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ON 1llE TOPOLOGY OF COMPLETE RIEMANNIAN MANIFOLDS 

WI11I NONNEGATIVE CURVATURE OPERATOR. 

by: 

Franoesco Mercuri "nd Maria Helena Noronha 

JNTR.ODUCTION. 

• One of the mcn,t interesting problems in riemannian geometry is the study 

of the topology uf riemannian manifolds with non negative curvature. The 

classical Gauss-B01l11et theorem gives a complete answer in the case of compact 

surfaces. For higher dimensions severa! concept of curvature are available 

generalizing the l..iaussian curvature of a surf ace and probably the most 

fnterestlng one i~ the sectional curvature. Many results are known for 

manifolds wlth non negatl ve sectional curvature, plnchlng theorems, soul 

tbeorem, flnltenes~ theorems etc., but ln general the problém is qÜit.; opén~ 
- - t • 

Tbe Hodge theory approach to the problem leads naturallj, as we wlll seé, 
-

to conslder a st, ·onger posltlvJty assumption namely the po.sltlvity of the 

curva.tore operator We want to descrlbe results due to severa! authors which 
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lead to a topological classlflcatlon of manlf olds with non • negative 

curvature operator. Such classiflcatlon may be stated as follow: 

THEOREMi Let M fH a complet• slmply connected riemannlan manlf old wtth non 

negative· curvature o per ator/ Then M is the nemannlan product of manlf olds of 

the f oUowLng type6: 

1) Man!f olds homeomor phLc to spheres: 

U) ManLfolds dLffeomorphLc to EucU.dean spaces 

• ti!) Manifolds oyholomorphLc to complex proJectlve spaces 

tv) Symmetrlc spaces of compact type. 

We will descr:-tbe, · in the last section, some particular situatlons ln which 

the posltivity of . the · curvature operator is equivalent· to the positivity of 

the sectional curvatures,___ with particular emphasis on the case of low 

codlmensional subm.nif olds of Euclldean space. 

This paper is based on a series of lectures given by the f irst author at 

the Universltá dl Roma Tor Vergata and at the ~niversitá di Cagliarl and by 

the second at the Universidade Estadual de Campinas. We want to tank the many 

frlends at those Unlversitles for the nice hospltallty and encouragement as 

well as the ltallan CNR, Toe Unlverslty of Roma Tor Vergata and FAPESP 

(Brazll) for financial support. 
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1. • A lHEOREM or GALLOT ANO MEYER.. 

Let 14n be an n-dimensfonal rlemannian manifold. Uslng the rlemannlan 

metric we wlll idcntify, when convenlent, the tangent and cotangent bundle 

and thelr exterior algebras. W_e just notice that we bave a nat\rcllly induced 

metric on the spacc, of p-forms or p-vectors, modulo the above identiflcation, 

requiring that, if {X1,. ... ,Xn} is an orthonormal basis for the tangent space 

at some point, then {Xi(" .. --Xi : 11< ..... <ip} is an orthonormal bases for . p 
tbe space Ap(M) of p-vectors at that point. 

Let cP(M) be the space of differentiable p-forms on M. If M is compact we 

define a scalar product on cf(M) by: 

1.1. (e,, -r) = f <u(x), T(x)>dx . M 

wbere dx fs the riemannian volume density on M and <.,.> the naturally 

lnduced scalar product on the. p-vectors at x. 

Toe exterior diff erential d: oPCM) ---+ tf+1CM) has a formal adjoint a: 

gP+1(u) aP(MJ with respect to the scalar product defined above, l.e. an 

operator such that; 

1.2. 

. 
and tbe Laplace-Beltraml operator A: oPCM) ---+ oP(M) ls deflned by: 
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1.3. Au =. ddu + d&>-

The fonns ln the kemel of A are called harmonlc. 

Toe basic resulti of Hodge de-Rbam tbeory may be stated as follows: 

1.4.111EOREM: The cohomology of the de-Rbam complex: 

.. a>-1(M) --+ oPcur gP"f°1(M) --+ .. 

Is lsomorphic, as ,raded alaebra.. to tbe · singular cobomology of M with real 

coefflcients. 

1.5. THEOREM: lf' . M 1s compiict tbe real cohomology of M Is lsomorphlc, as 

gradeei vector space, to th~ kernel of the Laplace-Beltraml operator. More 

precisely ln any de-Rham cohomology class there is a unlque barmonlc 

representa tive. 

We observe that exterior product of hannonic forms Is not. ln general. an 

harmonic form so lhe kernel or A 1s not, ln general a gradeei algebra. 

ln order to compute kerA lt 1s convenlent to bave an expresslon of A ln 

terms of the riem"1Jllan invariants of M. We will denote, as usual, by V the 

Leri Clvlta connection of M and by R lt's curvature tensor •. Toe connectlon V 
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acts on p-forms by: 

L6. (VxwHX1,• .. ,Xp) = X· w(X1, ... ,Xp) + 
p -r w(X1,••Xl-l• VxX1,X1+l•··••Xp) 
i•l' 

therefore R acts on p-forms by: 

L 7. R(X,Y)w = VxVY,,, -- VyVxr,> - V[X. YJ" 

Let <X1, ... ,Xn} be an orthonormal basls ·for the tangent space or M at x, 

TzM. Tbe Rlcci • operator Q : T xU· ----+TxM 1s deflned bJ: 

and tbe Rlcci curviiture ls tt}e associated quadratic form, Rlcc(X) = <Q(X),X>. 

Tbe Rlcci operator extends to an operator on p-forms deflned by: 

n P • 
L9. (Qpl')(X11•··•XipJ • L L (~(Xt,X1j>ca>)(X11• ... .x1J'Xt,·•X1p> 

k•lJ•l 

• wbere X meana tha\ we are omlttlna X. 

aearlJ Q • Qi modulo the ldcmtlrtcatlon ot' the tangent. and cotangent 
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spaces glven by the metric. Using tbe expi ession of d and a ln tenns of the 

Levl Clvita connecUon: 

1.10. 
p+l 

<m>OC1r•·•xlp•l > • L c-ut+1cvx1t"><x1r•·•itt•·•x1p+1> 
k=l 

= -
n 
L <Vx jw>CXj,Xi1, ••• Xip-t> 
i=l 

it is not difficult lo deduce the following Weitzenbõck formula: 

n 

1.12. <Au , Ili> = ½ 4( llwU2) + E UVxkwl2 + <Qpw , ,,» 
k•I 

and integration ovc:r M held : 

n 

1.13. {Au • w) = l (Vxkw,Vxkw) + J <Qp11 ' e.,> dx. 

k=l M 

As a prevlew of what we want to discuss we examine the case p = 1. Formula 

1.13. (and theorems 1.4. and 1.5.) gives lmmedlately tbat if the Rlccl 

curvature is non negative and positive at some point then the flrst 

cohomology group of M wlth real coefficients vanishes. Even assum1ng only 
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that the Ricci curvature is non negative, we get quite a bit of lnfonnatiQn: 

Formula 1.13. tell~ us that harmonlc 1-forms are parallel and therefore if k 

is the dimension of the first cohomology group (as a real vector space), 

there are k linear ly lndependent parallel vector flelds. ln particular k n 

= dim.M and M admits a riemannian submersion over a t dimensional torus (see 

[BM]). 

ln order to gt:neralize the above arguments we are naturally led to look 

for conditions 011 the geometric invariants of M, that guarantee the 

posltivlty of tht quadratic form Op- Toe positivity of the sectional 

curvature is not t:uough even for p = 2. For example the complex projective 

space, with the Fubini Study metric, has positive sectional curvature but non 

Tallishing second cohomology. A geometric invariant which is well adapted to 

thls type of argumc:nt 1s the curvature operator. 

Toe curvature uperator is defined as the linear map Px on the space of bi-

vectors at a point x E M uniq'1Jely defined by the condition: 

1.14. <px(X--Y),Z.-.W> == <R(X,Y)Z,W> 

1be well known symmetrles of R imply that 1.14. defines indeed a linear map 

and this map is symmetrlc. The sectional curvature of the plane spanned by X 

and y Is then ghen by K(X, Y) =- <Px(X.-.Y) , X.-.Y>/IX.-.Yl2 and therefore the 

posltlvlty of p implles the posltlvlty of the sectlonal curvatures. But. in 
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general, tbe latter- does not imply tbe positlvity of p essenclally slnce the 

eigenvectors of p may not be decomposable, i.e. may not be of the rorm XAY. 

1bere have been various tentatlves of relatlng the posltlvltJ of tbe 

curvature operator to the one of Qp. Notably the ones of Bocbner and Yano who 

proved the posith1ty of Qp under the condltlon that the biggest eigenvalue 

of p 1s at most t w ice the smallest; Berger proved that Qz is positive if p is 

positive and finally Meyer proved in 1974 the following result (see [GM]): 

1.15. lHEOREM: If the curvature operator is non negative (resp. positive) then 

is non negative {resp. positive) for O<p<n. 

From 1.15. (and. the precedin& dlscusslon) we get lmmediately: 

l.16. THEOR.EM: lf W is a compact connected orientable n-dimensional riemannian 

manlfold with cur"ature operator which is non negative and positive at some 

polnt then M has the real cohomology of an o-dimensional sphere. 

Subsequently, in 1975, Gallot and Meyer studied the case wherc the 

curvature operator is non nc:gative (see [GM]). ln this case, by the formula 

of Weltzenbõck we conclude that the harmonlc forms are parallel. Toe general 

phllosophy is that parallel rorms are ratber rare and tbe oxlstence of such 

torms elves stroni costrains on the geometry of the manifold. We wlll recall 
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now some basic f a~ts on holonomy which are essentfal for understa1l"ililg those 

ldeas. 

For a rlemannhm manlf old M and a potnt x E M, the holonomy group at x, 

t(M,x), is deflned as the sub,roup of the group of ortbogonal transformations 

of the tangent s~ce at x, whose elements are parallel translations along 

picewise differentiiable loops based at x. This group, viewed as a subgroup of 

O(n), does not de~nd on x in the sense that if M is connected for ali pair 

of points x, y e M, t(M,x) and t(M,y) are conjugate in O(n). 

It Is reasonably · cJear that parallel dLfferentlaL fonns on M correspond to 

exterior forms 011 TxM whtch are Lnvarl.ant under t(M,x). Now, for a generic 

metric, t(M,x) is trivial, i.e. is isomorphic to O(n) or, if M is orientable, 

to SO(n). Therefore the exhitence of non-zero parallel fonns gives quite a 

bit of lnf ormatio11 on the 1eometry of M. lmportant examples of how the 

holonomy group influences the geometry of a riemannian manifold are the 

following: 

1.17.DIE:OREM (de-Rham decomposttLon, see[KN] • vol. 2): Let M be an n-

dlmensional simply coMected riemannian manif old whose holonomy splits as a 

product of subgroups G1 of SO(n). Then M is the riemannian product of 

manlf olds Mi with the holonomy of M1 isomorphic to G1. Toe decomposition of M 

1nto product of lrl'educlble manifolds Js unique up to order. 
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1.18.THEOREM (Berger. see (Be1J>: lf t(M.x) is irreducible and not transitive 

on the unit sphere of T xM then the metric of M is symmetric. 

For further use we wlll recall also the following: 

1.19.lllEOREM (Amorose-Slnger, see [KN) voL 1): Toe Lie algebra of t(M,x) is 

generated by parallel translation of PxCA2<TxMll. 

We will give nuw an outline of the proof of the f ollowing result of Gallot 

and Meyer (see IGMI): 

1.20.1HEOREM: Let M be a compact iITeducible (in the sense of 1.16.) simply 

connected riemanni-11 manifold with non negative cunature operator. Then one 

of the following holds 

I) M has the real cohomology of a sphere and holonomy tbe full 

special orthoaonal group 

ii) M has the real cohomology of a complex projective spacc and 

bolonomy the full unitary group, 

ili) M is a symmetr ic space of compact type. 

Proof: lf the holonomy group is not transitive on the unit sphere, then M is 

a symmetrlc space of compact type by the theorem of Berger. So we can suppose 

that the holonomy group is transitive. Such groups were classified by Berger 

10 
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and they are: 

i) SU(d) (n = 2d), Sp(d) (n • 4d), Spfn(7) (n = 8), Gz (n • 7) 

11) Spin(9) (n =16), 

W) Sp(d)·Sp(l) (n • 4d), 

lv) SO(n) , U(d) ln = 2d). 

It is known that: 

a) Manif olds witla holonomy like in i) are Ricci flat (see [SJ) and therefore 

flat, ln our case, since they have non negative sectional curvature. But flat 

slmply connected 1.'->mplete manifolds are diffeomorphic to Rn by the cartan-

Hadamard theorem, which contradicts compactness. 

b) A compact mauifold with holonomy Spin(9) is isometric to the Cayley plane 

by a theorem of B1·own and Gray (see [BG]) and therefore is a symmetrlc space. 

e) A manifold with holonomy Sp(d)·SP(l) is an Einstein manifold, by a 

theorem of Berger (see [Be2U, and a compact simply connected Einstein 

manif old with nou negative curvature operator is a symmetric space, by a 

theorem of Tachibil.lla (see [GMJ). 

Flnally ff the holonomy is the full special orthogonal or the full unitary 

group, then the iuvariant exterior fonns (and therefore the real cohomology) 

are, clearly, an 1'1gebra isomorphic to the real cohomology algebra of a 

spbere or a complex projective space. 

TilC above rc:,ult, several results on the plnchlng problem as well as 

results that we wllJ dlscuss later on, lead naturally to the followlng: 
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CONJECTURE : A compact simply connected manlf old wlth positive cu.rvature 

operator is dlffeon.urphlc to a sphere. 

2. A 111EOREM OF MIC4LI EF AND MOORE 

Worlting on lhe last question of the preceding section M.Micallef and 

J.D.Uoore proved, in 1988, the f ollowing result (see[MM]): 

2.1.nlEOR.EM: An 11-dimensional compact simply connected riemannian manifold 

with positive curvature operator is homeomorpbic to a spbere. 

ln this section we will outline a proof of the above result. 

2.2.REIIARK: As Vw~ will comment later on theorem 2.1. is true under weaker 

bypothesis, a fact that may be useful in other contexts. Also the proof 

requlres n 4 but the case n = 2 is a consequence of Gauss Bonnet· Theorem 

and the case n = 3 is a consequence of a result of Hamilton that we wlll 

comment ln the next section. 

1be baslc idea of the proor of 2.1. came from the cl~lcal proof of the 

Synp'a theorem whlch statett that an even-dlmensional, compact, orlentable 

12 
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riemannlan manifold with positive sectlonal curvature is simply connected. 

The proof of Syng~•s theorem is based on the following two facts: 

a) Let M be a com.,act manifold and ex: sl --. M a contlnuous map. Then there 

exists a perlodic 1eodesic 7: s1 --. M, bomotopic to «. which has minimum 

eoergy between all plcewise smooth maps of s1 into M, homotopic to CL 

b) If 7 is a per1odic geodéslc and V a periodic vector fleld along 7, the 

bessian of the ene1·gy is given by: 

E •• cv.v> = J uv. vu2 - KCt,VlJ élt 
sl 7 

where K(X, Y) is thc sectional curvature of the plane spanned by X and Y. 

1be proof of Syng~•s theorem then goes as follows: 

Let us assume thal there is a closed curve not homotopic to a constant. Then, 

in fts homotopy class there exists a periodic geodesic 7 like in a). Parallel 

translation along r induces an orientation preserving orthogonal 

transformation of the tangent space of M at 7(0). This space is even-

dlmensional and p.1,allel translation has t(O) as flxed point so it has at 

least an other f âxed point orthogonal to t(O). So there exists a parallel 

periodlc vector ficld V, alofli 7, orthogonal to 7. Now, on one side 7 is a 

local minlmum . of the eners, so the hessian is. positive semldeflnlte; 0n the 

other we get, rrom b), E••(V, V) < O. 
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The idea ln tia~ proof of 2.1 is to consider harmonlc non constant maps 

from the unit 2-sphere into M, f: s2- M, and try to use arguments slmllar 

to the ones used above applied to the energy integral: 

2.3. l:(f) =(1/2) J ldf g2 dA 
s2 

Toe harmonic 111aps are the criticai points of E. At a criticai point f the 

• hessian of E on 4 section V of the pull back f TM, i.e. on a vector field 

along f, is given ·by: 

2.4. E"(\/, Y) = J ( UVV u2 - <K(V), V> )dA 
s2 

ln tenns of isothcrmal coordinates Xi, i = 1,2, 

1vv12 = ).-2 < IVa1ax1va2 + •Va1ax2v12 > 
K(V) • A-2 { R(V,c1f /dx1)8fldx1 + R(V,8fldxz)M/8x2 }. 

A dlrect exten~ion of Sy111e's theorem argument 1s not possible because of 

two racta: 

a) Tbe existence ot mlnlmum energy harmonlc maps ln a given bomotopy class is 
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not at all clear since the energy functional does not Tirl.fy a reasonable 

compactness condition lilce, for example, the condition (C) of Palais Smale, 

which guarantees the existence of m1nlma of a bounded functional. 

b) Toe exlstence of parallel fields along such an r ls extremelJ rare being 

relatecl to the vanishing of certaln curvatures and so we can not avold easlly 

the positive term uvvo2 in 2.4 .. 

lt is somehow possible to go around the difficulty explalned 

in a) considering the cx-energy f unctional: 

2.5. Ecx(f) = J (1 + Ddfu2>« dA 
sl 

whlch, for ex > 1 satisfies the compactness condition of Palais and Smale. 

Developing the Mvrse theory for Eu and •1etting a go to 1• Sacks and 

Uhlenbeck were ablc to prove the f ollowing result (see [SU)): 

2.6.111EOREM: Let M be a c:ompact riemannian manlfold and m the smallest 

integer such that •mCM) O. lf m 2 then there exists a harmonic map f: s2 

--+ .M of index :s m-2. 

2. 7 .R.EMARK: Flrst of all let us recall that the index of f is tbe maxirolllll of 

the dlmenslons of iubspaces or the sectlons of r'ru on whlch E.. is negative 
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defini te. ln the general philosophy of Morse Theory, if we have a fwiction 

defined on a milllifold (possibly infinite dimensional) which Is a Morse 

function (i.e. has only non degenerate criticai polnts Is bounded below and 

verifies a compactness condition), and the 1th Betti number of the manlfold 

in non-zero, then the function has criticai points of índex i. ln our case 

the manifold is , suitable manifold of maps of s2 into M so, ln the 

hypothesis of th~ theorem, it's first non-vanishing homology group, with 

suitable coefficient s, occurs in dimension m - 2, and it is possible to apply 

the above ideas "fter pert urbing slightly E« in order to have a Morse 

function. 

The main problc:m is to control the criticai points of Eu when ex goes to 1. 

Just to have an idea of the difficulties we remark that there exist sequences 

of barmonic maps, homotopically not trivial, whose energy goes to zero. 

We will discu~~ now on the index of E•• trying to give an idea of the 

proof of the following result lsee (MM]): 

2.8.THEOREM: If the curvature operator is positive, then a non constant 

barmonic map f : s2 ----+ M has índex at least n - 2. 

Before proce~Jing on dhacussing 2.8. let us observe how 2.6. and 2.8. 

prove theorem 2.1. ln fact ir m is the smallest Integer for which •m<M) is 
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not trivial, we obtitin (m - 2) i: (n - 2). Therefore •iCM) • (O) for i < n and 

by the theorem of Hurewicz, M has the integral homology of a sphere. Since M 

is simply connectc:d, M is a homotopy sphere by Whitehead theorem and 

therefore, if n -l, M is homeomorphlc to a sphere bJ the positive solution 

of the Poincaré conjecture in dimension bigger than 3. 

We go back tK>W to discuss 2.8.. A harmonic map f : s2 M is a 

conforma! brancheu minimal immersion and induces on r•TM a metric and a 

connection. Toe m.ain idea is to complexify the situatton in order to replace 

the search of parcallel fields along f (which do not exist, in general, by. b) 

above) with the seé&rch of holomorphic fields. 

1be induced metric extends to a bilinear complex f onn and to an . hennitian 

product on IE = r•TM • C: 

e .,. ) IE x E -, e . << ... >> IE x IE e 

and tbe connection V to a connection on E which is hennitian with respect to 

<< .,. >>. There exist, therefore, a unique structure of bolomorphic vector 

bundle on E such that a section W:S2 E is · holomorphlc if and only if 

Va/8'1.W = o, wherc {J/82 = V2({J/8x1+ i8/Bx2). Toe fact that f is harmonic is 

equfvalent to v8; 82t8f /8z) • Q, l.e. to the sectlon 8f/8z being bolomorphlc. 
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Toe bilinear form 2.4. extends to a bilinear hennitian form on the 

sections of E: 

2.9. E~.(W,W) = J {Ílvwu2 - << K(W),W>>}dA 
52 

e Let us extend the curvature operator p to a linear operator p on the 

complexlfication AlM e e. Then we have: 

2.10. E~.(W,W) = -1f {DVB/az wu2 - << pc(W ... 8f/8z),W ... 8f/Bz >> 
s2 • 

We observe that since E~. is the hennitian extension of E.e, if the first is 

negative defined un a subspace of complex dimension 1 then the latter is 

negative defined u11 a subspace of real dimension 1. So, in order to prove 

2.8., is enough te., find (n-2) holomorphic sections of E which are C-linearly 

independent and not colinear, at some point, with ar /ôz (so w ... 8f /8z • O). 

By a theorem of Grothendick, an holomorphic vector bundle on s2 decomposes 

as dlrect sum of hulomorphic tine bundles~ 

2.11. E • L1 , ..... • Ln dlml -1 e -

1be 111omorphlsm classes of the L1's are determined uniquely up to the order 
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and we will suppo~c: 

where q(Li) is tht: first Chem class of Li computed on tbe fundamental class 

of s2. 
We observe now that the bilinear fonn ( .,. ) is parallel and defines an 

isomorphism betwetn IE and it's dual E•. It follows that 

2.12. 

Toe dlmension di uf the space of holomorphic sections of Li may be computed 

uslng the Riemann-Roch theorem. This gives: 

2.13. di = 
o 

Let i be the bi&Mest integer such that ci(Lz) > O. From 2.12. we get c1CLj) 

• 0 ror l+l :s j ::s n-1. Therefore by 2.13. E has [ [CJ(L1) + l) linearly 
1~-l 

lndependent holomurphic sections. Ali those sectlons are not colinear, 

somewhere. wlth c,f /Bz if the latest Is not a section of some of the Li•s. If 
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8f /8z is a section of some of the Li•s tben, at worst is a section of L1 and 

so colinear witb •t most with ( c1CL1)+l 1 of tbe above sections. Therefore 

for- the iDdex of E~• we get: • 

2.14. index(E~., i!:: L l c1CL1) + 1 1 n-2 
2$i$!1-l 

which prove 2.8 .. 

2.15.REMARK: The1Jrem 2.1. still holds witb the less restrictive hypothesis 

that pc is posithc on totally isotropic 2-planes, i.e. on bi-vectors W•Z ln 

A2w • e such that (W.W) = (Z,Z) = O. ln fact, refining the above arguments is 

poss1õle to pro~c, in this case, the existence of (n-3)/2 llnearly 

independent isotrovic section5 not colinear, somewhere, with 8f /8z (which is 

isotropic!). From L.6. it follows tbat, in this case, the first non vanishing 

bomotopy group uccurs in dimension m > (n-1)/2. This is sufficient to 

guarantee that M •~ a homotopy sphere. This weaker condition holds in severa! 

interesting cases: ror example if the sectional curvature takes values ln an 

inteMa1 of the type (A,4A), A > O, then p C is positive on totally isotroplc • 

2-planes. As a corullary we iet the well known sphere theorem of Berger and 

Kl.ingenberg. 
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3. MODIFICATION OF THE METRIC FOLLOWING HAMILTON. 

The theorem úf Micallef and Moore require the curYature operator to be 

positive at all puints: ln fact, even lf the baslc argument ln an integral 

argument, and so in principie we need the integran<I to be non negative and 

positive only at uue point, we can not guarantee, a priori, that this point 

of positive curvatw·e is in the image of the hannonic map we are working 

with. 0n the othe,· hand the theorem of Meyer requires the curvature operator 

to be positive ouly at on~ point, since we are integrating on the all 

manifold; Toe condusion is · weaker essentially since does not say anything on 

the torsion part of the integ1·al homology. 

ln this sectiou we will di5cuss a link between tbe two results through a 

method introduced. essentiaJly, by Richard Hamilton. R. Hamilton was 

interested in solving a "Rjemannlan version of the Poincare' conjecture". 

More specifically he was trying to prove that every compact 1-connected 

riemannian manifold with positive Ricci curvature is diffeomorphic to a 

sphere. Toe startiu.g point was that for 3-manifolds an Einstein metric, i.e. 

a metric of const.ant Ricci curvature, is of constant sectional curvature. If 

we look at the space of smooth riemannian metric on a manffold M, whlch is a 

cone ln the Frech.:t space of smooth section of the bundle of symmetric 2-

f orms on M, the Einstein metric are the criticai points of the total scalar 

curvature functiom,I, S(g) a J sgdxg where sg is the scalar curvature of the .. 
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metric g and dxg is the volume density associated to g (criticai points wlth 

respect to variatiuns which keep the volume fixed). So, ln order to flnd 

those criticai points, it is natural to follow the integral Unes of the 

gradlent of s. Naturally the above is a very rough fdea slnce we are not 

worklng on a Hilbert manif old so there is not a well defined gradfent field. 

If we take the L2 gradient we find that the integral curve should be solution 

of a dlff erential equation that, in general does not have solutions (see 

(Bes]). Anyhow ar ter some natural modifications of the above mentioned 

equation Hamilton c:nded up considering the evolution equation: 

ôg/ôt{g(t)) = -2Ricc{g(t)} 

3.1 

g(O) = & 

wbere g is the oriaiinal metr ic. 

If n = dim M - 3 and the Ricci curvature of g is positive, then Hamilton 

proves that 3.1. h,s a solution for all t O and this solution tends, as t 

--+ •• to a metrh: of constant curvature. So he obtains (see IH1J> : 

3.2.111EOREM: A '-'ompact 1-connected rlemannlan 3-manifold wlth positive Rlccl 

curvature ls dlffeomorphlc to a sphere. 
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ln a subsequent J>iiper, (see IH2D, Hamilton studles the 4-dlmensfonal case. 

He proves that it M is a 1-connected riemannian 4-manif old with positive 

curvature operator then 3.1. has still solutions tending to a metric of 

constant sectlonal "-urvature. ln thls paper moreover, he proves a lemma which 

holds for any dimcnsion and furnish the link between the theorem of Micallef 

, and Moore and the one of Gailot and Meyer: 

3.3.LEMMA: Let M be an n-dimensional compact Riemannian manifold with a 

metric g with nou negative curvature operator p. Then 3.1. has a solution 

g(t) defined in a i.mall interval and the curvature operator Pt of gt is non 

negative. Moreover, for t > o. PtCA2M) is parallel. 
X 

From the above lemma and the results described ln the preceding sectlons 

we have: 

3.4. TIIEOREM: lf M is a compact simply connected riemannian manif old with non 

negative curvature operator and holonomy SO(n), then M is homeomorphic to a 

spbere. 

Proof: we considtr the solutlon of 3.1. at a positive time t. Since Pt i!: O 

doec:: not depend on t, the holonomy of gt is still and the topology of M • 

SO(n), by the theo,·em of Gallot and Meyer. But, by 1.19, the Lle algebra of 

tbe holonomy groui, 1s genenated by parallel translatlon of ·Pt<A!M), whlch is 
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parallel, and therc:t' ore Pt(A2M) = A2M, the Lie algebra of SO(n). Therefore Pt 
X X 

is non negative and non sifliular, hence positive, and the conclusion follow 

from the theorem uf Micallef and Moore. 

Using similar éil'gument it is shown in [CY] that if the holonomy gr.oup is 

U(n), then the modified metric has positive holomorphic bisectional 

curvatures and Lheref ore, by the (positive) solution of the Frankel 

conjecture (see (SY 1), we obtain: 

3.5.THEOREM: Let M be a simply connected compact riemannian manifold with 

non negative curvature operator and holonomy U(n). Then M is 

biholomorphically ~uivalent to CPº. 

Combining thotte results with the theorem of Gallot and Meyer we get the 

result quoted in thç introduction for the compact case: 

3.6. THEOREM: Let M be a simply connected compact riemannian manif old with 

non negative curvature. Then M is the riemannian product of symmetric spaces 

of compact type, manifolds blholomorphically equivalent to complex projective 

spaces and manifolJs homeomorphic to spheres. 
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4• OPEN MANIFOLOS WITH NON NEGATIVE CURVATURE OPERATOR. 

ln this sectio11 we will discuss the case of open manlfolds, l.e. complete 

non compact riemannlan manifolds. 

A well known theorem of Cheeger and Gromoll (see (CG]), guarantees that 

for an open n-mauifold M with non negative sectional curvature there exists a 

totally convex eaubedding of a compact k-manifold sk, such that M 1s 

diffeomorphic to the total space of the normal bundle of sk. We just recall 

that totally convc:x is a stronger condition than totally geodesic: If a 

geodesic of M inh:rsects a totally convex set in two distinct points, then it 

lles entirely ln S. Toe submanifold sk is called a souL of M Un general is 

not uni que) and heis several interesting properties between which we recall 

the following: 

a) For all x e sk, X e TxSk, Z e CTxSk)"1, the sectional curvature K(X,Z) of 

the plane spanned t,y X and Z vanishes (see [CG]). 

b) A soul has minimal volume . in its homology class (see [Y)). 

From the first property we see that if the sectional curvature is strictly 

positive then the wul is a point and Mº is diffeomorphic to Rn. This, among _; 

other consideratiou~, leads to the following question (posed by Cheeger and 

Gromoll): 
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CONJECTURE: If un is an o pen manlf old wlth non negative sectlonal cunature 

and there exists o point x E un such that ali the sectional curva.tures at x 

are positive, then yn is dlffeomorphlc to ·Rº. 

Just to better justify the conjecture let us observe tbat tbe asser.tlon Is 

obviously true if lhe point x belongs to a soul. Now the construction of a 

soul has, as start mg point, any point of M. From this point we construct a 

totally convex set which, in general has to be reduced to give a soul so tbat 

we can not guarautee that this point will still belong to the soul after tbe 

refined constructh.1u. ln this section, beside other results, we wtll Indicai.e 

a proof of the .bove conje:cture for the case of non negative curvature 

operator. 

Another intercsting que5tion is when the normal bunclle of the soul is 

triviaL As an easy example when th.is is not the case we can coosider the 

tangent bundle to the 2-dimen~ional sphere s2. 0n TS2 we have a metric of non 

negative sectional .:urvature obtained by considering TS2 as the quotient of 

the product of thc: associated frame bundle of s2, wbich is S0(3), with R2 
modulo the obviou~ diagonal action of S0(2). Toe two spaces admit (obnous) 

non negative curv~ metrics such that the action of S0(2) is by isometry, so 

the quotient has i&ll induced riemannian metric which, by O'Nell formula, is 

still of non negative curvature. However TS2 is not d.iff eomorphic to a 

trivial bundle ove,· s2. As we will see, and this is really the sta.rting point 
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of our discussion, if the curvature operator Is non negative then, at least 

if the manifold is. ~imply connected, the bundle ls trivial. 

The maln result that we will present · ln thls sectlon is due, 

lndependently, ln une fonn or . an otber, to Noronha (see [N1]) Strake (see 

[St]) and Yim (see l Y)): 

4.1.TI-IEOREM: Let un be an open simply connected riemannian manifold with non 

negative curvature operator. Then Mil is isometric to the riemannian product 

of a soul sk auJ a 

diffeomorphic to Ru-k. 

non negatively curved manif old of dimension (n-k), 

We will outline a proof of 4.1 .. un will be an n-dlmensional manifold 

satisfying the hyputhesis of . 4.1. and sk a soul of Yo. Since Mº is simply 

connected and sk e arries a 11 the homotopy of M, then . k > 1. Toe starting 

point of the proof is the f ollowing: 

4.2 .. J EMMA: Toe nurmal connection of sk in un is flat. 

Proof: Let x e sk and wi, i=l, ... ,n, be an orthononnal basis of A2u of 
X 

eigenvectors of p, with eigenvalues Ài- Let X, Y be orthononnal vectors 

tangent to sk at x and Z a wlit vector normal to sk- at x. Let XAZ = r a.w., i L 1 1 
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O = K(X, Y) = <p(XAZ).XAZ> = L af Ai 

Since Ài 2! O, &j.\1 = O for all i, and theref ore p{XAZ) • O. For the same 

reason p(Y AZ) = O and, by the Bianchi identity, R(X, Y)Z = O. Tbe concluslon 

follows from the Ricci equatJon of the embedding sk Uo; __ wbicb Is, totally 

geodesic. 

Let be a \'ector normal to sk at some point x. Since sk is simply 

connected and the uormal connection is flat we can extend E' to a vector field 

along sk, still dc:noted by ~. which is normal to sk and parallel ln the 

normal connection. This allows to define a map: 

r sk x IR un 

Then, at least for small t's, we have a 1-parameter family of submanifolds 

k St.~ = fE'(S ,t), caUed pseudo-~ouls of Mº. 

4.3.PROPOSITION: f~ is an i50metric totally geodesic immersion. 

Proof: For fixed t, f ~( ·, tJ • is distance non incrising by Rauch comparison 

theorem. On the uther hand, by b) above, f ~(sk,o) is volume minimizing in 

it's homology clais and so f ~( ·, t) is an isometric immersion. From _ tbe 

construction it foJlows easily that f~ is isometric. The fact that fE' is 
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totally geodesic 1.:omes f rom the rlgldlty part of the Rauch comparlson 

theorem. 

Let x E M0 • Take a minimal geodeslc 7 : (0,1] --+ Mil between sk and x • 

7(1) and extend t l O) to a normal parallel vector fiel d ( along sk. So there 

is a pseudo-soul Sx passing through x. Those pseudo-souls have stlll flat 

normal connection l need some calculations) and are volume minimlzing in their 

homology classes. Some geometric arguments (see [N1] for details), allow to 

conclude that for c:ach point there is a unique pseudo-soul of the above fonn 

containing the pvint. Therefore we have two differentiable distributions 

defined on M: Tht first one, o1, given by the tangent spaces to the pseudo-
.1. souls, and the se(;c,md one D 2 = D 1. If we prove that the D/ s are parallel, 

the conclusion will f ollows from tbe de-Rham decomposition theorem. Since the 

pseudo-souls are totally geodesic, D1 is parallel. So we are left to prove 

that D2 is parallel, i.e.: 

(•) <VXY,V> = O for X, Y vector fields in D2 and V in Dr 

For this we first note that the leaves of the foliation F determined by Dl' 

the pseudo-souls, "re totally geodesic, simply connected and equidistant, and 

this allows us to vut in the quotient space M/F a smooth manlfold structure 

and a riemannian metric such that the projection map is a riemannlan 

submerslon (see lHel). For this submersion, horizontal vectors are the ones 
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in D2 and verticêll vectors the ones ln Dr To prove (•) we will use the 

O'Neill formulas f o,· submersions (see [O)): 

Let H and V be the pro jectors on the horizontal and vertical subsJ)aees 

respectJvely. The O'Neill tenso~ T and A are given by: 

If X is horizuntal and V vertical, TyX = V(VyX) = O (slnce the pseudo 

souls are totally ~eodesic) and Ax.V = H(VXV). So, tn order to prove (*) l.s 

enough to show th4t Ax_V = O. Toe sectional curvature of the plane spanned by 
2 2 X and V is given t,y: K(Xt V) ;:: <(VXT)VVtX> + DAxVD - ITyXI , tbat, ln our 

situation, becomes: 

Expanding the left hand side we get: 

-DAxVB2 = <VXTVV - TVxVV - TVVXV , X> = 

<Vx H(VVV) - H(VYtVxV)V) - H(VVV(VXV) - vcvy11cvxv» • X> = o. 

and therefore the a.econd distributJon is parallel. 

As a corollary of 4. l. we will prove now a result which hnplles ln a 
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positive answer tu the conjecture of Cheeger and Gromoll, quoted at the 

beginning of this section, ror the case of manifolds wlth non negative 

curvature operator: 

-4.-4.COROLLARY: Let M'1 be an open manifold with non negative curvature 

operator. Toen M is locally isometric to a product over the soul. ln 

particular, if the sectional curvaturc is positive at some point, then ,11 is 

diff eomorphic to IRu. 

~ -Proof: Let S be a soul of M and M and S their universal coverings. By theorem 

9.1. of [CG), S b isometrically diffeomorphic to a product s0xRm, with s0 

compact and the ~plitting i~ the Topogonov lines spllttlng (see [To]). Then 

the lines in S must split off in M too and hence M is isometrically 

m diffeomorphic to M0xR . Now t.t0 is simply connected and so, by theorem 4.1., 

M0 is the product of a soul s1 and a manifold Pr diffeomorphic to 11{. It is 

not difficult to Se.e that s0 s; s1 and since they are closed and homotopy 

equivalent, s0 = s1 (see lN1l for details). So, we have the following 

diagram: 

• s0~rxRm --+ M 

P1 Pz 

sxffD ----+ s o 
• 
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Where the ,r's art- the coverin& maps and p1 is the projectlon. Slnce the •'s 

are local Jsometric:~ and the fundamental group preserve the spllttlng, p Is 
2 

a submersion which 1s a local product. 

5. SOME APPUCATIONS TO THE GEOMETRY OF SUBMANIFOLDS. 

ln this sectiori we will consider some situation in whlch the positivity of 

the sectional curvature is equivalent to the positivity of the curvature 

operator and apply the resulb of the previous sections to those cases. 

Let M and Ü bc riemannian manifolds of dimension n and (n+p) respectlvely 

and f : M M an isometric immersion. We wil1 denote by V and V tbe 

riemannian connect ions of M and M, by p and p the curvature operators, by K 

and K the sectioual curvatures. v(f) will denote the normal bundle of the 

immersion so, for x e M, we ha ve the orthogonal decomposition: 

5.1. 

As usual, for ali local considerations we will ideotify M with its image 

f(M) s; M. If X, Y are vector r ields tangent to M and ( is a vector fleld 

normal to M, 5.1. 2ives orthosonal decompositions: 

32 



( Gauss formula) 
5.2. 

(Welngarten formula) 

« : TM•TM --+ v( r) is a symmetric tensor called the second fundamental f orm, 

Aç- TM --+ TM il. a symmetric tensor called the Weingarten operator tn the ç 
l. dlrectf.on, V is the normal connectlon . A~ and « are relate<l by <AçX, Y> = 

Toe curvature tensors of M and M and the second fundamental f orm are 

related by the Gau!is equation: 

5.3. <(p-p)(XAY),ZAW> = <cx(X,Z),«(Y,W)> - <cx(X,W),«CY,Z)> 

If {ç1, ... ,çp} is an vrthonormal basis for vx(f). 5.3. can be written: 

p 
5.4. (p-p)(XA Y) = L Açi(X)AA~i(Y) 

i=l 

Toe starting J.)C.)int of our discussion is the following result of Weinstein 

(see [W]): 

5.5.PROPOSITION: With the above notations we have: 

a) If the At:.'-. are positive then (p-p) is positive; 
. ':a 1 
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b) lf (p-p) Is positive then (K-K.) is positivei 

e) lf p = 2 aud (l<.-K) is positive. then (p-p) is positive. 

Un the above we C"1 substitute positive with non negative everywbere). 
p 

Proof: a) Set PtlXAY) = A(1CX)~1(Y). Since (p-p) = l Pi• lt is enough to 
1=1 

prove that the Pi ·s are positive. Let <et,···Cn} be an ortbonormal basis of 

eigenvectors of A(i with eigenvalues Àk = <AEi(eic),eJc>. Now Pf(ctAem) • 

ÀkÀmeicAem and thtr·efore Pi is positive. 

b) Obviou~ 

e) lf (K-K) > O then, for all X, Y e TxM with XAY O, the Gauss 

equation gives <a(X.X),a(Y, Y)> - llcdX, Y)o2 > O. Therefore, the vectors «CX,X) 

span a cone in vx<f) such that any two vectors of this cone fonn an ang)e 

less then Jt/2. Thcref ore there exist two orthonormal vectors E1 and E2 in 

vxCf) such that, for all X E TxM, <a(X,X).~i> > O. Toe conclusion follows 

from a). 

5.6.COROLLARY: lf p = 2, M is simply connected and complete, p O and (K-K) 

is non negative aiuJ positive at some point, then M is either homeomorphic to 

a spbere or cliffeomorphic to a Euclldean space. 

- n+2 Let us now specaallze to the case M = R . If M is compact and orlentable, 

a tbeorem of BisJa"'p (see (Bi I} guarantees that the holonomy of M is of the 

form SO(m)xSO(n-naJ (posslbly m = O) or U(2) (n = 4). 
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Now, as we· havc ~ecn ln the prevlous sectlons, lf the holonomy 1~ U(2) the 

manlfold is blholomorphlc to complex projectlve plane and such a manlfold 

does not admlt immerslons ln R6, by purely topolog!cal reasons. Ir the 

bolonomy 1s SO(m).<SO(n-m), m • O, n, then the manlfold Is a rlemannlan 

product, by de Rharn decomposltion theorem. ln this case results of J.D.Moore 

(see [M1U, AlcxanJer and Maltz (see IAM]), lmply that the immersion is a 

product of two hyJ,Crsurfaces immersions. ln conclusion we have: 

S. 7. TIIEOREM: lf r : :un ---t Rn+2 is an isometric immersion of a compact, 

simply connected l'iemannian manifold with no~ negative sectlonal curvature, 

then either f is a product of two convex embeddings or M is is homeomorphic 

. to a sphere. 

S.8.R.EMARK: Toe .bove resul t was first stated in (BM11 but the proof contains 

an error if n is vdd. ln the above mentioned paper is also studied the non 

simply connected <:,se and the non orientable case was studied in lBM2]. It is 

interesting to poiut out that the above mentioned results where obtained 

before some of the results discussed in this paper, using an inequality 

involving the totaJ absolute curvature which imply, via Morse theory that, 

for any fleld of coefficients, tbe sum of the Betti numbers with those 

.coefflcients is lt:a.s or • equal to 4 (the lnequallty belng strlct lf the 

sectional curvaturt is positive at some point). This is still the only method 

we Jmow to handle the non simply connected case (see also [M2)). 
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We want to obserwe expllcJtly, r or further use, that all the above mentloned 

results hold true jn codlmemilon blgger that two li tbe tlnrt normal space 

(i.e. the subspace or the normal space spanned bJ the 1mage of the 8e00nd 

fundamental form) Is of dlmenslon at most two (see (B)). ln partJcular we 

wlll need the following result: 

s. 9. lHEOREM: Let r: 'ti-' ----+ Rn+m be an isometric Immersion, n 2: 3, '111 compact 

with non negative ~ectional curvatures, and suppose that the dimension of the 

first normal space is at most two and there exists a point on M where ali the 

sectional curvatw-es are positive. Tben M is simply connected (and 

homeomorphic to a sphere). 

We will now to discuss briefly the open case. We notice, flrst of ali, 

that that proposJtion 5.5. and corollary 4.4., lmply the conjectw-e of 

Cheeger and Gromoll stated in the preceding section for the case of 

codimension two submanifolds of Euclidean spaces, with non negative sectional 

curvature (the resuJ t was known for hypersurfaces). 

Before statini the results we recall that an isometric immersion f: )/1 
.,N . 
n 1S called s-cylindrical if there exist isometric splitting ')/1 = 

. .n-s s s s 
M 1 xR and f = r 1xl5 where 15: R R is the ldentity map. 1berefore ln 

arder to classify isometric immerslons f: >f1 Rn+2 with non negative 

sectional curvaturei. we can suppose that f is not cylindrical which. by (Ha), 
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Is equlvalent to the exlstence or a polnt x E M° 11UCb that the lndex or 
relatlve nulllty, v(x) • O, where 

. .n n+2 5.10.TIIEOREM: Lel f: M --t R , n 3, be a non-cyllndrleal lsometrlc 

lmmerslon of an upen manifold wlth non negative sectlonal curvature. Then 

either t/1 is simply connected or the soul is homeomorphic to a circle or to a 

real • • l 2 proJect1ve p a11~. RP . ln the latter case, n = 3. 

Proof: Let x E M be a point _ such that v(x) = o. Let r(x) be the Ue algebra 

generated by the 1·ange of the curvature operator. By the theorem of Blsbop 

mentioned above, such alaebra is either the orthogonal algebl-a o(n), the 

product of two orthoaonal algebras o(k)xo(n_-k) or the unltary algebra u(2) 

and, in the latter case, n - 4. By coroll~y 4.4., M splits locally and so 

r(x) a o(k)xo(n-k) where k i5 the dimension of the · soul. If M is not simply 
. 1 

connected, k > O. lf k = 1 the soul is an S , so suppose k 2. ln this case 

it can be shown lhat there exist normal fields to the soul, E1 and E2 such 

that the curvature operator restricted to o(k) = o(T x~), is given by AEt~A~2 

and Ker(AE1) = {O) (see lN2l for details). It follows that there Is a point 

ln the soul where ali sectional curvatures (of the soul) are posltl•e. Let us 

restrlct the immersion to the soul. Slnce lt 1s totally geodeslc ln M. the 

first normal sp~e to thli restrlction is at most two dimensional and 



l therefore, by 5.10. , lf t it J. the soul 1s slmply connected (and ao la M). lf I 

k = 2 then elther the soul l• an ,i1- or a projectfve plane RP2. We wlll sketch 

a proof tbat the latter case can not occur if n 4. ln fact suppose that the 

soul ls a real pruJectlve plane anel let Ü be the unJyersal coyer ot M anel 'f 

the lnduced lmmen.ion of M lnto tf+2. By theorem 4.1. ii Js lsometrlc, to the 

riemannian product of tbe soul witb another manif old of dlmension n-2. If n-2 

2., by a ractonzatlon theorem (see [M1J), f 1s product ot hypersurf'aces 

immersions and in particular. «{X. Y) • O where « is the second fundamental 

fonn of f, X is tilJlgent to the soul and Y is normal. lbis lmplies tbat c:r(X, Y) 

= O if X is tangeut to the souJ of M and Y is normal. This implies agaln that 

M is a product and f factors as product of bypersurf aces lmmersions. But this 

would give an isumetric immersion of a projective plane in R3 wltb non 

negative curvature, which is impossible. 

It follows f1·om the above that if M is not simply connected, M is 

topologically class,fied (see ICG] for the case k = 1 or n = 3). For the 

simply connected cãse we can prove: 

n -=---• Le f • ..n ______.. Rn+Z be an isometric immerslon of an open slmplw S.ll.1HEOAL&D: t : A4 ---, 

connected n-di.ment.ional manif old with non negative sectional curvature, n 2: 

3. Then: 

L) either f is cylindrical over the soul and then ·either M Is a product of a 
n-k th manif old homeomorphic to a 5phere with a flat R , or f restrlcted to e 
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soul is the product of two convex embeddlngs, 

• U) or M 1s the r•~mannian product of a man1fold homeomorphlc to a sphere 
n-t wlth a manifold diffeomorphlc to R , and, 1f n-lt > 1, r is a product of 

hypersurf aces lmm~rslons. 

Proof: If, after H,rtman factorization, M1 is compact, then M1 is the soul of 

M and f I M1 is de54.·ribed by theorem 5.8.. If M1 is non compact and f I M1 is non 

cylindrical, the pr·oof of 5. 10. implies that there is a point on the soul 

where . the holonomy algebra is o(k), and therefore by 3.4. the soul \s 

homeomorphic to él sphere. Now theorem 4.1. and the factorizatlon theorem of 

Moore conclude the proof. 

Still ln subnlãnif olds theory, another case where the posit.lvlty of the 

cm-vature operator and of the sectional curvatures are equivalent, is the 

case of immersion with flat normal connection. Suppose f: Mil RN is an 

isometric immersiou and the curvature R.l of the normal connection vanishes. 

By the Ricci equatiun: 

it follows that ali the Welnaarten operators commute and therefore therê 

exists an orthonormal ba5e5 {e1, ... ,eu} ln the tangent space whlch 

diagonalizes ali those operJtors simultaneously. From the Gauss equation 
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. 
5.3.. p(e1Ae jl • Kle1.e J>e1Ae J- Therefore lf the sectlonal cunatures are non 

negative. p is non negative. ln general 1f M 1s a rfemannlan manif old such 

that there exists a tangent basls <ei, ... ,en} such that the bl-vectors 9fAej 

are elgenvectors of p, we say that M has pure curvature operator. Beslde the 

above example another interesting class of riemannian manffolds wftb pure 

curvature operator are the conformally flat manffolds. lt 1s clear that tbe 

curvature operator of such manif old is non negative Jf tbe sectional 

curvatures are nun negative. For this class of manffolds we have the 

following result (s~ [DMN]): 

S.13. THEOREM: Let M be a complete simply connected riemannian maoifold with 

pure non negative curvat\D'e operator. Then M is the riemannlan product of a 

manifold diffeomorphlc to Rk and manifolds bomeomorphic to spberes. 

Proof (an idea): Jt is clear that a product of manif olds with pure curvature 

operator has pure curvature operator. Toe converse is also true and this 

allows to work ou the irreducible factors of M. For manif olds witb pure 

curvature opera to,· ali the Pontr jagin f onns vanish and theref oré such a 

manifold can not be. homeomorphic to complex projective space. Finally. 1f ao 

irreducible symmetric • space has pure curvature operator it has constant 

curvature and the conclusion f ollow from our main result. 

40 



R.EFERENCES: 

(The followlng llst include only the ref erences expUcltly clted ln lhe text) 

IAM] Alexander, S. , Maltz, R.: Isometrlc immersions of' rlemannlan products 

lnto Euclidean spaçc, J. Dlf f. Geom. 11, 47-57 (1976). 

(B1 Baldlm, Y. Y.: Subvariedades de espaços euclideanos com curvatura não 

negativa, Doctoral dissertation, UNICAMP (1984). 

(BM1 J Baldim, Y. Y. , Mercuri, r.: Isometric immersions in codlmension two with 

non negative curva\ures. Math. z. 173, 111-117 (1980)-

IBMz) Baldim, Y. Y., Mercuri, f .: Codimensioil two non orientable submanifolds 

with non negative l·urvatur·e, Proc. Amer. Math. Soe. 103, 918-920 (1988). 

(Dei) Berger, M.: Sur le groupes d'holonomie des variété a connexion affine 

et des variétés riemannienes, Bull. Soe. Math. France 83, Z79-310 (1955). 

(Dez] Berger, M.: sur le groope·s d'ho1ononiie des varlété riemannienes, e. R. 

Academ. Se. Paris L63, ser. A, 1316 (1966). 

[Besl Desse, A.L.: linstein manifolds, Springer Verlag 

[Bi] Bishop, R.L.: fhe holonomy algebra óf iinmersed marufolds in codimension 

two, J. Dif f. Geom. 2, 347..;353 (1968). 

(BM] Bourguignon, J.P., Mazet, E.: Sur la structure des vifl~ ri~annténes 

qui admettant des champs de vectours paralleles, Composl.UÓ' iiti'i& 24, iós;,;;1i1' 
(1972). 

[BG] Brown, R.B., Gray, A.: Riemannian manifolds with holonomy group Spln(9), 

41 . 



Differentlal geometry (ln honor of K. Yano), Klnolrunly~ Totyo, 41-59 (1972). 

(CG] Cleeger, J., Gromoll, D.: On the stnicture of complete manltolds ot non 

negative curvature, Ann. of M•th. (2) 96, 413-443 (1972). 

ICYJ CM>w, B., Yas\l, D.: Compact Klhler manlfolds wlth non neaatlft cunature 

operator. lnventlOlles Math. 83, 553-556 (1986). 

[DMNl Derdzínski, A., Mercuri, F., Noronha, M.H.,: Uanifolds wlth pure non 

negative curvature uperator, Bol. Soe. Bras. Mat. 18, 13-22 (1987). 

[GM) Gallot, S., Meyer, D.: Opérateur de courbure et Laplacien eles formes 

differentielles d'uaae variété riemannienne, J. Math. PI.Ires Appl. 54, 259-284 

(1975). 

IH1l Hamilton, R. S.: Tree-manifolds with positive Ricci curvature, J. Dtff. 

Geom. 17, 255-306 (1982). 

[H2] Hamilton, R. S.: Four-manifolds with positive curvature operator, J. 

D!ff. Geom. 24, lSJ-179 (1986). 

[Ha) Hartman, P.: un the isometric immersions in Euclidean space of manif olds 

with non negative sectional curvatures II, Trans. • Amer. Math.. Soe. 147, 529-

540 (1970) 

(He) Hennann. R.: 0n the differential geometry of follations, Ann. of Math. 

(2) 72. 445-457 (1 %0). 

(KN) Kobayashi, s.. Nomizu, K.:Foundation of differential geometry, vol. I 

and II, New Yorlc, London and Sidney Interscience. 

(MM) Wcallef, M.. Moore, J.D.:Minimal two spheres and the topology of 

manifolds with poiltive curvature on totally isotropic two planes. Ann. of 

42 



Math. 127, 199-227 (1988). 

[M1J Moore, J.D.: h;ometrlc lmmerslons of rlemannlan products, J. Dl.ff. Geom. 

5, 159-168, (1971). 

[M2J Moore, J.D.: Codimension two submanlfolds of posltlye cunature, Proc. 

AIM!r. Math.Soc. 70, 72-76 (1978) 

[N1) Noronha, M.H.: A splitting theorem for complete manffolds wfth non 

negative curvature uperator, Proc. Amer. Math. Soe; 105, 979-985 (1989). 

[N2J Noronha, M. H.: Non negatively curved submanifolds ln codJmeosfon two, 

Trans. Amer. Math. Soe. 332, 351-364 (1992). 

[O] O'Neill, B.: Toe fundamental equations of a submersion. Mfchtgan Math. J. 

13. 459-469 U 966) . 

. [SU) Sacks, J., Uhlenbeck, K.: Toe existence of minimal Jmmersions of' a 2-

SJ>bere,. Ann. of M,dh. 113, 1-24 (1981). 

Isl ·_Salamon, S.: Riemannian 1eometry and holono,my groups, Pltman Research 

Notes in Mathemati<:s, 201, Longman Scientific and technical (1989). 

(St] Strake, M.: A splittine theorem for open non negatively curved 

manüolds, Manuscripta Math .. 61, 315-325 (1988). 

[SY] Siu, Y.T., Yiau, S. T.: Compact Kãhler manifolds of positive bisectional 

curvature, lnventiones Math. 59, 189-204 (1980). 

(To] Topogonov, V. A.: Spaces with straight lines, Trans. Amer. Math. Soe. 

37, 287-290 (1964). 

(W] Weinsteln, A.:Positfvely curved n-manffolds ln ·RD+2, J. Dl.ff. Geom. 4, 1-

4 (1970). 

43 

........ 



(Y] Ylm. J. W.: Space of soul1 ln a ·complete open manltold of non neptlye 

curvature. J. Df.f/. Geom. 32, 429-455 (1990). 

Authors address: 

Departamento de Matematlca, .Universidade Estadual de Campinas, 

13081 Campinas, S. P., Brazll . . 

e-mail: mercurlOlmc. unlcamp. br 

Maria Helena Noronha, 

Department of Mathematics, Californla State Universlty. 

Northrldp, -cautomla, 91330~ u.s.A. 

e-mail mnoronba O vax.~.edu 

44 



01/93 

02/93 

03/93 

04/93 

05/93 

06/93 

01/93 
08/93 

09/93 

10/93 

11/93 

12/93 

13/93 

14/93 

15/93 

16/93 

17/93 

18/93 

19/93 

, 
RELATORIOS DE PESQUISA - 1993 

On the Convergence Rate of Spectral Approximation for the Equa&iona IOI' 
Nonhomogeneous Asymmetric Fluid1- Josl L•iz Boldrinâ and Mano Roju-Mttlu·. 

On Fraisse's Prooí of Compactness - Xuner C•icttlo and A. M. St.11t. 

Non Finite Axiomatizability of Finitely Generated Quasivariet.iea oC Grapb.s -
X avier Caicedo. 

Holomorphic Germs on T1irelson'1 Space - Jorge and V.Jtlina. 

Zitterbewegung and the Electromagnetic Field of the Electron - Jarme Vaz Jr. 
and Waldyr A. Rodrig•es Jr. 

A Geometrical Interpretation of the Equivalence a( Dirac and Maxwell Equa-
tions -- Jayme Vaz Jr. and Waldyr A. Rodriguu Jr. 

The Uniform Closure of Convex Semi-Lattices - Joio B. Pro/la. 

Embedding oí Levei Continuou• Fuzzy Sets and Applicatioos - Mar~o Roju-
Medar, Rodner C. Bossane..i and Heriberto Román-Floru. 

Spectral Galerki.n Approximations for the Navier-Stokes Equations: Uniform 
in Time Error Estimates - Marko A. Rojas-Medar and Joai L•iz Boldri,ii. 

Semigroup Actioos on Homogeneous Space. - A. B. San Martin and Puro 
A. Tonelli. 

Clifford Algebra Approach to the Barut-Zangbi Modelas a Hamilton.ian Sys-
tem - Jayme Vaz Jr. and Waldyr A. Rodrigues Jr. 

Propagation of Scalar Waves in Layered Media - Lúcio Tunes doa Santos and 
Martin Tygel. 

On the Convergence oí the NMO-Power Series for a Horizontally Stratified 
Medium - Martin Tygel. 

Converge.nce Rates in the Sobolev H' -Norm of Appraximations by Discrete 
Convolutions - Sônia M. Gomes. 

On the Choice of the Space Dimension in lli-Posed Problems - Cristina Cunha. 

Elliptic Equations in R2 with Non-linearities in the Criticai Range - D. G. de 
Figueiredo, O. H. Miyagaki and B. Ruf. 

Drug Kinetics and Drug Resistance in Optimal Chemotherapy - M. /. S. Coata, 
J. L. Boldrini and R. C. Bassanezi. 

Chemotherapeutic Treatments lnvolving Drug Resistance and Levei oí Normal 
Celh as a Criterion of Toxicity - M. I. S. Costa, J. L. Boldrini and R. C. Basaanezi. 

Bifurcation of Singularities of Reversible Systems - Marco Antonio Teizeira. 



20/93 
21/93 

22/93 

23/93 

24/93 

25/93 

26/93 
27/93 

28/93 

29/93 

30/93 

31/93 

32/93 

33/93 
34/93 

35/93 

36/93 

37/93 

38/93 

39/93 

Sistemas Niio Linearea e Fractai.t --- Lácio Tla•e• Jo• Saaio•. 

New Integral Repre.eotatioo of the Solution oC Schrõdinger Equatioa with 
Arhitrary Potential - Rt,4olfo L. Monaco and W•lll,r A. ~ripe, Jr. 

The Module o{ Derivatiom of a Stanley-Reianer Ring - Pa.Jo Brwm•Ui and 
Aro• Simi.s. 
Oo the Coovergence Rate o( Spectral Approdmation for tbe EquatioDS for 
Chemical Active Fluid - Morto Roju-MeJar and Sduti'• A. Lo-rcc. 

• 
Sufflcieot Cooditiom Cor Mínima of 90Dle Tramlation Jnvaria.Dt l'madioaala -
Orlando Lopu. 
A Con•trained MiDimisation Problem with Integrab on the Entire Space -
Orlando Lopu. 
O Pensamento Reducionista na Filosofia de Niels Bohr- Jo•l Em{lio M•ioriao. 

Oo the first curve of the Fuéik spectnun of an elliptic . operator - D. G. dt 
Figueiredo and J.-P. Gouez. 

Generalização dos Testes de Shirley e de House - Belmer ·a arei• N egrillo. 

Compacidad y Compactificaci6n eo Teoria de Modelos - J. C. Cãf-eatu. 

Global Strong Solutiona of the Equationa Cor tbe Moticm ol Nonbogene<JIU 
Incompressible Fluids - Josi L•iz Boltlriai and Marko Rojtu-Metlar. 

A Equa~ão de Laplace no Universo de de-Sitter-Cutelnuovo - D .. Gomu e E. 
Capelu tle Olitteira. 

Klein-Gordon Wave Equation in ~he de Sitter Univene - E. C•pelu de Olit,eira 
and E.A. Notte C•ello. • 

Mittag-Leffler Methods in Analysis - Jorge M•jica. 

The Initial Value Problem for a Generalized Boussinesq Model- Sdutiáft A. 
Lorca and Joai Luiz Boldrini. 

Problemas Minimax e Aplicações - Josl Mario Martínez,· Lácio 7\naea doa Saatoa 
e Sandra Augusta Santo,. 

An Extension of the Theory of Secant Preconditionen - Joal Manà Martí11ez. 

Convergence Estimates for tbe Wavelet-Galerkin Method: Superconvergence 
at the Node Points - Sônia M. Gome,. 

An Error Estimate Uniform in Time for Spectral Semi-Galerk.in AppNJXirna-
tiona of the Nonhomogeneous Navier-Stokes Equationa - J. L. Boltlrirai and M. 
Rojaa-Mtdar. 

More About the Time Analysis of Tunnelling Procesaes - Vladiala" S. Olklaovaq 
and Era,mo Recami. 

40/93 .Zero-P:lint Anomaly - Joal Alezandre Nogueira and Adolfo Maia Jr. · . .... 
41/93 On a System oí Evolution Equations oí Magnetohydrodynamic Type - Joal 

L•iz Boldrini and Marko Rojas-Medar. 



42/93 Genemlized Zeldovich's Ilegularization o( tbe Vacuum Euero- J<Jd Alua,tlrt. 
N oguci~ and Adolfo Maia Jr. 

43/93 Global Strong Solution of the Equationa for the Motion oC a Chemical Ac&ive 
Fluid -:~- M.A. Rojas-Medar and S.A. Lorca. 

44/93 A Tboorem of Finiteness for Fat Bundle1 - Laca, M. Clave,. 
45/93 Partículas Elementares como Micro-Univer101 - E. Recami, V. T. Zanchá11 aad 

M. T. \·asconselos. 

46/93 Micro--Universes and "Strong Black-Hole1": A Purely Geometric Approach to 
Elementary Particles - E. Recomi, F. Raciti, W.A. Rodriguu Jr. and V. T. Zanchín. 

47 /93 The Tolman "Antitelephone" Paradox: It1 Solution by Tachyon Mechanic1 -
Erasmo Recami. 

48/93 Radial Syn1metry of Minimizers for Some Tranalation and Rotation Invariant 
Functionals - Orlando Lopes. 

49/93 A Riemann Integral Approach to Feynman'• Path Integral- Rodolfo L. Monaco, 
Roberto E. Lagos and Waldyr A. Rodrigue, Jr. 

50/93 The R.elationship hetween Electromagnetism and Quantum Mechanica, anda 
Non-Linear Dirac Equation - C. Daviaa, Wald1r A. Rodrigae, Jr. and Jayme Vaz 
Jr. • 

51/93 A New Approach for the JWKB Theory- R.L. Moaaco and E. Capela, de Oli11cina. 

52/93 An Erl'or Estimate Uniform in Time for Spectral Galerkin App:rox:iroationa 
for the Equations for the Motion of a Chemical Active Fluid- Marl.o A .. iw; ... 
M edar and Sebastián A. Lorca. 

53/93 On R-Automorphisms of R[X] - Miguel Ferrero and Antonio ·Paque,. 

M/93 Triangular Decomposition Methods for Solving Reducible Nonlinear Systema 
of Equations - J. E. Denni& Jr., Josi Mano Martínez and Xiaodong Zhang. 

55/93 A Note on Discontinuaus Vector Field1 and Reveraible Mappinga - Marco 
Antonio Teixeira. 

56/93 

57/93 

Shock Formation for a System of Consenatioa Law,·in Two Space Dimensiona 
- M.C. Lopes•Fílho and B.J. N-ussenzt1eig Lopu. 

Multidimensional Hyperbolic System1 with Degenerate Characteristic Struc-
ture - ... M.C. Lopu-Filho and H.J. Nauenzffig Lopu. 


	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24
	Página 25
	Página 26
	Página 27
	Página 28
	Página 29
	Página 30
	Página 31
	Página 32
	Página 33
	Página 34
	Página 35
	Página 36
	Página 37
	Página 38
	Página 39
	Página 40
	Página 41
	Página 42
	Página 43
	Página 44
	Página 45
	Página 46
	Página 47
	Página 48
	Página 49



