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Abstract

The quark-gluon vertex is a fundamental component in Quantum Chromodynamics,

playing a crucial role in understanding nonperturbative phenomena such as chiral sym-

metry breaking and the subsequent dynamical generation of mass for quarks, as well

as in the formation of bound states that compose the hadronic spectrum through the

Bethe–Salpeter equations and their variants. Given the importance of the nonperturba-

tive description of this Green’s function, in this work, we study the quark-gluon vertex

through its Schwinger–Dyson equation. In particular, we focus on the form factors of

the transversely projected vertex. First, we consider the equation of motion for this

Green’s function derived through the 3PI formalism, where truncation is introduced at

the level of the effective action. Then, the decomposition of the vertex into a tensor

basis formed by eight elements accompanied by form factors is associated with the corre-

sponding Schwinger-Dyson equation through projections. Thus, the study of the vertex

relies on the analysis of each form factor, which is expressed as integral equations solved

numerically. In the numerical analysis, two main simplifications are considered. The

first decouples the equations, treating only the classical form factor, λ1, as an integral

equation, while the others are calculated as ordinary integrals. In the second simplifica-

tion, we employ the most recent result for the three-gluon vertex, the so-called planar

degeneracy approximation, where the full three-gluon vertex is approximated by its clas-

sical form factor expressed in terms of a unique Bose symmetric variable. We solve the

problem numerically, using as external inputs data for the gluon and quark propagators

and the three-gluon vertex computed by lattice QCD simulations. Finally, the results for

the eight form factors are presented in general kinematics, establishing a clear hierarchy

among them using dimensionless effective couplings. Comparisons are also made with the

results from lattice QCD, which calculates the quark-gluon vertex in the soft-gluon limit.

Keywords: Nonperturbative QCD; Schwinger-Dyson Equations; Quark-gluon vertex.



Resumo

O vértice quark-glúon é um componente fundamental na Cromodinâmica Quântica,

desempenhando um papel crucial no entendimento de fenômenos não-perturbativos, como

a quebra de simetria quiral e a subsequente geração dinâmica de massa para os quarks,

bem como na formação de estados ligados que compõem o espectro hadrônico através

das equações de Bethe–Salpeter e suas variantes. Dada a importância da descrição não-

perturbativa desta função de Green, neste trabalho estudamos o vértice quark-glúon por

meio de sua equação de Schwinger-Dyson. Em particular, focamos nos fatores de forma

do vértice projetado transversalmente. Primeiramente, consideramos a equação de movi-

mento para esta função de Green derivada através do formalismo 3PI, onde o truncamento

é introduzido no ńıvel da ação efetiva. Em seguida, a decomposição do vértice em uma

base tensorial formada por oito elementos acompanhados por fatores de forma é associada

às Equações de Schwinger-Dyson através de projeções. Com isso, o estudo do vértice recai

na análise de cada fator de forma, que são expressos como equações integrais resolvidas

numericamente. Na análise numérica, são consideradas duas simplificações principais. A

primeira desacopla as equações, tratando apenas o fator de forma clássico, λ1, como uma

equação integral, enquanto os demais são calculados como integrais ordinárias. Na se-

gunda simplificação, utilizamos o resultado mais recentes para o vértice de três glúons, a

chamada aproximação de degenerescência planar, onde seu fator de forma é descrito por

uma função que depende de uma única variável que possui simetria de Bose. Resolvemos

o problema numericamente, utilizando como inputs externos dados para os propagadores

do glúon e do quark e o vértice de três glúons calculados pelas simulações de QCD na

rede. Por fim, os resultados para os oito fatores de forma são apresentados em cinemática

geral, estabelecendo-se uma hierarquia clara entre eles por meio dos acoplamentos efetivos

adimensionais. Também são feitas comparações com os resultados da rede, que calcula o

vértice quark-glúon no limite soft-glúon.

Palavras-chave: QCD não-perturbativa; Equações de Schwinger-Dyson; Vértice quark-

glúon.
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Introduction

In the Standard Model of particle physics, the strong interactions between quarks and

gluons are described by a non-Abelian gauge theory based on the SU(3) color symme-

try group, known as Quantum Chromodynamics (QCD)[1, 2]. QCD is a renormalizable

quantum field theory (QFT) that exhibits the property of asymptotic freedom in the

ultraviolet (UV) region [3, 4], where the coupling—and thus the interactions—become

increasingly weak as the energy increases. Consequently, quarks behave as free particles

in the high-energy limit, and in this UV region, QCD is treated perturbatively, as the

weak coupling allows the effective use of perturbation theory.

Conversely, as energy or momentum decreases, we move from the UV region to the

infrared (IR) region, the coupling of the theory becomes increasingly strong and pertur-

bative methods are no longer applicable. However, it is in this low-momentum region

that some of the most intriguing phenomena of QCD occur, such as color confinement,

which states that quarks and gluons cannot be observed as free (colored) particles, and

the dynamical mass generation for quarks and gluons [5–13].

To achieve a comprehensive understanding of the theory, nonperturbative approaches

are crucial for investigating the IR region of QCD. The nonperturbative formalisms con-

centrate on examining the Green’s functions of the theory—specifically, the full propa-

gators and vertices. These functions capture all the information about the underlying

dynamics, both perturbative and nonperturbative, making them fundamental objects.

The Green’s functions are not physical observables themselves, as they depend on gauge

and renormalization choices. Nonetheless, they can be combined to produce physical

observables like cross sections, decay rates, and hadron masses, which are gauge and

renormalization invariant [11, 12].
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The two leading approaches employed in the nonperturbative study of QCD, both for-

mulated from first principles, are lattice QCD [14, 15] and the Schwinger-Dyson equations

(SDEs) [16, 17].

The first method, lattice QCD, involves discretizing spacetime into a lattice, where

quarks are represented as nodes and gluons as edges. The interactions between these

elements are governed by a discretized version of the QCD Lagrangian [14, 15]. The

accuracy of this method depends on parameters such as the lattice spacing a and the total

volume V ; smaller spacing and larger volume lead to higher accuracy. This method is

applicable only in Euclidean space, where lattice QCD employs Monte Carlo simulations,

and QFTs are treated similarly to statistical mechanics.

In addition to the dependence on the choice of spacing and volume parameters, the

computational power available encounters challenges in handling fermionic fields and man-

aging the wide range of physical scales in QCD, such as the differing mass scales of

quarks [18–20]. This makes exploring alternative methods, which demand fewer resources,

an interesting option.

Another nonperturbative approach for QCD is the SDE. This is a functional method

in QFTs that describes the dynamics of Green’s functions through equations of motion,

analogous to the Euler-Lagrange equations in field theory [5–9, 21–23]. Each SDE for

an n-point Green’s function is a nonlinear integral equation that involves at least one

(n+1)-point function, resulting in an infinite system of coupled equations. Consequently,

this nonperturbative approach is inherently complex, and to work with it effectively, a

self-consistent truncation scheme must be devised [23–29]. .

Each method has its own advantages and disvantages, but the exchange of information

between these two approaches is crucial. As we will see in this work, the synergy between

them is essential for a solid understanding of the IR behavior of QCD. Our primary

nonperturbative tool will be on the SDEs, though we will also engage with lattice QCD

at certain points.

In this work, our main focus is one of the most important ingredient in QCD that

couple together the gauge and matter sector: the quark-gluon vertex. Specifically we will

study the transversely projected quark-gluon vertex, which plays a crucial role in phe-

nomenological studies such as dynamical chiral symmetry breaking [5, 6, 13, 30–35], or

the formation of the bound states that comprise the physical spectrum [36–46]. Due to its
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theoretical and phenomenological significance, this Green’s function has been extensively

studied over the years using various approaches, such as perturbative methods [47–50],

lattice QCD [51–55], and the continuum [35, 42, 43, 51, 56–65]. In the context of SDEs,

a significant challenge in the literature has been the treatment of the three-gluon vertex

involved in the equations. Much of the research has focused on studying the quark-gluon

vertex, often without a detailed description of the three-gluon vertex. However, our un-

derstanding of the three-gluon vertex has substantially advanced in recent years, thanks to

the combined efforts of continuum methods and large-volume lattice simulations [66–74].

This thesis is organized into five chapters. In Chapter 1, we present an overview of

key aspects of QCD, including the Lagrangian, tree-level Feynman rules, and a discussion

on asymptotic freedom. In Chapter 2, we introduce the general framework of functional

methods and present the derivation of the standard SDEs method, from 1PI effective

action. As an application, we derive the SDE for the quark propagator, which is coupled

with the quark-gluon vertex. For our main object of study, the quark-gluon vertex, instead

of applying the usual derivation we choose to work with a more sophisticated framework,

namely nPI formalism. Specifically, we derive its SDE for the quark-gluon vertex from

3PI effective action at three-loop order [43, 57, 65, 75–77]. Two key advantages over the

standard 1PI derivation are highlighted; first, the usual method typically requires external

approximations to break the infinite tower of SDEs. However, in the 3PI formalism, it

is not necessary; instead, the truncation is performed directly at the level of the effective

action, where calculations are made up to a specified order in the loop expansion. The

second advantage concerns the renormalization procedure. In the 3PI effective action, all

vertices and propagators are fully dressed. During renormalization, each dressed compo-

nent is assigned a multiplicative renormalization constant, but these constants ultimately

simplify, leaving only a renormalization constant applied to the tree-level contribution.

This simplification effectively transforms the renormalization procedure into a subtractive

process.

In Chapter 3, we delve into the quark-gluon vertex, exploring its properties and per-

forming its general decomposition into the transverse basis τµi (p2,−p1) [60, 64, 78]. We

then link this basis to the SDE for the vertex employing our basis projectors Pµ
i (q, p2,−p1),

resulting in integral equations for the form factors λi(q, p2,−p1) associated with each ten-

sor of the basis [65]. The chapter concludes with the renormalization of these form factors.
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At this stage, the central equation we aim to solve—the form factors of the quark-gluon

vertex—will be tackled using numerical methods. Consequently, in Chapter 4, we present

the numerical results. We begin by transforming our problem from Minkowski space to

Euclidean space, which allows us to apply numerical techniques. Next, we define the key

inputs for our problem, utilizing fits for the lattice QCD data. Finally, we present the

results of our computation for the eight form factors of the quark-gluon vertex in general

kinematics. We also compare our results with lattice QCD in soft-gluon limit and we close

the chapter showing the property of multiplicity of the renormalization in our results. We

conclude the thesis in Chapter 5 with a brief discussion.
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Chapter 1
An Overview of QCD

The Standard Model of Particle Physics is the theory that brings together three of

the four fundamental interactions of nature — electromagnetism, weak force and strong

force — within a single framework, while also categorizing the elementary particles that

constitute matter. This theory is a non-abelian gauge theory with the symmetry group

SU(3)×SU(2)×U(1). In this scenario, QCD emerges as the SU(3) gauge theory respon-

sible for describing the strong interactions between quarks and gluons [1, 2].

According to the Standard Model, quarks are elementary particles categorized as

fermions with spin 1/2. They come in six flavors: up, down, charm, strange, top, and

bottom. Each quark has an electric charge that is a fraction of the electron charge e:

+(2/3)e for up (u), charm (c), and top (t) quarks, and (−1/3)e for down (d), strange (s),

and bottom (b) quarks [79, 80]. Additionally, quarks possess color charge, the quantum

number in QCD analogous to the electric charge in Quantum Electrodynamics (QED), but

in three different types: red, green, blue, and their respective anticolors [1, 81]. Hadronic

bound states are formed by combinations of three quarks (or three antiquarks) in different

colors, as seen in baryons, or by pairs of quarks and antiquarks with color and anticolor

combinations, as seen in mesons.

Gluons, the mediators of the strong interaction, are vector bosons (spin 1) whose role

in QCD is analogous to that of photons in QED. However, unlike photons, which are

neutral with respect to electric charge, gluons carry a color charge [82]. This allows them

to interact not only with quarks but also with each other. Formally, this remarkable

property arises from the non-Abelian nature of the SU(3) group, distinguishing QCD as a

significantly richer and more complex theory compared to its Abelian counterpart, QED.
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As a result, QCD exhibits a range of physical properties and phenomena that are

unprecedented in other QFTs. A striking example is asymptotic freedom, where the

value of the QCD coupling constant decreases as energy increases, leading to increasingly

weaker interactions. This means that in the UV region, the coupling tends to zero, and

quarks behave as free particles. Due to this feature, perturbative methods are effective for

studying QCD at high energies, as the coupling constant becomes a suitable parameter

for applying perturbation theory.

In contrast, in the low-energy limit, known as the IR region, the theory exhibits the

opposite behavior: it becomes strongly coupled. Consequently, perturbative methods lose

their validity in this domain. However, it is precisely in this region that several intriguing

and theoretically challenging phenomena, such as color confinement, unfold [10]. Color

confinement, in essence, means that quarks are only found in bound states with “white”

color in nature, never as free particles. When one tries to separate quarks within a hadron,

the required energy increases with distance. Eventually, the energy needed to separate

the quarks becomes so large that new hadrons are created instead of isolating the quarks.

The complete description of color confinement remains an open problem in theoretical

physics.

Another interesting phenomena concerns the masses of the hadron spectra. When

one naively sums the three current quark masses (the ones which appear in the QCD la-

grangian), composing the proton (uud), the total amounts to only about 15 MeV, whereas

the proton mass is around 1 GeV. This discrepancy indicates that the total mass is dynam-

ically generated in QCD. This dynamical mass generation, for both quarks and gluons,

can only be understood through nonperturbative mechanisms.

In this chapter, we will provide a QCD overview, beginning with its lagrangian and

the associated tree-level Feynman rules. We will then compute the QCD β function at

the one-loop level to illustrate the emergence of asymptotic freedom. In the subsequent

section, we will initiate the exploration of the main nonperturbative methods QCD, which

forms the core focus of this work.
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1.1 Lagrangian of QCD

The description of a QFT is provided through its Lagrangian. The QCD Lagrangian is

derived from the combination of the classical Yang-Mills theory [82], which describes the

non-Abelian gauge theory and the Dirac lagrangian. After performing the quantization

procedure through the Faddeev-Popov approach [83], the lagrangian is given by

LQCD = LDirac + LYM + LGF + LGhost , (1.1)

where

LDirac = ψ(iγµDµ −m)ψ , (1.2)

LYM = −1

4
(F a

µν)
2 , (1.3)

LGF =
1

2ξ
(∂µAa

µ)
2 , (1.4)

LGhost = ca(−∂µDac
µ )cc , (1.5)

LDirac stands for the Dirac lagrangian, LYM for the Yang-Mills lagrangian, LGF for the

gauge-fixing term, and LGhost represents the ghost contribution.

The Dirac lagrangian describes the quarks and antiquarks dynamics, which are rep-

resented by the spinors ψ and ψ̄ (the spinors indices are omitted). It also describes the

interaction between quark field ψ and gluon vector field Aa
µ through the covariant deriva-

tive Dµ in the fundamental representation,

Dµ = ∂µ − igtaAa
µ , (1.6)

where g is the coupling constant, and the ta = λa/2 are the Gell-Mann matrices, hermitian

traceless generators of the color group SU(3), which obey the relations [84],[
λa

2
,
λb

2

]
= ifabcλ

c

2
, (1.7)

these relations define the algebra of SU(3), with fabc being the antisymmetric structure

constant of the group. The non-Abelian feature of QCD arises from the fact that not all

structure constants fabc are equal to zero, indicating that it is a non-commutative theory.

Significant implications arise from this, as seen in the lagrangian that describes gluons,

which we discuss below.

The pure Yang-Mills lagrangian, Eq. (1.3), describes only gluons through field-strength

tensor F a
µν [82],

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (1.8)
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this part of the QCD lagrangian contains the gluon kinematic term, which is a quadratic

term in Aa
µ in the derivatives, which is responsible for generating the propagation. Due to

the non-Abelian feature of the SU(3) (fabc ̸= 0), it also includes the self-interactions of

the gluons, with cubic and quartic terms in gluon field, which generate the conventional

three-gluon and four-gluon vertices, see Fig. 1.2. Setting fabc to zero results in an Abelian,

QED-like theory, where the gauge boson has no such self-interactions.

The LDirac and LYM constitute the classical QCD theory, and are separately invariant

under local gauge transformations of the SU(3) group. For an infinitesimal transformation

parameterized by local parameters αa(x), the variations in the quark and the gluon field

are given by

ψ → (1 + iαata)ψ , (1.9)

Aa
µ → Aa

µ +
1

g
∂µα

a − fabcαbAc
µ . (1.10)

Due to the gauge transformation of the field Aa
µ, physical process calculated with LYM

exhibits a continuous infinity of physically equivalent field configurations [85]. To elim-

inate the ambiguities, and count each physical configuration only once the gauge-fixing

procedure is employed. The complete QCD lagrangian, including the remaining terms

from Eq. (1.1), is obtained after performing gauge fixing and quantizing the classical the-

ory. This is achieved using the covariant Faddeev-Popov method [83], which introduces

the gauge-fixing lagrangian LGF, where ξ is the gauge-fixing parameter, and ∂µAa
µ = 0 is

the gauge-fixing condition. This procedure not only yields the gauge-fixing term but also

generates a residual Lagrangian LGhost, that introduces new scalar fields, ca and c̄a, in-

terpreted as particles called ghosts and antighosts, respectively. Additionally, it describes

the interaction of these ghost fields with the gluons through the covariant derivative in

the adjoint representation, given by

Dac
µ = δac∂µ + gfabcAb

µ . (1.11)

where δac is the Kronecker delta.

Ghosts exhibit unique characteristics: they are scalar particles that obey Fermi-Dirac

statistics. This means they are spin-0 particles (bosons) whose fields obey anticommu-

tation relations (fermions). This contradiction leads to a violation of the spin-statistics

theorem. However, this is not problematic within the scope of QCD, as these particles are

virtual and do not appear in physical processes, only in internal processes. Their main
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contribution is to ensure the unitarity of the theory.

1.1.1 Chiral symmetry

Besides color symmetry, the QCD Lagrangian exhibits another symmetry particularly

associated with the fermionic sector of the theory: the chiral symmetry. In fact, this is an

approximate symmetry that arises in the theory when light quarks, such as the up and

down quarks, are assumed to have negligible mass. In this framework, the left-handed and

right-handed fermionic fields transform independently, rendering the Lagrangian invariant

under such chiral transformations.

Let us consider the decomposition of a spinor ψ that represents quark fields into its

right-handed ψR and left-handed ψL chiral components,

ψ =

 ψL

ψR

 . (1.12)

Each component is obtained through the chiral projectors P± applied to the spinor, as

follows,

ψR = P+ψ , ψR = ψP− ,

ψL = P−ψ , ψL = ψP+ . (1.13)

where the chiral projectors are, respectively

P± =
1

2
(1± γ5) . (1.14)

The chirality of a spinor can be defined as the eigenvalue of the matrix γ5. From

Eq. (1.13), we see that the right-handed spinor has an eigenvalue of +1, while the left-

handed spinor has an eigenvalue of -1. That is,

γ5ψR = ψR , ψRγ5 = −ψR ,

γ5ψL = −ψL , ψLγ5 = ψL . (1.15)

To observe the manifestation of the chiral symmetry in the theory, let us consider the

Dirac Lagrangian, given by Eq. (1.2), in the massless limit, i.e.,

LD = iψγµDµψ . (1.16)

We can express the above Lagrangian in terms of the chiral components of the quark field,

where we use,

ψγµψ = ψLγ
µψL + ψRγ

µψR , (1.17)
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to obtain,

LD = iψLγ
µDµψL + iψRγ

µDµψR (1.18)

In this case, it is evident that in this massless limit, the left-handed and right-handed

components do not mix, making Eq. (1.16) invariant under a global phase transformation

given by

ψ → eiθγ5ψ , (1.19)

where θ is a real phase constant. Considering Eq. (1.15), the transformations of the chiral

components of the quark field are

ψL → e−iθψL , ψR → eiθψR . (1.20)

Therefore, each component transforms independently. Due to the change in sign, the

fields transform with opposite chirality.

On the other hand, if we consider the mass term of the Dirac Lagrangian, mψψ,

expressed in terms of the chiral components

mψψ = m
(
ψLψR + ψRψL

)
, (1.21)

we obtain a mix of the chiral components and, therefore, is no longer invariant under the

chiral transformation Eq. (1.19). Thus, the introduction of a non-zero mass for the quarks

explicitly breaks the chiral symmetry of the Lagrangian.

Notice that Eq. (1.17), and consequently the transformation given by Eq. (1.19),

emerges only because the matrix γ5 anticommutes with the Dirac matrix γµ, {γ5, γµ} = 0.

Therefore, one can generalize this concept for further quantities Q, which says that the

general condition for preserving chiral symmetry is [57]

{γ5, Q} = 0 . (1.22)

1.1.2 Feynman rules

From Eq. (1.1), one can directly derive the Feynman rules in momentum space for

the fundamental propagators and vertices of the theory at the tree-level. The expressions

for the quark Sab
(0)(p), gluon ∆

ab(0)
µν (p), and ghost Dab

(0)(p) propagators are presented in

Fig. 1.1. Similarly, the expressions for the four fundamental vertices: quark-gluon, ghost-

gluon, three-gluon, and four-gluon are listed in Fig. 1.2, where we extract the coupling

constant and the color structure, when this is feasible.
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a b Sab (0)(p) = δabS(0)(p) S(0)(p) =
i(/p+m)

p2 −m2 + iϵ

a b ∆
ab (0)
µν (p) = δab∆

(0)
µν (p) ∆(0)

µν (p) = −i
[
gµν − (1− ξ)

pµpν
p2

]
1

p2 + iϵ

a b Dab (0)(p) = δabD(0)(p) D(0)(p) =
i

p2 + iϵ

Figure 1.1: Feynman rules for the quark, gluon, and ghost propagators at tree-level.

Of course, these Feynman rules are meaningful only at an energy scale where pertur-

bative treatment is applicable, which, for QCD, corresponds to the UV or high-energy

regime. This is because they do not incorporate any quantum corrections, and thus they

accurately represent the actual propagation and interaction only when the coupling is

small and the corrections are insignificant.

1.2 Asymptotic Freedom

Asymptotic freedom emerges from the study of the β function. In renormalizable

field theories, the coupling constant receives corrections and becomes dependent on the

energy scale. This effect is known as the running coupling and it is described by the

renormalization group equation or the β function of the theory.

The β function expresses the rate at which the renormalized coupling αs(µ
2) varies

with the renormalization scale µ. Therefore, the renormalization group equation is given

by

β(αs) = µ
dαs(µ

2)

dµ
. (1.23)

One can expand the β function perturbatively, resulting in

β(αs) = µ
dαs(µ

2)

dµ
= −

[
α2
s

π
β0 +

α3
s

π2
β1 + · · ·

]
. (1.24)

For an SU(N) gauge theory, the β function was first calculated by Gross and Wilczek

[3] and Politzer [4] simultaneously in 1973, yielding:

β0 =

[
11

6
CA − 1

3
nf

]
, β1 =

[
17

12
C2

A − 1

24
nf (10CA + 6CF )

]
, (1.25)

where CA = N e CF = N2−1
2N

are the eigenvalues of the quadratic Casimir operator in the

adjoint representation, and nf is the number of fermion flavors.
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µ, a

q

rp
igtaΓ(0)

µ (q, r, p) Γ(0)
µ (q, r, p) = γµ

µ, a

mn

q

rp
−gfmnaΓ

(0)
g,µ(r, p, q) Γ

(0)
g,µ(r, p, q) = rµ

q

µ, a

α,mβ, n

rp
gfamnΓ

(0)
µαβ(q, r, p)

Γ
(0)
µαβ(q, r, p) = gαβ(r − p)µ + gµβ(p− q)α

+gµα(q − r)β

ρ, rσ, s

µ,m ν, n

−ig2Γmnrs (0)
µνρσ (q, r, p, t)

Γmnrs (0)
µνρσ = fmsef ern (gµρgνσ − gµνgρσ)

+fmnef esr (gµσgνρ − gµρgνσ)

+fmref esn (gµσgνρ − gµνgρσ)

Figure 1.2: Feynman rules for the quark-gluon, ghost-gluon, three-gluon and four-gluon

interaction vertices at tree-level; we assume all momenta entering.

In the one-loop approximation, we consider only the leading term in the expansion of

the β function. With this approximation we can solve the differential equation given in

Eq. (1.24), allowing us to express the coupling as

αs(Q
2) =

2π

β0 ln
(
Q2/Λ2

QCD

) , (1.26)

where the renormalization scale of the theory is given by,

ΛQCD = µ exp

[
π

αs(µ2)β0

]
. (1.27)

In the limit of Q2 → Λ2
QCD, the denominator of Eq.(1.26) approaches a pole, causing

the coupling to diverge. This pole, known as the Landau Pole, marks the momentum

scale at which the perturbative approach to the theory becomes invalid. However, it

is important to note that the expression for the running coupling in Eq.(1.26) loses its

validity well before this pole is reached, as it is derived perturbatively. Specifically, it

is based on a one-loop calculation and is therefore reliable only as long as higher-order

contributions can be neglected, which is true only for small values of αs.
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Moreover, the sign of β0 indicates the direction in which the Landau pole occurs,

thereby determining the regime where the perturbative method is valid. Therefore, it is

important to examine the implications of the sign change in Eq.(1.25) for the behavior

described by Eq.(1.26). If β0 is negative, QCD has weak coupling in the IR region, with

the coupling increasing in the UV. Conversely, a positive β0 ensures strong coupling in

the IR, with the theory becoming weak coupling in the UV. Notice that in the asymptotic

limit of Q2 → ∞, αs(Q
2) → 0, i.e., the strong force in the nature behaves as free theory

in this limit. This behavior is known as asymptotic freedom [3, 4].

For QCD, where the gauge group correspond to color SU(3), i.e., with CA = 3 in the

Eq. (1.25), one can conclude that, for known number of quark flavors, generally up until

nf ≤ 16 we have the asymptotic freedom, the coupling decreases when the momentum

increases. Such a feature results in the quark behaving almost as free particles at short

distances, or high energy limit, as experimentally checked in the deep inelastic scattering.

Additionally, asymptotic freedom allows us to apply perturbative methods and treat the

coupling constant as a good expansion parameter in the UV region.

Regarding the QCD scale, ΛQCD is generally estimated to lie within the 200–400 MeV

range. This implies that reaching the nonperturbative regime in QCD does not require

delving too far into the IR; it occurs at energy scales typical in particle physics. This

regime is particularly fascinating because it gives rise to phenomena like color confinement

and dynamical mass generation, which cannot be addressed by the standard perturbative

approaches in QFT. One of the primary methods for studying this nonperturbative regime

is the SDEs, which will be explored in detail in the next chapter, as they are central to

the work presented here.

Lastly, Fig. 1.3 provides a detailed overview of the QCD coupling αs(Q
2) as a function

of the energy scale Q2, based on data from the Particle Data Group [86]. It is important to

emphasize that αs(Q
2) is not a physical observable by itself; instead, its value is inferred

indirectly from experimental measurements
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αs(MZ
2) = 0.1179 ± 0.0010

α
s(

Q
2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)

DIS jets (NLO)
Heavy Quarkonia (NLO)

e+e- jets/shapes (NNLO+res)
pp/p-p (jets NLO)

EW precision fit (N3LO)
pp (top, NNLO)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1  10  100  1000

Figure 1.3: Summary of measurements of αs(Q
2) as a function of the energy scale Q ob-

tained from [86]. The corresponding degree of perturbation theory used in the extraction

of αs is indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to-leading

order; res. NNLO: NNLO matched to a resummed calculation; N3LO: next-to-NNLO).
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Chapter 2
Functional methods

In this chapter, we introduce one of the first principle approaches to treat the non-

perturbative regime of QCD: the SDEs. These equations are derived in the context of

the path integral formulation of QFT and can be understood as analogous to the Euler-

Lagrange equations of a classical field theory, in the sense that they describe the dynamics

of Green’s functions, such as propagators, vertices, and higher n-point functions. In their

integral form, the SDE constitute an infinite system of coupled non-linear integral equa-

tions, making it necessary a truncation scheme to treat them feasibly.

This chapter is outlined as follows: First, we introduce the functional formalism, which

allows us to define Green’s functions using path integrals and obtain them by calculating

functional derivatives from the generating functional. Within this framework, we derive

the SD master equation, equivalent to the equation of motion for Green’s functions. As an

application of the master equation, we derive the SDE for the quark propagator. Finally,

we discuss the method that allows us to obtain a truncated SDE for the quark-gluon

vertex: The nPI formalism. We conclude the chapter by presenting the equation for the

quark-gluon vertex, obtained from the 3PI effective action, which is central to this thesis.
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2.1 Functional formalism

The functional formalism is a powerful approach introduced in 1948 by Richard Feyn-

man [87, 88], utilizing path integrals for the formulation of QFT instead of the traditional

method of canonical quantization, which uses field operator formulation. It is particularly

useful for dealing with gauge theories and performing nonperturbative calculations. Since

the path integral approach is the most straightforward method for deriving the SDEs,

we will briefly review the main aspects of this formalism in this section, for more details

see [21, 89].

A QFT is fundamentally characterized by its correlation functions, also known as

Green’s functions. An n-point Green’s function is defined as the vacuum expectation

value of the time-ordered product of n fields φi(x): ⟨0|T{φi(x1) · · ·φj(xn)}|0⟩. In the

functional approach, these functions can be calculated using the path integral [85],

⟨0|T{φi(x1) · · ·φj(xn)}|0⟩ =
∫
Dφφi(x1) · · ·φj(xn)e

iS[φ]∫
DφeiS[φ] . (2.1)

where the vacuum state is denoted by |0⟩, T is the time-ordered operator, and φ denotes

de collective of the fields φi(x), which may be different types of fields or degree of freedom

of one field evaluated at the spacetime point x. The integration measure extends over all

of these fields, i.e.,

Dφ =
∏
i

Dφi, (2.2)

In addition, the quantity S is the usual classical action

S =

∫
d4xL(x). (2.3)

We may write the Eq. (2.1) more compactly by introducing the central quantity of the

functional method, the generating functional Z[J ],

Z[J ] =

∫
Dφ exp

{
iS[φ] + i

∫
d4x Ji(x)φi(x)

}
, (2.4)

here, the Ji(x) is the external source associated with the field φi, and the J is defined as

the collection of sources Ji(x),

J =

∫
d4x Ji(x)φi(x) . (2.5)

The n-point Green’s functions are attained by taking functional derivatives of the

generating functional with respect to the external sources, and subsequently setting them
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to zero,

⟨0|T{φi(x1) · · ·φj(xn)}|0⟩ =
1

Z[0]

δ

iδJi(x1)
· · · δ

iδJj(xn)
Z[J ]

∣∣∣∣
J=0

. (2.6)

Another concept that we must define is the connected Green’s function. The above

definition produces two types of correlation functions, the connected and disconnected

diagrams as shown in Fig. 2.1. The connected contribution contains the necessary in-

formation, while the disconnected diagrams do not contribute to the S-matrix. There-

fore, to compute only the connected part, we define the connected functional generator,

W [J ] = −i lnZ[J ] [90],

⟨0|T{φi(x1) · · ·φj(xn)}|0⟩conn. =
1

in−1

δ

δJi(x1)
· · · δ

δJj(xn)
W [J ]

∣∣∣∣
J=0

. (2.7)

The propagator for the field φi is the two-point Green’s function that we can readily

(a) (b)

Figure 2.1: Examples of diagrams: connected (a) and disconnected (b).

write down,

Di(x− y) = −i δ2W [J ]

δJi(x)δJi(y)

∣∣∣∣
J=0

. (2.8)

Connected Green’s functions can be further divided into two classes of diagrams:

proper and improper, see Fig. 2.2. Improper diagrams are those that can be divided

into disconnected parts by removing one internal line, whereas proper diagrams can not

be split in this way. The proper diagrams are also called one-particle-irreducible (1PI),

(a) (b)

Figure 2.2: Examples of proper (a) and improper diagrams (b).

The 1PI contributions are very useful when we write down the SDEs, since we can

generate full diagrams summing them in a simple way [22, 23]. To access only the 1PI
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diagrams, the effective action Γ[ϕ] is employed, which is defined through the Legendre

transform of the connected generating functional, in the following way

Γ[ϕ] = W [J ]−
∫
d4x Ji(x)ϕi(x) . (2.9)

The 1PI correlation functions are calculated in the same way as connected ones, by

performing functional differentiation of the effective action, i.e.,

⟨0|T{φi(x1) · · ·φj(xn)}|0⟩1PI = i
δ

δϕi (x1)
· · · δ

δϕj (xn)
Γ[ϕ]

∣∣∣∣
ϕ=0

, (2.10)

where the ϕi is the vacuum expectation value (vev) of the field φi in the presence of the

source J , or simply classical field, φcl
i

ϕi ≡ φcl
i ≡ δW [J ]

δJi(x)
=

1

Z[J ]

δZ[J ]

iδJi(x)
= ⟨0|φi|0⟩J . (2.11)

When the sources are turned off, this vev is usually zero, except for spontaneously

broken symmetry theories. The relation between the sources and the effective action is

Ji(x) = − δΓ[ϕ]

δϕi (x)
. (2.12)

Using the above definitions, in particular Eqs. (2.11) and (2.12), we derive a few

functional relations that will be useful later. First we notice that,

δijδ(x− y) =
δϕi(x)

δϕj (y)
=

∫
d4z

δJk(z)

δϕj (y)

δϕi(x)

δJk(z)

=

∫
d4z

(
δ2Γ[ϕ]

δϕj(y)δϕk(z)

)(
δ2W [J ]

δJk(z)δJi(x)

)
, (2.13)

the 1PI two-point function can be connected to the propagator of Eq. (2.8),

δ2Γ[ϕ]

δϕi(x)δϕi(y)
=

(
δ2W [J ]

δJi(x)δJi(y)

)−1

= iD−1
i (x− y) , (2.14)

where the rightmost equality is understood to be valid only when the sources and classical

fields are set to zero in the derivatives on the left. Therefore, the Eq.(2.13) can expressed

as

δijδ(x− y) =

∫
d4z

(
δ2Γ[ϕ]

δϕj(y)δϕk(z)

)(
δ2Γ[ϕ]

δϕk(z)δϕi(x)

)−1

. (2.15)

To compute high order 1PI functions one may need to deal with derivatives of prop-

agators. This relation can be obtained by differentiating Eq. (2.15) with respect of the

classical field ϕ, after which we attain

δ

δϕi (x)

(
δ2Γ[ϕ]

δϕj(y)δϕk(z)

)−1

=−
∫
[w]

(
δ2Γ[ϕ]

δϕj(y)δϕm(w2)

)−1

×

× δ3Γ[ϕ]

δϕm(w2)ϕi(x)δϕn(w1)

(
δ2Γ[ϕ]

δϕn(w1)δϕk(z)

)−1

, (2.16)
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where we introduced the shorthand notation∫
[w]

≡
∫
d4w1 d

4w2 . (2.17)

2.2 The SD master equation

With the formalism established, we can now derive the SD master equation [22, 91].

We begin by considering a change of variables in the functional generator, Eq. (2.4), where

the fields φi undergo an infinitesimal variation,

φi(x) → φ′
i(x) = φi(x) + εfi(x) , (2.18)

with ε being an infinitesimal parameter, and fi(x) an arbitrary function. The integration

measure remains unchanged, Dφ′ = Dφ, because none of the fi depends on the fields,

resulting in a Jacobian of transformation equal to zero. Hence, the generating functional

of Eq. (2.4) is expressed as

Z[J ] =

∫
Dφ exp

{
iS[φ] + i δS[φ] + i

∫
d4x Ji(x)[φi(x) + εfi(x)]

}
, (2.19)

where the variation of the action is

δS[φ] =
∫

d4x
δS[φ]
δφi(x)

δφi(x) = ε

∫
d4x

δS[ϕ]
δφi(x)

fi(x) . (2.20)

Now we expand the right-hand side to the first order in ε,

Z[J ] =

∫
Dφ exp

{
iS[φ] + i

∫
d4x Ji(x)φi(x)

}[
1 + iε

∫
d4x fi(x)

(
δS[φ]
δφi(x)

+ Ji(x)

)]
.

(2.21)

Notice that the first term produces just Z[J ] itself, and the remainder term, the

coefficient of ε must be zero. With differentiation under the integral sign, we attain

0 =

∫
Dφ

[∫
d4x fi(x)

(
δS[φ]
δφi(x)

+ Ji(x)

)]
exp

{
iS[φ] + i

∫
d4x Ji(x)φi(x)

}
=

[∫
d4x fi(x)

(
δS[φ]
δφi(x)

[
δ

iδJj

]
+ Ji(x)

)]
Z[J ] . (2.22)

The derivative of the action on the second line is to be evaluated in terms of ϕ field

operators, followed by the substitution of each ϕj by the functional derivative with respect

to iJj.

Since fi is an arbitrary function, the integrand must vanish, i.e.,(
δS

δφi(x)

[
δ

iδJj

]
+ Ji(x)

)
Z[J ] = 0 . (2.23)

The above expression is the SD master equation for disconnected Green’s functions. How-
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ever, it is more advantageous to work exclusively with 1PI functions, or at most with

connected functions. Therefore, we should eliminate references to Z[J ] at this stage. This

can be achieved by recalling that W [J ] = −i lnZ[J ].

eiW [J ]

(
δS

δφi(x)

[
δ

iδJj

])
e−iW [J ] = −Ji(x) . (2.24)

Applying to it the Baker-Campbell-Hausdorff formula,

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + · · · , (2.25)

where A and B are operators, we obtain the master equation for connected Green’s

functions [22],

δS
δφi(x)

[
δ

iδJj
− δW [J ]

δJj

]
· 1 = −Ji(x) . (2.26)

The “· 1” notation implies that the functional differentiation operator on the left acts

on all quantities on the right up to unity [22]. This notation clarifies that Eq. (2.26) does

not represent an equality between operators but rather an number equation.

Finally, in order to attain the SD master equation for 1PI functions we may use the

definition of the field, Eq. (2.12), and the chain rule,

δ

iδJi(x)
=

∫
d4y

δϕj(y)

iδJi(x)

δ

δϕj (y)
= i

∫
d4y

δ2W [J ]

δJi(x)δJj(y)

δ

δϕj (y)

= i

∫
d4y

(
δ2Γ[ϕ]

δϕi(x)δϕj(y)

)−1
δ

δϕj (y)
, (2.27)

which produces [22],

δS
δφi(x)

[
ϕj(y) + i

∫
d4z

(
δ2Γ[ϕ]

δϕj(y)δϕk(z)

)−1
δ

δϕk (z)

]
· 1 =

δΓ[ϕ]

δϕi (x)
. (2.28)

Observe that the derivation of the SD master equation is similar to that of the Euler-

Lagrange equation. We make an infinitesimal change in the classical field and find that

the variation of the action is zero (δS/δφ = 0). Consequently, SDEs can be thought

as generalization of the Euler-Lagrange equations in a QFT, dictating the dynamical

behavior of the quantum fields.

2.2.1 SDEs general feature

Historically, the SDEs were first derived in the works of J. S. Schwinger [17] and F.

J. Dyson [16]. Their building blocks are the complete Green’s functions, which contains

all possible corrections in the theory, including both perturbative and nonperturbative

contributions. These complete Green’s functions are usually depicted by filled circles in
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the respective diagrams, as illustrated in Fig. 2.3.

Its main characteristic—and major obstacle—is that the SDEs forms an infinite set of

coupled nonlinear integral equations, known as the “infinite tower” of SDEs. For example,

in QED, the SDEs for the electron and photon propagators, as well as the electron-photon

vertex, are respectively given by [92]

S−1(p) = S−1
(0)(p)−

∫
k

γµS(k)IΓ
µ(p− k, k, p)Dµν(p− k) ,

[Dµν(q)]−1 = [Dµν
(0)(p)]

−1 −
∫
k

γµS(p+ k)IΓν(q, k + p, k)S(k) ,

IΓµ(q, p2, p1) = γµ −
∫
k

IΓµ(q, p2 + k, p1 − k)S(p1 − k)S(p2 + k)K . (2.29)

Although the SDEs may seem quite complicated to handle analytically, we can asso-

ciate them with diagrams that help us visualize schematically how they work, Fig. 2.3

shows the diagrammatic representation of the tree SDEs written explicitly in Eq. (2.29).

=
−1 −1

−

−1
=

−1
−

= +

...

Figure 2.3: SDEs for QED: The gap equation for the inverse of the full electron propagator

S−1(p) (blue circle), the inverse full photon propagator Dµν (green circle) and electron-

photon vertex IΓµ(orange circle) [92].

Notice that the SDE for the electron and photon propagators are coupled to each

other and to the vertex, which in turn is coupled to a 4-point function scattering kernel,

K, represented by the gray ellipsis. If we were to write the equation for the 4-point

kernel, higher n-point function would be coupled to it and so on, forming a system with
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infinite coupled equations. Additionally, there are usually loops involved, resulting in an

integration where the Green’s function in question appears on both sides, therefore usually

we have to deal with integral equations.

In principle, solving this infinite system completely would provide full knowledge of

the theory; however, achieving such comprehensive knowledge is infeasible. Consequently,

truncations are employed, using approximations to reduce the infinite system to a man-

ageable set of closed equations.

In essence, SDEs are a continuous method that captures the entire IR and UV range of

momenta of a theory. They form an infinite system of coupled nonlinear integral equations,

and the feasibility of their solution requires a self-consistent truncation scheme. This

scheme provides approximations to obtain a finite set of equations that can be effectively

treated.

2.3 SDE for the quark propagator

Having established the mathematical foundations in the preceding sections, we are

now prepared to derive the relevant SDEs. Before addressing the SDE for the quark-

gluon vertex, we will begin with the SDE for the quark propagator.

With the SD master equation for 1PI Green’s functions, Eq. (2.28), in mind, we start

by computing the functional derivative of the QCD action with respect to the antiquark

field ψ̄(y). The action is given by SQCD =
∫
d4xLQCD,

δSQCD

δψ̄(y)
=
(
iγµ∂yµ −m+ gtaγµAa

µ

)
ψ(y) . (2.30)

For quarks, the relevant term for performing this derivative is related to the Dirac

Lagrangian given by Eq. (1.2)

LDirac = ψ̄(iγµ∂µ −m+ gtaγµAa
µ)ψ . (2.31)

Then, we insert it into the master Eq. (2.28), resulting in(
iγµ∂yµ−m

)
ψcl(y)+gtaγµ

{[
Acl

µ,a(y)+i

∫
d4z

(
δ2Γ

δAcl
µ,a(y)δϕ

cl
k (z)

)−1
δ

δϕcl
k (z)

]
ψcl(y)

}
=

δΓ

δψ̄ cl(y)
,

(2.32)

here, we have already taken the derivatives with respect to unity on the left-hand side

— referring to the notation “·1” in Eq. (2.28). Additionally, we have omitted specifying
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the arguments of the effective action for brevity, which will be our convention from now

on. The last functional derivative acting on ψcl(y) will simply result in a Dirac delta,

simplifying the integral

δΓ

δψ̄ cl(y)
=
(
iγµ∂yµ −m

)
ψcl(y)+ gtaγµ

[
Acl

µ,a(y)ψ
cl(y) + i

(
δ2Γ

δAcl
µ,a(y)δψ

cl(y)

)−1
]
. (2.33)

In the second derivative, we change the order of differentiation. Next, we differentiate the

entire expression with respect to the quark field ψcl(x), and set the classical field to zero,

after which we obtain

δ2Γ

δψ cl(x)δψ̄ cl(y)

∣∣∣∣
0

= (iγµ∂µ −m) δ(x− y) + igtaγµ

[
δ

δψ cl(x)

(
δ2Γ

δψ cl(y)δAcl
µ,a(y)

)−1
]∣∣∣∣∣

0

=(iγµ∂µ −m) δ(x− y)− igtaγµ

[∫
[w]

(
δ2Γ

δψcl(y)δϕcl
m(w2)

)−1

×

× δ3Γ

δϕcl
m(w2)δψ cl(x)δϕcl

n (w1)

(
δ2Γ

δϕcl
n (w1)δA cl

µ,a(y)

)−1
]∣∣∣∣∣

0

, (2.34)

where the transition between these lines was facilitated by using a previously derived

identity, as shown in Eq. (2.16), and we introduced the “|0” shorthand notation so we do

not list every source being set to zero.

Now the quark fields must be paired with the antiquark fields in Green’s functions,

collapsing ϕcl
m to ψ̄ cl, due to the first term of the integrand. Similarly, ϕcl

n must be Acl
ν,n

due to the last term of the integrand, as neither a quark nor an antiquark should be paired

with a gluon field alone.

At this point, we may identify in Eq. (2.34) a few correlation functions. Taking into

account the definition of the 1PI n-point Green’s functions given by Eq. (2.10), we can

write the quark propagator as

S−1(x− y) = −i δ2Γ

δψ cl(x)δψ̄ cl(y)

∣∣∣∣
0

, (2.35)

which appears on the left-hand side of the equation and as the first term of the integrand

on the right-hand side. The other two-point function present in the integral is the gluon

propagator, defined as

∆ab
µν(x− y) = i

(
δ2Γ

δAcl
µ,a(x)δA

cl
ν,b(y)

)−1
∣∣∣∣∣∣
0

. (2.36)
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As for the remaining three-point function, it is nothing but the quark-gluon vertex,

IΓa
µ(x, y, z) = i

δ3Γ

δAcl
µ,a(x)δψ

cl(y)δψ̄ cl(z)

∣∣∣∣∣
0

. (2.37)

With these definitions, the quark propagator SDE may be recast as

S−1(x− y) = −i
(
i/∂ −m

)
δ(x− y)− g2CF

∫
[w]

γµS(w2 − y)IΓν(w1, x, w2)∆µν(w1 − y) ,

(2.38)

where we separate the color part from the gluon propagator and the quark-gluon vertex

as ∆ab
µν(x − y) = δab∆µν(x − y) and IΓµ,a(x, y, z) = igtaIΓµ(x, y, z). We use the fact that

tatmδam = CF , the eigenvalue of the Casimir operator in the fundamental representation.

Then, by Fourier transforming, we finally obtain

S−1(p) = −i
(
/p−m

)
− g2CF

∫
k

γµS(k)IΓν(q, k,−p)∆µν(q) , (2.39)

where we introduced the notation for the integral measure∫
k

≡
∫

d4k

(2π)4
, (2.40)

where the use of a symmetry-preserving regularization scheme, such as dimensional reg-

ularization, is implicitly assumed.

Notice that we keep the same conventions established earlier, that is, for the quark-

gluon vertex, all momenta are entering, and the momenta entrances are arranged in the

gluon-quark-antiquark order. We represent this SDE diagrammatically in Fig. 2.4, with

the white blobs denoting full quark and gluon propagators and the orange blob, the full

quark-gluon vertex. The quark propagator is represented by a solid line, whereas the

gluon, by a wavy one.

= −

p p p k

µ ν
p

q = p− k

( )−1 ( )−1

Figure 2.4: Diagrammatic representation of the quark propagator SDE, also known as

gap equation. Its analytical expression is given by Eq. (2.39).

At this moment, it is important to acknowledge the complexity of the SDE approach to

QFTs. First, note that Eq. (2.39) represents an integral equation for the quark propagator.
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This equation not only involves the quark propagator but also incorporates the gluon

propagator and the quark-gluon vertex, which, in turn, contain the quark propagator in

their respective SDEs. Consequently, writing down the SDEs for all propagators and

vertices in the theory results in an infinite system of coupled nonlinear integral equations,

as outlined in Section 2.2.1. Due to this complexity, an exact solution for the entire system

is generally not feasible. Therefore, the implementation of the truncations schemes where

some Green’s functions are approximated are often required.

To conclude this section, it is important to highlight one final point regarding the

quark propagator equation. The study of chiral symmetry breaking in the continuum

often involves some version for the quark propagator equation, as expressed in Eq. (2.39),

which is commonly known as the gap equation.

The structure of quark propagator S−1(p) can generally be decomposed in terms of /p

and I. Therefore, one can write it as

S−1(p) = A(p2)/p−B(p2) . (2.41)

where A(p2) is known as the inverse of the quark wave function, and B(p2) is the scalar

component (mass function), respectively. It is useful here to define the dynamically gen-

erated quark mass M(p2) as the ratio

M(p2) =
B(p2)

A(p2)
, (2.42)

and in this case the full quark propagator is expressed as

S−1(p) = A(p2)
[
/p−M(p2)

]
(2.43)

The dynamical quark mass, M(p2), provides information about the quark mass, gen-

erated due to the IR nonperturbative dynamics of the theory. The dynamical quark mass

arises when the chiral symmetry is broken, indicated when we obtain a nonvanishing so-

lution for B(p2) ̸= 0. Notice that the dynamical equation governing the behavior of the

functions A(p2) and B(p2) can be derived by computing the following traces of the SDE

for the quark propagator given by Eq. (2.39).

p2A(p2) =
1

4
Tr
[
/pS

−1(p)
]
,

B(p2) = −1

4
Tr
[
S−1(p)

]
. (2.44)

then one can consequently obtain, M(p2), through the ratio Eq. (2.42).

A key point to be highlighted is that the quark SDE displays a strong dependence
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on the nonperturbative behavior of the quark-gluon vertex, IΓµ(q, p2,−p1), and the quark

mass generation phenomena depends on details of the quark-gluon vertex. Therefore, in

the next section, we will focus on the SDE for the quark-gluon vertex.

2.4 Equation for the quark-gluon vertex

As mentioned earlier, one of the characteristics of SDEs is that they form a systems of

coupled integral equations between correlation functions. As we have seen, the quark SDE

not only depends on the quark propagator but is also coupled to the gluon propagator and

the quark-gluon vertex. The same holds for the equation governing the quark-gluon vertex,

which is diagrammatically represented in Fig. 2.5 with all its contributing diagrams [23].

= + + + + ...

Figure 2.5: The diagrammatic representation of the quark-gluon SDE in terms of scatter-

ing kernels (gray blobs), all propagators are considered dressed.

Note that this equation is significantly more complex than the quark SDE equation

since it includes not only two-point functions, such as the complete quark, gluon, and

ghost propagators, but also four- and five-point Green’s functions. These functions are

the scattering kernels represented by the gray ellipsis in the Fig. 2.5.

It is possible to obtain the SDE for the quark-gluon vertex from the master equation

for 1PI Green’s functions by differentiating Eq. (2.33) with respect to the antiquark, quark

and gluon fields and turning off the external sources. This third-order derivative of the

effective action defines the quark-gluon vertex.

IΓa
µ(x, y, z) = i

δ3Γ

δAcl
µ,a(x)δψ

cl(y)δψ̄ cl(z)

∣∣∣∣∣
0

= i
δ3Γ

δψ cl(y)δψ̄ cl(z)δAcl
µ,a(x)

∣∣∣∣∣
0

. (2.45)

Depending on the order of derivation—whether with respect to the gluon or quark

leg— we can obtain the SDEs as represented in Fig. 2.6 [23, 35, 75], which are equivalent

as long as they are not truncated.

At this point, it is necessary to introduce a truncation scheme to handle this equation.

A truncated SDE model for the quark-gluon vertex is shown in Fig. 2.7, corresponding
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= + + − 1
2

− 1
2

+ + + +1
2

1
6

...

= + + + ...

Figure 2.6: The SDE for the quark-gluon vertex, expressed in terms of 1PI Green’s func-

tions. The two possible equations derived with respect to the gluon leg (top) and the

quark leg (bottom) [23]. The quark-gluon vertex is represented by orange blobs, while

the three-gluon vertex is shown in red. Purple and gray blobs represents the scattering

kernels of two-quarks-two-ghost and two-quark-two-gluon, respectively. All propagators

are considered to be dressed.

to the truncated version of the second equation (with respect to the quark leg) shown in

Fig. 2.6. The truncation is performed by neglecting higher-order diagrams and considering

only the contributions at the one-loop dressed level. The idea is based on the assumption

that higher dressed loops contribute very little, making the loss of information negligible

when diagrams functions are omitted. In practice, higher-order diagrams or diagrams

containing a specific vertex are simply omitted1, or some approximation for the vertex is

employed [63].

= + +

Figure 2.7: SDE for the quark-gluon vertex at one-loop dressed aproximation.

1In this case, this truncation omits the two-quark-two-gluon kernel, depicted in gray at the bottom
of Fig. 2.6.
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This truncation scheme is the dominant approach for almost all calculations involving

functional methods and has been quite successful. However, its disadvantage is that

one cannot initially determine whether a contribution from a given vertex is negligible.

Therefore, it relies either on extending the truncation or comparing the results of one’s

own calculations with those obtained using other methods or – if possible – on a direct

comparison with measurements.

The quark-gluon vertex used in this work is based on the 3PI formalism, where addi-

tional Legendre transforms are performed on the 1PI effective action, resulting in a 3PI

effective action [23, 75, 93]. The truncation of this equation is achieved by expressing the

effective action as a loop series and truncating the series at three-loop. In the following,

we will discuss this method and present the equation for the vertex.

2.4.1 The nPI effective action

All information about a QFT is encoded in the effective action, which is the func-

tional generator for its Green’s functions. There are different representations of the ef-

fective action, one of which is the n–particle irreducible (nPI) effective action. This is a

generalization of the 2PI formalism introduced by Cornwall, Jackiw, and Tomboulis [94],

where the effective action Γ[ϕ,G] is expressed in terms of the vev ϕ, Eq. (2.11), and the

complete propagator G. This method is particularly efficient for describing complete two-

point functions. However, for describing higher-order Green’s functions, such as vertices,

the 2PI method becomes inefficient. The idea can be generalized to include these cor-

relation functions by introducing the nPI effective action, Γ[ϕ,G, V3, · · · , Vn], where this

functional is written in terms of ϕ, G and the complete vertices Vn [75, 93]. From it,

the equations of motion for each dressed quantity can be obtained through stationary

conditions (functional derivatives) when the external sources vanish, such as

δΓ[ϕ,G, V3, · · · ]
δϕ

∣∣∣∣
0

=
δΓ[ϕ,G, V3, · · · ]

δG

∣∣∣∣
0

=
δΓ[ϕ,G, V3, · · · ]

δV3

∣∣∣∣
0

= · · · = 0 . (2.46)

The main difference between SDEs and the nPI formalism lies in the approach to

truncation. In SDEs, the effective action is used to derive an infinite tower of coupled

integral equations, and truncation is performed to break this tower and obtain a closed

set of equations. In contrast, the nPI formalism expands the effective action in terms

of a series of loops, with truncation introduced by breaking the series at a given loop

order [63, 75]. This approach allows for the derivation of a closed set of equations for the
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Green’s functions using Eq. (2.46). In general, similar to SDEs, these equations result in

a nonlinear coupled set of integral equations.

We begin by elaborating on the 2PI effective action and then generalize it to nPI.

First, we define the functional generator in the presence of sources as in Eq (2.4). Now,

in addition to the external source J we introduce a new type of source K [90, 94],

Z[J,K] = exp (iW [J,K])

=

∫
Dφ exp

{
i

(
S[φ] +

∫
x

Ji(x)φi(x) +
1

2

∫
xy

Kij(x, y)φi(x)φj(y)

)}
, (2.47)

where the functional W [J,K] produces connected diagrams. In the presence of these

sources, we define the vev of the fields φ and the connected two-point function G,

δW

δJi(x)
= ϕi(x) ,

δW

δKij(x, y)
=

1

2
[ϕi(x)ϕj(y) + iGij(x, y)] . (2.48)

Let us recall Eq. (2.9), the Legendre transformation that defines the 1PI effective

action

ΓK [ϕ] = W [J,K]−
∫
x

Ji(x)ϕi(x) , (2.49)

in the presence of the source K the above equation represents the 1PI effective action for

a theory governed by a modified classical action

SK [φ] = S[φ] + 1

2

∫
xy

Kij(x, y)φi(x)φj(y) . (2.50)

The 1PI effective action can be represented in terms of loop expansions [75, 94], the

one-loop term is

Γ(1-loop)[ϕ] = S[φ] + i

2
Tr ln

[
G−1

(0)

]
, (2.51)

where G0 is the bare two-point function. Making modifications due to the source K,

S[φ] → SK [φ] and G−1
(0) → G−1

(0) − iK we are left with

ΓK(1-loop)[ϕ] = SK [φ] +
i

2
Tr ln

[
G−1

(0) − iK
]
. (2.52)

Now, we define the 2PI effective action by performing a Legendre transformation of

Eq. (2.49) with respect to the source K and insert Eq. (2.48),

Γ[ϕ,G] = ΓK [ϕ]−
∫
xy

δΓK [ϕ]

δKij(x, y)
Kij(xy)

= ΓK [ϕ]− 1

2

∫
x,y

Kij(x, y)ϕi(x)ϕj(y)−
1

2
TrKG , (2.53)
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where

TrKG =

∫
x,y

Gij(x, y)Kij(x, y) . (2.54)

and thus

Γ[ϕ,G] = W [J,K]−
∫
x

δΓK [ϕ]

δJi(x)
Ji(x)−

∫
xy

δΓK [ϕ]

δKij(x, y)
Kij(x, y)

= W [J,K]−
∫
x

Ji(x)ϕi(x)−
1

2

∫
x,y

Kij(x, y)ϕi(x)ϕj(y)−
1

2
TrKG , (2.55)

from this, we derive the following relations, from which we can observe the stationary

conditions

δΓ[ϕ,G]

δϕi(x)
= −Ji(x)−

∫
y

Kij(x, y)ϕj(y) ,

δΓ[ϕ,G]

δGij(x, y)
= − i

2
Kij(x, y) . (2.56)

In the absence of sources, J = 0 and K = 0, we obtain the equations of motion for the ϕ

and G

δΓ[ϕ,G]

δϕ

∣∣∣∣
0

=
δΓ[ϕ,G]

δG

∣∣∣∣
0

= 0 . (2.57)

Now we express the effective action Γ[ϕ,G] at one-loop, plugging the Eq. (2.52) in

Eq. (2.53), we find

Γ[ϕ,G] ≃ S[φ] + i

2
Tr ln

[
G−1

(0) − iK
]
− 1

2
TrKG , (2.58)

if we set G−1 = G−1
(0) − iK, we can eliminate the dependence on K,

Γ[ϕ,G] ≃ S[φ] + i

2
Tr
[
lnG−1 + (G−1

(0) −G−1)G
]
. (2.59)

The exact expression of the effective action is obtained by adding the remaining terms

in the series, which is accomplished through the functional Φ[ϕ,G]. This functional rep-

resents the infinite expansion of loops, starting from two loops onwards.

Γ[ϕ,G] = S[φ] + i

2
Tr
[
lnG−1 +

(
G−1

(0) −G−1
)
G
]
− iΦ[ϕ,G] . (2.60)

The explicit form of the functional Φ[ϕ,G] depends on the specific theory under study.

For example, for an action given by

S[φ] =
∫
x

[
1

2
φ(x)iG−1

(0)φ(x)−
g2

4!
V

(0)
4 φ4(x)

]
, (2.61)

the expansion up to three-loop O(g4) [75, 90] is

Φ[ϕ,G] =
g2

2
G2V

(0)
4 +

g4

24
G4V

(0)2
4 + · · · (2.62)
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+ · · ·Φ[φ,G] =

Figure 2.8: Diagrammatic representation of the 2PI effective action Φ[ϕ,G] given in

Eq. (2.62).

where g is the coupling of the quartic interaction V4 and G is the propagator. The

diagrammatic representation for this expansion is given in Fig. 2.8, where the diagrams

are constructed from closed loops containing the full propagators and the bare vertices [75,

90, 93].

The equation for the propagator, in this formalism, is derived from Eq. (2.57), resulting

in [90]

G−1 = G−1
(0) − 2i

δΦ[ϕ,G]

δG

∣∣∣∣
0

, (2.63)

where the second term represents the self-energy which is diagrammatically represented

in the Fig. 2.9.

+ · · ·δΦ[φ,G]
δG =

Figure 2.9: Derivative of the 2PI effective action with respect of the propagator, produces

the SDE for the G propagator in the 2PI formalism.

The advantage of working with the 2PI effective action is that the Legendre transfor-

mation with respect to the additional source K makes this functional explicitly dependent

on the full propagator [63, 75]. This approach allows for a complete and self-consistent

description of the propagators through the stationary conditions in Eq. (2.57). However,

for higher-order Green’s functions or n-point vertices, the 2PI effective action becomes

less efficient, as it generally contains (bare) classical vertices.

The generalization is achieved by introducing external sources, denoted byK3, · · · , Kn,

which correspond to the n-point vertices V3, · · · , Vn, respectively [75]. Thus, the functional
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generator is

Z[J,K,K3, ...] = exp (iW [J,K,K3, ...]) , (2.64)

with the definitions of the vev of the field, propagator and the n-point functions

δW

δJi
= ϕi ,

δW

δKij

=
1

2
(ϕiϕj + iGij) ,

δW

δK3,ijk

=
1

6
(V3,ijk + iGijϕk + iGjkϕi + iGkiϕj + ϕiϕjϕk) , (2.65)

...

and thus we define the nPI effective action as the Legendre transformation with respect

to all sources,

Γ[ϕ,G, V3, ...] = W [J,K,K3, ...]−
∫
x

δW

δJi(x)
Ji(x)−

∫
x,y

δW

δKij(x, y)
Kij(x, y)

−
∫
x,y,z

δW

δK3,ijk(x, y, z)
K3,ijk(x, y, z)− ... (2.66)

The resulting effective action Γ[ϕ,G, V3, ...] depends explicitly on the propagators and

complete n-point vertices. Analogous to Eq. (2.60), it can be written exactly as an infinite

loop expansion, now, in terms of the complete vertices.

Γ[ϕ,G, V3, ...] = S[ϕ] +
i

2
Tr
[
lnG−1 +

(
G−1

(0) −G−1
)
G
]
− iΦ[ϕ,G, V3, ...] . (2.67)

Introducing additional source terms to the functional generator does not change the

information we can obtain from the theory; it only alters the method of treatment. All

effective actions obtained in this manner are equivalent,

Γ[ϕ] = Γ[ϕ,G] = Γ[ϕ,G, V3] = Γ[ϕ,G, V3, V4] = ... (2.68)

On the other hand, when the truncation of the effective action is performed, as in the

loop expansion where we choose which loop to calculate, the equivalence in Eq. (2.68) is

no longer true. However, what is established is a hierarchy of equivalence for each order

of the expansion [63, 75],

Γ(1-loop)[ϕ] = Γ(1-loop)[ϕ,G] = · · ·

Γ(2-loop)[ϕ] ̸= Γ(2-loop)[ϕ,G] = Γ(2-loop)[ϕ,G, V3] = · · ·

Γ(3-loop)[ϕ] ̸= Γ(3-loop)[ϕ,G] ̸= Γ(3-loop)[ϕ,G, V3] = Γ(3-loop)[ϕ,G, V3, V4] = · · · (2.69)

...

where Γ(n-loop) is the approximation for the effective action at the n-loop order, in the
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absence of sources. This means that in a two-loop approximation, all nPI effective ac-

tions are equivalent to each other with n > 2, indicating that the 2PI effective action

is sufficient to capture a complete and self-consistent description up to the second order

of the expansion. However, for a three-loop approximation, a self-consistent description

requires up to the 3PI effective action, and so on.

The vertices of n-dressed points are treated as functional variables, and the nPI ef-

fective action is constructed so that each of these quantities satisfies its own equations of

motion, i.e., Eq. (2.46).

δΓ[ϕ,G, V3, · · · ]
δϕ

∣∣∣∣
0

=
δΓ[ϕ,G, V3, · · · ]

δG

∣∣∣∣
0

=
δΓ[ϕ,G, V3, · · · ]

δV3

∣∣∣∣
0

= · · · = 0 .

In summary, the major advantage of the nPI method is that it provides a systematic

expansion where truncation occurs at the action level. This approach allows obtaining

a closed set of equations for each complete Green’s function. In contrast, SDEs offer an

infinite hierarchy of coupled integral equations and require truncation through additional

approximations. Next, we apply the nPI formalism and calculate the equation defining

the quark-gluon vertex in 3PI, performing the three-loop expansion.

2.4.2 The quark-gluon vertex from 3PI effective action

Using the method discussed in the previous section, the 3PI effective action for a non-

Abelian theory is computed in [75] up to the three-loop level of the expansion. Starting

from the QCD action SQCD, the 3PI effective action is defined in terms of the propagators

and vertices of the theory Γ[ϕ,G, V3], in this notation,

ϕ = (ψcl, Acl
µ,a, c

cl
a ) , (2.70)

are the vevs for the quark, gluon, and ghost fields, which will be omitted here, as at the

end of the derivation, the sources are turned off and these classical fields becomes zero,

G = (S,∆, D) ,

V3 = (Vq, V3g, Vgh) , (2.71)

are the full propagators for the quark, gluon, and ghost, as well as the full triple vertices

for quark-gluon, three-gluon, and ghost-gluon interactions, respectively. We utilize the

hierarchies from Eq.(2.70) in the three-loop expansion to derive the relation

Γ[G, V3] = Γ[G, V3, V4] . (2.72)
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Thus, we aim to incorporate the four-gluon vertex into the description, which, as we

will see in the three-loop calculation, remains identical to its tree-level. The expansion of

the effective action follows the same pattern as Eq.(2.67).

Γ[G, V3, V4] = SQCD + icTr
[
lnG−1 +

(
G−1

(0) −G−1
)
G
]
− iΦ[G, V3, V4] , (2.73)

where c is a constant that is 1/2 for bosons and −1 for fermions. We can rewrite it as the

sum of the one-loop term and the rest of the series

Γ[G, V3, V4] = Γ1-loop[G, V3, V4]− iΦ[G, V3, V4] , (2.74)

where

Γ1-loop[G, V3, V4] = SQCD +
i

2
Tr ln∆−1 +

i

2
Tr∆−1

(0)∆− iTr lnS−1 − iTrS−1
(0)S

− iTr lnD−1 − iTrD−1
(0)D , (2.75)

and the effective action at two-loop is given by [43, 75]

Φ[D, V3, V4] =− 1

8
g2∆2V

(0)
4 +

i

6
g2∆3V3gV

(0)
3g − ig2∆S2VqV

(0)
q − ig2∆D2VghV

(0)
gh

− i

12
g2∆3V 2

3g +
i

2
g2∆S2V 2

q +
i

2
g2∆D2V 2

gh +
i

24
g4∆4V4V

(0)
4

+
1

8
g4∆5V 2

3gV
(0)
4 − i

48
g4∆4V 2

4 − i

24
g4∆6V 4

3g +
i

3
g4∆3S3V 3

q V3g

+
i

3
g4∆3D3V 3

ghV3g +
i

4
g4∆2S4V 4

q +
i

4
g4∆2D4V 4

gh +O(g6) . (2.76)

In terms of loop diagrams, this expression can be represented diagrammatically as

shown in Fig. 2.10.

In particular, the stationary condition for the quartic vertex in the absence of sources

leads to

δΓ[D, V3, V4]

δV4

∣∣∣∣
0

=
δΦ[D, V3, V4]

δV4

∣∣∣∣
0

= 0 ⇒ V4 = V
(0)
4 . (2.77)

This implies that in three-loops, the 4PI effective action describes only complete

Green’s functions up to 3-points. To include quartic vertices, we would need to trun-

cate the action at the four-loop level.

To obtain the quark-gluon vertex equation, we use the equations of motion that the

vertex satisfies in the absence of sources

δΓ[D, V3, V4]

δVq

∣∣∣∣
0

= 0 . (2.78)

Note that not all diagrams contribute to the calculation involving the quark-gluon

vertex; only four of them are relevant, which are represented in Figure 2.11
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−1
8

+ i
6 − i − i

− i
12

+ i
2

+ i
2

+ i
24

+ 1
8 − i

48 − i
24 + i

3

+ i
3 + i

4 + i
4

Figure 2.10: Diagrammatic representation of 3PI effective action at three-loop order for

QCD given in Eq. (2.76). All propagators are dressed as well the vertices: quark-gluon (or-

ange), ghost-gluon (purple), three-gluon (red) , four-gluon (green) [43, 75].

−i + i
2

+ i
3

+ i
4

Figure 2.11: Non trivial terms of the 3PI effective action, Eq. (2.76) for the quark-gluon

vertex SDE [43, 75].

and we attain

δΓ[D, V3, V4]

δVq

∣∣∣∣
0

=
δΦ[D, V3, V4]

δVq

∣∣∣∣
0

= 0 ,

⇒ −ig2V (0)
q + ig2Vq + ig4∆S2V 3

q + ig4∆2SV 2
q V3g = 0 . (2.79)

Therefore,

Vq = V (0)
q − g2∆S2V 3

q − g2∆2SV 2
q V3g . (2.80)

Expressing in our standard notation, we identify the following quantities as

S → S(p2) , V (0)
q → igtaΓ(0)

µ (q, p2,−p1) , V3g → fabcIΓαµν(r, p, q) ,

∆ → δab∆µν(q) , Vq → igtaIΓµ(q, p2,−p1) .
(2.81)

Finally, by representing Eq. (2.80) in momentum space and in our notation, we arrive
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p2 p1
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p2 − k p1 − kp2 + k p1 + k
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p2 p1

q

p2 p1

q

Figure 2.12: Diagrammatic representation of the SDE for quark-gluon vertex in the 3PI

formalism.

in Fig. 2.12, where we show the diagrammatic representation of the SDE for the quark-

gluon vertex in the 3PI formalism, whose expression is given by

IΓµ(q, p2,−p1) = Γ(0)
µ + aµ(q, p2,−p1) + bµ(q, p2,−p1) , (2.82)

where aµ(q, p2,−p1) and bµ(q, p2,−p1) are the contributions expressed as,

aµ(q, p2,−p1)=κa
∫
k

∆ρν(k)IΓ
ν(−k, k1,−p1)S(k1)IΓµ(q, k2,−k1)S(k2)IΓρ(k, p2,−k2) ,

bµ(q, p2,−p1)=κb
∫
k

∆αν(ℓ1)∆βρ(ℓ2)IΓµαβ(q, ℓ1,−ℓ2)IΓν(−ℓ1, k,−p1)S(k)IΓρ(ℓ2, p2,−k) ,

(2.83)

whose momentum configuration is given according to Fig. 2.12 and for compactness, we

define color theoretical factors as

κa = −ig2
(
CF − CA

2

)
, κb = ig2

CA

2
. (2.84)

where we employ the following relations(
CF − CA

2

)
ta = tbtatb , ita

CA

2
= tbf bcatc . (2.85)

Notice that CF and CA denote the eigenvalues of the Casimir operator in the fundamental

and adjoint representations, respectively [CF = (N2 − 1)/2N and CA = N for SU(N)].

Additionally, we introduce the notation for the momenta

k1 = p1 + k , ℓ1 = k − p1 ,

k2 = p2 + k , ℓ2 = k − p2 .
(2.86)

Note that this equation is not renormalized yet; so far, we have only dealt with un-

renormalized quantities. The renormalization process will be carried out in the next

chapter, where we will further analyze Eq. (2.82). We can anticipate that the equation in

the 3PI formalism will bring us advantages in renormalization procedure, since within the
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integrals there are only dressed quantities which will combine creating renormalization

group invariant (RGI) products, therefore only the bare vertex, Γ
(0)
µ , will be multiplied by

a renormalization constant.
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Chapter 3
The quark-gluon vertex

In the previous chapter, we introduced the functional method employed to study the

nonperturbative regime of QCD: the SDEs in the 3PI formalism. We derived the quark

SDE as an application of master equation and we outlined its connection with dynamical

mass generation, in which the quark-gluon vertex is engaging in this process. Then, we

presented the SDE for the quark-gluon vertex derived from the 3PI formalism, which

we will explore further in this chapter. Therefore, this chapter will focus on the central

objective of the work: the nonperturbative structure of the transversely projected quark-

gluon vertex.

The chapter is structured as follows. We begin by defining the general notations and

main elements that will be used throughout this work. Next, we present the transversely

projected quark-gluon vertex, focusing on its tensor structure. We then elaborate on a

few features of its most general tensorial structure in general kinematics. Finally, we

examine its SDE truncated in the 3PI formalism, establishing its connection with the

tensor decomposition. In this process, we derive a set of projectors which we will allow

us to express the form factors of this vertex as a coupled system of integrals equation.

We conclude the chapter discuss in details the renormalization procedure of this system

of equations, setting the stage for the numerical treatment in the next chapter.
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3.1 The transversely projected quark-gluon vertex

The full quark-gluon vertex, represented diagrammatically in Fig. 3.1, is a three-point

Green’s function comprising quark, antiquark, and gluon fields.

IΓa
µ(q, p2,−p1) =

p2 p1

q

µ, a

Figure 3.1: Diagrammatic representation of the full quark-gluon vertex, IΓa
µ(q, p2,−p1),

defined in Eq. (3.1). This momenta convention will be used throughout the article.

The quark-gluon vertex possesses two indices: one for its color structure and another

for its Lorentz (or tensor) structure. The latter can be decomposed in Minkowski space

as a function of the the two independent momenta associated with its legs. By factoring

out the color structure ta, we can separate the Minkowski space from the color space,

IΓa
µ(q, p2,−p1) = igtaIΓµ(q, p2,−p1) , (3.1)

we also take the opportunity to factor out an i and the coupling constant g, allowing us

to focus solely on the tensor structure without additional complications.

Note that in Fig. 3.1, and in Eq. (3.1) a specific convention is adopted with respect to

the order of the arguments of this function: the gluon momentum q is listed first, followed

by the quark momentum p2, and lastly the antiquark momentum −p1. Momentum con-

servation imposes q + p2 − p1 = 0, which means that we have two independent momenta,

whereas the third one can be expressed in term of the other two.

Regarding the color structure, ta (with a = 1, 2, ..., N2 − 1) are matrices that denote

the generators of the group SU(N) in the fundamental representation. These matrices

are Hermitian and traceless, and they are responsible for generating the closed algebra,

i.e.,

[ta, tb] = ifabctc . (3.2)

In the case of SU(3), the group generators ta are the Gell-Mann matrices λa, with ta = λa/2,

as mentioned in Chapter 1.
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(a)

q
b

∆ab
µν(q) =

µ ν

q
a

(b)

p

S(p) =

Figure 3.2: Diagrammatic representations of: (a) the fully dressed gluon propagator,

∆ab
µν(q); (b) the complete quark propagator, S(p).

At tree-level, the quark-gluon vertex simplifies to a Dirac matrix.

Γ(0)
µ (q, p2,−p1) = γµ . (3.3)

The central goal of this work is the transversely projected quark-gluon vertex, which

is defined as the contraction of the transverse projector, carrying the gluon momentum,

with the vertex, i.e.,

IΓµ(q, p2,−p1) = Pµν(q)IΓ
ν(q, p2,−p1) , (3.4)

where the transverse projection Pµν(q) is

Pµν(q) = gµν −
qµqν
q2

. (3.5)

The tree-level transversely projected vertex, denoted by Γ
(0)

µ (q, p2,−p1), is obtained

from Eq. (3.4) through the substitution IΓµ(q, p2,−p1) → Γ
(0)
µ (q, p2,−p1).

Moreover, our analysis will involve other elements such as the gluon and quark prop-

agators and the three-gluon vertex.

In the Landau gauge that we employ, the gluon propagator, ∆ab
µν(q) = −iδab∆µν(q), is

fully transverse, i.e.,

∆µν(q) = Pµν(q)∆(q2) , ∆(q2) = Z(q2)/q2 , (3.6)

where ∆(q2) denotes the scalar component of the gluon propagator and Z(q2) the corre-

sponding dressing function. The diagrammatic representation of ∆µν(q) is given in panel

(a) of Fig. 3.2,

In addition, we denote by S(p) the quark propagator [see panel (b) of Fig. 3.2], whose

standard decomposition in terms of the functions A(p2) and B(p2), or equivalently, in

terms of the dynamical quark mass function M(p2), is given by Eq. (2.41)

S−1(p) = A(p2)/p−B(p2) = A(p2)
[
/p−M(p2)

]
. (3.7)
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ν, c

α, a

µ, b

rp

q

IΓabc
αµν(q, r, p) =

Figure 3.3: Diagrammatic representation of the full three-gluon vertex, IΓabc
αµν(q, r, p).

At tree-level,

S−1
(0)(p) = /p−m, (3.8)

such that A(0) = 1 and B(0) = m, where m is the current quark mass.

Finally, we introduce the three-gluon vertex, IΓabc
αµν(q, r, p) = gfabcIΓαµν(q, r, p), de-

picted in Fig. 3.3. At tree-level, IΓαµν(q, r, p) reduces itself to the standard expression

Γ(0)
αµν(q, r, p) = gµν(r − p)α + gαν(p− q)µ + gαµ(q − r)ν . (3.9)

In our analysis, the three-gluon vertex is naturally contracted by three transverse

projectors, namely

IΓαµν(q, r, p) = Pα′

α (q)P µ′

µ (r)P ν′

ν (p)IΓα′µ′ν′(q, r, p) . (3.10)

3.1.1 General tensorial structure

The quark-gluon vertex exhibits a complex tensor structure. As mentioned above,

this Green’s function depends on the two independent momenta associated with its legs,

and at tree-level, it simplifies to the Dirac matrix, as given by Eq. (3.3). By Lorentz

invariance, it is possible to construct a basis consisting of twelve independent Lorentz

tensors, allowing the quark-gluon vertex to be expressed as [47, 95],

IΓµ(q, p2,−p1) =
12∑
i=1

fi(q, p2,−p1)tµi , (3.11)

each tensor tµi is associated with a scalar function fi(q, p2,−p1), known as the form-factor,

which depends on the three momenta that parameterize the vertex.

We can construct a naive basis, the simplest basis, for the quark-gluon vertex through
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combinations involving γµ, pµ2 , q
µ with the matrices I, /p2, /q and /p2/q. Following this, the

basic tensor structures can be expressed as follows [47, 95],

tν1 = γν , tν4 = γν/p2 , tν7 = γν/q , tν10 = γν/p2/q ,

tν2 = pν2 , tν5 = pν2/p2 , tν8 = pν2/q , tν11 = pν2/p2/q ,

tν3 = qν , tν6 = qν/p2 , tν9 = qν/q , tν12 = qν/p2/q . (3.12)

The advantage of this basis system lies in the simplicity of its elements. However, the

trade-off for these straightforward structures is that the basis tensors are not free from

kinematic singularities. A more sophisticated basis, which are free from such singularities,

can be obtained from combinations of these twelve elements considering desired features.

The tensor structure we will employ is divided into longitudinal IΓL
µ and transverse IΓT

µ

parts [47, 95, 96],

IΓµ(q, p2,−p1) = IΓL
µ(q, p2,−p1) + IΓT

µ (q, p2,−p1) , (3.13)

the longitudinal basis consists of four structures, whereas the transverse part comprises

eight.

In the literature, the most widely adopted basis for studying the quark-gluon vertex is

the generalized Ball-Chiu basis [33, 57, 59, 96–98], initially developed for QED. This basis

is well-suited for exploring the longitudinal structure using the Slavnov-Taylor identity

(STI) [33, 59, 97–99]. However, the part that is of particular interest to us—the transverse

part—remains undetermined by this method. To access the transverse part, we will

employ the basis proposed in [60, 64, 78].

This basis, denoted by τµi , comprises eight independent tensor structures, which are

given by

τ ν1 (p2,−p1) = γν , τ ν2 (p2,−p1) = (p1 + p2)
ν ,

τ ν3 (p2,−p1) = (/p1 + /p2)γ
ν , τ ν4 (p2,−p1) = (/p1 − /p2)γ

ν ,

τ ν5 (p2,−p1) = (/p1 − /p2)(p1 + p2)
ν , τ ν6 (p2,−p1) = (/p1 + /p2)(p1 + p2)

ν ,

τ ν7 (p2,−p1) = −1

2
[/p1, /p2]γ

ν , τ ν8 (p2,−p1) = −1

2
[/p1, /p2](p1 + p2)

ν . (3.14)

The set of twelve basis elements is given by the transverse and longitudinal projections

of the elements of Eq. (3.14), where the longitudinal projector is defined as PL
µν(q) =

gµν − Pµν(q), {
Pµν(q)τ

ν
i , P

L
µν(q)τ

ν
{1,2,6,8}

}
, (3.15)
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and in this case, the transversal part coincides with the vertex transversely projected,

IΓT
µ ≡ IΓµ. Then IΓµ(q, p2,−p1) can be decomposed in terms of eight independent tensors

which in Minkowski space are written as

IΓµ(q, p2,−p1) =
8∑

i=1

λi(q, p2,−p1)Pµν(q)τ
ν
i (p2,−p1) , (3.16)

where λi(q, p2,−p1) denotes the scalar form factors, which depend on three Lorentz scalars.

Specifically, in Euclidean space, the scalars are two square momenta and an angle, and

τ νi (p2,−p1) are the tensors given by Eq. (3.14).

One property that IΓµ(q, p2,−p1) must obey is charge conjugation, the same transfor-

mation property as the tree-level vertex [47, 95].

CIΓµ(q, p2,−p1)C−1 = −IΓ
T

µ (q,−p1, p2) , (3.17)

Under the charge conjugation condition, Eq. (3.17), interchanging the momenta p1 ↔ −p2
in the basis defined in Eq. (3.14) and using the fact that

CγµC
−1 = −γTµ , C[γµ, γν ]C

−1 = [γTν , γ
T
µ ] , (3.18)

we find that

Cτ νi (p2,−p1)C−1 = −[τ νi (−p1, p2)]T , i = 1, 2, 4, 6, 8 ,

Cτ ν3 (p2,−p1)C−1 = [τ ν3 (−p1, p2)]T − 2[τ ν2 (−p1, p2)]T ,

Cτ ν5 (p2,−p1)C−1 = [τ ν5 (−p1, p2)]T ,

Cτ ν7 (p2,−p1)C−1 = −[τ ν7 (−p1, p2)]T − [τ ν5 (−p1, p2)]T , (3.19)

where we have already canceled all terms proportional to qν , which will vanish when

contracted with Pµν(q). Therefore to satisfy Eq. (3.17), we find that

λi(q, p2,−p1) = λi(q,−p1, p2) , i = 1, 4, 6, 7, 8 ,

λ2(q, p2,−p1) + 2λ3(q, p2,−p1) = λ2(q,−p1, p2) ,

λ3(q, p2,−p1) = −λ3(q,−p1, p2) ,

λ5(q, p2,−p1)− λ7(q, p2,−p1) = −λ5(q,−p1, p2) . (3.20)

To conclude this section, it is useful to classify the tensor basis into two subsets based

on their properties with respect to chiral symmetry. In the Sec. 1.1.1, we have discussed

the concept of chiral symmetry and stated that the necessary condition for preserving this

symmetry is given by Eq. (1.22)

{γ5, IΓµ} = 0 . (3.21)
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When this condition is violated, chiral symmetry is broken. Therefore, it follows that

for tensor structures with an odd number of γ matrices, the above condition is satisfied,

and they form the chiral symmetry (CS) subset τcs. Conversely, tensors with an even

number of γ matrices break chiral symmetry and thus belong to the chiral symmetry

breaking (CSB) subset τcsb [57, 63]. Consequently, we have

τcs = {τ ν1 , τ ν5 , τ ν6 , τ ν7 } , τcsb = {τ ν2 , τ ν3 , τ ν4 , τ ν8 } . (3.22)

More specificaly, one finds that the quark functions A(p2) and B(p2) from Eq. (3.23)

will be given by

A(p2) =1− CFg
2

4p2

∫
k

∆(q2)

k2A2(k2)−B2(k2)

{
A(k2)

[
fA
1 λ1(q, k,−p) + fA

5 λ5(q, k,−p)+

fA
6 λ6(q, k,−p) + fA

7 λ7(q, k,−p)
]
+B(k2)

[
fA
2 λ2(q, k,−p) + fA

3 λ3(q, k,−p)+

fA
4 λ4(q, k,−p) + fA

8 λ8(q, k,−p)
]}

,

B(p2) =m+
CFg

2

4

∫
k

∆(q2)

k2A2(k2)−B2(k2)

{
A(k2)

[
fB
2 λ2(q, k,−p) + fB

3 λ3(q, k,−p)+

fB
4 λ4(q, k,−p) + fB

8 λ8(q, k,−p)
]
+B(k2)

[
fB
1 λ1(q, k,−p) + fB

5 λ5(q, k,−p)+

fB
6 λ6(q, k,−p) + fB

7 λ7(q, k,−p)
]}

, (3.23)

where f
A(B)
i are kinematic functions that depends on the momenta p and k, and can be

found at the github [100]. It is evident, from Eq. (3.23), that the form factors naturally

separate into their respective subsets—either chiral symmetry-preserving (CS) or chiral

symmetry breaking (CSB)—within the expressions for the quark functions A(p2) and

B(p2).

3.2 The SDE for the quark-gluon vertex

As discussed in the previous chapter, solving SDEs is generally feasible only after

implementing some form of truncation. In this work, we employ the SDE formulation for

the quark-gluon vertex, derived within the framework of the 3PI effective action [94, 101]

truncated at three-loop level [43, 57, 75–77, 102].

In the nPI formalism, the SDE for a given Green’s function is obtained through the

functional differentiation with respect to this n-point function in question, as it was shown

in the section 2.4.1. For the particular case of the 3PI effective action, the relevant

SDEs are derived from the set of diagrams shown in Fig. 2.11 [43, 75]. At this level of
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Figure 3.4: Diagrammatic representation of the SDE for the full quark-gluon vertex,

IΓa
µ(q, p2,−p1), derived from the 3PI effective action at the three-loop level. White circles

denote full gluon and quark propagators , the orange (red) circles denote the fully dressed

quark-gluon (three-gluon)-vertices.

approximation, all propagators (gluon, ghost, and quark) comprising this action are fully

dressed, as well as the quark-gluon and three-gluon vertices (the tree-point function);

instead, the four-gluon vertex (four point function) is kept at its tree-level.

Focusing on the quark-gluon vertex, the corresponding SDE is diagrammatically de-

picted in Fig. 3.4. The diagram aaµ has the same structure observed in Abelian theo-

ries like QED, while the diagram baµ is restricted to non-Abelian theories, due to the

self-interaction of the gauge boson, which in our case takes the form of the three-gluon

vertex. Consequently, these contributions are referred to as Abelian and non-Abelian dia-

grams, respectively. In particular, the transversely projected quark-gluon vertex, defined

in Eq. (3.4), can be expressed in terms of these contributions as

IΓµ(q, p2,−p1) = Γ
(0)

µ (q, p2,−p1) + aµ(q, p2,−p1) + bµ(q, p2,−p1) , (3.24)

where the transverse projections of aµ and bµ diagrams are defined as

aµ(q, p2,−p1) = Pµν(q)a
ν(q, p2,−p1) , bµ(q, p2,−p1) = Pµν(q)b

ν(q, p2,−p1) . (3.25)

After performing the color algebra and Lorentz contractions, the corresponding con-

tributions in Minkowski space are given by

aµ(q, p2,−p1)=κa
∫
k

∆(k2)IΓ
α
(−k, k1,−p1)S(k1)IΓµ(q, k2,−k1)S(k2)IΓα(k, p2,−k2) ,

bµ(q, p2,−p1)=κb
∫
k

∆(ℓ21)∆(ℓ22)IΓµαβ(q, ℓ1,−ℓ2)IΓα
(−ℓ1, k,−p1)S(k)IΓβ

(ℓ2, p2,−k) ,

(3.26)

where we have already defined the momenta combinations k1, k2, ℓ1, and ℓ2 in Eq. (2.86).

In addition, we have also introduced the group-theoretic factors κa and κb in Eq. (2.84),
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and the integration measure in Eq. (2.40).

3.2.1 Form factors from the SDE

In what follows, we will establish the connection between Eqs. (3.16) and (3.24), which

allow us to derive the dynamical equations governing the form factors λi(q, p2,−p1) in

general kinematics.

The approach is to construct a set of projectors Pµ
i (q, p2,−p1) that, when applied to

the Eqs. (3.16), isolate each form factor [65]. To do that, first observe that with respect

to the basis of Eq. (3.14), these projectors must satisfy the basic property

Tr
[
Pµ

i (q, p2,−p1)Pµν(q)τ
ν
j (p2,−p1)

]
= δij , (3.27)

such that the trace of the contraction with the vertex of Eqs. (3.16) yields the form factors

λi(q, p2,−p1) = Tr
[
Piµ(q, p2,−p1)IΓµ

(q, p2,−p1)
]
. (3.28)

The construction of the projectors Pµ
i can be achieved by expressing them in the form

Pµ
i (q, p2,−p1) =

8∑
j=1

Cij(p2,−p1)τµj (p2,−p1) , (3.29)

where the coefficients Cij are obtained imposing Eq. (3.27) and solving the resulting

system. This yields

Pµ
1 =c1

[
4hτµ1 + r2τµ5 − q2τµ6

]
, Pµ

5 =c2
[
4h(r2τµ1 −2τµ7 )+(3r4+4h)τµ5 −3r2q2τµ6

]
,

Pµ
2 =c1

[
q2(τµ2 +τ

µ
3 )− r2τµ4

]
, Pµ

6 =−c2
[
4hq2τµ1 + 3q2(r2τµ5 −q2τµ6 )

]
,

Pµ
3 =c1

[
q2(τµ2 −τµ3 ) + r2τµ4

]
, Pµ

7 =−2c1[τ
µ
5 + 2τµ7 ] ,

Pµ
4 =c1

[
r2(τµ3 −τµ2 )−(p1+p2)

2τµ4 −2τµ8
]
, Pµ

8 =−4c2
[
2hτµ4 + 3q2τµ8

]
, (3.30)

to keep a compact notation, the arguments of the Pµ
i and τµi are omitted, and we intro-

duced the definitions

r2 = p21 − p22 , h = p21p
2
2 − (p1 · p2)2 , c1 = 1/32h , c2 = 1/128h2 . (3.31)

Contracting the above projectors, Pµ
i with the SDE of Eq. (3.24), one can derive the

the individual dynamical equations for the eight form factors λi(q, p2,−p1). To that end,

it is convenient to denote by Ai and Bi the contributions arising from the contraction of

the projectors Pµ
i , with the diagrams aµ and bµ, shown in Fig. (3.4), respectively. More
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specifically, one has

δi1 = Tr
[
Pµ

i (q, p2,−p1)Pµν(q)γµ

]
,

Ai(q, p2,−p1) = Tr
[
Piµ(q, p2,−p1) aµ(q, p2,−p1)

]
,

Bi(q, p2,−p1) = Tr
[
Piµ(q, p2,−p1) b

µ
(q, p2,−p1)

]
. (3.32)

Then, using Eqs. (3.27), (3.24), and (3.32) it is straightforward to arrive in the following

coupled system of eight integral equations

λi(q, p2,−p1) = δi1 + Ai(q, p2,−p1) + Bi(q, p2,−p1) , i = 1, ..., 8 . (3.33)

3.2.2 Renormalized form factors

Now, we proceed to the renormalization of the SDE for the quark-gluon vertex. Up

to this point, all quantities discussed so far are unrenormalized. All Green’s functions

appearing in Eq. (3.24) are all bare. To convert to their renormalized counterparts, we

employ the standard relations,

∆R(q
2) = Z−1

A ∆(q2) , SR(p) = Z−1
F S(p) , gR = Z−1

g g ,

IΓαµν
R (q, r, p) = Z3IΓ

αµν(q, r, p) , IΓµ
R (q, p2,−p1) = Z1IΓ

µ(q, p2,−p1) , (3.34)

where the subscript “R” denotes renormalized quantities, and ZA, ZF , Z1, Z3, and Zg are

the corresponding renormalization constants, which are related to each other through the

STIs, which impose that

Z−1
g = Z−1

1 Z
1/2
A ZF = Z−1

3 Z
3/2
A . (3.35)

By substituting all quantities in Eq. (3.24) with their renormalized counterparts from

Eq. (3.34), and applying Eq. (3.35), we obtain the renormalized version of the SDE

Eq. (3.24), expressed as

IΓ
µ

R (q, p2,−p1) = Z1Γ
µ

(0)(q, p2,−p1) + aµR(q, p2,−p1) + b
µ

R(q, p2,−p1) . (3.36)

Then renormalized equation for the form factors, akin to Eq. (3.33), can be readily

derived, namely

λi,R(q, p2,−p1) = Z1δi1 + Ai,R(q, p2,−p1) + Bi,R(q, p2,−p1) , i = 1, ..., 8 . (3.37)

Since all vertices in the diagrams aµ and b
µ
are fully dressed, no renormalization

constants appear multiplying them in Eq. (3.36). The only renormalization constant that

remains in Eq. (3.36) is Z1, which multiplies the tree-level contribution. This converts
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the renormalization process from a multiplicative to a subtractive one, a key advantage

of the 3PI formulation [43, 77, 102], resulting in significant operational simplification.

To determine Z1, we use the M̃OM scheme [103], a variant of the momentum subtrac-

tion (MOM) scheme. Specifically, the prescription for the classical form factor λ1 requires

it to be evaluated in the soft-gluon limit, where the gluon momentum approaches zero

(q → 0). In this limit, we denote λsg1 (p
2) = λ1(0, p,−p). This particular scheme is defined

by the following prescriptions

∆−1
R (µ2) = µ2 , AR(µ

2) = 1 , λsg1,R(µ
2) = 1 . (3.38)

To implement this condition in Eq. (3.37), we consider the case i = 1 and take the

limit q → 0. Using the notation f(0, p,−p) = f(p2), we obtain

λsg1,R(p
2) = Z1 + Asg

1,R(p
2) + Bsg

1,R(p
2) , (3.39)

Then, by imposing the renormalization condition of Eq. (3.38), we find

Z1 = 1− Asg
1,R(µ

2)− Bsg
1,R(µ

2) . (3.40)

Thus, substituting Eq. (3.40) into Eq. (3.37), we arrive at the renormalized version of

Eq. (3.37) , namely

λi,R(q, p2,−p1) = [1− Asg
i,R(µ

2)− Bsg
i,R(µ

2)]δi1 + Ai,R(q, p2,−p1) + Bi,R(q, p2,−p1) . (3.41)

From now on, the index “R” will be suppressed to reduce notational clutter.

The SDEs in Eq. (3.41) constitute the main equation of this work and will be solved

under certain simplifying assumptions, which we discuss in detail in the next chapter.
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Chapter 4
Numerical analysis of the quark-gluon vertex

As presented in the previous chapter, our approach to studying the nonperturbative

behavior of the quark-gluon vertex involves decomposing it into a basis where each element

is associated with a form factor. These form factors can then be determined by acting

a set of projectors on the SDE, resulting in a coupled system of eight integral equations

formulated in Minkowski space [see Eq. (3.41)]. This chapter is dedicated to numerically

solving these equations.

To achieve this, the chapter is organized as follows: first, we introduce some approxi-

mations in Eq. (3.41) for the transversely projected three-gluon and quark-gluon vertices

that appear internally in the loop diagrams, significantly reducing the complexity of our

problem. Next, we convert our final equation from Minkowski to Euclidean space to facil-

itate numerical treatment. This conversion transforms the four-dimensional integral into

a more manageable form in hyperspherical coordinates. Then, we provide our numerical

inputs, which basically consist of fits for the quark and gluon lattice propagators, as well

as the three-gluon form factor lattice data.

Finally, we present all our results for the quark-gluon form factors. We start with the

results obtained from solving the integral equation for the classical (tree-level) form factor,

λ1, followed by the seven non-classical form factors in general kinematics. Additionally,

we provide a thorough analysis of the angular dependence of all form factors and compare

our results with the lattice data available in the literature.
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4.1 Quark-gluon vertex SDE in Euclidean space

Before converting the form factors into Euclidean space, some simplifications must be

stated. We observe that Eq. (3.33) provides a system of eight coupled integral equations,

where IΓµ appears on both sides. To reduce the algebraic complexity of this system, we

approximate all transversely projected quark-gluon vertices appearing on the right hand

side by retaining only their classical tensorial structures. Specifically, we set

IΓµ(q, p2,−p1) → λ1(q, p2,−p1)Pµν(q)γ
ν . (4.1)

Notice that implementing this approximation leads to two major simplifications:

1. The dynamical equation for the classical form factor, λ1(q, p2,−p1), decouples from
the seven remaining form factors;

2. The equation for the remaining form factors, λi(q, p2,−p1) for i ̸= 1, are expressed

in terms of only λ1.

Therefore, λ1(q, p2,−p1) is described by an integral equation, whereas the remaining

λi(q, p2,−p1) are expressed as ordinary integrals that requires the form factor λ1 as input.

Regarding the three-gluon vertex, we retain only its tree-level tensor structure and

employ the recent planar degeneracy approximation for the associated form factor, which

has been validated by a series of studies [66, 69–71]. Specifically, the planar degeneracy

ensures that IΓ
,αµν

(q, ℓ1, ℓ2) can be accurately approximated by the compact form

IΓ
µαβ

(q, ℓ1, ℓ2) = Lsg(s
2)Γ

µαβ

(0) (q, ℓ1, ℓ2) , s2 =
1

2
(q2 + ℓ21 + ℓ22) , (4.2)

where Γ
µαβ

(0) (q, ℓ1, ℓ2) = P µ
µ′(q)Pα

α′(ℓ1)P
β
β′(ℓ2)Γ

µ′α′β′

(0) (q, ℓ1, ℓ2), with Γµαβ
(0) denoting the three-

gluon vertex at tree-level given by Eq. (3.9). The function Lsg(s
2) is the three-gluon form

factor in the the soft-gluon limit i.e., (q = 0, ℓ1 = −ℓ2), which has been determined in

various lattice simulations [69, 104–109].

The transition from Minkowski to Euclidean space is achieved through Wick rotation,

where the time component of four-vectors takes on imaginary values, i.e.,

q = (q0,q) → qE = (iq0,q) , (4.3)

where q0 denotes the time and q the spatial components of the four-vector. The index “E”

indicates that this quantity is represented in Euclidean space. Simultaneously, the metric
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reduces to the Kronecker delta in 4D, gµν → δµν , which implies that,

q2 → −q2E and (k · q) → −(kE · qE) . (4.4)

The integration measure defined by Eq. (2.40) changes correspondingly,∫
k

→ i

∫
kE

. (4.5)

The integral measure in hyperspherical coordinates is given by

i

∫
kE

→ i

16π3

∫
=

i

16π3

∫ ∞

0

dz z

∫ π

0

dϕ1s
2
ϕ1

∫ π

0

dϕ2sϕ2 , (4.6)

where sϕi
:= sinϕi.

The structure of the Clifford algebra should be preserved; therefore, the Dirac matrices

γµ transform slightly differently from the four-vectors,

γ0 → γ4E and γj → iγjE . (4.7)

Contractions between four-vectors and Dirac matrices acquire a factor of i, i.e.,

/q → i/q
E
. (4.8)

We must state, additionally, the conversion for scalar functions to Euclidean space,

such as propagators functions and the form factor of the three-gluon vertex,

∆E(q
2
E) = −∆(−q2E), AE(q

2
E) = A(−q2E), BE(q

2
E) = B(−q2E), LE

sg(q
2
E) = Lsg(−q2E) .

(4.9)

In hyperspherical coordinates, it is convenient to express all relevant form factors as

functions of the squared momenta, p21 and p
2
2, and the angle θ1. Therefore, in what follows,

we will adopt the following notation

λi(q, p2,−p1) → λi(p
2
1, p

2
2, θ) . (4.10)

After applying the aforementioned simplifications to Eq. (3.41), we convert it to Eu-

clidean space and obtain

λi(x, y, θ) = Z1δi1 −
αs

24π2

∫
Ki

A ∆(z)λ1(x, u, θ1)λ1(v, y, θ2)λ1(u, v, θ12)

+
3αs

8π2

∫
Ki

B Lsg(r)∆(w)∆(t)λ1(z, y, π−ϕ)λ1(x, z, π−ϕ1) , (4.11)

where Ki
A and Ki

B are the kernels originating from the diagrams (a) and (b) respectively

of Fig. (3.4), and associated with the index i of the form factor λi, and αs(µ
2) ≡ g2/4π.

The explicit form of these kernels for each λi can be found on GitHub [100]. From this

point forward, we will omit the subscript “E” that denotes quantities in Euclidean space.

1The angle θ is defined as the angle between the quark p2 and the antiquark −p1.
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Since we will not return to Minkowski space, this will not lead to any ambiguity.

In the above equation, we introduced the auxiliary variables

x = p21 , y = p22 , z = k2 , u = k21 , v = k22 , w = ℓ21 , t = ℓ22 ,

r = s2 , p1 · p2 =
√
xycθ , p1 · k =

√
xzcϕ1 , p2 · k =

√
yzcϕ , (4.12)

and cϕ = cθcϕ1 + sθsϕ1cϕ2 , where cθ := cos θ and sθ := sin θ, and θ1, θ2, and θ12 the angles

cθ1 = −
√
x+

√
zcϕ1√

u
, cθ2 = −

√
y +

√
zcϕ1√

v
, cθ12 = −

√
xycθ +

√
zycϕ +

√
zxcϕ1 + z√

uv
.

(4.13)

Moreover, the renormalization constant, Z1, is obtained from Eq. (3.40), through the

exact limit of Eq. (4.11) when i = 1 setting q = 0, or |p1| = |p2| = p, and θ = 0, for each

diagram. More specifically, from Eq. (3.39), which we repeat here for convenience, one

finds

λsg1 (x) = Z1 + Asg
1 (x) + Bsg

1 (x) , (4.14)

with

Asg
1 (x)=− αs

24π2

∫
Ksg

1A∆(z)λ21(x, u, θ1)λ1(u, u, π),

Bsg
1 (x)=

3αs

8π2

∫
Ksg

1B Lsg(w)∆
2(w)λ21(x, z, π−ϕ1) , (4.15)

where the kernels Ksg
1A and Ksg

1B can be found on GitHub [100].

Then, it follows that Z1 can be expressed as

Z1 = 1− Asg
1 (µ

2)− Bsg
1 (µ2) . (4.16)

Thus, the system of equations for the λi formed by Eqs. (4.11) and (4.16) are solved

treating ∆(q2), A(p2), B(p2), and Lsg(r
2) as external inputs.

4.2 Numerical inputs

To numerically solve Eq. (4.11), the first step is to provide the necessary inputs for

the integrands. Specifically, ∆(q2), A(p2), M(p2), and Lsg(r
2) are functions determined

by the lattice simulations.

For the form factor λ1, in general kinematics, we will solve its integral equation iter-

atively. Once this is accomplished, we can use the result to compute the remaining form

factors as ordinary integrals.

In the following, we present the functional forms used to fit the lattice QCD data for
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the gluon and quark propagators, as well as the form factor of the three-gluon vertex.

These fitting functions utilize common elements, but differ in the specific values assigned

to certain parameters. In particular, the adjustment parameters δ, κ2, η2i , and bi will

appear across various fits, each with distinct numerical values. The sets of numerical

values applied are detailed in Table 4.1. In addition to the parameters, each functional

form includes the following definitions in its construction.

U(p2) = 1 +
ln [(p2 + η2(p2))/(µ2 + η2(p2))]

ln (µ2/Λ2)
, (4.17)

where

η2(p2) =
η21

1 + p2/η22
, (4.18)

and

R(p2) =
b0 + p2/b21

1 + p2/b22 + (p2/b23)
2
− b0 + µ2/b21

1 + µ2/b22 + (p2/b23)
2
. (4.19)

In our study we will consider lattice QCD data in the unquenched scenario, where

quark effects are considered in the simulations.

For the gluon propagator, ∆(p2), with Nf = 2, i.e., two degenerate light quarks,

we employ a set of lattice data from [110, 111] calculated with a current mass varying

between 20− 50 MeV. In the Fig. 4.1, we show the lattice data for ∆(p2) (left panel) and

its dressing function Z(p2) (right panel) together with the functional form that accurately

fits this set of data [112] which is given by

∆−1(p2) = p2
[

δ

1 + (p2/κ2)
ln

(
p2

µ2

)
+ UdA(p2)

]
+ ν2R(p2) , dA =

39− 4Nf

6β0
, (4.20)

where β0 = 11 − 2Nf/3 and ν = 1 GeV is a dimensional parameter that only serves to

make R(p2) consistent with the dimension of ∆−1(p2).

Notice that the IR saturation of ∆−1(p2) to a finite, non-zero value can be interpreted

as a dynamically generated gluon mass [13, 26].

For the quark propagator expressed in terms of the quark wave function A(p2), and the

corresponding dynamical mass M(p2) = B(p2)/A(p2), we employ the setup denominated

“L08” which are obtained in the lattice simulation of [55, 113]. This simulation was

perfomed for small current quark mass, mq = 6.2 MeV, and pion mass, mπ = 280 MeV.

The functional forms of the fits for A(p2) and M(p2) are given by [112]

A(p2) =
T (p2)

T (µ2)
, T (p2) =

b0 + p2/b1 + (p2/κ2)2

1 + p2/b2 + (p2/b3)2
, (4.21)
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Figure 4.1: Lattice data of [110, 111], with Nf = 2 (points) for the gluon propagator,

∆(p2) and its fit (black solid line) given by Eq. (4.20) [112] (left panel). The gluon

dressing function, Z(p2) = p2∆(p2) (right panel).

Figure 4.2: Lattice data of [55, 113] corresponding to the L08 step up for the quark wave

function, 1/A(p2), (left) and running mass, M(p2) (right) and the fits given by Eqs. (4.21)

and (4.22) [112].

M(p2) =
m0

1 + (p2/κ2)1+δ
+mq

[
1

2
ln

(
p2 + η2(p2)

Λ2 + η2(p2)

)]−dM

, dM =
4

β0
. (4.22)

Note that these functional forms were constructed to eliminate visible artifacts in

the UV region of the lattice data and to reproduce the corresponding one-loop resumed

perturbative behavior [112]. Both the lattice data and the corresponding fits for A(p2)

and M(p2) are displayed in Fig. 4.2.

Finally, for the form factor of the three-gluon vertex in soft-gluon limit, Lsg(p
2), we

fit the lattice data obtained from simulations with Nf = 2 + 1, i.e., two light quark with

current mass of 1.3 MeV, and a heavier one with a current mass of 63 MeV [107], since

currently there is no available data for Nf = 2 in the literature. However, it is natural
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Figure 4.3: Lattice data of for Lsg(p
2) for Nf = 2 + 1 (point) [107] together its fit given

by Eq. (4.23) [112] (purple continuous). For the sake of comparison, we show the fit for

Lsg(p
2) with Nf = 0 (blue curve) given by Eq. (4.24) [114].

to expect the result of the Lsg(p
2) for Nf = 2 lies between Nf = 2 + 1 and Nf = 0. The

functional form employed to fit the unquenched lattice data [112] is given by

Lsg(p
2) = 1.16

{
δ

1 + (p2/κ2)
ln

(
p2

µ2

)
+ Ud3g(p2) +R(p2)

}
, d3g =

51− 8Nf

12β0
, (4.23)

where U(p2) and R(p2) are given in (4.17) and (4.19). In the Fig. 4.3 we show the lattice

data for Lsg(p
2) for Nf = 2 + 1 of [107], and its fit (purple curve) given by Eq. (4.23) [112].

For the sake of comparison, we also show a fit for the quenched, Nf = 0, Lsg(r
2) (blue

curve) given by [114].

Lsg(p
2) =

δ

1 + (p2/κ2)
ln

(
p2

µ2

)
+ Ud3g(p2) +R(p2) , d3g =

51− 8Nf

12β0
. (4.24)

We emphasize that in our analysis, we will explore how modifications on the functional

form of Lsg(p
2), indicated by the purple band, may affect the results of the quark-gluon

form factors. Therefore, the modifications that we will implement in the functional form

used for the Lsg(p
2) can also be seen as an approximate version of the Nf = 2 case.

It is important to mention that all these inputs are renormalized in the M̃OM scheme

defined by Eq. (3.38), at the renormalization point µ = 2 GeV. For this particular µ we

use αs(µ
2) ≡ g2/4π = 0.55; the estimate of this value was performed [112], by relating

the values of the couplings in the Taylor and M̃OM schemes at one-loop.
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δ κ2[GeV2] η21 [GeV2] η22 [GeV2] b0 b1[GeV2] b2[GeV2] b3[GeV2]

∆(q2) 0.112 71.8 10.1 0.895 −0.0998 −1.67 0.684 0.321

A(p2) [L08] - 0.930 - - 0.360 0.642 0.175 0.462

M(p2)[L08] 0.294 0.520 1.31 13.0 - - - -

Lsg(p
2)[Unq] 0.0629 12.3 1.00 1.48 0.102 25.9 1.70 19.0

Lsg(p
2)[Que] 0.11 18.2 0.20 6.36 0.241 −0.646 0.310 1.28

Table 4.1: Fitting parameters used for Eqs. (4.20),(4.21), (4.22), and (4.23). For M(p2)

we use a current mass ofmq = 6.2 MeV andm0 = 345 MeV, and we employ Λ = 610 MeV.

4.3 General results

With all numerical ingredients defined in Section 4.2, now we can proceed to the

solution of Eq. (4.11) and present in this section our numerical results for the quark-gluon

vertex form factors λi(p
2
1, p

2
2, θ).

For integrations, we employ a Fortran code and implement a double precision adaptive

routine based on Gauss-Kronrod integration rule [115]. The external momenta squared

grid range from [10−3, 103] GeV2 with 30 points. Since our focus is on the IR region,

we distribute the grid points logarithmically to ensure a high density of points at low

momenta. The external angle grid is distributed across 10 points, ranging from θ = [0, π].

In order to obtain λ1 in general kinematics, first, we solve Eq. (4.11) for i = 1 itera-

tively. Once the results for λ1 are available, they are used as inputs into Eq. (4.11) for

i = 2, · · · , 8, which furnishes all remaining λi through a single integration.

For the three-dimensional interpolations of our outputs, we employed a multidimen-

sional B-splines interpolation method [116, 117]. Specifically, we implemented cubic B-

splines in our procedure.

4.3.1 Tree-level form factor

In this section, we present the numerical results, obtained from the iterative solution

of Eq. (4.11), for the form factor associated with the tree-level structure, the λ1(p
2
1, p

2
2, θ).

The results are shown in Fig. 4.4, which is divided into four panels, each representing a

3D surface at a different angle θ. Along the diagonals of the surfaces, defined by p1 = p2,

special kinematic configurations are identified and summarized below:

1. The soft-gluon limit : when the gluon momentum q = 0. In this configuration p1
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Figure 4.4: The form factor λ1(p
2
1, p

2
2, θ) plotted as a function of the antiquark, p1, and

quark, p2, momenta, for fixed angles θ = 0 (upper left), θ = π/3 (upper right), θ = 2π/3

(lower left), and θ = π (lower right). Four kinematic limits are highlighted in the diagonals

of each of the 3D surfaces: soft-gluon (blue), totally symmetric (red), quark-symmetric

(brown), and asymmetric (yellow) configurations.

and p2 have the same magnitude, |p1| = |p2| = p, and are parallel vectors, i.e., the

angle between them is θ = 0. We represent this configuration by the blue curve in

the upper left panel of Fig. 4.4;

2. The totally symmetric limit : when all momenta square are equal q2 = p21 = p22 = p2.

In this case, the angle between p1 and p2 is θ = π/32. This limit is shown by the

red curve in the upper right panel of Fig. 4.4;

3. The quark-symmetric limit : when the momenta square of the quark and antiquark

are equal p21 = p22 and θ = 2π/3. This configuration is depicted by the brown curve

in the lower left panel of Fig. 4.4;

4. The asymmetric limit : when p1 and p2 have the same magnitude, |p1| = |p2| = p,

2Note that the angle is not 2π/3 since in our convention the anti-quark momentum is outgoing.
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Figure 4.5: Left panel: The angular dependence of λ1(p
2
1, p

2
2, θ) on θ, when we set

p21 = p22 = p2. Right panel: The maximum value λ1(p
2, p2, θ) as function of the angle

θ.

and are anti-parallel vectors, i.e., θ = π. This configuration is represented by the

yellow curve in the lower right panel of Fig. 4.4.

Note that all configurations exhibit a similar qualitative pattern: in each case, the

peak is located in the same momentum region, specifically between 0 and 550 MeV, with

moderate differences in their heights. As predicted in [47], the tail of the form factors

decreases logarithmically in the UV, eventually recovering its perturbative (tree-level)

behavior, when λ1 → 1.

In Fig. 4.5, we explore the angular dependence of λ1, with the angle varying within

the interval [0, π], for the case when p21 = p22 = p2. The figure is divided into two panels:

in the left panel, we plot a sequence of diagonal curves, λ1(p
2, p2, θ), for different values

of the angles θ. The curves highlighted on the surfaces in Fig. 4.4 are representative

examples of this sequence. In the right panel, we plot the corresponding maximum values

of λ1(p
2, p2, θ) as a function of the angle θ.

With this result, we see that as the angle θ increases, the peak of the form factor

becomes more pronounced, as shown in the right panel of the figure. For θ = 0 (lowest

curve - blue), we recover the soft-gluon configuration, while for θ = π (highest curve -

yellow), we reach the asymmetric limit, which displays the highest peak. Notably, there

is a 27% increase between the maxima of the soft-gluon and asymmetric configurations.
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Figure 4.6: The chirally symmetric quark-gluon form factors λi(p
2
1, p

2
2, θ), with i = 5, 6

(upper row) and i = 7 (lower row) plotted as functions of the magnitudes of the momenta

p1 and p2, for a fixed value of the angle, θ = 0. The blue curves along the diagonals

represent the corresponding soft-gluon limits of each form factor.

4.3.2 Remaining form factors

After determining the solution for λ1(p
2
1, p

2
2, θ) in general kinematics, the remaining

form factors are obtained by solving an ordinary integral given by Eq. (4.11) using the

result of λ1(p
2
1, p

2
2, θ) as an additional input. We categorize the results for the form fac-

tors into chirally symmetric and chirally symmetric breaking form factors, following the

division of the basis outlined in Eq. (3.22). The chirally symmetric form factors, shown in

Fig. 4.6, include λ5, λ6, and λ7. The chirally symmetric breaking form factors, λ2, λ3, λ4,

and λ8, are displayed in Fig. 4.7. In both figures, each form factor is plotted in terms of

the antiquark momentum p1 and quark momentum p2, for a representative angle θ = 0.

Initially, note that all the results shown in Figs. 4.6 and 4.7 satisfy the relations

derived from charge symmetry outlined in Eq.(3.20). The form factors λ4, λ6, λ7, and

λ8 are symmetric with respect to the diagonal, which we represent with blue or purple

curves. This symmetry becomes apparent in the 3D surfaces only when the form factor

λi(p
2
1, p

2
2, θ) is plotted as a function of the momenta p1 and p2. For λ2, the symmetry

with respect to the diagonal is approximately satisfied since λ3 is very small, as shown in
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Figure 4.7: The chirally broken quark-gluon form factors λi(p
2
1, p

2
2, θ), with i = 2, 3 (upper

row) and i = 4, 8 (lower row) plotted as functions of the magnitudes of the momenta

p1 and p2, for a fixed value of the angle, θ = 0. The purple curves along the diagonals

represent the corresponding soft-gluon limit of each form factor.

Fig. 4.7. The relation for λ5 is also numerically satisfied.

The continuous curves along the diagonals in these 3D surfaces, depicted in blue or

purple, represent the corresponding soft-gluon limit for each form factor, where p1 = p2,

or equivalently q = 0, with the angle fixed at θ = 0 in all panels. As a general observa-

tion, we note that the form factors remain finite in the IR and deviate significantly from

their vanishing tree-level values, while gradually aligning with their expected perturbative

behavior in the deep UV.

In Fig. 4.8, we plot the angular dependence for all form factors except λ3, which,

though nonvanishing, is heavily suppressed. In each panel, the variation of the angle θ

forms a band defined by the soft-gluon limit (θ = 0) and the asymmetric limit (θ = π),

similar to Fig. 4.5 for λ1. The weakest angular dependence are observed in λ2 and λ8.

The form factors λ4 and λ6 exhibits a slightly stronger dependence on θ primarily in

the momentum region where p ≤ 2 GeV. Finally, λ5 and λ7 show a noticeably stronger

dependence across almost the entire momentum range, although still less pronounced than

the angular dependence of λ1 shown in Fig. 4.5.
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Figure 4.8: The angular dependence of λi(p
2
1, p

2
2, θ) on θ for i = 2, 4, 5, 6, 7, 8, when we set

p21 = p22.

4.3.3 Hierarchy of form factors

The form factors λi, whose results were presented in the previous sections, have dif-

ferent dimensionalities, making direct comparisons meaningless. To facilitate a relative

comparison of their magnitudes and establish a hierarchical classification, we introduce

dimensionless renormalization-group invariant (RGI) combinations that generalize the ef-

fective coupling. In particular, we focus on special kinematic configurations ( in this

particular case: the soft-gluon limit), where the λsgi (p
2) depend on a single momentum p,

and construct a family of dimensionless effective couplings, ĝ sg
i (p2), we define [60, 64, 104,

107, 118]

ĝ sg
i (p2) = g(µ2) [pniλsgi (p

2)]A−1(p2)Z1/2(p2) , with n1 = 0, n2,3,4 = 1 ,

n5,6,7 = 2 , n8 = 3 . (4.25)

where Z(p2) and A(p2) are defined in Eqs. (3.6) and (3.7), respectively. Notice that we

have introduced the compact notation λsgi (p
2) = λi(0, p,−p).

In Fig. 4.9, we present the results for ĝ sg
i (p2) divided into two subsets: the effective

couplings for the chirally symmetric form factors (left panel), and those for the chirally

broken form factors (right panel). Since these quantities are dimensionless, they provide
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Figure 4.9: The quark-gluon effective coupling, ĝ sg
i (p2), for the chirally-symmetric tensor

structures τ1,5,6,7 (left panel); and for the chirally-broken tensors τ2,3,4,8 (right panel). The

effective couplings were determining using Eq. (4.25) when the quark-gluon vertex form

factors are in the soft-gluon kinematics.

a clear indication of the physical relevance of the corresponding form factors λi.

Through Fig. 4.9, we can observe that the hierarchy of the effective coupling is as

follows:

ĝ sg
1 (p2) > ĝ sg

7 (p2) > ĝ sg
5 (p2) , |ĝ sg

4 (p2)| > |ĝ sg
2 (p2)| > g sg

8 (p2) . (4.26)

Note that ĝ sg
3 vanishes identically, and ĝ sg

7 (p2) = 2ĝ sg
5 (p2), reflecting the charge con-

jugation symmetry of the vertex as expressed in Eq. (3.20). We have confirmed that

the hierarchies given in Eq. (4.26) are consistent across the totally symmetric, quark-

symmetric, and soft-gluon limits. Additionally, our results are in qualitative agreement

with those presented in [64], where the effective couplings were computed in the totally

symmetric configuration.

4.3.4 Comparisons with lattice

In this subsection we compare our results for the quark-gluon vertex in the soft-gluon

configuration with those obtained in unquenched lattice simulation of [55].

We recall that in the soft-gluon limit (q → 0), the transversely projected quark-gluon

vertex given by Eq. (3.16) reduces to

IΓµ(0, p,−p) = γµλ
sg
1 (p

2) + 2pµλ
sg
2 (p

2) + 4/p pµλ
sg
6 (p

2) , (4.27)

Note that, although the tensor τ ν3 (p,−p), defined in Eq. (3.14), is non-zero in this kine-

matic limit, the associated form factor λsg3 (p
2) vanishes due to charge conjugation.
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Figure 4.10: Comparison of the dimensionless soft-gluon form factors λsg1 (p
2) (upper left),

4p2λsg6 (p
2) (upper right), and 2pλsg2 (p

2) (lower) with lattice data of [55]. We also plot the

corresponding one-loop expressions.

In order to make a direct contact with the lattice data of [55], we first need to convert

Eq. (4.27) to Euclidean space. Following the discussion presented in the Appendix A,

it is straightforward to construct the Euclidean version of Eq. (4.27), which is given by

Eq. (A.9). In addition, a relabelling of the corresponding form factors is necessary: our

form factors λsgi (p
2), with i = 1, 2, 6, and the lattice form factors λLi (p

2), with i = 1, 2, 3

from [55] are related by (Euclidean space)

λsg1 (p
2) = λL1 (p

2) , λsg6 (p
2) = λL2 (p

2) , λsg2 (p
2) = λL3 (p

2) . (4.28)

In Fig. 4.10, we compare our results for the dimensionless form factors λsg1 (p
2), 4p2λsg6 (p

2),

and 2pλsg2 (p
2) (blue continuous curves) with the “L08” lattice data obtained in [55] (cir-

cles). In addition, on the same plots, we show the perturbative one-loop behavior (black

dashed curve). Specificaly, the one-loop curves corresponds to the perturbative analytic

expressions for the λsgi (p2) given in Eq. (32)-(34) of [55]; they are renormalized in the

M̃OM scheme, for αs(µ
2) = 0.55 at µ = 2 GeV.
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We can clearly see that our result for λsg1 (p
2) have an excellent agreement with the

general pattern found by the Nf = 2 lattice simulation of [55]. In particular, both curves

nearly coincide over most of the momentum range, showing a minor deviation only in

the deep IR, where the corresponding saturation points differ by approximately 7%. As

we will see in the next subsection, this discrepancy may be reduced by making minor

modifications to the three-gluon form factor, Lsg(s
2), and the gluon propagator, ∆(q2),

used as inputs for the SDE. Moreover, we observe that for p ≤ 1.4 GeV, λsg1 (p
2) begins to

show a significant deviation from its tree-level value, whereas, for larger values of p, we

recover the expected one-loop behavior as given by Eq. (32) of [55]. Notably, the numerical

solution for λsg1 (p
2) that minimizes the χ2 relative to the lattice data, yielding χ2 = 0.036,

is obtained when we set αs(µ
2) = 0.55, which is very close to the value estimated in [112].

Quite interestingly, this value happens to be very close to the critical value of the coupling,

αc
s(µ

2) = 0.597, for which the Eq. (4.11), for i = 1, ceases to converge.

The χ2 is defined as,

χ2 =
k∑

i=1

(xi − yi)
2

yi
, (4.29)

where xi represents the numerical values obtained from our computations, and yi corre-

sponds to the lattice data.

On the other hand, as can be clearly seen from the upper right and lower panels of

Fig. 4.10, our results for 4p2λsg6 (p
2) and 2pλsg2 (p

2) are vastly different from the curves found

on the lattice. Note that, for large momenta, both SDE-derived curves match accurately

the respective one-loop results.

It is important to mention that, although the present SDE analysis was carried out

for Nf = 2, our result for 4p2λsg6 (p
2) are in qualitative agreement with the general pattern

found by all previous analytic quenched determinations [43, 56, 59, 61, 119]. In particular,

all quenched curves share the characteristic feature of vanishing at the origin and tending

to a constant value in the UV, showing moderate increase in the intermediate region.

On the other hand, our result for 2pλsg2 (p
2) displays a minimum whose depth is much

smaller than that observed in the previous analytic quenched studies [43, 56, 59, 61, 119],

being the latter, more compatible with the unquenched lattice data of [55].
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ϵ+ ϵ− κ[GeV2]
L±
sg 0.030 0.120 5.000

∆± 0.025 0.100 0.900

Table 4.2: Parameters used in Eq. (4.30) to obtain the bands on the left panel of Fig. 4.11.

4.3.5 Varying the inputs

As noted previously by [63], the result for the form factor λsg1 (p
2) is highly sensitive

to variations in the gauge sector inputs. To investigate this feature, we construct a band

around the curves obtained from the lattice fits for the dressing of the three-gluon vertex,

Lsg, and the gluon propagator, ∆. This band is generated by adding or subtracting a

function depending on the parameters ϵ± and κ2, as follows

L±
sg(p

2) = Lsg(p
2)± ϵ±/[1 + (p2/κ2)2] , ∆±(p2) = ∆(p2)± ϵ±/[1 + (p2/κ2)2] . (4.30)

In Fig. 4.11, we illustrate how the changes in these two quantities significantly impact

the form factor, for values of ϵ± and κ specified for each ingredient in Table 4.2. Note that

the values of ϵ+ are much lower than the values of ϵ−, for both ingredients, even though

the effect on the form factor λsg1 (p
2) is similar. Specifically, increasing these components

leads to a dramatic increase in the form factor.

Figure 4.11: The effect on the form factor λsg1 (p
2) from the corresponding bands highlighted

in these plots are shown on the right panel.

Moreover, bigger values for the ϵ+ presented in Table 4.2 causes the equation to reach

its convergence limit. Also, setting the three-gluon vertex to its tree-level form prevents

the equation from converging. This result shows the importance of the suppression of

the three-gluon vertex in order to the convergence of the quark-gluon SDE for a value of

αs(µ
2) that fits best the lattice data.
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Note that although a narrower band in the gluon propagator produces approximately

the same effect on λsg1 (p
2), the dependence of this form factor on the gluon propagator is

quadratic, whereas it is linearly dependent on Lsg. This is because the largest contribution

to λsg1 (p
2) comes from the non-Abelian (b) diagram. Changes in the quark propagator do

not change λsg1 (p
2) so dramatically as in the gauge inputs.

4.4 Checking multiplicative renormalizabity

As previously mentioned, one of the main advantages of the 3PI formalism is that,

because all vertices appearing in the SDE are fully dressed, there are no renormalization

constants multiplying the Abelian and non-Abelian diagrams. Therefore, a self-consistent

treatment of the vertices ensures that all divergences can be absorbed into these renor-

malization constants in a manner that preserves the multiplicative renormalizability of

the theory.

To verify explicitly this property of our Eqs. (4.11) and (4.16), we repeat the calcu-

lation of λ1 with Eq. (4.11) renormalized in the same scheme, M̃OM, but at a different

renormalization point, ν = 4.3 GeV, i.e., imposing

∆−1
R (ν2) = ν2 , AR(ν

2) = 1 , λsg1,R(ν
2) = 1 . (4.31)

As such, Z1 continues to be determined by Eq. (4.16), but with µ→ ν.

Then, we will check whether our numerical solutions for λ1 renormalized at µ = 2 GeV

and at ν = 4.3 GeV, respect multiplicative renormalizability, i.e., if they satisfy the fol-

lowing relation

λsg1 (q
2, µ2) =

λsg1 (q
2, ν2)

λsg1 (µ
2, ν2)

, (4.32)

which we derive below.

In order to do that, we need to have at our disposal the inputs for ∆(q2), Lsg(s
2), and

A(p2) shown in Figs. 4.1, 4.2 and 4.3, respectively, at different renormalization points 3.

To that end, we exploit the property of multiplicative renormalizability, which allows one

to connect a Green’s function renormalized at µ with the corresponding one renormalized

at ν.

Specifically, it follows from Eq. (3.34) and the fact that the unrenormalized Green’s

3Notice that the quark dynamical mass, M(p2), is a µ-independent quantity, and therefore does not
need to be rescaled.
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functions do not depend on µ, that

∆(q2, µ2) =∆(q2, ν2)
ZA(ν

2)

ZA(µ2)
, A(p2, µ2) =A(p2, ν2)

ZF (µ
2)

ZF (ν2)
,

λsg1 (q
2, µ2) =λsg1 (q

2, ν2)
Z1(µ

2)

Z1(ν2)
, Lsg(s

2, µ2) =Lsg(s
2, ν2)

Z3(µ
2)

Z3(ν2)
. (4.33)

Now, the values ∆(µ2, µ2), A(µ2, µ2), and λsg1 (µ
2, µ2), are fixed by the renormalization

prescription of Eq. (3.38). Hence, evaluating Eq. (4.33) at q2 = p2 = µ2 entails

ZA(ν
2)

ZA(µ2)
=

1

µ2∆(µ2, ν2)
,

ZF (µ
2)

ZF (ν2)
=

1

A(µ2, ν2)
,

Z1(µ
2)

Z1(ν2)
=

1

λsg1 (µ
2, ν2)

. (4.34)

Then, substituting the above into Eq. (4.33) furnishes Eq. (4.32), together with

∆(q2, µ2) =
∆(q2, ν2)

µ2∆(µ2, ν2)
, A(p2, µ2) =

A(p2, ν2)

A(µ2, ν2)
. (4.35)

On the other hand, the renormalization conditions of Eq. (3.38) do not specify the value

of Lsg(µ
2, µ2). Instead, to determine Z1(µ

2)/Z1(ν
2), we employ the STI Z3 = Z1ZA/ZF ,

together with the previously obtained Eq. (4.34), to find

Z3(µ
2)

Z3(ν2)
=
µ2∆(µ2, ν2)A(µ2, ν2)

λsg1 (µ
2, ν2)

, (4.36)

which implies

Lsg(s
2, µ2) =

Lsg(s
2, ν2)µ2∆(µ2, ν2)A(µ2, ν2)

λsg1 (µ
2, ν2)

. (4.37)

The next step is to relate the values of αs(ν
2) and αs(µ

2), which we achieve by invoking

the effective coupling ĝ sg
1 (p2) of Eq. (4.25). Since ĝ sg

1 (p2) is RGI, its value is the same

when computed with ingredients renormalized at either µ or ν, i.e.,

ĝ sg
1 (p2) =

g(µ2)λsg1 (p
2, µ2)Z1/2(p2, µ2)

A(p2, µ2)
=
g(ν2)λsg1 (p

2, ν2)Z1/2(p2, ν2)

A(p2, ν2)
. (4.38)

Therefore, setting p = ν in the above, using the renormalization prescription of Eq. (4.31),

and g2 = 4παs, leads to

αs(ν
2) = αs(µ

2)
[
λsg1 (ν

2, µ2)
]2
A−2(ν2, µ2)ν2∆(ν2, µ2) . (4.39)

Then, using the previously obtained curve for λsg1 (q
2, µ2), shown in Fig. 4.10, together

with the external inputs renormalized at µ = 2 GeV, discussed in Sec. 4.2, we obtain all

the necessary inputs renormalized at ν = 4.3 GeV through Eqs. (4.35), (4.37) and (4.39).

In particular, we find αs(ν
2) = 0.28.

With all the necessary inputs in hand, we solve Eqs. (4.11) and (4.16) again to obtain

λsg1 (q
2, ν2) at ν = 4.3 GeV. The result is then rescaled to µ = 2 GeV using Eq. (4.32), and

compared to the λsg1 (q
2, µ2) obtained by solving the SDE directly at µ. The comparison is

shown in Fig. 4.12, where the blue continuous curve shows the result of the SDE renormal-
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Figure 4.12: Verification that our solution for λ
sg1(p

2)
1 satisfies the multiplicative renormal-

izability property given by Eq. (4.32).

ized at µ, whereas the black dashed corresponds to the result of the SDE renormalized at

ν, after rescaling to µ through Eq. (4.32). The agreement between the two curves confirms

that indeed multiplicative renormalizability is satisfied in our truncation.
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Chapter 5
Conclusions

In this thesis, we have determined the nonperturbative behavior of the transversely

projected quark-gluon vertex, one of the fundamental Green’s function composing quark

sector of QCD. In this nonperturbative study, we considered the SDE for the quark-gluon

vertex derived in the 3PI formalism.

In Section 2.4, we introduced the nPI formalism, from which we derive the version

of the SDE for the quark-gluon vertex used in this work. Specifically, we use the 3PI

formalism, which offers advantages over the traditional method, particularly in terms of

renormalization and truncation. In this approach, all propagators and vertices in the

SDE are fully dressed, simplifying the renormalization process, as the only contribution

requiring a renormalization constant is the tree-level term [see Eqs. (3.36) and (3.37)].

Additionally, because the truncation is performed at the level of the effective action, in

3-loop order, the 3PI method inherently provides a truncated equation without the need

for external approximations to break the tower of SDEs.

In Chapter 3, we focused on the transversely projected quark-gluon vertex, discussing

its key aspects. This vertex is decomposed into eight Lorentz structures, τµi (p2,−p1),
which form the basis given in Eq. (3.14). In this decomposition, each basis element is

associated with a form factor, λi(q, p2,−p1), which we fully determine in Euclidean space

for general kinematics. In our analysis, we relate each form factor to the SDE of the

quark-gluon vertex by applying a set of basis projectors [see Eq. (3.30) onto the SDE,

thereby converting the form factors into integral equations.

Next, after defining our main equations for the form factors, we stated two fundamen-
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tal simplifications in Section 4.1 to reduce considerably the numerical complexity of our

problem. First, we considered only the tree-level structure for the quark-gluon vertex [see

Eq.(4.1)] that appears in the SDE. This implies that only the form factor λ1 is treated

as an integral equation solved iteratively, while all other form factors decouple from each

other, relying on λ1 as an input and are determined by solving simple integrals. The

second simplification involves the three-gluon vertex, where, based on several studies[66,

69–71], we assume the so-called planar degeneracy. Here, the vertex is approximated by

its tree-level structure multiplied by a scalar function Lsg(s
2), which is computed in the

soft-gluon limit and is well-determined by lattice QCD simulations [69, 104–109].

We then proceed to express the form factors in Euclidean space, where the variables

are the two momenta and the angle between them, leading to λi(p
2
1, p

2
2, θ) [see Eq.(4.11)].

The components necessary for calculating the form factors were presented in Section 4.2,

where we provided the fits used for the corresponding lattice data.

In Section 4.3, we presented our results in general kinematics (3D surfaces in terms

of the momentum p1 and p2 with the angle fixed), starting with the form factor related

to the tree-level, λ1 [see Fig. 4.4]. Using the results for λ1, we determine the remaining

form factors, λi [see Figs. 4.6 and 4.7]. All form factors are finite in the IR region,

and we observe significant deviations from their tree-level behavior in this region. The

perturbative behavior (tree-level) is recovered in the UV limit, where λ1 → 1 while λi → 0

for i ̸= 1. When plotted in terms of p1 and p2, all form factors exhibit the respective basis

charge symmetry as described in Eq. (3.20).

We also study the angular dependence of each form factor. We plot a slice of the

3D-surfaces in p1 = p2, and the angular variation from θ = 0 to θ = π forms a band

[see 4.5 and 4.8]. First, for the form factor λ1 we observe that the maximum peak of

the curve increases as the angle increases with a difference of 27% between the soft-gluon

(θ = 0) and asymmetric (θ = π). For the remaining form factors we find that λ2 and λ8

are weakly dependent on angular variation, followed by λ4 and λ6 which have a slightly

stronger angular dependence in low momentum region. Finally the λ5 and λ7 shows the

strongest dependence among those form factors, with exception of λ1. The form factor λ3

is the more suppress form factor and identically 0, when p1 = p2.

To compare the relative magnitudes of the form factors, we calculated the dimension-

less quark-gluon effective couplings using combinations of renormalization group invariants
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[see Fig. 4.9]. The results reveal a hierarchy [see Eq. (4.25)], where, as expected, λ1 is the

dominant form factor, followed by λ7 and λ4. For phenomenological applications, these

three form factors are expected to have the most significant impact.

Furthermore, we compare our results with the more recent data of lattice for the quark-

gluon vertex [55]. The lattice calculate the quark-gluon in the soft-gluon limit, where the

tensorial structure of the quark-gluon reduces only to three non trivial form factors [see

Eq. (4.27)], namely, λsg1 (p2), λsg2 (p2), and λsg3 (p2). The result shows a excellent agreement

for λsg1 (p2) between SDE and lattice, the opposite occurs with the other two form factors.

Whereas, λsg3 (p2), although it has the same pattern, the results differ considerably. The

λsg2 (p2) is completely different. Both λsg2 (p2), and λsg3 (p2) calculated by the lattice fail

to capture the perturbative behavior in the UV [see Fig. 4.10]. Finally, we conclude by

verifying the multiplicative renormalizability property of our form factors.

We have seen that the quark-gluon vertex couples to the SDE of the quark propaga-

tor [see Eq. (2.39)], which serves as a key tool in the phenomenological study of chiral

symmetry breaking and the resulting dynamical mass generation for quarks. Since, it is

well know that this vertex plays a crucial role in chiral symmetry breaking and dynamical

mass generation for quarks, it is natural to explore future applications of our results to

analyze the phenomenological impact that the nonperturbative structure of this vertex

has on this process.



Bibliography 83

Bibliography

1W. J. Marciano and H. Pagels, “Quantum chromodynamics: a review”, Phys. Rept. 36,

137 (1978).

2N. Brambilla et al., “QCD and Strongly Coupled Gauge Theories: Challenges and Per-

spectives”, Eur. Phys. J. C 74, 2981 (2014).

3D. J. Gross and F. Wilczek, “Ultraviolet Behavior of Nonabelian Gauge Theories”,

Phys. Rev. Lett. 30, 1343–1346 (1973).

4H. D. Politzer, “Reliable Perturbative Results for Strong Interactions?”, Phys. Rev.

Lett. 30, 1346–1349 (1973).

5C. D. Roberts and A. G. Williams, “Dyson-Schwinger equations and their application

to hadronic physics”, Prog. Part. Nucl. Phys. 33, 477–575 (1994).

6P. Maris and C. D. Roberts, “Dyson-Schwinger equations: A Tool for hadron physics”,

Int. J. Mod. Phys. E12, 297–365 (2003).

7M. R. Pennington, “Swimming with quarks”, J. Phys. Conf. Ser. 18, 1–73 (2005).

8R. Alkofer and L. von Smekal, “The Infrared behavior of QCD Green’s functions:

Confinement dynamical symmetry breaking, and hadrons as relativistic bound states”,

Phys. Rept. 353, 281 (2001).

9C. S. Fischer, “Infrared properties of QCD from Dyson-Schwinger equations”, J. Phys.

G 32, R253–R291 (2006).

10C. D. Roberts, “Three Lectures on Hadron Physics”, J. Phys. Conf. Ser. 706, 022003

(2016).

https://doi.org/10.1016/0370-1573(78)90208-9
https://doi.org/10.1016/0370-1573(78)90208-9
https://doi.org/10.1140/epjc/s10052-014-2981-5
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1016/0146-6410(94)90049-3
https://doi.org/10.1142/S0218301303001326
https://doi.org/10.1088/1742-6596/18/1/001
https://doi.org/10.1016/S0370-1573(01)00010-2
https://doi.org/10.1088/0954-3899/32/8/R02
https://doi.org/10.1088/0954-3899/32/8/R02
https://doi.org/10.1088/1742-6596/706/2/022003
https://doi.org/10.1088/1742-6596/706/2/022003


Bibliography 84

11D. Binosi and J. Papavassiliou, “Pinch Technique: Theory and Applications”, Phys.

Rept. 479, 1–152 (2009).

12A. C. Aguilar, D. Binosi, and J. Papavassiliou, “The Gluon Mass Generation Mecha-

nism: A Concise Primer”, Front. Phys.(Beijing) 11, 111203 (2016).

13J. M. Cornwall, “Dynamical Mass Generation in Continuum QCD”, Phys. Rev. D 26,

1453 (1982).

14K. G. Wilson, “Confinement of Quarks”, Phys. Rev. D 10, 2445–2459 (1974).

15M. Creutz, “Monte Carlo Study of Quantized SU(2) Gauge Theory”, Phys. Rev. D 21,

2308–2315 (1980).

16F. J. Dyson, “The S matrix in quantum electrodynamics”, Phys. Rev. 75, 1736–1755

(1949).

17J. S. Schwinger, “On the Green’s functions of quantized fields. 1.”, Proc. Nat. Acad.

Sci. 37, 452–455 (1951).

18F. J. Yndurain, The theory of quark and gluon interactions (Springer, 2006).

19R. Gupta, “Introduction to lattice QCD: Course”, arXiv:hep-lat/9807028 (1997).

20M. Luscher, “Advanced lattice QCD”, arXiv:hep-lat/9802029 (1998).

21C. Itzykson and J. B. Zuber, Quantum field theory, International Series in Pure and

Applied Physics (New York, USA: Mcgraw-Hill (1980) 705 p., 1980).

22E. S. Swanson,“A Primer on Functional Methods and the Schwinger-Dyson Equations”,

AIP Conf. Proc. 1296, 75–121 (2010).

23M. Q. Huber, “Nonperturbative properties of Yang-Mills theories”, Phys. Rept. 879,

1–92 (2020).

24A. C. Aguilar and A. A. Natale, “A Dynamical gluon mass solution in a coupled system

of the Schwinger-Dyson equations”, J. High Energy Phys. 08, 057 (2004).

25P. Boucaud, J. Leroy, L. Y. A., J. Micheli, O. Pène, and J. Rodŕıguez-Quintero, “On
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55A. Kızılersü, O. Oliveira, P. J. Silva, J.-I. Skullerud, and A. Sternbeck, “Quark-gluon

vertex from Nf=2 lattice QCD”, Phys. Rev. D 103, 114515 (2021).

56M. Bhagwat and P. Tandy, “Quark-gluon vertex model and lattice-QCD data”, Phys.

Rev. D70, 094039 (2004).

57R. Alkofer, C. S. Fischer, F. J. Llanes-Estrada, and K. Schwenzer, “The Quark-gluon

vertex in Landau gauge QCD: Its role in dynamical chiral symmetry breaking and

quark confinement”, Annals Phys. 324, 106–172 (2009).

58A. Windisch, M. Hopfer, and R. Alkofer, “Towards a self-consistent solution of the

Landau gauge quark-gluon vertex Dyson-Schwinger equation”, Acta Phys. Polon. Supp.

6, 347–352 (2013).
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112A. C. Aguilar, M. . N. Ferreira, D. Ibañez, and J. Papavassiliou, “Schwinger displace-

ment of the quark–gluon vertex”, Eur. Phys. J. C 83, 967 (2023).

113O. Oliveira, P. J. Silva, J.-I. Skullerud, and A. Sternbeck, “Quark propagator with two

flavors of O(a)-improved Wilson fermions”, Phys. Rev. D 99, 094506 (2019).

114A. C. Aguilar, M. N. Ferreira, and J. Papavassiliou, “Exploring smoking-gun signals of

the schwinger mechanism in qcd”, Phys. Rev. D 105, 014030 (2022).

115J. Berntsen, T. O. Espelid, and A. Genz, “Algorithm 698: dcuhre: an adaptive multide-

mensional integration routine for a vector of integrals”, ACM Trans. Math. Softw. 17,

452–456 (1991).

116C. de Boor, A practical guide to splines, Applied Mathematical Sciences (Springer New

York, 2001).

117J. Williams, “Multidimensional b-spline interpolation of data on a regular grid”, github-

bspline-fortran (2019).

118W.-j. Fu, J. M. Pawlowski, and F. Rennecke, “QCD phase structure at finite tempera-

ture and density”, Phys. Rev. D 101, 054032 (2020).

119F. J. Llanes-Estrada, C. S. Fischer, and R. Alkofer, “Semiperturbative construction for

the quark-gluon vertex”, Nucl. Phys. B Proc. Suppl. 152, 43–46 (2006).

https://doi.org/10.1103/PhysRevD.104.054028
https://doi.org/10.1103/PhysRevD.104.054028
https://doi.org/10.1103/PhysRevD.86.074512
https://doi.org/10.1103/PhysRevD.95.114009
https://doi.org/10.1140/epjc/s10052-023-12103-8
https://doi.org/10.1103/PhysRevD.99.094506
https://doi.org/10.1103/PhysRevD.105.014030
https://doi.org/10.1145/210232.210234
https://doi.org/10.1145/210232.210234
https://github.com/jacobwilliams/bspline-fortran/tree/7.4.0
https://github.com/jacobwilliams/bspline-fortran/tree/7.4.0
https://doi.org/10.1103/PhysRevD.101.054032
https://doi.org/10.1016/j.nuclphysbps.2005.08.008


92

Appendix A
Transformation from Minkowski to Euclidean

space

In this Appendix, we explain how to compare our results with those in the litera-

ture, which frequently calculates the form factors of the quark-gluon vertex directly in

Euclidean space. The choice of basis specified in Eq. (3.14) was made to ensure a clear

correspondence between our form factors and those in [60]. In that reference, the vertex

is defined in Euclidean space as

IΓ
E

µ(q
E, pE

2 ,−pE

1) =
8∑

i=1

λE

i (q
E, pE
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τ ν1 (p
E

2 ,−pE

1) = γνE , τ ν2 (p
E

2 ,−pE

1) = i(pE

1 + pE

2)
ν ,

τ ν3 (p
E

2 ,−pE

1) = i(/p
E

1
+ /p

E

2
)γνE , τ ν4 (p

E

2 ,−pE

1) = i(/p
E

2
− /p

E

1
)γνE ,

τ ν5 (p
E

2 ,−pE

1) = (/p
E

1
− /p

E

2
)(pE

1 + pE

2)
ν , τ ν6 (p

E

2 ,−pE

1) = −(/p
E

1
+ /p

E

2
)(pE

1 + pE

2)
ν ,

τ ν7 (p
E

2 ,−pE

1) = −1

2
[/p

E

1
, /p

E

2
]γνE , τ ν8 (p

E

2 ,−pE

1) = − i

2
[/p

E

1
, /p

E

2
](pE

1 + pE

2)
ν . (A.2)

The definition above is the Euclidean space equivalent of the vertex defined in Eqs. (3.16)

and (3.14).

This can be demonstrated by following the procedure outlined in [103], which involves

computing the contraction of the Dirac matrix γµ with the quark-gluon vertex IΓµ, and

verifying that the Wick-rotated Minkowski result matches the result obtained from direct

calculations in Euclidean space. In our notation, this is expressed as[
IΓµ(q, p2,−p1)γµ

]WR
= IΓ

E

µ(q, p2,−p1)γµE . (A.3)
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Next, we exemplify this procedure showing only the contributions from the form factors

λ1 and λ3. Contracting the quark-gluon vertex given in Eq. (3.16) from the right with γµ

one obtains

IΓµ(q, p2,−p1)γµ = (d− 1)
[
λ1(q, p2,−p1) + λ3(q, p2,−p1)(/p1 + /p2)

]
+ · · · , (A.4)

where d is the dimension of the space. Using the standard rules to convert the above

result to Euclidean space, and assuming that the form factors do not change the sign in

this process, that is,

/p→ i/p
E
, p2 → −p2E , λi(q, p2,−p1) → λE

i (q
E, pE

2 ,−pE

1) , (A.5)

one gets that[
IΓµ(q, p2,−p1)γµ

]WR
= (d− 1)

[
λE
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2 ,−pE

1)− iλE
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(A.6)

Now, an additional step is required depending on the definition of the quark propa-

gator. If it is defined such that its inverse at tree-level is i/p + m, and not i/p − m, to

compensate the relative sign in the definition in Eq. (3.7), an additional transformation

pE → −pE is necessary [5]. This is the case of [60], and therefore we make this extra

transformation to obtain that[
IΓµ(q, p2,−p1)γµ

]WR
= (d− 1)

[
λE

1(q
E, pE

2 ,−pE

1) + iλE

3(q
E, pE

2 ,−pE

1)(/p
E

1
+ /p

E

2
)
]
+ · · · .

(A.7)

The result above is exactly what we obtain when contracting the vertex in Eq. (A.1)

with γµE from the right. From this calculation one can note that there is a difference

between contracting the vertex with the Dirac matrix from the right or from the left. In

particular for this basis, contracting it from the left makes the term proportional to λ7 to

vanish.

The same procedure can be applied to the vertex in the soft-gluon limit, given in

Eq. (4.27). In this case contracting the vertex with the Dirac matrix from right or left

will give the same result, and the additional change pE → −pE is necessary to compare

with the results in [55]. In this situation, the Wick rotated contraction is[
γµIΓµ(0, pE,−pE)

]WR
= dλsg1E(p

2
E)− 2i/p

E
λsg2E(p

2
E)− 4p2Eλ

sg
6E(p

2
E) , (A.8)

where again we consider that the form factors do not change sign from one space to the

other, i.e., λsgiE(p
2
E) = λsgi (−p2E).

From Eq. (A.8) we conclude that using the definition in Eq. (4.27) is analogous to the



94

definition of the vertex in Euclidean space as

IΓ
E

µ(0, pE,−pE) = γE

µλ
sg
1E(p

2
E)− 2ipE

µλ
sg
2E(p

2
E)− 4/p

EpE

µλ
sg
6E(p

2
E) . (A.9)

Therefore, the comparison between the results in this work for λsgi (p
2
E) for i = 1, 2, 6, and

the lattice results λLi (p
2
E) for i = 1, 2, 3 from [55] is direct as given in Eq. (4.28).
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