (X)) dZ,  (4.19)

0

+ Jt Vu, (X;) (u, (X;) dr + o (X,) dZ,) .

Analogously to chapter 2, see equations (2.11) and (2.12), we have the identities

t

[t xar = [ (7w

0 0

t t

err and J

0 0

Then we deduce

t t

Vp (X,)dr — J (Vo) u,|, dZ,.
O s

w(t, X)) = uo() —J

0
Now, from [FH20] we have

t t

(VX,)* Vu, (X,)dr + f (VX,)* (Vo) (X,) dZ,.

0

Then

t t

(Vu, (X,))* VX, dr + f (Vo (X,))* VX,dZ.

(VX)* =1+ J

0
From Proposition 4.3 applied to the product function, we conclude that

(U'v)ur(Xr)er = J ((VUT’) U) ‘erzw

(4.20)

(VX1)" ue (Xy) = uo(z) + j u (X)) (Vu, (X,)* VX, dr + (Vo (X,))" VX, dZ,)

0

_ JO (VX.)* ((Vp) (X,)dr + (Vo (X)) u, (X,)dZ,).
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We observe that

t

| w6 (Vo (0 VX2, = [ (9" (90 ()", (X,) d2

0 0
Then we deduce

t

(VX u(t, X)) = oz —|—f0u ) (Va (X)) VX, dr — L (VX,)* (Vp) (X,)dr

(VX (T (6) X~ [ (9" () ()

0

_l’_

)—‘h

2
= Ug +Vq,

—i—f V (lu]? 0 X,) dr—f V(po X,)dr
0

11

where ¢ := J [2 (Jus|* 0 X,) —po X] dr. Then, if we denote M; := (VX;)", it follows
0

that

upo Xy = u(t, Xy) = My ug + M7 'VG = (VA ) uo + (VA )"V

Finally we conclude

uy = (VA)* ug o Ay + (VA)* (VG (A)
= (VA)*up o Ay + Vg,

where g := g o A. Therefore, u, = P [(VAt)* Ug © At]. ]
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