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ON THE TOPOLOGY OF COMPLETE RIEMANNIAN MANIFOLDS

WITH NONNEGATIVE CURVATURE OPERATOR.
by:

Francesco Mercuri and Maria Helena Noronha

INTRODUCTION.

One of the most interesting problems in riemannian geometry is the study
of the topology ol riemannian manifolds with non negative curvature. The
classical Gauss-Bonnet theorem gives a complete answer in the case of compact

surfaces. For higher dimensions several concept of curvature are available

generalizing the gaussian curvature of a surface and probably the most

interesting one is the sectional curvature. Many results are known for

manifolds with non negative sectional curvature, pinching theorems, soul

theorem, finiteness theorems etc., but in general the problem is quité open.

The Hodge theory approach to the problem leads natux‘éili. as we will see,
to consider a stronger positivity assumption namely the positivity of the

curvature operator We want to describe results due to several authors which




lead to a topological classification of manifolds with non negative

curvature operator. Such classification may be stated as follow:

THEOREM: Let M be a éomptetc simply connected riemannian manifold with non
negative curvature operétori Then M is the riemannian product of manifolds of
the following types: | |
1) Manifolds homeomorphic to spheres:
ii) Manifolds diffeomorphic to Euclidean spaces
iit) Manifolds byholomorpmc_ to complex projective spaces

iv) Symmetric spaces of compact type.

We will descrive, in the last section, some particular situations in which
the positivity of . the curvature operator is equivalent to the positivity of
the sectional curvatures, with particular emphasis on the case of low

codimensional submanifolds of Euclidean space.

This paper is based on a series of lectures given by the first author at
the Universitd di Roma Tor Vergata and at the Universitd di Cagliari and by
the second at the Universidade Estadual de Campinas. We want to tank the many
friends at those Universities for the nice hospitality and encouragement as
well as the Italian CNR, The University of Roma Tor Vergata and FAPESP

(Brazil) for financial support.



1. A THEOREM OF GALLOT AND MEYER.

Let M" be an n-dimensional riemannian manifold. Using the riemannian
metric we will identify, when convenient, the tangent and cotangent bundle
and their exterior algebras. We just notice that we have a naturally induced
metric on the space of p-forms or p-vectors, modulo the above identification,
requiring that, if {X},....,Xp) is an orthonormal basis for the tangent space

at some point, then (xil"“"“xip’ ij<....<ip} is an orthonormal bases for

the space AP(M) of p-vectors at that point.
Let QP(M) be the space of differentiable p-forms on M. If M is compact we

define a scalar product on aP(M) by:
1L (0,7) = IMw(x),t(x)>dx w,t € QP(M)

where dx is the riemannian volume density on M and <.,.> the naturally

induced scalar product on the p-vectors at x.
The exterior differential d: M) — oP*'M) has a formal adjoint 3:

Qpﬂ(ll) i ﬂp(M) with respect to the scalar product defined above, i.e. an

operator such that:

L2. (dg,p) = (¢,3p) ¢ € op'l(u). p € PM)

and the Laplace-Beltrami operator a: aP(M) — QP(M) is defined by:




1.3.  Aw = 3dw + d3w.
The forms in the kernel of A are called harmonic.
The basic results of Hodge de-Rham theory may be stated as follows:

1.4.THEOREM: The cohomology of the de-Rham complex:
..— ) — aPoan —s P —..
is isomorphic, as graded algebra, to the singular cohomology of M with real

coefficients.

L.S.THEOREM: If M is compact the real cohomology of M is isomorphic, as
graded vector space, to the kernel of the Laplace-Beltrami operator. More

precisely in any de-Rham cohomology class there is a unique harmonic

representative.

We observe that exterior product of harmonic forms is not, in general, an

harmonic form so the kernel of A is not, in general a graded algebra.

In order to compute kerd it is convenient to have an expression of A in
terms of the riemennian invariants of M. We will denote, as usual, by V the

Levi Civita connection of M and by R it's curvature tensor. The connection V



acts on p-forms by:

1.6. (wa)(xl.....xp) = x-w(xl....,xp) +

p
-z O(Xyp-- Xi-1, V% Kgs X 410--+0Xp)
ul’

and therefore R acts on p-forms by:
L7. RX,Y)o = VxVyw - VyUxw - V[x vyl

Let {Xj,...,Xp} be an orthonormal basis for the tangent space of M at Xx,

TgM. The Ricci operator Q : TyM ——TyM is defined by:

18 QX) = x R(X, X)X

and the Ricci curvature is the associated quadratic form, Ricc(X) = <Q(X),X>.

The Ricci operator extends to an operator on p-forms defined by:

np .
L9. (Qpu)(Xyy,..Xi) =7 [m_(xk.xl POy X X Xy )
k=1j=1

where ;( means that we are omlitting X.
Clearly Q = Q modulo the identification of the tangent- and cotangent




spaces given by the metric. Using the expression of d and & in terms of the

Levi Civita connectjon:

ptl
1.10. ‘w)(xil'"'xipvl) = z (-l,k*l(vxik”)(xil...'xik’..xip"l)
k=1

n
1.11. (w)(xil,..,xip_ l) = - Z(ijw)(Xj,Xil,...Xip_

i=l

R

it is not difficult 10 deduce the following Weitzenbdck Sformula:

n
- 2 2
112. <bw , > 3 Alllwll€) + Xllvkal + <Qpw , &>

k=]
and integration over M held :
n
L13. (Aw , w) = Z(vka,vka) + f<qu » > dx.
k=l M

As a preview of what we want to discuss we examine the case p = 1. Formula
1.13. (and theorems 1.4. and 1.5.) gives immediately that if the Ricci
curvature is non negative and positive at some ;?oint then the first

cohomology group of M with real coefficients vanishes. Even assuming only




that the Ricci curvature is non negative, we get quite a bit of information:
Formula LI13. tells us that harmonic 1-forms are parallel and therefore if k
is the dimension of the first cohomology group (as a real vector space),
there are k linearly independent parallel vector fields. In particular k = n
= dim.M and M admits a riemannian submersion over a k dimensional torus (see

[BM]).

In order to generalize the above arguments we are naturally led to look
for conditions on the geometric invariants of M, that guarantee the
positivity of the quadratic form Qp- The positivity of the sectional
curvature is not eunough even for p = 2. For example the complex projective
space, with the Fubini Study metric, has positive sectional curvature but non

vanishing second cohomology. A geometric invariant which is well adapted to
this type of argument is the curvature operator.
The curvature operator is defined as the linear map px on the space of bi-

vectors at a point x € M uniquely defined by the condition:

1.14. <py(X~Y),Z~W> = <R(X,Y)Z,W>

The well known symmetries of R imply that 1.14. defines indeed a linear map
and this map is symmetric. The sectional curvature of the plane spanned by X
and Y is then given by K(X,Y) = <bx(X~Y) , X~Y>/UX~-Y02 and therefore the

positivity of p implies the positivity of the sectional curvatures. But, in




general, the latterr does not imply the positivity of p essencially since the

eigenvectors of p may not be decomposable, i.e. may not be of the form X-Y,

There have bLeen various tentatives of relating the positivity of the
curvature operator to the one of Qp. Notably the ones of Bochner and Yano who
proved the positivity of Qp under the condition that the biggest eigenvalue
of p is at most twice the smallest; Berger proved that Qp is positive if p is

positive and finally Meyer proved in 1974 the following result (see [GM]):

L.IS,THEOREM: If the curvature operator is non negative (resp. positive) then

Qp is non negative (resp. positive) for O<p<n.
From 1.15. (and the preceding discussion) we get immediately:

1.16.THEOREM: If M is a compact ‘connected orientable n-dimensional riemannian
manifold with curvature operator which is non negative and positive at some

point then M has the real cohomology of an n-dimensional sphere.

Subsequently, in 1975, Gallot and Meyer studied the case where the
curvature operator is non negative (see [GM]). In this case, by the formula
of Weitzenb8ck we conclude that the harmonic forms are parallel. The general
philosophy is that parallel forms are rather rare and the existence of such

forms gives strong costrains on the geometry of the manifold. We will recall




now some basic facts on holonomy which are essential for understanding thcse

ideas.

For a riemannian manifold M and a point x € M, the holonomy group at Xx,
®(M,x), is defined as the subgroup of the group of orthogonal transformations
of the tangent space at x, whose elements are parallel translations along
picewise differentiable loops based at x. This group, viewed as a subgroup of
O(n), does not depend on x in the sense that if M is connected for all pair
of points x, y € M, ®(M,x) and ¢(M,y) are conjugate in O(n).

It is reasonably clear that parallel differential forms on M correspond to
exterior forms on TxM which are invariant under ®(M,x). Now, for a generic
metric, ®(M,x) is trivial, i.e. is isomorphic to O(n) or, if M is orientable,
to SO(n). Therefore the existence of non-zero parallel forms gives quite a
bit of information on the geometry of M. Important examples of how the

holonomy group influences the geometry of a riemannian manifold are the

following:

LI7.THEOREM (de-Rham decomposition, see[KN] -vol. 2): Let M be an n-
dimensional simply connected riemannian manifold whose holonomy splits as a
product of subgroups Gj of SO(n). Then M is the riemannian product of

manifolds Mj; with the holonomy of Mj isomorphic to Gj. The decomposition of M

into product of irreducible manifolds is unique up to order.




1.18.THEOREM (Berger, see (Be;l): If ®(M,x) is irreducible and not transitive

on the unit sphere of TyM then the metric of M is symmetric.
For further use we will rgcall also the following:

1.19.THEOREM (Ambrose-Singer, see [KN] vol. 1): The Lie algebra of &(M,x) is .

generated by parallel translation of px(AZ(TxM)).

We will give now an outline of the proof of the following result of Gallot

and Meyer (see [GM]):

1.20.THEOREM: Let M be a compact irreducible (in the sense of 1.16.) simply

connected riemannian manifold with non negative curvature operator. A’l‘hen one

of the following holds

i) M has the real cohomology of a sphere and holonomy the full
special orthogonal group

ii) M has the real cohomology of a complex projective space and
holonomy the (ull unitary group,

iii) M is a symmetric space of compact type.

Proof: If the holonomy group is not transitive on the unit sphere, then M is
a symmetric space of compact type by the theorem of Berger. So we can suppose

that the holonomy group is transitive. Such groups were classified by Berger

10



and they are:
i) SU(d) (n = 2d), Sp(d) (n = 4d), Spin(7) (n = 8), G2 (n = 7)

if) Spin(9) (n =1¢),

iii) Sp(d)-Sp(1) (n = 4d),

iv) SO(n) , U(d) (n = 2d).
It is known that:

a) Manifolds with holonomy like in i) are Ricci flat (see [S]) and therefore
flat, in our case, since they have non negative sectional curvature. But flat
simply connected cumplete manifolds are diffeomorphic to R? by the Cartan-

Hadamard theorem, which contradicts compactness.

b) A compact manifold with holonomy Spin(9) is isometric to the Cayley plane
by a theorem of Brown and Gray (see [BG]) and therefore is a symmetric space.
c) A manifold with holonomy Sp(d)-SP(1) is an Einstein manifold, by a
theorem of Berger (see [Bep)), and a compact simply connected Einstein
manifold with non negative curvature operator is a symmetric space, by a

theorem of Tachibana (see [GM]).
Finally if the holonomy is the full special orthogonal or the full unitary

group, then the invariant exterior forms (and therefore the real cohomology)

are, clearly, an ¢lgebra isomorphic to the real cohomology algebra of a

sphere or a complex projective space.

The above result, several results on the pinching problem as well as

results that we will discuss later on, lead naturally to the following:

1



CONJECTURE : A compact simply connected manifold with positive curvature

operator is diffeomwrphic to a sphere.

2. A THEOREM OF MICALLEF AND MOORE

Working on the last question of the preceding section M.Micallef and

J.D.Moore proved, in 1988, the following result (see[MM]):

2.1.THEOREM: An u-dimensional compact simply connected riemannian manifold

with positive curvature operator is homeomorphic to a sphere.

In this section we will outline a proof of the above result.

2.2.REMARK: As wec will comment later on theorem 2.1. is true under weaker
hypothesis, a fact that may be useful in other contexts. Also the proof
requires n = 4 but the case n = 2 is a consequence of Gauss Bonnet' Theorem

and the case n = 3 is a consequence of a result of Hamilton that we will

comment in the next section.

The basic idea of the proof of 2.1. came from the classical proof of the

Synge's theorem which states that an even-dimensional, compact, orientable



riemannian manifold with positive sectional curvature is simply connected.

The proof of Synge's theorem is based on the following two facts:

a) Let M be a compact manifold and a: sl — 3 M a continuous map. Then there
exists a periodic geodesic 7: S! — M, homotopic to @, which has minimum
energy between all picewise smmooth maps of sl into M, homotopic to .
b) If ¥ is a periodic geodésic and V a periodic vector field along 7, the
hessian of the energy is given by:
E,y(V.V) = J'luvi'vu2 - K(3,V)] dt
sl

where K(X,Y) is the sectional curvature of the plane spamnned by X and Y.

The proof of Synge's theorem then goes. as follows:

Let us assume that there is a closed curve not homotopié to a constant. Then,
in its homotopy class there exists a periodic geodesic y like in a). Parallel
translation along ¥  induces an orientation preserving orthogonal
transformation of the tangent space of M at 7(0). This space is even-
dimensional and parallel translation has 7#(0) as fixed point so it has at
Jeast an other fixed point orthogonal to 7(0). So there exists a parallel
periodic vector field V, along 7, orthogonal to 7. Now, on one side 7 is a

local minimum of the energy so the hessian is positive semidefinite; On the

other we get, from b), E.,(V.'V) < 0.

13




The idea in the proof of 2.1 is to consider harmonic non constant maps
from the unit 2-sphere into M, f: S2 —> M, and try to use arguments similar

to the ones used above applied to the energy integral:

2.3. E(F) =(1/2)J udri2 da
s?..

The harmonic maps are the critical points of E. At a critical point f the
*
hessian of E on a section V of the pull back f TM, i.e. on a vector field

along f, is given by:

2.4. E,(V,V) = J (IFVI2 - <K(V),V>)dA
g2

In terms of isothermal coordinates x;, i = 1,2, on S2, if ds? = Az(dx% +

d.x%), then dA = AldxlAdxz and:

1wve2 = a2 ( Wa/ale'lz + 193/8x, V12 }
K(V) = A~2 { R(V,df/dx,)8f/dx; + R(V,8f/dx2)8f/8x3 ).

A direct extension of Synge’s theorem argument is not possible because of

two facts:

a) The existence o! minimum energy harmonic maps in a given homotopy class is

14



not at all clear since the energy functional does not verify a reasonable
compactness condition like, for example, the condition (C) of Palais Smale,
Wwhich guarantees the existence of minima of a bounded functional.

b) The existence of parallel fields along such an f is extremely rare being

related to the vanishing of certain curvatures and so we can not avoid easily

the positive term WVVI2 in 2.4..

It is somehow possible to go around the difficulty explained

in a) considering the a-energy functional:

2.5. Eglf) = j (1 + ndfu2)® dA
52

| which, for « > | satisfies the compactness condition of Palais and Smale.

Developing the Murse theory for Ey; and "letting a go to 1" Sacks and

Uhlenbeck were able to prove the following result (see [SU)):

2.6.THEOREM: Let M be a compact riemannian manifold and m the smallest

integer such that my(M) # 0. If m = 2 then there exists a harmonic map f: S2

—> M of index = m-2.

2.7.REMARK: First of all let us recall that the index of f is the maximum of
the dimensions of subspaces of the sections of f*TM on which Eye is negative

15




definite. In the gcneral philosophy of Morse Theory, if we have a function
defined on a manifold (possibly infinite dimensional) which is a Morse
function (i.e. has only non degenerate critical points is bounded below and
verifies a compactness condition), and the ith Betti number of the manifold
in non-zero, then the function has critical points of index i. In our case
the manifold is 4 suitable manifold of maps of S2 into M so, in the
hypothesis of the theorem, it's first non-vanishing homology group, with
suitable coefficients, occurs in dimension m - 2, and it is possible to apply
the above ideas after perturbing slightly E; in order to have a Morse

function.
The main problem is to control the critical points of Ey when a goes to I.

Just to have an idea of the difficulties we remark that there exist sequences

of harmonic maps, homotopically not trivial, whose energy goes to zero.

We will discuss now on the index of E,, trying to give an idea of the

proof of the following result (see [MM]):

2.8. THEOREM: If the curvature operator is positive, then a non constant

harmonic map f : $2 —— M has index at least n - 2.

Before proceeding on discussing 2.8. let us observe 'how 2.6. and 2.8.

prove theorem 2.l. In fact if m is the smallest integer for which wy(M) is

16



not trivial, we obtain (m - 2) = (n - 2). Therefore nj(M) = {0) for i < n and
by the theorem of Hurewicz, M has the integral homology of a sphere. Since M
is simply connected, M is a homotopy sphere by Whitehead theorem and
therefore, if n 2 4, M is homeomorphic to a sphere by the positive solution

of the Poincaré conjecture in dimension bigger than 3.

We go back now to discu;s 2.8.. A harmonic map f : S2 —» M is a
conformal branched minimal immersion and induces on f°TM a metric and a
connection. The main idea is to complexify the situation in order to replace
the search of parallel fields along f (which do not ‘exist, in general, by. b)

above) with the search of holomorphic fields.

The induced metric extends to a bilinear complex form and to an.hermitian

product on E = f*1M @ C:
(,.):EXxE—sC, <., »:ExE—C

and the connection V to a connection on E which is hermitian with respect to
<« .,. >. There exist, therefore, a unique structure of holomorphic vector
bundle on E such that a section W:S2 — E is holomorphic if and only if
Va/52W = O, where 8/8Z = 1/2(3/8x)+ i8/8x2). The fact that f is harmonic is

equivalent to Vg/2(0f/82) = 0, l.e. to the section 8f/8z being holomorphic.

17



The bilinear form 2.4. extends to a bilinear hermitian form on the

sections of E:

2.9. EC,w,w) = I (IVWI2 - << K(W),W>>}dA
§2

Let us extend the curvature operator p to a linear operator pc on the

complexification A“M @ €. Then we have:

.i
2.10. EC,(W,W) = 4 f v - <« pCl(W~at/8z),W~af /82 >>
2

S

2
8/02 WII

We observe that since EE, is the hermitian extension of E,,, if the firét is
negative defined on a subspace of complex dimension ! then the latter is
negative defined un a subspace of real dimension l. So, in order to prove
2.8., is enough to find (n-2) holomorphic sections of E which are C-linearly
independent and not colinear, at some point, with af )az (so W~8f/8z = 0).

By a theorem of Grothendick, an holomorphic vector bundle on S2 decomposes

as direct sum of hulomorphic line bundles:

21,  E=Le..elg dimL =1
The isomorphism classes of the Li’s are determined uniquely up to the order

18



and we will suppose

cj(L)) z cj(Lp) =......= ¢lLy)

where cj(L;) is the first Chern class of L; computed on the fundamental class

of S2

We observe now that the bilinear form ( .,. ) is parallel and defines an

isomorphism between E and it's dual E'. It follows that

Z2.12: cjiLj) = —c)(Lp-j+1)

The dimension d; of the space of holomorphic sections of L; may be computed

using the Riemann-Roch theorem. This gives:

( cy(Lj) + 1 if clLy) =0

2.13. dj = A
0 if ¢l <0

Let | be the biggest integer such that ¢)(L}) > 0. From 2.12. we get cj(L;)

= 0 for I+l s j s n-l. Therefore by 2.13. E has Z [ej(Ly) + 1] linearly
i=n-1

independent holomorphic sections. All those sections are not colinear,

soméwhere. with of/8z if the latest is not a section of some of the Li's. If

19



8f/8z is a section of some of the Li’s then, at worst is a section of L; and
so colinear with at most with [ cj(L})+1 ] of the above sections. Therefore

for the index of EE, we get: "

214, indextES) = J lqap+1] zn-2
2sisn-1

which prove 2.8..

2.1S.REMARK: Thevrem 2.1. still holds with the less restrictive hypothesis
that pc is positive on totally isotropic 2-planes, i.e. on bi-vectors W-Z in
A2M o C such that (W,W) = (Z,2) = 0. In fact, refining the above arguments is
possible to prove, in this case, the existence of (n-3)/2 linearly
independent isotropic sections not colinear, somewhere, with 38f/38z (which is
isotropic!). From ¢.6. it follows that, in this case, the first non vanishing
homotopy group occurs in dimension m > (n-1)/2. This is sufficient to
guarantee that M 15 a homotopy sphere. This weakef condition holds in several
interesting cases: For example if the sectional curvature takes values in an
interval of the type (A,4A], A > 0, then pc is positive on totally isotropic
2-planes. As a corollary we get the well known sphere theorem of Berger and

Klingenberg.

20



3. MODIFICATION OF THE METRIC FOLLOWING HAMILTON.

The theorem of Micallef and Moore require the curvature operator to be
positive at all points: In fact, even if the basic argument in an integral
argument, and so in principle we need the integrand to be non negative and
positive only at one point, we can not guarantee, a priori, that this point
of positive curvature is in the image of the harmonic map we are working
with. On the other hand the theorem of Meyer requires the curvature operator
to be positive ouly at one point, since we are integrating on the all
manifold; The conclusion is weaker essentially since does not say anything on
the torsion part of the integral homology.

In this section we will discuss a link between the two results through a
method introduced, essentially, by Richard Hamilton. R. Hamilton was
interested in solving a "Riemannian version of the Poincare’ conjecture”.
More specifically he was trying to prove that every compact l-connected
riemannian manifold with positive Ricci curvature is diffeomorphic to a
sphere. The starting point was that for 3-manifolds an Einstein metric, i.e.
a metric of constant Ricci curvature, is of constant sectional curvature. If
we look at the space of smooth riemannian metric on a manifold M, which is a
cone in the Frechet space of smooth section of the bundle of symmetric 2-

forms on M, the Einstein metric are the critical points of the total scalar

functional, S(g) = Isgdxg where sg is the scalar curvature of the
u

2l



metric g and dxg is the volume density associated to g (critical points with
respect to variatiovns which keep the volume fixed). So, in order to find
those critical points, it is natural to follow the integral lines of the
gradient of S. Naturally the above is a very rough idea since we are not
working on a Hilbert manifold so there is not a well defined gradient field.
If we take the L2 gradient we find that the integral curve should be solution
of a differential equation that, in general does not have solutions (see
[Bes]). Anyhow after some natural modifications of the above mentioned

equation Hamilton e¢nded up considering the evolution equation:

[ ag/at(g(t)) = -2Ricelg(t))

3.1 <
g(0) =g

where g is the original metric.

If n = dim M = 3 and the Ricci curvature of g is positive, then Hamilton
proves that 3.1. has a solution for all t = O and this solution tends, as t

—— o, to a metric of constant curvature. So he obtains (see [H;l) :

3.2.THEOREM: A compact l-connected riemannian 3-manifold with positive Ricci

curvature is diffeomorphic to a sphere.



In a subsequent puper, (see [H2]), Hamilton studies the 4-dimensional case.
He proves that it M is a l-connected riemannian 4-manifold with positive
curvature operator then 3.I. has still solutions tending to a metric of
constant sectional curvature. In this paper moreover, he proves a lemma which
holds for any dimension and furnish the link between the theorem of Micallef

and Moore and the one of Gallot and Meyer:

3.3.LEMMA: Let M be an n-dimensional compact Riemannian manifold with a
metric g with nou negafive curvature operator p. Then 3.1. has a solution
g(t) defined in a small interval and the curvature operator py of g is non

negative. Moreover, for t > O, pt(A’ZKM) is parallel.

From the above lemma and the results described in the preceding sections

we have:

3.4.THEOREM: If M is a compact simply connected riemannian manifold with non

negative curvature operator and holonomy SO(n), then M is homeomorphic to a

sphere.

Proof: We consider the solution of 3.1. at a positive time t. Since py = 0

and the topology of M does not depend on t, the holonomy of gt is still

sO(n), by the theorem of Gallot and Meyer. But, by 1.19, the Lie algebra of

- 2
the holonomy group Is generated by parallel translation of pt(AxM). which is




parallel, and therefore Pt(A,?;u) = AJ%M, the Lie algebra of SO(n). Therefore p¢

is non negative and non singular, hence positive, and the conclusion follow

from the theorem of Micallef and Moore.

Using similar argument it is shown in [CY] that if the holonomy group is

U(n), then the modified metric has positive holomorphic bisectional

curvatures and Lherefore, by the (positive) solution of the Frankel

conjecture (see [SY|), we obtain:

3.5.THEOREM: Let M be a simply connected odmpact riemannian manifold with

non negative curvature operator and holonomy U(n). Then M is

biholomorphically equivalent to CPR.

Combining those results with the theorem of Gallot and Meyer we get the

result quoted in thc introduction for the compact case:

3.6.THEOREM: Let M be a simply connected compact riemannian manifold with
non negative curvature. Then M is the riemannian product of symmetric spaces

of compact type, manifolds biholomorphically equivalent to complex projective

spaces and manifolds homeomorphic to spheres.




—_—

4. OPEN MANIFOLDS WITH NON NEGATIVE CURVATURE OPERATOR.

In this sect;011 we will discuss the case of open manifolds, i.e. complete
non compact riemannian manifolds.

A well known theorem of Cheeger and Gromoll (see [CG]), guarantees that
for an open n-manifold M with non negative sectional curvature there exists a
totally convex embedding of a compact k-manifold sk, such that M is
diffeomorphic to the total space of the normal bundle of sk, we just recall
that totally convex is a stronger condition than totally geodesic: If a
geodesic of M intcrsects a totally convex set in two distinct points, then it
lies entirely in S. The submanifold SK is called a soul of M (in general is

not unique) and las several interesting properties between which we recall

the following:

a) For all x € Sk, X € ’I‘xsk. Z € (TxSk)'L, the sectional curvature K(X,Z) of

the plane spanned Ly X and Z vanishes (see [CG]).

b) A soul has minimal volume in its homology class (see [Y]).

From the first property we see that if the sectional curvature is strictly
positive then the soul is a point and MM is diffeomorphic to RP. This, among

other considerations, leads to the following question (posed by Cheeger and

Gromoll):




CONJECTURE: If M" is an open manifold with non negative sectional curvature
and there exists o point x € M" such that all the sectional curvatures at x

are positive, then M" is diffeomorphic to RN,

Just to better justify the conjecture let us observe that the assertion is
obviously true if the point x belongs to a soul. Now the conmstruction of a
soul has, as starting point, any point of M. From this point we construct a
totally convex set which, in general has to be reduced to give a soul so that
we can not guarautee that this point will still belong to the soul after the
refined construction. In this section, beside other results, we will indicate

a proof of the above conjecture for the case of non negative curvature

operator.

Another interesting question is when the normal bundle of the soul is
trivial. As an easy example when this is not the case we can consider the
tangent bundle to the 2-dimensional sphere S2. On TS2 we have a metric of non
negative sectional curvature obtained by consideriné TS2 as the quotient of
the product of the associated frame bundle of S2, which is SO(3), with R%
modulo the obvious diagonal action of SO(2). The two spaces admit (obvious)
non negative curved metrics such that the action of SO(2) is by isometry, so
the quotient has an induced riemannian metric which, by O'Neil formula, is
still of non negatiire curvature. However TS2 is not diffeomorphic to 2

trivial bundle over S2. As we will see, and this is really the starting point



of our discussion, if the curvature operator is non negative then, at least

if the manifold is, simply connected, the bundle is trivial.

The main result that we will present in this section is due,
independently, in ovne form or an other, to Noronha (see [N;]) Strake (see
[St]) and Yim (see |Y]):

4.1.THEOREM: Let MM be an open simply connected riemannian manifold with non
negative curvature operator. Then MP is isometric to the riemannian product

of a soul SK and a non negatively curved manifold of dimension (n-k),

diffeomorphic to RMK,

We will outline a proof of 4.1.. M? will be an n-dimensional manifold
satisfying the hypouthesis of 4.1. and SK a soul of MP. Since MP is simply
connected and SK carries all the homotopy of M, then k > 1. The starting

point of the proof is the following:
4.2.LEMMA: The normal connection of S¥ in MP is flat.

Proof: Let x € S¥ and wj, i=l,...,n, be an orthonormal basis of A)zcu of
eigenvectors of p, with eigenvalues Aj. Let X, Y be orthonormal vectors
tangent to sk at x and Z a unit vector normal to Sk at x. Let X~Z = z a0, i

n .
. 1’---.(k)- 'mena



0 = K(X,Y) = <p(XAZ),Xa2> = | af A

Since A; =2 0, ajA;, = O for all i, and therefore p(XAZ) = 0. For the same
reason p(YAZ) = (0 and, by the Bianchi identity, R(X,Y)Z = O. The conclusion

follows from the Ricci equation of the embedding sk — M, which is. totally

geodesic.

Let £ be a vector normal to SK at some point x. Since sk is simply
connected and the normal connection is flat we can extend § to a vector field

along SK, still denoted by €, which is normal to S¥ and parallel in the

normal connection. This allows to define a map:
f;;- . Sk x R — MD g fg(x.t) = expyt&(x).

Then, at least for small t's, we have a l-parameter family of submanifolds

St,g = fg(Sk,t), called pseudo-souls of MR,
4.3.PROPOSITION: l'g is an isometric totally geodesic immersion.

Proof: For fixed t, fg(-,t) is distance non incrising by Rauch comparison
theorem. On the other hand, by b) above, fE(Sk.O) is volume minimizing in
it's homology class and so fg(-,t) is an isometric immersion. From the

construction it follows easily that fg is isometric. The fact that fe is



totally geodesic tomes from the rigidity part of the Rauch comparison

theorem.

Let x € MM, Tuke a minimal geodesic ¥ : [0,1]] — MM between SK and x =
7(1) and extend #(0) to a normal parallel vector field £ along SK. So there
is a pseudo-soul Sy passing through x. Those pseudo-souls have still flat
normal connection (need some calculations) and are volume minimizing in their
homology classes. Some geometric arguments (see [N;] for details), allow to
conclude that for cach point there is a unique pseudo-soul of the above form
containing the puint. Therefore we have two differentiable distributions
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