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Resumo

Discorremos sobre a teoria de complexos diferenciais de operadores e sistemas involutivos de
campos vetoriais, estudando em maiores detalhes as condic¢oes suficientes de resolubilidade
para os complexos diferenciais encontrados em duas situacoes distintas. Ambos os exemplos
derivam de um modelo comum, o de sistemas do tipo tubo, sendo a resolubilidade
determinada por condig¢oes no coeficiente do complexo diferencial. As hipdteses sobre
os modelos levam a condic¢oes de resolubilidade qualitativamente distintas, a depender
da homologia dos conjuntos de subnivel do coeficiente, em um caso, e das integrais do

coeficiente ao longo dos 1-ciclos geradores da homologia, no outro.

Palavras-chave: Sistemas involutivos. Sistemas sobredeterminados. Complexos de opera-

dores diferenciais.



Abstract

We go through the theory of complexes of differential operators and involutive systems of
vector fields, delving into sufficient conditions for solvability of differential complexes as
they appear in two distinct situations. Both examples are derived from a common model —
tube type systems — with solvability being determined by conditions over the coefficient
of the differential complex. The hypothesis over the models lead to distinct solvability
conditions, depending on the homology of the sublevel sets determined by the coefficient,
in one case, and on the integrals of the coefficient along the generating 1-cycles, in the

other.

Keywords: Involutive systems. Overdetermined systems. Complex of differential opera-

tors.
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iff

ODE

PDE

TVS

List of abbreviations and acronyms

almost everywhere

if and only if

ordinary differential equation
partial differential equation

topological vector space



F Scalar field of either R or C

R Set of extended real numbers R u {+00}

T The n-torus T x --- x T

SP The permutation group of order p

Mxn(R)  Set of m x n matrices with entries in a ring R

I'(E) Set of smooth sections of a vector bundle £

X(Q) The C*(€2)-module of vector fields over 2

[ ] Lie bracket of vector fields

I, The LP norm over a measure space

= Equality defining the expression on the left side

~ Isomorphic objects in the appropriate category

® Direct sum

c Relatively compact subset

|| Disjoint union

Aut Set of automorphisms in the appropriate category

span Subset generated (in the appropriate sense) by a family of elements
AN The exterior algebra of a vector space V'

ker, ran Kernel and range of a map

supp Support of a scalar-valued function

Re, Im Real and imaginary parts

LV, W); L(V)  Set of linear maps from V' to W; linear operators from V to V
[v]+, [Py Coordinate representation of a vector with respect to a basis 7, matrix

Cc*(Q)

List of symbols

representation of a linear map (or R-module homomorphism)

Set of scalar-valued smooth functions on a manifold €2



C*(Q) Set of compactly supported smooth functions on a manifold €2

D'(Q2) Set of Schwartz distributions over (2
C*(Q FE) Set smooth functions on a manifold 2 with values on E
Diff(£2) Set of differential operators C*(2) — C*(2)

Diff(Q; V, W)  Set of differential operators C*(Q; V) — C*(Q; W), where V' and

W are vector spaces

ord(P) Order of a differential operator P
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Introduction

Among the better known systems in the theory of solvability for overdetermined
linear PDEs are what we might call tube models. Its local description involves a family of
complex vector fields Ly, ..., L, on a product smooth manifold R” x N, with variables

t e R” and z € N. Supposing N has dimension m, the vector fields are locally given by
Li =0y, + ) cix(t)ln, j=1,....v (1)
k=1

for some complex smooth coefficients ¢;; which do not depend on z. Under a constraint
of closedness over the 1-forms ¢;, = Zj cjrdt; (j=1,...,v), the family L,,..., L, can be

associated to a complex of differential operators over p-forms on the variable ¢, denoted as

-1

C*(R” x N;C) = C=(R” x N; A CY) L - E20L 0o R x N; AP0 C)
(2)

with successive chain maps IL” given by
]Lpzdtthck(t)/\@xk, p=1,...,v—1 (3)
k

Solving the overdetermined system L;u = f; (j = 0,1,...,v), in particular, is equivalent

to solving an inhomogeneous problem with respect to L°.

Our subject matter is the solvability of complexes originated by differential operators
closely related to (1). It is therefore in our interest to determine necessary and sufficient

conditions to solve inhomogeneous linear equations, such as
LPu=f (4)

for every f e C®(R” x N, A" C") in a pre-established (compatible, as we usually call it)
subset where solutions are reasonably expected. Weak solutions in spaces of distributions
are to be regarded as well. The approach taken in the present work involves a general
presentation of the theory of involutive systems followed by a detailed exposition of some

of the techniques used in the proof of sufficient conditions for a couple different models.

Before further details, a bit of historical context is provided. In [Tre76], a number
of innovative techniques are used to establish a necessary and sufficient condition for the
existence of semi-global solutions at every level of a differential complex in the context
of a pseudodifferential model over open Euclidean subsets. Soon after, [CH77] are able
to adapt a few of those ideas to make a characterization of solvability for an analogous
complex in a global setting. They consider operators on an arbitrary compact manifold in

place of R” and an abstract Hilbert space as the function space in the x variable.
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In a different line, [BCM93] generalizes the Diophantine characterization of global
hypoellipticity for constant coefficient vector fields in T2, found in [GW72], to two sub-
stantially wider classes of overdetermined systems of vector fields — they fit (3) when we
take a compact manifold in place of R” for the variable t and N = T for the variable x.
Under suitable constraints, global hypoellipticity is fully characterized when the coefficient

c(t) is real-analytic.

Using the same Diophantine condition as [BCM93|, [BP99] characterizes global
solvability for real vector fields with variables (t,z) € T" x T at every level of the complex
defined by (3) and for ¢(t) closed, thus completing the picture sketched by [CH77] for such

setup.
The contents here are ordered according to the following scheme.

In Chapter 1 we go through a handful of concepts and elementary results involved in
the main material. We recall notions from differential topology, real analysis and differential
equations the reader is most likely already familiar with. This is done for the sake of
recalling concepts, providing references and introducing bits of terminology and notation
we adopt in the remaining. The last section presents pseudo-differential operators in the
very basic setting needed to handle the model of Chapter 3. If, at any rate, the concepts or
terminology employed seem unclear, the reader is advised to consult the references cited

in the heading of the statements.

The actual subject begins in Chapter 2, where we overview the theory of complexes
of differential operators and involutive structures, in an attempt to establish a middle
ground between the material in [Tre77], from a course given by Treves in UFPE, and the
introductory chapter of the comprehensive modern treatise [BCH08]. We start by defining
differential complexes of differential operators of a general kind and related notions, giving
some of the most prominent cases as examples — de Rham’s complex, Dolbeault’s complex
and the complex of currents. Next, we see how families of vector fields may be turned into
complexes, in a situation that generalizes the construction of the de Rham complex. This
line of reasoning naturally leads us to the so-called involutive structures, locally defined by

vector fields attending to two specific requirements which propitiate the study of solutions.

Chapter 3 and Chapter 4 postulate the specific models and solvability problems
investigated. The methods employed to obtain candidate solutions are the typical ones from
Fourier analysis, but the different assumptions taken for each model lead to qualitatively
distinct solvability conditions. The model given in Chapter 3 is the one featured in [Tre76].
We follow a proof of solvability for the first level of the complex which is not covered
in the original paper, but was later made available by the author in the lecture notes
[Tre77]. Obtaining the necessary estimates to the end of getting solutions for the family of
ODEs parameterized by ¢ (obtained through a partial Fourier transform) which ensures

a corresponding solution to the original PDE relies on a good choice for the paths of
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integration (¢, ). This calls, on one hand, for a uniform bound on an exponential factor
along the paths of integration and, on the other, for the growth on the length of (¢, &)
to be controlled with respect to &. Those constraints lead to a solvability condition of
a topological nature, fully determined by a criteria of connectivity on the sublevel sets
induced by the coefficients. This is representative of the more general phenomena described
in the paper, namely, the fact that solvability at the p-th level of the complex is fully
determined by the p-th homology groups of the sublevel sets induced by those same

coefficients.

Lastly, in Chapter 4, we follow the argument found in [BP99] to establish a sufficient
condition for global solvability at every level of a differential complex on the (n + 1)-torus.
In this situation, the appropriate control on the asymptotic decay of the small coefficients,
which may appear in the solutions for the Fourier coefficients, is done by means of an
algebraic condition of Diophantine approximations on the integrals of the coefficient of

the complex (¢(t) in (3)) over the generating 1-cycles of T".

It is worth mentioning the subject studied here branches off into various lines of
active research. To cite two recent examples, [HZ17] characterizes the global solvability at
the first and last level of the complex, on the product of a compact manifold by a torus,
when m = 1 and ¢(t) is real-analytic and purely imaginary, while [Ara+24] studies the

cohomology spaces on every degree of the differential complex and arbitrary m.



15

1 Preliminaries

1.1 Real analysis and smooth manifolds

A topological manifold €2 of dimension N is to be understood as a Hausdorff, second
countable topological space §2 such that each point p € €2 admits an open neighborhood
U < Q which is homeomorphic to RY. The pairs (U,z) where x : U — RY is an
homeomorphism from an open set U < Q are called (local) charts of ). They can be
combined into a unique maximal collection A, said an atlas on §2, where the open sets
cover € and the transition functions y o 27! between any two charts (U, z),(V,y) are
homeomorphisms of subsets RY, whenever the composition between y and 2~ makes sense.
Conversely, given 2 a Hausdorff, second countable manifold, each atlas on {2 determines a

unique topological manifold.

To turn a topological manifold €2 into a smooth manifold, we are required to choose

a differentiable structure — a maximal, smoothly compatible subset of the atlas A.

Definition 1.1. A differentiable manifold (or smooth manifold) of dimension N is a
topological manifold ) of dimension N endowed with a differentiable structure F, that is,
a subcollection F = {(U,x)} of the atlas determined by Q2 such that

(i) The smooth chart domains {U : (U, x) € F} cover €);

(it) Given (U,x),(V,y) € F, the transition map yox~ ' : z(U V) - y({U nV) is C
whenever U n'V # (&;

(7ii) It is maximal in the following sense: any chart (V,y) in the atlas determined by 2,
such that {(V,y)} U F satisfies (ii), necessarily belongs to F.

This allows us to talk about smooth functions and maps as one would do in the
Euclidean setting. Since all topological manifolds we shall ever consider are accompanied
by a smooth structure, the adjective ‘smooth’ will often remain implicit when we talk
about charts, coordinates, maps and so on. Moreover, if ) is given as an open subset of
the Euclidean space RY, the underlying differentiable structure is always to be regarded
as the one induced by local diffecomorphisms from the Euclidean space R to itself. It is
plain that the local coordinates of a smooth chart (U, z) may be offset by an arbitrary
constant vector in RY while still remaining within the differentiable structure. Therefore,
in choosing a local chart (U, z) near p € U, we may require x(p) = 0, which we indicate by

saying (U, x) is centered at p.
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1.2 Complex vector fields

Since our study concerns complex vector fields, we generally regard C*(2) as the
set of complex-valued smooth functions over €2, which is to say, f : £ — C such that, for
every (U, x) in the differentiable structure of 2 we have foxz~! smooth (with the standard
identification C =~ R?). We make exceptions in a couple occasions: in Section 2.1, where
F stands for either R or C (and the values are in F) and in Chapter 4, where the vector
fields are real (and the values are in R). In the proceeding discussion, we shall always

assume functions in C*(§2) to be complex-valued.

Notice C*(§2) constitutes a C-algebra with a conjugate linear map f — f and which
contains CF(Q) = {f € C*(Q) : ran f < R} as a R-subalgebra. The subspace of compactly

supported smooth functions C*(2) is defined analogously.

A germ of a C* function at p is an equivalence class on the set B, of pairs (U, f),

where U is open containing p and f € C*(U), under the relation

U, f)~V,9) = flvav = glvav (1.1)

The set B,/ ~ of germs at p and the germ defined by f e C*(Q2) at p are are denoted
C*(p) and ip, respectively. It isn’t hard to see how this defines a C-algebra as well.

The C-algebra of smooth functions is, in particular, a vector space over C. One

possible definition of a complex vector field is therefore the following.

Definition 1.2. A smooth complex vector field over Q is a C-linear map L : C*(Q) —
C*(Q2) which adheres to Leibniz’s rule

L(fg) = L(f)g + fL(g), [f,9eC”(Q) (1.2)

The set of smooth complex vector fields over 2 is denoted X(£2). We extend the
obvious vector space multiplication C x X(2) — X(€2) to multiplication by C*(£2) by
defining for each g € C*(Q)

(gL)f =g-Lf, [eC™(Q) (1.3)

It is easy to see gL as given by (1.3) still satisfies (1.2), so it makes X(2) a C*(Q)-

module. Furthermore, it has a conjugate operation
L(f)=Lf, feC”(Q) (1.4)
and the so-called Lie bracket operation [-,-] : X(2) x X(Q2) — X(2)
[LM]f = LOME) = M(L), ¥feC™(Q) (1.5)

making it a Lie algebra over C.! To avoid cluttered expressions, given L € X(§2) and

f e C*(Q), we denote the value of L(f) at a point p € Q by (Lf),.
1 see footnote in [BCHOS, p. 4] for the definition
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Restrictions

The action of vector fields over smooth functions has a local character which is not
very evident in Definition 1.2. The first thing to realize is that the support never increases

—if f vanishes near a point p, the same is true of Lf.

Proposition 1.3 ([BCHO08, Prop. 1.1.3]). If L € X(2) and f is constant, then Lf = 0.
We also have

supp Lf csupp f, VfeC®(Q),LeX(Q) (1.6)
O

Proof. The first claim follows at once replacing f = g = 1 in Definition 1.2 and using the
fact L is C-linear. To verify (1.6), we consider a set V' < § where f vanishes and show the

same must occur for Lf.

Fix a point p € 2 and take (U, x) a local chart with pe U < V. Also let ¢ € C(Q)
with ran ¢ < [0, 1] be supported in U and such that ¢(p) = 1. Then f = (1 — ¢)f and by

Leibniz’s rule

Lf=L(1=9¢)f+(1=¢)Lf = (Lf)p=(L(1=9))pf(p) + (L= ¢(p)(Lf)y=0
(1.7)

so we conclude Lf|y = 0. O

Then, by linearity, it’s easy to see the value of Lf at a point p € ) is determined
solely by the germ at p defined by f, since, for any g € C*(£2) which agrees with f
in a neighborhood of p, we have p € (Q\supp(f — g)) and thus, by Proposition 1.3,

(L(f = 9))p = (Lf)p — (Lg)p = 0.
That allows us to restrict a vector field L € X(£2) to open subsets U c () by letting
Ly € X(U) be the unique C-linear map making

C?(Q) —L— C*(Q)

J J (1.8)

Co(U) 2 C*(U)

a commutative diagram, with the vertical arrows denoting restrictions. More explicitly,

~

(Lo flp = (Lf)p, peQ feC*(U) (1.9)

where f € C*(Q) is any such that fp =/,
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Local coordinate representations

If U = RY is open, the partial derivatives

. of o
T%f a?j, j=1...,N (1.10)

define C-linear operators over C'*(U) which, furthermore, satisfy Definition 1.2 by virtue

of the product rule.
Let p € U, since the the values (Lf), depend on f solely through ip e C*(U),

expressing the values of f near p with a first order approximation
N
f(x) = f(p) = X hi(@)(5(2) — 25(p)) (1.11)
j=1

where h = (hy, ..., hy) is valued in RY and such that lim,_,, h(z) = f'(p), we may apply

Leibniz’s rule to the previous and evaluate at p to obtain (Lf), as follows —

Lf = Zth (x; —xj(p)) + h; Lx; — (1.12)

(L1 = D) L), = Yo, (55 (113

J

Therefore, L is given as a C*(Q2)-linear combination of the vector fields in (1.10)

0
L=)>» Lx;— 1.14
; x]axj ( )

ox;

and <i> . is a basis for the module X(U).
=
Now suppose 2 is a manifold of dimension N. Each local diffeomorphism provided

by a chart in the differentiable structure can be used to pullback the basic vector fields

(1.10) in RY to a basis of vector fields in the chart domain.

Proposition 1.4. Each chart (U,x) in Q2 induces a basis (%) of X(U) with elements
773

defined by the requirement of commutativity in the following diagram

o
ox ;

Co(U) — L o (U)
lx N l (1.15)

ox

C*(2(U)) — C*(x(U))

If (x1,...,25) € CF(U) are the coordinates of a chart (U, x), the expression for a
given L € X(U) is again provided by (1.14). In particular the Lie bracket of L with some
M € X(U) may be written

[L, M] = > (L(Mz) - M(ij))aij (1.16)

J
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1.3 Vector bundles

The general definition of a smooth vector bundle is the following.

Definition 1.5 ([Leel3, Chap.10]). Let 2 be a smooth manifold of dimension N, a smooth
vector bundle of rank v over ) is a smooth manifold E with a smooth surjection p : E — M
such that

(i) for each p € Q, the fiber E, = p~'(p) over p is endowed with the structure of a

v-dimensional vector space over IF;

(ii) for every p € 1, there is an open neighborhood U < §, which contains p, and a

diffeomorphism
®:pU)—>UxF (1.17)

(said a local trivialization of E over U) such that the canonical projection m of U x F¥

onto F¥ makes

1) 2 U x F”
(1.18)
S A

commute. Moreover, the restriction of ® to any of the fibers E, defines a linear

p

isomorphism E, — {q} x F”.

It is a common abuse of language to refer to E, rather than (E,p), as the vector
bundle, leaving p and €2 implicit. The bundle is said real if F = R and complex if F = C.
The smooth manifold 2 is often said to be the base space, while E is referred to as the

total space.

Since p is surjective, the underlying set of E is a disjoint union of the v-dimensional

vector spaces

E=||E, (1.19)

peQ)
Notice the differential structure of E can be fully recovered from condition (7i), which
implies p~(U) are chart domains on E for every chart domain U of €. In particular,
if there exists a local trivialization whose domain is the entire base space E, then F is

isomorphic to the product space 2 x F” and p: E — € is said a trivial bundle.

Smooth maps from o : {2 — E such that the composition p o ¢ is the identity map
on () are called sections of EI. They constitute the space of sections of E, which is denoted
I'(E).
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For our purposes, the most essential instances of vector bundles will be the complex
tangent and cotangent bundles of a smooth manifold €2, as well as the lower rank bundle

structures found within those.

Definition 1.6 ([BCHOS8, Definition 1.3.1)). A complex tangent vector v at a point p € Q
is a C-linear map v € L(C*(p),C) such that

v(fg) = f(p)v(g) + g)v(f), [f,9€C (p) (1.20)

We denote CT,S) the vector space of complex tangent vectors at p € €.

As we have seen before, given a vector field L and a point p € €, the value of (Lf),
only depends on the germ of f at p. Since Leibniz’s rule is built-in the definition of a

vector field, we can define complex tangent vector with the following association

Ly: f,eC*(p)—(Lf)peC, [ eC%(p) (1.21)

Zp
The tangent vectors obtained in this manner from the basis (;2) € X(U) induced by a
J

chart (U, z) and a point p €  are denoted %) . It is easy to see they constitute a basis
Jlp
of CT,<2.

Definition 1.7. The complexified tangent bundle CTS2 of Q2 is the disjoint union

CcrQ = | |CT,0 (1.22)

peQ)

If 7 : CTQ — Q is the projection v € CT,Q) — p, a trivialization 7= (U) — U x CV of
CTQY near p defined by choosing coordinates (U, z) for Q with p e U and setting

0
U:Zaj@i:ﬂj

This makes (CTS, ) a smooth vector bundle of rank N.

e ' (U) — (p,(ai,...,an)) (1.23)

p

Definition 1.8. A complex vector subbundle V of CT) of rank n and corank N —n is a

smooth vector bundle substructure of CTS2, meaning it is given by a disjoint union

V=||v,ccra (1.24)

PpeN

such that

1. for each p e Q, V, is a n-dimensional (complex) vector subspace of CTS);

2. given p € €, there is U 3 p open and vector fields Ly, ..., L, € X(U) such that
spanc{(L1)q, ..., (Lyn)y} =V, for each g€ U.
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A family of vector fields (L,..., L,) such that (L),,..., (L), spans V, for each
p € Q) are called generators of V. Condition 2. in the definition can thus be rephrased as

follows: for every p € ) there is U < () open and a family of n vector fields which generate
YV nCTU.

Notice a section of a subbundle V < CT2 is nothing but a vector field L € X(£2)
such that L, € V, for every p € Q.

Corresponding to vector fields and the tangent bundle, we have the dual notions of
a 1-form and the cotangent bundle. They fulfill pretty much the same properties as the

former.

Loosely speaking, we can say the cotangent bundle CT*() is the smooth vector
bundle obtained from attaching continuous duals CT;Q = (CT,Q)* as in Definition 1.8. A

I-form w is a C*(Q2) linear map
w:X(Q) > C*(Q) (1.25)

They restrict to open sets as well. Given a chart (U, z), the canonical projections of RY

induce a basis of 1-forms in U, denoted (dz;)1,. n, characterized by the relations

.....

0 .
dz; (m) =0k, Vi, k (1.26)

More generally, a k-form is characterized as a smooth section of /\k T, so we sometimes
denote T(A* T*Q) the set of k-forms over Q. See [BCHOS, Section 1.4] or [Leel3] for
further details.

Proposition 1.9 (Exterior derivative axioms [Leel3, Prop. 14.24]).

Let M be a smooth manifold, then there are unique linear maps d, : (A" T*M) —
(AP T*M) with the following properties:

(i) If we D(A"T*M) and n € T(A' T*M), then
dw An) =dwAn+ (—=1)Fw A dn;
(11) dp+1 o) dp == O,
(iii) For all f e C®(M), the dual relation

@f, L) = L(f) (1.27)

holds.
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The validity of the following Lemma and its dual statement establish a one-to-one
correspondence between subbundles of CT(2 of rank n and subbundles of CT*() of rank
N —n.2 This relation will play a significant role in our classification of involutive structures

at a later point in Chapter 2.

Lemma 1.10 ([BCHOS8, p. 9 Prop. 4.4]). Let V < CTQ be a complex vector subbundle,
then the subset V+ < CT*Q with fiber elements

={A e CT;(Q): Ay, =0}, peQ (1.28)
s a vector subbundle of CT™*(2.

Proof. Fix p € Q and a local chart (U,z) with p e U. Take Ly,..., L, € X(U) generators
for V n CTU and write each of them as

& 0
Lj = Z ijﬂ, i € COO(Q) (129)
k=1

Since (aj) € My« (C*(€2)) is smooth and has full rank in U, one of the (Jl\f) square
submatrices is non-singular in a shrunk neighborhood of p. Therefore, by taking U smaller
and reindexing the matrix rows, we can assume the square matrix given by the first v
rows is invertible in U. Suppose its inverse is (bj;) € M, (C*(U)) and consider a new

family of vector fields in U defined as

Ly =Yyl j=1,...,v (1.30)
i
Notice they also generate the subbundle V n CTU. Furthermore, the vector fields L’ are
written
L'-=a+NZVc~ . cir € CP(U) (1.31)
G *ox,n * ’
so we let
= dx,,; — Z cydry, 1=1,...N—v (1.32)
Then, wy,...,wy_, are linearly independent in the fibers of CT*U while also satisfying
wj(Ly) = dxni(L) —cjp =0 (1.33)
Thus they make generators for V+ n CT*U. O

2 To be sure, the dual statement is obtained by switching the roles of the tangent and cotangent bundles

in the proposition.
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1.4 Distribution theory and Fourier analysis

Our notation in the subject of real analysis follows the standard of classical books
such as [Fol99] and [Gral4].

Given x = (x1,...,2,) ER" y = (y1,...,yn) € R, we set

1/2
Ty = Za:jyj, |z| = (Z x?) (1.34)
J J

Let f be a function of x on R"™, the partial derivative with respect to the j-th variable is

written

af
Ej or 0y, f (1.35)

A multi-index (on R™) will be an ordered n-tuple of non-negative integers. Given a

multi-index a = (a, ..., a,) € N" we set
ol = aj, ol =Dlayl, ar = oo (1.36)
J J
and, given x = (1,...,x,), 2% = jx?j. If x is the only variable of a function, the

subscript « may be omitted in 0%. The order relations < and < on N induce partial orders

denoted by the same symbols on N"™. For instance, if & and § are multi-indices,
a<f = Vj, a; <fj (1.37)

Then, the general Leibniz’s product rule for f, g functions on R" reads

o= 3 (§)@nea wee (5)-T1(3) 0

0<f<a J

Topological vector spaces

A topological vector space (T'VS) consists of a set X equipped with a topology T

and a vector space structure (X, +,-) over F such that

1. every element of X is closed in 7;

2. the vector spaces operations + : X x X — X and - : F x X — X are continuous

with respect to 7

It follows automatically from those requirements that X is Hausdorff and the topology

7 is translation-invariant, the latter meaning given an open set U € 7, the translates
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v+ U = {v+u:ue U} are open as well, for whatever v € X we choose (see [Rud91)).

The topology 7 is then fully described by a local base, that is, a topological base at 0.

If there exists a choice of local base B such that every U € B is convex, the TVS
is said locally convez. This is relevant because many of the standard functional-analytic

results for normed spaces have corresponding versions for locally convex TVS.

A seminorm on a vector space X is a function p : X — F which is both additive and
positive homogeneous. One convenient way to introduce a locally convex topology in a

vector space X is by means of a family of seminorms (p,)aca With the separating property

Vo e X\{0}, dae A such that p,(x) # 0 (1.39)

Theorem 1.11 ([Rud91, Th.1.37]). Suppose (pa)aca a separating family of seminorms on

a vector space X. Associate to each o € A and positive integer n the set
V(a,n) ={ze X : pa(z) < 1/n} (1.40)

then finite intersections of sets in the collection (V(a,n))aeanen constitute a local base for
a topology T on X, which turns X into a locally convex space such that all seminorms pe,

continuous.

When the family of seminorms which induces the topology of a TVS is countable,

say (pj)jen, a compatible translation-invariant metric can be defined as

v)

, xyye X 1.41
m (1.41)

22 ]1+p]x—

Spaces of functions

Definition 1.12 (Locally integrable functions). A Lebesgue measurable function f: R™ —
Q is locally integrable if for all K < R™ compact

f |f|ld\ < o0 (1.42)
K

The set of all locally integrable functions is denoted L} (R™). It can be turned into a
metrizable TVS by taking (K;) < R™ an ezhaustion of R™ by compact sets (i.e. | JK; = R"
with K; € K;11) and the topology described in Theorem 1.11 for the seminorms

pi) = | 1flax (143

j
Definition 1.13 ([Gral4, Def.2.2.1]). Let C*(R™) be the space of smooth, complez-valued

functions on R™. We introduce the following family of seminorms: given o, 8 multi-indices
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in R™, set
po,p(f) = sup [z207 f| (1.44)

Then f e C*(R") is in the space of Schwartz functions S(R™) if for all o, B

Pap(f) <0 (1.45)

The family (p,,3) defined in (1.44) is countable and each of its elements satisfy the
axioms of a seminorm on the space of Schwartz functions due to (1.45). Furthermore, it
is separating since poo(f) = 0 implies f = 0; therefore, we can endow S(R") with the
topology of Theorem 1.11 to make it a locally convex metrizable TVS. The corresponding

notion of convergence for a sequence (f;) < S(R") is the following —

fe 20 <= VYa,B, pas(fe) =0 (1.46)

It is not hard to show this makes S(R™) complete, since derivation is well-behaved with

respect to uniform limits and pgo(fx) — 0 implies f; — 0 uniformly.

The setting of Schwartz functions is ideal for Fourier analysis because the Fourier
transform defines an automorphism over S(R™). We opt the normalizations in the following

definition.

Definition 1.14. Given f € S(R") we define

FO = fla)e?@dy (1.47)

R

the Fourier transform of f and
f&) = | fla)e™¢da (1.48)
Rn

the inverse Fourier transform of f.

The standard formulas relating the Fourier transform and derivatives of a function

are more concisely written if we introduce the normalized differential operators

o 1 6]

Proposition 1.15. Given f € S(R"), y € R" and « a multi-indez, the Fourier transform
given by Definition 1.14 is a homeomorphism from S(R™) to itself. Furthermore,

L fle < [l
2. (Df)~ (¢

) = £ f(€)
Bfff
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Definition 1.16 ([Gral4, Section 2.3.1]). Convergence in the spaces C* and C'¥ of smooth

functions are regarded in the following sense:

L fy » feC”® <= [fi,f € C* and limy_ o sup, <y [0°(f — fi)(z)| = 0, Va
multi-indices and N > 0

2. fr > feCF <= [, feC® are commonly supported in a compact set K and
limy o0 [|0%(f = f&)| = 0, Yo multi-indices

1.4.1 Distributions

77 Distributions are the continuous linear functionals in the spaces of functions

previously introduced. We denote

D'(R") = (CZ(R™))* (1.50)

[

S'(R") = (S(R"))* (1.51)

The operator topology, in both cases, is given by the weak® topology, where sequential

convergence amounts to
Ty »> T in B* < T, TeBand T (f) > T(f), YVfeR (1.52)

with # standing for either C'¥ or S. It is usual to refer to an element of S as a tempered

distribution.

Those spaces allow us to define, among others, operations of multiplication by smooth

function as differentiation. Consult [Fol99, Chapter 9] for the precise definitions.

For the subject of Hilbert Sobolev spaces, we refer to [Fol99, Section 9.3] and only

discuss the basic facts we will use.

Let s € R, the function & +— (1 + |£]2)¥2 is smooth and slowly increasing, therefore

Asf = (1 + (€2 )" (1.53)

is a well-defined, continuous linear operator on &’. In fact, one can verify Ao A_, =
A_s0A; = ids so that A, is in fact an isomorphism. We define the Hilbert space H?*, for
a given s € R, as the subset of tempered distributions such that A, f € L2

Definition 1.17. The Sobolev space H®, for s € R, is the set
H*={feS8 :Afel? (1.54)

endowed with the norm

| £]

R 1/2
e = 1A = < [1rora+ |£|2)Sd§) (1.55)
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Notice H* — H! whenever s > t.

Definition 1.18. The Sobolev spaces H* and H~* are defined as
H” = (H, H™=|]H (1.56)
s>0 s<0

The former is endowed with the inductive limit topology obtained from the inclusions

H* < H? while the latter receives the weak* topology from its dual pairing with H™.

1.4.2 Fourier analysis

Consider the Fourier transform F defined again by formula (1.47).

Theorem 1.19 ([Fol99, Th.8.22]). Suppose f € L'(R").

1. ifx*f e L' for |a| <k, then J?e C* and Daf: (—1)‘O‘|x/a\f

2. F(LY) < {f e C": lim,_ f(x) = 0}

1.4.3 Measure theory

Definition 1.20 (Upper semi-continuity). A function f : X — R is upper semicontinuous

if for every p € X andr € R there is an open neighborhood U of p such that f(U) < [—oo, 1)

Theorem 1.21 ([Fol99, Th.7.10] Lusin’s theorem). Suppose that y is a Radon measure on
X and f: X — C measurable and vanishing outside a set of finite measure. Then given
€ > 0, there exists ¢ € C.(X) such that ¢ = f except for a set of measure less than €. If f
is bounded, ¢ can be taken such that |P|e < || f]lw-

1.5 Pseudo-differential operators

Given a function a(x, &), we may consider its corresponding action T, as an integral

operator

A~

T.f(z) = f T, €) F(€) de (L57)

n

In particular, the action of a differential operator can be recovered in (1.57) by a(z,§)
its symbol. Thus, the class of pseudo-differential operators, which includes all integral

operators represented as above, generalizes the usual differential operators.

Integrability on the right-side of (1.57) and continuity of the integral operator will

naturally depend on the domain of definition, as well as the decay of a(x,§) and its
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derivatives. The different conditions we may impose on a(z,§) : R™ x R" — C determine

spaces of functions generally referred as symbol classes.
The rather simple case of symbol classes S™(R" x R") and its extension result for

the Hilbert Sobolev spaces H¥*(R™) are all we shall need for the purposes of Chapter 3.

Definition 1.22 ([RT10, Def 2.1.1] Symbol classes S™(R™ x R™)). A smooth function
a: R" x R" — C belongs to the class of symbols S™(R™ x R™) if for all multi-indices

a, B =0 there are constants A, > 0 such that
070galz, &) < Aa(1 + [g)m (1.58)

Theorem 1.23. Let a € S™(R"™ x R"™), the pseudo-differential defined by the symbol a is

~

o(X.D)f(@) = [ almOfO)de, e S (1.59)
Then a(X, D) f € S(R™).

Theorem 1.24 ([RT10, Th. 2.6.11]). Let T' € S™R™ x R™) be a pseudo-differential
operator of order m € R and k € R. Then T extends to a bounded linear operator from
H¥(R™) to H™(R").

Corollary 1.25. If T € S™(R" x R") is a pseudo-differential operator for some m € R,
then T' extends from a bounded linear operator in S(R™) to bounded linear operators in
H*®(R™) and H=*(R™).
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2 Differential complexes and involutive sys-

tems

We assume throughout the current chapter that €2 is a manifold of dimension v. The
symbol ' will stand for the scalar fields of either R or C — we employ it whenever both

options are suitable.

2.1 Complexes of differential operators

Let 2 be an open submanifold of R”.

Linear differential operators of scalar-valued functions

We denote Diff(§2) the collection of all linear differential operators C*(2) — C'*(Q2).
In multi-index notation, that means for each P € Diff(2) there are smooth coefficients
(Gn)aca < C*(Q2), where A is a finite multi-index family, such that for any f e C*(Q)

and z € (2,
Pf(x) = )} aq(x)D" f(x) (2.1)
acA
This is often written more concisely as

P(z,D) = > aa(z)D° (2.2)

acA

The support of a family (a,), denoted supp (a,) consists of those indexes o € A
for which a, is non-zero.! Thus, each differential operator P € Diff(2) has an order given
by ord(P) = maXaesupp(as) || Perhaps including a few zero coefficients, the same operator
P of (2.2) is written as

P(z,D)= Y au(z)D" (2.3)

|| <ord(P)

The subset of operators in Diff () up to order k is denoted Diff*(Q).

1

if context allows it, we will often omit the indexing family
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Linear differential operators of vector-valued functions

For operators mapping vector-valued functions, we make the following adjustment.

Definition 2.1. Let V,W be finite dimensional F-vector spaces with dimV = m and
dim W = n. Then, a linear differential operator P € Diff (Q; V., W) is a linear mapping
P:CP(; V) — C®(Q; W) which is represented by a matriz of coefficients in Diff(§2), that
is, given yv,yw respective bases of V. and W, there exists [P] = (Pji) € Myxm(Diff(Q2))
such that for all f € C*(; V)

[Pflw = [PIlf ]

Although the definition works with a specified basis of the vector spaces, all examples
we shall present will come with a ‘natural’ choice at hand, ultimately coming from the
standard basis of R”. Our initial examples should make this point clear. Identifying the
vector values within a single vector space is a privilege of working with open submanifolds
— if our description of €2 came from the point of view of intrinsic manifolds, the values

would take place in vector bundles, as one often sees in the literature.

Definition 2.2. Let (E;) en be vector spaces of finite dimension and (P;);en < Diff (€2;
E; Ej;1). A complex of differential operators P = (C*(); E;), P;); consists of a

sequence

b

o Ey) T

0 0y 00 By) T 0 By) s o D

such that Vj € N, Pjiy0P; =0.?
The j-th level of the complex, C*(; E;), is attached to a cohomology space

. ker Py
ran P;

Hp ()

The sequence is exact at C°(Q; E;) if the corresponding cohomology Hb () is trivial,
i.e., ker Pjyy = ran P;. If P is exact at every level, we simply refer to P as an exact

sequence.

Examples

Example 2.3 (The de Rham complex).

Let E, = A"F” be the (;)—dimensional vector space of alternating p-linear maps
on ¥, often referred simply as p-tensors. We first recall some basic facts about the

2 notice each equality Pj;; o P; = 0 is equivalent to an inclusion ran P; < ker Pj44
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alternating vector algebra as they apply to the situation at hand. Let Z) = {(i1,...,i,) €
{1,...,v}P 1 iy < ... < iy}, then given a basis ei,...,e, for Ey, dual to e',... e € Ey,
each J = (j1,...,Jp) € {1,...,v}? determines a p-tensor e; = e;, A ... A e; as follows: if
any index of J is repeated, then e is zero; otherwise, e; is characterized among p-linear
maps in F” by the fact VI = (i1,...,4,) € {1,...,v}?

. : 0, if I # J as sets
ej(e, ... e"?) = (2.4)

sgno, if I = oJ for some o € SP

A permutation o € SP applied to the p-tuple J thus corresponds to multiplication by
sgno € {£1} on e; € E,, that is

e,y = (sgnoey, VoeSP (2.5)

In particular, all e,; with o € S? are co-linear in E, and (e,) Jezy s a basis for the same
vector space. For practical reasons, whenever J is an index ranging over Z, most commonly

in a summation, we shall abbreviate [J] = p, leaving v understood from context.

Proceeding with our example, the function spaces C*(2; E,) with E, can be under-
stood as spaces of p-forms over 2. The natural choice of basis for E; are the 1-tensors
(dzj)j=1,..v, dual to (0y,)j=1,...,, © Eo. As such, the algebraic structure of C*(€); E,) as a
C*(Q)-module over E, means we are able to represent each w € C*(Q; E,) uniquely as a

sum

W= Z frdzy,  f;€CP(Q) (2.6)

[/]=p
taking values w(t) = X5, fs(¢)dz; € E, for each t € (.

The differential operators d, € Diff(§2; E,, E,;1) of the complex are the exterior
derivatives. Given with respect to the standard coordinates (z;);=1..,, those are defined

as

d, ( > fJeJ> - > Z Oy, frdy, A dy (2.7)
[1]=p [

J]=p k=1

This is equivalent to the the coordinate-free axiomatic approach of Proposition 1.9,
which emphasizes the formal properties of the operator (notice the chain complex condition
dj+10d; = 0 is precisely axiom (i7)). In terms of the coordinate-wise definition, the complex
condition can be seen as a consequence of the commutativity property of partial derivatives

of smooth functions, as will become clear in the computation of Lemma 2.14.

The sequence d = (C*(Q); Ej),d;) is known as the de Rham complex. Taking
the restriction of the exterior derivatives to the spaces of compactly supported smooth

functions, another differential complex (CF(€2, E;), d;) is produced.
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Example 2.4 (Complex of p-currents).

We construct a differential complex similar to the previous one, where distributions
take the role of smooth functions.® Here the p-th level AP D'(Q) of the complex will be a p-
current, which essentially works as a p-form with distributional coefficients. Algebraically
speaking, /\"D’'(Q) is still a C*(£2)-module. The p-alternating tensors (dz))[s—p from

the previous example allow us to write a p-current u € AP D'(Q) uniquely as

u= > udry, uy;eD(Q) (2.8)
[J]=p
which adds and multiplies by scalar values as one would expect. Furthermore, there is
a bilinear wedge product operation that turns /A" D'(Q) into an exterior algebra. The
construction mirrors the wedge product of differential forms in almost every aspect. An
important distinction, however, is that D’(€2) lacks the multiplicative structure of C* (),
so we have to settle for multiplication by C*(Q2) in A" D’(2).

From an alternative, somewhat less artificial angle, we can understand p-currents
through the dual relation they have with compactly supported (v — p)-forms. The bilinear

pairing (-, )p in  which evaluates distributions on test functions induces a bilinear map.

oy AD(9Q) % /_\ch(Q) > F

which is uniquely determined (among bilinear maps) by the property

Vel Iel, ,, u;eD(Q),¢reCr(Q) (2.9)
<UJdI'], g0[d$[> = sgn([, J)<'LL], SDI>D’ (210)

where sgn(1,J) is 0if I n J # J or equal to the +1 sign of the permutation (I, J) € S”
otherwise. Then, a p-current u € A" D'(Q2) corresponds to the continuous linear functional
{uy -y AP CP(Q2) — C. Finally, to match the topological space of distributions when
p =0, we endow A" D’'(Q2) with the weak-+ operator topology.

We remind that a function f € Li_(2) can be identified in the space of distributions

loc

by regarding it as a continuous linear functional which acts on test functions ¥ € CP(2)
by integration, that is, {f,¢) = § f¢. Now since C(Q) and C*(Q) are included in Lj ,
p-currents with distributional coefficients which correspond to smooth functions in 2 can
be identified with p-forms over €, so that we have inclusions A” C*(2) ¢ AP C*(Q) <

AP D(9).

3 The present example is not, strictly speaking, a differential complex as we defined in Definition 2.2.
Still, it is not difficult to define complexes a bit more generally so as to include it — the important fact
is CF(Q) continuously embeds as a dense subspace of D’(2). Currents will unavoidably appear when
we consider distributional spaces of functions in the example models of the next sections, so we believe

it is appropriate to introduce them sooner, in our general discussion, rather than later when our focus
is on specific matters.
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Once again, the chain maps d, are given by formula (2.7). Of course, the symbols 0*
in this case are to be understood in the sense of distributions, that is, each 0% f; € D'(Q2)
in the formula is actually a continuous linear functional on C*(£2) whose value on a

compactly supported function ¢ € CP(12) is
<aaff7§0> = (_1)|a\<f]’aa(p> (211)

The same computation we referred to in the previous example shows (D'(Q; A" E,),
dy) is a differential complex. In fact, a theorem of de Rham even shows the cohomologies

of this complex and the one from the former example are naturally isomorphic.

Example 2.5 (Dolbeault complex).

Let v = 2n and consider 2 = C" =~ R” identified through the natural isomorphism
(ay +1iby, ..., an +1ib,) — (a1,...,ap, b1, ..., b,). Then, the standard C-valued coordinates

(2j)j=1,..n. € C(Q) lead to a set of smooth real coordinates (z;, y;) =1, With z; = z;+1y;.

Similarly, we may consider the coordinates z; = z; —iy; € C*(Q) coming from the
isomorphism (ay — iby, ..., a, —ib,) — (a1, ..., an,by,...,by,). Since z; = 3(z; + Z;) and
y; = 2%(,2J — Z;), the chain rule is suggestive of the following derivation rules with respect

to the z; and Zz; variables: given ¢ € C*(2), let

_0pdx;  0poy; _1(0p .09
050 = G0 0 Ty 0n 2\ Loy (2.12)
o 090w 09y, 1 (0 09
50= on oz, T oy 05 2 \awl | oy (2.13)

so we formally define 0., d;, € CT'Q2 using the RHS expressions above. Since spang{0d,;, 0y,)
= T, we also have spanc(d.,,ds) = CT'Q and a direct splitting into the subbundles

CTQ = CT""Q® CT*' (), where (2.14)
CT™Q = span(0,,y and CT”'(Q) = span(?d;,) (2.15)
C C

By duality, the corresponding tensors (dz;, dz;); are generators of CT*Q. Furthermore,
in view of Lemma 1.10, the latter also splits into a direct sum of subbundles AM?(Q) =
CT* (), A%L(Q) = CTYO(Q)L, so 1-forms in Q decompose directly into a section of
A%H(Q) plus a section of AM(Q2). More generally, a complex k-form is a section a €
T(A" CT*Q) of the k-th exterior power of CT*(2, which is a C*(£2)-linear combination
of tensors dzy A dz; with |I| + |J| = k. Let p, ¢ such that p + ¢ = k be fixed, a k-form

written as

a = Z OéL]dZ] A dZ}, ag g€ COO(Q) (216)
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is often referred to as a (p, ¢)-form on Q. Such elements constitute a set we denote AP9((2).

For each p and ¢ fixed we define complexes

A%(Q) —2 AMI(Q) —— .. (2.17)

APO(Q) —2s APL(Q) —— ... (2.18)

where 0, 0 have the following formulas

5(2 Oé[JdZ[ /\d%{]) = Z Z@ZjaLJ de /\dZ[/\dZ] (219)
[|=p [|=p j=1
|J1=q |/1=q

(7/3( Z Oé[,JdZ] A dZJ) = Z 2 agjOé[,J dfj VAN dZ[ VAN di] (220)
|1=p 1]=p j=1
|J]|=¢ |J]=q

Again, the commutativity of (0.,); and (0z,); ensures 0o d = 0od=0.

J

Remark 2.6 (Relation with de Rham complex).

It should be noted for each j we have

oag. g oary .. 1 (dap;  Odapy .
PR dzj + PE dz; = s\ 0 2 (dx; + idy;) (2.21)
1 (oar,  .dapy . day, dar,y

thus, from the defining expressions of @, @, summing over j we have d = 0 + 0, where d is
the exterior derivative of the de Rham complex. It then also follows 0o d = —0 o 4, since

(0+0)o(0+0)=0.

2.2 Principal symbol and ellipticity

Each F-valued differential operator as in equation (2.3) induces a function we call
the symbol (or total symbol) of P.* The part of order k of P is an homogeneous operator
P®) e Diff*( M) where we only consider the terms in the representation which are associated
to derivatives of order precisely k. If k& > ord(P), then P%) is zero, of course. Thus P is
decomposed as P 4(P) 4 4 PO where each of the symbols P* is a homogeneous

polynomial of order k on &.

The principal symbol op of P will be the total symbol of P©4(F) that is

op) = ), (@) £eTIO (223)

|a|=o0rd(P)

4 Q) c RY being open, the cotangent bundle is trivially diffeomorphic to Q x R¥
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The operator P is said of elliptic type if for each x € €, the only real root for op(§) with
£ e T is the trivial £ = 0.

Let us see how those concepts are handled in the context of differential complexes.

Definition 2.7 (Principal symbol of P € Diff(Q2; V, W)). Consider as in Definition 2.1
that P e Diff(Q; V, W) has a matriz representation [P] = (Pj)) € Myxn(Diff(Q)) and let
k > max;;ord Pj; be fized. Then the principal symbol op(x,§) € L(V,W) is the linear
mapping where each entry (j,1) in matriz representation is given by T ph) that is, each

entry is the principal symbol of the homogeneous part of order k of Py

Remark 2.8. If Q) is simply a smooth manifold, the coordinates & on the fibers of T*2
depend on the choice of a local chart for Q. As such, the coordinate representation of P
for a fixed order k can vary, which makes the total symbol of P unsuitable for coordinate-
invariant properties. In the case of the principal symbol, however, we can work around this

issue as follows.

Let k = ord(P) and P e Diff(Q2; V,W). For each choices of u € C*(Q2;V) and
f e C*”(Q;R), we obtain a polynomial of degree k in W

7 e @) Pl y) (20) € W (2.24)
as we will readily see by taking coordinates. The operator P is represented by a combination

= >, 2 alDs, afe CF(9Q) (2.25)

lal<k 41

where [ D] € My, (Diff(2)) is the elementary matrix with D* at row j and column [ as
its only non-zero entry. Then, if [v;] € M,,«1(C%(§2)) is the coordinate representation of
ve C*(Q; V), we have

[D5(v)]p = 6;, D0 (2.26)

thus, by linearity,

[P(e™ u 2 a5 D5y (e )] = 1> ag D (e ) (2.27)

al<k 5l lo|<k 1

Now Leibniz’s product rule (1.38) allows us to write for each multi-index «

D& ) = 71l df e, + Z CyrlPlei™f qff Da—Py, (2.28)

B<a

Then, multiplying (2.27) by €/ and evaluating at x, we get (2.24) as sum of

polynomial terms of 7 on each coordinate. The maximal order coefficients are the ones
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associated to 7%, which are obtained from indices a such that |a| = k. If we single them
out with (2.28) we get

e~ f(z0) (Z T|a|€i7'fdfa2<aglul)> (.130) = (2.29)

|| =k l

™ > df(20)” (af(wo) - u(o)) = 7 (Z df(xo)aaj.(xo),u(:co)> «u (o) (2.30)

|lal=F laf=F

In particular, we see that the coefficient of 7% in (2.24) depends on the choices of
f and w only through the values of £ = df (zo) and 1 = u(x,), depending linearly on the
latter. It is therefore legitimate to define the principal symbol of P based on those values,

as we do in the following.

Definition 2.9 ([Men23] Symbol). Let P e Diff(Q; V, W), £ € T Q and k > ord(P). The
symbol o% (&) is the linear map V — W given by

e—imf(x0) ,
P (€)() = tim S (e ) () (2.31)

T—00 T

where u e C*(Q; V), f e C*(R) are such that df (zo) = £ and u(zg) = 7.

Remark 2.10. The principal symbol of P refers exclusively to o% with k = ord(P). Still,
in some contexts (such as Lemma 2.11), it is convenient to allow k > ord(P), in which

case the definition above readily implies o = 0.

It suffices to compare (2.29) with the statement of Definition 2.7 to convince ourselves

that both definitions of principal symbol agree.

Lemma 2.11. Let P € Diff*(Q; V, W) and Q € Diff'(Q; W, X), then for any & € T*Q the
principal symbol of QP satisfies the relation o5y (€) = o5 (&) o ok (€).

Proof. Given ue C*(2;V) and f e C*(;R), for each 7 € R we can write
1 —itf iTf 1 —iTf it f 1 —itf itf
s QP(e™u) = e Qe e Pe u (2.32)
By (2.31), we have the pointwise limit

TR TP T ol (df ) (u) (2.33)
where oh(df)(u) : p e © > oh(df (p)) (u(p)) € W (234)

and, likewise, given v € C*(Q2; W),

keI Qe Yy T ng(df)(v) (2.35)
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Now let £ € T Q2 and n e V, take u € C*(Q; V), f € C*(; R) related to { and 7 as in
Definition 2.9. Substituting o (df )u for v in (2.35), since the maps in (2.33) and (2.35)
(from © to V and W, respectively) are all smooth, the limit for the composition at the

right-hand side of (2.32) evaluated at x( simplifies to

aip (€)(n) = ag(df (0))(@p(§)) () = (o6 (&) © o (€)) () (2.36)

as we wanted. O

Definition 2.12. Let P = (C*(S}; E;), P;); be a differential complex as in Definition 2.2.

By virtue of Lemma 2.11, we know for each & € T*Q) the sequence

opy (6) TPy (5) Py (5) .

0 B B, Es (2.37)

is in fact a chain complex of vector spaces (meaning for any j, op,,,(§) oop,(§) =0). The

operator P is then said elliptic if for all & € T*Q the induced sequence (2.37) is exact.

Example 2.13 (de Rham complex). We show the de Rham complex from Example 2.3 is
elliptic.

Let u € C*(Q2; A" C¥) be a p-form and f € C*(Q), the product rule of the exterior

derivative (cf. (i) in Proposition 1.9) leads to

1. - 1
—e™d(e™ ) = idf A u+ —du (2.38)
T T

so taking the limit of Definition 2.9 obtain the principal symbol o4(§) = i€ A -.

Let us check the induced chain complex

0 iEn- v &N /\1 Cv & /\2 cv Zé;A) (239)

is exact for any given £. Indeed suppose we have £ € A 'C"\{0} and o € AP C” with
i€ A a = 0. Since £ # 0, we can take a basis (e, es,...,¢,) € /\'C” where e; = £. Then,

we split AP"" C” into a direct sum

Bj= Fy=
/\pHC” — "span {e;>@® span {e;) (2.40)
[J]=p+1 [J]=p+1
leJ 1¢J

Writing the action of i§ A - in coordinates, it becomes clear i§ A - restricted to Fj is
injetive. All summands in the coordinate expression of ¢{ A n with € £j vanish identically
due to § A § = 0, so that i§ A (E;) = {0} as well. Thus, for each a = ag, + ar, with
(O[Ej,Osz) € Ej X Fj

Ena=0 = {rnap, =0 = ap, =0 (2.41)
Therefore o = ag; € E;. On the other hand, we easily see i{ A (Fj_1) = Ej, so a € Tani§ A -.

We then conclude kerié A - = rani€ A -, which is the condition for exactness.
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2.3 Complexes determined by vector fields and involutive systems

Now suppose F = C and €2 is a smooth manifold of dimension N where a family
of complex vector fields L = (Ly,...,L,) € X(Q) is defined. The elements of L. can
be understood in agreement with Definition 2.1 as homogeneous differential operators
C*(Q) — C*(Q) of order 1.

We set basic constraints on L = (L, ..., L,) < X(f2) leading towards two distinct

goals. The first is to be able to define a differential complex

L2 L®

CP( N CY) = (s APCY) s (2.42)

LO) L
— —

0 = (Q)

in the sense of Definition 2.2. Once we set reasonable formula for the differential maps, a
necessary and sufficient condition over L, to the end of making the sequence a complex,

will readily follow — it is the mutual commutativity of the vector fields.

The other goal has to do with the inhomogeneous problems posed by overdetermined

systems of equations such as
Ljuzfj, jI 1,...,V (243)

We establish a couple of conditions over I that make an investigation of the basic matters
concerning solutions feasible (existence, uniqueness, regularity, and so on). They are the
following: the vector fields must be linearly independent pointwise, and the C*(2)-linear
span of the vector fields span the Lie algebra generated by those same elements. Together,
they give the minimal working assumptions for the theory of involutive systems to develop,
while also pointing towards certain subbundles of CT€), known as formally integrable

structures, as the intrinsic objects of study in regards to overdetermined systems.

From vector fields to a differential complex

Let (U, x) be a local chart of 2 and denote (0,,) = X(U), (dz;) = ['(T*U) the local
generators obtained from such choice of coordinates. Elements of the family IL are then

locally given by

N
Lj =) ajrla, (2.44)
k=1

for some uniquely determined coefficients o, € C*(U). As laid out in the introduction,

our intention is to define a differential complex (2.42) out of L. A reasonable starting point

is to take L) e Diff(Q; C”, A" C¥) given by

LOu =Y Lue;e 02(0; \' T7°Q), vfeC”(Q) (2.45)

j=1
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with (e, .. .,e,) a basis for C*. Solutions to L™u = f are then equivalent to solutions to the
overdetermined system (2.43) by means of the isomorphism C*(Q;C") = C*(Q; A' CY).

The operator just defined is remarkably similar to the differentials of the de Rham
complex of Example 2.3; in fact, if ) is open and L; = 0,; with v = N, then LM
equation (2.45) is precisely the first level of the exterior derivative. With that in mind, we
consider extending the construction to the remaining levels of the complex in accordance
with (2.7), that is, by making

]L(P) ( Z Oé]@[) = Z Z(Lk0q> e N €er, Qg€ COO(U) (246)
[I]=p—1 [T]=p—1k=1

Doing so certainly makes (2.42) a sequence of first order differential maps. The
question to be settled, then, is under which circumstances the definition above gives a

differential complex.

Lemma 2.14. Let L = (Ly,...,L,) < X(Q) be a family of vector fields and L®
CP(Q; NP1 CY) — C°(Q AP CY) the linear mappings given by (2.46), then (2.42) is a
complex if and only if, [Ly, L] = 0 for each k,l =1,... v

Proof. Let a = 3 _,  arer € C(%; AP~ CY), then (2.46) leads to

p+1)L Z Z Ll LkOé[ 6[ N Eer N Eer (247)
k=1
= ZZ(LlLkCY[ — LkLqu) e N e N ey (248)
I<k [I]

Hence, Ly, L;] = 0 suffices to ensure LP*VL® = 0.

Conversely, if the linear operators do form a complex, then in particular at p = 1

the expression in the last equation simplifies to

Wy = Z[Ll, Lylfernep=0 (2.49)
I<k

for each f € C* (). Now given (e; A eg)< is a basis A”C” and f varies freely, we conclude
[Ly, Li] = 0 for all k # . n

Involutive systems

We now present the assumptions made for overdetermined systems such as (2.43).

The special case of a single real vector field already provides some direction. Suppose

L is defined in a neighborhood of the origin in R with local representation

N
= > a0, (2.50)
j=1
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If L is non-vanishing at 0, we can define coordinates ¥, ..., yx near the origin so that

L = 0,,. Indeed, assuming we have a;(0) # 0, that amounts to solving a Cauchy problem

Opt; = a;(z1,...,2n), je{l,....,N}
21(0,92,...,yn) =0 (2.51)
m1(07y2a"->yN):yj7 jE{Q,,N}

Since a1(0) # 0, (y1,...,yn) — (21,...,2y) is a smooth local diffeomorphism, the (local)
inverse (z1,...,2n5) — (y1,...,yn) exists and attains to L = 0,, as we wanted. The
problem of solving Lu = f near the origin can be thus be solved by integration with
respect to y;. The assumption of L non-vanishing at the origin is crucial — nothing can be

asserted in general otherwise.

Then, at least in the real setting, the basic requirement for the existence of local
solutions to a vector field equation is that L € X(€2) is non-vanishing at the origin. More
generally, for a number n > 1 of real vector fields, Frobenius’ theorem states that for each
point there are coordinates yi, ..., y, such that span(L;) = span(d,,) locally, as long as
Ly,..., L, are linearly independent pointwise (cf. [BCHO8, Theorem 5.1]). Considering
the case of complex vector fields is more general than the real case, we have motivated the

following condition on L as a necessary one.

Definition 2.15. The family L = (Ly,...,L,) < X(Q) is said of principal type if for
each p € Q the families of vectors ((L1)p, - .., (L,)p) < CT,8 are linearly independent.

Remark 2.16. Clearly the mazimum number of vector fields in a family of principal type
is bounded by the dimension of the manifold, i.e. v < N in the definition above. Also
evident is the fact that v = N can occur in the chart domains U < §Q, since the standard
Euclidean coordinate fields pull-back to a local basis in X(U). In general, however, the
mazimum number of vector fields in a principal type family is particular to the manifold €
under consideration. For example, in the real case, it is well known that the spheres SN
with N even forbid globally defined, non-vanishing vector fields, so that v = 0 is already
the mazimal constant. On the other hand, again in the real case, the class of parallelizable
manifolds, which includes the tori TN and the sphere S3, can be characterized by the
existence of a principal type family with v equal to the dimension of the manifold (see

[Leel3, p.179] for further details).

For the second requirement, consider the system of equations (2.43) determined by
L in the homogeneous case f; = 0,7 = 1,...,v. Let £ < X(2) be the set of vector fields
L such that u solving the system implies Lu = 0. Then

L MeLl = Yu, [L,M]u=L(Mu)— M(Lu) =0 = [L,M]eL (2.52)
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so L is closed with respect to the bracket operation, and thus a Lie algebra. Furthermore,
it easy to see L is C*(2)-linearly closed. It may well be the case that the Lie algebra
generated by the family L is strictly larger than its C*(£2)-linear span. Therefore, if we
want make L. a C*(Q)-linear basis for £, we might need to complete it by adjoining vector
fields from L. However, such process may prove incompatible with the principal type
condition over L, as the next example demonstrates. Therefore, working simultaneously

with both conditions over IL requires an assumption from the outset.

Definition 2.17. The family of complex vector fields L = (Lq,...,L,) € X(Q) is said
involutive if it is of principal type and satisfies the Frobenius condition:

Vj, k, [L;j, L] € span L (2.53)
c*(Q)

Example 2.18.

Let @ = R* and L = (Ly, Ly) = (04, 0n, + T1730,;), then L is of principal type,
but cannot be extended to an involutive family while remaining within the same Lie
sub-algebra. Indeed, (L, Ly) generates a proper Lie algebra of X(f2), with linear basis
(L1, Lo, L3) where Ly = [L1, Lo]| = x30,, ¢ span(Ly, Lo). However, to adjoin a vector field
to (L1, L2) while maintaining pointwise linear independence we need the linear span of
the fields at 0 to be CTy2 2 span(dy, |o, Ox,lo)-

2.4 |Involutive structures

The properties pertaining to the solutions of locally defined overdetermined systems
such as (2.43) do not vary either by a change of coordinates nor by diffeomorphic transfor-
mations. Therefore, if we want to regard those systems in an intrinsic manner, we must
concern ourselves with the vector bundles generated by the principal type families, rather

than the vector fields themselves. From now on, this is the perspective we adopt.

Definition 2.19. A complex vector bundle V < CT) is said a formally integrable

structure over () if for each W < 0 open we have
[L,M]eT(CTU nV) whenever L, M € T(CTU nV) (2.54)

In that case, (Q,V) is said an involutive structure.

Let V be a formally integrable structure of rank n, then for each local chart (U, x)
we get generators Ly, ..., L, € X(U) for V n CTU. Writing the vector fields as
L= St (2.55)
T k=1 " oy .
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the condition of linear independence implies the matrices (a;x(z)) € M, «, are of maximal

rank for each x € Q. Also notice that, since L1, ..., L, are generators, there exists smooth
coefficients ¢}, € C*(U) such that Vj, k,
[Lj, Li] = D &L (2.56)

]
Definition 2.20 (Characteristic set). Let V < CTS) be a formally integrable structure
over ), the characteristic set V° of V is the subset of the (real) cotangent bundle which is
orthogonal to V through their natural duality, that is

VO = Yl AT (2.57)
The symbol of a vector field L € X(Q) is the mapping
o €€ T e T*Q > ¢(Ly) (2.58)
Therefore, we have & € V° if and only if or,(€) vanishes for every L € T'(V).

Remark 2.21. Take (U, (21,...,2n)) a local chart on Q and & € T a covector at pe U.
Writing with respect to those coordinates § = 3 ; §;(dx;), and L = 3, aj52-, the expression
J

for the symbol becomes

o1(§) = &(Ly) = <2 fj(d%)p,zak(ip)aij> = Z%‘(P)fj (2.59)

,,,,,

V, the characteristic set in the vicinity V° n T*U is described by a system of equations

Dap(p)e =0, (&, &) eRY =1, v (2.60)
e
Notice that this definition of symbol for vector fields agrees with the one we gave for
vector valued differential operators in Definition 2.7 and Definition 2.9. Furthermore, if
(Ly,...,L,) commute, and therefore define a differential complex L (as we described in
Section 2.3), then a solution (&1,...,&N) to the system of equations (2.60) is equivalent to
the equality

ker op1(§) = ran oo (§) = {0} (2.61)

in the chain complex induced by & = 3;; &;(dx;), of (2.37). Said differently, a given & € T*(
will be in VO ~ T*Q iff the complex (2.37) induced by L and & € T*Q in (2.57) is exact at
E = A\'CV.

Example 2.22 (Mizohata operator). Denote (t,z) the standard coordinates in € = R2.
The Mizohata operator is the complex vector field

M—i—iﬁe%(RQ) (2.62)
 Ox ot '
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Since it doesn’t vanish anywhere, M defines a locally integrable structure V. The equation
for its symbol o(M )2 (&, 7) = £ — iz does not contain any real roots (£, 7) # 0 unless
x = 0. Therefore the characteristic set of M is given by

0, #fx#0

Vi) = ' (2.63)
spandt(; ), if x =0

In particular, we see the characteristic set is not necessarily a submanifold.

We give names for structures V with special algebraic properties on the vector space

structures of its fibers.

Definition 2.23 (Special structure types [BCHO08, 1.8, p 15]). Let V be a formally integrable

structure over 2, we say V defines

an elliptic structure if V) = 0, Vpe Q

a complex structure if V,®V, = CT,Q,Vpe Q

a CR structure if V,nV, =0, Vpe Q

an essentially real structure if V, =V,, Vpe Q

A few remarks are due here. Notice that a complex structure is a special type of
both elliptic and CR structures. Indeed, V, "'V, = 0 is the precondition to have a direct

sum, while
V,®V, =CT,Q = V, @V =0 = V=0 (2.64)

shows complex structures are elliptic. The name CR is short for Cauchy-Riemann, in
reference to the quintessential example of the sub-bundles CT*°, CT%! defined in the
construction of the Dolbeault complex in Example 2.5. Finally, the defining property of
essentially real structures makes it so that real vector fields can be taken as local generators.
To be sure, let Ly, ..., L, be local generators of V near a point p, then V essentially real
implies (Re Lj,Im L;);—1,., are still sections of V. Furthermore, n out of those span V, at
p. Since the rank of the subspaces generated pointwise by the vector fields must remain

constant in a neighborhood, we conclude they define a set of local, real generators of V.

Example 2.24 (The boundary operator on a hypersurface). Let Q = {z € CP: 3 |2|* =
1} be the unit sphere regarded as an embedded manifold of codimension 1 in CP =~
R?. With coordinates (zj,zj)j=1,. p as in Ezample 2.5, we consider the vector fields
in spange ) (0z;)j=1,..p < X(CP) which are also tangent to Q and build a corresponding
differential complex on A% (Q).
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The sphere  is implicitly given by the equation r(z) = 0, where r(z) = >, z;2; — 1.
The 1-form dr = ] j Zidzj + z;dz; € T(CT*Q) is therefore a generator of CT™*() and, given
v e T,CP with w € Q, tangency to  is equivalent to {(dr,v) = 0.

Define for v = 1,...,p — 1 the vector fields

. 0 0
and notice for each k =1,....,p—1,
o 0 0
{dr, L) = Z(Zjdzj + z;dz;) PP el B e 0 (2.66)
; P

Therefore, each L; actually restricts to a vector field over 2. Moreover, disregarding the
set of points where z, = 0, the family (Ly,..., L,_1) is pointwise linearly independent and,

for all j, k, its elements satisfy the relation

0 0 0 0
Li, Lyl =|2p=——2j=—,2p=— —2x=—| =0 2.67
[ J7 k] |:Zpaz7] Z]agp7zpagk Zkaz—p:| ( )
thus defining an involutive family over Q\{z, = 0}.
To generate a differential complex, we select 1-forms wi, ..., w,—1 € spangw o (dz;)

(sections of A%!(CP) cf. Example 2.5) in dual relation to the vector fields (2.66), that is,

P

W = Z Oékjd,gj, Qg € COO((CP) (268)
j=1

such that wi(L;) =0, (k=1,...,p—1,5=1,....,p—1) (2.69)

Substituting the expressions (2.68) and (2.65) for each equation given by (2.69), we obtain

the following general solutions for the coefficients with 7 # p

Orj + zjx
wk(Lj) = Qgj2p — Z2j0kp = 5jk = Qp; = ki T 25 Tkp (270)

77777

77777

WE — ‘Dk = Z ?(ﬁk - gk)déj = ﬁk — Bk Z,Zjdfj (271)

- V4
J

Notice the 1-form };; 2;dz; vanishes on CT™'Q. Indeed, if v = 37, %% e CT%'Q for some
w € (), then

{dr,v) = ka(w)zk =0 = szdéj(v) = Z'yj(w)zj =0 (2.72)



Chapter 2. Differential complexes and involutive systems 45

Therefore, wy, — @y, restricted to CT*1Q) is zero and we conclude the duality between (wy)
and (L;), as established by the system of equations (2.69), determines a unique 1-form
w? € A%(Q). Thus we may choose, for instance, g, = 0 (k = 1,...,p — 1) for the free

coefficients, so that w? = =dz;.
P

Define the differential operator df as follows — given f € C*(Q\{z, = 0},C),
Af =D (L)t (2.73)
=1

Notice this defines 0} intrinsically by virtue of the fact (L;) and (w;) were chosen as duals.

Of course, p had a privileged role in our construction and, in the same fashion, we

can replace p with ¢ = 1,...,p — 1, obtaining similar vector fields L;I- = zq£ — Zja%q?
J
1-forms w? = idéj and differential operators
O =D (Lif)wl,  feC™(Q\{z =0},C) (2.74)

J#q

Let r,s € {1,...,p} and z,, z5 # 0, then
oS (L A e (LA
(0p — o) f = ; - (z,. 7% 2 (3ZT) dz; = (zs 5% 2 o dz; (2.75)

and once again the factor Y. z;dz; vanishes in Q2.> Since the domains Q\{z, = 0} cover Q
and agree at their intersections, we arrive at a single, globally defined operator ¢y, which

leads to the complex

Co(Q) —2s AOI(Q) —2s A02(Q)

Locally integrable structures

Definition 2.25. A complex subbundle ¥V < CTS2 of rank n and corank m = N —n is
said a locally integrable structure if Q) has an open covering (U, ), where each bundle

VL A CT*U, is generated by exact differentials of local smooth functions. More precisely,
for all « there are Zy, ..., Z,, € C*(U,) such that

span{(dZ)p, . .., (dZp)py = Vo, Vp € U, (2.77)

If u is a local smooth function of €2, the definition of V' says du is a local section
of V1 iff du(L) = Lu = 0 for all L € T'(V). This implies V must be formally integrable as

5

notice we can include the indexes j = r and j = s in the expression of (2.75) without affecting the sum
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well: if L, M are local sections of V, then [L, M|Z; = L(MZ;) — M L(Z;) = 0; since those
are local generators, it follows that any local sections of V* vanish at [L, M]. Therefore,

[L, M] is a local section of V as well.

Local integrability of a formally integrable structure V can thus be reinterpreted as
a statement of existence of a maximal set of solutions: for each homogeneous problem
defined by a local set of generators of V, a full set of m independent local solutions exists.

From this viewpoint, we arrive at the following characterization.

Proposition 2.26. A formally integrable structrure V is locally integrable iff for any p € Q)
and Ly, ..., Ly, local generators of V we have U, 3 p such that 371, ..., Z,, € C*(U,) with

dZy A ... NdZ, # 0 everywhere in U, (2.78)
and L;Z, =0 Vjk (2.79)

Local generators

There are many possible choices of local coordinates on () and local generators for V
and V*. By using a structural decomposition of complex vector subspaces in C" ([BCHOS,
p. 17, Lemma 8.5]) one can choose local generators in a standard simplified form. Naturally,
it is only in the case of locally integrable structures that we can induce coordinates on V

and V* simultaneously.

Remark 2.27. With the exception of CR structures, all other types of formally integrable
structures presented in Definition 2.23 are locally integrable as well. The fact that complex
structures are locally integrable is a key result known as the Newlander-Nirenberg theorem.
There are known explicit examples of CR structures that are not locally integrable, but the
proofs are quite involved (see [BCHOS, Section 1.16]).

We will avoid the technicalities and present the result of interest right away.

Theorem 2.28 ([BCHO8, Corollary 1.10.2]). Let V be a locally integrable structure of rank n
and corank m over Q. Then given p € ) there is a coordinate system (ty, ..., tn, T1, ..., Tp)
from a chart (U, (t,7)) centered at p such that V* is spanned by the differentials of

Zi(z,t) =z +igp(t,x), k=1,...,m (2.80)
near the origin for some real-valued smooth functions ¢ € CF(U) satisfying

$x(0,0) = 0, dyp(0,0) =0, k=1,....m (2.81)

Writing Z(t,x) = (Z1(t,z),. .., Zu(t,x)), notice (2.80) and (2.81) imply D, Z(0,0)

(the Jacobian matrix restricted to the z-variables) is the m x m identity. Then, we can
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choose smooth complex coefficients (p;) near the origin so as to satisfy the relations

M2, = by (2.82)
with the vector fields
M= S pltn) L k=1 m (2.83)
=1 0z
Now setting
L=, —i) (0yé6)M, j=1,...,m, (2.84)
k=1

equation (2.82) implies L;Zy = 0;;Z), — 0y, M; = 0. Furthermore, writing the coordinate
matrix for the vector fields, it is clear that L4, ..., L,, My, ..., M,, are linearly independent

and thus span CTR™"" near the origin, with L4, ..., L, generators for V.

A tube structure V corresponds to the case where the ¢y from (2.80) does not depend
on x, so we can write Z = x + i¢(t). Then, D, Z(z,t) is the identity and we can take

My, = 0, to solve for (2.82). The resulting expression for the vector fields L; then becomes

m

Lj =3y, —i ) (0, 6k(t)da, (2.85)

k=1
and one can easily verify, using the coordinate expression (1.16) for the Lie bracket opera-
tion, that Lq,..., L,, My, ..., M, are mutually commutative. In particular, Lq,..., L, are
local generators for an involutive structure with a corresponding complex of differential

operators, as determined in Section 2.3.

We shall investigate, in the next two chapters, how questions of solvability are

handled for differential complexes related to this type of structure.
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3 A model with complex coefficients

3.1 Definition

The system under study is obtained from a family (P;) of v operators acting over
generalized functions of variables (¢,z) € € x R", for some ©Q < R open. Each P;
corresponds to a smooth function from ¢ to a symbol (z,&) — b;(t,€) in SY(R" x R")
(Definition 1.22) which is constant with respect to x. Writing b;(¢, D,) for the operator
associated to the symbol b;(¢, ), the operators (P;) are given by

Pju = (0, — b;(t, Dy))u (3.1)

:f (0, — bt E))ude, j=1,...,v (3.2)
£eRM

where @ is the partial Fourier transform of u with respect to x (as will always be the case

in the present chapter).

The operators act on distributions over {2 with values in a topological vector space
E the elements of which are generalized functions of z. A few requirements will be placed
over the family of symbols. For now, it should be noted each P; is a constant coefficients

vector field with respect to ¢t and a pseudo-differential operator with respect to x.

The function spaces

To give a suitable domain for the operators (P;), we will need spaces of p-currents
which take value in a topological vector space E. This is a generalization of the construction
we encountered in Example 2.4, difference being the codomain F, which was assumed to

be the complex field C previously.

Let E be a locally convex Hausdorft TVS over the complex field, the space of E-
valued p-currents over (2 is denoted A D'(Q; E), or simply D’'(2; E) when p = 0. Starting
from the latter, a O-current is a continuous linear mapping C*(Q2) — E, where C(2)
is to be equipped with the usual inductive limit topology which turns it into a complete
locally convex TVS. Now let p > 0, analogously to (2.8), we represent u € A" D'(Q; E) by

combining coefficients in D’'(Q2; E') with alternating tensors in the variable ¢, that is,

w= > uydty, uyeD(QE) (3.3)
[J]=p

Again, an alternate description is possible. There is a bilinear mapping A? D'(Q; E) x
g g
NP CP(Q; E) — E, which comes from the dual pairing D'(Q; E) x CX(Q; E) — E defined
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mutatis mutandis as in (2.9). The space of p-currents with values over E is then naturally

identified with the space of continuous linear mappings \"7 C*(Q; E) — E.

The value spaces

Let us move on to the definition of the value spaces, referred to as F so far. The
Fourier-transform on the variable x will be the basic starting point of all our investigations,
but obtaining solutions requires not only the Fourier transform to be well-defined, but also
a condition of local integrability allowing Fourier inversion. As usual, this is a problem of
asymptotic decay. We can set those difficulties aside for now without losing any generality
by considering the problem in a space of currents valued in a formal space of generalized
functions, characterized by being mapped homeomorphically to Li _(R") through the
(R™), or F1L}

Fourier transform. Such value space will be suggestively denoted F~!L{ Ioc

loc
for short. We qualify them as formal because they lack the properties of localization

commonly known in the setting of distributions.

Let (S(R™), 7) be the topological space of Schwartz functions in R” with the subspace
topology induced by Li. .(R™) (see Definition 1.12). Since the Fourier transform is bijective
from S to & (Proposition 1.15), the topology F 't = {FY(U) : U € 7} makes F :
(S(R™), F~'7) - (S(R™),7) a homeomorphism. The topological space £ = F~1LL (R")

is then defined as the completion of (S(R"), F~'7). Given S(R") < L} _(R™) is a dense

loc

subset and Ll _(R™) complete ([Maz11, p.2]), the Fourier transform extends to a linear

homeomorphism F : F 'L} (R") — L (R").!

loc loc

Later on, we replace E = L{._ with Sobolev spaces and define the type of solvability
we intend to verify. Then, we must determine if the formal solutions obtained at first are

appropriate.

3.2 Construction of the differential complex

Let P = {P,..., P,} be the family of pseudo-differential operators introduced in
(3.1). We would like to construct a corresponding differential complex like the one we made
for involutive systems in Section 2.3. Of course, the results obtained there are not readily
available to us because the domain differs and our operators are no longer differential. Still,
the same genera approach can be repeated. Referring to Example 2.4, we aim to construct
a differential complex (P®) AP D'(Q; F~1LL)), where p = 0 encodes the overdetermined

system of equations Pju = f;, j=1,...,v.

L Since the spaces LllOC are non-metrizable, the completion invoked in our construction only makes sense

in the context of topological vector spaces. This is no issue here: if a TVS is Hausdorff, the existence
and uniqueness (up to an isomorphism) theorem of the completion says just as much as in the metric
case. See [Tre67, p. 41 Theorem 5.2] for details.
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Write ue AP D'(Q; FLLL

loc

) with respect to its coefficients
u = Z uydty, uyeD(QF L) (3.4)
|J|=p

then the family of pseudo-differential maps b; combines into chain maps b(t, D,)A
N D(QFLL) — N7 D(Q; FLLL,) which act on u by integration

tﬁAu—ZZ (t, &) Auy)dt; (3.5)

Jj=1|Jl=p

The evident choice of P®) : AN D(Q F L) — /\pHD/(Q;]‘— 'L,

loc

) fitting our

requirements is
P=d,+b(t,D;) A - (3.6)

where d; is the exterior derivative with respect to the variable ¢ only. Parallel to that, it is
useful to consider the action of P on the frequency domain of z. Set P : N’ D(Q;LL.) —
A D(Q; L) with

P=d, +b(t&) - (3.7)
then P and P are related by
Pu="Pa, ae /\ D(QFLL) (3.8)

We will also adhere to the notations P, and ]ﬁ’b whenever we wish to make the dependence

of b explicit.

It should be verified if the definition above satisfies the chain complex condition. The
same computation done in Lemma 2.14 for complexes of vector fields shows b(¢, D,) A
b(t, D,) = 0. Combining this fact with the axiomatic properties of Proposition 1.9 for dy,

the composition of successive operators in the sequence is ?

PP o PP — (d, + b(t, Dy) A -)(dy + b(t, Dy) A -) (3.9)
:dtodt+dt(bA')+b/\dt+b/\b (310)
:dtbA'—bAdt+bAdt:dtbA' (311)

Thus, P makes a complex iff d;b(t, D) = 0,Vt € Q. In terms of b(t,£) = >, b;(t, §)dt;, the

same condition reads

(dib(t, Dy) A u)(t,x) = f e IMEAb(t, &) A TU(L, €)dE = 0, Yu (3.12)

2 the truncated formulas shown stand in accordance with the rather lengthy expressions one gets by

evaluating PP+ o P(P)(y) from the definitions
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so we conclude (3.6) defines a complex iff for all t € Q, b(t,€) is a closed 1-form for almost

every £ € R".

The main achievement of [Tre76] (which came up with the model) was to establish a
necessary and sufficient condition of solvability of a semi-global type (more on that later)

for the equations
Pou=f, fe/\ C°(QH®) (3.13)

with f under suitable compatibility conditions and b with a few further requirements. We
are going to state the problem in full generality, although our goal is only to show a proof

of sufficiency specific to the case p = 0.

Requirements on the symbol b(t, £)

The most important assumption we make on b is exactness of b(¢, £). Beyond fulfilling

the complex condition, that allows us to work with a primitive B(t,£) in what follows.

If exactness is assumed, a primitive B can be obtained by integration component-wise:

let €}y be a connected component of €} and take pg € () fixed. For t € €}y let

B(t, &) = J b(s, &) (3.14)

7(post)

where ~y(po, t) is any path going from pg to ¢ in €.

The remaining requirements are stated by means of B. It should be noted, however,
that a primitive B fulfills them iff any other choice of primitive does, and in that sense

the requirements are still set upon b. The full set of premises is the following:

(i) for a.e. £ € R™, b(+, &) is exact

(i) Let B be a primitive of b, then B(t,&) = BY(t,€) + R(t, &) for some BY, R such that,
Vt e Q, B(t,-) is positive homogeneous of degree one and R(¢,-) € L*(R")

(iii) Both BY and R are C* with respect to ¢ € {2

(iv) The restriction of B°(t,-) to S™™' = {¢€: [¢| = 1} is a function of class C'!

The properties we impose on B (existence of B” and R in (ii) and regularity of (iii) and
(iv)) imply analogous conditions on coefficients b; of the model. Indeed, d;B = d;B° + d;R

leads to a set of equations

bi(t, &) = 09(t,&) +r;(t,€), j=1,....n (3.15)

where we take d; B = Y b}dt; and d,R = Y r;dt;. In particular, the coefficients are still
C® ont and C! on €.
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3.3 Reduction on the coefficient b and compatibility conditions

Write the homogeneous part of B as
B =B} +iB) = Re B’ + iIm B° (3.16)
We define a family (U;)eq < L(E), E € {H*(R™), H-*(R")} of operators
(U v)(x) = J (e B -REOT(£)de, v e (3.17)

which are continuous extensions of certain classes of transformations known as Fourier

integral operators.

In a basic prototypical version, a Fourier integral operator T" acts as a linear endo-

morphism on Schwartz functions f € S(RY) by

T = [ e ala F (g (3.18)

R
Here, the functions a and ® are what we call the amplitude and phase of T, respectively.
Well-definiteness depends upon the choice of a symbol class for a(z, &) (it could be one
of the symbol spaces S™(RY x RY) we introduced in Definition 1.22, for example) and
further conditions on the real-valued phase function ®, which is usually homogeneous of

degree 1. See [SM93, §IX.3| for an introductory treatise on the subject.?

Of course, familiar examples of such mappings are obtained from ®(z,§) = = - &,
when each choice of a corresponds to a pseudo-differential operator with the same symbol.
Far more general classes of operators arise naturally as solutions in the study of hyperbolic

equations, perhaps most famously in the context of the wave equation.

Going back to (3.17), we may regard each U; as a Fourier integral operator with
Oy(z,8) = - & — BY(t,€) and ay(z, &) = e 48 By doing so, we obtain ®, homogeneous

of degree 1 and the boundedness of R with respect to £ provides straightforward estimates

07 0% ay(, €)

el | S I8 I < supr(t, e (3.20)

showing a, is in the symbol class S°(RY x RY). Taking v € H*, for each t €  fixed,

(U,v)ye H® <= A, (Up) e L? (3.21)

3 The cited author develops the theory for a class of Fourier integral operators such that the symbol

a(z,§) is compactly supported in x and such that, for each (z,€) € suppa n {(z,€) : € # 0}, D is a
smooth function satisfying the nondegeneracy condition

0?®
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(c.f. (1.53)). Considering the Fourier coefficients made evident in (3.17),
1/2

[Uwllms = |As(Urv)]2 = Ue_m(l + [¢%)°[0]*dg (3.22)

< sup |e’R(t")‘ [v]gs < o0 (3.23)

so U, acts boundedly and invariantly on each Sobolev space H®, s € R. Since s is arbitrary,

the same considerations hold for v € H*®.
Similarly, one can define U, € L(H?) by letting
(Ut vy = F{o(§)e Rt r00} (3.24)
Rewriting (3.17) in the manner of (3.24), it is immediate that
UoU=FoF ' UlolU=F"'oF (3.25)

so the fact U; and U; ™! are inverses is a simple restatement of the Fourier inversion formula.

Hence, U, is an automorphism on each of the Sobolev spaces considered so far.

To bring it to use in our problem, the family of automorphims (U;) < Aut(E) of
(3.17) must be reinterpreted as a single automorphism over A" D'(2; E). Accordingly, we
let

U, v)(t,z) = fei@m”%f”R“%(t,s)ds (3.26)

for ve AP D'(Q; E). Notice U acts on v(t, x) as a pseudo-differential operator for fixed x
and as a Fourier integral operator for fixed ¢. If £(FE) is endowed with the strong operator
topology, then (U;) is continuous respect to t. Finally, for reasons I do not understand,
the original author states in [Tre77] that the cases F € {H*®} are distinguished from
the remaining ones, that is, £ = H® with s € R, by the fact t — U, is smooth in former
setting.
The remarks made so far lead to the following.

Proposition 3.1 ([Tre76, Prop.1.3.1]). Let E = {H**}, the assignments u — (U, u)
with formula (3.17) are automorphisms of E depending smoothly on t € Q). Furthermore,
they induce automorphisms U € Aut(/\"D'(Q; E)) by means of (3.26) for each level
p=0,...,v. Finally, restrictions of U to the subspaces \' C*(; E) and \' CX(Q; F)

are automorphisms as well.

The whole reason for the preceding discussion is to allow a simplifying assumption
about the coefficient b. Let v e AP D'(2; H*®), we compute the result of Uv when acted
upon by P —

P(Uv) = dy(Uv) + b(t, D) A (Uv) = Jei@”’f—BS)—R(—zIm bo—7) ADdE (3.27)

N J TP R G de 4 b(t,D,) A (Uv)  (3.28)
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By definition,

b(t, Dy) A (Uv) = fem'fb(t,g) A Uv de (3.29)
so considering (U, v) = F~H0(€)e B3R} we have Uv = 5(€)e~ B2~ and thus, in conclu-
sion,

P(Uv) = f "CTrE=BR(1,5 4 Reby A D) dE (3.30)
Notice the expression in parenthesis inside the integral is none other than the operator

I@Re », applied to v, as we defined in (3.7). Since U is invertible, we may express P, and

Pres, as conjugates of each other:

Py(Uv) = U(Prepyv) = Pres, = U 'PU (3.31)

This simplifies our problem considerably. A solution u to the equation Pu = f is
equivalent to a solution v to Prey,v = g with the bijective associations v = U~'u and
g = U"'f. To be sure,

Pu=f — P(Uv)=f < Prepv= (U "'"PUv=yg (3.32)

Hence, to the end of determining solvability, it suffices to consider B = BY, that is, both b
and B can be assumed real-valued and positively homogeneous of degree 1 on £ € R" (and

we do so from now on).

Compatibility conditions

Having b(-, ) exact with primitive B(-, &), the differential operator defined in (3.7)

can be rewritten
P = e Bd,(eP) (3.33)

so dy ody = 0 implies (P, A” D'(; L. .)) defines a chain complex on its own right. We look
for minimal conditions on the a-Fourier transform of f which make a solution as in (3.13)
feasible. Suppose given f there exists u € D'(Q; F'LL (R")) such that Pu = f. Then

since
Pu=f — P = fa.e. £ (3.34)
it follows from expression (3.33) that
PO f(,€) = dy(a(,€)) (3.35)

In other words, if f can be solved for, then e_B("S)f(-,g) is exact, by necessity. This

motivates the following.
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Definition 3.2. A (p+1)-current f € /\p+1 C*(; H*) is said compatible z'feB("‘f)f(-,f)
is t-exact for almost all & € R™. The set of all f € /\erl C*(§2; H*) such that f is compatible
will be denoted EY.

Remark 3.3. Conversely, if f is compatible, Pu = f has a solutionu e N\’ D'(Q; F1L},.).
Indeed, for almost every & fixed we can integrate (3.35) (as we shall do soon) with respect
to t. This leads to some i e NP D'(% LL ) satisfying Pi = [ a.e. £. By (3.34) we have a

formal solution.

Now that solutions in the formal setting are thoroughly characterized, we turn to
the problem of actual interest, which is solvability in the framework of distributions. As
mentioned before, distributions can be localized in their appropriate domain, contrary to
the functions in D'(Q; F~'L{

loc) We considered so far. Making the value spaces Sobolev

functions of x, we can localize distributions on R™ and thus make sense of semi-global

solvability.

Definition 3.4. Let ' be an open subset of Q, then P®) = d, + b(t, D) A - is said

(i) semi-globally solvable with respect to ', if for any U € €V,

VfeEp, Jue N\ DU H™*) such that Pu= f in U’ (3.36)

(ii) smoothly semi-globally solvable with respect to ', if for any U’ € Y,

VfeEy, Jue )\ DU H*) such that Pu = f in U’ (3.37)

3.4 Condition (7)) and proper decay on the coefficients

To better understand the phenomena at play, we investigate the conditions of
solvability which arise when v = 1, p = 0 and €2 is connected. The inhomogeneous term f
will then be a 1-form, which can be naturally identified with a scalar function. Doing so

(and replacing d; with ¢;), we have a single pseudo-differential equation to solve for —
(e +b(t, Dy))u = f (3.38)
Fourier transforming on z leads to a family of ODEs
(0, +b(t,&))a=f (3.39)

varying with & € R". Referring once again to (3.35), we have ¢,(e?a) = €2 f, so we can

integrate with respect to t to solve for the frequency-domain function

t
AL, €) = e B9 f P9 f(s, €)ds (3.40)
to(&)
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with each t5(£) € 2 a base point of our choice.

To be able to reconstruct a solution u € D'(Q2; H*®), the function of ¢ defined by
(3.40) must decay like a tempered distribution, which amounts to appropriate bounds on
the growth of its derivatives. To this end, the behaviour of the real exponent eZ(¢)~B(t:)
can be a problem. Unless we can choose starting points to(§) such that B(t,&) — B(s, &) is
bounded below for s in the interval of integration (and uniformly on &), we won’t have the

appropriate estimates to ensure we have a solution in the sense of distributions.

Say we wish to choose ty(§) so that

for each s between ty(§) and t. In this case, it is quite easy to come up with a condition
which is both necessary and sufficient to allow such choice. They are given in a couple

different ways below.

Proposition 3.5. Suppose v =1 and U’ = (a,b) € , then the following are equivalent

(i) there exists ty : R™ — U’ so that, for all (t,&) € U’ x R", B(t,&) — B(s,£) = 0

whenever s lies between to(€) and t;
(i) for every (t,&) € U' x R™, b(t,&) > 0 implies b(s,&) = 0 for every s > t;

(iii) for everyt € U' and r € R, the sublevel sets {t e U’ : B(t,{) < r} are connected.

Proof. Let € be fixed and o = B(-,£). We can read the statement of (i) separately for the
cases t < to(&) and to(§) = t. In the former, (i) says « is non-increasing in (a, to(€)] while in
the latter it says « is non-decreasing in [t(€), b). Consequently, to(§) is necessarily a point
of global minimum for o with derivative o non-positive for ¢t < t5(£) and non-negative
elsewhere. Implication (i) = (i) then readily follows. With those same considerations,
we can see the pre-images of (—o0, ) by « restricted to the monotonic intervals are both
convex with common point ¢o(§) (if any) so {t € U’ : B(t,£) < r} is again an interval and

we conclude (zii) follows from (3).

The converse statements follow just as easily. Since this is a simple illustration for

the more general case, we leave them without a proof. O

It turns out that the statement of (iii), with its condition of connectivity for sublevel

sets of B(+, &), is better suited for a generalization to higher dimensions.



Chapter 3. A model with complex coefficients 57

' |
I '
B(ti,t2) <r ' B(ty,t2) <1 il
- ,
_UT' 1 \ I’ \\[]
- T /' V4 N\
\ p ~ <! . WV \
e \
I \ ~ \’ - l/ : ‘I
\ /\\\ I t P e
! Ur V| \ e '
\ \ ’ 4
‘ I ‘ , \ V3 ’
,\ \\ ’ './
\ Tt - ! / U/ S /,'/ »
\ N\ y RS e
~ - 2 ! B(ty,l) <7
-=< - A
- = - h
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Figure 1 — Example and non-example for condition ()

Condition (%))

For the remaining part of this section, we keep a shorthand for the sublevel sets
determined by B. If U < Q is open and (£,7) € R” x R, we denote

U,r)={teU:B(t¢&) <r} (3.42)

Taking into account the formulation of Proposition 3.5 (iii), as well as the semi-global

character of the solutions under consideration, we make the following generalization.

Definition 3.6. Let Q' < Q be an open connected set. Then Q' satisfies condition () if it
fits the following:

For allU" € V, there exists U € Q with U' < U such that, for any (§,r) € R™ x R,

the intersection U'(€,r) n Y is contained in a single component of U(&,r).

Example 3.7. Consider Q = R? and B constant in & given by B(ty,ts) =t - ta. Then
= {(z,y) : z,y < 0} satisfies () in Definition 3.6, but Q' = R?* does not.

Consider U' € Q given and U, = {t € U' : B(t) < r} for each r € R. Figure 1(a)
illustrates how, for a given a non-convex pre-compact set U’ (in golden), there exists U € )
(in green) as (1) requires. By contrast, no corresponding U fitting the requirement can be
chosen for U’ in Figure 1(b).

As our remarks in the proof of Proposition 3.5 suggest, the ideal choice of base points
to(€) to produce an appropriate bound on B(t, ) — B(s, &) involves making #y(§) a point
of minimum for B(-,&). We follow this same approach for the general case, but in doing

so, we need to make sure some choice of ¢y(§) turns out measurable.
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Lemma 3.8. Let K1 < R”, Ky < R" be compact subsets and B : K1 x K9 — R a

continuous function.

Then, there exists a measurable function t* : Ko — K, such that
B(t*(€),§) = inf B(-,€), VEe Ky (3.43)

Proof. Given B is continuous in a compact domain, a : £ — ming, B(-,£) must be
continuous as well. Now suppose the Lemma holds in the special case where the function

By non-negative and such that
V€ € Ky, 3t € Ky with B(t,£) =0 (3.44)

Then, given any B continuous, B — « is continuous, non-negative and also reaches a value
of 0 for any £ € K, fixed. Therefore, our assumption implies the existence of t* measurable
such that V¢ € Ky, B(t*(£),€) — a(§) = 0, which is precisely condition (3.43) with respect

to B. This means it suffices to construct t* for B in the special case to conclude.

As a further simplification, we will assume K is a cartesian cube. Indeed, by Tietze’s
extension theorem, B can be continuously extended to a cube () > K7 where it remains non-
negative. Adding to this extension a function which vanishes on K and is strictly positive
on Q\K; (known to exists by Urysohn’s lemma), we retain infg B(+, &) = infg, B(-,€) = 0,

so there is no issue taking () = K; from the start.

We now prove the existence of t* by an inductive argument on v. When v = 1, one
has K an interval and it suffices to let t*(£) = infg, {t : B(t,£) = 0}, as that gives an

upper semicontinuous function (Definition 1.20), which is clearly measurable.

Let p, : K; — R and 7, : K; — R be the coordinate projections such that p, x m,
is the identity on K;. For v > 1, analogously to the case v = 1, we have semicontinuous

scalar mappings t, : Ky — m,(K7) , which are given by

t,(€) = inf {r,(t) : B(t,€) = 0} (3.45)

te K4

Again, they are measurable and will be used in the construction of t*.

To that end, we decompose K, into a disjoint countable union | | ; S; u T which

attains the following:

(i) The sets in (S;) are compact
(ii) T has Lebesgue measure u(7) =0

(ili) for each j, the restriction of ¢, to \S; is continuous

Those can be met by bringing together the compact sets obtained through an inductive

iteration of Lusin’s theorem (Theorem 1.21). Start by letting €; = 1, Lusin’s theorem gives
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a compact S; < Ky with p(K3\S1) < € where t,|g, is continuous. Inductively, at the j-th
step, we let €; = 277 and consider ¢, restricted to K>\ |_|f:_1l S;. Then, Lusin’s theorem
provides an S; compact and disjoint from U{:—ll S; where t, restricts to a continuous
function and p( K5\ |_|{:1 S1) < €j. The remaining part of K5, not covered by any S;, will
have measure 0: let 7 = K>\ [ J,Z, S;, then the standard continuity property of measures

for decreasing sequences (with the fact u(Ks) < c0) implies

w(T) = p (ﬂ K2\5j> = lim s <K2\D1 Sl) — lime; = 0 (3.46)

so we accomplish what we intended.

Having that, notice for each j € N the mapping

Bj:p,(K1) x S; —» R (3.47)
(t.€) = B(#,,(),¢) (3.48)

is continuous and p,(K;) = R~ S; = R" are compact, so the inductive hypothesis gives

measurable functions tN;‘ : S; — py(K7) such that

VE € Ko, B(3(£),1,(£),€) = 0 (3.49)
Then it suffices to take

(), 1)), it €€ S,

() = (3.50)
arbitrarily in {t : B(¢,§) =0} if £ €T
This makes B(t*(€),&) = 0 for all £ and, given a measurable M < K
M) = {¢e T :1*(¢) e M} u | T (M) n 1, (M) (3.51)

j
is again measurable due to the basic properties concerning measurable functions and

sets. O

Remark 3.9. Making t* upper semicontinuous in each entry would work if not for the
fact such choice is not generally possible beyond the base case v = 1, as the following

example illustrates:

Let B : [-1,1]* x [-1,1] = R be a continuous non-negative function with

{(£,8) - B(t,§) =0} ={(1,0,§) : £ < 0} L {(0,1,8) : £ = 0} (3.52)

then t* is uniquely determined by (3.43) except at & = 0, where the value of t* is either
(1,0) or (0,1). In the first case, the second entry t* fails to be upper semicontinuous, while

in the other, the first entry does so.
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Going from the case v = 1 to higher dimensions, we are met with new difficulties.
We can still solve for the Fourier coefficients with a line integral from ¢y(£) to t, but our
choice of integration path (¢, &) will affect the estimates, as the length of the paths must
be factored in. The growth of the coefficients would be suitable for Fourier inversion if
we could find path choices so that B(t,£) — B(s, &) = 0 for s € y(¢,£) while the length of
v(t, &) remains uniformly bounded on &. However, those requirements are incompatible in
general. The solution is to loosen the constraints a bit — the length of v(¢, &) is allowed to

grow with |£[, but only asymptotically less than [£]*~1.

Lemma 3.10. Suppose (¢) holds for Q' € Q open and connected, with U' and U pairs
of precompact sets related as they appear in Definition 3.6. Also let t* : S 1 — U be a

measurable function such that
B(t*(€),€) = inf B(-,€), Vée S (3.53)
U

and to(&) = t*(&/[€]) for & € Q\{0}.

Then there exists a constant C' > 0 depending on U’ such that for all £ € R™,t € U’
we have an integration path v(t,&) < Q from to(€) to t with the following properties

2. the length |y(t,€)| of v(t,&) is bounded by

(t O < C1+ g (3.54)

Remark 3.11. Notice since B is positive homogeneous, the first condition can be refor-

mulated as

B(t,¢/|¢]) — B(s, /) = —é,,

highlighting the fact that, although the endpoints to(§) and t of y(t,£) do not change as &

increases in module along the same direction, the bound for the values of B along y(t, &)

Vs € y(t, €) (3.55)

gets increasingly strict.

Proof. Let Dy be the collection of closed unit cubes in R” with vertices in Z". Take (Dy)

the sequence where each Dj, is the image of D, through the contraction t — 27%¢.

For (t,£) € U' x R” given, set r,e = B(t,§) + 1/2 and consider for each k the
sub-collections Q(&,7re) = {D e Dy : DU, re) # I} < Dy of those cubes that do
intersect U(&, 7 ¢) non-trivially. Also denote U,! (€, r) the union of all D € Qi (&,r) and
observe each s € U;" (€, 7) belongs to a cube of diameter 27%,/v which intersects U (&, r) at

some point s’

Similarly, we take U = (J{D € Dy : D n U # &J}. Since U € €, either Q° is

empty or it sits within a positive distance of U. Either way, there exists o > 0 such that
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U+ Bs(0) = Q. Then, taking ko € N so that 27%,/v < §, we have U = Q for every k > k.

We make use of the following global estimate:

M = max{sup |d;B(t,§)|, 1} (3.56)

+
teU,CD

l§l=1
Notice if N = #{D €Dy : D nU # ¢} is the number of unit cubes intercepting U
then for all k the amount of cubes in Q(&,r) is bounded above by #Q(£,7) < 2VFN.
Now let (¢,&) be fixed. Given s € U (§,1.¢) take s’ € U(E, r¢) such that s and s’
partake a common cube in Qy(&, 7 ¢). Then if k > ky we obtain
B(s,§) < |B(s,§) — B(s',§)| + B(s',€) (3.57)
< M|€||s — 8| + e <27FMAVIE] + g (3.58)

There is a unique integer k¢ > 2 such that 22 < M/v(1 + [£]) < 2*~!. Thus applying
k' = ko + ke to the previous we end up with

27(k0+k§)M\/;’§| +Tt,§ (359)
< IR e < 1/2 4 me, Vs e US(Er) (3.60)

B(s,¢)

N

On the other hand, the statement of (¢) says points in U}, (§,r) partake a common
connected component of U (&, r). Then since U(&,r) < U (&, r), we have a piece-wise linear
path v(t,£) < U (&, r) joining t and t*(£). * If we avoid traversing the same cube more

than once, this may be achieved with length

V(1 €)| < #Quw(27FVp) = Nyw 2F Y (3.61)
< NV Myu(1+ )7 = 0+ g (3.62)

with C' a constant independent of (¢,£). Apply (3.59) in particular to points in the paths

we constructed to get the uniform bounds
so both conditions are met and the proof is concluded. O

Theorem 3.12 (Sufficiency of (¢)). If (v) holds for an open connected ¥ < €, then P©
is smoothly semi-globally solvable with respect to €Y at p = 0.

Proof. Let f € E) and U’ € €, then (1)) gives a suitable set U. Take t* : S"! — U
obtained from Lemma 3.8 with K; = S ! < R" and K, = U, then we are set to apply
Lemma 3.10, which provides paths (v(t,)).¢)cv’xrn Where the appropriate estimates hold.

4 t4(€) e U'(&,r) due to equation (3.53)
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Given (t,£) € U' x R™, we let

~

ot €) = J » (BEE-BIO Fs ) (3.64)

Notice the values of v are not dependent on the particular choice of integration path, since

the integrand is closed.

Properties 1. and 2. in Lemma 3.10 ensure v satisfies the estimates

o (t,€)| < |7(t,€)] sup BB F(t ¢)] (3.65)
sevy(t,
<e O(L+[¢)" supf(s,€)] (3.66)
seU

Now given f e A" C®(Q; H®), we have fe A" C%(Q; H®) a function whose decay
in the second variable is faster than arbitrary powers of |£|~! when & — oo. A similar
estimate holds for the t-variable, and the standard inductive argument shows F~'v is
smooth in t. Therefore, we conclude F~'v is in A" C*(Q; H®). O
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4 A model with real coefficients

4.1 Definition

Consider a system of vector fields in T" x T as follows.
Lj =0y +aj(t)de, j=1,...,n,(t,x)eT" xT (4.1)
where a; € Cg(T").
By direct computation, the Lie bracket between any two of those fields is
[L;, L] = (O, — Oy, a5) 0 (4.2)
so the requirement of commutativity is equivalent to the equalities
01,0 = O, (4.3)

for 5,k =1,...,v. In such case, our introductory discussion determines we can naturally

associate a chain complex of differential operators, given by
LE=di+a(t)Adzy, (p=0,....,n—1) (4.4)

with a(t) = >, a;dt; € C*(T", A'T") and d, denoting the exterior derivative with respect
to the ¢ variable only. Notice (4.3) is precisely the condition of a being closed.

The first cohomology group of the de Rham complex for T™ is H},(T") =~ R", with
the constant 1-forms dt; giving representatives for a set of generators. Therefore, there
exists A e C*(T") and ay € spang(dt;); such that

a=ay+dA (4.5)

The constant 1-form ag will sometimes be identified with a constant in R™ by means of its

real coordinates respect to the generators (dt;);.

The action of the differential maps (4.4) will take place between ascending levels of
currents over T" x T, as they are defined in Example 2.4. A slight difference, however,
is that only p-currents spanned by dt; with |J| = p are considered. For this reason we

denote the domains D’'(T" x T; A”°). An element in it is therefore written uniquely as
w= Y uydt;, u;eD(T"xT) (4.6)
|J|=p

This modification should make sense in view of the fact (4.4) does not involve dz in

any way. The subspace of p-forms with the same restriction is denoted, analogously, as
C*(T™ x T; /\”’0)
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Fourier series are adapted in a straight-forward manner: with v € D'(T" x T; /\1’0)
represented by coefficients u; as before, the (total) Fourier series of u reads
w= > A, k) (4.7)
(j,k)EZm X Z
where the coefficients are defined by
WG, k) = Y. (5, k)dt (4.8)
[J]=p
with 1; now the standard Fourier coefficients.! Similarly, we also have the partial Fourier
series with respect to x
u= Y A (t, k)e* (4.9)
keZ

where u”(-, k) € D'(T™). We will omit the x from @” if there is no risk of confusion.

The problem under consideration is to ascertain the solvability, and determine explicit

solutions if it has, for the linear systems
LPu=f, p=0,...,n—1 (4.10)

where f € C*(T" xT; A" ’0) is in a suitable subset of the codomain defined by compatibility
conditions. The developments of [BP99] characterize the global solvability of L? with

an algebraic condition on the vector a, namely whether or not it is a Liouville form.

4.2 Liouville forms

Liouville numbers

The concept of a Liouville numbers goes back to the middle of the 19th century,
when Joseph Liouville first showed all such numbers are transcendental, thus proving the
existence of non-algebraic numbers for the first time. Liouville’s constant, defined through

its decimal representation

0
Ly=> 10" =107 +107+107° + ... (4.11)
=1

is among the first known examples.

Liouville numbers are characterized by the existence of very tight approximations
by rational numbers: z € R is Liouville if for every [ € N, there exists (p, q) € Z x Z with
q = 2 such that

1
<5 (4.12)
q

p
x_i

q

1 to avoid confusion: the indices j and J are not related
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In a more refined classification, we can assign to every number x € R an irrationality

exponent u(z) as follows. Let R, < R.q be the set of positive reals p such that

{(p,q) € Z x 7y : 0 < [x — p/g| < ¢ * and ged(p, q) = 1} (4.13)
is finite and take p(x) = inf,cg, p, with p(z) = oo if R, is unbounded.

Comparing with (4.12), it is easy to see a Liouville number corresponds to the

extreme case p(x) = oo and, by contrast, p(z) = 1 whenever z € Q.

It follows from an important theorem of Dirichlet in the subject of Diophantine
approximations that for x ¢ Q, we have 2 € R, in the previous construction, and therefore
p(z) = 2 for all irrationals. A rational number z has irrationality measure p(x) = 1, of
course, so there is a ‘gap’ between 1 and 2 in u(R). As Roth’s theorem would later show,
this is already the best lower bound one can get in the case of irrational algebraic numbers,

since every such z has irrationality exponent u(x) = 2.

Global hypoellipticity

In regards to solvability of PDEs, Liouville numbers make their first appearance in
[GWT72] in the form of a necessary and sufficient algebraic condition for hypoellipticity.

The name comes from the well-know regularity property of elliptic operators
if P is elliptic, Pue C* — wue(C” (4.14)

which becomes the defining property of hypoellipticity. Indeed, the condition is much

weaker than a trivial characteristic set.

To be more precise, what the authors found in [GW72] is that global hypoellipticity

of a constant coefficients differential operator
P=0+c0,, (t,x)eTxT (4.15)

is equivalent to ¢ being a non-Liouville constant. This has to do with the necessary decay
of Fourier coefficients to reconstruct a solution. Many conditions related to this idea have

been proposed and proved since then.

Liouville vectors and forms

When dealing with systems of vector fields, as is our case, multiple coefficients appear,

so we have to make sense of a Liouville vector.

Definition 4.1. A given a = (a,...,a,) € R" is said Liouville if « ¢ Q" and there are
sequences (P;)iez, = (Pj1,-- - Prn)ien © Z" and (g;)jen such that
{max aj*% g :leN} (4.16)
J a
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1s bounded.

Remark 4.2. Notice the denominator q; used for the approximations is common to all

numerators.

Definition 4.3 ([BCM93, Def. 2.1]). A closed 1-form o € N\ CF(T") is said

(i) integral if
1

o

for all 1-cycles o
(ii) rational if qo is integral for some q € L~

(iii) Liouville if a is not rational and there exist sequences (o) < N C®(T™), (q)) € Zs

such that
; 1
{q/ a— } c N\ o*(1) (4.18)
Q1) ien
is bounded.
Making a choice of 1-cycles a7y, ..., 0, which represent generators of H'(T") in the

homology of chains, we can define a linear map I : Hj,(T") — R"

1
— — . 4.19
R A (1.19)
We can then relate the previous definitions through the following.

Proposition 4.4 ([BCM93, Prop.2.2]). Let a € A\ CZF(T™) be a closed form, then

(i) « is integral iff I|a] € Z™
(7i) « is rational iff I[a] € Q™

(7ii) « is Liowville iff I|«] is Liouville (according to Definition j.1)

In view of the fact we can decompose a = ag + dA as in (4.5), a is homologous
to a constant 1-form, which is Liouville iff a is. It’s immediate to verify that the linear
map [ applied to [ag] is simply its identification in R™, therefore, rather than relying on

Definition 4.3 to classify a, we can work solely with Definition 4.1 as applied to ag.

There is one final remark regarding Diophantine approximations which will have
an important role in the main proof. One may read it as saying that, if ¢ is the smallest
integer such that ga is integral, then rationals approximate « as if it were non-Liouville,
provided that denominators in ¢Z are precluded in the approximations. The elementary

proof is given below.
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Lemma 4.5. Let « € Q" and ¢ = min{n € Nog : nav € Z"}, then

1
lja — ko = 7 VkeZ",jel —qZ (4.20)

Proof. Write a = %p with p € Z™, then

. Jjp—qk . 1.
ja—k="—— = |ja k|, = g\ljp — gk (4.21)

so the lower bound holds unless there are k € Z™ and j € Z — qZ such that jp = qk.

If we did have the equality, it would entail k£ = %p e Z". Now since j is not divisible
by ¢, it must be the case that ¢ divides the ged of the entries of p. This, however, would

mean ¢ is not minimal, a contradiction. O

4.3 Global solvability

To determine the appropriate notion of global solvability for P, we must find a

s
requirement on f € ran(IL?) so we can expect to solve LPu = f. The approach is similar to
(3.35), where the differential equations for the z-Fourier coefficients lead to a requirement
of exactness involving f (+,€). Things are a bit trickier this time, however, because a is only
assumed to be closed. To write the equations as exact differentials, we rely on a primitive

defined in the universal covering of T™.

Lemma 4.6. Let f € C°(T" x T; AP*°) be such that there exists u € D'(T" x T; AP™)
with LPu = f and 11 : R" — T" the universal covering map of T". Then LPT'f = 0
and taking 1; € C*(R") such that dip; = TI* (jag), we have /@t f(. 5} an ezact form

whenever jag is integral.

Proof. That L™ f = 0 readily follows from L, being a chain complex, i.e. LE*1L? = 0.

For the next part, we use the Fourier series on x to represent u = Y, ; a(t, 7)e”* and

~

f=2, f(t, j)e’*, so that
Lhu = f <= (d+ijan)a(,j) = f(-4), VieZ (4.22)
= (d +ijagn)(e (-, ))) = €7 f(5), VieZ (4.23)
Now let j € Z be such that jaq is integral. Then IT* (jag) € A'(R™) gives a closed form
in R™. Because R™ is simply connected, IT*(jao) is in fact an exact form, say di; = II*(jao).

Since 7 (T") is abelian, Hurewicz’s theorem implies each 1-cycle in T™ is homologous
to a smooth loop. Thus, if p, g € R™ are in the same fiber of II (that is, II(p) = I1(q)),

o) - vi(a) = | "y, = | "1 (jag) € 272 (4.24)

p
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This implies €%/ : R® — R factors through the quotient II : R® — T", so it induces a

smooth function e™i € C°(T"). Equation (4.23) can be rewritten as

di(e 70, ) = " (f(, ) = ijact(-, j)) (4.25)
thus
di (e 5)) = e (iGagi(-, ) + dy(ePHal, ) = I, )
confirms exactness of the right-side. m

Definition 4.7. Let E? < C°(T" x T; A"*'°) be given by

E? = {f € Im(IL?) : jao integral implies ¢’V f(.,§) exact}
We say L is globally solvable ((GS) for short) if given f € EE there exists u € D'(T" x
T; AP*°) such that LPu = f.

An automorphism of D'(T" x T; AP*'?) allows us establish a conjugation between

operators L? with homologous coefficients a. Indeed, let Sy act over D'(T" x T; AP°) by

w= Y At j)e’ — YAt j)ed A (4.26)

jez jez
then Sy is bounded with (S4)~! = S_4, thus it defines an automorphism. Since
(di + ijagn)(eVa(:, 5)) = €7 (dii(-, ) + (a0 + dA) A (-, 5) (4.27)
the conjugate relation
L2 Sa = Sall¥ (4.28)
follows. Finally, given f € C*(T" x T; A"?),
Sal(n3) =4 f (). VieZ (4.29)
so we have

EP = {f € Im(L?) : V ja, integral, eiwj@(-,j) is exact} = Sa(IEf ) (4.30)

Those considerations lead to the following.

Lemma 4.8. Let a,be C*(T") with a and b homologous, then L? is (GS) iff LY is.

Proof. Tt suffices to verify the statement when b is the constant 1-form ag in the homology
class of a. The result is almost immediate from our considerations — by (4.30), each f € EP

corresponds bijectively to g = S f € EE , therefore (4.29) leads to
Ju:Lbu=f < Jg:LEv=g (4.31)

where the solutions are related by v = Su. Global solvability of I is then equivalent to
global solvability of 2. O
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We are now in place to state the main result of the paper.

Theorem 4.9. For eachp =0,...,n— 1, LE is globally solvable if and only if a is not a

Liouville 1-form.

Naturally, Lemma 4.8 reduces the problem to the cases a = ag a constant 1-form.
We will only concern ourselves with the proof of sufficiency, that is, L? is (GS) if a is
non-Liouville, doing so in a constructive manner (that is, making an explicit choice of

Fourier coefficients).

4.4 Exactness of £ A -

The proof of solvability will involve the standard procedure of determining the
Fourier coefficients of candidate solutions. In solving for the coefficients of the total Fourier
series (4.40), the differential problem is replaced with a system of algebraic equations in
the alternating algebra spanned by (dt;), which is isomorphic to /\"R™. More precisely,

[LPu = f leads to a system of equations of type

~

gj,k N a(ja k) = (]7 k) (432)

indexed by (j, k) € Z" x Z, where (1) (jryezn+ is a family of covectors in /\1 R"™.

Each equation in the system corresponds to a linear, non-homogeneous problem
with regards to the linear map &x A - : AP R® — AP*' R™. Existence and general form of
solutions are thus fully understood once kernel and image of the operators & A -, determined
by some £ € /\1 R™, are characterized — (4.32) is solvable iff f(j, k) e Im(&x A -) and, in
such case, the general solution is a coset in A”R"/ker¢;, A -. Fortunately, complexes
of such type are already familiar to us from Example 2.13, where we showed the Rham
complex is elliptic. Indeed, the induced linear complexes (2.39), generated by i€ /\ - for
some £ € A" F” were found to be exact, so we do know ker(&;x A -) = Im(&4 A -) at cach
level in (4.32).

The present situation still requires a bit more. We are unable to make estimates on the
decay of the Fourier coefficients to ensure they come from a distribution, unless coordinates
of a particular solution are constructively specified. The next lemma complements our

discussion by doing so.

Lemma 4.10 ([BP99, Lemma 2.1]). Consider V a vector space of dimension n (over
R or C) and v = (eq,...,en) a basis for N'V. Let & = 26565 € A V\{0}, then for
any g = X jj=ps197€7 € ANV chosen (1 < p < n— 1) the equation (x) € Av = g

has a solution ve N’V iff € A g = 0 holds. Furthermore, when solutions do exist, take
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re{l,...n} such that & # 0, then a particular solution of (x) is

=S sgn(rd — rDgsesp) (4.33)

Vo = —
& |T|=p+1
reJ

where the summation is over ascending (p+ 1)-tuples which contain r, and sgn(r, J —{r}) €
{£1} denotes the sign of the permutation (r,ji,...,7, ..., Jp+1). Finally, the full set of

solutions for (*) is given by
v =1+ & A w, we/\pV

Proof. The only claim which cannot be derived directly from the preceding discussion is

the fact vy as given by (4.33) is a solution, so we restrict ourselves to that.

Since &, # 0, we can rewrite e, as a linear combination of ¢ and the remaining
elements of the basis
1
e = Z =e (4.34)
7” l?éT‘ 7’
We split the terms of g according to whether or not r € J. If it does, we can substitute

ey =sgn(r,J —{r})e, A ej_gy to make e, the leading covector in the expressions.

Z gseq, -1y + 2 gies—{1} (4.35)
|J|=p+1 J|=p+1

leJ 1¢J

Z grsgn(r,J —{r})e, nej_gy + Z grej—{1) (4.36)
[J|=p+1 |J]=p+1

leJ 1¢J

Then, substituting e, for (4.34) so as to obtain g in terms of the base {€}u(y—{r}) ¢ A"V,

the expression for vy appears. We have

Z *Sgn(r J—={r})ags & nes_qpy (4.37)
|7|=p+1 1
leJ
—Z Z sgn r,J —{r})gser A er—py + 2 grej—{1 (4.38)
2|I| p+1 |J|1$pj+1
= Avp +g° (4.39)
where ¢g* is a vector spanned by (ea, ..., €,).

The boundary condition & A g = 0 then leads to & A g* = 0. But since the restriction
of £ A - to the span of (e, ..., e,) is injective, & A g* = 0 implies g* = 0, and therefore

g =£& A . O

It is worth pointing out that the denominator &, in the expression obtained for
Vg, which is a coordinate of &, is what later requires the Diophantine estimates on the

coefficient a to obtain some bound on the growth of the Fourier coefficients.
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4.5 Proof of sufficiency

All is set for the main proof.

Proposition 4.11. If a is not a Liouville form, then ILE is globally solvable.

Proof. Again, in view of Lemma 4.8, it suffices to show L? is (GS) when a = ag € A' T"

is non-Liouville. Let f € E,,, we split the argument in regards to ag being rational or not.

First suppose I[ag] ¢ Q™. Let (ag;) = I[ao], a solution u for the equation (d; + ag A

0:)u = f requires the total Fourier coefficients to be such that

i (2 Gt + ka0> 7, (2 Jm + kag,,)dt > AT, k) (4.40)

m=1

= fU. k), (k) eZ'xZ (4.41)

Let &k = D00 (Jm + kaop)dtm,. Since I[ag] ¢ Q", kag is never integral and therefore &;
doesn’t vanish - except, of course, if (j, k) = 0. The compatibility condition on f implies
the partial Fourier coefficient ?I(, 0) is exact, thus
F0,00= | f(,0)=0 (4.42)
T’I’L
in virtue of Stoke’s theorem. Therefore, it suffices to set u(0,0) = 0 to solve (4.40) for
(4, k) = 0. Otherwise, for any (j, k) # 0, we have ;; # 0 and, given f € E,, < ker L2*!,

the equation &, A f (7, k) = 0 holds and Lemma 4.10 applies, yielding solutions

L | .
u(j, k) = iGnr + Fao) ngp:H sgn(r, J —{M})(f(j, k))sdt ;o (4.43)

MeJ
0 (4.40) with M = argmax{|k; + jao,| : L € {1,...,n}}.
Given ag is non-Liouville, Definition 4.1 implies there are constants C' > 0 and

L € Z, such that

max. \qag,, — pm| = Clq|™", ¥(p,q) € Z" x Zq (4.44)

1<m
On the other hand, given f is a smooth function, the growth of its coefficients is sub-

polynomial, so there exist N € N and another constant C' > 0 with
fG R <CO+1G, kDN, Y0,k ez (4.45)
Combining the estimates and changing the constants, we conclude
)
Jjm + kag,,
<C+ (4, k)" V(5 k) e Zzm — {0} (4.47)

u(j, k)| < C < CO+[R) T+ 1 k)Y (4.46)
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and therefore the coefficients do come from a p-form u e A” Y C®(T" x T) which solves

the differential problem. This concludes the proof for the case ag not rational.

Now suppose ag € Q" and take ¢ € Z* minimum such that gag € Z". We split the

domain of the operator into two complementary subspaces

(T x T A =D o DL "

where, given A ¢ Z, D',""

corresponds to the subset of (p,0)-currents whose partial
Fourier coefficients with respect to = are supported on a subset A, so that u € D,” 0 can

be written
ut,z) = > an(t, k)e* (4.48)

keA

The action of L2 corresponds to a linear action on the partial Fourier coefficients
(which is given by (4.23)), so the operator acts invariantly over the complementary subspaces
just defined. The linear subspace projections therefore induce differential complexes
(LP

L?. Solving LPu = f is therefore equivalent to solving the equations

o a2 Dz POy, (Lh 2 g2 D’quzp’o)p where the differential maps on each level add up to

u
Loz = i (4.49)

La,quZUQ = f2

where (uq,u2) and (f1, f2) are the respective images of u and f through the natural

] ] / p70 / p70 / p70 / p70
isomorphisms Dy, @ Dy_ ;7" — Dy x Dy oy

To solve the first equation, we show L} , is a conjugate of d;. Let T' € Aut(Dy, PO

a,qZ
be given by
u= 2 “(t,qN)e" N Z (t, qN)elaNe=van () (4.50)
NeZ NezZ

with ¢,n as in Lemma 4.6. Then, notice

L 2 Tu = Z (dy +igNag A - — dbgn A A (t, gN ) Ne=vav ) = T=1qq  (4.51)

NeZ
so indeed d; = T‘lng’qZT. Thus, the bijective correspondences g < f; and v < u; given
by g = T7'f; and v = T~ 'u; are so that solutions in D/;*’ for L? ,u; = f and dyv = g

are equivalent.

Set g = T~'f,, then since f; has partial Fourier coefficients supported in ¢Z with
Ez(-,qN) = }m(',qN) for N € Z, the compatibility conditions over f € E,, imply the
partial Fourier coefficients

eV (L k), ifk =gN

0, otherwise
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A~

are all exact. Then, the same argument we used to show f(0,0) = 0 in (4.42) works here
to assure g(0,k) = 0 for all k € Z.

In solving d;v = g, we obtain a system of equations

i ) Jmdtm AD(GLK) = GG k), V(i k) €Z" x Z

m=1

By (4.52), the coefficients

3060 = [ g men (4.53)

are identically zero for k ¢ ¢Z, so the equations can be solved if we take v(j, k) = 0 for
either 5 = 0 or k ¢ qZ, and the solutions provided by Lemma 4.10 in the remaining cases.
The denominators (originally denoted &) for the particular solutions obtained from the
Lemma are all non-zero integers, so instead of (4.46), the estimates for the coefficients

become

~

(G, k) < ClFG R (k) € 27 x Z (4.54)

which is already sufficient to verify the chosen coefficients have sub-polynomial growth.
They are thus obtained from some v € A”’ C®(T" x T). Furthermore, since 9°(t, k) =
> i 0(j, k)et = 0 for k ¢ qZ, v belongs to the appropriate subspace of smooth functions

in D" Y Hence the first equation in (4.49) is solvable.

The proof that I}, ; ,us = f» is solvable goes analogously to the case of ay irrational

non-Liouville. The equations for the Fourier coefficients are

i (i (m + kaom)dtm> A0 k) = (G k), (k) €ZM X Z (4.55)

m=1

. 0 .
but since f, € Dy_ ;" the coefficients

A~

PGk = | Btk (4.56)

are all zero for k € ¢Z. Then, we can take Us(j, k) = 0 for k € ¢Z and a solution like (4.43)
otherwise, since ), jm + kag,,dt,, # 0 in the latter case. In view of Lemma 4.5, we have
C' > 0 such that

lgag — k| = C, YjelZ—qZ,keZ"
so we have the estimate max,, |qao,, — pm| = C,V(q, p) in place of (4.46) to show
(@3, k)| < CLRLG,F)L V(G k) ez (4.57)

thus concluding the coefficients come from a smooth us which solves the second equation
in (4.49). O
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Remark 4.12. As shown in [BCM93], in more generality, with M a compact smooth
manifold in place of T", the differential operator IL.° defined by (4.4) is globally hypoelliptic
(cf. Section 4.2) iff a is neither rational nor Liouville. In particular, solutions in the case
I[a] ¢ Q non-Liouville are necessarily smooth. By contrast, although we were also able to
determine smooth solutions in the case I[a] € Q, not all solutions are of that sort. The

counter-example given in [BCM93, Theorem 2.4] is
w .
u(t,z) = Z e~ N lgz=q(®)) (4.58)
N=1

Indeed lim inf o |u®(t, k)| = 1 implies (u*(t, k))rez are slowly increasing, but not rapidly
decreasing sequences. Then, uw € D'(T" x T)\C®(T" x T) even though (d; + a(t) A 0z)u =
0e A'C®(T" xT) .
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