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Abstract
In this paper we study Dirac-Hestenes spinor fields (DHSF) on a four-dimen-

sional Riemann-Cartan spacetime (RCST). We prove that these fields must be
defined as certain equivalence classes of even sections of the Clifford bundle (over
the RCST), thereby being certain particular sections of a new bundle named Spin-
Clifford bundle (SCB). The conditions for the existence of the SCB are studied
and are shown to be equivalent to the famous Geroch’s theorem concerning to
the existence of spinor structures in a Lorentzian spacetime. We introduce also
the covariant and algebraic Dirac spinor fields and compare these with DHSF,
showing that all the three kinds of spinor fields contain the same mathematical
and physical information. We clarify also the notion of (Crumeyrolle’s) amorphous
spinors (Dirac-Kahler spinor fields are of these type), showing that they cannot be
used to describe fermionic fields. We develop a rigorous theory for the covariant
derivatives of Clifford fields (sections of the Clifford bundle (CB)) and of Dirac-
Hestenes spinor fields. We show how to generalize the original Dirac-Hestenes
equation in Minkowski spacetime for the case of a RCST. Our results are obtained
from a variational principle formulated through the multiform derivative approach
to Lagrangian field theory in the Clifford bundle.

1. Introduction

In the following we study the theory of Dirac-Hestenes spinor fields (DHSF) and the
theory of their covariant derivatives on a Riemann-Cartan spacetime (RCST) using the
formalism developed in [1J. We also show how to generalize the so-called Dirac-Hestenes
equation (originally introduced in 2. 3] for the formulation of Dirac theory of the electron
using the spacetime algebra CY¢;3 in Minkowski spacetime) for an arbitrary Riemann-
Cartan spacetime. We use'a novel approach based on the multiform derivative formula-
tion of Lagrangian field theory to obtain the above results. They are important for the
study of spinor fields in gravitational theory and are essential for an understanding of the
relationship between Maxwell and Dirac theories and quantum mechanics.!]

In order to achieve our goals we start clarifying many misconceptions concerning
the usual presentation of the theory of covariant, algebraic and Dirac-Hestenes spinors.




Section 2 is dedicated to this subject and we must say that it improves over other pre-
sentations, e.g., (4~[12 introducing a new and important fact, namely that all kind of
spinorsf"_"refered above must be defined as spegcial equivalence classes in appropriate Clifford
algebras. The hidden geometrical meaning of the covariant Dirac Spinor is disclosed and
the physical and geometrical meaning of the famous Fierz identities!® % 13 1] hecomes
obvious.

In Section 3 we study the Clifford bundle of a Riemann-Cartan spacetime and
its irreducible module representations. This permit us to define Dirac-Hestenes spinor
fields (DHSF) as certain equivalence classes of even sections of the Clifford bundle. DHSF
are then naturally identified with sections of a new bundle which we call the Spin-Clifford
bundle.

We discuss also the concept of amorphous spinor fields (ASF) (a name introduced
by Crumeyrollel!5]). The so-called Dirac-Kahler spinors(’®l discussed by Grafl'™ and used
in presentations of field theories in the latticel!® 19 are examples of ASF. We prove that
they cannot be used to describe fermion fields because they cannot be used to properly
formulate the Fierz identities.

In Section 4 we show how the Clifford and Spin-Clifford bundle techniques permit
us to give a simple presentation of the concept of covariant derivative for Clifford fields,
algebraic Dirac Spinor Fields and for the DHSF.2¥ We show that our elegant theory
agrees with the standard one developed for the so-called covariant Dirac spinor fields as
developed, e.g., in (2122

In Section 5 we introduce the concepts of Dirac and Spin-Dirac operators acting
respectively on sections of the Clifford and Spin-Clifford bundles. We show how to use the
Spin-Dirac operator on the representatives of DHSF on the Clifford bundle.

In Section 6 we present the multiform derivative approach to Lagrangian field theory
and derive the Dirac-Hestenes equation on a Riemann-Cartan Spacetime.!?®l We compare

our results with some others that appear in the literature for the covariant Dirac Spinor
field[24: 251 and also for Dirac-Kihler fields.[16: 17 26]

Finally in Section 7 we present our conclusion.

2. Covariant, Algebraic and Dirac-Hestenes Spinors

2.1. Some General Features about Clifford Algebras

In this section we fix the notations to be used in this paper and introduce the

main ideas concerning the theory of Clifford algebras necessary for the intelligibility of the
paper. We follow with minor modifications the conventions used in [1, 8 9]

Formal Definition of the Clifford Algebra C{(V,Q)

Let K be a field, char K # 2, V a vector space of finite dimension n over K, and
Q a nondegenerate quadratic form over V. Denote by

x-y = 3(Q(x+y) - Q(x) - Q(y)) (2.1)

In our applications in this paper, K will be R or €, respectively the real or complex field. The
quaternion ring will be denoted by H.




the associated symmetric bilinear form on V and define the left contraction J : AV x
AV — AV and the right contraction L : AV X AV — AV by the rules

() xJy=x-y
xLy=x'Yy

(#1) xJ(uAv):(xJu)Av+ﬁA(va)
(u/\v)Lx:u/\(va)-{-(uLx)/\t‘)

(#5) (uAv)Jw=uJd(vJw)
ul(vAw)=(ulv)lw

where x,y € V and u,v,w € A V. The notation a-b will be used for contractions when it is
clear from the context which factor is the contractor and which factor is being contracted.
When just one of the factors is homogeneous, it is understood to be the contractor. When
both factors are homogeneous, we agree that the one with lower degree is the contractor,
so that fora € A"V and be A°V,we havea:-b=albifr <s and a-b=albif
r > 8.

Define the (Clifford) product of x € V and u € AV by

xu=xAu+xJu (2.2)

and extend this product by linearity and associativity to all of A V. This provides AV
with a new product, and provided with this new product A V becomes isomorphic to the
Clifford algebra C¢(V, Q).

We recall that AV = T(V)/I where T(V) is the tensor algebra of V and I C T'(V)
is the bilateral ideal generated by the elements of the form x ® x, x € V. It can also be
shown that the Clifford algebra of (V,Q)is C¢(V,Q) = T(V)/Iq, where Iq is the bilateral
ideal generated by the elements of the form x ® x — @Q(x), x € V. The Clifford algebra

so constructed is an associative algebra with unity. Since K is a field, the space V is
naturally imbedded in C¢(V,Q)

v TV S T(V)/Io = CYV, Q)

Ig=joi and V = ‘iq(V) C Ce(V,Q) (2.3)

Let C¢*(V, Q) [resp., C¢~(V, Q)] be the j-image of ®2,T% (V) [resp., B2 T3+ (V)]
in CL(V,Q). The elements of C¢+(V, Q) form a subalgebra of C{(V, Q) called the even sub-
algebra of C{(V,Q).

C{(V,Q) has the following property: If A is an associative K -algebra with unity
then all linear mappings p : V — A such that (p(z))? = Q(z), z € V, can be extended in
a unique way to an algebra homomorphism p : C{(V, Q) — A.

In CE(V,Q) there exist three linear mappings which are quite natural. They are
extensions of the mappings

Main involution: an automorphism *: C¢(V, Q) — CU(V,Q), extension of
. ) ) ) . V gl
T'(V)/Ilg,a(z) = —ig(z) = —z,Vz € V. : o
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Reversion: an antiautomorphism ™ : CI(V,Q) — ClV,Q), extension of * : T"(V) —
T (V) T"(V)3 2 =2:8...0 7, — 7' = i, ®...® Zi,-

Conjugation: ~: C{(V,Q) — Cl(V,Q), defined by the composition of the main involution
“with the reversion , i.e., if z € C{(V,Q) then Z = (2) = (2)- -

CL(V,Q) can be described through its generators, i.e., if X={E;} (i=1,2, s n)
is a Q-orthonormal basis of V, then C{(V, Q) is generated by 1 and the E;’s are subjected
to the conditions

E;E; = Q(E;)
E;E; + E;E; =0, i#£75 4,7=12,...,n
E1Eq---En # £1. - (24)

The Real Clifford Algebra Ct, 4

Let R be a real vector space of dimension n = p+¢q endowed with a nondegenerate
metric g : R?? x R?9 — R. Let T = {E;}, (i = 1,2,...,n) be an orthonormal basis of
RPI,

41, i=j=1,2,...p
9(Es, E;) = gi; = 95i = -1, i=j3=p+1,...,p+q=n (2.5)
0, i#7

The Clifford algebra Ct,, = C{(IRP4,Q) is the Clifford algebra over IR, generated
by 1 and the {E;}, (i = 1,2,...,n) such that E? = Q(E;) = g(E;, E;), E;E; = —E;E;
(i # j), and®*") By E,...E, # 1. Cl, 4 is obviously of dimension 2" and as a vector space
it is the direct sum of vector spaces A" R”? of dimensions (}),0 < k < n. The canonical
basis of /\" IRP7 is given by the elements e4 = £, ... E5,, 1 a3 < ... < ax < n. The
element ¢y = E;...E, € A" IR?? commutes (n odd) or anticommutes (n even) with all
vectors Ey. ..., En € A'RPY = RP?. The center of C¢,, is A°IR”? = R if n is even and
its is the direct sum /\O R??*@ A" RP? if n is odd.

All Clifford algebras are semi-simple. If p + ¢ = n is even, Cl,, is simple and if
p+ q = n is odd we have the following possibilities: '

(i) Clp,q is simple « ¢ =-1<p—q# 1(mod4) — center of C¢, , is isomorphic to C

(i1) Ct,,qis not simple (but is a direct sum of two simple algebras) & ¢ = +1 & p—g =1
(mod 4) < center of Cl,, is isomorphic to R @ IR.

All these semi-simple algebras are direct sums of two simple algebras.

If A is an associative algebra on the field K, K C A, and if E is a vector space,
a homomorphism p from A to End £ (End E is the endomorphism algebra of E) which
maps the unit element of A to Idg is a called a representationof A in £. The dimension of
E is called the degree of the representation. The addition in E together with the mapping
AxX E — E, (a,z)— p(a)z turns £ in an A-module, the representation module.

Conversely, A being an algebra over K and E being an A-module, E is a vector
space over K and if a € A, the mapping v : a — v, with 7,(2) = az, z € E, is a

4



‘homomorphism A — End E, and so it is a representation of A in E. The study of A
modules is then equivalent to the study of the representations of A. A representation. p is
faithful if its kernel is zero, i.c., pla)r = 0,Yr € £ = a = 0. The kernel of p is also known
as the annihilator of its module. p is said to be simple or irreducible if the only invariant
subspaces of p(a), Ya € A, are E and {0}. Then the representation module is also simple,
this meaning that it has no proper submodule. p is said to be semi-sirnple, if it is the
direct sum of simple modules, and in this case £ is the direct sum of subspaces which are
globally invariant under p(a),Ya € A. When no confusion arises p(a)z will be denoted
by aez, a*z or az. Two A-modules E and E' (with the exterior multiplication being

denoted respectively by e and *) are isomorphic if there exists a bijection ¢ : E — E’ such
that,

¢(z +v)=p(z)+¢(y), VYz,y€E,
plaez)=ax*p(z), VYac€ A, (2.6)

and we say that representations ¢ and ¢’ of A are equivalent if their modules are iso-
morphic. This implies the existence of a K-linear isomorphism ¢ : E — E’ such that
pop(a)=p'(a)op, Va € Aor p'(a) = pop(a)op~!. f dim E = n then dim E' = n. We
shall need: ' ‘

Wedderburn Theorem:[?® If A is simple algebra then A is equivalent to #(m), where
F(m) is a matrix algebra with entries in F, F is a division algebra and m and F are
unique (modulo isomorphisms).

2.2. Minimal Left Ideals of C(, ,

The minimal left (resp., right) ideals of a semi-simple algebra A are of the type Ae
(resp., eA), where e is a primitive idempotent of A, i.e., €2 = ¢ and e cannot be written
as a sum of two non zero annihitating (or orthogonal) idempotents, i.e, e # e; + ez, where

2 2} s
eje; = eze; =0, €] = €1, €5 = e3.

Theorem: The maximum number of pairwise annihilating idempotents in #(m) is m.

The decomposition of C¢, , into minimal ideals is then characterized by a spectral
set {€,qi} of idempotents of Cly, satisfying (i) 2iepgi = 1; (ii) epgi€pq,j = bijepq,is
(iii) rank of €,q, is minimal # 0, i.e., epq,; is primitive 1= 1425 5.500)

By rank of e,,; we mean the rank of the A IR”*?-morphism epq : 1 — Yepq,i and
ARP? = @F_o A*(IR79) is the exterior algebra of R”9. Then Cl,, = Y, L5, I}, =
Cly,q€pq,i and ¥ € I, . is such that e,y = 1. Conversely any element ¢ € I, , can be
characterized by an idempotent ep,; of minimal rank # 0 with vep,; = 1. We have the

following

Theorem:?¥ A minimal left ideal of Cf,4 is of the type I, = Cl,qepq Where €,y =
%(1 +eqy)--- %(1 + €4, ) is a primitive idempotent of Cfm and. are €q,,. .., €4, commuting
elements of the canonical basis of Cl, 4 such that (eq,)* = 1, (¢ = 1,2,..., k) that generate
a group of order 2%, k = ¢ — rq—p and r; are the Radon-Hurwitz numbers, defined by the

recurrence formula r;4g = 7; + 4 and



t 0 2 3 4 5
r, 0 1 2 2 3 3

6 7
3 3

If we have a linear mapping L, : Clpy — Clyq, La(z) = az,z € Cl, 4, a € CL,
then since I, 4 is invariant under left multiplication with arbitrary elements of C¢,, we
can consider Lq|z,, : Ipq — Ipq and taking into account Wedderburn theorem we have

Theorem: If p+ g = n is even or odd with p — q # 1 (mod 4) then
Clyq > Endp(lp,q) = F(m)

where F' = R or € or H, Endp(I,,) is the algebra of linear transformations i I, over
the field F,m =dimp(I,,) and F ~ eF(m)e, e being the representation of ey, in F(m).
If p+ q=nis odd, with p— ¢ =1 (mod 4) then

Cly, = Endp(l,,) ~ F(m)® F(m)

and m = dimp(l,4) and ep,Clygep ~ R B R or H @ H.
Observe that F is the set

F ={T € Endp(I,),TL, = L.T, ¥ a € Cl,,)
Periodicity Theorem:[?8 For n = p 4 ¢ > 0 there exist the following isomorphisms

C£n+g,o ~ C'ﬁn,o ® Cfg'o Cﬂo‘n.'.g ~ Cfo,n ® Clo,g (2.7)
Clpysq ~ Cly o ® Clgg Clp a4 ~ Cly o ® Clog
We can find, e.g., in *® % & tables giving the representations of all algebras CZ,,
as matrix algebras. For what follows we need
complex numbers Clyy~ C
quarternions Clpo~ H
Pauli algebra  Cl3g~ M,(C)
spacetime algebra Cliz~ M,(H)
Majorana algebra  Cf3; ~ M4(IR) (2.8)
Dirac algebra  Cl4; ~ M,(C)

We also need the following
Proposition: Ct} = Cly 1, for p> 1 and Cl}, = Cl, . for ¢ > 1.

From the above proposition we get the following particular results that we shall
need later

C[l",li pand Ct;’l = C£3,0 C'KIJ ot C(,';,, (2.9)
C£4.1 ~C @ Cl3'1 CL"[ ~CQ® Clm, (210)

which means that the Dirac algebra is the complexification of both the spacetime or the
Majorana algebras.



Right Linear Structure for y A

We can give to the ideal I, = Cl,qc (resp. I, = eCl,y) a right (resp. left)
linear structure over the field F(CC,, ~ F(m) or Cly, ~ F(m) @ F(m)). A right linear
structure, e.g, consists of an additive group (which is I, 4) and the mapping

IxF—1I; ($,T)— T

such that the usual axioms of a linear vector space structure are valid, e.g., we have?
(¥T)T' = (TT").

From the above discussion it is clear that the minimal (left or right) ideals of
Cfy,q are representation modules of Cf, .. In order to investigate the equivalence of these
representations we must introduce some groups that are subsets of C?, ;. As we shall see,
this is the key for the definition of algebraic and Dirac-Hestenes spinors.

2.3. The Groups: CC; ., Clifford, Pinor and Spinor

The set of the invertible elements of Cf,, constitutes a non-abelian group which
we denote by Ct; .- It acts naturally on Cfp, as an algebra homomorphism through its
adjoint representation - ‘

Ad : CG . — Aut(Cl,q); ur— Ady, with Ady(z) = uzu~!. (2.11)

The Clifford-Lipschitz group is the set
I‘p,-q ={ueCL,| Vz € RPY, uzi~! € R??}. (2.12)

The set T}, = I",j:,q. n C’K;I’,q is called special Clifford-Lipschitz group.
Let N.::Cty 4 — Clygq, N(z) = (Zz)o ({ )o means the scalar part of the Clifford
number). We define further:

The Pinor group Pin(p,q) is the subgroup of I', ; such that
Pin(p,q) = {u € Tpg|N(u) = £1}.. (2.13)
The Spin group Spin(p,q) is the set
Spin(p,q) = {u € T} |N(u) = +1}. (2.14)
The Spin, (p,q) group is the set |
Spin (p,q) = {u € I‘;qlN(u) = +1}. | (2.15)

Theorem: Ad|pin(p,q) ° Pin(p,q) — O(p,q) is onto with kernel Z,. Adspin(p,q)
Spin(p,q) — SO(p, q) is onto with kernel Z.

2For Ct30, 1 = Clsp ;}(l +03) is 2 minimal left ideal. In this case it is also possible to give a left linear

structure for this ideal. See [4, 5]



O(p,q) is the pseudo-orthogonal group of the vector space R”%, 50(p,q) is the
special pseudo-orthogonal group of IR”%. We also denote by SO, (p,q) the connected
component of SO(p,q). Spin(p,q) is connected for all pairs (p,q) with the exception of
Spin(1,0) ~ Spin(0,1) ~ {£1} and Spin(1,1). We have,

Spin, (p,q)

Pin(p, Spin(p,
0p,0) = 32D 50(p,q) = ZPHL 50(p,q) = 2Pk

Z,

In the following the group homomorphism between Spin(p,q) and SO (p,q) will be
denoted
M : Spin,.(p,q) = 50(p, 9). (2.16)

We also need the important result:
Theorem:*¥ For p + q < 5, Spin,(p,q) = {u € Cl} |ui = 1§ 8

Lie Algebra of Spin_(1,3)
It can be shown that for each u € Spin (1, 3) it holds

2
u=xef, Fe AR CClj; (2.17)

and F can be chosen in such a way to have a positive sign in Eq. 2.17, except in the
particular case F2 = 0 when. v = —e”. From Eq. 2.17 it follows immediately that the
Lie algebra of Spin (1,3) is generated by the bivectors F € A? R'® C Cf; 3 through the
commutator product.

2.4. Geometrical and Algebraic Equivalence of the Representation Modules I, , of Simple
Clifford Algebras Ct, q

Recall that CC,q is a ring. We already said that the minimal lateral ideals of C¢, ,
are of the form [, ; = Cl, g€, (01 €5,CEp ;) Where €, is a primitive idempotent. Obviously
the minimal lateral ideals are modules over the ring C,, ;, they are representation modules.
According to the discussion of Section 2.1, given two ideals I, , = Cl, q€pq and [;.q —
Cly q€p, they are by definition isomorphic if there exists a bijection ¢ : [, , — I’ such

b\
that,
@(¥1 + ¥2) = @(th) + ©(¥2) 5 p(ay) = ap(V) , Ya € C, 4, Vihy, 92 € I, (2.18)

Recalling the Noether-Skolem theorem, which says that all automorphisms of a
simple algebra are inner automorphisms, we have:

Theorem: When C(, 4 is simple, its automorphisms are given by inner automorphisms
z—uzu ' 2€Clg u€E CL; o

We also have:

Proposition: When C¢, , is simple, all its finite-dimensional irreducible representations
are equivalent (i.e., isomorphic) under inner automorphisms.

8
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We quote also the

Theorem:['% J, , and I, , are isomorphic if and only if I | = I, o X for non-zero X ¢ L.y
We are thus lead to the following definitions:

(¥) The ideals I, o = Clpgepq and I, . = Clp el are said to be geometrically equivalent

if, for some u € T g,

€y = tepul. (2.19)

(3%) Ip,q and I  are said to be algebraically equivalent if

1 (2.20)

! — -
€pg = Uepell

but u g Ty ..

It is now time to specialize the above results for Ct; 3 ~ My(H) and to find a
relationship between the Dirac algebra Cly; ~ M,(C) and C¢; 3 and their respective

minimal ideals.
Let £ = {Eq, E, E3, E3} be an orthogonal basis of R'® C Cty 3, E,E, + E E, =

2Nuws N = diag(+1, -1, -1, —1). Then, the elements
e=31+E) €=11+EE) €' =11+EEE), (2.21)

for some u € C¢; ,

are easily verified to be primitive idempotents of C¢; 3. The minimal left ideals, I = C¢ ze,
I' = Cty €', I" = Ct 3€” are right two dimensional linear spaces over the quaternion
field (e.g., He = elH = eC{; 3e). According to the definition (ii) above these ideals are
algebraically equivalent. For example, ¢’ = ueu™!, with u = (1+ E3) ¢ Ty 3

The elements & € Cf33(1 + Eo) will be called mother spinors.[ 1% We can

show!4 5] that each ® can be written

® = re + Y2 EsEre + Y3 EsEoe + Y4By Ege = Y is;, (2.22)

sy =€, s = E3zEe, s3 = EzEpe, sq= EjFqe (2.23)

and where the ¢; are formally complex numbers, i.e., each ¥; = (a; + b;F2E;) with

a;, b; € R.
We recall that Pin(1,3)/Z2 ~ 0(1,3), Spin(1,3)/Z, ~ SO(1, 3), Spin_(1,3)/2; ~

S0,4(1,3), Spin_(1,3) ~ SL(2,C) the universal covering group of .L'L = S04(1,3), the

restrict Lorentz group.
In order to determine the relation between Cly; and C¢, 3 we proceed as follows: let

{Fo, Fy, Fy, F3, F4} be an orthogonal basis of Cly, with —F¢ = F} = F} = F} = F? = 1,
F.Fg = —-FpF4 (A# B; A,B =0,1,2,3,4). Define the pseudoscalar

i= FRRRFRFRF, #=-1 iF,=Fq A=0,1,2,3,4 (2.24)
Define
Eu = FuFy (2.25)



We can immediately verify that £,£,+&,&, = 2n,,. Taking into account that C¥¢, 3 ~ Ctt,
we can explicitly exhibit here this isomorphism by considering the map g : C¥, 3 — Cq :
generated by the linear extension of the map g# : R'? — CZL,g#(E,‘) =&, = F,F,
where E,, (u = 0,1,2,3) is an orthogonal basis of R'?. Also g(lcy,,) = lCt;",’ where
e, , and 10({, are the identity elements in Cl, 3 and CC,"' ;- Now consider the primitive
idempotent of Cty 3 ~ Ctf,,

eq = g(e) = 5(1 + &) (2.26)
and the minimal left ideal I;‘:l = Cq 1€s,. The elements Zy, € Ij: ; €an be written in an
analogous way to & € Cl; 33(1 + Eo) (Eq. 2.22), i.e.,

Zno =Y Z:5; (227)
where
51 =eq, 3= —663eq, 33=CE3Ceqn, 34 = Er1é0ea, (2.28)
and
zi =ai+ &glbia
are formally complex numbers, a;,b; € R.
Consider now the element fy € Cl4;,
fro = enz(1+i6&)
= 3(1+&)3(1+i6 &), © (2.29)
with 1 given by Eq. 2.24.

Since fz,Cly1fz, = Cfz, = f5,C it follows that fy is a primitive idempotent of
Cly . We can easily show that each @z, € Iz, = Cly,fz, can be written

¥y, = Z:'/’:’fia P; €C

h=fegr 2= -6&fsy y f3=E380f 5y, f1 = Ex&o /s, (2.30)

with the methods described in [* % we find the following representation in M4(C) for the
generators £, of CLY, ~ Cl, 3

1 0 0 -o; .
goH‘]o:(Oz —12) H&H‘]i:(a; (()’ ) (2.31)

where 15 is the unit 2 x 2 matrix and o;, (1 = 1,2,3) are the standard Pauli matrices.
We immediately recognize the y-matrices in Eq. 2.31 as the standard ones appearing, e.g.,
in 129

The matrix representation of ¥y, € [, will be denoted by the same letter without
the indice, i.e., ¥y, — ¥ € M4(C)/, where

/=30+1)50+in1,)  i=V-L (2.32)
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‘We have

l/’] 0 00
00 0

¥ = 3: S v € C. (2.33)
e 0 0 0

Eqs. 2.22, 2.27 and (2.30) are enough to prove that there are bijections between the
elements of the ideals Cty 33(1 + Eo), Ct§3(1 + &) and Clyy3(1 + &) (1 + i€, &),
We can easily find that the following relation exists between ¥, € Cly,f;, and

Zs, € Ct} 12(1 + &),
Ve = Zs, 3(1 416, 5,). (2.34)
Decomposing Zy, into even and odd parts relative to the Z;-graduation of Cl_}’.l ~

Clha,Zz, = Z§ + Z3, we obtain Z} = Zg £ which clearly shows that all informa-
tion of Zy, is contained in Z} . Then,

U, = ZE L(1 + £0)1(1 + i6:62). (2.35)

Lo 2

Now, if we take into account!® %) that C¢ff (1 + &) = Cl,’{lz(l + &) where the

symbol C¢}T means Clit ~ Ct} 5 ~ Cl o we see that each Zg, € Ctf 3(1 + &) can be
written

Z; =5 i(1+ &)  ¥s, € (CLE)T =~ Cl 5. (2.36)
Then putting Z3 = ¢ /2, Eq. 2.35 can be written

¥1(1+ &)3(1 +i6:&)
= 2, 1(1+i6Es). (2.37)

Vs

0

The matrix representations of Zy, and %y, in M4(C) (denoted by the same letter
without index) in the spinorial basis given by Eq. 2.30 are

b ¥ ¥ ¥ b -3 0 0
| Y2 Y7 e -3 _ | %2 ¥ 0 0
V=1 ws v o vz | %7 v ¥ 00 (2.38)
Yo~ ¥ 0 ba —¥3 0 0

2.5. Algebraic Spinors for R”?

Let By ={%,, X, f), ...} be the set of all ordered orthonormal basis for R??, i.e.,

each ¥ € By is the set & = {Ey,...,Ep, Ept1y...;Ep4q}, B2 = ... = Eg =1, E3+1 -

= E3+q -1, E,E, = —E,E,, (r # s; r,s=1,2,...,p4+ ¢ = n). Any two basis, say,

20, 3 € By are related by an element of the group Spin +(P,q) C Tpy. We write,
¥ = uZou”!, u € Sping(p,q). (2.39)

A primitive idempotent determined in a given basis X € By will be denoted ey. Then, the
idempotents ez, €5, €5, etc., such that, e.g.,
ey = ueg,u”', u € Spiny(p,g), (2.40)

1l



define ideals I, I4, Iz, etc., that are geometrically equivalent according to the definition
given by Eq. 2.19. We have,

Iy = "[n,'_‘ u € Spin,(p.q) (2.41)
but since uly, = Iy, Eq. 2.41 can also be written
lt = Inou~l. (2.42)

Eq. 2.42 defines a new correspondence for the elements of the ideals, Iy, I, I3, etc. This
suggests the

Definition: An algebraic spinor for R is an equivalence class of the quotient set {I;}/R,
where {I;} is the set of all geometrically equivalent ideals, and ¥y, € Iy, and ¥y € I;
are equivalent, ¥y ~ ¥, (mod R) if and only if

*t = ‘,nou—'. (2.43)

Uy will be called the representative of the algebraic spinor in the basis £ € Bz. Recall
that £ = uSu~! = LT, u € Spin,(1,3), L € £].

2.6. What is a Covariant Dirac Spinor (CDS)

As we already know fr, = 3(1+&)(1+i£,£7) (Eq. 2.29) is a primitive idempotent
of Clyy ~ My(C). If u € Spin (1,3) C Spin (4,1) then all ideals Iy = I,;ou‘l are
geometrically equivalent to Ir . Since ¢ = {&o, &1, &2, €3} is a basis for R!? c C‘Iv the
meaning of Y = ulou~! is clear. From Eq. 2.30 we can write

Iy 3 gy =3 ¥ifi, and Iz 2 ¥ =Y 4if;, (2.44)
where
fh=feg fo=-E&fsyy f3=E80fzy, fa=Eofs,
a‘nd . . = = & - = ' ; =i =5
h=fs, fao=-E&fg, fa=E30fs, fi=E&ofs

Since ¥y = ¥y u~!, we get
U= piu i =Y Sa(u™ifi = ik
i 1,k k

Then .
' Yr = Zsik(‘u_l)iﬁg, ’ (2.45)

where Six(u~!) are the matrix components of the representation in My(C) of u‘2‘0€
Spin, (1,3). As proved in [ 5] the matrices S(u) correspond to the representation D/20)g
D©1/2) of SL(2,C) ~ Spin,(1,3).

12
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We remark that all the elements of the set {Iy;} of the ideals geometrically equivalent
to Iy, under the action of u € Spin(1,3) C Spin (4, 1) have the same image / = MA(C)f
where f is given by Eq. 2.32, i.e.,

=30+ 7)) +in1) i=V-l,

where 7, 4 = 0,1,2,3 are the Dirac matrices given by Eq. 2.31.

Then, if
v:Clyy — My(C) = End(My(C)f) (2.46)
2 y(z): My(C)f = Ma(C)f ’

it follows that y(£,) = v(£,) = T 1(fro) = ¥(fg) = [ for all £,,€, such that
&y = u€,u~! for some u € Spiny(1,3). Observe that all the information concerning

the orthonormal frames £¢, &, etc., disappear in the matrix representation of the ideals

Iy, Is,...in My(C) since all these ideals are mapped in the same ideal | = M4(C)f.
With the above remark and taking into account Eq. 2.45 we are then lead to the

following

Definition: A Covariant Dirac Spinor (CDS) for R'? is an equivalent class of triplets

(%, 5(u), ¥), £ being an orthonormal basis of R, S(u) € D(/20)q p(01/2) representation

of Spin(1,3),u € Spin(1,3) and ¥ € My(C)f and

(Z,8(u), ¥) ~ (Zo, S(uo), ¥o)
if and only if
U = S(u)S Y (uo)¥o, H(uug')=LSe, L€ L), ueSping(1,3). (2.47)

The pair (£,5(u)) is called a spinorial frame. Observe that the CDS just defined
depends on the choice of the original spinorial frame (X, ug) and obviously, to different
possible choices there correspond isomorphic ideals in M4(C). For simplicity we can fix

ug = 1, 5(ug) = 1.
The definition of CDS just given agrees with that given by Choquet-Bruhat/3!]

except for the irrelevant fact that Choquet-Bruhat uses as the space of representatives
of a CDS the complex four-dimensional vector space €* instead of [ = My(C)f. We see
that Choquet-Bruhat’s definition is well justified from the point of view of the theory of

algebraic spinors presented above.

2.7. Algebraic Dirac Spinors (ADS) and Dirac-Hestenes Spinors (DHS)

We saw in Section 2.4 that there is bijection between ¢y, € Ctft ~ Ct}, and
Yy, € Iy, = CZI,/,;O, namely (Eq. 2.37), ’ '

q’r.o - '/’1:0 %(1 +50)%(1 + iglg'z)

Then, as we already said, all information contained in ¥, (that is the representative in

1 b I oo a1 STy 1 1,33 . . e . v .
the basis £y of an alge br«uF spinor for R™+) is also contained in ¥y, € Cttt ~ Ctf,. We
are then lead to the following '
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Definition: Consider the quotient set {/;}/R where {5} is the set of all geometrically
equivalent minimal left ideals of C¥¢; 3 generated by ey, = %(1 + Eq), Xo = (Eo, By, Ey, E3)
li.e., Ig,I; € {I3} then Iy = ulgu™! = Ii:"—l for some u € Spin (1,3)]. An algebraic
Dirac Spinor (ADS) is an element of {I;}/R. Then if &3 € I;,®5 € Ig, then &5 ~
®;(mod R) if and only if ®5 = ®yu~?, for some u € Spin,(1,3).

We remark that (see Eq. 2.36)

By = pep, Pp=vzer Y ¥p € Cl,

and since e; = uegu~! for some u € Spin,(1,3) we get?

Yg = pgu . (2.48)

Now, we quoted in Section 2.3 that for p+ ¢ < 5, Spin,(p,q) = {u € C¢ Jui = 1}.
Then for all 3z € Cﬂ"{s such that gty # 0 we obtain immediately the polar form

by = pM2ePESI2R (2.49)

where p € RY,8 € R, Ry € Spin, (1,3),Es = EoE1E2E3. With the above remark in
mind we present the

Definition: A Dirac-Hestenes spinor (DHS) is an equivalence class of triplets (I, u, ¥g),
where T is an oriented orthonormal basis of R'® C Cf; 3, u € Spin +(1,3), and 5 €
Cli",3). We say that (I, u,%5) ~ (Zo, to, ¥5,) if and only if ¥y = ¢g ug’u, H(uug') = L,

= LEo(= u‘luozouglu), u,up € Spin (1,3), L € £L. ug is arbitrary but fixed. A

DHS determines a set of vectors X, € R"®, (u = 0,1,2,3) by a given representative Y5
of the DHS in the basis £ by

¥:3 = RYP, 9By = X, (5 = (Eo, By, By, Ey)). (2.50)
We give yet another equivalent definition of a DHS

Definition: A Dirac-Hestenes spinor is an element of the quotient set C¢f,/R such that
given the basis £,% of R C Cly 3, ¥z € Clf 4, ¥ € Cti 3 then g ~ Pg(modR) if and
only if ¥5 = Ypu~!, =LY =ulu™', H(u) = L, w € Spin_(1,3), L € 21,

With the canonical form of a DHS given by Eq. 2.49 some features of the hidden
geometrical nature of the Dirac spinors defined above comes to light: Eq. 2.49 says that
when ¢, # 0 the Dirac-Hestenes spinor 5 is equivalent to a Lorentz rotation followed
by a dilation and a duality mixing given by the term ePES/2 where B is the so-called
Yvon-Takabayasi angle[32'33] and the justification for the name duality rotation can be
found in 4. We emphasize that the definition of the Dirac-Hestenes spinors gives above
15 new. In the past objects ¢ € C'(t;, satisfying VvXyp=Y,for X,Y € R'3 C Ct, 3 have

been called operator spinors (see, e.g., in 3% % 19) DHS have been used as the departure
point of many interesting results as, e.g., in [+ 3%1- (%],

31n 92 10] | Gunesto calls 2 the mother of all the real spinors.
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We remark that all the elements of the set (/1) of the ideals geometrically equivalent
to Iy, under the action of u ¢ Spin(1,3) C Spin (4, 1) have the same image [ = M.(C)f
where [ is given by Eq. 2.32, i.e., |

/=304 2)0+i1,7) i=vV-,

where 9 (s = 0,1,2,3 are the Dirac matrices given by Eq. 2.31.
Then, if
7:Clyy = My(C) = End(M(C)f)
: = (z): Mi(C)f — Ma(€)S

it follows that y(£,) = v(£,) = 1,, Y(Jfr) = 7(fg) = [ for all &,,£, such that
En = uEu! for some u € Spin,(1,3). Observe that all the information concerning
the orthonormal frames £g, ¥, etc., disappear in the matrix representation of the ideals
Ingydyy .. in My(Q) since all these ideals are mapped in the same ideal / = M4(C)f.

With the above remark and taking into account Eq. 2.45 we are then lead to the
following,

(2.46)

Definition: A Covariant Dirac Spinor (CDS) for IR'? is an equivalent class of triplets
X, S(u), ¥), ¥ being an orthonormal basis of R'*3, S(u) € D(/20)g p(0.1/2) representation
of Spin (1,3),u € Spin,(1,3) and ¥ € M4(C)f and

(Z,5(u), ¥) ~ (Lo, $(uo), ¥o)
if and only if
U = S(u)S™ (uo)¥o, H(uug')=LZo, L€ L, wueSping(1,3). (2.47)

The pair (X, 8(u)) is called a spinorial frame. Observe that the CDS just defined
depends on the choice of the original spinorial frame (Xg, %) and obviously, to different
possible choices there correspond isomorphic ideals in M4(C). For simplicity we can fix

Uy = ],.S‘( 11.0) = 1.
The definition of CDS just given agrees with that given by Choquet-Bruhat[3

except for the irrelevant fact that Choquet-Bruhat uses as the space of representatives
of a CDS the complex four-dimensional vector space C* instead of I = My(C)f. We see
that Choquet-Bruhat’s definition is well justified from the point of view of the theory of

algebraic spinors presented above.

2.7.  Algebraic Dirac Spinors (ADS) and Dirac-Hestenes Spinors (DHS)
We saw in Section 2.4 that there is bijection between %y € Cgﬂ- ~ Cff,a o
Wy, € Iy, = Cl},[x,, namely (Eq. 2.37),
Vp, = Pno3(1 + &0)3(1 +i:1E2)

Then, as we already said, all information contained in ¥y (that is the representative in
the basis £o of an algebraic spinor for R!?) is also contained in Y, € CKIT ~ C[{s_ We
are then lead to the following
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2.8.  Fierz Identities

The formulation of the Fierz identities 'Y using the CDS ¥ € €* is well known.['
Here we present the identities for ¥, ¢ Iy, ~ (€ % Cly3) [, and for the DHS ¥r, €
CEE 19191 Lot then ¥ € €* be a representative of a CDS for R'? associated to the basis

Lo = {Fa, By, By, £3) of R'™ C Clyy. Then ¥, ¥y, determines the following so-called
bilinear covariants,

o= VW = 4(¥; ¥, Y0,

Ju = V7, ¥ = 4(¥3 E, ¥ o,

S,w = W"roi%w"’ = 4(‘1’;‘(’!.;;,“,';:0)0,

K, = ¥'yiy0123¥ = 4(@;4){130,2;.}3,,*,;0)0,
w= —Vyoyp23¥ = —4(@';;(, Fo123¥ s, o, (2.51)

where { means Hermitian conjugation and + complex conjugation. We remark that the
reversion in Cly,; corresponds to the reversion plus complex conjugation in € @ C¥t, 3.
All the bilinear covariants are real and have physical meaning in the Dirac theory
of the electron, but its geometrical nature appears clearly when these bilinear covariants
are formulated with the aid of the DHS.
Introducing the Hodge dual of a Clifford number X € C¢, 3 by

* X = XEs, Es = EoE\EqEs (2.52)

the bilinear covariants given by Eq. 2.51 become in terms of %z, the representative of a
DHS in the orthonormal basis £o = {Eg, E, E2, E3} of R C Ct; 3

Yrothp, = 0 + *w J=J,E*

wEoEO'/)EO-: J S - %S“VE#EV

Bl =S K=K i
Yoo Baviz, = K E* = p™E,

'/)l:o EOE3¢80_= xS ’7"” o= dla'g(la "1» —lv _1)

Yz, Lok Eqtps, = xK

The Fierz identities are

JP=c*+w? J-K=0, J?=-K? JAK=—(w+x0)S (2.54)
S.-J=wK S-K=wJ -
(x§)-J=-0K (x§)-K =-0J (2.55)
S S=w?-0? (x85)-85=-20w
JS = —(w+ *x0)K KS = —(w+%0)J
SJ = —(w—»0)K SK = —(w—x0)J (2.56)

§? = w? — 0? — 20(#w)
§—1 = —§(0 —*w)?/(0* + w?) = KSK/(0? + w?)?

15



The proof of these identities using the DIIS in almost a triviality.

The importance of the bilinear covarianta ia due to the fact that we can recover from
them the CDS Wy € My(T)/ or all other kinds of Dirac apinors defined above thrmf;f,h an
algorithm c¢ue to Crawford (see also (10 Indeed, ropresenting, the images of the bilinear
covariants in Cf, 3 and C(L C Ctyy under the mapping g (Fq. 2.25) by the same letter
we have that the following result holds true: let

Zgy = (@ +J +1S +i(aR) +aw) € CR Cly (2.57)

where o, J, §, K, w are the bilinear covariants of Wy, ~ (€ ® Clyy)fr,. Take 75, €
(€ ® Cly3)fs, such that fg Wy # 0. Then Wy and Zy,ny, differ by a complex factor.
We have

1 Vv 7,
\pno = TA-,";;—(' . /"0"’0 (2.58)
- -t A ~»
Nugy = /{013 2500 v €7 = m(q ¥)o (2.59)
Choosing 1y, = fy,, We obtain
- 1 N Y ) —-la _ 2.60
Ny, = 5Vo+J - Eg= 8- (B Ey) = KBy, 7 =1/|l, (2.60)

where ¢, is the first component of ¥y in the spinorial basis {s;}.

It is easier to recuperate the CDS from its bilinear covariants if we use the DHS
¥s, € Clfy =~ (CL},)* since putting

{ ¥uo(1+ Eo)y, = P

Vo1 + Ko) By Eagyp, = Q (2.61)
Vso (1 + Eo)(1 + 1By Eg)ehy, = (P +iQ) (2.62)
results
P=a+J+w Q=39 +*xK (2.63)
and
Zs, = P(1 + 1£Q)? (2.64)

valid for @ # 0, w # 0 (for other cases see ")) From the above results it follows that ¥y,
can be easily determined from its bilinear covariant except for a “complex” E,E, phase
factor.

3. The Clifford Bundle of Spacetime and their Irreducible Module Represen-
tations

3.1.  The Clifford Bundle of Spacetime

Let M be a four dimensional, real, connected, paracompact manifold. Let T'M
[T M) be the tangent [cotangent] bundle of M., ’
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Definition: A Lorentzian manifold is a pair (M,g), where ¢ € secT*M x T*M is a

Lorentzian metric of signature (1,3), i.e., forall z € M, T, M ~ T:M ~ R'3 where R'?
is the vector Minkowski space.

Definition: A spacetime M is a triple (M, g, V) where (M,g) is a time oriented and
spacetime oriented Lorentzian manifold and V is a linear connection for M such that
Vg = 0. If in addition T(V) = 0 and R(V) # 0, where T and R are respectively the
torsion and curvature tensors, then M is said to be a Lorentzian spacetime. When Vg = 0,
T(V) =0, R(V) = 0, M is called Minkowski spacetime and will be denote by M. When
Vg =0, T(V) # 0 and R(V) = 0 or R(V) # 0, M is said to be a Riemann-Cartan
spacetime.

In what follows Pso, (1,3)(M) denotes the principal bundles of oriented Lorentz
tetrads.[® 23] By g=! we denote the “metric” of the cotangent bundle.

It is well known that the natural operations on metric vector spaces, such as, e.g.,
direct sum, tensor product, exterior power, etc., carry over canonically to vector bundles
with metrics. Take, e.g., the cotangent bundle 7*M. If 7 : T*M — M is the canonical
projection, then in each fiber 7=!(z) = T:M =~ R!?, the “metric” g~' can be used to
construct a Clifford algebra C¢{(T2M) ~ Ct, 3. We have the

Definition: The Clifford bundle of spa,cei.ime M is the bundle of algebras

M) = |J cuTiM) (3.1)
ze€M
As is well known C{(M) is the quotient -bundle
™
= 3.2
cUM) = 3550 (3:2)

where TM = @2,7°%" (M) and T(®")(M) is the space of r-covariant tensor fields, and
J(M) is the bundle of ideals whose fibers at z € M are the two side ideals in M
generated by the elements of the form a® b+ b ® a — 29~ 1(a,b) for a,b € T*M.

Let 7. : C¢(M) — M be the canonical projection of C/(M) and let {U,} be an
open covering of M. From the definition of a fibre bundlel??] we know that there is a

trivializing mapping pa : 771 (Us) — Us X Cly 3 of the form pa(p) = (rc(p),&a (p). If
Ugp = Us NUp and z € Uap, p € 77'(z), then

o (p) = Jup(z) #5 (p) (3.3)

for fop(z) € Aut(Ct3), where fap : Uap — Aut(Cly3) are the transition mappings of
Cl(M). We know that every automorphism of C¢, 3 is inner and it follows that,

Jap(2) P (P) = 9ap(2) $5 (P)gas(z) ™! (3.4)

for some g,g(z) € CUl] 5, the group of invertible elements of Cf, 3. We can write equiva-
lently instead of Eq. 3.4,

fap(2) ‘?’ﬂ (p) =$’ﬁ (aaﬁm;}J) (3.5)
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for some invertible element aap € CUT; M).

. Now, the group S0,(1,3) has, as we know (Section 2),
Clifford algebra C¢; 5. Indeed we know that Ctj 3 acts naturally on C?) 5 as an algebra
automorphism through its adjoint representation Ad : u r— Ad,,, /\d,‘(a)' = uau~', /\lm
Ad |Spin+(l,3) = 0 defines a group homeomorphism o : Spin,(1,3) — SO4(1,3) which is
onto with kernel Z,. It is clear, since Ad_, =identity, that Ad : Spin,(1,3) — Aut(Ct, 5)

descends to a representation of 5O4(1,3). Let us call Ad’ this representation, i.e., Ad’ :

S04(1,3) — Aut(Ct, 3). Then we can write Ad:,(u) a = Ad,a = uau™"'.

. From this it is clear that the structure group of the Clifford bundle C¥(M) is
reducible fr?m Aut(Cey 3) to SO4(1,3). This follows immediately from the existence of
the Lorentz1ar.1 structure (M, g) and the fact that CE(M) is the exterior bundle where the
fibres are eq.mpped with the Clifford product. Thus the transition maps of the principal
bundle of oriented Lorentz tetrads Pso, (1,3(M) can be (through Ad’) taken as transition
maps for the Clifford bundle. We then have the result[3?)

a natural extension in the

CZ(M) = PSO+(1,3)(M) xAd’ Cel,a (36)
3.2. Spinor Bundles

Definition:[241 A spinor structure for M consists of a principal fibre bundle
7s : Pspin, (1,3)(M) — M with group SL(2,C) ~ Spin,(1,3) and a map

$ : Pspin, (1,3)(M) = Pso,1,3(M)

satisfying the following conditions
(¢) =(s(p)) = 7s(p) VP € PSpin+(1,3)(M)
(1) s(pu) = s(p)H(u) Vp E PSpin+(1,3)(M) and H : SL(2,C) — SO, (1,3).

Now, in Section 2 we learned that the minimal left (right) ideals of C¢, , are irre-
ducible left (right) module representations of C¢, ; and we define a covariant and algebraic
Dirac spinors as elements of quotient sets of the type {Iz}/IR (sections 2.6 and 2.7) in
appropriate Clifford algebras. We defined also in Section 2 the DHS. We are now inter-
ested in defining algebraic Dirac spinor fields (ADSF) and also Dirac- Hestenes spinor fields
(DHSF).

So, in the spirit of Section 2 the following question naturally arises: Is it possible
to find a vector bundle 7, : S(M) — M with the property that each fiber over z € M is
an irreducible module over C{(T; M)?

The answer to the above question is in general no. Indeed it is now well known[°)
that the necessary and sufficient conditions for S(M) to exist is that the Spinor Structure
bundle PSpin+(l,3)(M) exists, which implies the vanishing of the second Stiefel-Whitney
class of M, i.e., wo(M) = 0. For a spacetime M this is equivalent, as shown originally by
Geroch!4!: 42 that Pso,(1,3)(M) is a trivial bundle, i.e., that it admits a global section.
When PSpin,(x,a)(M) exists we said that M is a spin manifold.
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Definition: A real spinor bundle for M is the vector bundle
S(M) = Pspin, 1,3)(M) x, M (3.7)

where M is a left (right) module for C¢; 3 and where p : PSpin+(l,3) — S504(1,3) is a
representation given by left (right) multiplication by elements of Spin(1,3).

Definition: A complex spinor bundle for M is the vector bundle
SC(M) = PSpin+(1.3)(M) X pe M. (3'8)

where M is a complex left (right) module for € ® Cly 3 ~ Clyy ~ M4(C), and where
He * Pspin, (1,3) — SO4(1,3) is a representation given by left (right) multiplication by
elements of Spin (1,3).

Taking, e.g. M, = C* and g, the D(1/20) @ D(®1/2) representation of Spin_ (1,3)
in End(C"), we recognize immediately the usual definition of the covariant spinor bundle
of M, as given, e.g., in 3.

Since, besides being right (left) linear spaces over I, the left (right) ideals of C?; 3
are representation modules of C¢; 3, we have the

Definition: /(M) is a real spinor bundle for M such that M in Eq. 3.7 is /, a minimal
left (right) ideal of C¥¢; 3.

In what follows we fix the ideal taking / = C£1‘3%(1+Eo) = Clyge. If mp : I(M) —
M is the canonical projection and {U,} is an open covering of M we know from the

definition of a fibre bundle that there is a trivializing mapping xq(q) = (7r1(q),,‘A(o, (q)). If
Uap =UaNUpg and z € Uyp, q € W,'l(Ua), then

X (9) = 9ap(z) X5 (q) (3.9)

for the transition maps in Spin(1,3).* Equivalently

Xa (1) =Xg (aapq) (3.10)

for some anp € C&(T7M). Thus, for the transition maps to be in Spin (1, 3) it is equivalent
that the right action of le = ell = eCY, 3e be the defined in the bundle, since for
g € 77'(z),z € Uy and a € H we define ga as the unique element of w;l(z) such that

Xa (ga) =Xa (q)a : (3.11)

Naturally, for the validity of Eq. 3.11 to make sense it is necessary that

908(2)(Xa (9)a) = (9ap(z) Xa (q))a (3.12)

‘We start with transition maps in C{; , and then by the bundle reduction process we end with
Spin (1, 3).
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and Eq. 3.12 implies that the transition maps are H-linear.® .
Let f.p: Usp — Aut(Ct;3) be the transition functions for C£(M). On the inter-
section U, Mg N U, it must hold

fapfoy = for (3.13)

We say that a set of lifts of the transition functions of C¢(M ) is a set of elements
in Ct] 3,{9gap} such that if

Ad : Ctf 3 — Aut(Cly 3)
Ad(u)X = uXu™!, VX € Clhps

then Ady,, = fap in all intersections.

Using the theory of the Céch cohomology!¥ it can be shown that any set of lifts
can be used to define a characteristic class w(C¢(M)) € H?*(M,HH"), the second Céch
cohomology group with values in H*, the space of all non zero H-valued germs of functions
in M.

We say that we can coherently lift the transition maps C(M) to a set {gag} € Cl] 3
if in the intersection U, N Ug N U,, Ve, 3,7, we have

9aB98y = Jory (3'14)

This implies that w(Cé(M)) = idy), i.e., M is Céch trivial and the coherent lifts
can be classified by an element of the first Céch cohomology group A'(M,H*). Benn and
Turcker(*3) proved the important result:

Theorem: There exists a bundle of irreducible representation modules for C¢(M) if and
only if the transition maps of CZ(M) can be coherently lift from Aut(C¥¢, 3) to Cf3 ,.

They showed also by defining the concept of equivalence classes of coherent lifts
that such classes are in one to one correspondence with the equivalence classes of bundles
of irreducible representation modules of C{(M), I(M) and I’( M) being equivalent if there
is a bundle isomorphsim p : [(M) — ['(M) such that

p(azq) = azp(q), Var € CU(T; M ),Yq € n['(z)

By defining that a spin structure for M is an equivalence class of bundles of ir-
reducible representation modules for C¢{(M), represented by I(M), Benn and Turcker
showed that this agrees with the usual conditions for M to be a spin manifold.

Now, recalling the definition of a vector bundle we see that the prescription for
the construction of /(M) is the following. Let {U,} be an open covering of M with fap
being the transition functions for C{(M) and let {gop} be a coherent lift which is then
used to quotient the set U, U, x I, where eg., I = Cl";;%(l + Ey) to form the bundle

*Without the H-linear structure there exists more general bundles of irreducible modules for CI(M).[“]
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Ua Us x I/R where R is the equivalence relation defined as follows. For each z € U, we
choose a minimal left ideal I3z in C&(T; M) by requiring®

A (2]
) Pa (Ig(z)) =1 (3.15)
As before we introduce ang € C{(T2 M) such that
A
¥p (aap) = gap(z) (3.16)

Then for all X € CK(T;M),S%Q (X) =¢p (aaﬂxa;é)- So, if X € If‘;(.-.) then aagXa;é and
also Xa;é € Ig(x). Putting Y, = Uy X Ig(z) Y = U,Y,, the equivalence relation R is
defined on Y by (Uq, z, %x) ~ (Up, z, ) if and only if

g = rag) (3.17)

Then, /(M) = Y/R is a bundle which is an irreducible module representation of
C(M). We see that Eq. 3.17 captures nicely for anp € Spin,(1,3) C Cf; ; our discussion
of ADS of Section 2. We then have
Definition: An algebraic Dirac Spinor Field (ADSF) is a section of (M) with aqp €
Spin  (1,3) C Cf; 5 in Eq. 3.17. :

From the above results we see that ADSF are equivalence classes of sections of

CE(M) and it follows that ADSF can locally be represented by a sum of inhomogeneous
differential forms that lie in a minimal left ideal of the Clifford algebra C¢;3 at each

spacetime point.

In Section 2 we saw that besides the ideal 7 = Cf; 33(1 + Eqp), other ideals exist for
Ct, 3 that are only algebraically equivalent to this one. In order to capture all possibilities
we recall that Cf; 3 can be considered as a module over itself by left (or right) multiplication

by itself. We are thus lead to the
Definition: The Real Spin-Clifford bundle of M is the vector bundle

CZSpin+(1,3)(M) = PSpin_,,(l,s)(/w) Xt Cel.s (3-18)

It is a “principal C¢, 3 bundle”, i.e., it admits a free action of C¢, 3 on the right.[”- 39
There is a natural embedding PSpin+(1,3)(M) C Cfsp;n+(l,3)(M) which comes from the
embedding Spin_(1,3) C C[;"'3. Hence every real spinor bundle for M can be captured
from Césp;n+(1,3)(M). Clspin (1'3)(/\4) is different from C¢(M). Their relation can be
discovered remembering that tfxe representation

Ad : Spin,(1,3) — Aut(Cli3) Ad,X = uXu™'  u€ Spin,(1,3)

is such that Ad_; = identity and so Ad descends to a representation Ad’ of SO4(1,3)
which we considered above. It follows that when PSpin+ (1,3)(M) exists

Cl(M) = PSpin+(1’3)(M) X ad’ Cl1'3 (319)

6Recall the notation of Section 2 where L is an orthonormal frame, etc.
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From this it is easy to prove that indeed S(M) is a bundle of modules over the bundle of
algebras C({M).[11

We end this section defining the local Clifford product of X € sec C¢(M) by a
section of /{ M) or Clsp;n+(13)(M). If o € I(M) we put X = ¢ € secI(M) and the
meaning of £q. 3.19 is that

#(z)=X(z)p(z) VzeM (3.20)

where X (z)¢(z) is the Clifford product of the Clifford numbers X (z), ¢(z) € Cf; 3.
Analogously if $ € Clspin, (1,3 (M)

X = £ € Clspin, .5(M) (3:21)

and the meaning of Eq. 3.20 is the same as in Eq. 3.19.
With the above definition we can “identify” from the algebraically point of view
sections of C4(M) with sections of (M) or Clspin, (1,3)(M)-

3.3. Dirac-Hestenes Spinor Fields (DHSF)

The main conclusion of Section 3.2 is that a given ADSF which is a section of (M)
can locally be represented by a sum of inhomogeneous differential forms in C/(M) that
lies in a minimal left ideal of the Clifford algebra C¥¢, 3 at each point z € M. Our objective
here is to define a DHSF on M. In order to achieve our goal we need to find a vector
bundle such that a DHSF is an appropriate section.

In Section 2.7 we defined a DHS as an element of the quotient set C¢} 3/R where R
is the equivalence relation given by Eq. 2.50. We immediately realize that 1f it is possible
to define globally on M the equivalence relation R, then a DHSF can be defined as an
even section of the quotient bundle C{(M)/R. _

More precisely, if £ = {7° } (e =0,1,2,3) and X = {§°}, v2,4° € sec AH(T*M) C
Cl(M) are such that 4 = Ry*R™", where R € sec C£*(M)is such that R(z) € Spin_(1,3)
for all z € M, we say that Y ~ £. Then a DHSF is an equivalence class of even sections
of C{(M) such that its representatives 1y and %y in the basis © and ¥ define a set of
1-form fields X* € sec AY(T*M) C sec C¢(M) by

X°(z) = ¥3(2)7*(2)¥g(2) = ¥s(2)1%(2)¥x(2) (3-22)
i.e., ¥y and 1y are equivalent if and only if
by = po R (3.23)

Observe that for £ ~ T to be globally defined it is necessary that the 1-form fields
{7°} and {42} are globally defined. It follows that Pso, (1,3)(M), the principal bundle of
orthonormal frames must have a global section, i.e., it must be trivial. This conclusion
follows directly from our definitions, and it is a necessary condition for the existence of a
DHSF. It is obvious that the condition is also sufficient. This suggests the
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_Definition: A spacetime M admits a spinor structure if and only if it is pessibie to define
a global DHSF on it.

Then, it follows the

Theorem: Let M be a spacetime (dim M = 4). Then the necessary and sufficient
condition for M to admit a spinor structure is that Psg, (1,3)(M) admits a global section.

In Section 3.1 we defined the spinor structure as the principal bundle Pspin, 1,3)(M)
and a theorem with the same statement as the above one is known in the hterature as
Geroch’s Theorem.[*!) Geroch’s deals with the existence of covariant spinor fields on M,
but since we already proved, e.g., that covariant Dirac spinors are equivalent to DHS, our
theorem and Geroch’s one are equivalent. This can be seen more clearly once we verify
that M)

R = CeSpin+(1,3)(M) (3.24)
where C’[spm 1,3) (M) = Pspm (1,3) X¢ Cly 3 is the Spin-Clifford bundle defined in Sec-
tion 3.1. To see this, recall that a DHSF determines through Eq. 3.20 a set of 1-form fields

X® € sec A\l(T*M) C sec C{(M). Under an active transformation,

X%~ X®=RX°R™', R(z)&Spin,(1,3), VzeM (3.25)
we obtain the active transformation of a DHSF which in the X-frame is given by
7/’2 = 'l’;; = R¢z (3-26)

From Eq. 3.23 it follows that the action of Spin +(1,3) on the typical fibre Ctly3 of

C{(M)/R must be through left multiplication, i.e. given u € Spin_(1,3) and X € C/, 3,
and taking into account that C¥; 3 is a module over itself we can define ¢, € End(CY; 3)

by £u,(X) = uz,VX € Cf;3. In this way we have a representation ¢ : Spin (1,3) —
End(C¢;3),u — £,. Then we can write,

(M
(T)’ = PSpin+ (1,3)(M) X¢Cl 3

3.4. A Comment on Amorphous Spinor Fields

Crumeyroﬂe“f’] gives the name of amorphous spinors fields to ideal sections of the
Clifford bundle C{(M). Thus an amorphous spinor field ¢ is a section of C¢(,M) such that

¢e = ¢, with e being an idempotent section of C{(M).
It is clear from our discussion of the Fierz identities that are fundamental for the

physical interpretation of Dirac theory that these fields cannot be used in a physical theory.
The same holds true for the so-called Dirac-Kahler fields(16)=[1825] which are sections of
CE(M). These fields do not have the appropriate transformation law under a Lorentz
rotation of the local tetrad field. In particular the Dirac-Hestenes equation written for
amorphous fields is not covariant (see Section 6). We think that with our definitions of
algebraic and DH spinor fields physicists can safely use our formalism which is not only

nice but extremely powerful.

"Observe also that in the 3 we have for the representative of the actively transformed DHSF the relation
¥ = Ry R™.
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4. The Covariant Derivative of Clifford and Dirac-Hestenes Spinor Fields

In what follows, as in Section 3, M = (M, V,g) will denote a general Riemann-
Cartan spa:etime. Since C¢(M) = TM/J(M) it is clear that any linear connection defined
in 7M such that Vg = 0 passes to the quotient M /J(M) and thus define an algebra
bundle connection.*) In this way, the covariant derivative of a Clifford field A € sec C{(M)
is completely determined.

Although the theory of connections in a principal fibre bundle and on its associate
vector bundles is well described in many textbooks, we recall below the main definitions
concerning to this theory. A full understanding of the various equivalent definitions of a
connection is necessary in order to deduce a nice formula that permit us to calculate in
a simple way the covariant derivative of Clifford fields and of Dirac-Hestenes spinor fields
(Section 4.3). Our simple formula arises due to the fact that the Clifford algebra C¢, 3,
the typical fibre of C{(M), is an associative algebra.

4.1.  Parallel Transport and Connections in Principal and Associate Bundles

To define the concept of a connection on a PFB (P, M, 7, G) over a four-dimensional
manifold M (dim G = n), we first recall that the total space P of that PFB is itself a
(n 4+ 4)-dimensional manifold and each one of its fibres 7 ~!(z), z € M, is a n-dimensional
submanifold of P. The tangent space T,P, p € 7~!(z) is a (n + 4)-dimensional linear
space and the tangent space T, ~!(z) of the fibre over z, at the same point p € 77!(z), is
a n-dimensional linear subspace of T,P. It is called vertical subspace of T,P and denoted
by V,P.

A connection is a mathematical object that governs the parallel transport of frames
along smooth paths in the base manifold M. Such a transport takes place in P, along di-
rections specified by vectors in T, P, which does not lie within the vertical space V,P. Since
the tangent vectors to the paths on on the base manifold, passing through a given point
z € M, span the entire tangent space T M, the corresponding vectors X € T,P (in whose
direction parallel transport can generally take place in P) span a four-dimensional linear
subspace of T,P, called horizontal space of T,P and denoted by H,P. The mathematical
concept of a connection is given formally by :

Definition: A connection on a PFB (P, M, r,G) is a field of vector spaces H,P C T,P
such that

(i) o' : H,P — T:M, z = n(p), is an isomorphism

(1¢) H,P depends diferentially on p

(13%) ”R,p = Ry (H)p)
The elements of /P are called horizontal vectors and the elements of T,,:r“‘(z) = P
are called vertical vectors. In view of the fact that * : P — M is a smooth map of the
entire manifold P onto the base manifold M, we have that 7’ = =, : TP — TM is a

globally defined map from the entire tangent bundle T'P (over the bundle space P) onto
the tangent bundle T'M.
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If z = n(p), then due to the fact that z = x(p(t)) for any curve in P such that
p(t) € 7~ 1(z) and p(0) = 0, we conclude that =’ maps all vertical vectors into the zero
vector in Ty M, that is ©’(V,P) = 0, and we have

T,P = H,P @ V,P, peP
so that every X € T,P can be written
X = Xy + X,, Xh € H,P, X, € V,P.

Therefore, if X € T,P we get n'(X) = #'(Xp) = X € ToM. Xy, is then called horizontal
lift of X € T:M. An equivalent definition for a connection on P is given by

Definition: A connection on the principal fibre bundle (P,M,7,G) is a mapping I, :
T:M — T,P, z = n(p) such that

(¢) T, is linear

(i) ' oTp = Id1, M, where IdT,ps is the identity mapping in T>M, and 7’ is the differ-
ential of the canonical projection mapping n : P — M

(#21) the mapping p — T, is differentiable
(iv) Tr,p = R T, g € G and R, being the right translation in (P, 7, M,G).
Definition: Let C : IR D I —» M, t — C(t), with zo = C(0) € M be a curve in M and
let po € P be such that 7(pg) = zo. The parallel transport of py along C is given by the
curve C: IR D I — P, t— C(1) defined by

d d

;EC(t) = I‘,E{C(t)

with C(0) = po, C(t) = py, 7(py) = = = C(1).

We need now to know more about the nature of the vertical space V,P. For this,
let X € T.G = ® be an element of the Lie algebra of G and let f : G D U, — IR, where
U, is some neighborhood of the identity element of &. The vector X can be viewed as the
tangent to the curve produced by the exponential map

H d "
X(f) = Zf(exp(Xt))leco
Then to every u € P we can attach to each X € T.G a unique element of V,P as follows:
Let F : P — R be given by
. d s
Xv(p)(F) = 7 (pexp(Xt))le=o

By this construction we have attached to ea.cﬁ X € T.G a unique global section of TP,

called fundamental field corresponding to this element. We then have the canonical iso-
morphism

X, (p) X, X, (p)eV,P, XeT.G
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and we have ‘
V,P~ @

It follows that another equivalent definition Yor a connection is:

Definition: A connection on (P,M,x,G) is a 1-form field w on P with values in the Lie
algebra- & such that, for each p € P,

(1) wp(Xy) = X, X, € V,P and X € & are related by the canonical isomorphism
(#7) wp depends diferentially on p

(iif) wp ,(REX) = (Adg-1 wp)(X)

It follows that if {G,} is a basis of ® and {6'} is a basis of T, P, we can write w as

Wy, =w* G, = wll ®G, (4.1)

where w® are 1-forms on P.
The horizontal spaces H,P can then be defined by

H,P = ker(wp)

and we can verify that this is equivalent to the definition of H,P given in the first definition
of a connection.

Now, for a given connection w, we can associate with each differentiable local section
of x~}(U) C P, U C M, a 1-form with values in ®. Indeed, let

f:MD>U—-xU)CP 7o f=1Idp

be a local section of P. We define the 1-form f*w on U with values in & by the pull-back
ofwby fIXeTM,z€U,

(ffw)e(X) = wy(r)(f'X)

Conversely, we have:

Theorem: Given w € TM ® & and a differentiable section of x~'(U), U ¢ M, there
exists one and only one connection w on #~'(U) such that f*w = w.

It is important to keep in mind also the following result:

Theorem: On each principal fibre bundle with paracompact base manifold there exists
infinitely many connections.

As it is well known, each local section f determines a local trivialization
¢:x"Y(U)-UxG

of ¥ : P — M by setting 7 '(z,9) = f(z)g. Conversely, & determines j', since f(z) =
®~1(z,e), where ¢ is the identity of G. We shall also need the following
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‘Proposition: Let be given a local trivialization (U,®),® : =~ (U) = U x G, and let

f+M DU — P be the local section associated to it. Then the connection form can be
written:

(@7 "w)ry =97 'dg + g7 'wg (4.2)

where w = f*w € TU ® ®. We usually write, for abuse of notation, $~'*w = w. (The
proof of this proposition is trivial.)

We can now determine the nature of span(H,P). Using local coordinates (z*) for
U C M and g;; for U. € G,® we can write

w = g;;'dgi; + 97wy

w=wGads’ =wARGLETURS
and
(Ga,GB] = faBcGc

with fopc being the structure constants of the Lie algebra & of the group G.
Recall now that dim H,P = 4. Let its basis be

F
dzr "M gg.;

p=0,1,2,3and i,j =1,...,n = dimG. Since H,P = ker(w,), we obtain, by writing

a0 0
— A8 — e itinedt
Xp =2 (('h:“ + di; ag,-,-)
that '
duij = —wAGAikgK
where G4;x are the matrix elements of G4.

Consider now the vector bundle £ = P X ;) F' associated to the PFB (P, M, =,G)
through the linear representation p of G in the vector space F. Consider the local trivi-

A . A
alization ¢, : 771 (Uqs) — Ua X G of (P, M, 7,G), pa(p) = (7(p),%a (p)) With ¥4 (p) :
r~Y(z) = G, z € U, € M. Also, consider the local trivialization xq : #7'(Uy) = Uy X F

of £ where w : E — M is the canonical projection. We have x,(y) = (ﬂ—(Y),ia (y)) with
?(a_, (y): n~1(z) — F. Then, for each z € Uyp = Ua N U we must have,

a—l a—l1

a a
Xp,x © Xg 2= P(Soﬂ.z 2 (Pa.z)
We then have

Definition: The parallel transport of vg € E, 7(vg) = zo along the curve C: R D I —
M,zo = C(0) from zo to z = C(t) is the element vy € E such that

*For simplicity, G is supposed here to be a matrix group. The g;; are then the elements of the matnx
representing the element g € G.
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(¢) m(yy) =z

(i) Roe (00) = p(Bae (P1)0 ey (90)) Pprmo (v0)

Definitiox: Let X be a vector at zo € M tangent to the curve C : t — C(t) on M, zo =
C(0). The covariant derivative of X € sec E in the direction of V at zq is (Vv X)x, € sec E
such that

1
(Vv X)(zo) = (Vv X)z, = lim ~(Xy, — Xo) (4.3)
where X7, is the “vector” X, = X (z(t)) of a section X € sec E parallel transported along

d
C from z(t) to zo, the unique requirement on C being EZC(t) =V.
t=0

In the local trivialization (U,, xa) of E we have,

Xoo (XC0) = p(909i") Xaz(ty (Xt) (4.4)

From this last definition it is trivial to calculate the covariant derivative of A €
secCé(M) in the direction of V. Indeed, since a spin mam’fold for M is (Section 3)
C¢M) = PSO+(1 3) Xaq Cla = PSpm (1,3) XAd Cl 3, 90,9; le Spin,(1,3) and p is the
adjoint representation of Spin_(1,3) in C¥¢; 3, we can verify (just take into account that
our bundle is trivial and put go = 1 for simplicity) that that we can write

Aye=97"Age 9= 9(2(t) € Spin . (1,3) (4.5)

Then, .
(Vv A)(zo) = lim —(9;" Aege — Ao) (4.6)

Now, as we observed in Section 2, each g € Spin (1, 3)is of the form +e (%) where
F € sec N*(T*M) C secC€(M), and F can be chosen in such a way to have a positive sign

in this expression, except in the particular case where F? = 0 and R = —ef. We then
wrlte, e

g = e/t (4.7)
and 1

= —29,9;  |t=o0 (4.8)

Using Eq. 4.8 in Eq. 4.7 gives

(VvA)(zo) = { e —As + [w,At]} =0 (4.9)

Now let <z#> be a coordinate chart for U C M,e, = h%d,,a = 0,1,2,3 an
orthonormal basis for TU C TM.1° Let 4° € sec(T*M) C secCl(M) be the dual basis of

*The negative sign in the definition of w is only for convenience, in order to obtain formulas in agreement
with known results.

'Since M is a spin manifold, Pso,(1,3)(M) is trivial and {ea}, a = 0,1,2,3 can be taken as a global
tetrad field for the tangent bundle.
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{ea} = B. Let & = {7°} and {74,a = 0, 1,2, 3} the reciprocal basis of {y*},i.e., 7%y = 6
where - is the internal product in Ct; 3. We have v* = hfdz* , 7, = hfinu.dz°.

Vo,ds = 'S, 8a, Vo,(dz®) = ~I'%5(dz”) (4.10)
Vea€d = wgpee, Vea? = —wi 25, VeaTh = Wap7e (4.11)
Ve, = wypee, V“'yb — —w""c'y‘, Vi = wie (4.12)

From Eq. 4.10 we easily obtain (V,, = V)
(V4A) = A + Y[w,, 4] (4.13)
with
2
wy = —2(8,9)g7" € sec /\(T‘M) C secCl(M) (4.14)
where g € secCL*(M) is such that g,y = g; € Spin,(1,3).
We observe that our formulas, Eq. 4.10 and Eq. 4.11 for the covariant derivative
of an homogeneous Clifford field preserves (as it must be), its graduation, i.e., if A, €

sec AP(T*M) C secCl(M),p = 0,1,2,3,4, then [w,, Ap] € sec AP(T*M) C secCl(M) as
can be easily verified.

Since
w1 =w, -7 = =1 w, (4.15)
we have
W = 3 (3a A ) (4.16)
and we observe that
wit = —whe (4.17)

For A = A,7® we immediately obtain
Ve Ab = ea(Ap) = w5 A (4.18)

which agrees with the well known formula for the derivative of a covariant vector field.
Also we have

Vude = a#(AG)—wpl:zAb
VuAa = 04(Aa)-TP, Ap (4.19)

From the general formula 4.9 it follows immediately the

Proposition: The covariant derivative Vx on C{(M) acts as a derivation on the algebra
of sections, i.e., for A, B € secC{(M) it holds

Vx(AB) = (VxA)B + A(VxB) (4.20)

The proof is trivial.



4.2. The Lie Derivative of Clifford Fields

Let V € secTM be a vector field on M which induces a local one—Parameter
transformation group ¢t — ;. It ¢, stands as usual to the natural extension of the
tangent mag d¢; to tensor fields, the Lie derivative Ly of a given tensor field X € secTM
is defined by )

(£vX)(z) = lim ~(Xz = (¢ue(2))z) (4.21)

Ly is a derivation in the tensor algebra 7M. Then, we have for a,b € sec ANT*M) C
Ce{(M).

Lv(a®b+b®a—29"Y(a,b)) = (Lva)®b+b® (Lva) — 2£Lv (g7 (a,b))

Since a ® b+ b ® a — 29~1(a,b) belongs to J(M), the bilateral ideal generating

the Clifford bundle C4(M) we see from Eq. 4.21 that £y preservers J(M) if and only if
£Lvg =0,i.e., V induces a local isometry group and then V is a Killing vector.[?3

(4.22)

4.8. The Covariant Derivative of Algebraic Dirac Spinor Fields

As discussed in Section 3 ADSF are sections of the Real Spinor Bundle I(M) =
Pspin, (1,3)(M) x¢ I where I = Cly33(1 + Eo). I(M) is a subbundle of the Spin-Clifford
bundle Clgpin, (1,3)(M). Since both /(M) and Céspin+(1'3)(/\/1) are vector bundles, the
covariant derivatives of a ADSF or a DHSF can be immediately calculated using the

general method discussed in Section 4.1.
Before we calculate the covariant spinor derivative V3§, of a section of I(M) [or
Clspin, (1,3)(M)] where V € secTM is a vector field we must recall that V3 is a module

derivation, i.., if X € secC{(M) and ¢ € sec [(M) [or secClspin, (1,3)(M)] then it
holds:
Proposition: Let V be the connection in C{(M) to which V* is related. Then,

H(Xe) = (Vv X)p + X(Vp) (4.23)

The proof of this proposition is trivial once we derive an explicit formula to compute
v(®), ¢ € sec/(M)C secCESpin+“,3)(M).
Let us now calculate the covariant derivative V3 in the direction of v, a vector at
Zo € M of ¢ € secI/(M) C secClgpin, (1,3) (M)
Putting go = 1 € Spin(1,3) we have using the general procedure

0 _ -1 :

e =9t P (4.24)
where ¢9  is the “vector” ¢, = @(z(t)) of a section ¢ € sec [(M) C sec Clspin, (1 3y(M)
p;ralle] transported along C : R D I — M, t — C(t) from z(t) = C(t) to zo+ = C(0)
'd—tC(t) ‘=o= v

Putting as in Eq. 4.8 g, = e¢~/2! we get by using Eq. 4.4

(Vid)(zo) = (d“‘l't‘f’t + %w‘pt) (4.25)

t=0
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If {7*) is an orthogonal field of 1-forms, ¥* € sec AV (T*M) C secClM) dual to the
orthogonal frame field {e,}, €a € secT'M, g(eq,ep) = 7ap and if {74} is the reciprocal
frame of {7°}, i.e., ¥* -y = 6; (a,b=0,1,2,3) then for Eq. 4.25 we get

Vi, ¢ = ea(d) + Swad (4.26)
with
We = %w:c‘n AYe (4.27)

and we recognize the 1-forms w, as being w, = w(e,) where w = f*w, f: M = U x G

is the global section used to write Eq. 4.24. The Lie algebra of Spin_(1,3) is, of course,
generated by the “vectors” {7, A 7s}.

Vc“yb = —wgc'yc : (4.28)

If (z*) is a coordinate chart for U C M and 4* = h%dz*, a,n = 0,1,2,3, we also obtain
V:‘(ﬁ - au(¢) r 15“’;14’1 wy = %wzc'Yb ANYe (4—29)

Now, since ¢ € sec [(M) C sec Clgpin, (1,3)(M) is such that ey = ¢ with ez = (1 +7°)
it follows from V] ¢ = V? (¢e;) that
ez Ve ez =0 (4.30)

Now, recalling Eq. 2.30 we have a spinorial basis for I(M) given by 8° = {s}, A =
1,2,3,4, 34 € sec [(M) with

8! =ep = 1+ 79), 2 = —'4%;, 2 =4%1%;, st = 4190%;. (4.31)
Then as we learn in Section 2, ¢ = ¢34 where ¢, are formally complex numbers. Then
Vi = ed)+ qwad
= [ea(¢A) .y %wadm] 4
= (ea(dm) + %[walﬁfﬁs) s4 (4.32)

with

was? = [wa]gs® (4.33)

Vié = Vi(¢as?)
= ea(pa)s? + A Ve 84 (4.34)
From Eq. 4.32 and Eq. 4.34 it follows that

Vet = jlwalfs® (4.35)
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We introduce the dual space I*(M) of I(M) where I*(M) = Pspin, (1,3)(M) Xr I where
here the ?»Iitlml of Spin(1,3) on the typical fiber is on the right. A basis for I*(M) is
then p, = {54}, A = 1,2,3,4, s4 € secI*(M) such that

sa(sB) = 68 (4-36)
A simple calculation shows that
Veasa = —%[walf 3B (4.37)

Since C¢(M) = I*(M)®I(M) (the “tensor-spinor space”) is spanned by the basis {s”*®sp}

we can write

YaSA = [7a]§33 (4.38)
with
[7a]§ = 7aBA = 7a('SBa 3A) (439)
being the matricial representation of Ya- It follows that
. 1 1
Ve 7a(5%,54) = es([1a]5) — wi, 184 + ‘2'“’1,%7151 - 5“’547.?0 (4.40)
Now,
1 1
(GWiirea = SwiaTeE)s = (70 - wr)s® (4.41)

2
and from wy = %wfd"/c A Y4, we get -
(a - wh)s® = (~wi,75)s* (4.42)
From Eq. 4.41 and Eq. 4.42 we obtain
R TeA — BOEAYaE = ~WhaTah (4.43)

and then 5
Ve, [7a)d = es((12]3) = 0 (4.44)

since according to a result obtained in Section 2.6 [y,]2 are constant matrices. Eq. 4.43
agrees with the result presented, e.g., in (23], Also from W = %wﬁc'yb A 9. 1t follows

wip = 50T 7B (4.45)
We can also easily obtain the following results. Writing
Ve b= (Ve 84)s” (4.46)

it follows that 1
Vo4 = €a(da) + ngc[7b,7c]§¢8 (4.47)
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and {
Ve d" = ea(9") - gwaclmn 1154” (4.48)

Eq. 4.48 agrees exactly with the result presented, e.g., by Choquet-Bruhat et all?3 for the
components of the covariant derivative of a CDSF 1 € sec Pspin, (1,3)(M) X, C*. It is

important to emphasize here that the condition given by Eq. 4.43, namely V:b[‘ya]ﬁ =0
holds true but this does not imply that V. 7% = 0, i.e., V need not be the so called
connection of parallelization of the M = (M, g, V), which as well known has zero curvature
but non zero torsion.[*4

The main difference between V?* acting on sections of /(M) or of Clspin+(1’3)(M )

and V acting on sections of C{(M) is that, for ¢ € secI(M)orsecCZSpin+(1,3)(M) and
A € secC{(M), we must have

V..(4¢) = (V. A)¢ + A(V,, ¢), (4.49)
and of course V cannot be applied to sections of I(M) or of Clgpin +(1'3)(/\4)-

4-4. The Representative of the Covariant Derivative of a Dirac-Hestenes Spinor Field in

CLUM)
In Section 3.2 we defined a DHSF 3 as an even section of Cfspin+(1,3)(M). Then,
by the same procedure used in Section 4.3 we get!!

V:,'/’ = ed(¥) + %wa’b V:.J) = ea(']’) - %&wn (4.50)

and as before
wa = Jwiy A e € secCl(M) (4.51)

Now, let v* € secCZspin+(1'3)(M) such that y2v® + %42 = 29?%, (a,b=0,1,2,3),
and let us calculate V] _( ¥v%). Using Eq. 4.48 we have,

Vi (¥7°) = ea(¥7°) + Jwatr® = (V2 ¥ (4.52)
On the other hand using Eq. 4.50 we get
Vi () = (Ve + $(VEA) (4.53)
Comparision of Eq. 4.52 and Eq. 4.53 implies that -
vy =0 ' (4.54)

We know that if ¢,9 € seccegpin+(l'3)(M) then ¥y = X° is such that X%(z) €
RS Vz € M. Then,

Ve (¥°9) = (VL% + (Ve ¥) (4.55)

"1The meaning of eq, 7°, etc. is as before.
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and V., (¥7%9d)(z) € RS, Vz ¢ M.

We are now prepared to find the representative of the covariant derivative of a
DHSF in Ct M). We recall that 4 is an equivalence class of even sections of C{(M) such
that in the hasis & = {y%},4° € sec \'(T*M) C secC(M) the representative of P is
% € CLT (A1) and the representative of X® is X € sec ANT*M) C secCl(M) such that

X = "1127“"/;2 (4.56)
Let V be the connection acting on sections of C{(M). Then,

Vea('»b!:'yb’/-’z) = {ea('/’z:) + %[waa 'Pn]} ’76'[‘2
+¢E(Vea7b)'2’s + ’»bz‘)’b {%(1/)2) T %[waa !Zz]} =
= [ea("/’l‘.) + %wadjn] 761/)2 + !/)).‘.7” [ea(¢2) = %@[;Ewa] . (457)

Comparing Eq. 4.55 and Eq. 4.57 we see that the following definition suggests by
itself

Definition:

(Ve ¥)s = Vi be = ealtbo) + 5wt

- - 5 T .
(Vzad))t = V:,'/)‘J i ea(’l’n) - 5"/’2“% (458)
(V:.‘Yb)z = V:ﬂb =0

where (V;a¢)2,<(vg°$)n, (V:a'yb)g € secC{(M) are representatives of V3 1 (etc...) in the

basis ¥ in C{(M)

Observe that the result V:a'y" = 0 is compatible with the result Ve, [7a]§ =0
obtained in Eq. 4.43 and is an important result in order to write the Dirac-Hestenes

equation (Section 6)

5. The Form Derivative of the Manifold and the Dirac and Spin-Dirac Oper-
ators

Let M = (M, g, V) be a Riemann-Cartan manifold (Section 4), and let C¢M), I(M)
and aSpin+(l.3)(M) be respectively the Clifford, Real Spinor and Spin Clifford bundles.
Let V* be the spinorial connection acting on sections of /(M) or aSpin+(1,3)(M). Let
also {e, }, {7°} with the same meaning as before and for convenience when useful we shall
denote the Pfafl derivative by 9, = e, .

Definition: Let I' be a section of C{(M), [(M) or C[gpin+(1'3)(M). The form derivative
of the manifold is a canonical first order differential operator @ : ' — I" such that

o = (7460)1‘
= 7% (0a(T)) + 7% A (8a(T)) (5.1)
for 4 € sec CI(M) .
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Definition: The Dirac operator acting on sections of C{(M) is a canonical first order
differential operator 8 : A — A, A € secCl(M), such that

BA = (1Yo )A = 7%+ (Vo A) +7° A (Y, A) (5.2)

Definition: The Spin-Dirac operator!? acting on sections of /(M) or Clspin, (1,3)(M)
is a canonical first order differential operator D : ' — DI' (I' € sec I(M)) [or I' €

sec Clgpin, (1,3)(M)] such that

DI = (y°Vv.)r
= 7 (VLT)+ 7" A(Ve,T) (5-3)

The operator 8 is sometimes called the Dirac-Kahler operator when M is a Lorentzian
manifold,!?) i.e., T(V) = 0, R(V) = 0, where T and R are respectively the torsion and

Riemann tensors. In this case we can show that(!

d=d—6 (5.4)

where d is the differential operator and § the Hodge codifferential operator. In the spirit
of section 4, we use the convention that the representative of D (acting on sections of

aSpin+(l,3)(M )) in C£(M) will be also denote by
D=9V, (5.5)

6. The Dirac-Hestenes Equation in Minkowski Spacetime

Let M = (M,g,V) be the Minkowski spacetime, C{(M) be the Clifford bun-
dle of M with typical fiber Cf; 3, and let ¥ € sec PSpin+(1,3)(M) x, C* (with p the
D(/2.0) g p(0:1/2) representation of SL(2,C) ~ Spin(1,3). Then, the Dirac equation for
the charged fermion field ¥ in interaction with the electromagnetic field 4 sl (h = ¢ = 1)

7#(i0, — eA,)¥ = m¥ or DY — y*A,¥ = mV¥ (6.1)

where y#y”4+y"y# = 2n*¥, y* being the Dirac matrices given by Eq. 2.31 and A = A,dz* €

sec AL (T*M)
As showed, e.g., in [} this equation is equivalent to the following equation satisfied

by ¢ € sec /(M) [pes = ¢, ez = F(1+7°), 77" +7"7* = 20", v* € secClspin, (1,3 (M)],
D¢y?y' — eAd = mo, . (6.2)

where D is the Dirac operator on /(M) and A € sec A'(T*M) C secC{(M) .
Since, as discussed in Section 3, each ¢ is an equivalence class of sections of C¢(M)

we can also write an equation equivalent to Eq. 6.2 for ¢y = ¢gez, ¢5, ez € secClM),

121y [39) this operator (acting on sections of I(M)) is called simply Dirac operator, being the gener-
alization of the operator originally introduced by Dirac. See also (11] g0 comments on the use of this
terminology.
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ex = 3(147°),v#7 +7"1* = 20" v* € secC{(M), and v* = dz* for the global coordinate
functions (z*). In this case the Dirac operator & = vV, is equal to the form derivative
d = 7*0, and we have

012y — eAdy = mdgy° (6.3)

Since each ¢y can be written ¢y = ¥gey, (¥ € sec CL+(M) being the representative of a
DHSF) and 7%ys = eg, we can write the following equation for #g that is equivalent to
Dirac equation( 9: 19]

which is the so called Dirac-Hestenes equation.[ 3]

Eq.6.4 is covariant under passive (and active) Lorentz transformations, in the fol-
lowing sense: consider the change from the Lorentz frame T = {y# = dz*} to the frame
¥ = {* = di*} with 4* = R~'4#R and R € Spin,(1,3) being constant. Then the
representative of the Dirac-Hestenes spinor changes as already discussed in Section 3 from
g to g = ¢z R™!. Then we have d = 749, = ¥#0/di* where (z*) and (2#) are related
by a Lorentz transformation and

OYs R 'RY?R'RY'R™" — eAyg R~ = mpo R"'RY°R7?, (6.5)

i.e.,
077! — eAvy = mipgi® (6.6)

Thus our definition of the Dirac-Hestenes spinor fields as an equivalence class of even
sections of Cf(M) solves directly the question raised by Parrals] concerning the covariance
of the Dirac-Hestenes equation.
Observe that if V* is the spinor covariant derivative acting on %y (defined in Sec-
tion 4.4) we can write Eq. 6.4 in intrinsic form, i.e., without the need of introducing a
chart for M as follows
1 Vi — eApy = mippy° (6.7)

where 4% is now an orthogonal basis of 7*M, and not necessarily it is y° == d® B snma
coordinate functions z°. .

It is well-known that Eq. 6.1 can be derived from the principle of stationary action
through variation of the following action

S(¥) = / &'z (6.8)

i i : - _
[ = —5(7”3,;FI’+)‘I’ + 5'1)‘*'(3/“6”‘11) —mU¥ty — eA“‘IJ+:y“‘II (6.9)

with ¥+ = '«IJ")’O.

In the next section we shall present the rudiments of the multiform derivatjve ap-
proach to Lagrangian field theory (MDALFT) developed in (23 (see also [6]) and we apply
this formalism to obtain the Dirac-Hestenes equation on a Riemann-Cartan spacetime.
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7. Lagrangian Formalism for the Dirac-Hestenes Spinor Field on a Riemann-
Cartan Spacetime

In this section we apply the concept of multiform (or multivector) derivatives first
introduced by Hestenes and Sobezyk[™ (HS) to present a Lagrangian formalism for the
Dirac-Hestenes spinor field DHSE on a Riemann-Cartan spacetime. In Section 7.1 we
briefly present our version of the multiform derivative approach to Lagrangian field theory
for a Clifford field ¢ € secCl(M) where M is Minkowski spacetime. In Section 7.2 we
present the theory for the DHSE on Riemann-Cartan spacetime.

7.1.  Multiform Derivative Approach to Lagrangian Field Theory
We define a Lagrangian density for ¢ € secC{(M) as a mapping

4
L:(2,8(z),0Ad(2),8-(z)) = L(z,$(2),dAH(z),8-4(z)) € \(T*M) C CLM) (7.1)

where & is the Dirac operator acting on sections of'® C€(M), and by the above notation
we mean an arbitrary multiform function of ¢, & A ¢ and 8 - ¢.

In this section we shall perform our calculations using an orthonormal and coordi-
nate basis for the tangent (and cotangent) bundle. If (z#) is a global Lorentz chart, then
7" = dz" and 8 = 4"V, = 49, = 9, so that the Dirac operator (8) coincides with the
form derivative (9) of the manifold.

We introduce also for ¢ a Lagrangian L(z,4(z),d A é(2),8 - ¢(z)) € A°(T*M) C
Cé(M) by

L(z,8(z),0 A §(z),0 - ¢(z)) = L(z,(z), 0 A $(z),0 - ¢(z))7, (7.2)

where 7, C sec AY(T* M) is the volume form, 7, = dz° A dz! A dz? A dz3 for (z*) a global
Lorentz chart.

In what follows we suppose that £[L] does not depend explicity of z and we write
L(¢,0 N ¢,0 - ¢) for the Lagrangian. Observe that

L(d),(?/\¢,8¢) = (L(¢’a/\¢7a¢)>0 (7.3)

As usual, we define the action for ¢ as

S@)= [ Lo0r,0-8)7, UcH (7.4)

The field equations for ¢ is obtained from the principle of stationary action for S(¢). Let

7 € sec CE(M) containing the same grades as ¢ € sec C&(M). We say that ¢ is stationary
with respect to £ if

d
5(¢+1n)

=0 (7.5)

t=0

""An example of a Lagrangian of the form given by Eq. 7.1 appears, e.g., in the theory of the gravitational
field in Minkowski npwcctimc{"]

37



B t . [34 T
ofu 5((1;;ca.]h:;g gﬁ l.we see tl.lat Eq. 7.5 is just the definition of the multiform derivative
in the direction of 7, i.e., we have using the notation of HS

4
n*0s5(¢) = FTRACRL) (7.6)
t=0
Then,

d
;,;S(¢+ tn)Lo= s dt{L[(¢>+ tn),dA($+tn), 8- ($+ )| (7.7)

Now
d
SIS+ tn), 0N (& +tn),0- (84 )]}emo
=n*0sL+ (OAN)*xFnsLl + (0-n)*05.4L (7.8)
.Before we calculate (7.8) for a general ¢ € sec C€(M), let us suppose that ¢ = (¢),, i.e., it

is homogeneous. Using the properties of the multiform derivativel*!! we obtain after some
algebra the following fundamental formulas, (7 = (7),)

N+ gL =10, L (92)
(@ A7) *0ong, L = 0-[n-(0oag,L)] — (=1)"7-[0 - (Oans, L)) (9b)
(0-n)*05.4,L =03-[n-(89.4,L)] +(—1)"n-[0 A (89.4, L)) (9¢)

Inserting Eq. 7.9 into Eq. 7.8 and then in Eq. 7.7 we obtain, imposing %S(¢>r +1tn) =0,

/U {n-[84,L — (=1)70 - (Borg. L) + (—1)78 A (05, L]},
+ / 9-[n" (Dong. L + Bo.4, L)1y = 0 (7.10)
The last integral in Eq. 7.10 is null by Stokes theorem if we suppose as usual that 7

vanishes on the boundary of U.
Then Eq. 7.10 reduces to

[ 7100 L= (2170 @ons. 1) + -1/ 0N G0 Ll =0 (711)
Now since n = (1), is arbitrary and 8y, L, 8 - (8an¢, L), 0 A (da.4,L) are of grade r we get
(8p,L — (—1)70 - (Bang, L) + (-1)"(85.9,L))r = 0 (7.12)

But since 9y, (LYo = (04, L)r = 84, L, 00n¢, L = (ons, L)r+1, etc Eq. 7.12 reduces to

o, L — (=1)70 - (Dons, L)+ (=10 A (5.4, L) = 0 (7.13)

Eq. 7.13 is a multiform Fuler-l,agmnge equation. Observe that as L = (1,)0 the equation
has the graduation of ¢, € sec N"(1* M) C sec Ce{M).
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Now, let X € sec Cf(M) be such that X = T4_(X), and F(z) = (F(z))o. From

the properties of the multivectorial derivative we can easily obtain
OxF(z) = Ox(F())o
1 1
> 3y (F(2))o = 3 (x), F(X))o (7.14)

=0 =0

In view of this result if ¢ = Y2_o(#), € secCL(M) we get as Euler-Lagrange equation for
¢ the following equation

2 _[9gy, L = (=1)78 - (on(g), L) + (=1) D A (5.14), L)) = 0 (7.15)

We can write Eq. 7.13 and Eq. 7.15 in a more convenient form if we take into account that
Ar+B, = (-1)y(-1B, . A (r < s) and A, A B, = (—=1)"°B, A A,. Indeed, we now have for
¢r that

9 - (Bong, L) = 0 - (Bong, L)rs1 = (1) (Bang, L)r1- 8 (7.16)
O A (B.4,L) = O A (D99, LYr—1 = (~1)" (2.4, L)r+1A 3 (7.17)

where 9 means that the internal and exterior products are to be done on the right. Then,
Eq. 7.15 can be written as

0L — (BangL)- & —(85.4L)A 8= 0 (7.18)

We now analyse the particular and important case where

L(¢,0N¢,0-¢) = L(¢,0AN ¢+ 0-¢) = L(¢,00) (7.19)

We can easily verify that
05.4L(0¢) = (094 L(0))r—1 (7.20)
Oang L(99) = (054 L(08))r 11 (7.21)

Then, Eq. 7.18 can be written

B¢ L — (D94 L)r41- 8 —(BpgL)r_11 B
= 05L — ((95,L)- 8)r — (o4 L)A B),
= (DL — (04L)- & —(BasL)A B), = 0
= (9pL — (84L) 8)y = 0 (7.22)

from where it follows the very elegant equation
4L — (DpgL) 3= 0, (7.23)
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also obtained in (46, ' . _ :
As an example of the use of Eq. 7.23 we write the Lagrangian in Minkowski space Ior

a Dirac-Hestenes spinor field represented in the frame £ = {7#}, [v*7*+7*7* = 20**,7" €
sec AY(T*M)(C sec C¢(M)] by ¥ € sec C{(M)* in interaction with the electromagnetic
field A € sec AYT*M) C sec C{(M). We have'?,

L= Lpp = ((8¥1*r" — my7°)1°% — eAypr°d)o (7-24)
Then 95
0L = (0%7*r" —my1°)yr0 —eAyy®  and Gl =0 (25)
and we get the Dirac-Hestenes equation
V7! — eAY = myy° (7.26)
Also since {AY7%%)o = (7% A)o we have
OyL = —mip — ey"PA (7.27)
BayL = v*1%%, (771° = v%417°). (7.28)

Now,
(9owL) 0= (7"%) &
and from the above equations we get
—my — e*PA — (v2%9) 6= 0
and this gives again,

IY7*y" — At = mypy®
Another Lagragian that also gives the DH equation is, as can be easily verified,

i = (30V72% — 39771% 8 —myy — eAuvry), (7.29)
7.2. The Dirac-Hestenes Equation on a Riemann-Cartan Spacetime

Let M = (M,g,V) be a Riemann-Cartan spacetime (RCST), i.e., Vg = 0, T(V) #
0,R(V) # 0. Let C{(M) be the Clifford bundle of spacetime with typical fibre Ct, 5
and let ¢ € secClY(M) be the representative of a Dirac-Hestenes spinor field in th.e
basis £ = {1%),[1° € sec AN(T"M) C secCl(M), 7" + 1*1® = 2% dual to the basi.
B = {e}, e, € secTM,a,b=0,1,2,3.

To describe the “interaction” of the DHSF 4 with the Riemann-Cartan spacetime
we invoke the principle of minimal coupling. This consists in changing 9 = %9, in the
Lagrangian given by Eq. 7.29 by

V0atp — 1V 9 (7.30)

'*Note that we are omitting, for sake of simplicity, the reference to the basis ¥ in the notation for v
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where V¢ is the spinor covariant derivative of the DHSF introduced in Section 4.4. i.e.,

Ve ¥ = ea(¥) + %wu/}. (7.31)

Let (z#) be a chart for U C M and let be 8, = e, = h#9, and 4° = hi,dz*, with
hiha = & h“hf = 6§y,

vr'u

We take as the action for the DHSF % on a RCST,
1 : - _
S(¢)= /U (5DYyY"% - %1/:7"% D —myp)oh~'dz® Adz' Adz? Adz®  (7.32)

where D = 72V _ is the operator Dirac operator made with the spinor connection acting
on sections of C{(M) and hA~! = [det(h*)]~!. The Lagrangian L = (L)o is then

=i - 1 o A .
L = k= (5Dyy"% — 297"1% D —m)o =
e | 1 - T .
= A5 170 + 5wa )% — $771%0at - JYwa)r®] = m¥¥)o  (7.33)
As in Section 7.2 the principle of stationary action gives

;L — (95;L) 8= 0

8yL — (85,L) 9= 0. (7.34)
To obtain the equations of motion we must recall that
(85,L) 9= 8,(da,4L) (7.35)
and
0a,yL = h3 85,4 L. (7.36)

Then Eqs. 7.34 become
Oy L — 0u(h§)02,y L — 0a(Ba,y L) = 0,
0;L — 0u(h§)05, 5L — 0a(8, ;L) = 0. (7.37)
Now, taking into account that [e,, €3] = cgbed and that 8,h/h = h%0,hY we get
O,h* = —cby + 0, Inh (7.38)
and Eqs. 7.37 become
dyL — [0a + Oalnh — c)05,4L = 0,

BJJL —[0a + OaInh — c’;b]aaad-’L = f, (7.39)
Let us calculate explicitly the second of Eqs. 7.37. We have,
1 1
9 = W 57 (Ve )7+ w7971 — my), (7.40)
i |
_p=1(_21 _ay. 210
03,41 =h ( 57 Py“). (7.41)
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Then,

I . _
80(88.',',11) = (00l“h-‘)h-l(—%‘f‘d}‘yno)—h—l—‘y 0'1’7210_

-11 210 7.42
= —(8aInh)dp L = h™'57"atpy (7.42)

Using Eq. 7.38 and Eq. 7.40 in the second of Eqs. 7.37 we obtain

1 1 1 1 -
§(D¢)7210 + ana'/),rno -mo+ 570 7?10 - §Cgb7°¢72 -0

or
Dy = (7w — w0 - mo — ey 7™ = 0.
Then
Dy ™10 - %(‘r“ - we )Py 10 - %Cﬁw“dnm - my =0. (7.43)
But
70w = wh° (7.44)
and since w®, = 0 because it is w¥ = —w we have
" wa = (Whe — wap)7" (7.45)

Using Eq. 7.45 in Eq. 7.43 we obtain
Dyy 1% - %[wga was + opr 710 — myp = 0.
Recalling the definition of the torsion tensor, Ty, = wi, — wj, + ¢5,, we get
(D + §T)dy'y* + myy® = 0, (7.46)

where T' = T%~°
Eq. 7.46 is the Dirac-Hestenes equation on Riemann-Cartan spacetime. Observe
that if M is a Lorentzian spacetime (Vg = 0, T(V) = 0, R(V) # 0) then Eq. 7.46 reduces
to
@ 1 1,2 0
700 + Jwa)¥7'7" + miy” =0, (7.47)

that is exactly the equation proposed by Hestenes!*8) as the equation for a spinor field

in a gravitational field modelled as a Lorentzian spacetime M. Also, Eq. 7.46 is the
representation in C€(M) of the spinor equation proposed by Hehl et all?8) for a covariant
Dirac spinor field ¥ € PSpin+(1.3) X, €' on a Riemann-Cartan spacetime. The proof of
this last statement is trivial. Indeed, first we multiply ¢ in Eq. 7.46 by the idempotent
field 3(1+ 7%) thereby obtaining an equation for the representative of the Dirac algebraic
spinor field in C£(M). Then we translate the equation in I(M) = PSpin, (1 ) Xe 1, from
where taking a matrix representation with the techmquea already dmcmsed in Se(tlon 2
we obtain as equation for ¥ € lSplu (1,3) Xy CY,

i(7,Vew - 41rv) -m¥ =0 i=voI (7.48)
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with T = T2 7", 7° being the Dirac matrices (Eq. 2.31).

We must comment here that Eq. 7.46 looks like, but it is indeed very different
from an equation proposed by Ivanenko and Obukhov(?® as a generalization of the so
called Dirac-Kahler (-lvanenko) equation for a Riemann-Cartan spacetime. The main
differences in the .cquation given in [ and our eq(7.46) is that in (28 ¥ ¢ secC¢{(M)
whereas in our approach ¥, € C{*(M) is only the representative of the Dirac-Hestenes
spinor field in the basis £ = {y*} and alsol®® use V,, instead of Vi

Finally we must comment that Eq. 7.46 have played an important role in our recent
approach to a geometrical equivalence of Dirac and Maxwell equations(* 3% and also to
the double solution interpretation of Quantum Mechanics.[* 49 50

8. Conclusions

We presented in this paper a thoughtful and rigorous study of the Dirac-Hestenes
Spinor Fields (DHSF), their Covariant Derivatives and the Dirac-Hestenes Equations on

a Riemann-Cartan manifold M.
Our study shows in a definitive way that Covariant Spinor Fields (CDSF) can be

represented by DHSF that are equivalence classes of even sections of the Clifford Bundle
C¢(M), i.e., spinors are equivalence classes of a sum of even differential forms. We clarified
many misconceptions and misanderstanding appearing on the ealier literature concerned
with the representation of spinor fields by differential forms. In particular we proved
that the so-called Dirac-Kahler spinor fields that are sections of C{(M) and are examples
of amorphous spinor fields (Section 4.3.4) cannot be used for representation of the field
of fermionic matter. With amorphous spinor fields the Dirac-Hestenes equation is not

covariant.
We presented also an elegant and consise formulation of Lagrangian theory in the

Clifford bundle and use this powerfull method to derive the Dirac-Hestenes equation on a
Riemann-Cartan spacetime.
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