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A B S T R A C T   

The protein kinase (PK) superfamily is one of the largest superfamilies in plants and is the core regulator of 
cellular signaling. Even considering this substantial importance, the kinome of common bean (Phaseolus vulgaris) 
has not been profiled yet. Here, we identified and characterised the complete set of kinases of common bean, 
performing an in-depth investigation with phylogenetic analyses and measurements of gene distribution, 
structural organization, protein properties, and expression patterns over a large set of RNA-Sequencing data. 
Being composed of 1,203 PKs distributed across all P. vulgaris chromosomes, this set represents 3.25% of all 
predicted proteins for the species. These PKs could be classified into 20 groups and 119 subfamilies, with a more 
pronounced abundance of subfamilies belonging to the receptor-like kinase (RLK)-Pelle group. In addition to 
provide a vast and rich reservoir of data, our study supplied insights into the compositional similarities between 
PK subfamilies, their evolutionary divergences, highly variable functional profile, structural diversity, and 
expression patterns, modeled with coexpression networks for investigating putative interactions associated with 
stress response.   

1. Introduction 

A kinome can be defined as an organism complete set of proteins that 
contain a kinase domain, which are denominated protein kinases (PKs). 
The kinase domain is characterized by a catalytic core consisting of 250 
to 300 conserved amino acids with substrate specificity (Lehti-Shiu and 
Shiu, 2012; Wei et al., 2014). PKs have the ability to phosphorylate 
protein substrates, transferring a γ-phosphate residue from an ATP 
molecule to the hydroxyl group of a serine, threonine or tyrosine in the 
target protein (Hanks and Hunter, 1995; Liu et al., 2020). In addition to 
proteins, kinases can have small molecules as substrates, such as sugar 
and lipids (Cheek et al., 2005). Through this process, PKs regulate the 
activity of their targets and, as a consequence, mediate diversified 
processes of an organism’s life, from its early development to its re-
sponses to biotic or abiotic stresses (Liu et al., 2015). 

PKs are part of the largest and most conserved gene superfamily in 
plants (Liu et al., 2015), piquing the interest of researchers seeking to 
elucidate crucial mechanisms of plant vegetative and reproductive 
development, in addition to their responses to the environment. Ac-
cording to Lehti-Shiu and Shiu (2012), PKs from various plant species 
can be identified and classified into 115 families organized into several 
groups, including receptor-like kinase (RLK)-Pelle; cGMP-dependent 
protein kinase, and lipid signaling kinase families (AGC); calcium- and 
calmodulin-regulated kinase (CAMK); casein kinase 1 (CK1); cyclin- 
dependent kinase, mitogen-activated protein kinase, glycogen syn-
thase kinase, and cyclin-dependent kinase-like kinase (CMGC); cyclic 
AMP-dependent protein kinase (cAPK); serine/threonine kinase (STE); 
and tyrosine kinase-like kinase (TKL). In fact, the functional classifica-
tion of PKs based on the conservation and phylogeny of their catalytic 
domains enabled the first studies on these proteins (Liu et al., 2015). The 
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first plant PK was isolated from pea (Pisum sativum) in 1973 (Keates, 
1973), and the first plant PK DNA sequences were identified in common 
bean (Phaseolus vulgaris) and rice (Oryza sativa) using degenerate 
primers in 1989 (Lawton et al., 1989). Since then, the study of kinomes 
of different plant species at a genome-wide scale has been possible with 
the advancement of high-throughput sequencing technologies Liu et al. 
(2015). 

Several studies have shown that plant kinomes are much larger than 
those of other eukaryotes (Liu et al., 2015). For instance, the human 
genome has 518 predicted kinases (Manning et al., 2002), while plant 
species have between 600 to 2,500 members (Lehti-Shiu and Shiu, 
2012). This expansion in the repertoire of plant PKs can be attributed to 
frequent recent whole genome duplication (WGD) events associated 
with high rates of gene retention (Lehti-Shiu and Shiu, 2012). The in-
crease in the complexity of a species can be associated with the expan-
sion in the complexity of its proteins – which helps to explain the large 
variation in the number and diversity of PKs in different species. The 
study of kinomes demonstrates, based on PK representativeness, the 
relevance of this protein superfamily for the physiology of a species. As 
an illustration, 967 PKs were found in Carya illinoinensis (Zhu et al., 
2021), 954 PKs in Fragaria vesca (Liu et al., 2020), 1,168 PKs in Vitis 
vinifera (Zhu et al., 2018b), 758 PKs in Ananas comosus (Zhu et al., 
2018a), 2,168 PKs in Glycine max (Liu et al., 2015), 1,436 PKs in Sola-
num lycopersicum (Singh et al., 2014), 1,241 PKs in Zea mays (Wei et al., 
2014), and 942 PKs in Arabidopsis thaliana (Zulawski et al., 2014). 

Among the species of major interest in agriculture, the common bean 
(P. vulgaris L.) stands out with its fundamental importance for human 
consumption. Its grains are a source of protein, lysine, fiber (Messina, 
2014), folate, and mineral salts, such as iron, zinc, magnesium and po-
tassium (Mitchell et al., 2009). Additionally, they present resistant 
starch (Hutchins et al., 2012) and phenolic compounds with antioxidant 
potential (Marathe et al., 2011). Among many health benefits, beans act 
positively on cholesterol levels (Gunness and Gidley, 2010), blood 
glucose, inflammatory processes, metabolic syndrome and cardiovas-
cular diseases (Messina, 2014). Given these attributes, bean production 
arises as a strategic action for agriculture, which justifies the mainte-
nance of the large area destined for sowing this crop in the 2022 harvest 
(Conab, 2022). 

Nevertheless, bean production is affected by several types of stresses, 
including fungal, viral and bacterial diseases (Basavaraja et al., 2020), 
insect and nematode pests (Singh and Schwartz, 2010), drought, and 
aluminium toxicity (Beebe et al., 2009). Studies of PKs functions in 
Arabdopsis reveal that kinases regulate many aspects of life assets, 
including cytokinesis, tissue development, such as pollen tube and 
vascular tissue development, and responses to stresses and environ-
mental stimuli (Peng et al., 2022). Considering its function in the 
response to biotic stimuli, PKs have a well-established role, being part of 
highly complex signaling cascades (Ben Rejeb et al., 2014; Ye et al., 
2017). Importantly, PK genes have been identified as the source of 
resistance to anthracnose, a devastating disease that can lead to yield 
losses of up to 100% in P. vulgaris (Pvu) (Melotto and Kelly, 2001; 
Oblessuc et al., 2015; Richard et al., 2021). Additional evidence of as-
sociations of these proteins with resistance to other diseases in common 
bean (Vasconcellos et al., 2017; Cooper et al., 2020) further highlight 
the importance of their characterization in this crop. 

Given the potential of PKs for the development of plants and their 
interaction with the environment, it is essential that this superfamily is 
thoroughly described and analysed to enable biochemical and molecular 
inferences about various aspects of plant-environment interactions. 
Despite the availability of the common bean genome since 2014 
(Schmutz et al., 2014), the kinome of Pvu has not yet been investigated. 
The aim of this study, therefore, was to identify, classify and catalogue 
the complete set of PKs of this species. Furthermore, phylogenetic ana-
lyses and predictions of chromosomal location and structural organi-
zation of genes encoding PKs were performed. Lastly, PK subfamilies had 
their gene expression estimated with a large set of RNA-Seq data, and 

genic interactions were modeled using coexpression networks. 

2. Material and methods 

2.1. Genome-wide kinase identification and phylogenetic analyses 

Pvu gene, coding DNA, and protein-coding gene sequences were 
retrieved from the Pvu genome (v2.1) in Phytozome v.13 (Goodstein 
et al., 2012). For protein kinase (PK) identification, we selected hidden 
Markov models (HMMs) of typical kinase families from the Pfam data-
base (El-Gebali et al., 2019): Pkinase (PH00069) and Pkinase_Tyr 
(PF07714). All Pvu protein sequences were aligned against kinase 
HMMs using HMMER v.3.3 (Finn et al., 2011) with an E-value cut-off of 
0.1 and a minimum domain coverage of 50% (Lehti-Shiu and Shiu, 
2012). For genes with isoforms, only the longest variant was retained for 
further analyses. 

Putative Pvu PKs were classified into subfamilies based on HMMs 
calculated with sequences from other 25 plant species (Lehti-Shiu and 
Shiu, 2012): Aquilegia coerulea (Aco), Arabidopsis lyrata (Aly), Arabi-
dopsis thaliana (Ath), Brachypodium distachyon (Bdi), Carica papaya 
(Cpa), Citrus clementina (Ccl), Citrus sinensis (Csi), Chlamydomonas rein-
hardtii (Cre), Cucumis sativus (Csa), Eucalyptus grandis (Egr), Glycine max 
(Gma), Manihot esculenta (Mes), Medicago truncatula (Mtr), Mimulus 
guttatus (Mgu), O. sativa (Osa), Populus trichocarpa (Ptr), Prunus persica 
(Ppe), Physcomitrella patens (Ppa), Ricinus communis (Rco), Selaginella 
moellendorffii (Smo), Setaria italica (Sit), Sorghum bicolor (Sbi), Vitis 
vinifera (Vvi), Volvox carteri (Vca) and Zea mays (Zma). 

To confirm the PKs’ subfamily classification, kinase domains from 
the set of identified PKs were aligned with Muscle v.3.8.31 (Edgar, 
2004) and used for constructing a phylogenetic tree (1,000 bootstraps) 
with FastTreeMP v2.1.10 (Price et al., 2010) via CIPRES gateway (Miller 
et al., 2011). The generated tree visualization was assessed with the 
ggtree (Yu et al., 2017) and ggplot2 (Villanueva and Chen, 2019) 
packages on R statistical software (R Core Team, 2013). 

2.2. Kinase characterization 

The chromosomal location of Pvu PK genes was determined using the 
GFF file obtained from Phytozome, and visualized with MapChart v2.2 
software (Voorrips, 2002). With this same file, we also estimated the 
gene organization of PK subfamilies through intron numbers. Several 
protein properties were evaluated for the Pvu kinome. The domain 
composition of PKs was characterized using the Pfam database and the 
HMMER web server (Finn et al., 2011); their subcellular localizations 
were predicted with the programs WoLF PSORT (Horton et al., 2007), 
CELLO v.2.5 (Yu et al., 2006) and LOCALIZER v.1.0.4 (Sperschneider 
et al., 2017). Transmembrane domains and N-terminal signal peptides 
were recognized with TMHMM v.2.0 Server (Krogh et al., 2001) and 
SignalP v.4.1 Server (Armenteros et al., 2019) respectively; and theo-
retical isoelectric points (pIs) and molecular weights predicted with the 
ExPASy server (Artimo et al., 2012). These properties were summarized 
with descriptive statistics and different plots constructed with the R 
statistical software (R Core Team, 2013). The functional annotation of 
the Pvu kinome was performed with the Blast2GO tool (Conesa and 
Götz, 2008) together with SWISS-PROT (Bairoch and Apweiler, 2000) 
and Uniprot (Consortium, 2019) databases. From the PK annotations, 
Gene Ontology (GO) terms (Ashburner et al., 2000) were retrieved and 
analysed via treemaps constructed using the REViGO tool (Supek et al., 
2011). 

2.3. Duplication events 

The Multiple Collinearity Scan (MCScanX) toolkit (Wang et al., 
2012) was used for identifying putative homologous PKs along the Pvu 
genome and categorizing duplication events, which were separated into 
tandem and segmental duplications and visualized using MapChart v2.2 
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(Voorrips, 2002) and Circos (Krzywinski et al., 2009) softwares, 
respectively. We also used MCScanX for calculating synonymous (Ks) 
and non-synonymous substitution (Ka) rates, and with Ks estimations, 
we calculated the date of duplication events using the formula T =

Ks/2λ, with λ representing the mean value of clock-like Ks rates (6.5×

10−9) (Gaut et al., 1996). 

2.4. RNA-Seq experiments and co-expression network modelling 

PKs’ expression quantifications were assessed using RNA-Seq ex-
periments detailed in Supplementary Table S1 and obtained from NCBI’s 
Sequence Read Archive (SRA) (Leinonen et al., 2010). We selected 
datasets containing samples from different bean genotypes (Negro 
Jamapa, SA118, SA36, Black Turtle Soup, G19833, Ispir, DOR364 and 
IAC-Imperador) and analysed in different tissues (leaves, stems, shoots, 
flowers, pods, seeds and nodules) (Hiz et al., 2014; O’Rourke et al., 
2014; Khankhum et al., 2016; Kamfwa et al., 2017; Lu et al., 2019; Silva 
et al., 2019). RNA-Seq reads were downloaded and their quality assessed 
with FastQC software (Andrews, 2010). Using Trimmomatic v.0.39 
(Bolger et al., 2014), we only retained reads with a minimum Phred 
score of 20 and larger than 30 bp, which were used for PK quantification 
using bean transcript sequences downloaded from Phytozome and the 
Salmon v.1.1.0 software (Patro et al., 2017) (k-mer of 17). All PK 
expression counts were normalized using transcripts per million (TPM) 
values. PK subfamilies’ expression was evaluated using a heatmap rep-
resentation with the pheatmap R package (Kolde and Kolde, 2015), 
considering averaged TPM values and a complete-linkage hierarchical 
method with euclidean distances. Pairwise correlations between kinase 
subfamilies were calculated with Pearson correlation coefficients and 
used for modeling co-expression networks via igraph R package (Csardi 
et al., 2006). Each node in such a structure represents a kinase sub-
family, and an edge a minimum correlation coefficient of 0.6. We 
created two different networks, separating RNA samples according to 
control and adverse experimental conditions. These networks were 
evaluated and compared considering: (i) their community structures 
assessed with a propagating label algorithm (Raghavan et al., 2007); (ii) 
hub scores calculated with Kleinberg’s hub centrality (Kleinberg, 1999); 
and (iii) edge betweenness measured with the number of geodesics 
passing through an edge (Brandes, 2001). 

3. Results 

3.1. Genome-wide identification and classification of common bean 
kinases 

All the 36,995 annotated proteins for the Pvu genome (v.2.1) were 
downloaded and scanned for the presence of putative kinase domains, as 
per the typical HMMs of the kinase domains (PF00069 and/or 
PF07714). In this first step, 1,800 proteins were found with significant 
alignments against these domains. From this set of alignments, 541 
proteins were discarded for representing isoforms and 56 for not having 
a coverage of at least 50% of the corresponding kinase domain. These 56 
sequences are likely related to atypical kinases or pseudogenes (Lehti- 
Shiu and Shiu, 2012; Liu et al., 2015). Out of the remaining 1,203 pu-
tative kinases, 775 returned from search criteria of PF00069, and 440 
from search criteria of PF07714, with 6 PKs showing both domains 
(Supplementary Table S2). 

The 1,203 PKs found were classified into 20 groups and 119 sub-
families through comparative alignments using HMMER and HMMs 
constructed with sequences from subfamilies of 25 other plant species 
(Lehti-Shiu and Shiu, 2012). In total, 1,197 PKs were confirmed by 
phylogeny (Supplementary Figs. S1-2; Supplementary Table S3). The 
group with the highest quantity of PKs was RLK-Pelle (∼70% of the 
amount of PKs), followed by CAMK (∼7%), CMGC (∼6%), TKL (∼5%), 
and STE (∼4%). Among the predicted kinases, six were considered to 

belong to an additional group called ‘Unknown’, which may represent 
specific subfamilies of Pvu. The distribution of PKs per subfamily had a 
mean of ∼10 (Supplementary Table S4) with a high dispersion (standard 
deviation of ∼17), caused by the presence of a few very large sub-
families. Among the RLK group, the RLK-Pelle_DLSV subfamily stood out 
as the most numerous (140), representing 11.6% of the total PKs of the 
species. In fact, the RLK-Pelle_DLSV subfamily was also the most 
numerous one in almost all 26 species analyzed, except in Smo (Sup-
plementary Fig. S3). The closest species to Pvu regarding subfamilies’ 

composition were Ppe, Vvi and Mtr. 

3.2. Kinase gene mapping and structural characterization 

After identifying the PKs and classifying them into families and 
subfamilies, the genomic annotation information was used to position 
each PK gene along the Pvu genome. As a result, 1,191 PKs could be 
mapped to chromosomes, while 12 were located in scaffolds. The dis-
tribution of PKs per chromosome was extracted via GFF correspon-
dences together with the measurement of intron counts in the related 
genes (Fig. 1A; Supplementary Table S5). There was not a noticeable 
concentration of the 1,191 PKs in any specific chromosome (Supple-
mentary Table S6), and each of the remaining 12 PKs was located in a 
different scaffold. The greatest quantity of PKs was observed in chro-
mosome 8 (172, 14.30%), and the least, in chromosome 10 (65, 5.40%). 
Although the largest chromosome contained the highest number of an-
notated PKs (chromosome 8 with ∼63 million base pairs (Mb) in length); 
the opposite was not observed in the shortest one (chromosome 6 with 
∼31 Mb had 101 PKs estimated, while chromosome 10 had only 65 with 
a length of ∼44 Mb). 

We found that 163 PKs (13.5%) did not show introns in their gene 
structure. Most genes (835 or 69.4%) had up to 10 introns, while 182 
PKs had between 11–20 introns (15.1%). For 23 genes (1.9%), more 
than 20 introns were predicted. In our study, we found 5.74 introns per 
kinase on average (median of 5), and the largest quantities observed 
were 28 (found in a member of PEK_GCN2 subfamily), 26 (RLK-Pel-
le_LRR-XIIIb, RLK-Pelle_LRR-XIIIb, RLK-Pelle_LRR-XIIIb), and 24 (RLK- 
Pelle_DLSV) (Supplementary Table S5). 

3.3. Protein kinase properties 

In order to further characterize common bean PKs, we checked for 
the presence of additional protein domains with the HMMER and the 
Pfam database (Supplementary Table S7). Of the PKs analyzed, 563 
showed only kinase-like domains, while for the remaining 640, 57 
additional domains were noted (Supplementary Table S8). Some of 
these domains have relevant annotations indicating important func-
tional potentialities. The five most prominent domains were Leucine 
rich repeat N-terminal domain 2 (LRRNT_2), Leucine rich repeat 8 
(LRR_8), LRR_1, D-mannose binding lectin (B_lectin) and S-locus 
glycoprotein domain. 

The vast majority of Pvu PKs (1,167, 97%) presented only one kinase 
domain, while 34 and two PKs contained two and three of such domains, 
respectively (Supplementary Table S9). These 36 PKs are distributed 
among 12 subfamilies. It is noteworthy that the subfamilies in which two 
or three kinase domains were found were, in order of abundance: 
AGC_RSK-2 (21), RLK-Pelle_RLCK-XI (3), RLK-Pelle_L-LEC (2), RLK- 
Pelle_WAK_LRK10L-1 (2), RLK-Pelle_DLSV (1), RLK-Pelle_LRK10L-2 
(1), RLK-Pelle_LRR-VIII-1 (1), RLK-Pelle_PERK-2 (1), CMGC_CDK- 
CCRK (1), CMGC_SRPK (1), AGC_NDR (1), and Group-PI-2 (1). Several 
other domains could also be found, providing increased degrees of 
complexity for the analyzed proteins (Supplementary Table S8). Up to 
14 domains were predicted in the Phvul.005G025000.1.p protein, 
including the zf-RING_UBOX, Ank_2 and SH3_15 domains, in addition to 
Pkinase. The diversity of distinct domains observed (57), as well as their 
combinations, is extensive. 

We could not obtain a consistent prognosis of PK subcellular locali-
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Fig. 1. Descriptive analysis of kinase characteristics in Phaseolus vulgaris: (A) chromosomal distribution and intron occurrence; (B) presence of signal peptides and 
transmembrane helices, and distribution of molecular weights, isoelectric points (pIs), Gene Ontology (GO) terms, and subcellular localizations; and (C) duplica-
tion events. 
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zations by all the selected software (WoLF PSORT, CELLO and LOCAL-
IZER); therefore, we only considered predictions for PKs with a coinci-
dence by at least two tools. Employing this approach, 697 PKs (∼60%) 
could have their localization predicted into six categories: chloroplast, 
cytoplasm, extracellular, mitochondria, nucleus, or membrane regions. 
The most prominent localizations were the membrane, cytoplasm and 
nucleus, to which 41.7, 24.4 and 17.5% of Pvu PKs were attributed, 
respectively (Supplementary Table S10; Fig. 1B). 

The other protein properties evaluated were the pI, molecular 
weight, and presence of signal peptides and transmembrane helices 
(Supplementary Table S10; Fig. 1B). We found that ∼39% of Pvu PKs 
had an estimated presence of signal peptides. Transmembrane helices 
were found in ∼52.04% of PKs, separated in proteins with one (33.75%), 
two (17.04%), three (1.16%), and five helices (0.08%). Regarding pIs, 
the values found ranged from 4.42 to 9.9, with an average of 7.03 and a 
median of 6.56. Molecular weight values ranged from 21,379.91 to 
181,740.93 Da, illustrating the diversity of sizes of macromolecules, 
with 72,132.36 and 70,700.84 for mean and median, respectively. 

We also performed a full GO annotation of Pvu PKs (Supplementary 
Table S11), which returned 19,061 different terms separated into bio-
logical process (∼58%), molecular function (∼21%) and cellular 
component (∼22%). The top 30 terms are presented in Fig. 1B and, for 
an easier interpretation of the results, a treemap containing all the GO 
terms related to biological processes was constructed with the REViGO 
tool (Supplementary Fig. S4). We could observe a clear prominence of 
terms related to the regulation of defense response, protein autophos-
phorylation, and post embryonic development. 

Regarding the structural diversity and protein properties among PKs, 
we could observe distinct features between subfamilies (Supplementary 
Tables S12-S13). Although our analyses of Pvu PK genes did not reveal 
any clear distribution pattern in the intron quantity per kinase (Fig. 1A), 
it was possible to note that members of the same subfamily tended to 
have a similar number of predicted introns. For instance, all five mem-
bers of the RLK-Pelle_LRR-VII-1 subfamily had only one intron, and all 
five members of RLK-Pelle_LRR-IV had three introns. Of the 118 sub-
families, 15 had members with the same number of introns, and for the 
remaining, most had a relatively conserved number of introns among 
their members. To get an overview of the number of introns of proteins 
in the same subfamily, the variance in each of them was analysed. We 
observed that 24 subfamilies presented only one member and, of the 
remaining 94 subfamilies, 15 had members with the same number of 
introns, i.e, with a variance equal to zero. Only six subfamilies showed 
variance above 10, indicating that members vary significantly in rela-
tion to the number of introns. 

In addition to have the largest amount of PKs, we observed that RLK- 
Pelle_DLSV presented the most diverse set of domains (10 additional 
domains) and also the highest quantity of signal peptides, indicating a 
significant diversity of this family. Regarding the quantity of domains 
found in PKs, RLK-Pelle_LRR-III and RLK-Pelle_LRR-VII-1 followed RLK- 
Pelle_DLSV, presenting 5 and 4 additional domains respectively (Sup-
plementary Table S13). The highest pI mean was observed in CK1_CK1 
subfamily (9.61), followed by Group-Pl-4 (9.52) and RLK-Pelle_RLCK-IV 
(9.43). Interestingly, CMGC_Pl-Tthe subfamily presented the maximum 
molecular weight predicted with only one member. 

3.4. Duplication analysis 

From the investigation of PK origins through duplication events, we 
could find estimates for 1,167 PKs corresponding to 97% of the total 
kinome (Supplementary Table S14). The prominent origin was caused 
by WGD or segmental duplications with 839 PKs, followed by tandem 
(191), dispersed (92), and proximal (42) duplications. 3 PKs were 
singleton. Regarding collinearity events, Ka/Ks ratios ranged from 0.046 
to 4.574, with an average of 0.397 (Supplementary Table S15; Supple-
mentary Fig. S5). This ratio is used to estimate the balance between 
neutral mutations, purifying selection and beneficial mutations on a set 

of genes encoding homologous proteins. The calculation is based on the 
ratio between the number of non-synonymous substitutions per non- 
synonymous site in a given period of time and the number of synony-
mous substitutions per synonymous site, in the same period. In short, 
values above 1 for this equation are evidence of advantageous muta-
tions; values below 1 imply pressure against change; and values close to 
1 correspond to neutral effects over the period. However, positive and 
negative changes can cancel each other out over time. As we observe 
through PKs, there are cases of positive selection of substitutions, but the 
vast majority of changes, whose average was 0.397, seems to act against 
selection. Based on clock-like Ks rates, we also estimated the time at 
which these duplications occurred – which ranged from 1.2 to 229.1 
million years ago (MYA) (Supplementary Table S15). 

Tandem duplications were observed in 66 subfamilies (Supplemen-
tary Table S12), with the largest number of occurences in members of 
the RLK-Pelle group (22 in RLK-Pelle_DLSV, 19 in RLK-Pelle_LRK10L-2, 
17 in RLK-Pelle_CrRLK1L-1, 8 in RLK-Pelle_LRR-III, and 7 in RLK- 
Pelle_WAK_LRK10L-1). By evaluating the distribution of GO terms in 
such tandemly duplicated PKs (Fig. 2A), we observed a similar profile to 
that observed in the total kinome (Supplementary Fig. S4), with the 
prominent terms related to response to stress. The distribution of tan-
demly duplicated PKs is in Fig. 2B. 

3.5. Gene expression and coexpression networks 

In order to measure the expression level of each of the 1,203 PKs 
identified in this study in a broad range of conditions, data from tran-
scriptome studies involving several genotypes and specific designs were 
obtained. Initially, we estimated the TPM values associated with each PK 
(Supplementary Table S16), and combined such quantifications per 
subfamily (Supplementary Table S17), averaging replicates and calcu-
lating a single value for each combination of control/non-control con-
ditions, genotypes and tissues (Supplementary Table S18). From the 
heatmap constructed for the visualization of such quantifications 
(Fig. 3), we could observe grouping profiles according to the genotypes/ 
tissues and experimental conditions, although with several overlays, 
indicating the complex expression underlying kinase subfamilies. 

The top 5 mean expression values found were in CMGC_RCK, 
CMGC_CK2, CMGC_GSK, AGC_PDK1, and CK1_CK1-Pl subfamilies 
(Supplementary Table S19), which also presented the highest median 
measures. Regarding the maximum TPM values over samples, 
CMGC_RCK, CMGC_CK2, Group-Pl-4, CMGC_GSK, and CK1_CK1 repre-
sent the highest measures. CK1_CK1 presented the 6th highest expres-
sion, and, interestingly, although Group-Pl-4 did not present expressive 
expression values (99th highest expression), it was among the top 5 
subfamilies with the largest variation of expression within samples. 
Other subfamilies with increased variation coefficients for the expres-
sion values within samples were Group-Pl-2, ULK_Fused, TKL-Pl-8, and 
CAMK_CAMK1-DCAMKL. It is noteworthy that TKL-Pl-8, ULK_Fused, 
and Group-Pl-2 presented the lowest values for mean/median expres-
sion. By taking the lowest variation coefficients, the subfamilies with the 
most uniform expression across samples were RLK-Pelle_RLCK-V, 
AGC_RSK-2, RLK-Pelle_LRR-IX, CAMK_CAMKL-CHK1, and RLK- 
Pelle_Extensin. 

In order to evaluate putative associations of the subfamilies’ 

expression with the profile of duplications and the quantity of PKs per 
subfamily, we performed correlations between such measures and the 
subfamilies’ TPMs for each combination of control/non-control condi-
tions, genotypes and tissues (Supplementary Table S20). No significant 
Spearman correlation coefficients were found, being the largest values 
around 0.18, indicating that such an association is composed of joint 
factors which could not be easily captured by the measures evaluated. 

Regarding the differences on the expression profile of control sam-
ples and samples under adverse conditions, we could infer an overall 
difference between such sets by using the heatmaps constructed (Sup-
plementary Figs. S6-S7). However, as we employed samples from 
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Fig. 2. (A) Gene Ontology (GO) categories 
(biological processes) related to tandemly 
duplicated kinases. The size of the subdivisions 
within the blocks represents the abundance of 
that category in this set of kinases. The colors are 
related to the similarity to a representative GO 
annotation for the group. (B) Kinase distribution 
along chromosomes. For each chromosome, all 
genes with kinase domains are indicated on the 
left, and only the tandemly organized kinases are 
indicated on the right, colored and labeled ac-
cording to the subfamily classification.   

A.H. Aono et al.                                                                                                                                                                                                                                 



Gene 855 (2023) 147127

7

Fig. 3. RNA expression profiles of Phaseolus vulgaris kinases, shown on a heatmap indicating the average sample values of different combinations of genotypes and 
tissues (columns) and considering the organization of kinase subfamilies (rows). 
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different studies, we performed a comparative analysis of such differ-
ences in terms of gene co-expression patterns rather than statistical tests 
(Fig. 4). In that sense, we modeled two different networks, one for 
control samples (Fig. 4A; Supplementary Fig. S8) and another one for 
samples under adverse conditions (Fig. 4C; Supplementary Fig. S9). 

Although there was a common core structure between the networks 
modeled (Fig. 4B; Fig. 4D), several differences were identified. Firstly, 
we evaluated the presence of communities within the networks, and in 
contrast to a single member in the control network, the other one pre-
sented two different communities, one of them clearly separated from 
the main group. This indicates a more cohesive structure in the control 
network when compared to more sparse connections in the network 
affected by stress-related factors. In addition, hub and betweenness 
centrality measures were investigated for each one of the networks and 
clear distinctions could be pointed out. 

As expected, in the control network, the hub scores for each kinase 
subfamily were bigger (Supplementary Table S21), standing out the PK 
subfamilies CMGC_CK2, CK1_CK1-Pl, TKL-Pl-4, CMGC_GSK, and 
STE_STE20-Fray. Concerning betweenness scores, the most vulnerable 
connections were those between the pairs of subfamilies CMGC_CDK- 
PITSLRE/RLK-Pelle_RLCK-X, Group-Pl-4/RLK-Pelle_RLCK-XVI, RLK- 
Pelle_LRR-VII-1/RLK-Pelle_LRR-XIIIb, and RLK-Pelle_RLCK-XI/TKL-Pl-8 
(Supplementary Table S22). In the network with the samples under 
adverse conditions, on the other hand, more sparse hub scores were found 
(Supplementary Table S23), with the top 5 being CAMK_CDPK, CK1_CK1- 
Pl, TKL-Pl-2, TKL-Pl-4, and AGC_MAST. Regarding betweenness measures, 
largest values were identified in this network contrasted to the control 
one, standing out the connections between the pairs RLK-Pelle_LRR-IX/ 
RLK-Pelle_LRR-XV, RLK-Pelle_LRR-VII-1/RLK-Pelle_RLCK-X, AGC_RSK-2/ 
ULK_ULK4, NEK/RLK-Pelle_RLCK-X, AGC_PKA-PKG/STE_STE-Pl (Supple-
mentary Table S24). 

4. Discussion 

The number of PKs predicted for common bean (1,203) represents 
3.25% of all predicted proteins for this species (36,995), an indicator of 
the importance of this superfamily. These results are similar to the 

percentage of PK genes in the genome of several other plants, such as 
3.8% in maize (Wei et al., 2014), 3.4% in A. thaliana (Zulawski et al., 
2014), 3.7% in grapevine (Zhu et al., 2018b). These number are, how-
ever, slightly inferior to the those found for the two closest Pvu relatives 
with kinomes compiled: cowpea and soybean, for which 4.3 and 4.7% of 
proteins were predicted as PKs, respectively (Liu et al., 2015; Ferreira- 
Neto et al., 2021). The methodology adopted by most of the studies 
mentioned above was the same – a HMM approach (Lehti-Shiu and Shiu, 
2012) – allowing comparative inferences to be made between them. To 
enable inferences and comparisons with kinomes from other species, the 
criteria established for this work were similar to other studies on this 
subject (Singh et al., 2014; Wei et al., 2014; Zulawski et al., 2014; Liu 
et al., 2015; Zhu et al., 2018b; Zhu et al., 2018a; Liu et al., 2020; Aono 
et al., 2021). 

The high representativeness of the RLK-Pelle group among all ki-
nases was noteworthy (Fig. 1). This occurrence is not surprising, as the 
high proportion of this group in the kinome of plants is unanimous; on 
average, RLK-Pelle PKs represent 68.5% of RLKs in all kinomes studied 
to date (Singh et al., 2014; Wei et al., 2014; Zulawski et al., 2014; Liu 
et al., 2015; Yan et al., 2018; Zhu et al., 2018b; Zhu et al., 2018a; Wei 
and Li, 2019; Liu et al., 2020; Aono et al., 2021; Ferreira-Neto et al., 
2021). Members of the RLK/Pelle family are directly involved in plant 
development, defense against pathogens, and responses to abiotic 
stresses (Lehti-Shiu and Shiu, 2012). The evolution of plants is likely 
associated with the expansion of subfamilies of this group, with special 
regard to the perception of pathogen signals and the subsequent trig-
gering of immune responses. In fact, studies have shown an association 
between molecular markers, genes encoding RLK-LRR proteins and 
disease resistance (Bisneta et al., 2020; Binagwa et al., 2021). The sec-
ond most representative group among the kinases was the CAMK. Ki-
nases of this group have been shown to act as primary sensors and to 
participate in various biological processes, such as the perception of 
calcium signals, the regulation of plant growth and development, and 
responses to biotic and abiotic stresses. According to Wei et al. (2014), 
the expansion of the CDPK family could be a consequence of the adap-
tive evolution of plants to perceive calcium signals. In our study, 39 
CAMK-CDPK proteins were found within this group. 

Fig. 4. Coexpression networks for Phaseolus vul-
garis (Phvul) kinase subfamilies. Each node cor-
responds to a different subfamily, its size 
corresponds to the average expression value for 
all kinases within the subfamily in different 
samples, and its color corresponds to the hub 
score and ranges from beige to dark brown. Each 
edge corresponds to a correlation with a Pearson 
correlation coefficient of at least 0.6. The corre-
lation strength is represented by the edge’s width 
and the edge betweenness score is represented by 
the color (ranging from black to red, with red 
representing the highest values). (A) Phvul 
network (control samples) with the background 
colored according to the community detection 
analysis. (B) Phvul network (control samples) 
indicating the similarities with the Phvul network 
(stress submitted samples) in orange. (C) Phvul 
network (stress submitted samples) with the 
background colored according to the community 
detection analysis. (D) Phvul network (stress 
submitted samples) indicating the similarities 
with the Phvul network (control samples) in 
orange.   
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Regarding the distribution of introns in common bean PKs, the 
maximum intron number observed was 28 – the same number found for 
soybean (Liu et al., 2015) and cowpea (Ferreira-Neto et al., 2021). 
Among available kinomes, the highest numbers of introns were found in 
grapevine (49) (Zhu et al., 2018b), sugarcane (52) (Aono et al., 2021), 
and pineapple (67) (Zhu et al., 2018a). The mean introns number found 
for common bean PKs (5.74) is lower than those found for strawberry 
(Liu et al., 2020) and pineapple (Zhu et al., 2018a), which were 6.45 and 
6.59, respectively. Of the 118 subfamilies of common bean PKs, 15 had 
members with the same number of introns, and for the remaining, most 
had a relatively conserved number of introns among their members, as 
was also observed for soybean (Liu et al., 2015). Additionally, 163 
common bean PK genes (13.5%) did present introns. In wheat, 11.9% of 
PKs showed no introns in their gene structure (Wei and Li, 2019), 9.5% 
in pineapple (Zhu et al., 2018a). Soybean, cowpea and grapevine have 
12.1, 13.6 and 16.6%, respectively (Liu et al., 2015; Ferreira-Neto et al., 
2021; Zhu et al., 2018b). In wheat, only 13.91% of PKs have more than 
10 introns (Wei and Li, 2019). 

At the family level, there is evidence of a link between the structural 
diversity of genes that are members of gene families and their evolution 
(Wei et al., 2014). In our study, the variation in the number of introns 
among PKs within the same subfamily was not large. In general, sub-
families showed conserved exon–intron structures, as observed by Yan 
et al. (2017), which may be related to their phylogenetic relationship. 
Most maize PK genes clustered in the same subfamily share similar 
intron structure, suggesting that intron gain and loss events contribute 
to the structural evolution of families (Wei et al., 2014). Liu et al. (2015) 
compared their results in soybean with those obtained from rice and 
maize, noting great similarity, referring the evolutionary history of PKs 
to times prior to the evolution of mono- and dicotyledons. Our results for 
common bean are similar to those for soybean, corroborating these 
conjectures. Divergent gene structures in different phylogenetic sub-
families may represent the expansion of the gene family (Wei et al., 
2014), with kinase families having their own evolutionary expansions 
from the point of divergence (Liu et al., 2015). Conservation in the 
exon–intron structure of PKs, associated with growth and development 
processes, may originate from the emergence of land plants and thus be 
perpetuated (Yan et al., 2017). 

4.1. Kinase protein properties 

The distribution of kinase domains found for common bean was quite 
similar to that observed for sorghum (Aono et al., 2021), grapevine (Zhu 
et al., 2018b), wheat Yan et al. (2017), and soybean (Liu et al., 2015). 
Regarding the number of proteins with multiple kinase domains, there 
was a variation in the number of subfamilies and members; the sub-
families that contained the most multi-kinases members were AGC_RSK- 
2 and RLK-Pelle_RLCK-XI, as equally noted for soybean (Liu et al., 2015). 
Additionally, in sorghum, sugarcane (Aono et al., 2021), grapevine (Zhu 
et al., 2018b), pineapple (Zhu et al., 2018a), and wheat (Yan et al., 
2017), the AGC_RSK-2 subfamily was also the most numerous. The 
second most numerous families were found to be RLK-Pelle_WAK in 
sorghum (Aono et al., 2021), AGC_NDR in wheat (Yan et al., 2017), and 
RLK-Pelle_DLSV in sugarcane (Aono et al., 2021), grapevine (Zhu et al., 
2018b) and pineapple (Zhu et al., 2018a). Only 36 (3%) of common 
bean PKs presented more than one kinase domain, which were distrib-
uted into 16 families. In soybean, the 74 PKs with such characteristics 
were distributed between 18 subfamilies, the most numerous being 
AGC_RSK-2 (38) and RLK-Pelle_RLCK-XI (7) (Liu et al., 2015). In sug-
arcane, the 228 proteins with multiple kinase domains are distributed 
into 49 subfamilies, the most numerous being AGC_RSK-2 (50) and RLK- 
Pelle_DLSV (29), while in sorghum the 49 proteins are distributed into 
13 subfamilies, with AGC_RSK-2 (19) and RLK-Pelle_WAK (11) being the 
most numerous (Aono et al., 2021). Differently, in strawberry, of the 954 
PKs analyzed, 920 presented two or more kinase domains and, therefore, 
34 presented only one kinase domain (Liu et al., 2020). In cowpea only 6 

PKs have only 1 kinase domain, while the rest have a higher number of 
kinases (Ferreira-Neto et al., 2021). 

The importance of predicting the subcellular localization of each one 
of the proteins of a species lies in determining its place of action, which 
can in turn suggest its function (Zhu et al., 2018a) in association with 
further information, such as structural domains. The fact that many 
common bean PKs are located in the cell membrane suggests the rele-
vance of this superfamily in perceiving the extracellular environment 
and transducing vital information into cells (Zhu et al., 2018a). In sor-
ghum, sugarcane (Aono et al., 2021), cowpea (Ferreira-Neto et al., 
2021), wheat (Wei and Li, 2019), pineapple (Zhu et al., 2018a), grape-
vine (Zhu et al., 2018b), soybean (Liu et al., 2015), and A. thaliana 
(Zulawski et al., 2014) the PKs predicted to locate at the cell membrane 
are also the majority, with percentages ranging from 27.42% in grape-
vine to 49.63% in soybean. In strawberry, on the other hand, 55.77% of 
PKs were predicted to locate at the nucleus (Liu et al., 2020). In our 
study, 501 PKs had their subcellular localization predicted to the plasma 
membrane and, among these, 486 (97%) were classified as RLK-Pelle – 

reinforcing the importance of these proteins in cell signaling. While the 
vast majority of membrane PKs are RLKs, it cannot be said that all RLKs 
are membrane PKs. While most (58%) of these proteins were predicted 
to locate at the membrane, 13.7% of RLK-Pelle proteins predicted to be 
cytoplasmic, 9.8% extracellular and 9.5% nuclear; additionally, 4.5 and 
4.4% of these proteins were predicted to locate at chloroplasts and 
mitochondria, respectively. The observations made for common bean 
were very similar to those obtained for soybean, including the location 
of the RLKs, which were also essentially located at the membrane (Liu 
et al., 2015). In strawberry, on the other hand, only 45.4% of the RLKs 
were predicted to locate at the membrane (Liu et al., 2020). In pine-
apple, 38% of PKs were predicted to be located at the membrane and 
more than half of RLKs were membrane-located (Zhu et al., 2018a). PKs 
have great importance in sensing the environment and its response at 
the gene-expression level. The results observed for cowpea (Ferreira- 
Neto et al., 2021) are similar to the results found in our study. 

Regarding PK pIs, the results found for common bean were similar to 
those of other species, such as sorghum, sugarcane (Aono et al., 2021), 
grapevine (Zhu et al., 2018b), and especially cowpea (Ferreira-Neto 
et al., 2021). However, for molecular mass, considerable differences 
were observed. The minimum molecular weight value of common bean 
PKs was higher than that observed for sugarcane, cowpea and grapevine, 
while the maximum value was lower than those found for sorghum, 
sugarcane, cowpea and grapevine. In grapevine, members of the same 
family share number of introns, pIs and molecular weight (Zhu et al., 
2018b), while for cowpea the values of pI and molecular weight within 
families are highly variable (Ferreira-Neto et al., 2021). Our results 
follow the trend observed for cowpea, with highly variable values within 
the same family. 

4.2. Duplication events 

Alike other species (Liu et al., 2015; Zhu et al., 2018b; Zhu et al., 
2018a; Aono et al., 2021; Ferreira-Neto et al., 2021), the Pvu kinome 
presented a high percentage of PK gene pairs with a Ka/Ks ratio below 1, 
indicating that they are under purifying selection. This indicates that 
selection has acted to conserve the structure and stabilize the function of 
PKs along their evolutionary history. In eukaryotes, this is thought to 
ensue an early phase of relaxed constraint or even near-neutrality for 
diversification (Lynch and Conery, 2000), and possibly occurred during 
PK evolution due to their vital importance in diverse biological pro-
cesses (Janitza et al., 2012). 

Both the presence of duplicated genes under purifying selection and 
the average Ka/Ks rate of common bean PKs (0.397) are concordant 
with previous findings from other gene families of this species, such as 
Dof (Ito et al., 2017), SBP transcription factors (Ilhan, 2018), CAMTA 
(Büyük et al., 2019), SRS (Büyük et al., 2022), and BURP domain- 
containing genes (Kavas et al., 2021). However, none of these studies 
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– which analysed much smaller gene families – reported the high Ks 
values and distant dates of duplication we found for common bean PKs, 
dating up to 229 MYA. We observed a distinct peak in Ks values ranging 
around 0.65, corresponding to duplication events occurring 50 MYA; 
this coincides with a major WGD experienced by the Fabaceae, esti-
mated to have taken place 58 MYA (Lavin et al., 2005). A second, less 
evident peak can be observed in Ks values around 1.5–1.7, corre-
sponding to duplications from 116–130 MYA; this can be associated with 
a whole-genome triplication event that took place in the core eudicots 
lineage, pinpointed at 117 MYA (Jiao et al., 2012). It is very likely that 
these two polyploidization events represent major forces in the diver-
sification of common bean PKs, as also reported for legume transcription 
factor repertoires (Moharana and Venancio, 2020). Oddly, the influence 
of neither of these events was detected in the kinome of cowpea, a close 
relative of common bean. In the kinome of the slightly more distantly- 
related soybean, the Fabaceae-specific WGD Ks peak can be observed 
– although it is overshadowed by duplications arising from this species’ 

more recent, lineage-specific, WGD ∼13–59 MYA (Schmutz et al., 2010; 
Liu et al., 2015). 

Specific PK subfamilies had a more pronounced occurrence of tan-
dem duplications, mostly from the RLK-Pelle group (RLK-Pelle_DLSV, 
RLK-Pelle_LRK10L-2, RLK-Pelle_CrRLK1L-1, RLK-Pelle_LRR-III, and 
RLK-Pelle_WAK_LRK10L-1). In addition, RLK-Pelle_DLSV and RLK- 
Pelle_LRR-III were among the subfamilies with the largest diversity of 
protein domains. As tandemly duplicated PKs are known to be associ-
ated with stress responses (Freeling, 2009), we could also evidence the 
expansion of the scope of functionality of these subfamilies. 

4.3. Gene expression estimation 

In our study, we incorporated several RNA-Seq datasets for esti-
mating Pvu kinome expression, which enabled a broad overview of the 
PK expression across different common bean genotypes and tissues. 
Although the most pronounced subfamilies in PK quantities were RLK- 
Pelle_DLSV (11.64%), RLK-Pelle_LRR-XI-1 (5.15%), RLK- 
Pelle_CrRLK1L-1 (4.32%), and RLK-Pelle_LRK10L-2 (4.41%), we found 
different subfamilies with the largest expression values (CMGC_RCK, 
CMGC_CK2, CMGC_GSK, AGC_PDK1, and CK1_CK1-Pl). Such finding 
indicates that even if a PK subfamily is highly abundant across the 
genome, its expression might not reflect it, as already pointed out by 
other kinome studies (Liu et al., 2015; Aono et al., 2021). Indeed, by 
evaluating the correlation between the PK abundance per subfamily and 
their expression, we did not find significant associations (Supplementary 
Table S20). 

Different members of CMGC group presented the largest expression 
values, as also reported by Liu et al. (2015); Zhu et al. (2018b); Aono 
et al. (2021). This result reinforces the high conservation of this group 
across several plant species (Kannan and Neuwald, 2004), and its mul-
tiple functions with effects on several signalling mechanisms (Wrzaczek 
et al., 2007). Several subfamilies presented variable expression values 
across their representatives, as highlighted by the high variation co-
efficients calculated (Supplementary Table S19), which corroborates the 
specific activation of PKs (Zhu et al., 2018a). Interestingly, although 
Group-Pl-4 subfamily did not present expressive expression values (99th 
highest expression), it was among the top 5 subfamilies with the largest 
variation of expression within samples and also with one of the 
maximum expression values observed among the entire kinome in a 
stress associated sample. In addition to being highly conserved (Lehti- 
Shiu and Shiu, 2012), Zhu et al. (2018a) already reported the potential 
involvement of such a subfamily with photosynthesis. 

Finally, modelling different coexpression networks made it possible 
the definition of several inferences across PK subfamilies interaction 
patterns, distinguished in two different structures for modelling control 
and stress related samples. The use of complex networks for modelling 
biological systems has enabled important contributions in the deci-
pherment of unknown molecular associations across the literature (Fait 

et al., 2020; Tai et al., 2020; Zhang and Yin, 2020). In our study, each PK 
subfamily represents an element in the network (a node) and their pu-
tative associations (edges) are estimated through linear correlations, 
which indicate that PK subfamilies are functionally cohesive, co- 
regulated or correspond to similar pathways (Mitra et al., 2013). From 
such a structure, network measures can be used for biological inferences, 
including central elements in the network structure (hubs), which are 
generally associated with regulators over the biological mechanisms 
modeled (Barabasi and Oltvai, 2004), and also connections with 
elevated network vulnerability (edges with high betweenness), i.e. 
connections permeating a high flow of communication between network 
elements. Considering the PK networks modeled, edges with high 
betweenness measures may represent crucial mechanisms for the 
maintenance of the overall PK interactions (Aono et al., 2021). 

Although possessing a common core structure, the networks modeled 
presented several differences in their topology. First, the detachment of 
the network with samples under adverse conditions into two commu-
nities potentially indicates the disturbance of the previous network 
because of external factors into the complex system, namely the 
different adverse circumstances in which the genotypes were evaluated. 
As already known, the activation of PKs is directly affected by external 
stimuli and stress factors (Morris, 2001; Jaggi, 2018), and this aspect can 
be inferred from the networks modeled. Additionally, the large quantity 
of connections in the control network indicates a more cohesive struc-
ture with less vulnerability points; this suggests that the subfamily in-
teractions presented a more synergistic activity than the interactions 
between the expression of subfamilies under stress. Indeed, such finding 
can be also visualized in the connections with higher betweenness 
values (Fig. 4). 

In the network of control samples, we only found points of vulner-
ability between single subfamilies and the main core group, formed by a 
cohesive set of PK subfamilies interactions. However, in the other 
network, such edges with high betweenness seem to have a bigger 
impact into the network architecture (Fig. 4C). Members of the sub-
families RLK-Pelle_RLCK and RLK-Pelle_LRR were present in the edges 
among the top 5 betweenness values of both networks. Interestingly, 
other subfamilies in the vulnerable edges of the control network (TKL- 
Pl-8, CMGC_CDK-PITSLRE, and Group-Pl-4) were disconnected elements 
in the stress network. This demonstrates that the existent vulnerabilities 
become more pronounced in adverse conditions, and also reinforces the 
importance of the RLK-Pelle group (Bolhassani et al., 2021). 

By contrasting the other subfamilies present in the high betweenness 
edges in the stress related network with their connection profile in the 
control network, we can visualize that AGC_RSK-2, AGC_PKA-PKG, and 
NEK presented median hub scores, i.e. they have a significant amount of 
connections, which are significantly reduced in the network modeled 
with samples under adverse conditions. In the same way, STE_STE-Pl 
subfamily presented the same profile, but with a more elevated hub 
score, which was close to the top values in the control network. Such 
findings corroborate the potential of biological inferences with the use 
of complex networks and highlight this set of PK subfamilies for deeper 
investigations over Pvu stress responses. 

Regarding the key elements in both networks, measured through hub 
scores, we found CK1_CK1-Pl and TKL-Pl-4 among the top 5 in both 
structures. Although we found differences in other hub elements, similar 
connection profiles could be observed. For instance, CMGC_CK2 and 
CMGC_GSK ranked in the top 5 hubs in the control network, and in the 
network modeled with samples under adverse conditions such families 
did not present low hub scores. The same was observed for the other 
hubs of the adverse network (CAMK_CDPK, TKL-Pl-2, and AGC_MAST). 
Even not being in the top 5 of the control network, the values were close 
to the highest hub score. Interestingly, the subfamily STE_STE20-Fray 
was considered a hub in the control network, however in the adverse 
related network it had a low hub score in the adverse condition, which 
shows a probable impact of stress into this PK subfamily. 
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5. Conclusion 

The common bean has a large importance for agriculture, repre-
senting a good source of nutrition. Considering the well-established role 
of PKs over stress responses and the diverse stresses affecting bean 
production, the characterization performed in our study represents an 
important contribution to Pvu research, cataloging a vast and rich 
reservoir of data. By profiling 1,203 Pvu PKs, we provided significant 
insights into Pvu PK organization, highly variable functional profile, 
structural diversity and evolution, and expression patterns. Finally, by 
modelling the PK interactions through coexpression networks, we could 
highlight a set of PK subfamilies potentially associated with bean stress 
responses. 
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Büyük, İ., İlhan, E., Şener, D., Özsoy, A.U., Aras, S., 2019. Genome-wide identification of 
CAMTA gene family members in Phaseolus vulgaris l. and their expression profiling 
during salt stress. Mol. Biol. Rep. 46, 2721–2732. 
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