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Abstract 
ln this paper we study Dirac-Hestenes spinor fields (DHSF) on a four-dimen-

sional Riemann-Cartan spacetime (RCST). We prove that these fields must be 
defined as certain equivalence classes of even sections of the Clifford bundle ( over 
the RCST), thereby being certain particular sections of a new bundle named Spin-
Clifford bundle (SCB). The conditions for the existence of the SCB are studied 
and are shown to be equivalent to the famous Geroch 's theorem concerning to 
the existence of spinor structures in a Lorentzian spacetime. We introduce also 
the covariant and algebraic Dirac spinor fields and compare these with DHSF , 
showing that all the three kinds of spinor fields contain the sarne mathematical 
and physical information. We clarify also the notion of (Crumeyrolle's) amorphous 
spinors (Dirac-Kahler spinor fields are of these type), showing that they cannot be 
used to describe fermionic fields. We develop a rigorous theory for the covariant 
derivatives of Clifford fields (sections of the Clifford bundle (CB)) and of Dirac-
Hestenes spinor fields . We show how to generalize the original Dirac-Hestenes 
equation in Minkowski spacetime for the case of a RCST. Our results are obtained 
from a variational principie formulated through the multiform derivative approach 
to Lagrangian field theory in the Clifford bundle. 

1. Introd uction 

ln the following we study the theory of Dirac-Hestenes spinor fi.elds (DHSF) and the 
theory of their covariant deriva.tives on a lliemann-Cartan spacetime (RCST) using the 
formalism developed in [l]. We also show how to ·generalize the so-called Dirac-Hestenes 
equation ( originally introduced in [2, 3] for the formulation of Dirac theory of the electron 
using the spacetime algebra Cf.1,3 in Minkowski spacetime) f~r an arbitrary lliemann-
Cartan spacetime. We use ·a novel approach ba.sed on the multiform derivative formula-
tion of Lagrangian field theory to obtain the above results. They are important for the • 
study of spinor fields in gravitational theory and are essential for an understanding of the 
relationship between Maxwell and Dirac theories and quantum mechanics)41 

l 
ln order to achieve our goals we start clarifying many misconceptions concerning 

the usual presenta.tion of the theory of covariant, algebraic and Dirac-Hestenes spinors. 
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Section 2 is dedicated to this suhject a.nd we must sa.y that it improves over other pre-
senta.tions, e.g., [41-1121 introducing a. new' a.nd important fact, namely tha.t all kind of 
spinorsfr~fered a.bove must be defmed as spec;ial equivalence classes in appropriate Clifford 
algebras. The hidden geometrical meaning of the cova.riant Dirac Spinor is disdosed and 
the physical and geometrical mea.ning of the famous Fierz identitiesÍ8 • 9 • 13• 141 becomes 
obvious. 

ln Section 3 we study the Clifford bundle oí a Riemann-C_artan spacetirne and 
its irreducible module representa.tions. This permit us to define Dirac-Hestenes spinor 
fields (DHSF) as certain equivalence classes of even sections of the Clifford bundle. DHSF 
are then naturally identified with sections of a. new bundle which we call the Spin-Clifford 
bundle. 

We discuss also the concept of a.morphous spinor fields ( ASF) ( a name introduced 
by Crumeyrollel151). The so--called Dira.c-Kãhler spinorsl161 cliscussed by Gra~111 and used 
in presentations of field theories in the latticel18• 191 are examples of ASF. We prove that 
they cannot' be used to describe fermion fields beca.use they cannot be used to properly 
formulate the Fierz identities. 

ln Section 4 we show how the Clifford and Spin-Clifford bundle techniques permit 
us to give a simple presentation of the concept o{ covariant derivative for Cliff ord fields, 
algebraic Dirac Spinor Fields and for the DHSF.!201 We show that our elegant theory 
agrees with the standard one developed for the so-called covariant Dirac spinor fields as 
developed, e.g., in l21 , 221 

ln Section 5 we introduce the concepts of Dirac and Spin-Dirac opera.tors acting 
respectively on sections of the Clifford and Spin-Clifford bundles. We show how to use the 
Spin-Dirac operator on the representatives of DHSF on the Clifford bundle. 

ln Secticm 6 we present the multiform deriva.tive approa.ch to Lagrangian field theory 
and derive the Dirac-Hestenes equation on a Riemann-Cartan Spacetime.l23l We compare 
our results with some others that appear in the literature for the cova.riant Dirac Spinor 
:fieldl24 • 251 a.nd also for Dirac-Kãhler fields.f16• 17• 261 

Finally in Section 7 we present our conclusion. 

2. Covariant, Algebraic and Dirac-Hestenes Spinors 

2.1. Some General Features about Clifford Algebras 

ln this section we fix the notations to be used in this paper and intro<luce the 
main idea.s concerning the theory of Clifford algebras necessary for the intelligibility oí the 
paper. We follow with minor modifications the conventions used in [l, 8• 91. 

Formal Definition o[ the Clifford Algebra Cl(V, Q) 
Let K be a fiel d, char K f. 2, 1 V a. vector space of finite d.imension n over K, and 

Q a nondegenerate quadratic form over V. Denote by 

x · Y = ½(Q(x + y) - Q(x) - Q(y)) (2.1) 

1In oor a.pplicationa in th.ui paper , K will be R ar C, rcspectively tlie real or cornplex field . The 
qua.terruon ring will be denot.ed by H . 
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the associa.ted symmctric bilinear form on V a.nd define the lef& contractíon J : /\ V X 

·/\ V ---. /\ V a.n<l the right contraction L : /\ V X A V _. /\ V by the roles 

( i) X J y = X • y· 
xly=x •y 

(ii) xJ(u/\v)={xJu)/\v+ti/\(xJ11) 
(u/\v)Lx= u/\(vlx)+(ulx)/\v 

( iii) ( U /\ V) J W = U J ( V J W) 
u L(v/\w) = (u Lv) Lw 

where x, y E V and u, v, w E /\V . The notation a·b will be used for contractions when it is 
clear from the context which factor is the contractor and which factor is being contracted. 
When just one of the factors is homogeneous, it is understood to be the contractor • When 
both factors are homogeneous, we agree that the one with lower degree is the contractor, 
so that for a E /\r V a.nd b E /\ªV, we have a • b = a J b if r < s and a • b = a L b if 
r s. 

Define the (Clifford) product of x E V and u E /\ V by 

XU = X /\ U + X J U (2.2) 

and extend this product by linearity and associativity to a.Il of /\V. This provides /\ V 
with a new product, and provided with thls new product /\ V becomes isomorphic to the 
Clifford algebra Cl(V, Q). 

We recall that /\V= T(V)/ I where T(V) is the tensor algebra. of V and J C T(V) 
is the bilateral ideal generated by the elements of the forro x ® x, x E V. lt can also be 
shown that the Clifford algebra of (V, Q) is Cl(V, Q) = T(V)/ IQ, where IQ is the bilateral 
ideal generated by the elements of the forro x ® x - Q(x), x E V. The Clifford algebra 
so constructed is an associa.tive algebra with unity. Since K is a field, the space V is 
naturally imbedded in Cl(V, Q) 

V T(V) 2+ T(V)/ IQ = Cl(V, Q) 
IQ = j oi and V= iQ(V) e Cl(V,Q) (2.3) 

Let Ct+(V, Q) [resp., Cl-(V, Q)] be the j-image of EB~0T 2\V) [resp., EB~oT2i+1 (V)] 
in Cl(V, Q). The elements of Cl+(V, Q) forro a subalgebra of Cl(V, Q) called the even sub-
algebra of Cl(V, Q). 

C~( V, Q) has _the following property: If A is an associative K-algebra with unity 
then ali linear mappmgs p: V-+ A such that (p(x))2 = Q(x), x E V, can be extended in 
a unique way to an algebra homomorphism p : Cl(V, Q)-+ A. 

ln Cl(V, Q) there exist three linear mappings which are quite natural. They are 
extensions of the mappings 

Main involution: an automorphism - : Cl(V, Q) -+ Cl(V, Q), extension of O : V -+ 
T(V)/lq,a(x) = -iq(x) = -x, 't/x E V. 

3 



Reversion: a.n a.ntiautomorphism - : Cl(V, Q) - Cl(V, Q) , extension of t : T"(V) -
T"(V); T"(V) 3 X= Xi1 ® . .. ®X~ 1-+ x' = ·Zir ® . • • @Xi,· 

Conjugation: -= Cl(V, Q)-+ Cl(V, Q), definêd by th: comP_<>Sition of the ma.in involution 
·with the reversion-, i.e., if x E Cl(V,Q) then z = (x) = (x). · 

Cl(V Q) can be described through its generators, i.e., if E= {Ei} (i = 1, 2, •.. , n) 
is a. Q-ortho~ormal ba.sis of V, then Cl(V,Q)is generated by 1 a.nd E/sare subjected 
to the conditions 

EiEi = Q(Ei) 
EiE; + E;Ei = O, 
E1E-z···En 1 ±1. 

The Real ClHford Algebra Cl.,,,q 

i # j; i,j = 1,2, ... ,n 
(2.4) 

Let m,p,q he a real vector spa.ce of dimension n = p+q endowed with a nondegenerate 
metric g : m,p,q x m,p,q ._ 1R. Let E = { Ei} , ( i = l, 2, . .. , n) be a.n orthonormal basis of 

{ 
+1, i=j=l, 2, ... p 

g(Ei, E;) = 9ii = g;, = -1, i = j = p + 1, ... , p + q = n 
o, i j 

(2.5) 

The Clifford algebra Clp,q = Cl(ntP,q, Q )" is the Clifford algebra over Ill, generated 
by 1 and the {Ei}, (i = 1,2, . .. ,n) such that E;= Q(E;) = g(E;,E;), E;E; = -E;E1 
( i 1 j), andl27J E1E,. .. . En -i ±1. Cl.,, q is obviously of d.imension 2n a.nd as a. vector space 
it is the direct sum of vector spa.ces /\k JRP,q of d.imensions (k), O~ k n. The canonical 
basis of /\k JRP,q is given by the elements eA = Eo1 • •• Eo.,,_, 1 $ 0:1 < .... < o:1i; n. The 
element CJ = E 1 ... En E /\nJRp,q commutes (n odd) or a.nticommutes (n even) with all 
vectors E 1 ... , En E /\ 1 .JRP,q == .JRP,q. The center of Cf.p,q is /\ 0 m_p,q = Ill if n is even and 
its is the direct sum /\ 0 :ntP,q EB /\ n m_p,q if n is odd . 

All Clifford algebras are semi-simple. If p + q = n is even, Clp,q is simple and if 
p + q = n is odd we have the following possibilities: • 

( i) Clp,q is simple +-+ e) = -1 +-+ p - q f- 1 ( mod 4) +-+ center of Clp,q is isomorphic to ct 

( ii) Clp,q is not simple (but is a direct stim of two simple algebras) +-+ c3, = + 1 +--+ p-q = 1 
(mod 4) +-+ center of Cip,q is isomorphlc to Ill EB Ill. 

All these semi-simple algebras are direct sums of two simple algebras. 
If A is an associative algebra on the field K, K Ç A, and if E is a. vector space, 

a. homomorphism p from A to End E (End E is the endomorphism algebra of E) which 
maps the unit element of A to IdE is a called a representation of A in E. The d.imension of 
E is called the degree of the representation. The addition in E together with the mapping 
A X E-+ E, (a,x) i-+ p(a)x turns E in an A-module, the representation module. 

Conversely, A being an algebra over J( and E being an A-module, E is a vector 
space over K and if a E A, the mapping 1 : a -- 10 with 1a(x) = ax, x E E , is a. 
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_ homomorph..isrn A -, End E, a.nd so it is " repr~ enlatíon of A in E. T he sludy of A 
modules is then equivalent to thc st url y of l h<' rcfH C8<'nlations of A . A reprcsentatiun p is 
faithful if its kcrncl is zero, i.c., p( a) ,: = O, V:r E E a = O. The kern~I o(/> is also known 
as the a.nnihilatoi of its modulc. p is fl aid to hc simplr. or irrcducihlc if lhe only invaria.nt 
subspaces of p(a), Va E A, a.re E a.nd {O}. Thcn thc representation module is also simple, 
this meaning tha.t it has no proper submoclule. p ÍR saíd to be aemi-.11 írnple, if it is the 
direct surn of simple moduJes, and in t.his case E is the direct sum of subspa.ces whic.h are 
globally invariant under p(a), Va E A. When no confusion arises p(a)x will be denoted 
by a• x, a * x or ax. Two A-modules E and E' (with the exterior multipücation being 
denoted respectively by • and *) are isomorphic if there exists a bijection cp : E -, E' such 
tha.t, 

cp( X + y) = cp( X) + cp( y)' V X' y E E' 
cp(a•x)=a*cp(x), VaEA, (2.6) 

and we say that representations cp and cp' of A are equivalent if their modu]es are iso-
morph..ic. This irnplies the existence of a K-linear isomorphism <p : E - E' such that 
<.po p(a) = p'(a) o cp, \/a E A or p'(a) = cpop(a)ocp- 1. If dim E= n then dim E'= n. We 
shall need: • • 

Wedderburn Theorem:f28l li A is simple algebra then A is equivalent to F(m), where 
F( m) is a matrix algebra with entries in F, F is a division algebra and m and F are 
unique (modulo isomorphisms). 

2.2. Minimal Left ldeals of Clp,q 

The minimal left (resp., right) ideais of a semi-simple algebra A are of the type Ae 
(resp., eA) , where e is a primitive idempotent of A, i.e., e2 = e and e cannot be written 
as a sum of two non zero annihitating (or orthogonal) idempotents, i.e , e f: e1 + e2 , where 
e1e 2 = e2e1 = O, e?= e1, e~= e2. 

Theorem: The maximum number of pairwise annih.ilating idempotents in F( m) is m . 

The decomposition of Cfp,q into minimal ideais is then chara.cterized by a spectral 
set { epq,i} of idempotents of Clp,q satisfying (i) Li epq,i = 1; (ii) epq,iepq ,J· = Ói jCpq,i; 

(iii) rank of epq, i is minimal -/ O, i.e., epq,i is primitive ( i = 1, 2, ... , m) 
By rank of epq,i we mean the rank of the /\ JRP+9 -morphism epq,i : tp 1-+ y;epq,i_ and 

/\ JRP,q = EBk=O /\ k(lJ!lP ,9) is the exterior algebra. of JRP,q. Then Clp,q = Ei 1;_,q, 1;,q -

C'_f, e . and ~1• E P is such that t/Jepq i = '1/;. Conversely any element 'l/J E IP' q can be p,q pq,i 'fl p,q ' ' 
characterized by an idempotent epq,i of minimal rank -/ O with t/Jepq,i = -rp. We have the 
following 

Theorem:f29l A minimal ]eft ideal of Clp,q is of the type 111 ,q = Cl11,qepq where e11q = 
½( 1 + e01 ) •.. ½( 1 + e0 ") is a prímitive ídempotent of Clp,q and_ are e01 , • • • , e0 " commuting 
elements ofthe canonical ba.sis of Clp,q such that (eaJ 2 = 1, (i = 1,2, . .. ,k) that generate 
a group of order 2k, k = q - rq-p and Ti are the Radon-Hurwitz numbers, defined by the 
recurrence formula ri+s = ri+ 4 and 
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t o 1 2 3 4 5 6 7 
o 1 2 2 :3 3 3 3 

H we have a linear mapping La : Cl.,,,~ -+ ce.,,,q, L(j(x) = ax, X E Ci.,,,q, a E Cip,q, 
then since lp,q is invariant under left multiplication with arbitra.ry elements of Cl.,,,q we 
can consider L11 l1,..,, : I.,,,q -+ I.,,,9 and taking into account Wedderbum theorem we have 

Theorem: li p + q = n is even or odd with p - q -:/- 1 (mod 4) then . 

where F = ll or C or JH, EndF(lp,q) is the algebra. of linear tra.nsformations in I.,,,q over 
the .field F, m =dimF(l.,,,q) and F eF(m)e, e being the representation of epq in F(m). 

H p + q = n is odd, with p - q = 1 ( mod 4) then 

Cl.,,,q = Endp(I.,,,q) F(m) EB F(m) 

and m = dimp(J11,q) and e.,,9Cl.,,,qepq m. EB m. or R EB nI. 
Observe tha.t F is the set 

F = {T E Endp(l.,,,q), T La = LaT, V a E Cl.,,,q} 

Periodicity Theorem:l281 For n = p + q O there exist the following isomorphisms 

Cln+s,o Cln,o ® Cls,o 
Clp+B,q Cl.,,,q ® Cis,o 

Clo,n+s Clo,n ® Cio,s 
Ci.,,,9+s Cl.,,,q ® Clo,s 

(2.7) 

We can :find, e.g., in [2s, 5• 61 tables giving the representations of all algebras Cl.,,,q 
as matrix algebras. For what follows we need 

complex numbers 
quarternions 
Pauli algebra 

spacetime algebra 
Majora.na algebra 

Dirac algebra 

We a.lso need the following 

Clo,1 (C 

Cio 2 1H 
' 

Cl3,o M2((C) 
Cit,3 M2(lli) 
Cl3,1 M4(Ill) 
Ci4,l M4((C) 

Proposition: Ctt_q = Clq,p-t, for p > l and Clt,q = Ci.p,q-l for q > 1. 

(2.8) 

From the above proposition we get the following particular results that we shall 
need la.ter 

Clt_3 Ctt1 = Cl3,o ClJ.1 Cl1,3 , 

C ® Cl3,1 Cl,.,1 (C ® Ci1,3, 

(2.9) 

(2.10) 

which mean that the Dirac algebra is the complexificatiou of both the spa.cetime or the 
Majora.na aJgebra.s. 
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Right Linear Structure for Íp,q 

We can give to the ideal lp,q = Cl.,,,9e (resp. lr,q = eCipq) a right (resp. left) 
linear structure over the field F(Cl,,,q F(m) or Clp,q F(m) ffi F(m)). A right linear 
structure, e.g, consists of an a.dd.itive group ( which is lp,q) and the mapping 

such that the usual a.xioms of a linear vector space strocture are valid, e.g., we have2 

( tf,T)T' = t/J(TT'). 
From the above discussion it is clear that the minimal (left or right) ideais of 

Cl.,,,9 are representation modules of Clp,q· In order to investigate the equivalence of these 
representations we must introduce some groups that a.re snbsets of Clp,q· As we shall see, 
thls is the key for the definition of algebraic and Dirac-Hestenes spinors. 

2.3. The Groups: ce;,q, Cli.fford, Pinor and Spinor 

The set of the invertible elements of Clp,q constitutes a non-abelian group which 
we denote by C.t;,9 . lt acts naturally on Clp,q a.s an algebra homomorphlsm_ through its 
adjoint representation 

Ad : ce;,,q -+ Aut(Cl.,,,q); u ,_. Adu, with Adu(x) = uxu-1 • 

The Clifford-Lipschitz group is the set 

(2 .11) 

(2.12) 

The set r;,q . ·: r,,:,~.r{Clt,9 is called special Clifford-Lipschitz group. 
Let N : : : Clt,~q Clp,q , N ( x) = ( ix )o ( ( )o means the scalar part of the Clifford 

number ). We defi'ne furtber: 

The Pinor group Pin(p, q) is tbe subgroup of r p,q such tha.t 

Pin(p, q) = {u E rp,qlN(u) = ±1}.-

The Spin group Spin(p, q) is the set 

Spin(p,q) = {u E r;,qlN(u) = ±1}. 

The Spin+(P, q) group is tbe set 

(2 .13) 

(2.14) 

Spin+(p,q) = {u E r;,qlN(u) = +l}. (2.15) 

Theorem: AdJPin(p,q) : Pin(p, q) -+ O(p, q) is onto with kernel Z2 . Ad!Spin(p,q) : 
Spin(p, q) -+ SO(p, q) is onto with kernel Z2. 

2 For Cl3 ,o, J = Cl3 ,o ½( l + 0'3) is a minimal Jeft ideal. ln this case it is a.lso possible to give a left linear 
structn.re for this ideal. See (4 , 51 
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O(p, q) is the pseudo-orthogona.l group of the vector spa.ce m,p,q, SO(p, q) is the 
special pseudo-orthogonal group of m,p,q. • We also denote by SO+(P, q) the connected 
component of SO(p,q). Spin+(p,q) is connected for all pairs (p,q) with the exception of 
Spin+(l,0) Spin+(0, 1) {±1} a.nd Spin+(l, 1). We ha.ve, 

O(p,q) = Pin(p,q) SO(p,q) = Spin(p,q) SO(p,q) = Spin;(p,q). 
Z2 Z2 + 2 

ln the following the group homomorphism between Spin+(p, q) and SO+(P, q) will be 
denoted 

1í: Spin+(p,q)--+ SO(p,q). 
+ 

(2.16) 

We also need the important result: 

Theorem:l29l For p+ q '$ 5, Spin+{p,q) = {u E Clt,qluü = l}. 

Lie Algebra o( Spin+(l, 3) 

lt can be shown that for each u E Spin+(l, 3) it holds 

2 

F E/\ m.1·ª e Cl1,3 (2.17) 

and F can be chosen in such a. wa.y to have a. positive sign in Eq. 2.17, except in the 
particular case F2 = O when. u = -eF. From Eq. 2.17 it follows immedia.tely that the 
Lie algebra. of Spin+(l,3) is genera.ted by the bivectors F E J\2 1R.1•3 e Cl1,3 through the 
commutator product. 

2 . ./- Geometrical and Algebraic Equivalence of the Representation Modules lp,q of Simple 
Cl•fford Algebms Clp,q 

Recall that Clp,q is a ring. We already said that the minimal lateral ideals of Clp ,q 

are of the form Íp,q = Cfp ,qepq ( or epqClp,q) where epq is a primitive idempotent. Obviously 
the minimal lateral ideais are modules over the ring Cep,q, they are representation modules. 
According to the discussion of Section 2.1, given two ideais lp,q = Clp,qepq and r;,q = 
Cf..,, qe' they are by defin.ition isomorphic if there exists a bijection 1/"J : fp q -. [' such 

r • pq T , p,q 
that, 

(2.18) 

Recalling the Noether-Skolem theorem, which sa.ys tha.t all automorphisms of a. 
simple aJgehra are inner automorphisms, we have: 

Theorem: When Clp,q is simple, its a.utomorphisms are given by inner automorphisms 
z ._ uzu- 1 , z E Clp11 , u E Ct;,,q• 

W a1.oo 11ave: 

Propositioo : When C lp,q is simplc, all its fiuit e-dimensional irreducible representations 
ar • quivalenl (Le., ioomorpbic) ouder iuner automorphisms. 
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We quote also Íhe 

Theorem:f15] lp,q and 1;,q are isomorphic if and only jf 1;,q = I,,,qX for non-zero X E .r;,q. 
We are thus Jea.d to the following defirutions: 

( i) The ideals J p,q = Cl.,,,9e1Xl and 1;,q = Cl,,,9e~ are said to be geometrically equivalent 
if, for some u E r p,q, 

' -1 epq = uepqu • (2.19) 

( ii) lp,q and 1;,q are sa.id to be algebraically equivalent if 

(2.20) 

for some u E Ct:,,q, but u </ r p,q• 

It is now time to specialize the above results for Cl1,3 M2 (1H) and to find a 
relationship between the Dirac algebra Cl4,1 M,.((j) and Cl1,3 and their respective 
minimal ideals. 

Let :Eo = {Eo, E1, E2, E3} be an orthogonal ba.sis of R 1•3 e Cl1,3, EµEv + EvEµ = 
2']µ.v, T/µv = diag( +l, -1, -1 , -1). Then, the ele.ments 

e= ½(1 + Eo) (2.21) 

are easily verified to be primitive idempotents of Cl1,3. The minimal left ideals, I = Cl1,3e, 
I' = Cl1,3e1 , I" = Cl1,3e" are right two dimensional linear spaces over the quaternion 
field ( e.g., lHe = eJH = eCl1,3e). According to the definition (ii) above these ideais are 
algebraically equívalent. For exa.mple, e' = ueu-1, with u = (1 + ~) <t r 1,3 

The elements E Cl1,3½(l + Eo) will be called mother spinors.f9 , IO) We can 
showl4, 5] that each can be wri t ten 

= t/J1e + t/J2E3E1e + t/JJE3Eoe + f/;4E1Eoe = L 'PiSi, (2.22) 
1 

(2.23) 

and where the ,Pi are formally complex numbers, i.e., each 'Pi = ( aí + biE2E 1) with 
ai , bí E R. 

We recaU that Pin(l, 3)/Z2 0(1, 3), Spin(l,3)/Z2 S0(1, 3), Spin+(l, 3)/Z2 
SO+(1 , 3) , Spin+(l , 3):::: S1(2, ~) the universal covering gronp of .ct = SO+(l,3), the 
restrict Lorentz group. 

ln order to determine the relation between Cl.,.,1 and Cl1,3 we proceed a.s follows: let 
{Fo, F1, F2 , F3 , F4} be an orthogonal ba.sis of Cl,.,1 with -PJ = Ft = J'l = Fj = F; = 1, 
FAFB = -FBFA ( A f; B ; A , B = O, 1, 2, 3, 4 ). Define the psendoscalar 

j2 = -1 A= O, 1,2,3,4 (2.24) 

Defi.ne 
(2.25) 
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--- - -

We_ can im.mediately verify that EµE11 +C11 Cµ = 27Jµv· Taking into a.ccount tha.t Cl1,3 ce+ , 1,1 
we can explicitly exhibit here this isomorprusm by considering the map g : Cl1,3 ce+ 1, 1 
generated by the linear extension of the maip g# : IR.1,3 -+ Clt,i,g#(Eµ) = Íµ = FµF1 , 

where Eµ, (µ = O, 1, 2,3) ia an orthogonal basis of m,•.3. Also g(lct1,a) = lcú , where 
• ' 1 

lc,1 ., and L.... are the identity elem.ents in Cl1,3 and cq i- Now consid.er the primitive ' 
idempotent of Cl1,3 Clt1, 

(2.26) 

and the minimal left ideal 1t1 = Cl!,1e4,1 . The elements Z1:o E It,1 can be written in an 
analogous way to () E Cl1,3½(l + .Eo) (Eq. 2.22), i.e., 

(2.27) 

where 
(2.28) 

and 
z; =ai+ &ihbi, 

are form.ally complex numbers, a;, b; E JR. 
Consider now the element J-r;0 E Cl4,1, 

f41 ½(1 + iE1&i) 
½(1 + Eo)½(l + iE1E2), (2.29) 

with i given by ·Eq. 2.24. 
Since /,;0Cl,i,1/r.0 = CfEo = fy;0~ it follows that /1;0 is a primitive idempotent of 

Cl4..1. We can easily show that each ~r.0 E Í1;0 = Cl4,1/1;0 can be written 

'1'-r;o = L V'iÍí, V'i E (C 
1 

(2.30) 

with tbe methods described in [4, 5) we find the following representation in M4 (f) for the 
generat-Ors íµ of Cft,1 Cl1,3 

( lz to~ Jo = 0 (2.J l) 

wb~re 11 it th.e onit 2 X 2 matrix a.nd O'i, ( í = 1, 2, 3) are the standard Pauli matrÍCf..-"6. 
We ímmediately recognize tbe 7-matrices in Eq. 2.31 a.s the sta.11da.rd oncs a.µpea.ring, . . g. , 
• (301 
JD l 

The matrix repre84:ntatíoo of 'li ,;0 E Í1;0 will h denot ti hy thc l¼lm lcltcr without 
the índice, í.e., &o - E M-1(q; )!, where 

í= Ff. 
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, 

We ha.ve 
1/ii o o o 

'11 == 1/J2 o o o f'i E ( ;. (1.:J3 ) 
1/>J o o o 
f/J4 o o o 

Eqs. 2.22, 2.27 And (2.30) are enough to prove that there are bijections hctween the 
elements of the ideais Cl1,3 ½(1 + Eo) , Clt,1 ½(1 + [o) and Cl4,1½(1 + l:o)½(l + il1l 2 ) . 

We can ea.sily find that the following relation exists between to E Cl-1,1 f -c0 and 
Z~ E Clt,1 ½( 1 + lo), 

(2.34) 

Decomposing Z1;0 into even and odd pa.rts re]ative to the Z2-gradnation of Ctt,1 
Cl1,3, Z1;0 = zt0 + z;0 we obtain Zl = z;0 Eo whlch clearly shows that aU informa-
tion of Z'Eo is contained in zt0. Then, 

(2.35) 

Now, if we take into accountÍ4, s] that ctt,t ½(I + [o) = Clt,1 ½(1 + lo) where the 
symbol c.et,t means cet,t Clt3 Cl3,0 we see that each Z'Eo E Clt,1 ½(1 + lo) can be 
written 

(2.36) 

Then putting z;0 = t/)1;0 /2, Eq. 2.35 can be written 

wI:0 tt,½(1 + l~)½(l + il1l2) 
- Z'Eo ½(l + il1l2). (2.37) 

The matrix representations of ZEo a.nd 1PI:o in M4(t) ( denoted by the sarne letter 
without index) in the spinorial basis given by Eq. 2.30 are 

t/J1 -t/J2 'l/)3 -,P4 ?P1 t/; • - 2 o o 
'li = t/J2 ?Pi 'lp4 -t/)3 Z= 1P2 1/Ji o o 

(2.38) 
"P3 1/Jt 1P1 -1/Ji ' VJ3 1/J: o o 
tp4 -t/J3 1/;2 1/Ji 'lp4 -t/;;, o o 

2.5. Algebraic Spinors for m,p,q 

Let Br:, =--{E0 , .É, .Ê, ... } be the set of ali ordered orthonormal basis for ]RP,q, i.e., 
each E E Br. is the set E= {E1,•••,Ep,Ep+1, ... ;Ep+q}, Ef = ... =E;= 1, E;+i = 

, ... = E;+q = -1, ErE, = -E,Er, (r-:/:- s; r,.s = 1,2, ... ,p+ q =. n). Any two basis, say, 
Eo, .É E BE are related by an element of the group Spin+(P, q) e r pq• We write, 

E = uEou-1 , u E Spin+(P, q). (2.39) 

A primitive idempotent determined in a given basis E E Br:, will be denoted eE. Then, the 
idempotents e:r.;0 , et, ef;, etc., such that, e.g., 

(2.40) 
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define ideals /'t.f,, lt, lt;, etc., that are geometrica.lly equ.ivale.nt according to the d finition 
given by Eq. 2.19. We ba.ve, 

but since ui~ = Ir.o, Eq. 2.41 can also be written 

lt=li:.ou-•. 

(2. l) 

(2.42) 

Eq. 2.42 defines a new corre.spondence for tbe elements of the ideais, lr;0 , lt,, Ir;, etc. This 
suggests the 

Definition: An algebra.ic spinor for JllP·4 is an equjvaJence class of the qnotient set { J r;} / R, 
where {Ir;} is tbe set of all geomctric.ally cquivaJent ideais, and 'I'r;0 E /1;0 and 'l't E lt, 
a.re equiva.lent, '1't ::'. 'I'i:.o (mod R) if and only if 

(2.43) 

q, r; will be ca.lled the representative of thc algcbraic spinor rn the basis E E Br;. Reca.11 
that É= uEu-1 = L'E, u E Spin+(l , 3). L E .ci. 

2.6. What is a Covariant Dirac Spinor (CDS) 

As we a.lrea.dy know Ir.o= ½(l +Eo)(l +iE1í-z) (Eq. 2.29) is a primitive idempotent 
of Cl4 ,1 M4(~)- lf u E Spin+(l,3) C Spin+(4, 1) then ali ideais ft = lr;0 u- 1 are 
geometrically equiva.lent to lr.0 , Since Eo = {fo,E1,f1,í3} is a. basis for 1R1,3 C ClI,1, the 
mea.ning of t =· uE0 u-1 is clear. From Eq. 2.30 we can write 

a.nd I. q, . - .i .. J·. E -;;, E - L 'f/1 " (2.44) 

where 
Ít = Ír.o, h = -E1f3/r;0 , h = E3fo/r.0 /4 = E1Eo/r.0 

and -;, -;, 

i1 = ft, i2 = -t1t3f t, 
. . . 

Í3 = [3Eoft, /4 = E1Eoft 

Since lP t = ') 1:0 u - l , we get 

q, t • L 1PiU-l ji = L Si1c( u-1 )t/JiÍk = L t/J1ci1c. 
i i,k k 

Then 
(2.45) 

where Sik( u-1 ) are the matrix components of the representation in M4((C) of u- 1 E 
Spin+(l, 3). As proved in [4

, 

5 1 the matrices S( u) correspond to the representation n(l/ 2

,º)EB 

n<0 ,112) of S L(2, CC) Spin+(l, 3). 
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We remark that ali the elcmcnts of thc sct { I,J of thc ideais gcometrica.lly equivalcnt 
to l-r;0 under the action of u E Spin+(l, J) C Spin+( 4, 1) have the Rame imagc / = M-1(~)/ 
where / is given by Eq. 2.32, i.e., 

where 1 µ, 11. = O, 1, 2, 3 are the Dirac matrices givcn by Eq. 2.31. 
Then, if 

'Y : Cl4,1 --+ M,1((C) = End(M..((C)/) 
x 1-+ 1(x): M4(V)f-+ M,.((C)/ 

(2.46) 

it follows that 7(í,J = ;(Eµ) = 1,,, ;(/E0) = ;(/t) = f for a.11 Íµ,Eµ Fmch tha.t 
Eµ = uíµu- 1 for some u E Spin+(l, 3). Observe that, all the informa.tion concerning 
the orthonormal frames Eo, Ê, etc., disappear in the matrix representa.tion of the jdeals 
lr;0 ,lt, ... in M4(<C) since all these ideais are mapped in the sarne ideal/= M,i((C)/. 

With the above remark and taking into account Eq. 2.45 we a.re then lea.d to the 
following 

Definition: A Covariant Dirac Spinor (CDS) for JR.'•3 is an equivaJent class of triplets 
(E, S( u ), 'li), E being an ortbonormal ba.sis ·or Ilt 1 • 3 , S( u) E n<1! 2 , 0 )(BD(0 , 1/ 2 ) reprcsentation 
of Spin+(l, 3), u E Spin+(l, 3) and \JI E M4(<C)/ a.nd 

(~, S( u ), 'li) ~ (~o, S( uo), 'llo) 

if a.nd only if 

'li= S(u)S- 1(Uo)'11o, 1t(uuõ1) = L'Eo, L E .ci, u E Spin+(l,3). (2.47) 

The pair (E ,S(u)) is calJed a spinorial frame. Observe that the CDS just defined 
depends on the choice of the original spinorial framc (E0 , uo) a.nd obvionsly, t.o different 
possible choices there correspond isomorphic ideais in M4(CC). For simplicity wc ca.n fix 
uo = 1, S( uo) = J. 

The definition of CDS just givcn agrccs with that givcn by Choquet-Bru ha.tf31] 
except for thc irreJevant fact t)1at. Choq11ct -Bruhat uses étfi the space of rcpresent.ativcs 
of a CDS the complex four -dim ensional vector spacc 4~1 instea.<J of 1 = M4(C)J. We see 
that Cboquet-Bruhat 's deíinition is weU justificd from lhe point of view of thc theory of 
algebraic spinors presented above. • 

2. 7. Algebraic Diroc Spinor.~ { A DS) and Diroc-J/éstcncs Spinors {DHS) 

We saw ín Section 2.4 that there is bijcction between t/Jr.0 E Clf,f ~ 
IJI~ E Ír,0 = Clt,1/r.0 , namcly (Eq. 2.37), 

I}, J:o = t/J i~o ½(l + l:o)½(l + ií1 í2) 

Clf 3 and 
' 

Thcn as we alI ad y said , a.11 iuform a. tiou co11 ta.in d in "1 i.:0 ( that is the rcpr ~cntative in 
t hc bas is Eo of an ;Jg bra.ic spiuor for Dl.J.3) is aJ so conta.inc<l in t/Jc0 E Cltf Clt 'i• Wc 
a re then lead to thc followin g ' •· 
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Defi.nition: Consider the quotient set {Ir.)/'R where {Ir.} is the set of all geometrically 
equivalent minimal left ideals of Cl1,3 generated by er,0 = ½(1 + Eo), :Eo = (Eo, Ei, E2, Ej) 
(i.e., lt;,It, E {Ir,} then IE = ult,u-1 = lt,u-1 for some u E Spin+(l,3)]. An algebraic 
Dirac Spinor (ADS) is an element of {Ir,}/n. Then if 4>t E lt, 4>t E lt, then 4>t ~ 
cl?t(mod R) if and only if cl?t; = cl?tu-1 , for some u E Spin+(l, 3). 

We remark tha.t (see Eq. 2.36) 

and since et = uei::u-1 for some u E Spin+(l, 3) we get3 

"Pr, = "PtU-1. (2.48) 

Now, we quoted in Section 2.3 that for p + q 5, Spin+(p,q) = {u E Clt,qluü = l}. 
Then for all _'lpr, E c.et,3 such tha.t "PE~E -:/= O we obtain immediately the polar form 

'{2.49) 

where p E JR+,,6 E 1R,R1: E Spin+(l,3),E5 = E0E1E2E3. With the above rema.rk in 
mind we present the 

Definition: A Dirac-Hestenes spinor (DHS) is an equivalence class of triplets (:E, u, "Pr,), 
where :E is an oriented orthonormal basis of 1R 1•3 C Cl1 ,3 , u E Spin+(l, 3), and 'I/J1: E 
Clt,3). We say that (E, u, '!pr,) ~ (Eo, uo, ,Pr,0) if and only if "PE = 'lpr,0 uõ1 u, 1-i( uuõ1) = L, 
E = LE0 (= u-1 u0 Eouõ1 u), u, Uo E Spin+(l,3), L E .E~. u0 is arbitrary but fixed. A 
DHS determines a set of vectors Xµ E 1R 1•3 , (µ = O, 1, 2, 3) by a. given representa.tive "Pt 
of the DHS in the basis :E by 

(2.50) 

We give yet another equivalent definition of a DHS 

Definition: A Dirac-Hestenes spinor is an element of the quotient set Clf 3/'R, such that 
gíven the basis E, t of IR 1·3 C Cl1 ,3, "Pr. E ClT,3, 1Pt E Ctt3 then 1Pt ~ ,Pr,( modR) if and 
only if "Pt = t/Jr.u- 1 , t = L:E = u:Eu- 1 , ?t(u) = L, u E Spin+(l,3), L E .E~. 

With the canonical form of a DHS given by Eq. 2.49 some features of the hidden 
geometrical nature of the Dirac spinors defined above comes to light: Eq. 2.49 says tha.t 
wben 1Pr. ~r, i- O the Dirac-Hestenes spinor ,Pr, is equivalent to a Lorentz rotation followed 
by a clilation and a duality mixing given by the term ef3E~l2, where /3 is the so-called 
Yvon-Takabayasí angtel32 • 33) and the justification for the name duaUty rot ation can be 
found in 141. We empba.size tha.t the definition of the Dira.c-llestenes spiuors gives above 
is new. ln the pa.st objects tJJ E Ctt,3 sa.tisfying 1/JX~ = Y, for X,}" E lll 1•3 C Cl 1,3 have 
been called operator spinors (soo, •.g., in [34, u, 101) . O11S have been used the departure 
point of many interestiug re.sults a.s, e.g., in l4 , 35! - [33I. 

3 l.n {9, 10} Lou.nt::St.o caJls 241 the motht:r of a.JJ the rc a.J tipÍ.Jwr?i . 
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\,V n•mrn~ t ti 1 li t hr ,.l(,11H' f1l of th<' ct ( I } o( thc ld<!.11IA gcomc ri ally cquival nt 
l.(l / '. 11 1111dt•r ''" 1 r tlon of ti (l.J) Spln+('1, 1) h ve thc Aa.m im:\ ')f' / = ,\/. e / 
wtwr" / ,., ~ivf'n li. l•~q . .2 .• 12, L<'., 

\! lu~r<' ) (', I' - O, l, 2, J n.r<' th Dirac nrn.tricc givcn by Eq. 2.31. 
1 lwn, if 

1' : Cf.4,1 
X 

-, M4(~) = End(M4(C)/) 
-y(x): M-t(t)f-. M-t(C)/ (2.46) 

i~ followN that ')'(f.1,) = 1([1,) = 11,, 1(/r.0) = --y(ftJ = J for a.li Íµ,i,µ such that 
r.,, = u[,, u - 1 for sonw u E Spin+(l, 3). Observe t,hat ail the information concerning 
th - orthonor111a.l frn.mf's E0 , É, ct.c., disappea.r in the matrix representation of the ideais 
lno, Ir,,••. in M,.(<r.) si11cc a.li thcs<' ideais are mapped in the sarne ideal/= lvfi(;)f. 

Wit.h thf' abovc rema.rk and t.aking into a.ccount Eq. 2.45 we are then lead to the 
followi11g 

Dcf\ nilion: A Cova.ria11l Dirac Spinor (CDS) for .IR 1•3 is an equivalent class of triplets 
( L, S( u ), '11 ), E bcing an orthonormal basis -of ]R 1 ·,3 , S( u) E n<1l 2 ,0 )(J)D(0 , 1 / 2 ) representation 
of Spin+(), 3), u E Spin+(l, 3) and l)í E M4((;)/ and 

if and 011ly if 

'11 = S(u)S- 1(uo)'11o, 1i(uuõ 1 ) = LEo, L E .ct, u E Spin+(l,3). (2.47) 

The pair (E, S( u)) is called a spjnorial frame. Observe that the CDS just defined 
dcpends on the d10ice of the orjginal spjnorial frame (:Eo, uo) and obvjously, to different 
possiblc choiccs t.here correspond isomorphic ideals jn M4(CC). For simplicity we can fix 
uo = 1 , S ( no) = l. 

Tht• definition of CDS just given agrees with that given by Choquet-Bruhatf311 
except for the irreleva.nt. fact tha.t Choquet-Bruhat uses as the space of representatives 
of a. CDS thc complcx four-climensjonal vector space {;4 instead of I = M4((;)J. We see 
that Choq uet-Bruhat 's definition is weU justjfied from the point of view of the theory of 
algebraic spinors presented above. • 

2. 7. Algebmic Dirac Spinors {ADS) and Dirac-Hestenes Spinors (DHS) 

We saw in Section 2.4 that there is bijection between tpi:;0 E Cet,t ~ Clt,3 and 
Ili r:.o E lr:.0 = Clf.1J~0, namely (Eq. 2.37), 

Wi:0 = 1P1::0 ½{1 + ío)½(l + il'1E2) 

Tlien, as we already sa.id, all information contained in '11 i:0 ( that is the representative in 
the basis Eo of an algebra.ic spinor for lR1•3 ) is also contained in tpr;0 E Cttt ::: Ctt,3 • We 
are then Jead to the folJowing 
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.... . Fi n hfrntí tir.'-

T h form ui ali n oí h<' f i rz id <' n it i fl • n m~ h" C OS E e' i 
Hett WC pr \ ('01 lh C' idrnlitiC', for ll' r, / t ( 1 ) c ,, ,.,) / r. and for 
Ctt:1 19. t0J . 1 tl h<'n~' nt t iv o, ~cn. forl? 1--1 a <I .. 

" l kno 
h . nns 
Ni o th 

.uo = { Eo, E1, A7 , P . } of I{ t ,. ,: tif' • rmin _. thc fotlo ín 
bilin ar c-ov;u-i, nts , 

t1 = t, ' ,o q, = ,1 ( -i, ~() q, i:,j l'l, 

J,, = tL'Yol',,'1-' = 4(~~R,, t~)o 
S,.,. = 1P 11oi,,,,, \JI = 4(,i,~0 iE,,,,t~)o, 
1' µ = \Jl 1-yo i,01 2..1 '11 = 4( ,i,~iEo123E,,tt0 )0 , 

w = - '1' 1.Yo1'0123ll1 = -4 (~~0 F4>12:t'Í't0 )0, (2. , l) 

wherc t mca.ns Hcrrni t ia.n conjuga t ion a.nrl • complex conjuga.t ion. \,Ve remark t hat t h 
reversion in Cl4 , 1 correspond s t.o t he revcrsion plus complcx conjuga.t ion in ® Cl 1,3. 

All t he bilinear covari ants a re real and ha.ve physica.l meaning in t he Dirac t heory 
of the e.lcctron but it.s geomet. ricaJ nature· appears clea.rly when these bilinear covaria nts 
are formulated with the aid of the DHS. 

In t roducing the Hodge dual of a Clifford number X E Clt,3 by 

(2.52) 

the bilinear covariants given by Eq. 2.51 become in terms of tpr;0 , the representative of a 
DHS in the orthonormal ba.sis :E0 = {Eo, E 1, E2, E3 } of ll1•3 C Cl1,J 

t/Jr;o t/Jr;o = <T + 'lfW 
t/J r;o Eo t/Jr:.o = J 
t/J-r; 0 E1 ~2 .,"/;E = S 
t/Jr;0 E3 tpr;0 = K 
t/J r:.o EoE3 ~Eo = *s 
t/)r;0 EoE1 E2.,"/;r;0 = *K 

The Fierz identities are 

J = JµEµ 
s = ½SµvEµEv 
K = KµEµ 
Eµ= T/µv Eµ 
T/µv = diag( 1, -1, -1, - 1 ) 

J 2 = a 2 + w 2 , J • K = O, J 2 = -K~, J /\ K = -(w + ~)S 

JS= -(w + 1ct1)K 
SJ = -(w - 1ct1)K 
S2 = w2 - u 2 - 2u(-lfW) 

S • K = wJ 
(*S)·K = -uJ 
(*S) • S = -2uw 

KS = -(w + *u)J 
SK = -(w - *u)J 

s-1 = -S(u-'lfW)2/(u2 +w2 ) = KSK/(u2 +w2 ) 2 
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(2 . .53) 

(2.54) 

(2.55) 

(2.56) 



--

The proof of those identitir. u. in~ lhfl DHS Ir, t,.lnwr1l • 1.rivi!tllty. 
The importance of tho hilinr,\.r cov1wll\,l\t.l'I ir1 tine, t.o l.hc~ fad t.hn.l Wcj ca.n rccuver írorn 

them the CDS 'l•~ E U-1(~)/ or n.ll ot.lwr kltJtls of l)\rnc r1plnor,~ dd\nc~d abovc tliro11~h an 
algoritbm (1 \ le to Craw-forrl (sN.' t\.lflo ~l, Hll). ltult·,,,l, rc1prc 1r1c i11t.l11f', th,! lt11a.ge1>1 of lhe hilinc;).r 
cova.ria.nts ill Cl1,3 and crt, e l-l,\ undl'r 1.h nrnpplnv, f/ (1•:,,. 1.1.t;) hy lh•~ ,rn.mc lcl,t.er 
we have that tbe following N'-sult holrl!\ t.rnr,: t,,t 

(2.57) 

where o, J, S, R, w a.re th biliu l\.f oviu·in.ntA of \1) 11" (t ® Cl1.:.,)/1:"• Tako 1/r, 0 E 
((C ® Cl1,3 )/'D<) suc.h tl,at ,)~ #, O. T\1t1n \li ,~0 1uttl 1,,.1" ,,,,11 <liffor 1,y ;-, comrSl.cx fact.or. 
We have 

(2.58) 

(2.59) 

Choosing T]~ = /r.0 , we ohtain 

(2.60) 

where ,J,1 is the fi.rst. componont of '1>~" in tho 8pinoria.1 hasis {si}. 
lt is eas.ier to recnpornt tho CUS from its bilinca.r cova.ria.nls i{ we use the DHS 

E Clj.3 (Cq,1)+ since putting 

{ ~o(l + &,)~,"-" = p 
V'l~o(l + ~,)/-.,1E·1~to = Q 

(2.61) 

(2.62) 

result.s 
f• = cr+J+w (2.63) 

and 
(2.64) 

vali<l for a -/; O, .,. O (for th ' í ca,s 'S s ~\ lltll). Prom th' .lbov • rmmlts it follows tha.t '111! 

ca1) be • sily dt'\. •rmint l frum it~· hilin '· r co ria.nt 'XCt!p\ for a. 14complex" E'l E1 phas: 
factor . 

3. Tb_ Clifford Bundl o( S1>1 e tim nntl tb ir lrrcducible lVtodule Rcprcsen-
t tauu 

3.1. 'J'lat' ·uff,,nJ llmadl" o/ .-pcac lirn 

L<'t. \1 b 
[T• .\f} b tht t 

r. ur dlnH'H ion 1, rt•:lll t' OIIIW l<'d, ,,. r,u·omp .. t "" nifolcl. Let T M 
nt 1 , \ 1t•,,11tl huudl • of AI . 
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Defl nition: A Lornnlzia.n maniíold is a. pA.ir ( M, g ), where g E sec r• 1\1 x T* M is a 
Lorcntzian mctri of Ai~naturc (1,3), i.c., for all x EM, T~M T;M JR 1•3 , where m,1,3 

is lhe vcctor Minkowski spacc. 

Definition: A spacctimc M is a tripie (M,g, v') whcre (M,g) iA a time oriented and 
spacctimc oriented Lorcntzian ma.nifold and v' is a Linear connection for M such that 
v'g = O. lf in a,ddit.ion T(V) = O and R(v') -/ O, where T and R are respectiv~ly the 
torsion an d cu rvat urc tcn sors, t hen M is sai d to be a Lorentzian spacetime. When v' g = O, 
T(V) = O, R(V) = O, M is caUed Minkowski spacetime and will be denote by IM. When 
V g = O, T(V) :/; O and R(V) = O or R(v') 1 O, M is said to be a Riemann-Ca.rtan 
spacetime. 

ln what fol.lows Pso+(l,J)(M) denotes the principal bundles of oriented Lorentz 
tetrads.Í8• 231 Ily g- 1 we denote the "metric" of the cotangent bundle. 

It is well known that the natural opera.tions on metric vector spaces, such as, e.g., 
clirect sum, tensor product, exterior power, etc., ca.rry over ca.nonically to vector bundles 
with metrics. Ta.ke, e.g., the cotangent bundle r• M. If 1r : r• M - M is the canonical 
projection, then in each fiber 1r-1 (x) = T;M '.::: nt1•3 , the "metric" g- 1 can be used to 
construct a Clifford algebra Cl(T;M) Cf.1,3 . We have the 

Definition: Tbe Clifford bundle of spacetime .M is the bundle of algebras 

Cl(M) = LJ Cl(T;M) 
xEM 

As is well known Cl(M) is the quotient -bundle 

TM 
Cl(M) = J(M) 

(3.1) 

(3.2) 

where T M = ffi~0 T°,r(M) a.nd T(O,r)(Af) is the spa.ce of r-covariant tensor fields, and 
J(M) is the bundle of ideais whose fibers at x E M are the two side ideals in T M 
generated hy tbc elemcnts of the forrn a® b + b ® a - 2g-1( a, b) for a, b E T* M. 

Let 1f'c: Cl(M)-+ M be the canonical projection ofCl(M) a.nd let {Uor} be an 
open covering of M. From the definition of a fibre bundlet22l we know that there is a 

A 
trivializing mapping cpo.: 7r; 1(Ua) - Ua X Clt,3 of the forro cpo.(p) = (1rc(p),<p 0 (p)). If 
Uop = Uo n Uo and X E Ua{J, p E 1r;1(x), then 

li. A 
<pa (p) = /or{J(x) 'Pp (p) (3.3) 

for J0 p(x) E Aut(Cl1,3), whcre lafJ : Ua/3 -+ Aut(Cl1,3) are the tra.nsition mappings of 
Cl(M). We know tbat every automorphism of Clt,3 is inner and it follows that:, 

(3.4) 

for some g0 p(x) E Clj,3, the group of invertible elements of Cl1,3- We ca.n write equiva-
lently inatea.d of Eq. 3.4, 

(3.5) 
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for some invertible element ªª/3 E Ci(T; M). 
Now, the group SO+(l, 3) has, as we kn.ow (Section 2), a natural extern,ion in t h" 

Clifford alg~bra Ci1,J• Indeed we know that Clj ,J acts naturally on Cf. 1 ,3 as an algc;>r; 
automorprusm through its adjoint representation Ad: u f----+ Ad 1,, Adu(a) = 1.tau-•. Also 
Ad lspin+(l,3) = (J defines a group homeomorphism (J: Spin+(l,3)--, S0+(1,3) which is 
onto with kernel Z2. It is clear, since Ad_ 1 = identity, that Ad : Spin+(l, 3)---+ Aut( Cli,3) 
descends to a representation of SO+(l, 3). Let us call Ad' tbis rcpresentation, i.e., Ad' : 
S0+(1, 3)-+ A~t(?l~ 13). Then we can write Ad~(u) a= Ad"a = uau-•. 

From this 1t 1s clear that the structure group of the Clifford bundle Cl(M) is 
reducible from Aut( c,\,3) to SO+( 1, 3). This follows ímmediately from the e_xjstence of 
the Lorentzian structure (M, g) and the fact that Ci(M) is the exterior bundle where the 
fibres are equipped with the Clifford product. Thus the transition maps of the principal 
bundle of oriented Lorentz tetrads Pso+(l,J)(M) can be (through Ad') taken as transition 
maps for the Cliff ord bundle. We then have the resultÍ39l 

(3.6) 

3.2. Spinor Bundles 

Definition:[241 A spinor structure for M consists of a principal fibTe bundle 
1r 11 : Pspin+(1,3)(M) _,. M with group S L(2, CC) '.:::'. Spin+(l, 3) and a map 

.s : Pspin+(1,3}(M) --+ Pso+(1,3)(M) 

sa.tisfying the following conditions 

(i) ;r(s(p)) = 1r6'p) \:/p E Pspin+(1,3)(M) 

(ii) s(pu) = s(p)?-l(u.) \:/p E Pspin+(l,J)(M) and 7t: SL(2,CC)---+ S0+(1,3). 

Now, in Section 2 we learned that the minimal left (right) ideals of Clp,q are irre-
ducible left (right) module representations of Cfp,q and we define a covariant and algebraic 
Dirac spinors a.5 elements of quotient sets of the type {11;}/JR (sections 2.ô and 2.7) in 
appropriate Clifford aJgebra.5. We defined also in Section 2 the DHS. We are now inter-
ested jn defining algebraic Dirac spinor fields ( ADSF) and also Dirac-Hestenes spinor fields 
{DHSF). 

So, in the spirit of Section 2 the following question naturally arises: Is it possible 
to find a vector bundle 1r., : S(M)--+ M with the property that ea.ch fiber over x E M is 
an irreducible module over Cl(T;M)? . . 1 

The answer to the above question is in general no. lndeed it is now well known!4º 
that the necessary and sufficient conditions for S(M) to exist is that the Spinor Structure 
bundle Ps in (l.J)(M) exists, which implies the varushing of the second Stiefcl-Whitney 

P+ '"allb class of M, i.e., w2(M) = O. For a spa.cetime M this is eqt1ivalent, as shown ongrn Y_ Y 
Gerocbl41 , • 21 that Pso+(l,J)(M) ÍB a trivial bundle, i.e., that it a.dmits a. global section. 
When Pspin+(l,J)(M) existts we sa.id that M is a spin mauifold. 
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t 

Definition: A rea.l spinor b11ndlc for M iR tltc vector bundlc 

(3.7) 

where M is a Jefl. (right) module for Cl1,3 and where JJ: Pspln+(l,a) - SO+(1,3) is a 
represent.a.tion givcn by left (right) m11Jtiplication by clemcnts o( Spin+(l, 3). 

Definition: A cornplex spir1or bundle for M is the vector bnndle 

(3.8) 

where M is a complex left (right) module for C ® Cl1,3 Cl4,1 M4(CC), and where 
µe : Pspin+(l,3 ) --+ SO+(l, 3) is a rcpresentation given by Jeft (right) multiplication by 
elements of Spin+(l, 3). 

Taking, e.g. Me = CC 4 and J.Lc the n(l/2,o) EB n(o,1/ 2) representat.ion of Spin+(!, 3) 
in End(<84 ), we recognize immediately the mmal definition of the covariant spinor bundle 
of M, as given, e.g., in [3 t]. 

Since, besides being right (left) linear spaces over Hl., the Jeft (right) ideais of Cf 1,3 

are representa.tion rno<l u]es of Cf 1 ,3 , we ha.ve the 

Definition: I(M) is a real spinor bundle for M such that M in Eq. 3. 7 is /, a minimal 
left (right) ideal of Cl1,3 . 

ln what follows we fix the ideal taking / = Cl1,3½(1+Eo) = Cl1 13e. If 7rJ: I(M) -
M is the canorúcal pro jection and { U a} is an open covering of M we know from the 

.o. 
defirution of a fibre bundle that there is a trivializing mapping Xa(q) = (1rr(q),X 0 (q)). If 
Ua(J = Ua n U13 and X E Uap, q E 1r,1(Ua), then 

A A 
Xa (q) = 9o/J(x) Xp (q) (3.9) 

for the transition maps in Spin+ (1, 3). 4 Equivalently 

A A 
Xa (q) =X{J (aapq) (3.10) 

for some a0 fJ E Cf.(T;M). Thus, for the transition maps to be in Spin+(l, 3) it is equivalent 
that the right a.ction of Hl e = cDi = eCl1,3e. be the defined in the bundle, since for 
q E 1r;1(x),x E U0 anda E JH we define qa a.s the unique element of 1r; 1(x) such that 

A li,. 

Xa (qa) =Xa (q)a (3.11) 

NaturalJy, for the vaHdity of Eq. 3.11 to make sense it is necessary that 

A A 
9ap(x )(Xa (q)a) = (9ap(x) Xa ( q))a (3.12) 

4 Wc sta.rt with tra.nsition mapa in Ct;,,., &nd then by the bundlc rcduction process we end with 
Spin+(l,3). 
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and Eq. 3.12 implies that the transition m~ps are ll-1-linear.5 

Let Í<,f3 : u013 -+ Aut(Ci1,3 ) be the transition functions for Cl(M). On the inter-
section U O r. U p n U a it must hold 

We say that a. set of lifts of the transition functions of Cl(M) is a set of elements 
in Clj 3 , {g0 p} such that if 

' 
Ad : Clt 3 -+ Aut( Cl1,3) 

' Ad(u)X = uxu-1 , VX E Cl1,3 

then Adhtl = f af3 in all intersections. . 
U sing the theory of the Cech cohomologyÍ43] it can be shown that any set of lifts 

can be used to define a characteristic class w(Cl(M)) E .H2(M,IH*), the second Cech 
cohomology group with values in Ili*, the space of all non zero IH-valued germs of functions 
in M. 

We say that we can cohereutly lift the transition maps C(M) to a set {9a.B} E Cfi,3 
if in the intersection U0 n U13 n U....,, "t/o.,/3,"/, we have 

(3.14) 

This implies that w(Cl(M)) = id(2), i.e., M is Cech trivial and the coherent lifts 
can be classified by an element of the first Cech cohomology group .H1 (M,Il:I•). Benn a.nd 
Turcker[43l proved the important result: 

Theorem: There exists a bundle of irreducible representation modules for Cl(M) if and 
only if the transition maps of Cl(M) can be coherently lift from Aut(Cl1 ,3 ) to Clj,3 . 

They showed also by defining the concept o{ equivalence classes of coherent lifts 
that such classes are in one to one correspondence with the equivalence classes of bundles 
of irreducible representation modules of Cl(A-1), I(M) a.nd I'(M) being equivalent if there 
is a bundle isomorphsim p: I(M) - I'(M) such that 

By defining that a. spin structur-e for M is an equivalence class of bundles of ir-
reducible representation modules for Ci(M), represented by l(M), Benn and Turcker 
showed. that thjs agrees with the usual conditions for M to be a spin manifold. 

Now, recalling the definition of a vector bundle we see that the prescript.ion for 
tbe construction of I(M) is the following. Let {U0} be an open covering of lv.l with J0 13 
being tbe transition functions for Cl(M) and let {g0 p} be a coherent lift wttich is then 

lo quotient the set U0 U0 X I, where e.g., J = Cl1,3 ½( l + Eo) to form the bundle 

'Wilhoot lhe 8-lineu e\.ructuu: there exie\a more gener&l bundlce o( i.rreducible modules fo-r Ct(M).[.-3) 
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. Ua Ua x I /R where R is the equivalence relation defined as follows. For each x E U0 we 
choose a minima.i left ideal /Ê(r) in Cf(T; M) by requiring6 

A o ) r.po (/t(r) = J (3.15) 

As before we introduce ªcxP E Cl(T;M) such that 
A 
<.()p ( ªª/J) = 9aP( :t:) (3.16) 

Jl. A 
Then for all X E Cl(T;M),r.p0 (X) ='Pp (aQpXa;J). So, if X E JE(z) then a0 pXa;J and 
also X a;J E I~(z)" Putting Y0 = U0 X IE(r) Y = UQYa, the equivalence relation R is 
defined on Y by (Ua, x, t/,-s;) '::::'. (Up, x, t/Jt) if and only ü 

(3.17) 

Then, /(M) = Yf'R is a bundle whlch is an irreducible module representation of 
C(M). We see that Eq. 3.17 captures nicely for a0 p E Spin+(l, 3) C Cfi,3 our discussion 
of ADS of Section 2. We then have 

Definition: An algebraic Dirac Spinor Field (ADSF) is a section of I(M) with ªª/3 E 
Spin+(l,3) e Cfi,3 in Eq. 3.17. 

From the above results we see that ADSF are equivalence classes of sections of 
Cl(M) and it follows that ADSF can locally be represented by a sum of inhomogeneous 
differential forms that lie in a minimal left ideal of the Clifford a.lgebra Cl1,3 at each 
spacetime point. 

ln Section 2 we saw that besides the ideal / = Cl1,3½(I + Ea), other idea.ls exist for 
Cl1,3 tha.t are only algebra.ically eqtúvalent to thls one. ln order to capture all possibilities 
we recall tha.t Cf..1 ,3 can be considered as a. module over itself by left ( or right) multiplication 
by itself. \Ve are thus lead to the 

Definition: The Real Spin-Clifford bundle of M is the vector bundle 

(3.18) 

It is a "principal Cf 1,3 bundle"' . Le. , it admits a free action of Ci1,3 on the right.Í7, 391 
There is a natural embedding Pspin+(l,3) (M) C Clspin+(I,3)(M) whlch comes from the 
embedd.ing Spin+(l, 3) C Clt,3 . Hence every real spinor bundle for M can be captured 
from C l spin+(l.3)(M). Cispin (l,3)(M) is different from Cl(M). Their relation can be 
d.iscovered remembering that tte representation 

u E Spin+(!, 3) 

is such tha.t Ad_ 1 = identity and so Ad descends to a representation Ad' of SO+(l, 3) 
whlch we considered a.bove. lt follows that when Pspin+(t,3)(M) exists 

(3.19) 

6 Rcc3.ll the notation of Section 2 where E is a.n orthonorm&l fn.me, etc. 
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From this it is easy to prove that indeed S~M) is a bundle of modules over the bundle of 
algebras Cl(M)J11l 

Wr: ~:id this section deficing the local Clifford product of X E sec Cl(M) by a 
section of l (.M) or Clspin+(l,3)(M). If r.p E I(M) we put X cp = </> E sec I(M) a.nd_ the 
meaning or Eq. 3.19 is that 

<P(x) = X(x )p(x) Vx EM (3.20) 

where X(x)cp(x) is the Clifford product of the Clifford numbers X(x),cp(x) E Cl1,3. 
Analogously if t/J E Clspin+(l,3)(M) 

(3.21) 

a.nd the meaning of Eq. 3.20 is the sarne as in Eq. 3.19. 
~ith _ the above definition we can "identify" from the a.lgebra.ically point of view 

sections of Cl(M) with sections of I(M) or Clspin+(i,3)(M). 

3.3. Dirac-Hestenes Spinor Fields (DHSF) 

The main conclusion of Section 3.2 is that a. given ADSF which is a. section of l(J\.1) 
can locally be represented by a. sum of inhomogeneous differential forms in Cl(M) tha.t 
lies in a. minimal left ideal of the Clifford algebra. Cl.1,3 at each point x E M. Our objective 
here is to define a DHSF on M. ln order to achieve onr goal we need to find a. vector 
bundle such that a. D HSF is a.n appropriate section. 

ln Section 2.7 we de:fined a DHS as an element of the quotient set Clt,3 /'R ~here 'R 
is the equivalence relation given by Eq. 2.50. We immediately realize tha.t if it is possible 
to define globally on M the equivalence relation R, then a DHSF ca.n be defined as a.n 
even section of the quotient bundle Cl(M)/'R. 

More precisely, if .E={,ª}, (a= O, 1,2,3) and t = {iª}, ,ª,i'ª E secf/(T*M) C 
Cl(M) are such that i'ª = R:tª R- 1 , where R E secCt+(M) is such that R(x) E Spin+(l,3) 
for all x E M, we say that E~ E. Then a DHSF is an equivalence class of even sections 
of Cl(M) such that its representa.tives lp1; and 1Pt in the basis E a.nd É define a set of 
1-form fields Xª E sec A 1(T• M) C sec Cl(M) by 

(3.22) 

i.e., tp.,; and t/Jt are equivalent if and only if 

(3.23) 

Observe that for É ~ E to be gJobally defined it is necessary that · the 1-form fields 
{;ª} and {1ª} are globally defined. lt follows that Pso+(l,3 )(M), the principal bundle of 
orthonormal frames must have a global section, i.e., it must be trivial. This conclusion 
follows clirectly from our definitions, and it is a necessary condition for the existence of a 
DHSF. lt is obvioU6 that the condition is also sufficient. This suggests the 
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1 

. Defi.nition: A spa.cetime M admits a spinor structure if and only if it is possible to ,j~fine 
a global DHSF on it. 
Then, it follows the 

Theorem: Let M be a spacetime (dim M = 4). Then the necessa.ry a.nd suffi.cient 
condition for M to admit a. spinor structure is that Pso+(l,a)(M) admits a. global section. 

ln Section 3.1 we defined thc spinor structure as the principal bundle Pspin+(l,3)(M) 
and a theorem with the sarne statement as the a.bove one is known in the literature as 
Geroch 's Theorem.Í411 Geroch 's deals with the existence of covariant spinor fields on M, 
but since we a.lready proved, e.g., that covariant Dirac spinors are equivalent to DHS, our 
theorem a.nd Geroch 's one a.re equivalent. This can be seen more clearly once we verify 
tha.t 

(3.24) 

where Clspin+{l,J)(M) = Pspin+(l,J) Xt Cl1,3 is the Spin-Cli:fford bundle defined in Sec-
tion 3.1. To see this, recall that a DHSF determines through Eq. 3.20 a set of 1-form fields 
Xª E sec /\ 1(T* M) C sec Cl(M). Under an active transformation, 

Vx EM 

we obta.in the active transformation of a DHSF which in the .E-fra.me is given by7 

1Pr:. .- 7P~ = R-rpr:, 

(3.25) 

(3.26) 

From Eq. 3.23 it follows that the action of-Spin+(l, 3) on the typical fibre Cl1,3 of 
Cl(M)/'R must be through left multiplication, i.e. given u E Spin+(l, 3) and X E Clt,3, 
and taking into account that Cl1,3 js a module over itself we can define iu E End( Cl1,3) 
by lu(X) = ux , VX E Cl1,3. ln this way we have a representation l : Spin+(l, 3) --+ 

End(Cl1,3), u lu. Then we can write, 

Cl(M) 
R = Pspin+(I,3)(M) Xt Cl1,3 

3.1. A Comment on A morphous Spinor Fields 

Crumeyro1Je[15l gjves the name of amorphous spinors fields to ideal sectíons of the 
Clifford bundJe Cf(M). Thus an amorphous spinor field e/> is a section of Cl(M) such that 
cpe = cp 1 with e bejng an jdempotent section of Cl(M). 

lt js clear from our cliscussion of the Fierz identities that are fundamental for the 
physical interpretatjon of Dirac theory that these fieids cannot be used in a physical theory. 
The sarne holds true for the so-called Dirac-Kãhler fieldsftB]-[is, 251 which are sections of 
Cl(M). These fieJds do not have the appropriate transformation law under a Lorentz 
rotation of the local tetrad field. ln particular the Dirac-Hestenes equatfon written for 
amorphous fields is not covariant ( see Section 6). We think that with our definitions of 
algebraíc and D H spinor fields physicists can safely use our formalism which is not only 
nke but extremely powerful. 

7 Observe a.lso that in the É we have for the repre5entative of the actively transformed DHSF the relation ~t = Rt/,r;R-1. 
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4. The Covariant Derivative of Clifford and Dirac-Hesten_es Spinor Fields 

ln what follows, as in Section 3, M = (M, v7, g} will denote a general Riemann-
Cartan sp ,i ::etime. Since Cf(M) = T M / J(M) it is clear that any linear connection defined 
in rM sudr. that v7g = O passes to the quotient rM/J(M) and thus define an algebra 
bundle connection.!15] ln this way, thc covariant derivative of a Clifford field A E secCl(M) 
is completely determined. 

Although the theory of connections in a principal fibre bundlé and on its associate 
vector bundles is well described in many textbooks, we recall below the main definitions 
concerning to this theory. A full understanding of the various equivalent definitions of a 
connection is necessary in order to deduce a nice formula that permit us to calculate in 
a simple way the covariant derivative of Clifford fields and of Dirac-Hestenes spinor fields 
(Section 4.3). Our simple formula arises due to the fact that the Clifford algebra Cl1,3, 
the typical fibre of CT(M ), is an associative algebra. 

4.1. Parallel Transport and Connections in Principal and Associate Bundles 

To define the concept of a connection on a PFB (P, M, 1r, G) over a four-dimensional 
manifold M ( dim G = n), we first recall that the total space P of that PFB is itself a 
( n + 4 )-di rnensional manifold and each one of i ts fi bres 1r-1 ( x), x E M, is a n-dimensional 
submanifold of P. The tangent space TpP, p E 1r-1(x) is a (n + 4)-dimensional linear 
space and the tangent space Tp1r- 1 ( x) of the fibre over x, at the sarne point p E 1r-1 ( x ), is 
a n-dimensional linear subspace of TpP. lt is called vertical subspace of TpP and denoted 
by VpP. 

A connection is a mathematical object that governs the parallel transport of frames 
along smooth paths in the base manifold M. Such a transport takes place in P, along di-
rections specified by vectors in TpP, which does not lie within the vertical space VPP. Since 
the tangent vectors to the paths on on the base manifold, passing through a given point 
x E M, span the entire tangent space TxM, the corresponding vectors X E TpP (in whose 
direction paraJJeJ transport can generally take place in P) span a four-dimensional linear 
su bspace of TpP, caUed horizontal space of TpP and denoted by H pP. The mathematical 
concept of a connection is given formally by 

Definition: A connection on a. PFB (P, M, 1r, G) is a field of vector spa.ces HpP C TpP 
such that 

( i) 7f1 : /{ ,,P -+ TrM, x = 1r(p ), is an isomorphism 

( ii) 11 ,,P depends diferentially on p 

(iii) li A,,,= R~(JJ,,) 

Tlle elemcnts of li ,,P are caJled horizontal vectors and thc elements of Tp1r- 1 ( x) = VpP 
are callcd vertic,JI vectors. ln view of the fact that 1r : P - M is a. smooth map of the 
utire manifold P onto the has manifohl M, we have that 1r' = 7r. : TP - T Nf is a 

globaJJy dcfincd rna.p from thc cutir • taugeut buncile 'f P (over lhe bunille space P) onto 
the tangent bundle T M. 
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If x = 1r(p), then due to the fact that z = x-(p(t)) for any curve in P such that 
p( t) E 1r-1 ( x) and p(O) = O, we conclude that r;' maps a.ll vertical vectors into the zero 
vector in TxM, that is 1r'(VpP) = O, and we ha.vc 

pEP 

so that every X E TpP ca.n be wrilten 

Therefore, if X E TpP we get 1r'(X) = ri'(Xh) = X E TrM. Xh is then c.alled h1Jrizo11tal 
lift of X E TxM. An equivalent definition for a. connection on P is given by 

Definition: A connection on the principal fibre bundle (P, M, 7i, G) is a. mapping f p : 

TxAf ---+ TpP, x = 1r(p) such that 

( i) r p is linear 

( ii) 1r' o r p = Idr20 M, where Idr20 M is the identity mapping in T:cM, a.nd rr' is the dHfer-
ential of the canonical projection mapping 7r : P ---+ M 

( iii) the mapping p 1---+ r P is differentiable 

( iv) r R 9 p = R~r p, g E G and R9 being the right tra.nslation in (P, 1r, M, G). 

Definition: Let C : Ill :::> J ---+ M, t i--; C(t), with x0 = C(O) E M be a curve in M and 
let p0 E P be such that 1r(Po) = x0 . The parallel transport of Po along C is given by the 
curve C : Ill ::> J - P, t i--; C( t) defined by 

d d 
dt C(t) = r P dt C(t) 

with C(O) = Po, C(t) = Pn, rr(p11 ) = x = C(t). 

We need now to know more about the nature of the vertical space VPP. For this, 
let X E TeG = (5 be an element of the Lie algebra of G a.nd let J : G ::> Ue ---- Ill, where 
Ue is some neighborhood of the identity element of 0. The vector X can be viewed as the 
tangent to the curve produced by the exponential ma.p 

4 d A 

X(/)= dt/(exp(Xt))lt=0 

Then to every u E P we can atta.ch to each X E TeG a. unique element of VPP as follows: 
Let :F : P - m. be given by 

4 d A 

Xv(P)(:F) = dt:F(pexp(Xt))lt=0 

By this construétion we have a.ttached to each X E TeG a. unique global section of TP, 
called funda.mental field corresponding to this element. We then ha.ve the canonical iso-
morphism 
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and we have 
v,i> e 

It follows that anq~_her equiva.lent definition for a connection is: 

Definition: A co~ection • on (P, M, ,r, G) is a 1-form field w on P with values in the Lie 
algebra- <.8 such that, for each p E P, • 

( i) w,(Xv) = X, Xv E YpP and X E (.8 are related by the canonical isomorphism 

( ii) Wp depends diferentially on p 

( iii) W .n,p(R~X) = (Adg-1 Wp)(X) 

lt follows that if { Çª} is a bas.is of 0 a.nd { li} is a basis of r;P, we can wri te w as 

where wª are 1-forms on P . 
The horizontal spaces H.,,P can then be defined by 

(4 .1) 

a.nd we can verify that this is equiva.lent to the definition of H .,,P given in the first definition 
of a connection. 

Now, for a. given connection w, we can associa.te with each differentiable local section 
of1r-1(U) e P, U e M, a 1-form with values in ~- lndeed, let 

,r o / = JdM 

be a local section of P. We define the 1-form JW on U with values in (5 by the pull-back 
of w by /. lf X E TrM, x EU, 

Conversely, we have: 

Theorem: Given w E T 1\1 ® (5 and a different iab)e section of 1r-1( U), (l e lvl , there 
exists one and only one connection w on r - 1(U) such tbat J·w = w. 

lt is important to keep in m.ind also the follmving result: 

Theorem: On ea-eh principal fibre bundle wit.h para.corupact base man ifold the.r e.xists 
infinitely many connections. 

A.E it. is weJl kuown, each local sect.ion / determin s a loca..1 t rivializat ion 

of ,r : P - Af by setting 41- 1(z, 9) == / (x)g. onvcr · ly, ti> d 't 'rmi1,cs Íi sin~ J( :r ) = 
~-1 (.x , e), where e is the idcntity of G. \V hall a.lso n •d t lP following 
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_ Proposition: Let hc givcn a local trivia.lization (U,t), ct,: ~- 1(U) - U x G, a.nd let 
f : M :> U - P be the local scct.ion a.ssocia.tcd to it. Then the connection form ca.n be 
written: 

(4.2) 
where w = J•w E TU ® <5. Wc usua.l\y write, for abuse of nota.tion, tt,- 1•w = w. (The 
proof of this proposition is trivial.) 

We can now determine lhe na.ture o{ spa.n(R,,P). Using local coordina.tes (xi) for 
U CM a.nd 9ii for Uc E G,8 we can write 

-td + '-t w = 9i; 9ij g wg 

and 
(ÇA,9B] = !ABc9c 

with ÍABC being the structure constants of the Lie algebra ~ -of the group G. 
Recall now that dim RpP = 4. Let its basis be 

a • a 
Ô µ + dµi;-8 X 9ij 

µ = O, 1, 2, 3 and i,j = 1, ... , n = dim G. Since H'PP = ker(w,,), we obtain, by writing 

that 
dµij = -w:ÇAik9kl 

where YAik are the matrix elements of YA· 
Consider now the vector bundle E= P Xp(G) F associated to the PFB (P, M, 1r, G) 

through the linear representation p of G in the vector space F. Consider the local trivi-
A .A 

alization cp0 : 1r- 1(U0 )-+ U0 X G of (P,M,1r,G) 1 'Pa(P) = (1r(p),'P0 (p)) with 'Pa,:r: (p): 
1r- 1(x)---. G, X E Uo E Af. Also, consider the local trivialization Xa: 1r-1 (Ua) - Ua X F 

â 
of E where 1r: E - M is the canonical projection. We have Xa(Y) = (1r(Y),Xa (y)) with 
â 
Xo,.r (y): ,r- 1(x) - F. Then, for each X E Ua/3 = {!a n u{J we must ha.ve, 

t:;. t:;.-1 t:;. t:;.-1 
X{J,.r o XfJ,z= p( 'PIJ,z o <p a,z) 

We then ha.ve 

Definition: The para/lei transport of Vo E E, ,r( Vo) = xo along the curve C : R ::::> I -
M, x 0 = C(O) from x 0 to x = C(t) is the element v1 E E such tha.t • 

11 For simplicity, G is supposcd berc 1.o bc a. mabix group. Toe gi; &rc then thc elements· of the matrix 
rcprcacnting lhe clcmcnt. g E G. 
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t,,. ,1r. -1 ,1r. 

(ii) Xo,r. (vw) = p('Po,:r (Pn)o 'Pa,xo (Po)) 'Pp,r:0 (vo) 

Definition: Let X be a vector at x0 E M tangent to the curve C : t 1---+ C( t) on M, xo = 
C(O). ThccovariantderivativeofX E secEin thedirectionofVatxois(v'vX)xo E secE 
such that 

(v'vX)(xo) = (v'vX)x0 = lim ~(X~, - Xo) 
t--+0 t ' 

(4.3) 

where xit is the "vector" Xt = X(x(t)) of a section X E sec E parallel transported along 

C from x(t) to x0 , the unique requirement on C being dd C(t)/ = V. 
t t=O 

ln the local trivializa.tion ( U a, Xa) of E we have, 

( 4.4) 

From thls la.st definition it is trivial to calculate the cova.riant deriva.tive of A E 
secCl(M) in the direction of V. Indeed, since a spin manifold for M is (Section 3) 
Cl(M) = Pso+(l,3) xAd' Cl1,3 = Pspin+(l ,J) XAd Cl1,3, g0 ,g;1 E Spin+(l,3) and p is the 
adjoint representation of Spin+(l, 3) in Cl1,3 , we can verify (just take into account that 
our bundle is trivial and put g0 = 1 for simplicity) that that we can write 

Ao -1A a,t = 9t , 9t 9t = g(x(t)) E Spin+(l, 3) ( 4.5) 

Then, 
(v'v A)(xo) = lim ~(g;1 At9t - Ao) 

t-+O t (4.6) 

Now, as we observed in Section 2, each g E Spin+(l, 3) is of the form ±eF(x), where 
F E secA2(T*M) C secCl(M), and F can be chosen in such a way to have a positive sign 
in this expression, except in the particular case where F2 = O and R = · -eF. We then 
write 9 

' 
(4.7) 

and 
2 , -11 w = - 9t9t t=O (4.8) 

Using Eq. 4.8 in Eq. 4.7 gives 

(v'vA)(xo) = {!At + ~[w,Ail} lt=O (4.9) 

Now Jet <xµ.> be a coordinate chart for U C M, ea = h~ôµ, a = O, 1, 2, 3 an 
orthonormaJ ba.sis for TU C TM. 10 Let ;ª E sec(T*M) C secCl(M) be the dual ba.sis of 

11The oeg&ti ve 11ign in lhe dcfinüioo of III ia only for convenience, in order to obtAin formulas in agreement 
wilh known rc1tu.l t.1 . 

10 Si!lce M u & apÍJt m&nifold, Pso+(l-3)(.M) ia trivi&! a.nd {e.}, ca = O, 1, 2, 3 can be &4ken M & gloh&l 
teCnd lield for lhe tugent buudle . 
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{ea} = B. Let = {,ª} and {-y0 ,a = 0,l,2,3}thereciproca.l basisof{;ª},i.e., 1ª·,b = ôb 
where • is the internai product in Cl 113. We ha.ve -yª = h:dxlA , 1a = h~11,-u,dxª. 

with 

V a,.ô11 = r~.,Ba, 

V eo Cb = w~bec, 

V e,. eb = w~bec, 

Ve,. ,y6 = -w!e'Yc, 
V µ"(b = -W~"fe, 

From Eq. 4.10 we easily obta.in (Va,. = V,.,) 

(V pA) = ôµA + ½[w,_,, A) 

2 

Veo 1b = w~b1c 

V ,_,71, = W~'Ye 

wµ = -2(8µg)g- 1 E sec /\(T* M) e secCl(M) 

where g E secCl+(M) is such that Ylc(t) _ Yt E Spin+(l,3). 

(4.10) 

( 4.11) 
( 4.12) 

( 4.13) 

( 4.14) 

We observe that our formulas, Eq. 4.10 and Eq. 4.11 for the covariant derivative 
of an homogeneous Clifford :field preserves (as it must be), its graduation, i.e., if Ap E 
secft(T*M) C secCl(M),p = 0,1,2,3,4) the~ [wµ,Ap] E secAP(T*M) C secCl(M) as 
can be ea.sily verified. 

Since 
(4.15) 

we have 
( 4.16) 

and we observe that 
( 4.17) 

For A= Aa,ª we immediately obtain 

(4.18) 

which agrees with the well known formula for the derivative of a covariant vector field. 
Also we have 

ôµ(Aa) - wµ~A1, 

ôµ{Aa)-f~0 A,e 

From the general formula 4.9 it follows im.mediately the 

( 4.19) 

Proposition: The cova.riant derivative V x on Cl(M) acts as a derivation on the a.lgebra 
of sections, i.e., for A, BE secCl(M) it holds 

Vx(AB) = (VxA)B + A(VxB) ( 4.20) 

The proof is trivial. 
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4. 2. The Lie Derivative of Cliff ord Fields 

Let V E sec T M be a vector field on M which induces a local one-parameter 
transforma~.;on group t i--+ 'Pt· It 'P•t stands as usual to the natural extension of the 
tangent map dcpt to tensor fields, the Líe derivative .Cv of a given tensor field X E sec T M 
is defined by 

(.CvX)(x) = lim !(Xr - (cp.t(x))x) 
t-+0 t 

( 4.21) 

.Cv is a derivation in the tensor algebra r M. Then, we have for a, b E sec f./(T* M) C 
Cl(M). 

( 4.22) 

Since a© b + b © a - 2g-1(a, b) belongs to J(M), the bilateral ideal generating 
the Clifford bundle Cf(M) we see from Eq. 4.21 that .Cv preservers J(M) if and only if 
.Cvg = O, i.e,, V induces a local isometry group and then V is a Killing vectorJ23J 

..{.3. The Covariant Derivative of Algebraic Dirac Spinor Fields 

As discussed in Section 3 ADSF a.re sections of the Real Spinor Bundle I(M) = 
Pspin+ (1,3/M) Xe I where I = Cf1,3 ½(1 + E0). I(M) is a subbundle of the Spin-Clifford 
bundle Clspin+(l,J)(M). Since both I(M) and Clspin+(l,J)(J\1) are vector bundles, the 
covariant derivatives of a ADSF or a DHSF can be ímmed.iately calculated using the 
general method discussed in Section 4.1. 

Before we caJculate the covariant spinor derivative Vt, of a section of I(M) [or 
Cispin+(l,J)(M)] where V E sec T M is a vector field we must recall that v'v is a module 
derivation,Í39l Le., if X E secCi(M) and 'P E secJ(M) [or secClspin+(l,J)(M)] then it 
holds: 

Proposition: Let v' be the connection in Cf(M) to whlch v'" is related. Then, 

Vt,(Xcp) = (\7vX)cp + X(Vt,cp) ( 4.23) 
The proof of this proposition is trivial once we derive _an explicit formula to compute 
Vt,(rp), <p E sec/(.M) C secCfspin+(i ,3)(M). 

Let us now caJculate the covariant derivative Vt in the direction of v, a vector at 
zo EM of <p E sec/(M) C secClspin+(I ,J)(M). 

Putting 9o = l E Spin+(l, 3) we have using the general procedure 
,1,,0 -l,1,, 
'f'U,t = 9t 'f't (4.24) 

where <1>1 t is the "vector" <Pt = <P{x(t)) of a section </> E sec f(M) e secC.l . (M) ' Sp,11.+ (1,3) 
pdaraJJeJ tra.nsported along C: R :> / - M, t C(t) from x(t) = C(t) to zo == C(O), 
-C(t)I = r, dt ,=0 

Putting a.a in Eq. 4.8 g, = e-l/'lwt, wc get by usiug Eq. 4.4 

cv:"' >< zo) = ( :t </>e + }w<t>,) I,=º ( 4.25) 
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lf {,ª) is an ort.hogonal ficld of 1-forms, 1(1 E scc/\1(T*M) C sccCl(M) dual to thc 
orthogonal framc •ficld { c4 }, cn E s e T M, g( c11 , Ct>) = TJ11b and if { -Y11} ÍR the reciprocai 
fra.me of {1ª}, i.e., ;º •"'fL = 6b (a,b = O, l,2,3) then for 1-ÀJ. 4.25 we get 

( '1.26) 

with 
l be A W4 = 2 W4 "'(b 'lc ( 4.27) 

and we recognize the 1-forms w0 as being W 4 = w(e11 ) where w = J•w, f : M --+ U X G 
is the global section used to write Eq. 4.24. The Lie algebra. of Spin+(l, 3) is, of course, 
generated by the "'vectors" { -y11 /\ ·n}. 

( 4.28) 

lf (x'l) is a coordina.te chart for U e M and 'Y(J = h:dxµ, a,µ = O, 1, 2, 3, we also obtain 

( 4.29) 

Now, since <I> E sec /(M) C secClspin (t,3)(M )' is such that ef>ei: = </> with ei: = ½Cl + ·,O) 
it follows from v'! .. <t, = v'!J <t>ei:) tha/ 

N ow, recalling Eq. 2.30 we have a spinorial basis for I( M) given by {3ª 
1, 2, 3, 4, 8A E sec I(M) with 

( 4.31) 

Then as we leam in Section 2, <P = <l>AsA where <Í>A are formally complex numbers. Then 

v'! .. <P - ea(1>)+ ½wa<P 

- [ea(<PA)+½wa<PA]sA 

- (ea('PA)+½[wa]~<f>B)sA ( 4.32) 

witb 
( 4.33) 

v'!G 4> v:J <f>AsA) 
- ea(<l>A)8A + t/>A. v:.8A ( 4.34) 

From Eq. 4.32 and Eq. 4.34 it follows tha.t 

'v'ª 8 A _ l[w ]A 8 B e4 - 2 a B ( 4.35) 
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.. -. • . -·•- -

We introduce the dual space l*(M) of I(A,f) where r(M) = Pspin (t,3)(M) Xr I where 
here the a.ction of Spin+(l, 3) on the typical fiber is on the right. A basis for r(M) is 
then p. == ( s.,.t}, A = 1, 2, 3, 4, SA E sec /*(M) such that 

(4.36) 

A simple calculation shows that 

v:GsA = -~fw11]!sB ( 4.37) 

Since Cl(M) = P(M)®l(M) (the "tensor-spinor space") is spanned by the basis {.,A®sB} 
we can write 

with 

b11]~ = ,tA = ,a(s8 ,sA) 

being the matricial representation of 1o.• It follows that 

Now, 
lBc lcB A B (2wbciaA - 2wbA1ac)s =(ia· w,,)s 

and from Wl, • _½wr,c A id, we get 

(ia· Wb)s8 = (-wba ,t)sA 

From Eq. 4.41 a.nd Eq. 4.42 we obtain 

and then 

( 4.38) 

( 4.39) 

( 4.40) 

( 4.41) 

( 4.42) 

( 4.43) 

( 4.44) 
since according to a result obta.ined in Section 2.6 [;4]~ are constant matrices. Eq. 4.43 
agrees with the result presented, e.g., in (23]. Also from W4 = ½w!c1b A 1c it follows 

( 4.45) 

We can also easily obta.in the following results. Writing 

( 4.46) 

it follows that 
( 4.4 7) 
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and 
( 4.48) 

Eq. 4 .48 agrees exa.ctly with the result presented, e.g., by Choqnet-Bruhat et a([231 for the 
components of the covariant derivative of a CDSF t/; E sec Pspin+(l,J)(M) XP C1 . It is 
important to emphasize here that the condition given by Eq. 4.43, namely V~J"Ya]1 = O 
holds true but this does not imply that V eb 1 "' = O, i.e., V need not be the so called 
connection of parallelization of the M = (M, g, V), which as well known has zero curvature 
but non zero torsion.l44l 

The main difference between V' acting on 'sections of I(M) or of Clspin+(l,3)(M) 
a.nd V acting on sections of Cl(M) is that, for <f> E sec/(M)orsecClspin+(l,3)(M) and 
A E secCT(M ), we must have 

( 4.49) 

and of course v' cannot be a.pplied to sections of I(M) or of Clspin+(l,3)(M ). 

4-4- The Representative of the Covariant Derívative of a Dirac-Hestenes Spinor Field in 
Cl(M) • • 

ln Section 3.2 we defined a DHSF t/; a.s a.n even section of Clspin+(l,3)(M). Then, 
by the sarne procedure used in Section 4.3 we get11 

( 4.50) 

and as before 
Wa = ½w:C,b /\ 1c E secCl(M) ( 4.51) 

Now, let ,ª E secClspin+(l,J}(M) such that ,ª,6 +,6,"' = 211ª6, (a,b = O, 1,2,3), 
and let us calcula.te "v!,.( t/r/) . Using Eq. 4.48 we have, 

On the other hand using Eq. 4.50 we get 

Comparision of Eq. 4.52 and Eq. 4.53 implies that •. 

v'!,/f = o 

We know that if t/J, t/J E secCl~pin+(I,3)(M) then ff{, 
R 1•3 Vx E M. Then, 

11 The mea.ning o{ e 0 , ,-'>, etc. u before. 
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( 4.53) 

( 4.54) 

xci is such that X 4 (x) E 



an d V ea ( 1/J,b ,J;) (X) E IR 1 •3, V X E M. 
We are now prepa.red to find the r~presentative of the covariant deriva.tive of ·a 

DHSF in C(M). We recall that t/J is an equivalence dass of even sections of Cl(M) such 
tha.t in the ha.sis E = { ,ª}, ,ª E sec /\ 1 (T" M) e sec Cl( M) the representative of tp is 
'Pr. E ct+(_,A.í) and the represcntatjve of Xª is Xª E sec /\ 1(T* M) e secCl(M) such tha.t 

Xª = VJr;,a.~E 

Let V be the connection acting on sections of Cl(M). Then, 

Veo. ( t/Jr;,b,J;E) = { ea( VJE) + ~[wa, 1/,i:]} ,b;fir:, 

+1/Jr:.(Ve0 --./)tÍ,r:, + tpr,1b { ea.( 1/Jr.) + ~[wa, ~r.]} = 

= [e.('Pr) + iw.,i,.]-/'Pr + 'Pr-/ [e.('Pn)- i<fasw.] • 

( 4.56) 

( 4.57) 

Comparing Eq. 4.55 a.nd Eq. 4.57 we see that the following definition suggests by 
itselí 

Definition: 
1 

cv:Q tf,)r:, = v:Q tpr:, = ea(TPr.) + 2Wa.1Pr, 
- - - 1 -(\7!0 tp)r:, = v'!0 tpr:, = ea( t/Jr;) - 2,tpr:,Wa. ( 4.58) 

( y'" ""Vb) _ y'/J ,yb = 0 e .. , E e4 1 

where (V!0 t/J )r:,,·(v'!0 {;)r:., (V:._ ,b)r:. E sec Cl(M) are representatives of v'!0 t/J (etc ... ) in the 
basis E in Cl(M) 

Observe that the result v'!0 ;b = O is compatible with the result v'! .. ha]! == O 
obtained in Eq. 4.43 and is an important result in order to write the Dirac-Hestenes 
equation (Section 6) 

5. The Form Deriva tive of the Manifold and the · Dirac and Spin-Dirac Oper-
ators 

Let M = (M, g, V) be a lliemann-Cartan manifold (Section 4), and let Cl(M ), f(M) 
and Clspin+(l,J)(M) be respectively the Clifford, Real Spinor and Spin Clifford bundles. 
Let v• be the spinorial connection acting on sections of I(M) or Clspin+(l,J)(M). Let 
also { e0}, { 1 ª} with the sa.me meaning as before and for convenience when useful we shall 
denote t.he Pf aff derivative by Ôa = ea . 

Definition: Let f he a section of Cl(M),I(M) or Clspin+{l,3)(M). The form derivative 
of the rnan.ifold is a. canonical first order differential operator ô: r ....... r such tha.t 

ar - (,ªôa)f 
:::; ;" · (ôa(r)) + -yª /\ (8a(r)) ( 5.1) 

for ,_,. E sec Cl(M) . 

31 



Definition: The Dira,e opcrator acting on scclionR of Cl(M) is a canonka.l first or<ler 
differential operator 8: A 1---> 8A, A E ser.Cl(M), such that 

(5.2) 

Definition: The Spin-Dirac operator 12 a.cting on sections of /(M) or Clspin+(t,J)(M) 
is a. canonical first order differential operator D : f - Dr (r E sec l(M)) (or f E 
sec Clspi~ (l,3)(M)] such that 

Dr (7ªV!Jf 
;ª • (V!ª f) + 1'4 /\ (V!0 r) (5.3) 

The operator 8 is sometimes called the Dirac-Kahler opera.tor when M is a Lorentzian 
manifold,[17] i.e., T(V) = O, R(V) = O, where T a.nd R are respectively the torsion and 
Riemann tensors. In this case we can show thatf11 

(5.4) 

where d is the differential operator and ô the Hodge codifferential operator. ln the spirit 
of section 4, we use the convention that ·the representa.tive of D ( acting on sections of 
Clspin+(l,3}(M)) in Cl(M) will be also denote hy 

(5.5) 

6. The Dirac-Hestenes Equation in Minkowski Spacetime 

Let M = ( M, g, V) be the Minkowski spacetime, Cl( M) be the Clifford bun-
dle of M with typical fiber Cl1,3, and let q, E secPspin+(l,3)(M) Xp (C4 (with p the 
n(l/2,o) EB n(o,l/'2) representation of SL(2, (C) Spin+(l, 3). Then, the Dirac equation for 
the charged fermion field q, in interaction with the electromagnetic field A j5[3o] (h = e = 1) 

(6.1) 

where JµJv +JvJµ = 2TJµv, yµ being the Dirac matrices given by Eq. 2.31 and A = Aµdxµ E 
sec /\ 1(T* M) 

As showed, e.g., in [7] this equation is equivalent to the following equation satisfied 
by </> E secl(M) [</>er: = </>,er: = ½U+,0 ),1'µiv+i~1'µ = 217µ",;µ E secClspin+(l,3)(M)], 

(6.2) 

where D is the Dirac operator on I(M) and A E sec /'/(T* M) C secCl(M) . 
Since, as discussed in Section 3, each </> is an equivalence cla.ss of sections of CT( M) 

we can also write an equation equivalent to Eq. 6.2 for <PE = ~eE, </>r:, eE E secCT(M), 

121n [39] thi.s opera.tor (acting on sections of /(M)) is ca.lled simply Dirac opera.tor, being the gener-
aliza.tion of the operator origina.lly introduced by Dirac. See also [I l} for comments on the use o{ this 
terminology. 
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er; = ½( 1+;º), ;P1" +;.,,,1µ = 2TJJJ", rµ E secCl(M), and 1 JJ = dxJJ for the global coordinate 
functions (xJJ). ln thls case the Dirac opera.tor {) = rJJV µ is equal to the forro derivative 
8 = "'( 1'Ôµ a.nd we have 

(6.3) 

Since each </>r. can be written <J>r. = tpr;er., ( t/Jr. E sec et+(M) being the representative of a 
DHSF) and , 0 e1; = e1;, we can write the following equation for t/Jr. that is eqruvalent to 
Dirac equationl7, 9 , to) 

(6.4) 

whlch is the so called Dirac-Hestenes equation.l2• 31 
Eq.6.4 is cova.riant under passive (and active) Lorentz transforma.tions, in the fol-

lowing sense: consider the change from the Lorentz Era.me E = { ;µ. = dxµ.} to the fra.me 
:E = {i'µ. = dxµ.} with i'JJ = R- 1,JJR and R E Spin+(l,3) being consta.nt. Then the 
representative of the Dirac-Hestenes spinor changes as already ruscusse<l in Section 3 from 
1/Jr:. to 1/Jt = t/Jr:.R- 1 . Then we ha.ve a= ;µ.ôµ = ,yJJf:J/8xJJ where (xJJ) and (xµ.) are related 
by a Lorentz transformation and 

(6.5) 

1.e.., 
(6.6) 

Tbus our definition of the Dirac-Hestenes spinor fields as an equivalence cla.ss of even 
sections of Cl(M) solves directly the question ra.ised by ParraÍ45] concerning the covariance 
of the Dirac-Hestenes equation. 

Observe ·that if v'" is the spinor covariant deriva.tive acting on "Pr. ( defined in Sec-
tion 4.4) we can write Eq. 6.4 in intrinsic form 1 i.e., without the need of introducing a 
chart for M as follows 

(6.7) 
where 1 ª is now an orthogonal ba.sis of T* M, a.nd not necessarily it is 1ª = dxª for some 
coordinate functions xª. 

It is well-known that Eq. 6.1 can be derived from the principle of stationary action 
througb va.riatjon of the following action 

S('11) = j d4x[, (6.8) 
. . 

r, = _!_(,µô q,+)q, + !_q,+(;µ8µ '11) - mq,+q, - eA g,+-v q, 2 µ _ 2 - µ -'µ (6.9) 

with w+ = w•1°. 
ln the ~ext section we shall present the rucliments of the multiform derivative ap-

proach to Lagrangian field theory (MDALFT) developed in [23] (see also [45]) a11d we apply 
tl:us formalism to obta.in the Dirac-Hestenes equation on a lliemann-Ca.rtan spacetime. 
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7. Lngrnnginn Formnlism for thc Dirac-Hestenes Spinor Field on a Riemann-
Cnrtnn Spnc time 

ln t.ld R ,;,:rtlon wp npply t h<' .oncr. pl (,f mulliforrn (or mui ivector) deriva.tives first 
int.ro<I 1H·1•d hy llc•l{ l,4•1w. nrnl SohC'.7,yk l:MJ ( IIS) to ptl"Rcnl a J,a,grangi.\n íorm~Lism for the 
Dira,<·- ll••Hl. <• 111•R .Hpi11or Íl<·ld DIISF on A. Ri<'rn a nn -( artan spa.cct ime. ln Section 7.l we 
hrii•fly p r<'ll in t. ,11r Vl'I' ion of lhe multiform dcrivativ~ a.pproach to La.gra.ngia.n fi eld theory 
for n. ~lill'onl ÍÍ l• lcl <f, RPcCl(M) wh crc M iA Minkowski spac.etime. ln Section 7.2 we 
pw,u nl tlw tli ory for thc DIISF on Riemann -Carta.o spacetimc. 

7. J. Multiform D rivativc Approach to Lagmngian Field Theory 

W d (~ Í111' a Lagra ngian dcnsity for </> E secCT(M) a.s a. ma.pping 

4 
C: (:r;,c/>(:r. ),fJf.</>(x),8·</>(x)) C,(x,cp(x),8f.cp(x),ô•</>(x)) E l\(T.M) e Cl(M) (7.1) 

wli crc 8 ÍR l.11<~ Dirac opcra.tor ;\,ct.ing on sections of13 Cl(M), a.nd by the above notation 
WC mea11 a.ri a.rbit.rary multiform function of </>, 8 /\ cp and 8 • </>. 

111 t.liis 8ectio11 wc sha.ll perform our calctllations using a.n orthonormal and coord.i-
na t,' ha.H Íl-i for thc U1.ngcnt ( a.nd cotangent) bundJe. If (xµ) is a global Lorentz chart, then 
'Y 1

' = ,lx1' a.r,d 8 = 1 11 -V 
1

, = 1 i1âµ = 8, so that the Dirac operator ( 8) coincides with the 
forrn dc riwüivc ( 8) of the manifold. 

W • int.roduce also for </> a La.grangian L(x, cp(x ), ô/\ </>( x ), ô·</>( x)) E /\ º(T• M) C 
Cl(M) by • 

[, ( X , <P( X ) , Ô /\ </>( X ) 1 Ô • cp( X ) ) = L ( X , </>(X), Ô /\ </>(X) , Ô • cp( X)) T g ( 7. 2) 

wlicr r9 C scc /\ "(T• M) is the volume forro, r9 = dxº /\ dx1 f. dx 2 f. dx3 for (xµ) a global 
Lor •ntz cl,art. 

ln wha.t follows we suppose that C,(L) does not depend explicity of x and we write 
/,( 4J, l) f. </>, 8 • </>) for thc La.grangian. Observe that 

L( </>, ô f. </>, ô • </>) = (L( </>,ô/\ </>, ô • </>) )0 (7.3) 

As nHtrn.l, wc define thc a.ction for </> as 

S( </>) = fu L( </>, ô f. </>, 8 .• </> )r9 UÇM (7.4) 

Thc field cquations for </> is obta.ined from the principie of stationa.ry action for S( </> ). Let 
TJ E H ·e Cl(M) coutaining the sarne grades as</> E sec Cl(M). We say that </> is stationary 
with n.!8pcct to L jf • 

d 1 . -d S(</> + tr,) = O 
t t=O 

(7.5) 

1., An c 11 1t111plc of IL Lii.gra.•q~fan o( thc form given by Eq. 7.1 appears, e.g., in the theory o{ the gravitational 
fi cld 111 Mi11~uw11ki s pncc timcÍ471 
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But, recalling HS[34l we see that Eq. 7 .5 is just the definition of the multiform deriva.tive 
of S( <f,) in the direction of T/, i.e., we have using the notation of HS 

ci 
TJ* 81,S(<f,) = -d S(<t,+ tTf)I 

t t=O 
(7.6) 

Then, 

Now 

d 
dt {(L( <P + t11), ô/\ ( <P + t17), ô· ( <P + tr,)]}t=0 

= T/ * Ô<J>L +(ô/\ 17) * ôa"ct,L +(ô· 'fJ) * ôa.ct,L (7.8) 

Before we calculate (7.8) for a general <f> E sec Cl(M), let us suppose that </> = (<P)r, i.e., it 
is homogeneous. U sing the properties of the multiform derivativel341 we obtain after some 
alge bra the following fundamental formulas, ( 1J = ( 7J )r) 

1J * Ô<J>rL = 1J • ÔtJ>rL • (9a.) 
(ô/\ 17) * ôa~4,rL =ô· [TJ • (ôa"t/>rL)] - (-It11 ·[ô· (ôa/\<J,rL)] (9b) 
(ô· 17) * ôa.4,rL =ô· [11 • (ôa.<J,rL)] + (-1)'"17 ·[ô/\ (ôa.~L)] (9c) 

d 
Inserting Eq. 7.9 into Eq. 7.8 and then in Eq. 7.7 we obta.in, imposing dt S(</>r +·tT/) = O, 

l {11 • [ô<J,rL - (-ira· (âô/\<J,rL) +(-ira/\ (ôa.~L)]}Tg 

+ Íu Ô• [77 • (ôâ/\<PrL + Ôô•<PrL)]Tg = O (7.10) 

The last integral in Eq. 7.10 is null by Stokes theorem if we suppose as usual that 1J 
vanishes on the boundary of U. 

Then Eq. 7.10 reduces to 

l { 1J • [ô<J,r L - ( - 1 t Ô • ( Ôa11<J,rL) + ( -1 t Ô /\ ( ªª·<l>r L)]} Tg = 0 ( 7 .11) 

Now since r, = (1/)r is arbitrary and ÔtJ>rL, Ô· (ôa114>rL), Ô/\ (ôa.<J,rL) are of grade r we get 

(7.12) 

But since ÔtJ>r(L}o = (ôtJ>rL), = Ô4,rL,ôa11<1>rL = (ôa"tJ>rL)r+t, etc Eq. 7.12 reduces to 

84>T L - (-1 )'" ô · ( 8aM,r L) + ( - 1 )'" ô /\ ( ôa.<J>r L) = O (7 .13) 

Eq. 7.13 is a multiforrn Euler-Lagrange cquation. Observe that as L == (L}'0 the equatjon 
has the gra.duation of </>r E sec/\t(J'• M) C secCi(M). 
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Now, lct X E se Ct(M) bc irnch thal X = ~:o(X), and F(z) = (F(.r))0 . From 
tltc prop rti R of thc mnlliv ctoriru dcrivative wc can eaAily obtain 

lJxF(x) - ôx(F(:r:))o 

- Z:: Ô(X),(F(x)}o = I:U>(x),F(X))o (7.14) 

ln view of thiR result if </> = ~=o(</>), E secCl(M) we get as Euler-Lagrange equation for 
</> the following equation 

r 

We can write Eq. 7.13 a.nd Eq. 7.15 in a more convenient fonn if we take into account that 
Ar· B.s = (-1r<a-t) B.s • A,(r s) and A,. A B.s = (-lt" B., A Ar. Indeed, we now have for 
<Pr that 

-ô. (ôa"tJ,rL) =ô. (ôôAt/>rL)r+l = (-l)'(ôaAt/>rL)r+l. ô 

Ô A (ôa.tJ>rL) = ô A (ôa:11rL),--1 = (-l)'(âa.i1>rL),+1A ã 
..... 

(7.16) 

(7.17) 

where ô means that the internai and exterior products are to be done on the right. Then, 
Eq. 7 .15 ca.n be written as 

We now analyse the particular and importa.nt case where 

L( </>, ô A </>, ô • </>) = L( </>, ô A </> + ô • </>) = L( </>, ô</>) 

We can easily verif y that 

8a.4>L(ô</>) = (âa4>L(ô</>)),-1 
âa"4>L(â</>) = (ôa4>L(ô</>)),+1 

Then, Eq. 7.18 can be written 
..... ..... 

Ô<J>L - (ôa4,L),+1· ô -{ôaq.L),-il ô 
..... +-

;; Ô<J,L - ((ôa1 L)· ô)r - ((ôBi;,L)A ô), 
+- +-= (ô4>L - (ô4>L)· ô -(ôai;,L)A ô),.= O 

+-= (ôtJ,L - (84,L) ô),= O 

from where it follows the very elegant equation 
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(7.18) 

(7 .19) 

(7.20) 
(7 .21) 

(7.22) 

(7.23) 



also obtained in (46] • fi 
• • • Mi k ki space or As an example of the use of Eq. 7.23 we write the Lagrangian m n ows · 

• { "'} [ µ v+ v µ - 2TJµv jµ E a Dirac-Hestenes spinor field represented m t.he frame .E = i , i 1 i i - ' .. 
sec A 1(T•M)(C sec Cl(M)] by t/J E sec Cl(M)+ in interaction with the electroma.gnetic 
field A E sec A1(T• M) e sec Cl(M). We have14, 

- o-L = Lvn = ( ( BT/1;2-y 1 - m"11º)1ºT/J - eA 'Pi "1)~ 

Then 
l)~L = (ôt/,; 2; 1 - mt/,;º);o - eAt/1-yº 

and we get the Dirac-Hestenes equation 

Now, 

Bt/1,21 1 - eA'f/J = m1/rr0 

Also.since {A.p•"'f°;j;)o = (t/J-yº;j;A}o we have 

a.nd from the above eqnatjons we get 

a.nd this gives again, 

and 

Another Lagragian that also gives the DH equation is, as can be easily verified, 

7.2. The Diroc-Hestenes Equation on a Riemann-Cartan Spacetime 

(7 .24) 

(7.25) 

(7.26) 

(7.27) 
(7 .28) 

(7 .29) 

Let M = (M, g, v') be a füemann-Cartan spacetime (RCST), i.e., 'v g = o, T(v') i= 
O, R(v') -f;. O. Let Cl(M) be the Clifford bund]e of spacetime with typical fibre Cl1 3 
and Jet. t/J E secCf+(M) be the representatjve of a Dirac-Hestenes spinor field in the 
basis E={;ª},[;º E sec/\1(T•M) C secCl(M),-yª-yb + -yb,a = 217ªb] dual to the basis 
B = {ea},ea E secTM,a,b = O, 1,2,3. 

To describe the "intera.ction" of the DHSF tp with the R..iema.nn-Ca.rta.n spacetime 
we invoke the principle of mirúma.l coupHng. This consists in cha.nging ô = iQÔa in the 
Lagra.ngia.n given by Eq. 7 .29 by 

(7 .30) 
14 Not.e ll,at we are omitting, for uke of simplicity, tbe refcrcnce l,o thc basis E in lhe nota tio o for ~-
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where V'!" is the spinor covariant deriva.tive of the DHSF introduced in Section '1.4. i.e., 

V'! .. 1/J = ea(t/J) + ~Wo'P• (7.31) 

Let (xP) be a chart for U C M and let be 80 = e0 = h~8u and 1ª = h~dxµ, with 
h!h~ = 6~, h~hr = 6b. 

We ta.ke as the a.ction for the DHSF t/J on a. RCST, 

S(,p) = f (!D,try 210 tj;- !,/ry21ºib D -mt/J'ifJ}oh- 1dx0 /\ dx 1 /\ dx 2 /\ dx3 (7.32) lu 2 2 
where D = 1ªV!0 is the operator Dira.c operator made with the spinor connection acting 
on sections of Cl(M) a.nd h-1 = (det(h:)J-1 . The Lagra.ngian L = (L)o is then 

L = h-1 ( !Dt/ry210;j,- !t/)1210.;j, D -mt/J~)o = 
2 2 

1 1 - - 1- -= h-1 ( 2[,ª(ôa + 2w0 t/J);210tjJ - 'l/ry 210(ô0 t/J - 2t/Jwa)1ª] - m'I/Jt/J)o (7.33) 

As in Section 7 .2 the principie of stationary a.ction gives 

-8v,L - (8a.,,L) ô= O. 

To obta.in the equations of motion we must recall tha.t 

a.nd 

Then Eqs. 7 .34 become 

and Eqs. 7 .37 become 

Ô1/JL - âµ(h~)ôa0 1/JL - Ôa(ôa0 wL) = O, 
ÔJL - ôµ(h~)ô80JL - Ôa(â80 ,1;_L) = O. 

ô,1,L - [ôa + Ôa ln h - c~Í,]8aca,t,L = O, . 
8~L - [ôa + 8a ln h - c~b]ô8ca~L = O. 

Let us calculate explicitly the second of Eqs. 7 .37. We have, 

ÔJ = h-1[i1ª(V' e .. tj,),210 + ¼wa,º1P7210 - m'I/J], 

ôa .. tÍJL = h-1 (-i1ª1/ry210). 
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(7.34) 

(7.35) 

(7.36) 

(7.37) 

(7.38) 

(7.39) 

(7.40) 

(7.41) 



Then, 

or 

Then 

But 

80(88 • .j,L) = (80 Jnh- 1)h- 1(-~;''t/ry21º)- h- 1t1' 0 Ô111Pr
210 = 

- 1 1 118 ., 210 = -(8alnl,)D8 .. ,j.L-h 2; a-lJi • 

Using Eq. 7.38 a.nd Eq. 7.40 in the second of Eqs. 7.37 we ob_tain 

i(Dt/J );210 + ~Wa1'"t/J7210 - mt/, + ~;º8a7:Jto - ~c~b ;ªt/J,210 = O 

D ./ 210 1 ( a )•' 210 1 b a.1_,210 .J, - O 
111"'( - 2 "'( • W 11 tjl"'( - 2cab I o/ f - mo/ - • 

;ª • Wa = wt 1·º 

a.nd since w!b = O because it is w~c = -wib we have 

a ( b b ) a i • Wa = Wba - Wab i · 

Using Eq. 7.45 in Eq. 7.43 we obta.in 

1 
Dt/J,210 - -[wta - w!b + c~b);cit/,7210 - mt/J = O. 

2 
Recalling the definition of the torsion tensor, T~b = wbo - wg0 + c~b, we get 

(D+ ½T)v,, 1,·2 + mt/11·º = O, 

where T = r:b,ª· 

(7.42) 

(7.43) 

{7.44) 

(7.45) 

(7.46) 

Eq. 7.46 is th<' Dira.c-HesteI1es equation on Rfoma.nn-Ca.rt.an spacetime. Observe 
that. jf M is a Lorentzia.n spa.cetime (Vg = O, T(v') = O, R(V) f O) then Eq. 7.46 reduces 
to 

( 7.4 7) 

tha.t is exa.ctly the equation proposed by Hest:enesf4s) as the equa.tion for a spinor field 
in a gravita.t.ional field modeJled a.s a Lorcntzia.11 spa.,E-'time J\t1. Ah,o, Eq. 7. t6 is the 
rcpresenta,t.ion in Cl(M) of the spinor equatiou proposed by Ilehl et a.lÍ251 for a covaria.nt 
Dirac spinor field Ili E Pspin+(l,J) Xp Q~'1 on a Riema.nn-Cartan spacelime. The proof of 
this Jast sta.tcmcnt is trivia.J. Indecd, fin,t wc multiply t/; in Eq. 7.46 by t.he idempotent 
fic.Jd ½( J + ;º) therchy obta.ining an cqua.tion for thc representa.tive of the Dirac algebraic 
spinor fiel<l in Cl(M). Thcu wc Lra.nsla.tc the equa.tion in J(M) = Pspin+(t,J) x 1 1, from 
where taking a matrix rnpr ~s •ntation with the techni(1ues a.lrca.c.ly discussed in Section 2 
we ohtain as ·<1uatio11 for "1 E I'spln_. ( 1 .~1) X 11 Q;", 

i = r-T (7.48) 



with T = T!bJª, Jª being the Dirac matrices (Eq. 2.31 ). 
We must comme11t here that Eq. 7 .46 1ooki; like, but it is indeed very rlifforent. 

from an equation proposcd by lvanenko and OhnkhovÍ26l as a generalizatiori of tlie so 
called Dirac-Kahler (-lva.nenko) cquation for a Rfomann-Carta.n spacetime. The main 
differences in thc .cquation givcn in Í261 a.nd our cq(7A6) is that in 1261 IJ, E secCl(M) 
wherea.s in our a.pproa.ch t/Jo E Cf+(M) is only the representative of the Dirac-Hestenes 
spinor fiel d in the ba.8is E = { ,ª} and a.lso[261 use v' e11 instead of v'!,.. 

Fina.lly we must. comment that Eq. 7.46 have played an important role in our recent 
approa.ch t.o a geometrical equivalence of Dirac and Maxwell equations[4, 381 and also to 
the double solution interpretation of Quantum Mechanics.l4• 49, 501 

8. Conclusions 

We presented in this paper a thoughtful and rigorous study of the Dirac-Hestenes 
Spinor Fields (DHSF), their Covariant Derivatives and the Dirac-Hestenes Equations on 
a Riernann-Cartan manifold M. 

Our study shows in a definitive way that Covariant Spinor Fields (CDSF) can be 
represented by DHSF that are equivalence classes of even sections of the Clifford Bundle 
Cl(M ), i.e., spinors are equivalence classes· o{ a sum of even differential forrns. We clarified 
rnany rnisconceptions and misanderstanding appearing on the ealier literature concerned 
with the representation of spinor fields by differential forms. ln particular we proved 
that the so-called Dirac-Kã.hler spinor fields that are sections of Cl( M) and are examples 
of amorphous spinor fields (Section 4.3.4) cannot be used for representation of the field 
of ferm.ionic matter. With a.morphous spinor fields the Dirac-Hestenes equation is not 
cova.riant. 

We presented also an elegant and consise fonnulation of Lagrangian theory in the 
Clifford bundle and use this powerfull method to derive·the Dirac-Hestenes equation on a 
Riemann-Cartan spacetime. 
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