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RESUMO 

 

 

 As caixas de engrenagens são componentes chave amplamente utilizados para 

transmissão de movimento e potência. Elas fornecem alta aplicabilidade devido às suas diversas 

configurações e relações de transmissão. No entanto, ambientes adversos e condições 

operacionais exigentes, como flutuações de carga e velocidade, podem causar danos aos seus 

componentes. Portanto, o diagnóstico de falhas é essencial para garantir a disponibilidade e 

confiabilidade das caixas de engrenagens. Métodos convencionais, como análise de vibração e 

extração de parâmetros estatísticos, podem apresentar limitações ao diagnosticar sistemas 

sofisticados sob condições de trabalho variáveis. Métodos de deep learning ganharam 

popularidade porque podem mapear relações complexas e extrair automaticamente 

características dos dados. A precisão notável desses métodos foi demonstrada em numerosos 

trabalhos. Apesar dos resultados promissores das abordagens de deep learning para diagnóstico 

de falhas em caixas de engrenagens, algumas questões precisam ser resolvidas. Treinar esses 

modelos requer grandes conjuntos de dados rotulados, que são caros e demorados de obter. 

Além disso, a maioria desses métodos assume que as distribuições de dados de treinamento e 

teste são as mesmas. Em cenários industriais reais, variações nas condições de trabalho podem 

modificar características representativas dos dados, comprometendo diretamente o diagnóstico. 

Nesse contexto, este trabalho propõe uma nova metodologia de adaptação de domínio para 

diagnóstico de falhas em caixas de engrenagens sob condições de velocidade variável. A ideia 

principal é combinar conhecimento prévio sobre assinaturas de falhas e deep learning para 

melhorar o uso da informação. A assinatura de vibração de falha é obtida calculando os 

espectros de frequência e envelope no domínio da ordem. Em seguida, algumas bandas são 

selecionadas com base nas frequências características das falhas. Uma normalização global é 

aplicada para evitar a perda de características distintivas. Posteriormente, um autoencoder 

convolucional extrai características discriminativas dos dados normalizados para cada domínio. 

Análise de correlação é empregada para alinhamento de características e para diagnosticar 

falhas em diferentes condições de velocidade. A estrutura introduzida foi avaliada com dados 

experimentais. A metodologia proposta pode ser empregada para clusterização. Os resultados 

mostram que o método proposto permite a identificação correta de clusters pertencentes à 

mesma falha em diferentes velocidades, sem a necessidade de rótulos ou do número de classes 

em cada domínio. Além disso, a adaptação de domínio proposta pode ser empregada para 



 
 

construir um sistema de diagnóstico baseado em um modelo de reconstrução. Resultados 

experimentais demonstram alta precisão na previsão de falhas usando dados de diferentes 

velocidades daqueles empregados para treinamento. Comparações com modelos convencionais 

de CNN corroboram que o modelo de adaptação de domínio proposto melhora a robustez do 

diagnóstico. 

 

Palavras-Chave: Diagnóstico de falha em caixa de engrenagens, Adaptação de domínio, 

Autoencoder convolucional, Análise de correlação, Condições de velocidade variável.  

  



 
 

ABSTRACT 

 

 

Gearboxes are key components widely used for motion and power transmission. They provide 

high applicability due to their diverse configurations and transmission ratios. However, harsh 

environments and demanding operating conditions, such as load and speed fluctuations, can 

cause damage to their components. Therefore, fault diagnosis is essential to ensure the 

availability and reliability of gearboxes. Conventional methods such as vibration analysis and 

statistical parameter extraction can present limitations in diagnosing sophisticated systems 

under variable working conditions. Deep learning methods have gained popularity because they 

can map complex relationships and automatically extract features from data. The outstanding 

accuracy of these methods has been demonstrated in numerous works. Despite the promising 

results of deep learning approaches for gearbox fault diagnosis, some issues need to be resolved. 

Training these models requires large sets of labeled data, which are costly and time-consuming 

to obtain. In addition, most of these methods assume that the data distributions of training and 

testing data are the same. In real industrial scenarios, variations in working conditions may 

modify representative features of data, directly compromising the diagnostic. In this context, 

this work proposes a novel domain adaptation methodology for gearbox fault diagnosis under 

variable speed conditions. The main idea is to combine prior knowledge about fault signatures 

and deep learning to improve the use of information. The fault vibration signature is obtained 

by calculating the frequency and envelope spectra in the order domain. Then, some bands are 

selected based on the characteristic frequencies of the faults. A global normalization is applied 

to avoid loss of distinctive features. Afterwards, a convolutional autoencoder extracts 

discriminative features from normalized data for each domain. Correlation analysis is employed 

for feature alignment and to diagnose faults across different speed conditions. The introduced 

framework was evaluated with gearbox experimental data. The proposed methodology can be 

employed for clustering analysis. Results exhibit that the proposed method enables the correct 

identification of clusters belonging to the same health condition across different speeds without 

the need for labels or the number of classes in each domain. Furthermore, the proposed domain 

adaptation can be employed to construct a diagnosis system based on a reconstruction model. 

Experimental results demonstrate high accuracy in predicting faults using data from different 

speeds to those employed to train. Comparisons with conventional CNN models corroborate 

that the proposed domain adaptation model enhances the robustness of the diagnosis. 



 
 

Keywords: Gearbox fault diagnosis, Domain adaptation, Convolutional autoencoder, 

Correlation analysis, Variable speed conditions. 
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1 INTRODUCTION  

 

 The rapid industry development has increased machinery production and applications in 

every manufacturing field. Rotary machinery is pivotal in several industries, such as material 

processing, energy production, transportation, among others. Gearboxes are one of the 

components that are extensively employed for motion and power transmission. Gearboxes are 

very versatile due to a variety of arrangements of shafts and gears that allows a large range of 

transmission ratios. This feature makes this type of equipment to be applied in the more diverse 

scenarios and conditions. In addition, these devices are considered precise and highly 

functional. However, harsh environments, large speed fluctuations and severe load cycles cause 

different damages to be developed in the components of the gearbox. These defects lead to the 

apparatus malfunction, an increase of the vibration level and in some cases to the fault 

transmission to connected equipment. Therefore, the fault diagnosis is essential for the correct 

maintenance planning and quick component changing to ensure the availability and reliability 

of gearboxes. Figure 1.1 shows the most common approaches for gearbox fault diagnosis found 

in the literature.  

 

Figure 1.1: Gearbox fault diagnosis approaches. 

 

 Most of the fault diagnosis frameworks are vibration based, which means that the gearbox 

vibration is measured and then studied to infer about the machine health condition. One of the 

methods that is extensively employed is vibration analysis. In this approach, the collected 

vibration is treated applying some signal processing techniques to extract relevant information.  

The Fast Fourier Transform (FFT) is a method par excellence to evaluate the frequency content 
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of the signal. The spectrum allows to detect peaks in frequencies that are associated with some 

types of faults. Besides the signal spectrum, other techniques such as wavelet transform, time-

synchronous averaging, envelope analysis, signal decomposition among others helps to identify 

damage indicative patterns. Despite the fact that these analyses can provide valuable insight of 

possible defects of the gearbox components, some issues need to be considered. Correct fault 

identification depends on extensive knowledge about the fault as well as clear vibration 

signature. In addition, factors such as noise and complex gearbox arrangements often affect 

vibration analysis, making fault recognition difficult and leading to wrong diagnosis. Figure 1.2 

presents a frequency spectrum of a machine in healthy state. Peaks at input shaft rotation and 

two gear mesh frequencies could lead to infer that the device presents any damage. A proper 

diagnosis then requires a comparative framework to avoid misclassification. 

 

Figure 1.2: Example of a frequency spectrum of a healthy machine. 

 

 Statistical analysis is also a widely used tool to investigate anomalies in gearbox 

components. Parameters such as the root mean square (RMS), shape factor, kurtosis, skewness, 

peak value, crest factor and others are calculated to assess the measured vibration. Changes in 

these parameters can indicate changes in the machine health condition. Statistical parameters 

have proven to be effective to distinguish between a normal state and faulty state in several 

studies, although when working conditions vary, the diagnosis is compromised. As these 

parameters are strongly related to the vibration amplitude, they are sensible to outliners and 

vibration level variation due to load and/or speed fluctuations. Thus, the analysis can provide 

ambiguous results. On the other hand, statistical features do not provide information about the 
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fault type and their classificatory power is limited. Figure 1.3 shows nine statistical parameters 

calculated for six different health conditions. The parameters are as follows: RMS, standard 

deviation, shape factor, kurtosis, skewness, peak value, impulse factor, crest factor and 

clearance factor. As illustrated in Figure 1.3, multiple parameters exhibit similar values across 

various fault patterns. This similarity complicates the determination of whether the observed 

variations are indicative of a change in the machine's health state or are merely due to noise.  

 

Figure 1.3: Statistical parameters for six different fault patterns. 

 

 In recent years, machine learning methods have become protagonists in machinery fault 

diagnosis. They can be classified into two groups: shallow methods and deep learning methods. 

In the former group, algorithms such as support vector machine (SVM), random forest and 

decision tree appear within the most employed approaches. They are useful solving problems 

where the machine dynamics is not complicated, and environmental conditions are favorable. 

Nevertheless, dealing with complex scenarios and sophisticated configurations with these 

methodologies cannot be suitable because of their limited modeling capability. On the other 

hand, algorithms from the latter group dominated the fault diagnosis field due to their versatility 

and high performance in handling non-linearities and complicated mapping problems. The 

artificial neural networks are the most utilized architecture to predict faults in rotary machinery. 
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Many studies have investigated the capabilities of neural networks and have shown them to be 

powerful tools for damage detection. However, some issues still need to be solved. Their 

training demands large sets of labeled data, which are complicated and costly to obtain. In 

addition, depending on the “depth” of the neural networks, high computational power may be 

required. Another concern is the generalization of the neural networks. It is well known that 

their prediction performance with data belonging to the same distribution as the one used in 

training is outstanding. However, when the data distribution varies, the diagnosis results are 

highly compromised. Therefore, these problems create the need for new research.  

 

1.1 Motivation 

 

 Model generalization has been a constant concern in the development of neural networks. 

Several works have proposed and discussed methodologies to mitigate the prediction problems 

caused by overfitting. Figure 1.4 shows a schematic representation of an overfitted and optimal 

fitted models. The model on the left performs very well on training data, but on testing data it 

might provide poor results. On the other hand, the model at the right strikes a good balance 

between accuracy and generalization.  One of the most common approaches to enhance 

generalization is the regularization. Regularization involves techniques that aim to prevent 

overfitting by adding terms to the loss functions. Popular approaches are the L1 regularization 

and L2 regularization. These terms in the loss function encourages sparsity in the model 

parameters and shrinks some coefficients close or equal to zero helping in the model stability. 

Dropout and batch normalization also are extensively used to improve the prediction 

performance of the models on test samples. The aforementioned procedures have demonstrated 

to improve model generalization on samples from the same distribution as the training data. 

Nevertheless, these methodologies do not perform well when domain changes occur.  

 In fault diagnosis of rotating machinery, especially gearboxes, speed and load fluctuations 

can generate differences in data distribution. The vibration amplitude as well as the spectral 

content vary when working conditions change. These changes produce alterations in the fault 

vibration signatures, which can affect the diagnosis. Several research in recent years have 

introduced procedures aiming to overcome these issues. Transfer learning is one approach that 

helps to reduce the domain differences. Transfer learning applies knowledge learned from a 

specific task to solve a different but related task. This implies that a pre-trained model can be 
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fine-tuned for a new case, saving time and resources. For example, a neural network trained 

using data from a robust mathematical model can be fine-tuned to diagnose faults of real 

machines using transfer learning strategies. Limitations of this approach include the 

requirement of labeled data in the new domain to fine-tune the model and the need for training 

every time the data distribution changes.  

 

Figure 1.4: Schematic representation of an overfitted and an optimal fitted model. 

 

 Domain adaptation methods have emerged as a promising solution for model 

generalization in the presence of domain shifts. Domain adaptation refers to methodologies 

applied to provide prediction capabilities to deep learning models on data from different 

distributions. Figure 1.5 depicts an example of a situation where domain adaption can improve 

the robustness of diagnosis. Traditional deep learning approaches provide high performance on 

data that present the same distribution that those used for training, for example data measured 

at the same gearbox speed condition, as shown in Figure 1.5 (a).  However, in a more realistic 

situation, as presented in Figure 1.5 (b) the gearbox speed may vary and it would be desirable 

for the trained model to provide good diagnosis results in this scenario as well. This is the 

problem that this work addresses.  

 Some of the existing domain adaptation methods aim to reduce the discrepancy between 

the data distribution. For this purpose, the most common approach is to add the maximum mean 

discrepancy (MMD) term to the model loss function. This results in feature alignment of the 

source and target data. On the other hand, adversarial training has gained relevance for domain 

adaptation in fault diagnosis. Feature alignment is achieved by using a domain discriminator 

whose function is to indicate whether a sample comes from source or target domain. The issue 
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with the described methods is the limited scope of domain adaptation. They usually are 

projected to perform well in only one target domain. This implies in new adjustments for every 

adaptation tasks. Other approach for domain adaptation are the reconstruction methods. They 

tend to be more adaptable, but their exploitation is still low. In addition, they are usually 

combined with some statistical metrics to measure the domain discrepancy. This aspect restricts 

their usage to unsupervised training since the features are modeled as multivariate distributions.  

 

 

(a) 

 

 

(b) 

Figure 1.5: Deep learning fault diagnosis. (a) Traditional approach using training and testing 

data from the same distribution. (b) Domain adaptation situation where training and testing 

data are from different speed conditions. 

 

1.2 Objectives  

 

 Considering the context explained before, this work aims to contribute to improving the 

generalization of machine learning models for gearbox fault diagnosis under variable speed 

conditions. For this purpose, a novel domain adaptation scheme based on a reconstruction 

model combined with a correlation analysis is proposed to mitigate the prediction errors in the 
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presence of speed changes. Prior knowledge about fault vibration signatures is combined with 

deep learning to optimize the use of the information.  The gearbox vibration signal is processed 

to obtain its frequency content in the order domain. Bands are selected based on the 

characteristic frequencies of the fault signatures to construct a vector that serves as input to the 

reconstruction model. A global normalization strategy is applied to preserve fault-distinctive 

amplitude differences.  A convolutional autoencoder is employed to extract domain-invariant 

features. The correlation analysis is then performed to identify features that represent the same 

fault type under different gearbox speeds. 

 

1.3 Innovative aspects  

 

 This work addresses gearbox fault diagnosis under variable speed conditions using a 

domain adaptation strategy. Unlike existing methods, where the generalization is achieved 

increasing the model complexity, the proposed approach combines vibration analysis with deep 

learning to enhance the use of the information, thereby reducing the required computational 

power. In addition, no source and target domain labels are required to train the system since this 

framework uses an unsupervised reconstruction model. The domain adaption is performed by 

finding correlations between the source and the target domain, avoiding data distribution 

assumptions. The implementation of the methodology is simplified compared to existing 

frameworks. Furthermore, the proposed domain adaptation can be applied to a clustering-based 

diagnosis and to a reconstruction-based fault diagnosis system.  

 

1.4 Organization of the thesis  

 

 The remainder of this thesis is organized as follows: 

Chapter 2 reviews current works on domain adaptation for gearbox diagnosis, dividing 

it into three main categories: discrepancy methods, adversarial methods and reconstruction 

methods.  
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 Chapter 3 provides a theorical background of some of the algorithms used in this thesis, 

including basic concepts of artificial neural networks, convolutional neural networks, 

autoencoder and K- means algorithm.  

 Chapter 4 explains the proposed domain adaptation methodology which is composed of 

five phases: Fault vibration signature, band selection, normalization, feature extraction and 

feature synchronization. Chapter 5 present the data set used to evaluate the proposed domain 

adaptation framework.  

 The results and discussions of this thesis are split into two applications for the proposed 

domain adaptation. Chapter 6 presents a clustering-based approach for gearbox fault diagnosis 

under variable speed conditions. Chapter 7 presents a gearbox fault diagnosis system based on 

a reconstruction model, and it is compared with traditional convolutional neural network 

models.  

 Chapter 8 provides the main conclusions of this thesis and future works suggested by the 

author.  
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2 DOMAIN ADAPTATION METHODOLOGIES FOR GEARBOX 

FAULT DIAGNOSIS: A REVIEW 

 

 

 Domain adaptation (DA) methods mitigate distribution differences between domains, 

enabling a model trained on source data to perform well on target data. These methods are 

particularly valuable when there are differences in data distributions between the source and 

target domains, such as in the case of rotating machinery, where speed and load variation 

produce changes in fault signatures. Domain adaptation encompasses a range of techniques 

designed to bridge the gap between domains. These methods can be applied to both shallow 

and deep approaches, each with its own unique strategies for aligning the source and target 

distributions. Shallow methods typically involve reweighting instances, transforming features, 

or sharing parameters to reduce distributional differences. In contrast, deep domain adaptation 

leverages the powerful representation learning capabilities of deep neural networks to achieve 

domain invariance, often through adversarial training, reconstruction techniques, or statistical 

moment matching. In this context, domain adaptation methods for intelligent fault diagnosis 

can be grouped into three categories: discrepancy-based method, adversarial-based method, and 

reconstruction-based method.  

 

2.1 Discrepancy-based methods 

 

 Discrepancy-based methods evaluate the distance between the source and target domains 

at the feature layer level of the model and employ statistical techniques to minimize domain 

differences. The most common approach for comparing and reducing distribution shifts is the 

maximum mean discrepancy (MMD). MMD evaluates the difference in mean values between 

the source domain and the target domain. Ghifary et al., (2014) combined MMD with neural 

networks models for the first time. In fault diagnosis of rotating machinery field, several 

relevant studies have utilized MMD or its variations in conjunction with deep learning models.  
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2.1.1  Maximum mean discrepancy metric  

 

 The Maximum Mean Discrepancy is defined as the maximum difference between the 

mean embeddings of two distributions in a reproducing kernel Hilbert space (RKHS). The key 

idea is to map the samples from the distributions into an RKHS using a kernel function and then 

compare the means of these mapped samples. In domain adaptation, it is the most widely used 

metric to compare data distributions.  

 Lu et al., (2017) introduced a discrepancy term combined with a regularization term to 

the neural network loss function. The maximum mean discrepancy causes data distributions to 

become similar by performing domain adaptation, enabling fault diagnosis in different 

scenarios. The weight regularization term prevents the loss of essential information from the 

original data during its mapping into the shared subspace, ensuring that different faults remain 

identifiable after adaptation.  Li et al., (2020) employed the maximum mean discrepancy to 

measure and reduce the disparity of features extracted from the source and target domain in 

multiple layers of the neural network instead of the final one, focusing on the fully connected 

ones since the data distribution is retained in these layers, as shown in Figure 2.1. Thus, the 

domain adaptation task is performed over a larger space producing improved results under 

domain changes. The method was called Deep Balanced Domain Adaptation Neural Network 

and required label data from source and target domain. Following the previous idea,  Xiong et 

al., (2021) constructed a multi-block neural network in order to measure the discrepancy of 

multiple blocks for domain adaptation. Each block was composed of different types and number 

of layers. In addition, the discrepancy term in the cost function is a sum of central moment 

discrepancies of each dense block. The methods aimed to enhance feature transferability in deep 

neural networks for fault diagnosis. 

 Cao et al., (2020) proposed a deep domain-adaptive multi-task learning model called Y-

Net for fault diagnosis in planetary gearboxes, using residual modules to enhance deep feature 

separability and reduce model redundancy. In addition, a soft joint maximum mean discrepancy 

was introduced to link two pipelines, shrinking distribution discrepancies of learned features 

with auxiliary soft labels.  Jiao et al., (2020) utilized a one-dimensional residual network for 

adaptive feature learning, incorporating joint maximum mean discrepancy and adversarial 

adaptation discriminator to reduce shifts in joint and marginal distributions across different 

domains, enabling category-discriminative and domain-invariant feature learning for fault 
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diagnosis. Extensive experiments on planetary gearbox and rolling bearing datasets validated 

the effectiveness of these approaches. R. Wang et al., (2022) addressed the multi-source domain 

adaptation. A residual network was employed to learn discriminative features from multiple 

source and target data. The domain adaptation was performed by applying the multi-kernel 

maximum mean discrepancy. In addition, a classifier alignment module was trained to improve 

the prediction accuracy.  

 

 

Figure 2.1: Model used by Li et al., (2020) to performed domain adaptation. 

 

 The maximum mean discrepancy domain adaptation can also be employed for transfer 

learning approaches. Scheunemann et al., (2021) combined the Hilbert transform and the fast 

Fourier transform to obtain the envelope frequency content of raw vibration signals. A 

convolutional neural network was employed to extract the features. Transfer learning is 

achieved by adding a layer-wise maximum mean discrepancy term to the loss function in the 

fine-tuning of the network, that is the discrepancy of the fully connected layers conditioned by 

predefined bands corresponding to fault locations. C. Chen et al., (2021) used a support vector 

machine for transfer learning to diagnose gear faults under varying working conditions. Domain 

adaptation was performed by introducing a large margin projection model, which is a 

regularization term that measures the maximum mean discrepancy to the SVM.  

 Qin, Qian, Wang, et al., (2023) investigated the partial domain adaptation to overcome 

limitations when the source and target domain have different fault types. For this purpose, the 

global geometrical structure was extracted with an affinity matrix instead of a local geometrical 

structure obtained by distance weighting. Domain alignment was then performed by maximum 

mean discrepancy. Manifold regularization enhanced the objective function of partial domain 
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adaptation by allowing the weight of the geometrical structure to adaptively change based on 

the feature mapping. Experiments with bearing data demonstrate promising capabilities for 

partial transfer learning.  

 J. Li et al., (2024) proposed a network for fault diagnosis of different devices. A multi-

domain feature extractor, as shown in Figure 2.2, is constructed by combining different type of 

neural networks with multi attention to capture key feature information from vibration data in 

the time, frequency, and time-frequency domains. Thus, the model adaptability to feature from 

several domain is enhanced. In addition, a bidirectional gated recurrent unit is employed to fuse 

the extracted features, and the maximum mean discrepancy is used as metric to reduce domain 

differences and perform transfer learning among different devices.   

 

 

Figure 2.2: Cross-machine fault diagnosis model proposed by J. Li et al., (2024) 

 

2.1.2 Maximum mean discrepancy combined with another metrics 

 

 MMD also can be combined with another distance metrics to improve the domain 

adaption and enhance model generalization, as in the case of Bao et al., (2021) that introduced 

an enhanced sparse filtering algorithm based on maximum classifier discrepancy (MCD) for 

transfer fault diagnosis.  The Wasserstein distance was leveraged to reduce domain discrepancy 

between source and target domains. In addition, the algorithm used the probability output 
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discrepancy of the classifier to identify fuzzy fault samples on the class boundary, enhancing 

fault diagnosis under speed fluctuation conditions. Rezaeianjouybari & Shang, (2021) reduced 

the domain difference between multi-source labeled domains and an unlabeled target domain. 

For this purpose, a sliced Wasserstein discrepancy metric and optimal transport theory are 

employed to define task-specific bounds. Furthermore, the maximum mean discrepancy 

appears in the cost function to align the source and target samples. M. Kim et al., (2022) 

constructed a loss function of a convolutional neural network model adding terms that include 

maximum mean discrepancy terms, a new semantic clustering term, and a classification lost. 

The semantic clustering terms bring samples with the same class label closer together and cause 

samples with different labels to separate. It is based on the pairwise distance metric between 

each labeled sample from the source domain and is applied at multiple feature levels to obtain 

robust features with the desired properties. The inclusion of these terms resulted in features 

from the same class being well-clustered, thereby enhancing the diagnosis. 

 Jiang et al., (2023) aimed to enhance fault diagnosis performance under gear fluctuating 

conditions by efficiently extracting hidden features and completing transfer training of data 

features. For this purposed, the author implemented a combination of maximum mean 

discrepancy and Wasserstein distance to reduce the sample mean in the regenerative kernel 

Hilbert space and minimize the average data movement distance. A gradient reversal layer is 

introduced to improve faults classification and confusion of domain data.  

 Qin et al., (2023) proposed a domain adaptation mechanism named deep joint distribution 

alignment, comprising Marginal Distribution Alignment (MDA) and Class Distribution 

Alignment (CDA) techniques. MDA was enhanced by constructing a statistical metric aligning 

means and covariances of two domains to reduce marginal discrepancy. CDA utilized Gaussian 

mixture model and Maximum Likelihood estimation to compute class conditional distributions, 

matched using information entropy and Wasserstein distance. CDA also mitigates the effects of 

pseudo labels on the unlabeled target domain, which overcomes some weaknesses of class 

distribution alignment. A convolutional neural network model was constructed for fault 

diagnosis based on the marginal distribution and class distribution alignment.  

 The MMD limitations were analyzed by Qian et al., (2023), who theoretically explored 

the relationship between Maximum Mean Discrepancy and the kernels. Based on the 

investigated relation, a maximum mean squared discrepancy metric was introduced. This metric 

reflects the mean and variance information of data samples in the kernel Hilbert space, 

enhancing domain confusion. Furthermore, two empirical statistics, biased and unbiased 
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maximum mean squared discrepancy statistics, were developed to deal with limited sample data 

in real applications and ensure the effectiveness of maximum mean squared discrepancy. The 

methos was applied to end-to-end fault diagnosis of planetary gearbox without labeled target-

domain samples, showing better discrepancy representation.  

 

2.1.3 Other metrics  

 

 Other metrics can be utilized to reduce the domain discrepancies and deal with data 

distribution changes. Z. H. Liu et al., (2021) constructed an autoencoder network for 

unsupervised feature learning, enabling the extraction of class-discriminative features from the 

input data. Then, the discrepancies between the joint learning representations and labels were 

minimized based on the optimal transport distance. The main idea was to search for a transport 

plan between the feature and label spaces of the source and target domains while retaining the 

label information of the source domain. The authors were the first to use the optimal transport 

theory in domain adaptation for fault diagnosis.  

 Fan et al., (2022) discussed the development of a Deep Weighted Quantile Domain 

Adaptation Network to address challenges in fault diagnosis. The network incorporated a 

weighted quantile discrepancy metric that leverages quantile theory to consider different 

quantiles' influence on domain adaptation for fault diagnosis. This metric enriched distribution 

discrepancy measurement methods and enhances distribution matching characteristics with less 

computational complexity. Su et al., (2023) focused on directly measuring and minimizing 

decision result matrix discrepancies to facilitate the minimization of distribution discrepancies 

between two-domain data, enhancing alignment accuracy. The nuclear norm enhanced the 

precision and robustness of decision discrepancy measurement, mitigating classification errors 

near decision boundaries. 

 R. Wang et al., (2024) proposed a novel distance metric addressing conditional 

distribution discrepancy for cross-domain rotating machinery diagnostics. This metric involved 

an empirical estimation of the Bures–Wasserstein distance based on the conditional covariance 

operator, which explicitly constructs the relationship between sample features and labels. Also, 

geometric features were extracted of different domain data distributions for improved 

conditional domain alignment. The Bures–Wasserstein distance and the 1-Wasserstein distance 

were jointly optimized to fully utilize diagnostic knowledge across different dimensions. A 
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dynamic parameter estimation strategy addressed the hyperparameter selection problem for 

Gaussian kernel functions. Additionally, the algorithm aimed to minimize transport costs from 

the source domain sample distribution to the target domain sample distribution, offering 

interpretability for understanding the cross-domain diagnostic knowledge transfer process. 

 S. Lee et al., (2024) introduced two main metrics, revolution discrepancy and peak 

discrepancy, to quantify domain discrepancies between high-speed and very low-speed 

bearings, considering rotational speed and specification differences. The proposed method 

consisted of three parts: domain discrepancy quantification, a revolution matching module, and 

a peak matching module. Revolution discrepancy was utilized in the first training phase to 

generate revolution-matched target data through the revolution matching model, aiding in 

extracting speed-invariant features by aligning revolution information. In the second training 

phase, the peak matching module was implemented to the target data with peak discrepancy to 

generate peak-matched target data, which is then used for fine-tuning the feature extractor. 

 

2.2 Adversarial-based methods  

 

 The core idea behind adversarial domain adaptation is to reduce the discrepancy between 

the source and target domains by leveraging adversarial training. This involves a game-theoretic 

approach in which two models, typically a feature extractor and a domain discriminator, are 

trained simultaneously. The feature extractor aims to generate representations (features) of the 

input data that are useful for the primary task (e.g., classification) and indistinguishable across 

domains. The domain discriminator attempts to distinguish whether a given feature 

representation comes from the source or the target domain. During training, the feature extractor 

is optimized not only to perform well on the primary task using source domain data but also to 

trick the domain discriminator into believing that the features it produces are domain-invariant. 

This is achieved by minimizing the classification loss on the source domain and maximizing 

the domain discrimination loss, effectively aligning the distributions of the source and target 

domain features. Some relevant studies that have utilized adversarial learning are explained 

below.  
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2.2.1 Adversarial domain adaptation 

 

 Jiao, Lin, et al., (2020) presented a double-level adversarial domain adaptation network 

for cross-domain fault diagnosis. In the diagnostic framework, three players— a feature 

extractor, a domain discriminator, and a discrepancy discriminator with two label predictors— 

engaged in two minimax games. In the first game, the domain discriminator tried to distinguish 

features from the source and target domains, while the feature extractor aimed to fool it. 

Concurrently, the label predictors were updated to classify source samples accurately. In the 

second game, the discrepancy discriminator, using the Wasserstein distance, identified 

ambiguous target samples by maximizing the label predictors' output discrepancy. The 

extractor, in turn, worked to align target features with the source and deceive the discrepancy 

discriminator.  Zhao et al., (2021) introduced an unsupervised domain adaptation framework 

called the deep multi-scale adversarial network with attention. The model consisted of two main 

components: a shared feature generator with multi-scale modules and an attention mechanism, 

and a fault pattern recognition module with two discriminators. It eliminated the need for 

labeled information during the transfer process, reducing the time and cost associated with 

collecting labeled samples in real industry settings. Lou et al., (2022) proposed a fault diagnosis 

method that utilizes domain adaptation to address the disparity between simulation signals and 

measured signals. The Finite Element Method (FEM) is used to create a simulation model of 

the mechanical system, covering various fault types. The FEM simulation signals are adjusted 

using a generative adversarial network to reduce the distribution gap between FEM and 

measured fault samples.  

 Jang & Cho, (2022) proposed a data interpolation method that used a mixing algorithm 

to fill the high-quality continuous latent space between the source and target domains. An 

interpolation method was devised employing a reconstruction-based transformation algorithm 

and a regularization method between the domain data, calculating the regularization factor 

based on units of reconstruction loss and consistency loss in the trained model. The model 

presented in Figure 2.3 generated complementary data for both domains, promoting a 

continuous connection of domain-invariant spaces through interdomain mixing, minimizing 

domain inconsistency, and generating data that ensured continuous classification performance 

in the latent space by mixing categories.  
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Figure 2.3: Domain adaptation based on a generative model. Source: (JANG; CHO, 2022) 

 

 Chen et al., (2023) Introduced an inner adversarial module to extract common features 

from multi-source domains and enhance domain confusion through dual adversarial training. 

The authors designed a multi-subnet collaborative decision module for better fusion decisions 

based on confidence scores computed by the module. This approach addressed the challenge of 

collaborative fault diagnosis by integrating multi-source domain knowledge effectively. The 

partial domain adaptation is also considered. 

 X. Wang et al., (2022) proposed a dual-domain alignment approach that comprised seven 

modules: two feature extractors, two feature classifiers, a domain discriminator, a source 

domain alignment module, and a cross-domain alignment module. The source domain 

alignment maintained the consistency of the source domain features. The cross-domain 

alignment addressed domain differences that arose by using two fully connected layers to 

maximize the alignment of the target domain with the source domain.  

 Tian et al., (2023) proposed an ensemble network framework employing a multi-source 

mutual-supervised strategy to extract relevant diagnostic knowledge from multiple sources, 

enabling the identification of both known and unknown health states of target machinery. 

Furthermore, a transferability metric was introduced. This metric quantified the similarity of 

each target sample with the known health classes by evaluating and adjusting the consistency, 

confidence, and entropy of multiple classification results. This process assigned sample-level 

weights within the adversarial mechanism. 
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2.2.2 Adversarial training for transfer learning  

 

 Adversarial domain adaptation strategies can be combined with transfer learning to 

improve the model generalization. Z. Chen et al., (2020) utilized two deep encoder networks to 

create asymmetric mappings to adaptively extract features from raw data in both source and 

target domains. Additionally, weight transfer and domain adversarial training techniques with 

inverted label loss were implemented to guide feature learning, aiming to minimize the 

distribution discrepancy between the source and target domains. Unlike other methods, the 

authors employed independent encoder network architectures for each domain as shown in 

Figure 2.4. This design provided flexibility to handle large domain shifts by independently 

learning domain-specific features. 

 

Figure 2.4: Adversarial training model for transfer learning between different domains. 

Source: (CHEN et al., 2020) 

 

 Qin et al., (2021) proposed a parameter sharing adversarial domain adaptation network 

for fault transfer diagnosis of planetary gearboxes, addressing issues in traditional transfer 

learning models like high training costs and low classification accuracy. This framework 

introduced a shared classifier to unify fault and domain classifiers, reducing network 

complexity. It incorporates the CORAL loss for adversarial training to enhance domain 

confusion and an unbalanced adversarial training strategy to improve feature extractor domain 

confusion. Liu et al., (2023) presented a multi-source transfer learning framework called 
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MADMAN to enhance cross-domain fault diagnosis. MADMAN incorporated three main 

improvements: the design of the discrepancy matching technique, the construction of the 

adversarial classifier training method, and the weight adaptive adjustment using the self-

attention mechanism. Two classifiers, C1 and C2, were trained to maximize the discrepancy in 

target features, while the feature extractor minimized the discrepancy to generate consistent 

features between domains. The discrepancy matching technique effectively reduced the 

distance of feature distribution between source domains and target domain, as reflected in the 

MMD values after training with MADMAN being relatively lower compared to other methods. 

Ran et al., (2024) focused on adversarial domain adaptation for unsupervised scenarios in 

gearbox fault diagnosis to improve the cross-conditions and cross-machines transfer diagnosis 

performance. For this purpose, a joint maximum mean discrepancy term was embedded into 

the loss function to align marginal and conditional distributions. Pseudo-Labels were generated 

by a self-supervised strategy to facilitate the optimal gradient distribution alignment.  

 Shi et al., (2022) decomposed the latent spaces into a shared subspace for diagnosis tasks 

and a private subspace for each domain to capture unique properties, enforcing orthogonal 

constraints to maintain their independence. Adversarial learning on the shared subspace 

facilitated the acquisition of generalized diagnostic knowledge from multiple sources, which 

proved advantageous for the task. This method mitigated the risk of negative transfer at the 

feature representation level and was anticipated to enhance diagnostic performance on the target 

task by thoughtfully integrating multiple domains. Furthermore, an instance-entropy-based 

transfer loss term was introduced into the learning process to minimize the impact of bad 

samples and bolster condition prediction confidence, thereby further preventing the negative 

transfer of irrelevant knowledge. 

 Qian et al., (2024) devised an adaptative intermediate class-wise distribution alignment 

for mixed transfer tasks. The neural network model utilized a dynamic intermediate alignment 

layer and introduced Adaptative SoftMax loss with an adaptive decision margin to improve 

interclass feature separation. The model aligned both global and class-wise distributions of 

source and target domains, suppressing loss oscillation and slow convergence, and enhancing 

generalization and robustness.  The model only required the SoftMax loss to tune the parameters 

without any additional discrepancy term. The approach can be applied to domain adaptation 

and domain generalization without any model modification.  
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2.2.3 Adversarial training combined with metrics 

 

 Some methods experimented the combination of adversarial learning with statistical 

metrics aiming to extract more specific domain invariant features and minimize the domain 

divergences. Yu et al., (2021) employed the Wasserstein distance-based asymmetric adversarial 

domain adaptation for unsupervised domain adaptation in bearing fault diagnosis. This 

approach integrated a generative adversarial network-based loss and asymmetric mapping to 

address training difficulties in adversarial transfer learning, especially under serious domain 

shifts. R. Li et al., (2022)  incorporated an asymmetric mapping feature extractor and deep 

CORAL alignment to extract domain-invariant features and align class-level features between 

the source and target domains. This approach overcomes the limitations of shared weights in 

symmetric mapping, allowing the extraction of more specific-domain features. Jia et al., (2022) 

introduced a distance guided domain-adversarial network that comprises two key modules: a 

domain-adversarial network and maximum mean discrepancies guided domain adaptation. The 

authors utilized a stacked autoencoder (SAE) as a feature extractor to learn domain invariant 

features and MMD to measure non-parametric distance between different metric spaces for 

improved domain alignment. The method showcased good accuracy and stability under 

different working conditions.  

 J. Lee et al., (2024) developed a domain adaptation method for adversarial training with 

label-aligned sampling. Label-aligned sampling, where the source and target domains were 

drawn with aligned label distributions, was adopted to mitigate the impact of class imbalance 

and the domain discriminator shortcut. Using this sampling strategy, samples with the same 

label distribution were matched in every batch, allowing domain-invariant attributes to be 

extracted from domain differences rather than from differences in label characteristics, which 

resulted in improved performance. 

 

2.3 Reconstruction-based methods 

 

 Reconstruction models can play a significant role in domain adaptation by learning robust 

feature representations that help reduce domain differences. The domain difference can be 

minimized by mapping the source data and the target data, or both domain data, into a shared 

domain. This can be achieved through various techniques involving encoder-decoder models. 
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Some approaches involve mapping both source and target domain data into a shared latent 

space. This shared space enables models to generalize better to the target domain. Variants such 

as Denoising Autoencoders (DAEs) and Variational Autoencoders (VAEs) can help in learning 

robust representations that are less sensitive to domain-specific noise or variations, thereby 

reducing domain discrepancy. Some relevant works that leverage the advantage of 

reconstruction methods are detailed below.  

 He et al., (2019) introduced an improved deep transfer auto-encoder depicted in Figure 

2.5 for fault diagnosis of different gearboxes under variable working conditions with small 

training samples. The multi-wavelet activation function was employed for effectively learning 

features hidden in non-stationary vibration data, enhancing the analysis performance. The 

correntropy was utilized to modify the cost function, improving the reconstruction quality of 

the auto-encoder. The pre-trained autoencoder with data from the source domain was fine-tuned 

using small samples from the target domain. He et al., (2020) improved the previous work by 

selecting high-quality samples based on a similarity measure using coefficients calculated from 

the spectrum aiming to pre-train the autoencoder with data which share similar features with 

the target domain.  

 

 

Figure 2.5: Wavelet-based autoencoder for cross-machine gearbox fault diagnosis. Source: 

(HE et al., 2019), (HE et al., 2020) 
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 X. Li et al., (2020) employed a deep learning-based method that projects different 

equipment features into the same subspace using an auto-encoder structure, setting the 

maximum mean discrepancy to measure data distribution discrepancies between different 

machines.  Xiao et al., (2021) proposed a noisy domain adaptive marginal stacking denoising 

auto-encoder for domain adaptation between different noise levels, integrating Transfer 

Component Analysis for dimensionality reduction using acoustic signals. The method 

minimized the maximum mean discrepancy distance between different domains using a forward 

closed-form solution instead of traditional back propagation algorithm, yielding significant 

improvements in accuracy and efficiency.   

 Yang et al., (2022) utilized a Dynamic Domain Adaptation method to address domain 

shift and mismatch due to different working conditions, consisting of multi-kernel marginal 

distribution adaptation and multi-kernel conditional distribution adaptation by calculating a 

dynamic domain factor based on the maximum mean discrepancy. The network incorporated 

multiple attention mechanism modules to enhance the richness of deep features and promote 

adaptability in different diagnosis tasks.  

 Autoencoders architectures can be improved by adding some metrics to the cost functions 

aiming to extract consistent features across domain variations.  Zhang et al., (2020) applied 

domain adaptation to the sparse filtering algorithm. For this purpose, the authors utilized the 

L1-norm and L2-norm for the maximum mean discrepancy. Besides, the final objective function 

obtained by integrating specific equations. Kim & Lee, (2023) employed an expectation-

maximization adversarial autoencoder for feature extraction and subspace mapping. A gaussian 

mixture model was used to cluster the extracted features obtaining multi-variate distributions 

for each class. The relationship between the source and target domain clusters was inferred 

utilizing the symmetric Kullback-Leibler divergence metric, where clusters with the smallest 

probabilistic distance were assigned to belong to the same health condition.  

 K. Zhao et al., (2023) presented an indirect alignment idea to align the feature 

distributions of source and target domains in the latent feature space using a Gaussian prior 

distribution. The Wasserstein Distance was employed as an optimal transport problem to find 

an optimal transport strategy. It helps transform the source data distribution into an approximate 

normal distribution, maintaining the geometric characteristics of the distribution during the 

transformation process. This approach enhances feature alignment by indirectly aligning the 

distributions, improving the transfer of knowledge from multiple source domains to the target 
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domain. Pang, (2024) minimized the dependence between extracted features and domain labels 

using Hilbert-Schmidt Independence Criterion (HSIC) by stacking multiple Maximum 

Independence Autoencoders (MI-AEs) and fine-tuning them with labeled source samples and 

normal pattern samples from supporting domains. HSIC was used as a measure of dependence 

between two data sets to learn domain-independent features in deep transfer models, which is 

a novel application of HSIC in this context. This approach achieved domain generalization to 

various working conditions, designing an effective way to learn domain-adapted features.  

 Variational autoencoders are also employed for cross domain fault diagnosis.  Wen et al., 

(2023) proposed a deep clustering network called clustering graph convolutional network with 

multiple adversarial learning for fault diagnosis of various bearings. The methodology involved 

the use of multiple representations of datasets extracted by an autoencoder and graph 

convolutional network to recognize different classes and their related information. Yuan et al., 

(2024) utilized a variational auto-encoder (VAE)-based multisource deep domain adaptation 

model using optimal transport for cross-machine fault diagnosis of rotating machinery. The 

optimal transport distance was employed to reduce domain drifts across machines, and a 

multicategory label discriminator for label prediction. This methodology addressed the cross-

machine fault diagnosis problem by leveraging optimal transport theory to reduce domain drifts, 

showcasing accuracy in fault diagnosis.  
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3 THEORICAL BACKGROUND 

 

 

 Artificial neural networks (ANN) are computational models inspired by the human brain 

synapsis. They are powerful at pattern recognition, data analysis and modelling complex 

systems. In recent years, neural network models have gained importance in fault diagnosis due 

to their versatility, outstanding potential for real applications and high performance compared 

with traditional methods. Convolutional neural networks (CNNs) stand out among the deep 

learning models for their ability to automatically extract features, improving the robustness of 

diagnosis. In addition, kernel utilization enables small input variation without affecting the 

prediction. This work leverages the advantages of the convolutional neural networks and 

employs a convolutional autoencoder for the gearbox fault diagnosis. This chapter provides a 

brief description of the algorithms employed in this thesis including basic concepts of neural 

network architectures such as the artificial neuron, activation functions and their training. 

Besides, the convolutional neural networks and convolutional autoencoders are explained. At 

the end of the chapter, a concise explanation of the K-means clustering algorithm is provided.  

 

3.1 Artificial neural networks: Basic concepts  

 

3.1.1 Artificial neuron  

 

 The basic constructive unit of artificial neural networks is the neuron. It was first 

introduced by McCulloch & Pitts, (1943) for binary entries and later generalized for real values 

by Rosenblatt, (1958) in the paper called “perceptron’. The perceptron is considered the first 

artificial neural network and is still widely used in different artificial neural network 

applications (DA SILVA et al., 2016). Figure 3.1 presents a representation of an artificial 

neuron.  

 The set {𝑥1, 𝑥2, … , 𝑥𝑚} denotes the input signals and {𝑤1, 𝑤2, … , 𝑤𝑚} are the synaptic 

weights of the synaptic junctions. The relevance of each {𝑥𝑖} is determined by multiplying them 

by the corresponding {𝑤𝑖}, and the activation potential 𝑢 is a weighted sum of the inputs and 
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constant 𝑏 called bias. Thus, the activation potential is sent to an activation function 𝑔(∙) 

generating the output 𝑦. The bias increases or decreases the degree of freedom of the activation 

function and allows a non-zero output when inputs are null. 

 

 

Figure 3.1: Schematic representation of an artificial neuron. 

 

 The activation function limits the output values within a reasonable range defined by its 

functional mapping. Eq. (3.1) and (3.2) synthesize the result produced by an artificial neuron 

(DA SILVA et al., 2016). 

 
𝑢 = ∑ 𝑤𝑖 ∙ 𝑥𝑖 + 𝑏

𝑚

𝑖=1

 
 

(3.1) 

 

 
𝑦 = 𝑔(𝑢) 

 

(3.2) 

 

 

3.1.2 Activation functions  

 

 Activation functions influence the flexibility and capability of the ANNs in modelling 

complex outputs. Besides, activation functions introduce non-linearities to the neural networks 

avoiding falling into linear regression models. Figure 3.2 shows two activation functions 

employed in this work.  
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 Sigmoid function also called sigmoidal curve or logistic function is presented in eq. (3.3). 

The output result produced by sigmoid function will always be real values within the interval 

[0, 1]. 

 
𝑔(𝑢) =

1

1 + 𝑒−𝑢
 (3.3) 

 

 The rectified linear unit activation (ReLU) function has become very popular in recent 

years. This activation function yields a linear mapping for input values greater than zero, while 

returning zero for negative values and can be expressed as follow: 

 

 𝑔(𝑢) = max (0, 𝑢) (3.4) 

 

 

(a) 

 

(b) 

Figure 3.2: Activation functions. (a) Sigmoid function. (b) ReLU function. 

 

 

3.1.3 Neural network structure 

 

 Artificial neural networks are built by connecting several neurons arranged in structures 

called layers. The layers direct the synaptic connections of the neurons and can be classified 

regarding their localization in the neural network structure. The input layer is responsible for 

receiving information coming from the external environment. Data is usually normalized within 

a defined interval aiming to produce stable mathematical operations performed by the network. 
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 The hidden layers perform most of the data processing and are responsible for extracting 

patterns associated with the analyzed system. The output layer is responsible for producing the 

outcome derived from the processing of previous neurons. Figure 3.3 depicts a neural network 

with one hidden layer.  

 

Figure 3.3: Basic structure of an artificial neural network. 

 

 Feed forward neural networks with multiple layers are one of the most common 

architectures employed in machine learning approaches. Information is propagated in only one 

direction from the input layer to the output layer. These networks are composed of one or more 

hidden layers. The number of neurons on the input layer must be equal to the length of input 

data. on the other hand, the number of neurons in the last layer depends on the desired outputs 

for the analyzed problem. The number of hidden layers and their respective number of neurons 

is tied to the nature and complexity of the problem as well as the availability of data to model 

the system. The more hidden layers, the deeper the network is, and the more complex problems 

can be mapped.  

 Another type of neural network architecture widely used is recurrent or feedback 

networks. The main difference to the previous networks is that the output of some neurons can 

be feedback to the inputs of neurons in certain layers. This type of network is not addressed in 

this work.  
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3.1.4 Training the neural networks  

 

 The main objective of the training process is to optimize the biases and the connection 

weights between the neurons. To achieve this, an objective function is defined. The objective 

function quantifies the error generated by the ANNs through the training. Common objective 

functions found in the literature include the mean squared error (MSE) defined in eq. (3.5), the 

mean absolute error (MAE) detailed in eq. (3.6) and the cross entropy shown in eq. (3.7) 

 

𝑀𝑆𝐸 =
1

𝑛𝑠
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛𝑠

𝑖=1

 
 

(3.5) 

 

 

𝑀𝐴𝐸 =
1

𝑛𝑠
∑|𝑦𝑖 − 𝑦�̂�|

𝑛𝑠

𝑖=1

 
 

(3.6) 

 

 

𝐿 = −
1

𝑛𝑠
∑[𝑦𝑖 log(𝑦�̂�) + (1 − 𝑦𝑖) log(1 − 𝑦�̂�)]

𝑛𝑠

𝑖=1

 
 

(3.7) 

 

where 𝑛𝑠 is the number of training examples, 𝑦𝑖 is the real value and 𝑦�̂� is the predicted value. 

These functions serve as benchmarks for assessing the network's performance and guiding the 

training towards minimizing error. 

 Neural networks are trained using the backpropagation algorithm which is a gradient 

estimation method. Here is a concise overview: for each input-output pair {𝑥𝑑 , 𝑦𝑑}, where 𝑥𝑑 

represents a training data example and 𝑦𝑑 is its corresponding true label, the network calculates 

the forward phase, it means, the estimation error given by the loss function 𝐿. The next step is 

the backward phase, where the influence of each network parameter in the produced error is 

assessed. This is done by computing the derivates of the loss function with respect to each 

weight 𝑤𝑗𝑘
𝑝

 and bias 𝑏𝑘
𝑝
, where 𝑝 is the number of the layer, 𝑘 is the number of the neuron in 

layer 𝑝, and 𝑗 is the number of neural connections. The error is then backpropagated from the 

output layer to the hidden layers using the chain rule. Since the input layer lacks tunable 

parameters, the error propagation is limited to the first hidden layer. Finally, each parameter is 

updated as follows: 
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(𝑤𝑗𝑘

𝑝 )
𝑛+1

= (𝑤𝑗𝑘
𝑝 )

𝑛
− 𝜂

𝜕𝐿

𝜕𝑤𝑗𝑘
𝑝  (3.8) 

 

 
(𝑏𝑘

𝑝)
𝑛+1

= (𝑏𝑘
𝑝)

𝑛
− 𝜂

𝜕𝐿

𝜕𝑏𝑘
𝑝 (3.9) 

 

where 𝜂 is the learning rate, the negative signal modifies the searching direction to minimize 

the objective function and 𝑛 is the iteration number. This iterative process helps refine the 

network's performance over subsequent training epochs. Figure 3.4 presents an example of the 

value of the loss function as function of the number of epochs for the training of a neural 

network.  

 

Figure 3.4: Loss function values across several training epochs. 

 

3.2 Convolutional neural networks  

 

 A convolutional neural network is a type of deep learning model that extracts information 

from visual data (LECUN et al., 1998). Deep convolutional neural networks are designed to 

perform two main tasks: feature extraction and classification.  

 Feature extraction refers to the process of transforming raw data into numerical 

representations, maintaining the essential information embedded in the original dataset. Feature 
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extraction helps in dimensionality reduction, then the data is processed more efficiently. On the 

other hand, classification involves assigning labels to the data using the extracted features in 

the previous phase. Figure 3.5 presents a common architecture of a convolutional neural 

network composed of three types of arrangements: convolutional layers, pooling layers, and 

fully connected layers. 

 Hyperparameters of the convolutional neural networks are usually chosen by the user 

depending on the specific application. The convolutional neural networks are versatile since the 

changes on the hyperparameters produce a new model providing different results. The first 

hyperparameter is the number of layers that is commonly called the depth of the network. This 

is a critical parameter since a deeper network can learn more complex features and patterns 

from the data, but it is also more susceptible to overfitting. Thus, finding a balance between the 

number of layers and the complexity of the problem is crucial. Another aspect to decide is the 

type of layers employed to construct the network. Depending on the arrangement of layers, 

some networks can be more efficient to specific tasks in comparison to others.  

 The kernel of filter size is another hyperparameter. A filter is a matrix of weights used to 

convolve with the input. During convolution, the filter measures how closely a patch of the 

input matches a particular feature, such as a vertical edge, an arch, or any other shape. Using a 

larger filter size allows the network to capture more information from the input data, but it also 

increases the number of parameters. On the other hand, a smaller filter size can reduce the 

number of parameters, but it might miss some important features in the data.  

 The stride is a hyperparameter that dictates how many positions the filter shifts across the 

input data. Utilizing a larger stride can decrease the size of the resulting feature maps, although 

it may also cause some information to be lost. On the other hand, a smaller stride retains more 

information but requires more computation time and memory. Therefore, a suitable stride 

balances between minimizing information loss and maintaining computational efficiency. 

 Padding is a method used to maintain the spatial dimensions of an input data when 

applying convolutional layers. This process involves adding zeros around the edges of the input 

data to create a padded version, which can then be convolved with the filter. Padding helps 

retain edge information and prevents the loss of spatial resolution. However, it also results in 

higher memory usage and increased computation time for the network. 
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Figure 3.5: Example of structure of a convolutional neural network. 

 

3.2.1 Convolutional layer 

 

 Convolutional layers are the core building blocks of CNNs. It comprises a set of filters or 

kernels, the parameters of which are refined through the training. Convolutional layers take the 

inputs and produce feature maps to be fed into subsequent layers. Feature maps are generated 

by kernels through the convolution operation.  

 Consider a input of size 𝐼 = [𝐼𝑥][𝐼𝑦][𝐼𝑧] and a kernel of shape 𝐾 = [𝐾𝑥][𝐾𝑦], the feature 

map is calculated with the following equation. 

 

 𝑂[𝑧][𝑥][𝑦] = 𝐵[𝑧] + 𝑊 (3.10) 

 

 

𝑊 = ∑ ∑ ∑ 𝐼[𝑐][𝑘𝑥 + 𝑆𝑥𝑦][𝑘𝑦 + 𝑆𝑦𝑦] × 𝐾[𝑧][𝑐][𝑘𝑥][𝑘𝑦]

𝐾𝑦−1

𝑘𝑦=0

𝐾𝑥−1

𝑘𝑥=0

𝐼𝑧

𝑐=0

 (3.11) 
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where 𝐵 is the bias, 𝑧 the number of channels of the feature map and 𝑆𝑥 , 𝑆𝑦 are the strides in 

each direction. The feature map size can be calculated as  

 

 𝑂{𝑥,𝑦} = ((𝐼{𝑥,𝑦} − 𝐾{𝑥,𝑦} + 2𝑃)/𝑆{𝑥,𝑦}) + 1 (3.12) 

 

 Strides dictate how the filters move in each direction over the input. The larger the strides, 

the smaller the output shape. The number of filters or kernels dictates the depth 𝑂𝑧 of the feature 

map. 𝑃 denotes padding the output features map with zeros, ensuring that input and output 

dimensions are equal. Figure 3.6 presents an example of a convolution of a one-channel input 

using a 3 × 3 kernel.  

 

 

Figure 3.6: Convolution of one-channel input with a 3 × 3 kernel. 

  

 The feature map generated by the convolution is fed into an activation function. The 

rectified linear unit described in eq. (3.4) is usually employed in convolutional layers. The 

previous mathematical expressions for convolutional layers can be extrapolated to other input 

sizes. 

 

3.2.2 Pooling layer  

 

 The pooling layer aggregates the output from the previous layer through a pooling 

window (𝐾𝑝𝑥, 𝐾𝑝𝑦). The max pooling operator is usually used in CNNs. It computes the 
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maximum over this window and down samples the output using the max value. Figure 3.7 

provides an example of a max pooling operation. On the other hand, the average operator 

computes the average value over the window and down sample the output using this value. As 

in convolutional layers, the pooling operation can be performed using strides. The main 

objective of the pooling layer is to reduce the dimension of the feature maps and therefore 

reduce the number of parameters to train. It is important to highlight that the pooling operation 

is applied separately to each feature map. This implies that if the preceding feature map has 

depth 𝑧, the pooling layer will generate a feature map with the same depth 𝑧. 

 

 

Figure 3.7: Example of Max-pooling operation. 

 

3.2.3 Fully connected layers 

 

 Following a series of stacked convolutional and pooling layers, the resulting output 

feature map is flattened into a vector. This vector serves as the input for a fully connected layer. 

The data processing follows the explanation given in section 3.1.1. Finally, for multiclass 

classification, the label of each input data can be attributed applying the following expressions: 

 
�̂�𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑖

𝐹𝐶) = exp(𝑦𝑖
𝐹𝐶) / ∑ exp (𝑦𝑐

𝐹𝐶)
𝐶

𝑐=1
 (3.13) 

 

 𝑙𝑎𝑏𝑒𝑙 = arg max(𝑦�̂�) (3.14) 

 

where 𝑦𝑖
𝐹𝐶 is the output value of 𝑖-th neuron in the last fully connected layer, and 𝐶 the number 

of classes.  
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3.3 Convolutional autoencoders 

 

 Autoencoders are a type of neural networks structures that efficiently learn 

representations of input data with no need of labels. The main objective of autoencoders is 

dimensionality reduction through unsupervised learning. Autoencoders consist of three main 

parts: the encoder, the bottleneck and the decoder. The encoder is responsible for gradually 

capture the relevant features of the input data and reducing its dimension until obtaining a 

compact representation. The final layer of the encoder is called the bottleneck, where the 

number of neurons is small enough to represent the compressed encoded data without losing 

significant information. The decoder takes the low dimensional data from the bottleneck and 

gradually expands them back to their original size. The output layer of the decoder produces a 

reconstructed output which ideally mirrors the input data. Figure 3.8 presents an schematic 

representation of an autoencoder. 

 

 

Figure 3.8: Basic structure of an autoencoder. 

 

 

 Convolutional autoencoders are a special type of convolutional neural network 

extensively used for feature extraction. Convolutional autoencoders are composed of a 

combination of convolutional and pooling layers in the encoder. In this work, the decoder is 

composed of transpose convolution and Up sampling layers.  

 The transposed convolutional layer performs the same operation as a standard 

convolutional layer but executed in reverse direction. Rather than sliding the kernel over the 

input and performing element-wise multiplication and summation, a transposed convolutional 

layer slides the input over the kernel, carrying out element-wise multiplication and summation. 

This process produces an output larger than the input, with the output size determined by the 
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layer's stride and padding parameters. Figure 3.9 presents an example of a transpose 

convolution using a 2 × 2 filter with stride 1 and padding 0.  

 

 

Figure 3.9: Transpose convolution. 

 

 Up sampling layers are also employed to increase the dimension of the feature maps but 

without any trainable parameter. These layers can be thought of as the contrary of pooling 

layers. Figure 3.10 depicts an example of a up sampling operation. 

 

 

Figure 3.10: Up sampling operation. 

 

 The bottleneck can be a convolutional or a fully connected layer.  Figure 3.11 presents an 

architecture of a one-dimensional autoencoder where the bottleneck is a fully connected layer. 

The most common activation function used in a convolutional autoencoder is the ReLU. 

However, if the bottleneck is fully connected, the sigmoid function provides better performance. 

A usual cost function employed in the training of convolutional autoencoders is the mean 

squared error or some variation thereof. In this work, a one-dimensional autoencoder is utilized 

to process the gearbox fault signature to extract relevant features with classification potential. 
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Figure 3.11: Convolutional autoencoder with fully connected bottle neck. 

 

 

 

3.4 K-means algorithm  

 

 The K-means algorithm is a type of unsupervised machine learning, employed for 

clustering tasks. Its primary objective is to partition a dataset into K distinct clusters, where 

each data point belongs to the cluster with the nearest mean, serving as a prototype of the cluster. 

K-means is known for its simplicity, efficiency, and effectiveness in identifying underlying 

patterns within data. By minimizing the within-cluster variance, the algorithm aims to ensure 

that the data points within each cluster are as similar as possible, while clusters themselves are 

as distinct as possible. This versatility makes K-means a popular choice in various domains, 

including fault diagnosis, anomaly detection, among others. Despite its straightforward 

approach, K-means is powerful, offering valuable insights into the structure and relationships 

within complex datasets. 

 Given a set of observations (𝑥1, 𝑥2, … , 𝑥𝑛), where each observation is a d-dimensional 

real vector, K-means clustering seeks to divide the 𝑛 observations into 𝑘(≤ 𝑛) sets 𝑆 =
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 {𝑆1, 𝑆2, . . . , 𝑆𝑘} in such a way that the within-cluster sum of squares (WCSS), or variance, is 

minimized. The formal objective is to determine: 

 

arg min ∑ ∑‖𝑥 − 𝜇𝑖‖

𝑥𝜖𝑆𝑖

2
𝑘

𝑖=1

= arg min ∑|𝑆𝑖| 

𝑘

𝑖=1

Var 𝑆𝑖 (3.15) 

 

where 𝜇𝑖 is the mean or the centroid of points in 𝑆𝑖 

 
𝜇𝑖 =

1

|𝑆𝑖|
∑ 𝑥

𝑥𝜖𝑆𝑖

 (3.16) 

 

 |𝑆𝑖| is the size of 𝑆𝑖 and ‖∙‖ is the 𝐿2 norm. This is equivalent to minimizing the squared 

differences between pairs of points within the same cluster: 

 

arg min ∑
1

|𝑆𝑖|

𝑘

𝑖=1

∑ ‖𝑥 − 𝑦‖2

𝑥,𝑦𝜖𝑆𝑖

 (3.17) 

 

 The K-means algorithm can be then summarized as follows. Given an initial set of 𝑘 

means 𝑚1, . . , 𝑚𝑘, the clusters are found alternating two steps: 

 Assign each observation to the cluster whose mean is closest, minimizing the squared 

Euclidean distance: 

 
𝑆𝑖

(𝑡) = {𝑥𝑝 ∶  ‖𝑥𝑝 − 𝑚𝑖
(𝑡)‖

2
≤ ‖𝑥𝑝 − 𝑚𝑗

(𝑡)
‖

2

∀𝑗, 1 ≤ 𝑗 ≤ 𝑘} (3.18) 

 

where each 𝑥𝑝 is assigned to exactly one 𝑆(𝑡).  

 The second step is to recalculate the means or centroids for the observations assigned to 

each cluster: 

 
𝑚𝑖

(𝑡+1)
=

1

|𝑆𝑖
(𝑡)

|
∑ 𝑥𝑗

𝑥𝑗∈𝑆
𝑖
(𝑡)

 
(3.19) 

 The algorithm converges when the WCSS stabilizes that means when the assignments no 

longer change.  
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4 PROPOSED DOMAIN ADAPTATION 

 

 

 Numerous works have sought to improve the generalization of machine learning models 

under variable working conditions by increasing their complexity and/or adding discrepancy 

terms to the loss function. These domain adaptation approaches perform well, but their 

application is limited to specific target domains that require retraining for a new working 

condition scenario, in addition to the high computational cost. Furthermore, some of these 

frameworks require label information from the source and target domains to perform domain 

synchronization, which in real industrial scenarios is unlikely to be available. In addition, some 

existing domain adaptation approaches that are fully unsupervised require prior information 

about the number of classes in each working condition.  

 In this context, a novel domain adaptation methodology for gearbox fault diagnosis under 

variable speed conditions is proposed. The introduced framework addressed the lack of labeled 

data by using unsupervised training without any prior health condition information. In addition, 

the domain adaptation is performed by finding correlations between data from source and target 

domain, avoiding data distribution assumptions. 

 The proposed method leverages the advantages of vibration analysis and deep learning. 

Knowledge about fault signatures is combined with automated feature extraction to improve 

the use of information and the fault diagnosis. In addition, a correlation metric is employed to 

perform the alignment of extracted features at different speed conditions.  

 This chapter is dedicated to explaining the proposed domain adaptation methodology. 

Figure 4.1 provides a flowchart of the proposed generalization approach which includes five 

phases: fault vibration signature calculation, band selection based on characteristic frequencies, 

data normalization, feature extraction by a convolutional autoencoder and finally feature 

synchronization through the correlation analysis.   
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Figure 4.1: Flowchart of the proposed domain adaptation methodology. 

 

 

4.1 Fault vibration signature  

 

 Works on fault diagnosis of rotating machinery using deep learning methods usually focus 

on the model complexity to achieve relevant prediction accuracy. These approaches rely on the 

model feature extraction power and extensive training for robustness of diagnosis. Most of them 

use the raw vibration signal as input to the neural network, seeking an end-to-end analysis that 

implies no data preparation or preprocessing. This results in the implementation of several 

regularization techniques to deal with the possible signal phase changes as well as the amplitude 

deviations caused by noise. On the other hand, several studies have shown that data preparation 

with signal processing techniques such as frequency spectrum (PANG et al., 2021), wavelet 

transform (HUANG et al., 2023), among others, improve accuracy and overall increase the 

prediction performance on test data. In addition, the number of parameters of the neural 

networks can be significantly reduced. In this context, taking advantage of signal processing, 

some techniques are applied to the raw vibration signals to obtain information about the fault 

vibration signatures.  

 The Fast Fourier Transform (FFT) is widely used in signal processing for machinery fault 

diagnosis. It is a powerful mathematical tool that transforms signals from the time domain to 

the frequency domain, providing valuable insights into the underlying frequencies present in 
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the signal. FFT helps in the identification of patterns associated with faults since different types 

of faults exhibit characteristic frequency signatures. For example, in rotating machinery, an 

unbalanced shaft might produce elevated vibration at the first harmonic of the rotational 

frequency. Thus, in this work, the Fast Fourier Transform is employed to extract the frequency 

content of the measured vibration and then identify relevant information about the faults.  

 Besides the Fast Fourier Transform, the proposed approach uses the envelope spectrum 

to obtain additional information of the vibration signatures. The envelope analysis is a 

stablished technique for identifying faults in rolling element bearings. For calculating the 

envelope spectrum, the vibration signal is filtered to improve the extraction of modulations 

caused by defects and minimize the interference from irrelevant components. The spectral 

kurtosis technique is applied to select the filtering band. Spectral kurtosis technique calculates 

kurtosis values locally across different frequency bands. This method is effective in identifying 

the frequency band with the highest kurtosis, or the highest signal-to-noise ratio. High spectral 

kurtosis values indicate high variance of power at the corresponding frequency, which makes 

spectral kurtosis a useful tool to locate nonstationary components of the signal. Once this 

specific frequency band is identified, a bandpass filter can be applied to the original signal. This 

filtering enhances the impulsive components of the signal, making it more suitable for envelope 

spectrum analysis. Figure 4.2 presents an example of spectral kurtosis for filter band selection 

to calculate the envelope spectrum and the corresponding envelope spectrum.  

 Analyzing machine vibration signature in the frequency domain presents some issues. 

Rotating machinery may be designed to work at different speeds. The same machine may work 

at different rotations depending on the operational conditions. For example, a gearbox 

employed in a wind turbine might operate at several rotational speeds depending on the wind 

speed. Another factor that may alter the rotational speed is load variation, producing engine 

slippage. Changes in working conditions influence the spectral content since most of the 

phenomena present in rotating machinery depend on the rotational speed. 

 To overcome the frequency shifting, in this work, the Fast Fourier Transform and the 

envelope spectrum are obtained in the order domain. For the case in which the system is 

operating in steady state but at different speed conditions, both spectra are easily calculated by 

normalizing the frequency content using the speed of the gearbox input shaft as reference. On 

the other hand, in the presence of fluctuating rotational speed conditions, resampling of the 

temporal vibration signal must be carried out using some order tracking technique, in order to 

obtain a stationary signal in the angle domain. In the last case, the signal from a tachometer or 
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an encoder must be available with the aim of computing the machine instantaneous rotational 

speed.  Figure 4.3 provides the spectrum in frequency and order domains of a gearbox working 

at two different speeds. 

 

(a) 

 

(b) 

Figure 4.2: Signal filtering for calculation of envelope spectrum. (a) Spectral kurtosis method 

for band selection. (b) example of envelope spectrum. 
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(a) 

 

(b) 

Figure 4.3: Spectrum of a gearbox vibration signal from two different speed conditions. (a) 

Frequency domain. (b) Order domain. 
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 The order analysis enables to align the fault characteristics frequencies, overcoming the 

shifting caused by speed variations. In this way, these frequencies can be compared and are 

suitable for the domain adaptation situation. Furthermore, order domain analysis facilitates the 

identification of the contributions of different machine components and consequently 

diagnosing faults more accurately. 

 Other authors have employed the order spectrum for domain adaptation as in the case of 

Ni et al., (2023)  using a physics-informed residual network for diagnosing bearing faults under 

non-stationary conditions.  Zheng et al., (2021) implemented a deep neural network that uses 

the order spectrum as priori knowledge for cross-domain diagnosis of rolling element bearings.  

 

4.2 Band selection 

 

 Following the previous idea and seeking to make suitable use of the information obtained 

from the frequency and envelope spectra in the order domain, prior information about the failure 

signatures is applied to create the input vector that the convolutional autoencoder will use.  

From vibration analysis in fault diagnosis, it is known that each type of fault exhibits distinctive 

characteristic frequencies. With these frequencies, it is possible to identify patterns associated 

with specific flaws. Based on the previous information, this work combines knowledge from 

vibration analysis with deep learning to boost the feature extraction for fault classification.  

 The main idea here is to use bands corresponding to fault characteristic frequencies 

instead of the whole spectrum. For this purpose, based on the literature (JAMES I. TAYLOR, 

2003), some bands are selected for fault diagnosis as described below:  

 Shaft issues are related to the amplitude increase of the first harmonics of the rotation 

frequency. For shaft imbalance, a high vibration amplitude is expected at 1x the shaft speed. 

Shaft misalignment can lead to an increased amplitude in the first three harmonics. A bent shaft 

is characterized by peaks at the first two harmonics of the shaft speed. Based on this 

information, the bands corresponding to the first four harmonics are chosen to identify shaft-

related faults.  

 Elevated vibration at the gear mesh frequency (GMF) is related to gear problems. GMF 

is defined in eq. (4.1), where 𝑍 is the number of teeth of the gear and 𝑓𝑔 is its rotational speed. 

Gear misalignment tends to excite the first three harmonics of the gear mesh frequency. 
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 Eccentric gears generate elevated vibrations at 1x GMF and its harmonics. Additionally, 

if meshing gears have common factors (CF), peaks at GMF/CF and their harmonics can occur 

if one gear is eccentric. Backlash can cause excessive vibration at 2x GMF. Tooth defects are 

often associated with sidebands around the GMF. Broken, cracked, or chipped teeth may lead 

to increased sidebands around both the GMF and the gear's natural frequency. Excessive wear 

and clearance can also cause amplified sidebands around the GMF. Based on the previous 

information, bands corresponding to 1x GMF, 2x GMF, and 3x GMF for each gear pair are 

selected. Additionally, bands corresponding to GMF/CF and its harmonics as well as the first 

five side bands complete the set for gear fault diagnosis.  

 𝐺𝑀𝐹 = 𝑍 × 𝑓𝑔 (4.1) 

 

 Bearing faults have characteristic frequencies well defined. Eq. (4.2) to (4.4) describe the 

ball pass frequency of the outer race (BPFO), the ball pass frequency of the inner race (BPFI), 

and the ball spin frequency (BSF), respectively. 𝐷𝑏 is the rolling element diameter, 𝐷𝑝 is the 

pitch diameter, 𝑁𝑟 is the number of rolling elements for a single row,  𝜑 is the load angle and 

𝑓𝑟 is the rotational speed of the shaft.  

 

 
𝐵𝑃𝐹𝑂 = 𝑓𝑟

𝑁𝑟

2
(1 −

𝐷𝑏 cos(𝜑)

𝐷𝑝
) (4.2) 

 

 
𝐵𝑃𝐹𝐼 = 𝑓𝑟

𝑁𝑟

2
(1 +

𝐷𝑏 cos(𝜑)

𝐷𝑝
) (4.3) 

 

 
𝐵𝑆𝐹 = 𝑓𝑟

𝐷𝑝

𝐷𝑏
(1 −

𝐷𝑏
2 cos2(𝜑)

𝐷𝑝
2

) (4.4) 

 

 

 In addition, each characteristic frequency is related to a fault location: BPFO to the outer 

race, BPFI to the inner race, and BSF to rolling elements. Hence, bands corresponding to these 

frequencies are chosen from the envelope spectrum for diagnosing bearing faults. Table 4.1 
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summarizes the bands selected to diagnose faults in the gearbox. it is important to highlight that 

the bands are selected for every device component.   

 

Table 4.1: Frequency bands for gearbox fault diagnosis 

Gearbox component Band 

Shafts 

1 ×  𝑓𝑟 

2 × 𝑓𝑟 

3 ×  𝑓𝑟 

4 ×  𝑓𝑟 

Gears 

1 ×  𝐺𝑀𝐹 

2 × 𝐺𝑀𝐹 

3 × 𝐺𝑀𝐹 

𝐺𝑀𝐹 ± 𝑓𝑟 

𝐺𝑀𝐹/𝐶𝐹 

Bearings 

𝐵𝑃𝐹𝑂 

𝐵𝑃𝐹𝐼 

𝐵𝑆𝐹 

 

 

 Band selection has two main implications. The length of the input vector is considerably 

shorter, which results in fewer tunable parameter in the autoencoder. This allows the model to 

be built and trained using less computational power. In addition, the training time is 

significantly reduced, which allows for more runs in the testing phase. The second implication 

is the fact that the autoencoder has less information to process, and then the network extracts 

discriminative features more efficiently. This is because the convolutional autoencoder does not 

need to identify which data is important for classification, since the entire input vector contains 

relevant information.  

 

4.3 Normalization  

 

 In machine learning applications is desired to normalize input data to make the training 

stable and avoid the exploding/vanishing gradient problem. For the case of computational 

vision, the most used normalization yields in dividing all the image pixels by the maximum 
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pixel value. For this application, the normalization works well because the values are always 

between 0 and 255. On the other hand, when data do not have a defined interval of values, the 

min-max mapping appears as the preferred option to normalize. This normalization implies that 

for each data vector, its maximum value will become 1 and the minimum zero. Eq. (4.5) presents 

its mathematical expression, where 𝑋′ is the normalized vector, 𝑋 is the input vector, 𝑋𝑚𝑖𝑛 is 

the minimum value and 𝑋𝑚𝑎𝑥 is the maximum value. In the field of fault diagnosis, this 

normalization is widely employed since feature vectors are usually vibration signals or images 

such as the time-frequency wavelet transform.  

 

 
𝑋′ =

𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (4.5) 

 

 Nevertheless, when analyzing the cited normalizations, some issues are detected in rotary 

machine fault diagnosis using bands selected from the order spectrum and envelope spectrum. 

As shown in the previous section, certain faults share the same characteristic frequency, with 

the primary differentiating factor often being the vibration amplitude. Consequently, 

normalizing each data vector individually can remove distinctions between fault signatures, 

potentially compromising diagnosis.  

 Considering the effects of normalizing each feature vector separately, this work normalize 

data globally for each speed condition. This means identifying the minimum and maximum 

values for all data associated with the same rotation speed, rather than for each individual 

vector, and then using these values as references for the min-max scaling. The global 

normalization ensures that differential features of fault signatures are not removed.  

 Figure 4.4 presents an example of the effects of normalization in a band related to a gear 

mesh frequency of two different health conditions. Figure 4.4 (a) corresponds to a conventional 

normalization and Figure 4.4 (b) to the proposed global normalization. As seen in the graph on 

the left, the difference in amplitude is removed and the convolutional autoencoder can then 

mistake the small variations for noise. In contrast, in the right graph, the discriminative 

characteristics are conserved. 
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(a) 

 

(b) 

Figure 4.4: Effects of normalization in the discriminative characteristics. (a) Conventional 

normalization. (b) Global normalization. 

 

 

4.4 Feature extraction   

 

 Feature extraction plays a crucial role in fault diagnosis since the extracted parameters 

are used for classification. In literature, strategies including statistical analysis and 

dimensionality reduction are implemented to obtain features that represent the analyzed data. 

However, machine learning approaches have gained visibility due to their performance and 

accuracy. Convolutional neural networks are one of the deep learning models extensively used 

for automated feature extraction.  

 In this work, a special type of convolutional neural network is employed for automated 

feature extraction: convolutional autoencoders. As described in section 3.3, autoencoders are 

non-supervised trained whose main objective is to reconstruct the input data from a compact 

representation. Autoencoders then extract parameters from data by themselves that synthesize 

the most important characteristics and encode them into a low-dimensional representation. 

These extracted features are invariant, which means that even when input data belonging to the 

same class present some variation due to noise or environmental conditions, the encoded data 
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follows the same pattern. Thus, invariant features are extracted from the input vector at different 

working speeds to perform the domain adaptation. 

 One advantage of using autoencoders instead of supervised convolutional neural 

networks is the flexibility in the values of the extracted features. Features extracted by a 

supervised neural network tend to be more rigid and defined into a well-defined range. On the 

other hand, features extracted by an autoencoder admit variation in their values allowing a 

greater generalization and then are suitable for domain adaptation. 

 

4.5 Feature synchronization 

 

 Despite the features extracted by the autoencoder for data belonging to the same health 

condition in a specific working speed follow the same pattern, they are modified when domain 

changes, i.e., when the rotational speed of the gearbox varies. Therefore, these features are 

required to be aligned to diagnose faults in scenarios with variable working conditions.  

 Different approaches have been studied for features domain synchronization, some of 

them includes analyzing the data mutual information (CHEN, J. et al., 2021) , kullbac-Leibler 

divergence (KIM; LEE, 2023), entropy features and transfer learning (LI et al., 2021), among 

others. In this work, the correlation analysis (WU; LEE, 2011) is used to perform the features 

domain synchronization. The correlation between two feature vectors is defined as  

 

 
𝑐𝑜𝑟𝑟 =

𝐹𝑇1 ∙ 𝐹𝑇2

|𝐹𝑇1| ∗ |𝐹𝑇2|
  (4.6) 

 

where 𝐹𝑇1 and 𝐹𝑇2 are extracted feature vectors,  ∙  is the dot product and | ∙ | is the largest 

singular value of a vector. The correlation value ranges from zero to one. The domain adaptation 

is then done by assigning the same class to the feature vectors with higher correlation. 
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5 DATASET  

 

 The data to evaluate the proposed methodology come from the Prognostic and Health 

Management (PHM) Society 2009 competition. The dataset was measured from a 

representative general industrial gearbox whose schematic representation is shown is Figure 

5.1. The gearbox has two stages arranged as follows:  

• Input shaft: 32 teeth input pinion.  

• Idler shaft: 96 teeth idler gear and 48 teeth idler pinion.  

• Output shaft: 80 teeth output gear.  

 

 

(a) 

 

(b) 

Figure 5.1: Generic industrial gearbox. (a) Schematic representation. (b) Test bench 

(PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY, [s. d.]) 
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 From input to output shafts the gear reduction ration is 16/48 × 24/40, or 5 to 1 

reduction. Shafts are supported by MB manufacturing ER-10K bearings whose specifications 

are presented in Table 5.1. 

 

Table 5.1: Specifications of the ER-10K bearings. 

Number of elements 8 

Roller element diameter 0.3125 𝑖𝑛 

Pitch diameter 1.319 𝑖𝑛 

Contact angle 0 

 

 Considering the previous information, some characteristic frequencies of faults in gears 

and bearing are calculated as a function of the input shaft frequency, applying eqs. (4.1) to (4.4). 

The results are shown in Table 5.2. 

Table 5.2: Fault characteristic frequencies in terms of the input shaft frequency.  

Fault characteristic 

frequency 

Value in terms of input 

shaft speed 

𝐺𝑀𝐹1 32𝑓𝑖𝑛 

𝐺𝑀𝐹2 16𝑓𝑖𝑛 

𝐵𝑃𝐹𝑂𝑖𝑠 3.05𝑓𝑖𝑛 

𝐵𝑃𝐹𝐼𝑖𝑠 4.94𝑓𝑖𝑛 

𝐵𝑆𝐹𝑖𝑓 3.98𝑓𝑖𝑛 

𝐵𝑃𝐹𝑂𝑖𝑑𝑠 1.01𝑓𝑖𝑛 

𝐵𝑃𝐹𝐼𝑖𝑑𝑠 1.64𝑓𝑖𝑛 

𝐵𝑆𝐹𝑖𝑑𝑠 1.32𝑓𝑖𝑛 

𝐵𝑃𝐹𝑂𝑜𝑠 0.61𝑓𝑖𝑛 

𝐵𝑃𝐹𝐼𝑜𝑠 0.98𝑓𝑖𝑛 

𝐵𝑆𝐹𝑜𝑓 0.79𝑓𝑖𝑛 

 

 The dataset consists of 6 different health conditions related to gears, bearings, and shaft 

problems. Table 5.3 provides a detailed description of the failure patterns. The data was 

collected under five input shaft speeds: 30, 35, 40, 45, 50 𝐻𝑧. The vibration signals were 

measured by two Endevco 10 mv/g accelerometers with ± 1% error and resonance > 45 𝑘𝐻𝑧 

located at input and output side of the gearbox. In addition, the rotation was measured by a 

tachometer using 10 pulse per revolution.  
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Table 5.3: Label pattern description of the gearbox 

Label 
Gear Bearing Shaft 

32T 96T 48T 80T IS:IS ID:IS OS:IS IS:OS ID:OS OS:OS Input Output 

𝐶1 G G G G G G G G G G G G 

𝐶2 C G E G G G G G G G G G 

𝐶3 G G E Br B G G G G G G G 

𝐶4 C G E Br In B O G G G G G 

𝐶5 G G G Br In B O G G G Im G 

𝐶6 G G G G G B O G G G Im G 

Legend: IS = Input shaft; ID=Idler shaft; OS = Output shaft; :IS = Input side; :OS = Output 

side.  G= Good; C = Chipped; E=Eccentric; Br = Broken; B = Ball; In = Inner race; O = Outer 

race; Im= Imbalance. 

 

 

 The sampling frequency is 66.7 𝑘𝐻𝑧 (200/3 𝑘𝐻𝑧), the sampled time is 4 seconds, thus 

there are 266656 data points. To improve the usage of the dataset, the sliding window technique 

was implemented to create 40000 data points segments using a 1000 points stride for each 

fault condition.  

 This dataset has some particularities. As it was developed for a competition, the dynamics 

of the gearbox are intricate aiming to make difficult the fault diagnosis. The gear mesh 

frequencies share a relationship: the gear mesh frequency of the second stage is twice that of 

the first stage. Therefore, defects in gears that present an increase in the amplitude of the gear 

mesh harmonics represent a challenge to detect. In addition, some fault characteristic 

frequencies of bearings are pretty close to the shaft rotation and their harmonics. Nevertheless, 

the data set is composed by simultaneous faults occurring at different locations of the gearbox. 

this represents a more realistic situation of an industrial scenarios, where damages can be 

transferred to adjacent component generating compound faults.  

 The vibration signal and the corresponding frequency spectrum in the order domain of 

each class considered in this work are presented below. Figure 5.2 to 5.7 show data of class 𝐶1 

to 𝐶6 respectively. 
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(a) 

 
(b) 

Figure 5.2: Sample of class 𝐶1. (a) Vibration signal. (b) Order spectrum. 

 
(a) 

 
(b) 

Figure 5.3:  Sample of class 𝐶2. (a) Vibration signal. (b) Order spectrum. 
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(a) 

 
(b) 

Figure 5.4: Sample of class 𝐶3. (a) Vibration signal. (b) Order spectrum. 

 
(a) 

 
(b) 

Figure 5.5: Sample of class 𝐶4. (a) Vibration signal. (b) Order spectrum. 
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(a) 

 
(b) 

Figure 5.6: Sample of class 𝐶5. (a) Vibration signal. (b) Order spectrum.  

 
(a) 

 
(b) 

Figure 5.7: Sample of class 𝐶6. (a) Vibration signal. (b) Order spectrum. 
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6 CLUSTERING-BASED GEARBOX FAULT DIAGNOSIS USING 

DOMAIN ADAPTATION  

 

 

 Rotating machinery fault diagnosis using deep learning methods have exponential grown 

in recent years. Research about the capabilities of these approaches have demonstrated their 

excellent performance in handling complicated mapping problems. However, some issues need 

to be solved. The training of the deep learning models usually requires large amount of labeled 

data which in real industrial scenarios are not available. In this context, unsupervised methods 

appear to overcome the lack of labeled data.  

 Studies on unsupervised fault diagnosis of rotating machinery has showcased outstanding 

results in detecting changes in the health state of the machine. For this purpose, strategies such 

as autoencoders and their variations identifies anomalies that allows to classify between a 

normal and faulty state. In addition, more current works also identifies several faults 

represented by different patterns. However, some limitations need to be addressed. The 

recognition of same type of faults across different operation conditions is still a challenge for 

unsupervised methods. This is because when operation conditions vary, the dynamic response 

of the machine is altered and consequently the extracted parameters undergo modifications.  

 Research on unsupervised domain adaptation has the objective of identifying similar 

patterns in the presence of domain shifts. Existing frameworks for unsupervised domain 

adaptation are semi-supervised since they demand label data from the source domain to perform 

the feature alignment. Therefore, they suggest some limitation in real applications where the 

machine health state is usually unknown. On the other hand, recent studies on fully 

unsupervised domain adaptation, i.e., no label data from the source and target data is required, 

but prior information about the numbers of classes in each domain is necessary to perform the 

domain adaptation.   

 In this scenario, this work proposes a novel clustering-based domain adaptation 

methodology for unsupervised gearbox fault diagnosis under variable speed conditions. The 

methodology and results are presented below.  
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6.1 Proposed methodology 

 

 One common approach in unsupervised fault diagnosis is clustering, where data points 

are grouped based on their similarity. For this study case, the domain adaptation is based on the 

clustering of the data belonging to the same class in each domain. Figure 6.1 presents a flow 

chart of the methodology used to cluster and classify different gearbox faults across different 

speed conditions without using labels.  

 

 

Figure 6.1: Proposed framework for clustering-based gearbox fault diagnosis using domain 

adaptation. 

 

 The framework employs the domain adaptation method explained in Chapter 4 and the 

K-means algorithm. First, from the raw vibration signals, the frequency and envelope spectrum 

are calculated in the order domain to obtain the fault signature. After this, bands are selected 

according to the representative characteristic frequencies to construct the vector that will serve 

as input for the autoencoder. This vector is then normalized applying the global normalization 

according to each domain and processed by the autoencoder to reduce its dimension and extract 

discriminative features. As the main objective here is to cluster, the K-means algorithm is 

employed to group the features and classify the different classes in each domain. Finally, the 

clusters belonging to the same class in different gearbox speeds are identified by executing the 

correlation analysis.  
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 The architecture of the employed autoencoder is as follows: the encoder comprises three 

convolutional layers with 12, 24 and 48 filters respectively, where the kernel size is 12. Among 

the convolutional layers, the max poling layers perform down sampling with a pool size of 2. 

All the layers have a stride of 2. The latent space represented by the bottleneck is a fully 

connected layer of 80 dimensions. The activation function of the convolutional layers is ReLU 

while for the fully connected layers is sigmoid. The decoder has a similar configuration. Table 

6.1 presents the complete architecture of the autoencoder. The preparation of the input vector 

that includes the calculation of the frequency and envelope spectra and the band selection was 

done using MATLAB. Furthermore, the convolutional autoencoder was constructed and trained 

in Python environment using Keras that is a high-level application programming interface 

developed by Google for implementing neural networks. 

  

Table 6.1: Architecture of the employed convolutional autoencoder. 

Layer type Output shape 
Number of trainable 

parameters 

Convolutional (486, 12) 456 

Max Pooling (243, 12) 0 

Convolutional (116, 24) 3480 

Max Pooling (58, 24) 0 

Convolutional (24, 48) 13872 

Max Pooling (12, 48) 0 

Flatten 576 0 

Dense 80 46160 

Dense 576 46656 

Reshape (12, 48) 0 

Up sampling (24,48) 0 

Convolutional transpose (58, 48) 27696 

Up sampling (116, 48) 0 

Convolutional transpose (243, 24) 15000 

Up sampling (486, 24) 0 

Convolutional transpose (982, 12) 3486 

Convolutional (982, 1) 145 
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6.2 Clustering results  

 

 The first analysis corresponds to the clustering results in each gearbox speed separately. 

Here the goal is to correctly identify the number of classes for each working condition. To 

evaluate the results two approaches are employed: the cluster visualization and the elbow 

method.  The feature vectors provided by the autoencoder has usually dimensions greater than 

3, and therefore, it is not possible to graph them. Thus, the principal component analysis (PCA) 

is used to reduce the dimension of the feature vector to 3 aiming at their visualization. On the 

other hand, the elbow graph shows the within-cluster sum of square (WCSS) values on the y-

axis corresponding to the possible number of classes. The optimal number of clusters is the 

point at which the line forms an elbow, which means that from this point the variation of WCSS 

value does not present an abrupt decrease.  

 Figure 6.2 and 6.3 presents the WCSS plots and the clusters visualization for data 

measured at 30 and 45 𝐻𝑧 respectively containing six fault types. In both cases, the proposed 

method achieved excellent clustering effect. Sample belonging to the same class are drawn 

together and different type of fault are well separated. In addition, when analyzing the elbow 

method, for both rotation speeds, the point of optimal number of clusters is clearly defined 

corroborating the results obtained by visualization. Accurate identification of the number of 

classes and their respective clusters in each domain is essential for successful domain adaptation 

at different speed rotations. 

 

 

(a) 

 

(b) 

Figure 6.2: Clustering results at 30 𝐻𝑧. (a) Elbow plot. (b) Clusters visualization. 
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(a) 

 

(b) 

Figure 6.3: Clustering results at 45 𝐻𝑧. (a) Elbow plot. (b) Clusters visualization. 

 

6.3 Domain adaptation results  

 

 Once the number of classes in each domain is defined, the next step is to identify which 

clusters represent the same type of faults under different working condition. For this purpose, 

the identification of clusters belonging to the same health condition is performed through the 

correlation analysis explained in section 4.5. A correlation matrix is obtained by calculating the 

correlation between the cluster in the source and target domain. The columns represent classes 

from the source domain while the rows represent classes from the target domain. Some tests are 

performed to evaluate the effectiveness of the proposed approach.  

 Tables 6.2 to 6.4 provide the correlations matrixes between the clusters for scenarios 

where the operation speeds are considered close. The greatest correlations are highlighted. For 

the three cases, clusters belonging to the same fault type present the greatest correlation, 

indicating that the proposed domain adaptation has excellent performance. Correlations 

between clusters at 30 and 35 𝐻𝑧 are slightly lower compared to the other two cases. This can 

be explained due to the influence of the machine speed on the vibration signature. Phenomena 

such as shaft unbalancing and gear eccentricity are strongly associated with the increase of 

amplitude regarding the rotational frequency. For this study case, amplitude in bands related to 

shaft and gears issues grows at higher speeds and therefore the vibration signature is more 

evident in comparison to lower frequencies. Thus, the extracted features reflect these effects.  
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Table 6.2: Correlation matrix between 30 and 35 𝐻𝑧. 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 

𝐶1 𝟎. 𝟖𝟔𝟔𝟕 0.6862 0.4569 0.4656 0.5528 0.5609 

𝐶2 0.7253 𝟎. 𝟕𝟗𝟑𝟕 0.5783 0.7143 0.4310 0.5865 

𝐶3 0.4725 0.5418 𝟎. 𝟕𝟗𝟑𝟓 0.6920 0.5073 0.4142 

𝐶4 0.4135 0.6212 0.7287 𝟎. 𝟕𝟓𝟎𝟑 0.5544 0.4516 

𝐶5 0.5608 0.5085 0.6993 0.4825 𝟎. 𝟖𝟒𝟗𝟕 0.6814 

𝐶6 0.6761 0.5442 0.5677 0.5034 0.6810 𝟎. 𝟕𝟐𝟕𝟕 

 

 

Table 6.3: Correlation matrix between 35 and 40 𝐻𝑧. 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 

𝐶1 𝟎. 𝟗𝟎𝟏𝟎 0.5256 0.4388 0.3770 0.4780 0.6058 

𝐶2 0.6799 𝟎. 𝟖𝟎𝟎𝟓 0.5754 0.5789 0.5647 0.5797 

𝐶3 0.5392 0.6556 𝟎. 𝟕𝟖𝟒𝟎 0.6977 0.6801 0.5788 

𝐶4 0.5183 0.6097 0.6966 𝟎. 𝟕𝟗𝟐𝟏 0.5700 0.5195 

𝐶5 0.6412 0.3291 0.5221 0.3753 𝟎. 𝟕𝟖𝟕𝟓 0.6198 

𝐶6 0.7532 0.3718 0.4957 0.3608 0.5982 𝟎. 𝟖𝟓𝟐𝟑 

 

 

Table 6.4: Correlation matrix between 45 and 50 𝐻𝑧. 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 

𝐶1 𝟎. 𝟗𝟏𝟓𝟑 0.6893 0.4820 0.4789 0.6004 0.6746 

𝐶2 0.7306 𝟎. 𝟖𝟒𝟔𝟖 0.6133 0.6658 0.6689 0.6604 

𝐶3 0.5684 0.6510 𝟎. 𝟕𝟖𝟖𝟏 0.7137 0.7322 0.6116 

𝐶4 0.5224 0.5896 0.7163 𝟎. 𝟕𝟖𝟑𝟎 0.6327 0.5660 

𝐶5 0.6998 0.4535 0.5384 0.4223 𝟎. 𝟖𝟔𝟎𝟏 0.6770 

𝐶6 0.7995 0.5173 0.5545 0.4547 0.6900 𝟎. 𝟖𝟒𝟔𝟐 

 

 

 Figure 6.4 depicts the feature vectors of two health conditions at two different speeds. 

Figure 6.4 (a) a corresponds to class 𝐶1 and Figure 6.4 (b) to class 𝐶3. As shown in this figure, 

most of the values of the feature vector in both cases are similar, demonstrating high correlation. 

However, for the class 𝐶3, some values of the features vectors are different, impacting directly 

the correlation coefficient as shown in Table 6.4. Another factor to analyze is how the classes 
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can be differentiated comparing the extracted feature vectors. The class 𝐶1 has most of the 

values close to zero and some little positions of the vectors close to one. In contrast, the values 

of the feature vectors of the class 𝐶3 are more distributed between zero and one.  

 

 

(a) 

 

(b) 

Figure 6.4: Extracted features for two different speed conditions. (a) Class 𝐶1. (b) Class 𝐶3. 

 

 Figure 6.5 shows the clusters corresponding to the six different health conditions at two 

different speeds after the correlation analysis. The identification of clusters representing data 

from the same fault is not intuitive. One can suggest, based on visualization, that the closest 

clusters belong to the same class. However, as seen in Figure 6.5 (b), only clusters of class C1 

are relatively close. Clusters of other classes are scattered in the space and closer to different 

fault types instead of the same health condition. 
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(a) 

 

(b) 

Figure 6.5: Cluster from two different speed conditions. (a) Before correlation analysis. (b) 

After correlation analysis. 

 

 An analysis was also carried out incorporating data from more distant speeds. Table 6.5 

displays the correlation between clusters at 50 𝐻𝑧 and 40 𝐻𝑧, while Table 6.6 presents 

correlations between 50 𝐻𝑧 and 30 𝐻𝑧. In the former case, clusters representing identical faults 
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were correctly identified, albeit with decreased correlation values compared to previous tests. 

This decrease is anticipated due to the impact of rotational speed on fault signatures. However, 

a misclassification occurred when clustering data from 50 𝐻𝑧 and 30 𝐻𝑧. Specifically, fault 

label 𝐶2 exhibited a higher correlation with label 𝐶4 instead of its own. This anomaly can be 

attributed to the similarity between the signatures of patterns 𝐶2 and 𝐶4 at 30 𝐻𝑧. Both labels 

correspond to a chipped tooth on the 32-tooth gear and eccentricity on the 48-tooth gear. 

Although 𝐶4 also involves a broken tooth on the 80-tooth gear, this occurs at the same gear 

mesh frequency as the eccentricity, which is a dominant feature at this frequency. Alongside the 

similarity in fault signatures, another factor contributing to the misclassification was the 

significant difference in gearbox speeds, leading to notable changes in the amplitude of the 

characteristic frequencies. 

 

Table 6.5: Correlation matrix between 40 and 50 𝐻𝑧. 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 

𝐶1 𝟎. 𝟕𝟑𝟎𝟖 0.4244 0.2390 0.1668 0.5467 0.5395 

𝐶2 0.5806 𝟎. 𝟔𝟐𝟓𝟐 0.4764 0.4025 0.5019 0.4519 

𝐶3 0.4222 0.5456 𝟎. 𝟕𝟑𝟖𝟕 0.6342 0.4518 0.3282 

𝐶4 0.4922 0.4896 0.5307 𝟎. 𝟔𝟔𝟓𝟎 0.3809 0.3558 

𝐶5 0.5423 0.4115 0.2305 0.1380 𝟎. 𝟓𝟕𝟔𝟑 0.4390 

𝐶6 0.5279 0.4617 0.2962 0.2406 0.5598 𝟎. 𝟔𝟎𝟐𝟒 

 

 

Table 6.6: Correlation matrix between 30 and 50 𝐻𝑧. 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 

𝐶1 𝟎. 𝟔𝟑𝟏𝟎 0.6033 0.5453 0.5157 0.4760 0.5052 

𝐶2 0.5170 0.6292 0.5804 𝟎. 𝟔𝟑𝟐𝟗 0.4999 0.4587 

𝐶3 0.5353 0.6316 𝟎. 𝟔𝟖𝟎𝟒 0.4464 0.5021 0.5204 

𝐶4 0.4716 0.5874 0.5300 𝟎. 𝟔𝟖𝟐𝟓 0.4394 0.4009 

𝐶5 0.4442 0.4064 0.2960 0.2776 𝟎. 𝟓𝟗𝟕𝟑 0.4918 

𝐶6 0.5102 0.4561 0.4189 0.3782 0.5285 𝟎. 𝟓𝟒𝟗𝟐 

 

 

 The influence of the normalization in fault identification among domain shifts was also 

investigated. For this purpose, two tests using data from close speeds were individually 
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normalized and then the correlation analysis was performed to evaluate the effects on domain 

adaptation. Table 6.7 and 6.8 presents the results. As observed in the matrixes, several faults are 

misclassified in both cases and the overall correlation values are lower than when the proposed 

normalization is employed as shown in Tables 6.2 to 6.4. These poorer outcomes are mainly 

due to the removal of the amplitude changes in faults associated with the same characteristic 

frequencies. Besides, for these two tests, the autoencoder training was considerably slower and 

the mean squared error values were not significantly improved across numerous iterations. The 

extraction features process is consequently compromised and affects the correlation analysis. 

 

Table 6.7: Correlation matrix between 30 and 35 𝐻𝑧 using conventional normalization. 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 

𝐶1 𝟎. 𝟔𝟔𝟕𝟐 0.5133 0.5625 0.4929 0.2919 0.3172 

𝐶2 0.6039 0.4840 0.6586 𝟎. 𝟔𝟖𝟗𝟒 0.3412 0.3353 

𝐶3 0.5673 0.5704 𝟎. 𝟕𝟒𝟒𝟐 0.6690 0.2722 0.1859 

𝐶4 0.5649 0.5793 𝟎. 𝟕𝟏𝟓𝟖 0.6987 0.3106 0.2279 

𝐶5 0.5610 0.5662 0.4493 0.4384 𝟎. 𝟔𝟒𝟕𝟗 0.5194 

𝐶6 𝟎. 𝟔𝟐𝟐𝟐 0.4887 0.3138 0.3946 0.3789 0.4773 

 

 

Table 6.8: Correlation matrix between 45 and 50 𝐻𝑧 using conventional normalization. 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 

𝐶1 𝟎. 𝟔𝟗𝟔𝟔 0.4411 0.5235 0.4333 0.2649 0.5467 

𝐶2 0.4520 0.6647 0.6279 0.6632 𝟎. 𝟔𝟕𝟎𝟓 0.3986 

𝐶3 0.2719 0.3957 𝟎. 𝟓𝟒𝟔𝟔 0.5208 0.4588 0.1486 

𝐶4 0.3263 𝟎. 𝟔𝟖𝟒𝟕 0.4639 0.4564 0.3762 0.1677 

𝐶5 0.5454 0.6004 0.5244 0.5116 𝟎. 𝟔𝟖𝟕𝟏 0.6133 

𝐶6 𝟎. 𝟔𝟖𝟔𝟓 0.3679 0.4330 0.2778 0.1337 0.6027 

 

 

 The impact of the number of dimensions of the extracted features over the domain 

adaptation was assessed. Data from two adjacent gearbox speeds were processed by the 

autoencoder varying the size of the bottleneck.  Figure 6.6 shows the number of classes 

correctly identified as a function of the encoded dimension. The correlation analysis improved 

as the number of dimensions increased. This analysis is important since the size of the 
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bottleneck does not highly influence the identification of the number of classes in each gearbox 

rotation speed. However, as seen in this figure, considering few dimensions for the extracted 

features may lead to misclassifications across different speed conditions.  

 

 

Figure 6.6: Relation between the number of dimensions in the latent space and the number of 

classes correctly identified. 

 

 Finally, the presented methodology achieved prominent results in diagnosing gearbox 

faults in an unsupervised manner. It is worth noting that works that use domain adaptation 

schemes as adversarial training and discrepancy metrics, among others, are not totally 

unsupervised, since they use prior label information from the source domain to perform the 

feature alignment. In contrast, the described approach is completely non-supervised which 

implies that not require any label information. This allows the implementation of the strategy 

in a variety of datasets and helps to overcome the lack of labeled data for machine learning 

training. Furthermore, the proposed framework enables the identification of the number of 

classes in each domain, addressing limitations of fully unsupervised domain adaptation 

strategies.  On the other hand, the computational complexity of the algorithms found in the 

literature suggests some difficulty in their application in real industrial situations. In contrast, 

the proposed approach requires low computational power, and its implementation is simplified 

compared to other frameworks.   
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7 RECONSTRUCTION-BASED GEARBOX FAULT DIAGNOSIS 

USING DOMAIN ADAPTATION  

 

 

 Supervised training is the most exploited application of deep learning methods for 

rotating machinery fault diagnosis. Since the emergence of the first algorithms to the present 

day, extensive research has studied the scope of these approaches, demonstrating versatility and 

high performance in comparison to conventional methods. Most of the works on the area 

focused in analyzing how diverse structures of neural networks provides betters results in 

modelling complex mapping problems. Algorithms such as convolutional and recurrent neural 

networks are in trend because of their high capability of automatically extracting features and 

handling time-series data, respectively. 

 Generalization of the models — the performance of the neural networks using data 

different to the one used to train —has been a constant concern for researchers. Along the years, 

techniques have been developed to improve the accuracy over test data. Approaches such as L1 

and L2 regularization enhance the generalization of the models. Dropout also appears as a 

strategy to ovoid overfitting. However, these methodologies work well when test data belong 

to the same distribution as those used to train the model. 

 When deep learning methods are tested using data from a different domain that the one 

which the model is trained, their performance usually decreases significantly. For example, a 

model to predict faults in a rotating machinery was trained using data measured at three different 

speeds. When the model is tested using new data measured at the same three speeds, the 

accuracy of the results is good. However, whether the model is tested using data from a fourth 

speed, the accuracy of the diagnosis is compromised. 

 Domain adaptation methodologies emerged as strategies to improve the accuracy of deep 

learning models when data domain shifts.  Approaches such as the maximum mean discrepancy 

and adversarial training gained popularity in this field. The issue with these frameworks is that 

domain adaptation is usually performed to a specific target domain, demanding retraining for a 

new working condition. A third alternative is reconstruction methods. They are more flexible 

than the previously mentioned methods and their application has grown due to the lower 

computational power required.  
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 In this context, this work proposes a new reconstruction-based domain adaptation 

methodology for gearbox fault diagnosis under variable speed conditions. The main idea is to 

train the reconstruction model using data measured at specific speed conditions and test it using 

data measured at speeds different from those used in training. The proposed methodology and 

results are shown below. 

 

7.1 Proposed methodology  

 

  Figure 7.1 presents the flowchart employed for gearbox fault diagnosis using the 

proposed domain adaptation. From raw signal, order and envelope spectra are calculated to 

obtain the vibration signatures. Bands of interest are selected to construct the vector that serves 

as input for the autoencoder. This vector is normalized and then processed by the network to 

extract invariant features. The correlation analysis is performed and finally a classifier assigns 

the labels corresponding to each fault pattern. The architecture of the employed autoencoder is 

the same as the used in section 6.1, presented in Table 6.1. 

 

 

Figure 7.1: Proposed framework for gearbox fault diagnosis using a reconstruction-based 

domain adaptation. 

 

 To compare the performance of the proposed domain adaptation, two convolutional 

neural network models are built. One of the models is fed with the spectrum in the order domain 

while the other use as input bands selected from the frequency and envelope spectra in the order 
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domain. Figures 7.2 and 7.3 show a schematic representation of the convolutional neural 

network models. In addition, Table 7.1 presents the architecture of the CNNs. 

 

Figure 7.2: Convolutional neural network model using the spectrum in the order domain. 

 

 

 

Figure 7.3: Convolutional neural network model using bands from the frequency and 

envelope spectra in the order domain. 

 

 Results for fault diagnosis are presented using the confusion matrix, which reveals the 

identification accuracy of all categories. The x-axis denotes the predicted fault class, while the 

y-axis describes the target fault type. The diagonal elements of the confusion matrix represent 

the number of instances for which the true class matches the predicted class, thus indicating the 

classification accuracy for each class. Off-diagonal elements, on the other hand, represent 

misclassifications. Figure 7.4 presents a confusion matrix for a binary classification problem.  



86 
 

In addition, the overall accuracy of the model can be calculated as the sum of the corrected 

classified samples divided by the total number of samples.  

Table 7.1: Architecture of the employed CNNs. 

Layer type Output shape 
Number of trainable 

parameters 

Convolutional (745,12) 156 

Max Pooling (372,12) 0 

Convolutional (181, 24) 3480 

Max Pooling (90, 24) 0 

Convolutional (40, 48) 13872 

Max Pooling (20, 48) 0 

Flatten 960 0 

Dense 80 76880 

Dropout 80 0 

SoftMax 6 486 

 

 

 

Figure 7.4: Generic confusion matrix of a binary classification problem. 

 

7.2 Results  

 

 The first test refers to the capacity of the models to correctly predict faults measured in 

close conditions to the one used in the training. For this purpose, the models were trained using 

data corresponding to the working speed of 45 𝐻𝑧 and tested using data measured at 40 

and 50 𝐻𝑧. Figures 7.5, 7.6 and 7.7 provide the confusion matrixes for the convolutional neural 

network using the order spectrum, the convolutional neural network using the frequency bands 

and the proposed model using domain adaptation, respectively.   
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The proposed model using domain adaptation achieved an accuracy of 98.42 % demonstrating 

high capacity in handling domain shifts. On the other hand, the regular convolutional neural 

network using the order spectrum achieved 72.98% of accuracy ratifying the limited 

generalization of deep models in the presence of domain variations. Furthermore, the use of 

bands improved the accuracy of the CNN achieving 83.62%. Additionally, the misclassified 

data occurs in only one class for the proposed model while there are wrong classifications in 

several fault types for other two models. 

 

Figure 7.5: Confusion matrix provided by the CNN using the order spectrum for test 1. 

 

 

 

Figure 7.6: Confusion matrix provided by the CNN using frequency bands for test 1. 
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Figure 7.7: Confusion matrix provided by the proposed domain adaptation framework for test 

1. 

 

 A second test was carried out considering a major variability of the working conditions. 

The models were trained with data measured at 35 and 45 𝐻𝑧 and tested with samples from 

30, 40, and 50 𝐻𝑧. Results are shown in Figures 7.8, 7.9 and 7.10. The accuracy of the three 

models decreased in comparison to the first test. This is because the data distributions present 

major differences due to the dynamic response of the machine. For the employed dataset, peaks 

at fault characteristic frequencies on vibration signatures at 30 and 35 𝐻𝑧 are less defined in 

comparison to those at 45 and 50 𝐻𝑧. therefore, the mapping problem is more complex due to 

these variations.  

 The convolutional neural network model using the order spectrum achieved an accuracy 

of 56.19 % exhibiting poor generalization capacity for test data from different speeds to the 

one used to train. The use of bands again improved the accuracy to 72.54% suggesting that 

deep learning models present better generalization when prior knowledge about the faults is 

applied. This can be explained because all information contained in the input vector is 

meaningful for the fault classification. When the whole spectrum is used, the network must 

identify what information is important to define every class and which points of the spectrum 

do not provide relevant characteristics to differentiate each fault pattern.  

 The proposed domain adaptation model achieved an accuracy of 96.32% and it was the 

model that presented the lower performance decrease. This can be explained due to how the 

classifier of the neural networks assigns labels to data. When a neural network is trained in a 
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supervised manner, the extracted features are rigid. This means that regardless of speed 

conditions, every class has the same well-defined pattern. Therefore, when new data is fed to 

the model, the network will try to fit to one of those patterns without considering the possible 

variations. In contrast, autoencoders extracts different feature vectors for every class in each 

speed conditions. This enables the comparison of features with the closer speed condition taking 

advantage of the correlation analysis and then providing better generalization results.  

 

Figure 7.8: Confusion matrix provided by the CNN using the order spectrum for test 2. 

 

 

 

Figure 7.9: Confusion matrix provided by the CNN using frequency bands for test 2. 
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Figure 7.10: Confusion matrix provided by the proposed domain adaptation framework for 

test 2. 

 

 It is important to note that the proposed domain adaptation model and both convolutional 

neural network models provide outstanding results using testing data belonging to the same 

speed conditions used to train. Table 7.2 summarizes the accuracies of the models in the two 

testing scenarios, including outcomes using testing data with the same distribution as those used 

to train the models. 

 

Table 7.2: Accuracies of the models in two different testing scenarios. 

  CNN with 

spectrum 

CNN with 

frequency bands 

Proposed domain 

adaptation model 

Same speed conditions to 

those of training 

Test 1 99.64% 99.95% 99.93% 

Test 2 99.23% 99.71% 99.66% 

Different speed conditions 

to those of training 

Test 1 72.98% 83.62% 98.42% 

Test 2 56.19% 72.54% 96.32% 

 

 

 The previous results demonstrate that deep learning models diagnose very well when 

working conditions do not vary. However, Issues appear in the presence of speed shifts. Data 

distribution changes due to the dynamic response of the gearbox. Conventional deep learning 

approaches has limitations to handle with data that present different patterns to those learned in 
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the training. Therefore, domain adaptation strategies are required to enhance the generalization 

of the models.  

 The proposed methodology provided promising results for the gearbox fault diagnosis 

under variable speed conditions. When compared to existing approaches, the proposed 

framework overcomes the limitations of label requirements to perform domain adaptation since 

it is based on an unsupervised reconstruction model. In addition, as the feature synchronization 

is done by calculating the correlation between the extracted features, the domain adaptation is 

not limited to only one target domain. Finally, the required computational power is low 

facilitating its application in real industrial scenarios.  
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8 CONCLUSIONS 

 

 

 This thesis introduced a novel domain adaptation methodology for gearbox fault 

diagnosis under variable speed conditions. The framework combined prior knowledge of the 

fault signatures and deep learning models to extract discriminative features for classification. 

Domain adaptation at different speed conditions is accomplished by applying the correlation 

analysis. The methodology was evaluated using experimental data from the PHM 2009 

competition. The introduced approach can be used for two applications: A clustering-based 

diagnosis and a reconstruction-based diagnosis system.  

 The proposed domain adaptation can be applied for clustering. Experimental results 

demonstrate the effectiveness of the proposed framework for unsupervised clustering and 

domain adaptation. The methodology achieved outstanding results in the correct identification 

of clusters belonging to the same health condition across different working speeds. The 

convolutional autoencoder extracted features with high correlation enabling the identification 

of similar patterns in the presence of domain shifts. The global normalization played a 

significant role in the domain adaptation, avoiding eliminating distinctive characteristics from 

the input vector essential for the diagnosis of the different fault types. The size of the extracted 

features is also relevant since the consideration of an insufficient number of dimensions can 

lead to misclassification due to loss of information. The proposed domain adaptation 

methodology enables the identification of fault patterns across different speed conditions, 

overcoming limitations of some existing methods such as the requirement of label from the 

source domain and the number of classes in each working condition.  

 Furthermore, the proposed domain adaptation can be applied to the construction of a 

diagnosis system based on the reconstruction of the input information. Experimental results 

exhibit the high performance of the proposed framework to diagnose faults under variable 

working conditions. Tests using data from different speeds to those used to train demonstrate 

that the introduced method is suitable for domain adaptation. The global accuracy of the 

proposed model remained excellent even in scenarios considering large variations of data 

distributions. Comparisons with traditional convolutional neural network models corroborate 

the need for domain adaptation strategies to improve the generalization and performance of 

deep learning models.  
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 Finally, the implementation of the methodology is straightforward and the computational 

power requirements are low in comparison to existing frameworks. The promising results 

encourage more research to enhance the robustness of the method. 

 

8.1 Suggestion for future work 

 Considering the promising results of this study, some potential research is suggested to 

increase the scope of the methodology: 

• Evaluate the proposed methodology considering more complex gearbox configurations 

including more reductions and planetary arrangements.  

• Consider data distribution changes due to load fluctuations. 

• Study new normalization methodologies to improve the diagnosis of intricate dynamic 

systems. 

• Employ datasets measured in industrial environments containing noise to improve the 

robustness of the methodology. 

• Explore different architectures of models including physics informed neural networks 

and capsule neural networks. 

• Combine the framework with decision-making algorithms to introduce new prior 

information and enrich the diagnosis. 

 These suggestions aim to improve the fault diagnosis of gearboxes under variable 

working conditions and seek application in real industrial scenarios. 
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