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Resumo
Discorremos sobre a teoria de complexos diferenciais de operadores e sistemas involutivos de
campos vetoriais, estudando em maiores detalhes as condições suficientes de resolubilidade
para os complexos diferenciais encontrados em duas situações distintas. Ambos os exemplos
derivam de um modelo comum, o de sistemas do tipo tubo, sendo a resolubilidade
determinada por condições no coeficiente do complexo diferencial. As hipóteses sobre
os modelos levam a condições de resolubilidade qualitativamente distintas, a depender
da homologia dos conjuntos de subnível do coeficiente, em um caso, e das integrais do
coeficiente ao longo dos 1-ciclos geradores da homologia, no outro.

Palavras-chave: Sistemas involutivos. Sistemas sobredeterminados. Complexos de opera-
dores diferenciais.



Abstract
We go through the theory of complexes of differential operators and involutive systems of
vector fields, delving into sufficient conditions for solvability of differential complexes as
they appear in two distinct situations. Both examples are derived from a common model –
tube type systems – with solvability being determined by conditions over the coefficient
of the differential complex. The hypothesis over the models lead to distinct solvability
conditions, depending on the homology of the sublevel sets determined by the coefficient,
in one case, and on the integrals of the coefficient along the generating 1-cycles, in the
other.

Keywords: Involutive systems. Overdetermined systems. Complex of differential opera-
tors.
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LpV,W q; LpV q Set of linear maps from V to W ; linear operators from V to V

rvsγ, rP sγ Coordinate representation of a vector with respect to a basis γ, matrix
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Introduction

Among the better known systems in the theory of solvability for overdetermined
linear PDEs are what we might call tube models. Its local description involves a family of
complex vector fields L1, . . . , Lν on a product smooth manifold Rν ˆ N , with variables
t P Rν and x P N . Supposing N has dimension m, the vector fields are locally given by

Lj “ Btj `

m
ÿ

k“1
cj,kptqBxk

, j “ 1, . . . , ν (1)

for some complex smooth coefficients cj,k which do not depend on x. Under a constraint
of closedness over the 1-forms ck .

“
ř

j cj,kdtj (j “ 1, . . . , ν), the family L1, . . . , Lν can be
associated to a complex of differential operators over p-forms on the variable t, denoted as

C8pRν ˆ N ;Cq C8pRν ˆ N ;
Ź1,0 Cνq ¨ ¨ ¨ C8pRν ˆ N ;

Źν,0 Cνq
L0 L1 Lν´1

(2)
with successive chain maps Lp given by

Lp “ dt `
ÿ

k

ckptq ^ Bxk
, p “ 1, . . . , ν ´ 1 (3)

Solving the overdetermined system Lju “ fj pj “ 0, 1, . . . , νq, in particular, is equivalent
to solving an inhomogeneous problem with respect to L0.

Our subject matter is the solvability of complexes originated by differential operators
closely related to (1). It is therefore in our interest to determine necessary and sufficient
conditions to solve inhomogeneous linear equations, such as

Lpu “ f (4)

for every f P C8pRν ˆ N,
Źp,0 Cνq in a pre-established (compatible, as we usually call it)

subset where solutions are reasonably expected. Weak solutions in spaces of distributions
are to be regarded as well. The approach taken in the present work involves a general
presentation of the theory of involutive systems followed by a detailed exposition of some
of the techniques used in the proof of sufficient conditions for a couple different models.

Before further details, a bit of historical context is provided. In [Tre76], a number
of innovative techniques are used to establish a necessary and sufficient condition for the
existence of semi-global solutions at every level of a differential complex in the context
of a pseudodifferential model over open Euclidean subsets. Soon after, [CH77] are able
to adapt a few of those ideas to make a characterization of solvability for an analogous
complex in a global setting. They consider operators on an arbitrary compact manifold in
place of Rν and an abstract Hilbert space as the function space in the x variable.
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In a different line, [BCM93] generalizes the Diophantine characterization of global
hypoellipticity for constant coefficient vector fields in T2, found in [GW72], to two sub-
stantially wider classes of overdetermined systems of vector fields – they fit (3) when we
take a compact manifold in place of Rν for the variable t and N “ T1 for the variable x.
Under suitable constraints, global hypoellipticity is fully characterized when the coefficient
cptq is real-analytic.

Using the same Diophantine condition as [BCM93], [BP99] characterizes global
solvability for real vector fields with variables pt, xq P Tν ˆ T at every level of the complex
defined by (3) and for cptq closed, thus completing the picture sketched by [CH77] for such
setup.

The contents here are ordered according to the following scheme.

In Chapter 1 we go through a handful of concepts and elementary results involved in
the main material. We recall notions from differential topology, real analysis and differential
equations the reader is most likely already familiar with. This is done for the sake of
recalling concepts, providing references and introducing bits of terminology and notation
we adopt in the remaining. The last section presents pseudo-differential operators in the
very basic setting needed to handle the model of Chapter 3. If, at any rate, the concepts or
terminology employed seem unclear, the reader is advised to consult the references cited
in the heading of the statements.

The actual subject begins in Chapter 2, where we overview the theory of complexes
of differential operators and involutive structures, in an attempt to establish a middle
ground between the material in [Tre77], from a course given by Treves in UFPE, and the
introductory chapter of the comprehensive modern treatise [BCH08]. We start by defining
differential complexes of differential operators of a general kind and related notions, giving
some of the most prominent cases as examples – de Rham’s complex, Dolbeault’s complex
and the complex of currents. Next, we see how families of vector fields may be turned into
complexes, in a situation that generalizes the construction of the de Rham complex. This
line of reasoning naturally leads us to the so-called involutive structures, locally defined by
vector fields attending to two specific requirements which propitiate the study of solutions.

Chapter 3 and Chapter 4 postulate the specific models and solvability problems
investigated. The methods employed to obtain candidate solutions are the typical ones from
Fourier analysis, but the different assumptions taken for each model lead to qualitatively
distinct solvability conditions. The model given in Chapter 3 is the one featured in [Tre76].
We follow a proof of solvability for the first level of the complex which is not covered
in the original paper, but was later made available by the author in the lecture notes
[Tre77]. Obtaining the necessary estimates to the end of getting solutions for the family of
ODEs parameterized by ξ (obtained through a partial Fourier transform) which ensures
a corresponding solution to the original PDE relies on a good choice for the paths of
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integration γpt, ξq. This calls, on one hand, for a uniform bound on an exponential factor
along the paths of integration and, on the other, for the growth on the length of γpt, ξq

to be controlled with respect to ξ. Those constraints lead to a solvability condition of
a topological nature, fully determined by a criteria of connectivity on the sublevel sets
induced by the coefficients. This is representative of the more general phenomena described
in the paper, namely, the fact that solvability at the p-th level of the complex is fully
determined by the p-th homology groups of the sublevel sets induced by those same
coefficients.

Lastly, in Chapter 4, we follow the argument found in [BP99] to establish a sufficient
condition for global solvability at every level of a differential complex on the pn` 1q-torus.
In this situation, the appropriate control on the asymptotic decay of the small coefficients,
which may appear in the solutions for the Fourier coefficients, is done by means of an
algebraic condition of Diophantine approximations on the integrals of the coefficient of
the complex (cptq in (3)) over the generating 1-cycles of Tn.

It is worth mentioning the subject studied here branches off into various lines of
active research. To cite two recent examples, [HZ17] characterizes the global solvability at
the first and last level of the complex, on the product of a compact manifold by a torus,
when m “ 1 and cptq is real-analytic and purely imaginary, while [Ara+24] studies the
cohomology spaces on every degree of the differential complex and arbitrary m.
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1 Preliminaries

1.1 Real analysis and smooth manifolds

A topological manifold Ω of dimension N is to be understood as a Hausdorff, second
countable topological space Ω such that each point p P Ω admits an open neighborhood
U Ă Ω which is homeomorphic to RN . The pairs pU, xq where x : U Ñ RN is an
homeomorphism from an open set U Ă Ω are called (local) charts of Ω. They can be
combined into a unique maximal collection A, said an atlas on Ω, where the open sets
cover Ω and the transition functions y ˝ x´1 between any two charts pU, xq, pV, yq are
homeomorphisms of subsets RN , whenever the composition between y and x´1 makes sense.
Conversely, given Ω a Hausdorff, second countable manifold, each atlas on Ω determines a
unique topological manifold.

To turn a topological manifold Ω into a smooth manifold, we are required to choose
a differentiable structure – a maximal, smoothly compatible subset of the atlas A.

Definition 1.1. A differentiable manifold (or smooth manifold) of dimension N is a
topological manifold Ω of dimension N endowed with a differentiable structure F , that is,
a subcollection F “ tpU, xqu of the atlas determined by Ω such that

(i) The smooth chart domains tU : pU, xq P Fu cover Ω;

(ii) Given pU, xq, pV, yq P F , the transition map y ˝ x´1 : xpU X V q Ñ ypU X V q is C8

whenever U X V ‰ H;

(iii) It is maximal in the following sense: any chart pV, yq in the atlas determined by Ω,
such that tpV, yqu Y F satisfies piiq, necessarily belongs to F .

This allows us to talk about smooth functions and maps as one would do in the
Euclidean setting. Since all topological manifolds we shall ever consider are accompanied
by a smooth structure, the adjective ‘smooth’ will often remain implicit when we talk
about charts, coordinates, maps and so on. Moreover, if Ω is given as an open subset of
the Euclidean space RN , the underlying differentiable structure is always to be regarded
as the one induced by local diffeomorphisms from the Euclidean space RN to itself. It is
plain that the local coordinates of a smooth chart pU, xq may be offset by an arbitrary
constant vector in RN while still remaining within the differentiable structure. Therefore,
in choosing a local chart pU, xq near p P U , we may require xppq “ 0, which we indicate by
saying pU, xq is centered at p.
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1.2 Complex vector fields

Since our study concerns complex vector fields, we generally regard C8pΩq as the
set of complex-valued smooth functions over Ω, which is to say, f : Ω Ñ C such that, for
every pU, xq in the differentiable structure of Ω we have f ˝ x´1 smooth (with the standard
identification C – R2). We make exceptions in a couple occasions: in Section 2.1, where
F stands for either R or C (and the values are in F) and in Chapter 4, where the vector
fields are real (and the values are in R). In the proceeding discussion, we shall always
assume functions in C8pΩq to be complex-valued.

Notice C8pΩq constitutes a C-algebra with a conjugate linear map f ÞÑ f and which
contains C8

R pΩq
.
“ tf P C8pΩq : ran f Ă Ru as a R-subalgebra. The subspace of compactly

supported smooth functions C8
c pΩq is defined analogously.

A germ of a C8 function at p is an equivalence class on the set Bp of pairs pU, fq,
where U is open containing p and f P C8pUq, under the relation

pU, fq „ pV, gq ðñ f |UXV “ g|UXV (1.1)

The set Bp{ „ of germs at p and the germ defined by f P C8pΩq at p are are denoted
C8ppq and f

p
, respectively. It isn’t hard to see how this defines a C-algebra as well.

The C-algebra of smooth functions is, in particular, a vector space over C. One
possible definition of a complex vector field is therefore the following.

Definition 1.2. A smooth complex vector field over Ω is a C-linear map L : C8pΩq Ñ

C8pΩq which adheres to Leibniz’s rule

Lpfgq “ Lpfqg ` fLpgq, f, g P C8
pΩq (1.2)

The set of smooth complex vector fields over Ω is denoted XpΩq. We extend the
obvious vector space multiplication C ˆ XpΩq Ñ XpΩq to multiplication by C8pΩq by
defining for each g P C8pΩq

pgLqf “ g ¨ Lf, f P C8
pΩq (1.3)

It is easy to see gL as given by (1.3) still satisfies (1.2), so it makes XpΩq a C8pΩq-
module. Furthermore, it has a conjugate operation

Lpfq “ Lf, f P C8
pΩq (1.4)

and the so-called Lie bracket operation r¨, ¨s : XpΩq ˆ XpΩq Ñ XpΩq

rL,M sf “ LpMfq ´ MpLfq, @f P C8
pΩq (1.5)

making it a Lie algebra over C.1 To avoid cluttered expressions, given L P XpΩq and
f P C8pΩq, we denote the value of Lpfq at a point p P Ω by pLfqp.
1 see footnote in [BCH08, p. 4] for the definition
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Restrictions

The action of vector fields over smooth functions has a local character which is not
very evident in Definition 1.2. The first thing to realize is that the support never increases
– if f vanishes near a point p, the same is true of Lf .

Proposition 1.3 ([BCH08, Prop. I.1.3]). If L P XpΩq and f is constant, then Lf “ 0.
We also have

suppLf Ă supp f, @f P C8
pΩq, L P XpΩq (1.6)

Proof. The first claim follows at once replacing f “ g “ 1 in Definition 1.2 and using the
fact L is C-linear. To verify (1.6), we consider a set V Ă Ω where f vanishes and show the
same must occur for Lf .

Fix a point p P Ω and take pU, xq a local chart with p P U Ă V . Also let ϕ P C8
c pΩq

with ranϕ Ă r0, 1s be supported in U and such that ϕppq “ 1. Then f “ p1 ´ ϕqf and by
Leibniz’s rule

Lf “ Lp1 ´ ϕqf ` p1 ´ ϕqLf ùñ pLfqp “ pLp1 ´ ϕqqpfppq ` p1 ´ ϕppqqpLfqp “ 0
(1.7)

so we conclude Lf |U “ 0.

Then, by linearity, it’s easy to see the value of Lf at a point p P Ω is determined
solely by the germ at p defined by f , since, for any g P C8pΩq which agrees with f

in a neighborhood of p, we have p P pΩz supppf ´ gqq and thus, by Proposition 1.3,
pLpf ´ gqqp “ pLfqp ´ pLgqp “ 0.

That allows us to restrict a vector field L P XpΩq to open subsets U Ă Ω by letting
LU P XpUq be the unique C-linear map making

C8pΩq C8pΩq

C8pUq C8pUq

L

LU

(1.8)

a commutative diagram, with the vertical arrows denoting restrictions. More explicitly,

pLUfqp “ pL rfqp, p P Ω, f P C8
pUq (1.9)

where rf P C8pΩq is any such that rf
p

“ f
p
.
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Local coordinate representations

If U Ă RN is open, the partial derivatives
B

Bxj
: f ÞÑ

Bf

Bxj
, j “ 1, . . . , N (1.10)

define C-linear operators over C8pUq which, furthermore, satisfy Definition 1.2 by virtue
of the product rule.

Let p P U , since the the values pLfqp depend on f solely through f
p

P C8pUq,
expressing the values of f near p with a first order approximation

fpxq ´ fppq “

N
ÿ

j“1
hjpxqpxjpxq ´ xjppqq (1.11)

where h “ ph1, . . . , hNq is valued in RN and such that limxÑp hpxq “ f 1ppq, we may apply
Leibniz’s rule to the previous and evaluate at p to obtain pLfqp as follows –

Lf “
ÿ

j

Lhj pxj ´ xjppqq ` hj Lxj ùñ (1.12)

pLfqp “
ÿ

j

hjppqpLxjqp “
ÿ

j

pLxjqp

ˆ

B

Bxj
fj

˙

p

(1.13)

Therefore, L is given as a C8pΩq-linear combination of the vector fields in (1.10)

L “
ÿ

j

Lxj
B

Bxj
(1.14)

and
´

B

Bxj

¯

j“1,...,N
is a basis for the module XpUq.

Now suppose Ω is a manifold of dimension N . Each local diffeomorphism provided
by a chart in the differentiable structure can be used to pullback the basic vector fields
(1.10) in RN to a basis of vector fields in the chart domain.

Proposition 1.4. Each chart pU, xq in Ω induces a basis
´

B

Bxj

¯

j
of XpUq with elements

defined by the requirement of commutativity in the following diagram

C8pUq C8pUq

C8pxpUqq C8pxpUqq

B
Bxj

x x
B

Bxj

(1.15)

If px1, . . . , xNq Ă C8
R pUq are the coordinates of a chart pU, xq, the expression for a

given L P XpUq is again provided by (1.14). In particular the Lie bracket of L with some
M P XpUq may be written

rL,M s “
ÿ

j

pLpMxjq ´ MpLxjqq
B

Bxj
(1.16)
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1.3 Vector bundles

The general definition of a smooth vector bundle is the following.

Definition 1.5 ([Lee13, Chap.10]). Let Ω be a smooth manifold of dimension N , a smooth
vector bundle of rank ν over Ω is a smooth manifold E with a smooth surjection ρ : E Ñ M

such that

(i) for each p P Ω, the fiber Ep .
“ ρ´1ppq over p is endowed with the structure of a

ν-dimensional vector space over F;

(ii) for every p P Ω, there is an open neighborhood U Ă Ω, which contains p, and a
diffeomorphism

Φ : ρ´1
pUq Ñ U ˆ Fν (1.17)

(said a local trivialization of E over U) such that the canonical projection π of U ˆFν

onto Fν makes
ρ´1pUq U ˆ Fν

U

Φ

ρ π
(1.18)

commute. Moreover, the restriction of Φ to any of the fibers Eq defines a linear
isomorphism Eq Ñ tqu ˆ Fν.

It is a common abuse of language to refer to E, rather than pE, pq, as the vector
bundle, leaving ρ and Ω implicit. The bundle is said real if F “ R and complex if F “ C.
The smooth manifold Ω is often said to be the base space, while E is referred to as the
total space.

Since ρ is surjective, the underlying set of E is a disjoint union of the ν-dimensional
vector spaces

E “
ğ

pPΩ
Ep (1.19)

Notice the differential structure of E can be fully recovered from condition piiq, which
implies ρ´1pUq are chart domains on E for every chart domain U of Ω. In particular,
if there exists a local trivialization whose domain is the entire base space E, then E is
isomorphic to the product space Ω ˆ Fν and ρ : E Ñ Ω is said a trivial bundle.

Smooth maps from σ : Ω Ñ E such that the composition ρ ˝ σ is the identity map
on Ω are called sections of E. They constitute the space of sections of E, which is denoted
ΓpEq.



Chapter 1. Preliminaries 20

For our purposes, the most essential instances of vector bundles will be the complex
tangent and cotangent bundles of a smooth manifold Ω, as well as the lower rank bundle
structures found within those.

Definition 1.6 ([BCH08, Definition I.3.1]). A complex tangent vector v at a point p P Ω
is a C-linear map v P LpC8ppq,Cq such that

vpfgq “ fppqvpgq ` gppqvpfq, f , g P C8
ppq (1.20)

We denote CTpΩ the vector space of complex tangent vectors at p P Ω.

As we have seen before, given a vector field L and a point p P Ω, the value of pLfqp

only depends on the germ of f at p. Since Leibniz’s rule is built-in the definition of a
vector field, we can define complex tangent vector with the following association

Lp : f
p

P C8
ppq ÞÑ pLfqp P C, f

p
P C8

ppq (1.21)

The tangent vectors obtained in this manner from the basis p B

Bxj
q P XpUq induced by a

chart pU, xq and a point p P Ω are denoted B

Bxj

ˇ

ˇ

ˇ

p
. It is easy to see they constitute a basis

of CTpΩ.

Definition 1.7. The complexified tangent bundle CTΩ of Ω is the disjoint union

CTΩ “
ğ

pPΩ
CTpΩ (1.22)

If π : CTΩ Ñ Ω is the projection v P CTpΩ ÞÑ p, a trivialization π´1pUq Ñ U ˆ CN of
CTΩ near p defined by choosing coordinates pU, xq for Ω with p P U and setting

v “
ÿ

αj
B

Bxj

ˇ

ˇ

ˇ

ˇ

p

P π´1
pUq ÞÑ pp, pα1, . . . , αNqq (1.23)

This makes pCTΩ, πq a smooth vector bundle of rank N .

Definition 1.8. A complex vector subbundle V of CTΩ of rank n and corank N ´ n is a
smooth vector bundle substructure of CTΩ, meaning it is given by a disjoint union

V “
ğ

pPΩ
Vp Ă CTΩ (1.24)

such that

1. for each p P Ω, Vp is a n-dimensional (complex) vector subspace of CTΩ;

2. given p P Ω, there is U Q p open and vector fields L1, . . . , Ln P XpUq such that
spanCtpL1qq, . . . , pLnqqu “ Vq for each q P U .
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A family of vector fields pL1, . . . , Lnq such that pL1qp, . . . , pLnqp spans Vp for each
p P Ω are called generators of V. Condition 2. in the definition can thus be rephrased as
follows: for every p P Ω there is U Ă Ω open and a family of n vector fields which generate
V X CTU .

Notice a section of a subbundle V Ă CTΩ is nothing but a vector field L P XpΩq

such that Lp P Vp for every p P Ω.

Corresponding to vector fields and the tangent bundle, we have the dual notions of
a 1-form and the cotangent bundle. They fulfill pretty much the same properties as the
former.

Loosely speaking, we can say the cotangent bundle CT ˚Ω is the smooth vector
bundle obtained from attaching continuous duals CT ˚

p Ω .
“ pCTpΩq˚ as in Definition 1.8. A

1-form ω is a C8pΩq linear map

ω : XpΩq Ñ C8
pΩq (1.25)

They restrict to open sets as well. Given a chart pU, xq, the canonical projections of RN

induce a basis of 1-forms in U , denoted pdxjq1,...,N , characterized by the relations

dxj

ˆ

B

Bxk

˙

“ δjk, @j, k (1.26)

More generally, a k-form is characterized as a smooth section of
Źk T ˚Ω, so we sometimes

denote Γp
Źk T ˚Ωq the set of k-forms over Ω. See [BCH08, Section I.4] or [Lee13] for

further details.

Proposition 1.9 (Exterior derivative axioms [Lee13, Prop. 14.24]).

Let M be a smooth manifold, then there are unique linear maps dp : Γp
Źp T ˚Mq Ñ

Γp
Źp`1 T ˚Mq with the following properties:

(i) If ω P Γp
Źk T ˚Mq and η P Γp

Źl T ˚Mq, then

dpω ^ ηq “ dω ^ η ` p´1q
kω ^ dη;

(ii) dp`1 ˝ dp “ 0;

(iii) For all f P C8pMq, the dual relation

xdf, Ly “ Lpfq (1.27)

holds.
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The validity of the following Lemma and its dual statement establish a one-to-one
correspondence between subbundles of CTΩ of rank n and subbundles of CT ˚Ω of rank
N ´n.2 This relation will play a significant role in our classification of involutive structures
at a later point in Chapter 2.

Lemma 1.10 ([BCH08, p. 9 Prop. 4.4]). Let V Ă CTΩ be a complex vector subbundle,
then the subset VK Ă CT ˚Ω with fiber elements

VK
p “ tλ P CT ˚

p pΩq : λ|Vp “ 0u, p P Ω (1.28)

is a vector subbundle of CT ˚Ω.

Proof. Fix p P Ω and a local chart pU, xq with p P U . Take L1, . . . , Lν P XpUq generators
for V X CTU and write each of them as

Lj “

ν
ÿ

k“1
ajk

B

Bxk
, ajk P C8

pΩq (1.29)

Since pajkq P MNˆνpC8pΩqq is smooth and has full rank in U , one of the
`

N
ν

˘

square
submatrices is non-singular in a shrunk neighborhood of p. Therefore, by taking U smaller
and reindexing the matrix rows, we can assume the square matrix given by the first ν
rows is invertible in U . Suppose its inverse is pbjkq P MνˆνpC8pUqq and consider a new
family of vector fields in U defined as

L1
j “

ÿ

k

bjkLj, j “ 1, . . . , ν (1.30)

Notice they also generate the subbundle V X CTU . Furthermore, the vector fields L1
j are

written

L1
j “

B

Bxj
`

N´ν
ÿ

k“1
cjk

B

Bxν`k

, cjk P C8
pUq (1.31)

so we let
ωj “ dxν`j ´

ν
ÿ

k“1
cjldxk, l “ 1, . . . N ´ ν (1.32)

Then, ω1, . . . , ωN´ν are linearly independent in the fibers of CT ˚U while also satisfying

ωjpL
1
kq “ dxn`lpL

1
jq ´ cjl “ 0 (1.33)

Thus they make generators for VK X CT ˚U .
2 To be sure, the dual statement is obtained by switching the roles of the tangent and cotangent bundles

in the proposition.
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1.4 Distribution theory and Fourier analysis

Our notation in the subject of real analysis follows the standard of classical books
such as [Fol99] and [Gra14].

Given x “ px1, . . . , xnq P Rn, y “ py1, . . . , ynq P Rn, we set

x ‚ y “
ÿ

j

xjyj, |x| “

˜

ÿ

j

x2
j

¸1{2

(1.34)

Let f be a function of x on Rn, the partial derivative with respect to the j-th variable is
written

Bf

Bxj
or Bxj

f (1.35)

A multi-index (on Rn) will be an ordered n-tuple of non-negative integers. Given a
multi-index α “ pα1, . . . , αnq P Nn we set

|α| “
ÿ

j

αj, α! “
ÿ

j

αj!, B
α
x “ B

α1
x1 ¨ ¨ ¨ B

αn
xn

(1.36)

and, given x “ px1, . . . , xnq, xα “
ś

j x
αj

j . If x is the only variable of a function, the
subscript x may be omitted in Bαx . The order relations ă and ď on N induce partial orders
denoted by the same symbols on Nn. For instance, if α and β are multi-indices,

α ď β ðñ @j, αj ď βj (1.37)

Then, the general Leibniz’s product rule for f, g functions on Rn reads

B
α
pfgq “

ÿ

0ďβďα

ˆ

α

β

˙

pB
αfqpB

α´βgq, where
ˆ

α

β

˙

“
ź

j

ˆ

αj
βj

˙

(1.38)

Topological vector spaces

A topological vector space (TVS) consists of a set X equipped with a topology τ

and a vector space structure pX,`, ¨q over F such that

1. every element of X is closed in τ ;

2. the vector spaces operations ` : X ˆ X Ñ X and ¨ : F ˆ X Ñ X are continuous
with respect to τ

It follows automatically from those requirements that X is Hausdorff and the topology
τ is translation-invariant, the latter meaning given an open set U P τ , the translates



Chapter 1. Preliminaries 24

v ` U “ tv ` u : u P Uu are open as well, for whatever v P X we choose (see [Rud91]).
The topology τ is then fully described by a local base, that is, a topological base at 0.

If there exists a choice of local base B such that every U P B is convex, the TVS
is said locally convex. This is relevant because many of the standard functional-analytic
results for normed spaces have corresponding versions for locally convex TVS.

A seminorm on a vector space X is a function p : X Ñ F which is both additive and
positive homogeneous. One convenient way to introduce a locally convex topology in a
vector space X is by means of a family of seminorms pραqαPA with the separating property
–

@x P Xzt0u, Dα P A such that ραpxq ‰ 0 (1.39)

Theorem 1.11 ([Rud91, Th.1.37]). Suppose pραqαPA a separating family of seminorms on
a vector space X. Associate to each α P A and positive integer n the set

V pα, nq “ tx P X : ραpxq ă 1{nu (1.40)

then finite intersections of sets in the collection pV pα, nqqαPA,nPN constitute a local base for
a topology τ on X, which turns X into a locally convex space such that all seminorms ρα
continuous.

When the family of seminorms which induces the topology of a TVS is countable,
say pρjqjPN, a compatible translation-invariant metric can be defined as

dpx, yq “
ÿ

j

2´j ρjpx ´ yq

1 ` ρjpx ´ yq
, x, y P X (1.41)

Spaces of functions

Definition 1.12 (Locally integrable functions). A Lebesgue measurable function f : Rn Ñ

Ω is locally integrable if for all K Ă Rn compact
ż

K

|f |dλ ă 8 (1.42)

The set of all locally integrable functions is denoted L1
locpRnq. It can be turned into a

metrizable TVS by taking pKjq Ă Rn an exhaustion of Rn by compact sets (i.e.
Ť

Kj “ Rn

with Kj Ť Kj`1) and the topology described in Theorem 1.11 for the seminorms

ρjpfq “

ż

Kj

|f |dλ (1.43)

Definition 1.13 ([Gra14, Def.2.2.1]). Let C8pRnq be the space of smooth, complex-valued
functions on Rn. We introduce the following family of seminorms: given α, β multi-indices
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in Rn, set

ρα,βpfq
.
“ sup |xαB

βf | (1.44)

Then f P C8pRnq is in the space of Schwartz functions SpRnq if for all α, β

ρα,βpfq ă 8 (1.45)

The family pρα,βq defined in (1.44) is countable and each of its elements satisfy the
axioms of a seminorm on the space of Schwartz functions due to (1.45). Furthermore, it
is separating since ρ0,0pfq “ 0 implies f “ 0; therefore, we can endow SpRnq with the
topology of Theorem 1.11 to make it a locally convex metrizable TVS. The corresponding
notion of convergence for a sequence pfkq Ă SpRnq is the following –

fk
S

Ñ 0 ðñ @α, β, ρα,βpfkq Ñ 0 (1.46)

It is not hard to show this makes SpRnq complete, since derivation is well-behaved with
respect to uniform limits and ρ0,0pfkq Ñ 0 implies fk Ñ 0 uniformly.

The setting of Schwartz functions is ideal for Fourier analysis because the Fourier
transform defines an automorphism over SpRnq. We opt the normalizations in the following
definition.

Definition 1.14. Given f P SpRnq we define

pfpξq “

ż

Rn

fpxqe´2πix¨ξdx (1.47)

the Fourier transform of f and

qfpξq “

ż

Rn

fpxqe2πix¨ξdx (1.48)

the inverse Fourier transform of f .

The standard formulas relating the Fourier transform and derivatives of a function
are more concisely written if we introduce the normalized differential operators

Dα .
“

1
p2πiq|α|

B
α (1.49)

Proposition 1.15. Given f P SpRnq, y P Rn and α a multi-index, the Fourier transform
given by Definition 1.14 is a homeomorphism from SpRnq to itself. Furthermore,

1. } pf}L8 ď } pf}L1

2. pDαfq^pξq “ ξα pfpξq

3. q

pf “ f “
q

pf
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Definition 1.16 ([Gra14, Section 2.3.1]). Convergence in the spaces C8 and C8
c of smooth

functions are regarded in the following sense:

1. fk Ñ f P C8 ðñ fk, f P C8 and limkÑ8 sup|x|ďN |Bαpf ´ fkqpxq| “ 0, @α

multi-indices and N ą 0

2. fk Ñ f P C8
c ðñ fk, f P C8 are commonly supported in a compact set K and

limkÑ8 }Bαpf ´ fkq} “ 0, @α multi-indices

1.4.1 Distributions

77 Distributions are the continuous linear functionals in the spaces of functions
previously introduced. We denote

D1
pRn

q
.
“ pC8

c pRn
qq

˚ (1.50)

S 1
pRn

q
.
“ pSpRn

qq
˚ (1.51)

The operator topology, in both cases, is given by the weak˚ topology, where sequential
convergence amounts to

Tk Ñ T in B˚
ðñ Tk, T P B and Tkpfq Ñ T pfq, @f P B (1.52)

with B standing for either C8
c or S. It is usual to refer to an element of S 1 as a tempered

distribution.

Those spaces allow us to define, among others, operations of multiplication by smooth
function as differentiation. Consult [Fol99, Chapter 9] for the precise definitions.

For the subject of Hilbert Sobolev spaces, we refer to [Fol99, Section 9.3] and only
discuss the basic facts we will use.

Let s P R, the function ξ ÞÑ p1 ` |ξ|2qs{2 is smooth and slowly increasing, therefore

Λsf “ pp1 ` |ξ|
2
q
s{2

pfq
_ (1.53)

is a well-defined, continuous linear operator on S 1. In fact, one can verify Λs ˝ Λ´s “

Λ´s ˝ Λs “ idS1 so that Λs is in fact an isomorphism. We define the Hilbert space Hs, for
a given s P R, as the subset of tempered distributions such that Λsf P L2.

Definition 1.17. The Sobolev space Hs, for s P R, is the set

Hs
“ tf P S 1 : Λsf P L2

u (1.54)

endowed with the norm

}f}Hs “ }Λsf} “

ˆ
ż

| pfpξq|
2
p1 ` |ξ|

2
q
sdξ

˙1{2

(1.55)
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Notice Hs Ă H t whenever s ą t.

Definition 1.18. The Sobolev spaces H8 and H´8 are defined as

H8
“

č

są0
Hs, H´8

“
ď

să0
Hs (1.56)

The former is endowed with the inductive limit topology obtained from the inclusions
H8 ãÑ Hs, while the latter receives the weak˚ topology from its dual pairing with H8.

1.4.2 Fourier analysis

Consider the Fourier transform F defined again by formula (1.47).

Theorem 1.19 ([Fol99, Th.8.22]). Suppose f P L1pRnq.

1. if xαf P L1 for |α| ď k, then pf P Ck and Dα
pf “ p´1q|α|

yxαf

2. FpL1q Ă tf P C0 : limxÑ8 fpxq “ 0u

1.4.3 Measure theory

Definition 1.20 (Upper semi-continuity). A function f : X Ñ R is upper semicontinuous
if for every p P X and r P R there is an open neighborhood U of p such that fpUq Ă r´8, rq

Theorem 1.21 ([Fol99, Th.7.10] Lusin’s theorem). Suppose that µ is a Radon measure on
X and f : X Ñ C measurable and vanishing outside a set of finite measure. Then given
ϵ ą 0, there exists ϕ P CcpXq such that ϕ “ f except for a set of measure less than ϵ. If f
is bounded, ϕ can be taken such that }ϕ}8 ď }f}8.

1.5 Pseudo-differential operators

Given a function apx, ξq, we may consider its corresponding action Ta as an integral
operator

Tafpxq “

ż

Rn

e2πix¨ξapx, ξq pfpξq dξ (1.57)

In particular, the action of a differential operator can be recovered in p1.57q by apx, ξq

its symbol. Thus, the class of pseudo-differential operators, which includes all integral
operators represented as above, generalizes the usual differential operators.

Integrability on the right-side of (1.57) and continuity of the integral operator will
naturally depend on the domain of definition, as well as the decay of apx, ξq and its
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derivatives. The different conditions we may impose on apx, ξq : Rn ˆ Rn Ñ C determine
spaces of functions generally referred as symbol classes.

The rather simple case of symbol classes SmpRn ˆ Rnq and its extension result for
the Hilbert Sobolev spaces H˘8pRnq are all we shall need for the purposes of Chapter 3.

Definition 1.22 ([RT10, Def 2.1.1] Symbol classes SmpRn ˆ Rnq). A smooth function
a : Rn ˆ Rn Ñ C belongs to the class of symbols SmpRn ˆ Rnq if for all multi-indices
α, β ě 0 there are constants Aα ą 0 such that

|B
β
xB

α
ξ apx, ξq| ď Aαp1 ` |ξ|q

m´|α| (1.58)

Theorem 1.23. Let a P SmpRn ˆ Rnq, the pseudo-differential defined by the symbol a is

apX,Dqfpxq “

ż

e2πx¨ξapx, ξq pfpξqdξ, f P SpRn
q (1.59)

Then apX,Dqf P SpRnq.

Theorem 1.24 ([RT10, Th. 2.6.11]). Let T P SmpRn ˆ Rnq be a pseudo-differential
operator of order m P R and k P R. Then T extends to a bounded linear operator from
HkpRnq to Hk´mpRnq.

Corollary 1.25. If T P SmpRn ˆ Rnq is a pseudo-differential operator for some m P R,
then T extends from a bounded linear operator in SpRnq to bounded linear operators in
H8pRnq and H´8pRnq.
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2 Differential complexes and involutive sys-
tems

We assume throughout the current chapter that Ω is a manifold of dimension ν. The
symbol F will stand for the scalar fields of either R or C – we employ it whenever both
options are suitable.

2.1 Complexes of differential operators

Let Ω be an open submanifold of Rν .

Linear differential operators of scalar-valued functions

We denote DiffpΩq the collection of all linear differential operators C8pΩq Ñ C8pΩq.
In multi-index notation, that means for each P P DiffpΩq there are smooth coefficients
paαqαPA Ă C8pΩq, where A is a finite multi-index family, such that for any f P C8pΩq

and x P Ω,

Pfpxq “
ÿ

αPA

aαpxqDαfpxq (2.1)

This is often written more concisely as

P px,Dq “
ÿ

αPA

aαpxqDα (2.2)

The support of a family paαq, denoted supp paαq consists of those indexes α P A

for which aα is non-zero.1 Thus, each differential operator P P DiffpΩq has an order given
by ordpP q

.
“ maxαPsupppaαq |α|. Perhaps including a few zero coefficients, the same operator

P of (2.2) is written as

P px,Dq “
ÿ

|α|ďordpP q

aαpxqDα (2.3)

The subset of operators in DiffpΩq up to order k is denoted DiffkpΩq.
1 if context allows it, we will often omit the indexing family
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Linear differential operators of vector-valued functions

For operators mapping vector-valued functions, we make the following adjustment.

Definition 2.1. Let V,W be finite dimensional F-vector spaces with dim V “ m and
dimW “ n. Then, a linear differential operator P P DiffpΩ;V,W q is a linear mapping
P : C8pΩ;V q Ñ C8pΩ;W q which is represented by a matrix of coefficients in DiffpΩq, that
is, given γV , γW respective bases of V and W , there exists rP s “ pPjkq P MnˆmpDiffpΩqq

such that for all f P C8pΩ;V q

rPf sγW
“ rP srf sγV

Although the definition works with a specified basis of the vector spaces, all examples
we shall present will come with a ‘natural’ choice at hand, ultimately coming from the
standard basis of Rν . Our initial examples should make this point clear. Identifying the
vector values within a single vector space is a privilege of working with open submanifolds
– if our description of Ω came from the point of view of intrinsic manifolds, the values
would take place in vector bundles, as one often sees in the literature.

Definition 2.2. Let pEjqjPN be vector spaces of finite dimension and pPjqjPN Ă DiffpΩ;
Ej, Ej`1q. A complex of differential operators P

.
“ pC8pΩ;Ejq, Pjqj consists of a

sequence

0 C8pΩ;E1q C8pΩ;E2q ¨ ¨ ¨ C8pΩ;Ejq ¨ ¨ ¨
P0 P1 P2 Pj´1 Pj

such that @j P N, Pj`1 ˝ Pj “ 0.2

The j-th level of the complex, C8pΩ;Ejq, is attached to a cohomology space

Hj
P pΩq

.
“

kerPj`1

ranPj

The sequence is exact at C8pΩ;Ejq if the corresponding cohomology Hj
P pΩq is trivial,

i.e., kerPj`1 “ ranPj. If P is exact at every level, we simply refer to P as an exact
sequence.

Examples

Example 2.3 (The de Rham complex).

Let Ep “
Źp Fν be the

`

ν
p

˘

-dimensional vector space of alternating p-linear maps
on Fν , often referred simply as p-tensors. We first recall some basic facts about the
2 notice each equality Pj`1 ˝ Pj “ 0 is equivalent to an inclusion ran Pj Ă ker Pj`1
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alternating vector algebra as they apply to the situation at hand. Let Iνp “ tpi1, . . . , ipq P

t1, . . . , νup : i1 ă . . . ă ipu, then given a basis e1, . . . , eν for E1, dual to e1, . . . , eν P E0,
each J “ pj1, . . . , jpq P t1, . . . , νup determines a p-tensor eJ .

“ ej1 ^ . . . ^ ejp as follows: if
any index of J is repeated, then eJ is zero; otherwise, eJ is characterized among p-linear
maps in Fν by the fact @I “ pi1, . . . , ipq P t1, . . . , νup

eJpei1 , . . . , eipq “

$

&

%

0, if I ‰ J as sets

sgn σ, if I “ σJ for some σ P Sp
(2.4)

A permutation σ P Sp applied to the p-tuple J thus corresponds to multiplication by
sgn σ P t˘1u on eJ P Ep, that is

eσJ “ psgn σqeJ , @σ P Sp (2.5)

In particular, all eσJ with σ P Sp are co-linear in Ep and peJqJPIν
p

is a basis for the same
vector space. For practical reasons, whenever J is an index ranging over Iνp , most commonly
in a summation, we shall abbreviate rJs “ p, leaving ν understood from context.

Proceeding with our example, the function spaces C8pΩ;Epq with Ep can be under-
stood as spaces of p-forms over Ω. The natural choice of basis for E1 are the 1-tensors
pdxjqj“1,...,ν , dual to pBxj

qj“1,...,ν Ă E0. As such, the algebraic structure of C8pΩ;Epq as a
C8pΩq-module over Ep means we are able to represent each ω P C8pΩ;Epq uniquely as a
sum

ω “
ÿ

rJs“p

fJdxJ , fJ P C8
pΩq (2.6)

taking values ωptq “
ř

rJs“p fJptqdxJ P Ep for each t P Ω.

The differential operators dp P DiffpΩ;Ep, Ep`1q of the complex are the exterior
derivatives. Given with respect to the standard coordinates pxjqj“1...,ν , those are defined
as

dp

˜

ÿ

rJs“p

fJeJ

¸

“
ÿ

rJs“p

ν
ÿ

k“1
Bxk

fJdxk ^ dxI (2.7)

This is equivalent to the the coordinate-free axiomatic approach of Proposition 1.9,
which emphasizes the formal properties of the operator (notice the chain complex condition
dj`1 ˝dj “ 0 is precisely axiom piiq). In terms of the coordinate-wise definition, the complex
condition can be seen as a consequence of the commutativity property of partial derivatives
of smooth functions, as will become clear in the computation of Lemma 2.14.

The sequence d
.
“ pC8pΩ;Ejq, djq is known as the de Rham complex. Taking

the restriction of the exterior derivatives to the spaces of compactly supported smooth
functions, another differential complex pC8

c pΩ, Ejq, djq is produced.
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Example 2.4 (Complex of p-currents).

We construct a differential complex similar to the previous one, where distributions
take the role of smooth functions.3 Here the p-th level

Źp D1pΩq of the complex will be a p-
current, which essentially works as a p-form with distributional coefficients. Algebraically
speaking,

Źp D1pΩq is still a C8pΩq-module. The p-alternating tensors pdxrJsqrJs“p from
the previous example allow us to write a p-current u P

Źp D1pΩq uniquely as

u “
ÿ

rJs“p

uJdxJ , uJ P D1
pΩq (2.8)

which adds and multiplies by scalar values as one would expect. Furthermore, there is
a bilinear wedge product operation that turns

Ź

‚ D1pΩq into an exterior algebra. The
construction mirrors the wedge product of differential forms in almost every aspect. An
important distinction, however, is that D1pΩq lacks the multiplicative structure of C8pΩq,
so we have to settle for multiplication by C8pΩq in

Źp D1pΩq.

From an alternative, somewhat less artificial angle, we can understand p-currents
through the dual relation they have with compactly supported pν ´ pq-forms. The bilinear
pairing x¨, ¨yD1 in Ω which evaluates distributions on test functions induces a bilinear map.

x¨, ¨y :
p
ľ

D1
pΩq ˆ

ν´p
ľ

C8
c pΩq Ñ F

which is uniquely determined (among bilinear maps) by the property

@J P Iνp , I P Iνν´p, uJ P D1
pΩq, φI P C8

c pΩq (2.9)

xuJdxJ , φIdxIy “ sgnpI, JqxuJ , φIyD1 (2.10)

where sgnpI, Jq is 0 if I X J ‰ H or equal to the ˘1 sign of the permutation pI, Jq P Sν

otherwise. Then, a p-current u P
Źp D1pΩq corresponds to the continuous linear functional

xu, ¨y :
Źν´pC8

c pΩq Ñ C. Finally, to match the topological space of distributions when
p “ 0, we endow

Źp D1pΩq with the weak-˚ operator topology.

We remind that a function f P L1
locpΩq can be identified in the space of distributions

by regarding it as a continuous linear functional which acts on test functions ψ P C8
c pΩq

by integration, that is, xf, ψy “
ş

fψ. Now since C8
c pΩq and C8pΩq are included in L1

loc,
p-currents with distributional coefficients which correspond to smooth functions in Ω can
be identified with p-forms over Ω, so that we have inclusions

ŹpC8
c pΩq Ă

ŹpC8pΩq Ă
Źp D1pΩq.
3 The present example is not, strictly speaking, a differential complex as we defined in Definition 2.2.

Still, it is not difficult to define complexes a bit more generally so as to include it – the important fact
is C8

c pΩq continuously embeds as a dense subspace of D1pΩq. Currents will unavoidably appear when
we consider distributional spaces of functions in the example models of the next sections, so we believe
it is appropriate to introduce them sooner, in our general discussion, rather than later when our focus
is on specific matters.



Chapter 2. Differential complexes and involutive systems 33

Once again, the chain maps dp are given by formula (2.7). Of course, the symbols Bα

in this case are to be understood in the sense of distributions, that is, each BαfI P D1pΩq

in the formula is actually a continuous linear functional on C8pΩq whose value on a
compactly supported function φ P C8

c pΩq is

xB
αfI , φy “ p´1q

|α|
xfI , B

αφy (2.11)

The same computation we referred to in the previous example shows pD1pΩ;
ŹpEpq,

dpq is a differential complex. In fact, a theorem of de Rham even shows the cohomologies
of this complex and the one from the former example are naturally isomorphic.

Example 2.5 (Dolbeault complex).

Let ν “ 2n and consider Ω “ Cn – Rν identified through the natural isomorphism
pa1 ` ib1, . . . , an ` ibnq ÞÑ pa1, . . . , an, b1, . . . , bnq. Then, the standard C-valued coordinates
pzjqj“1,...,n P C8pΩq lead to a set of smooth real coordinates pxj, yjqj“1,...,n with zj “ xj`iyj .
Similarly, we may consider the coordinates z̄j .

“ xj ´ iyj P C8pΩq coming from the
isomorphism pa1 ´ ib1, . . . , an ´ ibnq ÞÑ pa1, . . . , an, b1, . . . , bnq. Since xj “ 1

2pzj ` z̄jq and
yj “ 1

2ipzj ´ z̄jq, the chain rule is suggestive of the following derivation rules with respect
to the zj and z̄j variables: given ϕ P C8pΩq, let

Bzj
ϕ “

Bϕ

Bxj

Bxj
Bzj

`
Bϕ

Byj

Byj
Bzj

“
1
2

ˆ

Bϕ

Bxj
´ i

Bϕ

Byj

˙

(2.12)

Bz̄j
ϕ “

Bϕ

Bxj

Bxj
Bz̄j

`
Bϕ

Byj

Byj
Bz̄j

“
1
2

ˆ

Bϕ

Bxj
` i

Bϕ

Byj

˙

(2.13)

so we formally define Bzj
, Bz̄j

P CTΩ using the RHS expressions above. Since spanRxBxj
, Byj

y

“ TΩ, we also have spanCxBzj
, Bz̄j

y “ CTΩ and a direct splitting into the subbundles

CTΩ “ CT 1,0Ω ‘ CT 0,1
pΩq,where (2.14)

CT 1,0Ω .
“ span

C
xBzj

y and CT 0,1
pΩq

.
“ span

C
xBz̄j

y (2.15)

By duality, the corresponding tensors pdzj, dz̄jqj are generators of CT ˚Ω. Furthermore,
in view of Lemma 1.10, the latter also splits into a direct sum of subbundles Λ1,0pΩq

.
“

CT 0,1pΩqK,Λ0,1pΩq
.
“ CT 1,0pΩqK, so 1-forms in Ω decompose directly into a section of

Λ0,1pΩq plus a section of Λ1,0pΩq. More generally, a complex k-form is a section α P

Γp
Źk CT ˚Ωq of the k-th exterior power of CT ˚Ω, which is a C8pΩq-linear combination

of tensors dzI ^ dz̄J with |I| ` |J | “ k. Let p, q such that p ` q “ k be fixed, a k-form
written as

α “
ÿ

|I|“p
|J |“q

αI,JdzI ^ dz̄J , αI,J P C8
pΩq (2.16)
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is often referred to as a pp, qq-form on Ω. Such elements constitute a set we denote Λp,qpΩq.

For each p and q fixed we define complexes

Λ0,qpΩq Λ1,qpΩq . . .B (2.17)

Λp,0pΩq Λp,1pΩq . . .B̄ (2.18)

where B, B̄ have the following formulas

Bp
ÿ

|I|“p
|J |“q

αI,JdzI ^ dz̄Jq “
ÿ

|I|“p
|J |“q

n
ÿ

j“1
Bzj
αI,J dzj ^ dzI ^ dz̄J (2.19)

B̄p
ÿ

|I|“p
|J |“q

αI,JdzI ^ dz̄Jq “
ÿ

|I|“p
|J |“q

n
ÿ

j“1
Bz̄j
αI,J dz̄j ^ dzI ^ dz̄J (2.20)

Again, the commutativity of pBzj
qj and pBz̄j

qj ensures B ˝ B “ B̄ ˝ B̄ “ 0.

Remark 2.6 (Relation with de Rham complex).

It should be noted for each j we have

BαI,J
Bzj

dzj `
BαI,J
Bz̄j

dz̄j “
1
2

ˆ

BαI,J
Bxj

´ i
BαI,J
Byj

˙

pdxj ` idyjq (2.21)

`
1
2

ˆ

BαI,J
Bxj

` i
BαI,J
Byj

˙

pdxj ´ idyjq “
BαI,J
Bxj

dxj `
BαI,J
Byj

dyj (2.22)

thus, from the defining expressions of B, B, summing over j we have d “ B ` B̄, where d is
the exterior derivative of the de Rham complex. It then also follows B ˝ B “ ´B ˝ B, since
pB ` Bq ˝ pB ` Bq “ 0.

2.2 Principal symbol and ellipticity

Each F-valued differential operator as in equation (2.3) induces a function we call
the symbol (or total symbol) of P .4 The part of order k of P is an homogeneous operator
P pkq P DiffkpMq where we only consider the terms in the representation which are associated
to derivatives of order precisely k. If k ą ordpP q, then P pkq is zero, of course. Thus P is
decomposed as P pordpP qq ` . . . ` P p0q where each of the symbols P pkq is a homogeneous
polynomial of order k on ξ.

The principal symbol σP of P will be the total symbol of P pordpP qq, that is

σP pξq “
ÿ

|α|“ordpP q

aαpxqξα, ξ P T ˚
xΩ (2.23)

4 Ω Ă Rν being open, the cotangent bundle is trivially diffeomorphic to Ω ˆ Rν
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The operator P is said of elliptic type if for each x P Ω, the only real root for σP pξq with
ξ P T ˚

xΩ is the trivial ξ “ 0.

Let us see how those concepts are handled in the context of differential complexes.

Definition 2.7 (Principal symbol of P P DiffpΩ;V,W q). Consider as in Definition 2.1
that P P DiffpΩ;V,W q has a matrix representation rP s “ pPjlq P MnˆmpDiffpΩqq and let
k ě maxj,l ordPjl be fixed. Then the principal symbol σP px, ξq P LpV,W q is the linear
mapping where each entry pj, lq in matrix representation is given by σ

P
pkq

jl

, that is, each
entry is the principal symbol of the homogeneous part of order k of Pjl.

Remark 2.8. If Ω is simply a smooth manifold, the coordinates ξ on the fibers of T ˚Ω
depend on the choice of a local chart for Ω. As such, the coordinate representation of P
for a fixed order k can vary, which makes the total symbol of P unsuitable for coordinate-
invariant properties. In the case of the principal symbol, however, we can work around this
issue as follows.

Let k “ ordpP q and P P DiffpΩ;V,W q. For each choices of u P C8pΩ;V q and
f P C8pΩ;Rq, we obtain a polynomial of degree k in W

τ ÞÑ e´iτfpx0qP peiτfuqpx0q P W (2.24)

as we will readily see by taking coordinates. The operator P is represented by a combination

rP s “
ÿ

|α|ďk

ÿ

j,l

aαjlrD
α
jls, aαjl P C8

pΩq (2.25)

where rDα
jls P MnˆmpDiffpΩqq is the elementary matrix with Dα at row j and column l as

its only non-zero entry. Then, if rvls P Mnˆ1pC8pΩqq is the coordinate representation of
v P C8pΩ;V q, we have

rDα
jlpvqsp “ δjpD

αvl (2.26)

thus, by linearity,

rP peiτfuqsp “
ÿ

|α|ďk

ÿ

j,l

“

aαjlD
α
jlpe

iτfuq
‰

p
“

ÿ

|α|ďk

ÿ

l

aαplD
α
peiτfulq (2.27)

Now Leibniz’s product rule (1.38) allows us to write for each multi-index α

Dα
peiτfulq “ τ |α|eiτfdfαul `

ÿ

βăα

Cβτ
|β|eiτfdfβDα´βul (2.28)

Then, multiplying (2.27) by eiτf and evaluating at x0, we get (2.24) as sum of
polynomial terms of τ on each coordinate. The maximal order coefficients are the ones
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associated to τ k, which are obtained from indices α such that |α| “ k. If we single them
out with (2.28) we get

e´iτfpx0q

˜

ÿ

|α|“k

τ |α|eiτfdfα
ÿ

l

paαplulq

¸

px0q “ (2.29)

τ k
ÿ

|α|“k

dfpx0q
α
`

aαj‚px0q ‚ upx0q
˘

“ τ k

˜

ÿ

|α|“k

dfpx0q
αaj‚px0q, upx0q

¸

‚ upx0q (2.30)

In particular, we see that the coefficient of τ k in (2.24) depends on the choices of
f and u only through the values of ξ .

“ dfpx0q and η
.
“ upx0q, depending linearly on the

latter. It is therefore legitimate to define the principal symbol of P based on those values,
as we do in the following.

Definition 2.9 ([Men23] Symbol). Let P P DiffpΩ;V,W q, ξ P T ˚
x0Ω and k ě ordpP q. The

symbol σkP pξq is the linear map V Ñ W given by

σkP pξqpηq “ lim
τÑ8

e´iτfpx0q

τ k
P peiτfuqpx0q (2.31)

where u P C8pΩ;V q, f P C8pΩ;Rq are such that dfpx0q “ ξ and upx0q “ η.

Remark 2.10. The principal symbol of P refers exclusively to σkP with k “ ordpP q. Still,
in some contexts (such as Lemma 2.11), it is convenient to allow k ą ordpP q, in which
case the definition above readily implies σkP “ 0.

It suffices to compare (2.29) with the statement of Definition 2.7 to convince ourselves
that both definitions of principal symbol agree.

Lemma 2.11. Let P P DiffkpΩ;V,W q and Q P Diff lpΩ;W,Xq, then for any ξ P T ˚Ω the
principal symbol of QP satisfies the relation σk`l

QP pξq “ σlQpξq ˝ σkP pξq.

Proof. Given u P C8pΩ;V q and f P C8pΩ;Rq, for each τ P R we can write

1
τ k`l

e´iτfQP peiτfuq “

ˆ

1
τ l
e´iτfQeiτf

˙ˆ

1
τ k
e´iτfPeiτf

˙

u (2.32)

By (2.31), we have the pointwise limit

τ´ke´iτfP peiτf qu
τÑ8
Ñ σkP pdfqpuq (2.33)

where σkP pdfqpuq : p P Ω ÞÑ σkP pdfppqqpuppqq P W (2.34)

and, likewise, given v P C8pΩ;W q,

τ´ke´iτfQpeiτf qv
τÑ8
Ñ σlQpdfqpvq (2.35)
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Now let ξ P T ˚
x0Ω and η P V , take u P C8pΩ;V q, f P C8pΩ;Rq related to ξ and η as in

Definition 2.9. Substituting σkP pdfqu for v in (2.35), since the maps in (2.33) and (2.35)
(from Ω to V and W , respectively) are all smooth, the limit for the composition at the
right-hand side of (2.32) evaluated at x0 simplifies to

σk`l
QP pξqpηq “ σlQpdfppqqpσkP pξqqpηq “ pσlQpξq ˝ σkP pξqqpηq (2.36)

as we wanted.

Definition 2.12. Let P “ pC8pΩ;Ejq, Pjqj be a differential complex as in Definition 2.2.
By virtue of Lemma 2.11, we know for each ξ P T ˚Ω the sequence

0 E1 E2 E3 ¨ ¨ ¨
σP1 pξq σP2 pξq σP3 pξq

(2.37)

is in fact a chain complex of vector spaces (meaning for any j, σPj`1pξq ˝ σPj
pξq “ 0). The

operator P is then said elliptic if for all ξ P T ˚Ω the induced sequence (2.37) is exact.

Example 2.13 (de Rham complex). We show the de Rham complex from Example 2.3 is
elliptic.

Let u P C8pΩ;
ŹpCνq be a p-form and f P C8pΩq, the product rule of the exterior

derivative (cf. (i) in Proposition 1.9) leads to
1
τ
eiτfdpe´iτfuq “ idf ^ u `

1
τ
du (2.38)

so taking the limit of Definition 2.9 obtain the principal symbol σdpξq “ iξ ^ ¨.

Let us check the induced chain complex

0 Cν
Ź1 Cν

Ź2 Cν ¨ ¨ ¨
iξ^¨ iξ^¨ iξ^¨ iξ^¨ (2.39)

is exact for any given ξ. Indeed suppose we have ξ P
Ź 1Cνzt0u and α P

Ź

p Cν with
iξ ^ α “ 0. Since ξ ‰ 0, we can take a basis pe1, e2, . . . , eνq P

Ź 1Cν where e1 “ ξ. Then,
we split

Źp`1 Cν into a direct sum

ľ

p`1Cν
“

Ej
.
“

hkkkkkikkkkkj

span
rJs“p`1

1PJ

xeJy ‘

Fj
.
“

hkkkkikkkkj

span
rJs“p`1

1RJ

xeJy (2.40)

Writing the action of iξ ^ ¨ in coordinates, it becomes clear iξ ^ ¨ restricted to Fj is
injetive. All summands in the coordinate expression of iξ^η with η P Ej vanish identically
due to ξ ^ ξ “ 0, so that iξ ^ pEjq “ t0u as well. Thus, for each α “ αEj

` αFj
with

pαEj
, αFj

q P Ej ˆ Fj

ξ ^ α “ 0 ùñ ξ ^ αFj
“ 0 ùñ αFj

“ 0 (2.41)

Therefore α “ αEj
P Ej . On the other hand, we easily see iξ^pFj´1q “ Ej , so α P ran iξ^¨.

We then conclude ker iξ ^ ¨ “ ran iξ ^ ¨, which is the condition for exactness.
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2.3 Complexes determined by vector fields and involutive systems

Now suppose F “ C and Ω is a smooth manifold of dimension N where a family
of complex vector fields L “ pL1, . . . , Lνq P XpΩq is defined. The elements of L can
be understood in agreement with Definition 2.1 as homogeneous differential operators
C8pΩq Ñ C8pΩq of order 1.

We set basic constraints on L “ pL1, . . . , Lνq Ă XpΩq leading towards two distinct
goals. The first is to be able to define a differential complex

0 C8pΩq C8pΩ;
Ź1 Cνq C8pΩ;

Ź2 Cνq ¨ ¨ ¨
Lp0q Lp1q Lp2q Lp3q

(2.42)

in the sense of Definition 2.2. Once we set reasonable formula for the differential maps, a
necessary and sufficient condition over L, to the end of making the sequence a complex,
will readily follow – it is the mutual commutativity of the vector fields.

The other goal has to do with the inhomogeneous problems posed by overdetermined
systems of equations such as

Lju “ fj, j “ 1, . . . , ν (2.43)

We establish a couple of conditions over L that make an investigation of the basic matters
concerning solutions feasible (existence, uniqueness, regularity, and so on). They are the
following: the vector fields must be linearly independent pointwise, and the C8pΩq-linear
span of the vector fields span the Lie algebra generated by those same elements. Together,
they give the minimal working assumptions for the theory of involutive systems to develop,
while also pointing towards certain subbundles of CTΩ, known as formally integrable
structures, as the intrinsic objects of study in regards to overdetermined systems.

From vector fields to a differential complex

Let pU,xq be a local chart of Ω and denote pBxj
q Ă XpUq, pdxjq Ă ΓpT ˚Uq the local

generators obtained from such choice of coordinates. Elements of the family L are then
locally given by

Lj “

N
ÿ

k“1
αjkBxk

(2.44)

for some uniquely determined coefficients αjk P C8pUq. As laid out in the introduction,
our intention is to define a differential complex (2.42) out of L. A reasonable starting point
is to take Lp1q P DiffpΩ;Cν ,

Ź1 Cνq given by

Lp1qu “

ν
ÿ

j“1
Lju ej P C8

pΩ;
ľ1

T ˚Ωq, @f P C8
pΩq (2.45)
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with pe1, . . . , eνq a basis for Cν . Solutions to Lp1qu “ f are then equivalent to solutions to the
overdetermined system (2.43) by means of the isomorphism C8pΩ;Cνq – C8pΩ;

Ź1 Cνq.

The operator just defined is remarkably similar to the differentials of the de Rham
complex of Example 2.3; in fact, if Ω is open and Lj “ Bxj

with ν “ N , then Lp1q in
equation (2.45) is precisely the first level of the exterior derivative. With that in mind, we
consider extending the construction to the remaining levels of the complex in accordance
with (2.7), that is, by making

Lppq

˜

ÿ

rIs“p´1
αIeI

¸

“
ÿ

rIs“p´1

ν
ÿ

k“1
pLkαIq ek ^ eI , αI P C8

pUq (2.46)

Doing so certainly makes (2.42) a sequence of first order differential maps. The
question to be settled, then, is under which circumstances the definition above gives a
differential complex.

Lemma 2.14. Let L “ pL1, . . . , Lνq Ă XpΩq be a family of vector fields and Lppq :
C8pΩ;

Źp´1 Cνq Ñ C8pΩ;
ŹpCνq the linear mappings given by (2.46), then (2.42) is a

complex if and only if, rLk, Lls “ 0 for each k, l “ 1, . . . , ν.

Proof. Let α “
ř

rIs“p´1 αIeI P C8pΩ;
Źp´1 Cνq, then (2.46) leads to

Lpp`1qLppqα “

ν
ÿ

k,l“1

ÿ

rIs“j´1
LlpLkαIq el ^ ek ^ eI (2.47)

“

ν
ÿ

lăk

ÿ

rIs

pLlLkαI ´ LkLlαIq el ^ ek ^ eI (2.48)

Hence, rLk, Lls “ 0 suffices to ensure Lpp`1qLppq “ 0.

Conversely, if the linear operators do form a complex, then in particular at p “ 1
the expression in the last equation simplifies to

Lp2qLp1qf “

ν
ÿ

lăk

rLl, Lksf el ^ ek “ 0 (2.49)

for each f P C8pΩq. Now given pel^ekqlăk is a basis
Ź2 Cν and f varies freely, we conclude

rLk, Lls “ 0 for all k ‰ l.

Involutive systems

We now present the assumptions made for overdetermined systems such as (2.43).

The special case of a single real vector field already provides some direction. Suppose
L is defined in a neighborhood of the origin in RN with local representation

L “

N
ÿ

j“1
ajBxj

(2.50)
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If L is non-vanishing at 0, we can define coordinates y1, . . . , yN near the origin so that
L “ By1 . Indeed, assuming we have a1p0q ‰ 0, that amounts to solving a Cauchy problem

$

’

’

’

&

’

’

’

%

By1xj “ ajpx1, . . . , xNq, j P t1, . . . , Nu

x1p0, y2, . . . , yNq “ 0

x1p0, y2, . . . , yNq “ yj, j P t2, . . . , Nu

(2.51)

Since a1p0q ‰ 0, py1, . . . , yNq Ñ px1, . . . , xNq is a smooth local diffeomorphism, the (local)
inverse px1, . . . , xNq Ñ py1, . . . , yNq exists and attains to L “ Byj

as we wanted. The
problem of solving Lu “ f near the origin can be thus be solved by integration with
respect to y1. The assumption of L non-vanishing at the origin is crucial – nothing can be
asserted in general otherwise.

Then, at least in the real setting, the basic requirement for the existence of local
solutions to a vector field equation is that L P XpΩq is non-vanishing at the origin. More
generally, for a number n ě 1 of real vector fields, Frobenius’ theorem states that for each
point there are coordinates y1, . . . , yn such that spanpLjq “ spanpByj

q locally, as long as
L1, . . . , Ln are linearly independent pointwise (cf. [BCH08, Theorem 5.1]). Considering
the case of complex vector fields is more general than the real case, we have motivated the
following condition on L as a necessary one.

Definition 2.15. The family L “ pL1, . . . , Lνq Ă XpΩq is said of principal type if for
each p P Ω the families of vectors ppL1qp, . . . , pLνqpq Ă CTpΩ are linearly independent.

Remark 2.16. Clearly the maximum number of vector fields in a family of principal type
is bounded by the dimension of the manifold, i.e. ν ď N in the definition above. Also
evident is the fact that ν “ N can occur in the chart domains U Ă Ω, since the standard
Euclidean coordinate fields pull-back to a local basis in XpUq. In general, however, the
maximum number of vector fields in a principal type family is particular to the manifold Ω
under consideration. For example, in the real case, it is well known that the spheres SN

with N even forbid globally defined, non-vanishing vector fields, so that ν “ 0 is already
the maximal constant. On the other hand, again in the real case, the class of parallelizable
manifolds, which includes the tori TN and the sphere S3, can be characterized by the
existence of a principal type family with ν equal to the dimension of the manifold (see
[Lee13, p.179] for further details).

For the second requirement, consider the system of equations (2.43) determined by
L in the homogeneous case fj “ 0, j “ 1, . . . , ν. Let L Ă XpΩq be the set of vector fields
L such that u solving the system implies Lu “ 0. Then

L,M P L ùñ @u, rL,M su “ LpMuq ´ MpLuq “ 0 ùñ rL,M s P L (2.52)
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so L is closed with respect to the bracket operation, and thus a Lie algebra. Furthermore,
it easy to see L is C8pΩq-linearly closed. It may well be the case that the Lie algebra
generated by the family L is strictly larger than its C8pΩq-linear span. Therefore, if we
want make L a C8pΩq-linear basis for L, we might need to complete it by adjoining vector
fields from L. However, such process may prove incompatible with the principal type
condition over L, as the next example demonstrates. Therefore, working simultaneously
with both conditions over L requires an assumption from the outset.

Definition 2.17. The family of complex vector fields L “ pL1, . . . , Lνq P XpΩq is said
involutive if it is of principal type and satisfies the Frobenius condition:

@j, k, rLj, Lks P span
C8pΩq

L (2.53)

Example 2.18.

Let Ω “ R3 and L “ pL1, L2q “ pBx1 , Bx2 ` x1x3Bx3q, then L is of principal type,
but cannot be extended to an involutive family while remaining within the same Lie
sub-algebra. Indeed, pL1, L2q generates a proper Lie algebra of XpΩq, with linear basis
pL1, L2, L3q where L3

.
“ rL1, L2s “ x3Bx3 R spanpL1, L2q. However, to adjoin a vector field

to pL1, L2q while maintaining pointwise linear independence we need the linear span of
the fields at 0 to be CT0Ω Ľ spanpBx1 |0, Bx2 |0q.

2.4 Involutive structures

The properties pertaining to the solutions of locally defined overdetermined systems
such as (2.43) do not vary either by a change of coordinates nor by diffeomorphic transfor-
mations. Therefore, if we want to regard those systems in an intrinsic manner, we must
concern ourselves with the vector bundles generated by the principal type families, rather
than the vector fields themselves. From now on, this is the perspective we adopt.

Definition 2.19. A complex vector bundle V Ă CTΩ is said a formally integrable
structure over Ω if for each W Ă Ω open we have

rL,M s P ΓpCTU X Vq whenever L,M P ΓpCTU X Vq (2.54)

In that case, pΩ,Vq is said an involutive structure.

Let V be a formally integrable structure of rank n, then for each local chart pU,xq

we get generators L1, . . . , Ln P XpUq for V X CTU . Writing the vector fields as

Lj “

ν
ÿ

k“1
ajk

B

Bxk
(2.55)



Chapter 2. Differential complexes and involutive systems 42

the condition of linear independence implies the matrices pajkpxqq P Mnˆν are of maximal
rank for each x P Ω. Also notice that, since L1, . . . , Ln are generators, there exists smooth
coefficients cljk P C8pUq such that @j, k,

rLj, Lks “
ÿ

l

cljkLl (2.56)

Definition 2.20 (Characteristic set). Let V Ă CTΩ be a formally integrable structure
over Ω, the characteristic set V0 of V is the subset of the (real) cotangent bundle which is
orthogonal to V through their natural duality, that is

V0 .
“ VK

X T ˚Ω (2.57)

The symbol of a vector field L P XpΩq is the mapping

σL : ξ P T ˚
p Ω Ă T ˚Ω ÞÑ ξpLpq (2.58)

Therefore, we have ξ P V0 if and only if σLpξq vanishes for every L P ΓpVq.

Remark 2.21. Take pU, px1, . . . , xNqq a local chart on Ω and ξ P T ˚
p Ω a covector at p P U .

Writing with respect to those coordinates ξ “
ř

j ξjpdxjqp and L “
ř

j αj
B

Bxj
, the expression

for the symbol becomes

σLpξq “ ξpLpq “

C

ÿ

j

ξjpdxjqp,
ÿ

k

αkppq
B

Bxj

G

“
ÿ

j

αjppqξj (2.59)

Then, if pLjqj“1,...,ν given by Lj “
ř

k ajk
B

Bxk
are linearly independent local generators of

V, the characteristic set in the vicinity V0 X T ˚U is described by a system of equations
ÿ

k

ajkppqξk “ 0, pξ1, . . . , ξNq P RN , j “ 1, . . . , ν (2.60)

Notice that this definition of symbol for vector fields agrees with the one we gave for
vector valued differential operators in Definition 2.7 and Definition 2.9. Furthermore, if
pL1, . . . , Lνq commute, and therefore define a differential complex L (as we described in
Section 2.3), then a solution pξ1, . . . , ξNq to the system of equations (2.60) is equivalent to
the equality

kerσL1pξq “ ran σL0pξq “ t0u (2.61)

in the chain complex induced by ξ “
ř

j ξjpdxjqp of (2.37). Said differently, a given ξ P T ˚Ω
will be in V0 X T ˚Ω iff the complex (2.37) induced by L and ξ P T ˚Ω in (2.37) is exact at
E1 “

Ź1 CN .

Example 2.22 (Mizohata operator). Denote pt, xq the standard coordinates in Ω “ R2.
The Mizohata operator is the complex vector field

M “
B

Bx
´ ix

B

Bt
P XpR2

q (2.62)
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Since it doesn’t vanish anywhere, M defines a locally integrable structure V. The equation
for its symbol σpMqpt,xqpξ, τq “ ξ ´ ixτ does not contain any real roots pξ, τq ‰ 0 unless
x “ 0. Therefore the characteristic set of M is given by

V0
pt,xq “

$

&

%

0, if x ‰ 0

span dtpt,xq, if x “ 0
(2.63)

In particular, we see the characteristic set is not necessarily a submanifold.

We give names for structures V with special algebraic properties on the vector space
structures of its fibers.

Definition 2.23 (Special structure types [BCH08, I.8, p 15]). Let V be a formally integrable
structure over Ω, we say V defines

• an elliptic structure if V0
p “ 0, @p P Ω

• a complex structure if Vp ‘ Vp “ CTpΩ, @p P Ω

• a CR structure if Vp X Vp “ 0, @p P Ω

• an essentially real structure if Vp “ Vp, @p P Ω

A few remarks are due here. Notice that a complex structure is a special type of
both elliptic and CR structures. Indeed, Vp X Vp “ 0 is the precondition to have a direct
sum, while

Vp ‘ Vp “ CTpΩ ùñ VK

p ‘ VK
p “ 0 ùñ VK

p “ 0 (2.64)

shows complex structures are elliptic. The name CR is short for Cauchy-Riemann, in
reference to the quintessential example of the sub-bundles CT 1,0,CT 0,1 defined in the
construction of the Dolbeault complex in Example 2.5. Finally, the defining property of
essentially real structures makes it so that real vector fields can be taken as local generators.
To be sure, let L1, . . . , Ln be local generators of V near a point p, then V essentially real
implies pReLj, ImLjqj“1,...,n are still sections of V . Furthermore, n out of those span Vp at
p. Since the rank of the subspaces generated pointwise by the vector fields must remain
constant in a neighborhood, we conclude they define a set of local, real generators of V .

Example 2.24 (The boundary operator on a hypersurface). Let Ω “ tz P Cp :
ř

j |zj|
2 “

1u be the unit sphere regarded as an embedded manifold of codimension 1 in Cp –

R2p. With coordinates pzj, z̄jqj“1,...,p as in Example 2.5, we consider the vector fields
in spanC8pΩq pBzj

qj“1,...,p Ă XpCpq which are also tangent to Ω and build a corresponding
differential complex on Λ0,‚pΩq.
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The sphere Ω is implicitly given by the equation rpzq “ 0, where rpzq “
ř

j zj z̄j ´ 1.
The 1-form dr “

ř

j z̄jdzj ` zjdz̄j P ΓpCT ˚Ωq is therefore a generator of CT ˚Ω and, given
v P TwCp with w P Ω, tangency to Ω is equivalent to xdr, vy “ 0.

Define for ν “ 1, . . . , p ´ 1 the vector fields

Lj
.
“ zp

B

Bz̄j
´ zj

B

Bz̄p
P XpCp

q (2.65)

and notice for each k “ 1, . . . , p ´ 1,

xdr, Lky “
ÿ

j

pzjdz̄j ` z̄jdzjq

ˆ

zp
B

Bz̄k
´ zk

B

Bz̄p

˙

“ zkzp ´ zpzk “ 0 (2.66)

Therefore, each Lj actually restricts to a vector field over Ω. Moreover, disregarding the
set of points where zp “ 0, the family pL1, . . . , Lp´1q is pointwise linearly independent and,
for all j, k, its elements satisfy the relation

rLj, Lks “

„

zp
B

Bz̄j
´ zj

B

Bz̄p
, zp

B

Bz̄k
´ zk

B

Bz̄p

ȷ

“ 0 (2.67)

thus defining an involutive family over Ωztzp “ 0u.

To generate a differential complex, we select 1-forms ω1, . . . , ωp´1 P spanC8pΩqpdz̄jq

(sections of Λ0,1pCpq cf. Example 2.5) in dual relation to the vector fields (2.66), that is,

ωk “

p
ÿ

j“1
αkjdz̄j, αkj P C8

pCp
q (2.68)

such that ωkpLjq “ δkj, pk “ 1, . . . , p ´ 1, j “ 1, . . . , p ´ 1q (2.69)

Substituting the expressions (2.68) and (2.65) for each equation given by (2.69), we obtain
the following general solutions for the coefficients with j ‰ p

ωkpLjq “ αkjzp ´ zjαkp “ δjk ùñ αkj “
δkj ` zjαkp

zp
(2.70)

which depend solely on the choices of pαkpqk“1,...,p´1 Ă C8pCpq.

Now let pωkq, prωkq be 1-forms in Λ0,1pCpq corresponding different choices of pβkq, prβkq

for the free coefficients pαkpqk“1,...,p´1. Then, by (2.70) we may write

ωk ´ rωk “
ÿ

j

zj
zp

pβk ´ rβkqdz̄j “
βk ´ rβk
zp

ÿ

j

zjdz̄j (2.71)

Notice the 1-form
ř

j zjdz̄j vanishes on CT 0,1Ω. Indeed, if v “
ř

k γk
B

Bz̄k
P CT 0,1

w Ω for some
w P Ω, then

xdr, vy “
ÿ

k

γkpwqzk “ 0 ùñ
ÿ

j

zjdz̄jpvq “
ÿ

j

γjpwqzj “ 0 (2.72)
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Therefore, ωk ´ rωk restricted to CT 0,1Ω is zero and we conclude the duality between pωkq

and pLjq, as established by the system of equations (2.69), determines a unique 1-form
ωpj P Λ0,1pΩq. Thus we may choose, for instance, αkp “ 0 pk “ 1, . . . , p ´ 1q for the free
coefficients, so that ωpj “ 1

zp
dz̄j.

Define the differential operator B
p
b as follows – given f P C8pΩztzp “ 0u,Cq,

B
p
bf “

p´1
ÿ

j“1
pLjfqωpj (2.73)

Notice this defines B
p
b intrinsically by virtue of the fact pLjq and pωjq were chosen as duals.

Of course, p had a privileged role in our construction and, in the same fashion, we
can replace p with q “ 1, . . . , p ´ 1, obtaining similar vector fields Lqj “ zq

B

Bz̄j
´ zj

B

Bz̄q
,

1-forms ωqj “ 1
zq
dz̄j and differential operators

B
q
bf “

ÿ

j‰q

pLqjfqωqj , f P C8
pΩztzq “ 0u,Cq (2.74)

Let r, s P t1, . . . , pu and zr, zs ‰ 0, then

pBrb ´ Bsbqf “
ÿ

j

1
zr

ˆ

zr
Bf

Bz̄j
´ zj

Bf

Bz̄r

˙

dzj ´
1
zs

ˆ

zs
Bf

Bz̄j
´ zj

Bf

Bz̄s

˙

dzj (2.75)

“

ˆ

1
zq

Bf

Bz̄q
´

1
zp

Bf

Bz̄p

˙

ÿ

j

zjdz̄j (2.76)

and once again the factor
ř

j zjdz̄j vanishes in Ω.5 Since the domains Ωztzr “ 0u cover Ω
and agree at their intersections, we arrive at a single, globally defined operator B̄b, which
leads to the complex

C8pΩq Λ0,1pΩq Λ0,2pΩq ¨ ¨ ¨
B̄b B̄b B̄b

Locally integrable structures

Definition 2.25. A complex subbundle V Ă CTΩ of rank n and corank m “ N ´ n is
said a locally integrable structure if Ω has an open covering pUαqα where each bundle
VK X CT ˚Uα is generated by exact differentials of local smooth functions. More precisely,
for all α there are Z1, . . . , Zm P C8pUαq such that

spanxpdZ1qp, . . . , pdZmqpy “ VK
p , @p P Uα (2.77)

If u is a local smooth function of Ω, the definition of VK says du is a local section
of VK iff dupLq “ Lu “ 0 for all L P ΓpVq. This implies V must be formally integrable as
5 notice we can include the indexes j “ r and j “ s in the expression of (2.75) without affecting the sum
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well: if L,M are local sections of V , then rL,M sZj “ LpMZjq ´MLpZjq “ 0; since those
are local generators, it follows that any local sections of VK vanish at rL,M s. Therefore,
rL,M s is a local section of V as well.

Local integrability of a formally integrable structure V can thus be reinterpreted as
a statement of existence of a maximal set of solutions: for each homogeneous problem
defined by a local set of generators of V , a full set of m independent local solutions exists.
From this viewpoint, we arrive at the following characterization.

Proposition 2.26. A formally integrable structrure V is locally integrable iff for any p P Ω
and L1, . . . , Ln local generators of V we have Uα Q p such that DZ1, . . . , Zm P C8pUαq with

dZ1 ^ . . . ^ dZm ‰ 0 everywhere in Uα (2.78)

and LjZk “ 0 @j, k (2.79)

Local generators

There are many possible choices of local coordinates on Ω and local generators for V
and VK. By using a structural decomposition of complex vector subspaces in Cn ([BCH08,
p. 17, Lemma 8.5]) one can choose local generators in a standard simplified form. Naturally,
it is only in the case of locally integrable structures that we can induce coordinates on V
and VK simultaneously.

Remark 2.27. With the exception of CR structures, all other types of formally integrable
structures presented in Definition 2.23 are locally integrable as well. The fact that complex
structures are locally integrable is a key result known as the Newlander-Nirenberg theorem.
There are known explicit examples of CR structures that are not locally integrable, but the
proofs are quite involved (see [BCH08, Section I.16]).

We will avoid the technicalities and present the result of interest right away.

Theorem 2.28 ([BCH08, Corollary I.10.2]). Let V be a locally integrable structure of rank n
and corank m over Ω. Then given p P Ω there is a coordinate system pt1, . . . , tn, x1, . . . , xmq

from a chart pU, pt, xqq centered at p such that VK is spanned by the differentials of

Zkpx, tq “ xk ` iϕkpt, xq, k “ 1, . . . ,m (2.80)

near the origin for some real-valued smooth functions ϕk P C8
R pUq satisfying

ϕkp0, 0q “ 0, dxϕkp0, 0q “ 0, k “ 1, . . . ,m (2.81)

Writing Zpt, xq “ pZ1pt, xq, . . . , Zmpt, xqq, notice (2.80) and (2.81) imply DxZp0, 0q

(the Jacobian matrix restricted to the x-variables) is the m ˆ m identity. Then, we can



Chapter 2. Differential complexes and involutive systems 47

choose smooth complex coefficients pµklq near the origin so as to satisfy the relations

MkZl “ δkl (2.82)

with the vector fields

Mk “

m
ÿ

l“1
µklpt, xq

B

Bxl
, k “ 1, . . . ,m (2.83)

Now setting

Lj
.
“ Btj ´ i

m
ÿ

k“1
pBtjϕkqMk, j “ 1, . . . , n, (2.84)

equation (2.82) implies LjZk “ BtjZk ´ iBtjMj “ 0. Furthermore, writing the coordinate
matrix for the vector fields, it is clear that L1, . . . , Ln,M1, . . . ,Mm are linearly independent
and thus span CTRm`n near the origin, with L1, . . . , Ln generators for V .

A tube structure V corresponds to the case where the ϕk from (2.80) does not depend
on x, so we can write Zk “ xk ` iϕkptq. Then, DxZpx, tq is the identity and we can take
Mk “ Bxk

to solve for (2.82). The resulting expression for the vector fields Lj then becomes

Lj “ Btj ´ i
m
ÿ

k“1
pBtjϕkptqqBxk

(2.85)

and one can easily verify, using the coordinate expression (1.16) for the Lie bracket opera-
tion, that L1, . . . , Ln,M1, . . . ,Mm are mutually commutative. In particular, L1, . . . , Ln are
local generators for an involutive structure with a corresponding complex of differential
operators, as determined in Section 2.3.

We shall investigate, in the next two chapters, how questions of solvability are
handled for differential complexes related to this type of structure.
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3 A model with complex coefficients

3.1 Definition

The system under study is obtained from a family pPjq of ν operators acting over
generalized functions of variables pt, xq P Ω ˆ Rn, for some Ω Ă Rν open. Each Pj

corresponds to a smooth function from t to a symbol px, ξq ÞÑ bjpt, ξq in S1pRn ˆ Rnq

(Definition 1.22) which is constant with respect to x. Writing bjpt,Dxq for the operator
associated to the symbol bjpt, ξq, the operators pPjq are given by

Pju “ pBtj ´ bjpt,Dxqqu (3.1)

“

ż

ξPRn

e2πix¨ξ
pBtj ´ bjpt, ξqqpu dξ, j “ 1, . . . , ν (3.2)

where pu is the partial Fourier transform of u with respect to x (as will always be the case
in the present chapter).

The operators act on distributions over Ω with values in a topological vector space
E, the elements of which are generalized functions of x. A few requirements will be placed
over the family of symbols. For now, it should be noted each Pj is a constant coefficients
vector field with respect to t and a pseudo-differential operator with respect to x.

The function spaces

To give a suitable domain for the operators pPjq, we will need spaces of p-currents
which take value in a topological vector space E. This is a generalization of the construction
we encountered in Example 2.4, difference being the codomain E, which was assumed to
be the complex field C previously.

Let E be a locally convex Hausdorff TVS over the complex field, the space of E-
valued p-currents over Ω is denoted

Źp D1pΩ;Eq, or simply D1pΩ;Eq when p “ 0. Starting
from the latter, a 0-current is a continuous linear mapping C8

c pΩq Ñ E, where C8
c pΩq

is to be equipped with the usual inductive limit topology which turns it into a complete
locally convex TVS. Now let p ą 0, analogously to (2.8), we represent u P

Źp D1pΩ;Eq by
combining coefficients in D1pΩ;Eq with alternating tensors in the variable t, that is,

u “
ÿ

rJs“p

uJdtJ , uJ P D1
pΩ;Eq (3.3)

Again, an alternate description is possible. There is a bilinear mapping
Źp D1pΩ;Eqˆ

Źν´pC8
c pΩ;Eq Ñ E, which comes from the dual pairing D1pΩ;EqˆC8

c pΩ;Eq Ñ E defined
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mutatis mutandis as in (2.9). The space of p-currents with values over E is then naturally
identified with the space of continuous linear mappings

Źν´pC8
c pΩ;Eq Ñ E.

The value spaces

Let us move on to the definition of the value spaces, referred to as E so far. The
Fourier-transform on the variable x will be the basic starting point of all our investigations,
but obtaining solutions requires not only the Fourier transform to be well-defined, but also
a condition of local integrability allowing Fourier inversion. As usual, this is a problem of
asymptotic decay. We can set those difficulties aside for now without losing any generality
by considering the problem in a space of currents valued in a formal space of generalized
functions, characterized by being mapped homeomorphically to L1

locpRnq through the
Fourier transform. Such value space will be suggestively denoted F´1L1

locpRnq, or F´1L1
loc

for short. We qualify them as formal because they lack the properties of localization
commonly known in the setting of distributions.

Let pSpRnq, τq be the topological space of Schwartz functions in Rn with the subspace
topology induced by L1

locpRnq (see Definition 1.12). Since the Fourier transform is bijective
from S to S (Proposition 1.15), the topology F´1τ “ tF´1pUq : U P τu makes F :
pSpRnq,F´1τq Ñ pSpRnq, τq a homeomorphism. The topological space E .

“ F´1L1
locpRnq

is then defined as the completion of pSpRnq,F´1τq. Given SpRnq Ă L1
locpRnq is a dense

subset and L1
locpRnq complete ([Maz11, p.2]), the Fourier transform extends to a linear

homeomorphism F : F´1L1
locpRnq Ñ L1

locpRnq.1

Later on, we replace E “ L1
loc with Sobolev spaces and define the type of solvability

we intend to verify. Then, we must determine if the formal solutions obtained at first are
appropriate.

3.2 Construction of the differential complex

Let P “ tP1, . . . , Pνu be the family of pseudo-differential operators introduced in
(3.1). We would like to construct a corresponding differential complex like the one we made
for involutive systems in Section 2.3. Of course, the results obtained there are not readily
available to us because the domain differs and our operators are no longer differential. Still,
the same genera approach can be repeated. Referring to Example 2.4, we aim to construct
a differential complex pPppq,

Źp D1pΩ; F´1L1
locqqp where p “ 0 encodes the overdetermined

system of equations Pju “ fj, j “ 1, . . . , ν.
1 Since the spaces L1

loc are non-metrizable, the completion invoked in our construction only makes sense
in the context of topological vector spaces. This is no issue here: if a TVS is Hausdorff, the existence
and uniqueness (up to an isomorphism) theorem of the completion says just as much as in the metric
case. See [Tre67, p. 41 Theorem 5.2] for details.
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Write u P
Źp D1pΩ; F´1L1

locq with respect to its coefficients

u “
ÿ

|J |“p

uJdtJ , uJ P D1
pΩ; F´1L1

locq (3.4)

then the family of pseudo-differential maps bj combines into chain maps bpt,Dxq^ :
Ź

‚ D1pΩ; F´1L1
locq Ñ

Ź

‚`1 D1pΩ; F´1L1
locq which act on u by integration

bpt, ξq ^ u “

ν
ÿ

j“1

ÿ

|J |“p

pbjpt, ξq ^ uJqdtj (3.5)

The evident choice of Pppq :
Źp D1pΩ; F´1L1

locq Ñ
Źp`1 D1pΩ; F´1L1

locq fitting our
requirements is

P “ dt ` bpt,Dxq ^ ¨ (3.6)

where dt is the exterior derivative with respect to the variable t only. Parallel to that, it is
useful to consider the action of P on the frequency domain of x. Set pP :

Źp D1pΩ;L1
locq Ñ

Źp`1 D1pΩ;L1
locq with

pP “ dt ` bpt, ξq ^ ¨ (3.7)

then P and pP are related by

xPu “ pPpu, û P
ľp

D1
pΩ; F´1L1

locq (3.8)

We will also adhere to the notations Pb and pPb whenever we wish to make the dependence
of b explicit.

It should be verified if the definition above satisfies the chain complex condition. The
same computation done in Lemma 2.14 for complexes of vector fields shows bpt,Dxq ^

bpt,Dxq “ 0. Combining this fact with the axiomatic properties of Proposition 1.9 for dt,
the composition of successive operators in the sequence is 2

Ppp`1q
˝ Pppq

“ pdt ` bpt,Dxq ^ ¨qpdt ` bpt,Dxq ^ ¨q (3.9)

“ dt ˝ dt ` dtpb ^ ¨q ` b ^ dt ` b ^ b (3.10)

“ dtb ^ ¨ ´ b ^ dt ` b ^ dt “ dtb ^ ¨ (3.11)

Thus, P makes a complex iff dtbpt,Dxq “ 0, @t P Ω. In terms of bpt, ξq “
ř

j bjpt, ξqdtj, the
same condition reads

pdtbpt,Dxq ^ uqpt, xq “

ż

Rn

e´2πix¨ξdtbpt, ξq ^ pupt, ξqdξ “ 0, @u (3.12)

2 the truncated formulas shown stand in accordance with the rather lengthy expressions one gets by
evaluating Ppp`1q ˝ Pppqpuq from the definitions
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so we conclude (3.6) defines a complex iff for all t P Ω, bpt, ξq is a closed 1-form for almost
every ξ P Rn.

The main achievement of [Tre76] (which came up with the model) was to establish a
necessary and sufficient condition of solvability of a semi-global type (more on that later)
for the equations

Pbu “ f, f P
ľp

C8
pΩ;H8

q (3.13)

with f under suitable compatibility conditions and b with a few further requirements. We
are going to state the problem in full generality, although our goal is only to show a proof
of sufficiency specific to the case p “ 0.

Requirements on the symbol bpt, ξq

The most important assumption we make on b is exactness of bpt, ξq. Beyond fulfilling
the complex condition, that allows us to work with a primitive Bpt, ξq in what follows.

If exactness is assumed, a primitive B can be obtained by integration component-wise:
let Ω0 be a connected component of Ω and take p0 P Ω0 fixed. For t P Ω0 let

Bpt, ξq “

ż

γpp0,tq

bps, ξq (3.14)

where γpp0, tq is any path going from p0 to t in Ω.

The remaining requirements are stated by means of B. It should be noted, however,
that a primitive B fulfills them iff any other choice of primitive does, and in that sense
the requirements are still set upon b. The full set of premises is the following:

(i) for a.e. ξ P Rn, bp¨, ξq is exact

(ii) Let B be a primitive of b, then Bpt, ξq “ B0pt, ξq `Rpt, ξq for some B0, R such that,
@t P Ω, Bpt, ¨q is positive homogeneous of degree one and Rpt, ¨q P L8pRnq

(iii) Both B0 and R are C8 with respect to t P Ω

(iv) The restriction of B0pt, ¨q to Sn´1 “ tξ : |ξ| “ 1u is a function of class C1

The properties we impose on B (existence of B0 and R in (ii) and regularity of (iii) and
(iv)) imply analogous conditions on coefficients bj of the model. Indeed, dtB “ dtB

0 ` dtR

leads to a set of equations

bjpt, ξq “ b0
jpt, ξq ` rjpt, ξq, j “ 1, . . . , n (3.15)

where we take dtB0 “
ř

b0
jdtj and dtR “

ř

rjdtj. In particular, the coefficients are still
C8 on t and C1 on ξ.



Chapter 3. A model with complex coefficients 52

3.3 Reduction on the coefficient b and compatibility conditions

Write the homogeneous part of B as

B0
“ B0

1 ` iB0
2
.
“ ReB0

` i ImB0 (3.16)

We define a family pUtqtPΩ Ă LpEq, E P tH8pRnq, H´8pRnqu of operators

xUt, vypxq “

ż

eip2πx¨ξ´B0
2pt,ξqq´Rpt,ξq

pvpξqdξ, v P E (3.17)

which are continuous extensions of certain classes of transformations known as Fourier
integral operators.

In a basic prototypical version, a Fourier integral operator T acts as a linear endo-
morphism on Schwartz functions f P SpRNq by

pTfqpxq “

ż

RN

e2πiΦpx,ξqapx, ξq pfpξqdξ (3.18)

Here, the functions a and Φ are what we call the amplitude and phase of T , respectively.
Well-definiteness depends upon the choice of a symbol class for apx, ξq (it could be one
of the symbol spaces SmpRN ˆ RNq we introduced in Definition 1.22, for example) and
further conditions on the real-valued phase function Φ, which is usually homogeneous of
degree 1. See [SM93, §IX.3] for an introductory treatise on the subject.3

Of course, familiar examples of such mappings are obtained from Φpx, ξq “ x ¨ ξ,
when each choice of a corresponds to a pseudo-differential operator with the same symbol.
Far more general classes of operators arise naturally as solutions in the study of hyperbolic
equations, perhaps most famously in the context of the wave equation.

Going back to (3.17), we may regard each Ut as a Fourier integral operator with
Φtpx, ξq “ x ¨ ξ ´ B0

2pt, ξq and atpx, ξq “ e´Rpt,ξq. By doing so, we obtain Φt homogeneous
of degree 1 and the boundedness of R with respect to ξ provides straightforward estimates

ˇ

ˇ

ˇ

ˇ

ˇ

B
β
ξ Bαxatpx, ξq

p1 ` |ξ|q|α|

ˇ

ˇ

ˇ

ˇ

ˇ

ď |rpt, ξq
αe´Rpt,ξq

| ď sup |rpt, ¨q|
αesup |Rpt,¨q| (3.20)

showing at is in the symbol class S0pRN ˆ RNq. Taking v P Hs, for each t P Ω fixed,

xUt, vy P Hs
ðñ ΛspUtvq P L2 (3.21)

3 The cited author develops the theory for a class of Fourier integral operators such that the symbol
apx, ξq is compactly supported in x and such that, for each px, ξq P supp a X tpx, ξq : ξ ‰ 0u, Φ is a
smooth function satisfying the nondegeneracy condition

det
ˆ

B2Φ
BxiBξj

˙

‰ 0 (3.19)
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(c.f. (1.53)). Considering the Fourier coefficients made evident in (3.17),

}Utv}Hs “ }ΛspUtvq}2 “

ˇ

ˇ

ˇ

ˇ

ż

e´2Rtp1 ` |ξ|
2
q
s
|pv|

2dξ

ˇ

ˇ

ˇ

ˇ

1{2

(3.22)

ď sup
ˇ

ˇe´Rpt,¨q
ˇ

ˇ }v}Hs ă 8 (3.23)

so Ut acts boundedly and invariantly on each Sobolev space Hs, s P R. Since s is arbitrary,
the same considerations hold for v P H˘8.

Similarly, one can define U´1
t P LpHsq by letting

xU´1
t , vy “ FtpvpξqeiB

0
2pt,ξq`Rpt,ξq

u (3.24)

Rewriting (3.17) in the manner of (3.24), it is immediate that

Ut ˝ U´1
t “ F ˝ F´1, U´1

t ˝ Ut “ F´1
˝ F (3.25)

so the fact Ut and U´1
t are inverses is a simple restatement of the Fourier inversion formula.

Hence, Ut is an automorphism on each of the Sobolev spaces considered so far.

To bring it to use in our problem, the family of automorphims pUtq Ă AutpEq of
(3.17) must be reinterpreted as a single automorphism over

Źp D1pΩ;Eq. Accordingly, we
let

xU, vypt, xq
.
“

ż

eip2πix¨ξ´B0
2pt,ξqq´Rpt,ξq

pvpt, ξqdξ (3.26)

for v P
Źp D1pΩ;Eq. Notice U acts on vpt, xq as a pseudo-differential operator for fixed x

and as a Fourier integral operator for fixed t. If LpEq is endowed with the strong operator
topology, then pUtq is continuous respect to t. Finally, for reasons I do not understand,
the original author states in [Tre77] that the cases E P tH˘8u are distinguished from
the remaining ones, that is, E “ Hs with s P R, by the fact t ÞÑ Ut is smooth in former
setting.

The remarks made so far lead to the following.

Proposition 3.1 ([Tre76, Prop.I.3.1]). Let E “ tH˘8u, the assignments u ÞÑ xUt, uy

with formula (3.17) are automorphisms of E depending smoothly on t P Ω. Furthermore,
they induce automorphisms U P Autp

Źp D1pΩ;Eqq by means of (3.26) for each level
p “ 0, . . . , ν. Finally, restrictions of U to the subspaces

ŹpC8pΩ;Eq and
ŹpC8

c pΩ;Eq

are automorphisms as well.

The whole reason for the preceding discussion is to allow a simplifying assumption
about the coefficient b. Let v P

Źp D1pΩ;H˘8q, we compute the result of Uv when acted
upon by P –

PpUvq “ dtpUvq ` bpt,Dxq ^ pUvq “

ż

eip2πx¨ξ´B0
2q´R

p´i Im b0 ´ rq ^ v̂ dξ (3.27)

`

ż

eip2πx¨ξ´B0
2q´Rdtpv dξ ` bpt,Dxq ^ pUvq (3.28)
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By definition,

bpt,Dxq ^ pUvq “

ż

e2πix¨ξbpt, ξq ^ xUv dξ (3.29)

so considering xU, vy “ F´1tpvpξqe´iB0
2´Ru, we have xUv “ pvpξqe´iB0

2´R and thus, in conclu-
sion,

PpUvq “

ż

eip2πx¨ξ´B0
2q´R

pdtpv ` Re b0 ^ pvq dξ (3.30)

Notice the expression in parenthesis inside the integral is none other than the operator
pPRe b0 applied to pv, as we defined in (3.7). Since U is invertible, we may express Pb and
PRe b0 as conjugates of each other:

PbpUvq “ UpPRe b0vq ùñ PRe b0 “ U´1PbU (3.31)

This simplifies our problem considerably. A solution u to the equation Pu “ f is
equivalent to a solution v to PRe b0v “ g with the bijective associations v “ U´1u and
g “ U´1f . To be sure,

Pu “ f ðñ PpUvq “ f ðñ PRe b0v “ pU´1PUqv “ g (3.32)

Hence, to the end of determining solvability, it suffices to consider B “ B0
1 , that is, both b

and B can be assumed real-valued and positively homogeneous of degree 1 on ξ P Rn (and
we do so from now on).

Compatibility conditions

Having bp¨, ξq exact with primitive Bp¨, ξq, the differential operator defined in (3.7)
can be rewritten

pP “ e´Bdtpe
B

¨q (3.33)

so dt ˝ dt “ 0 implies ppP,
Źp D1pΩ;L1

locqq defines a chain complex on its own right. We look
for minimal conditions on the x-Fourier transform of f which make a solution as in (3.13)
feasible. Suppose given f there exists u P D1pΩ; F´1L1

locpRnqq such that Pu “ f . Then
since

Pu “ f ðñ pPpu “ pf a.e. ξ (3.34)

it follows from expression (3.33) that

eBp¨,ξq
pfp¨, ξq “ dtppup¨, ξqq (3.35)

In other words, if f can be solved for, then e´Bp¨,ξq
pfp¨, ξq is exact, by necessity. This

motivates the following.
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Definition 3.2. A pp`1q-current f P
Źp`1 C8pΩ;H8q is said compatible if eBp¨,ξqf̂p¨, ξq

is t-exact for almost all ξ P Rn. The set of all f P
Źp`1 C8pΩ;H8q such that f is compatible

will be denoted Epb .

Remark 3.3. Conversely, if f is compatible, Pu “ f has a solution u P
Źp D1pΩ; F´1L1

locq.
Indeed, for almost every ξ fixed we can integrate (3.35) (as we shall do soon) with respect
to t. This leads to some pu P

Źp D1pΩ;L1
locq satisfying pPpu “ pf a.e. ξ. By (3.34) we have a

formal solution.

Now that solutions in the formal setting are thoroughly characterized, we turn to
the problem of actual interest, which is solvability in the framework of distributions. As
mentioned before, distributions can be localized in their appropriate domain, contrary to
the functions in D1pΩ; F´1L1

locq we considered so far. Making the value spaces Sobolev
functions of x, we can localize distributions on Rn and thus make sense of semi-global
solvability.

Definition 3.4. Let Ω1 be an open subset of Ω, then Pppq “ dt ` bpt,Dxq ^ ¨ is said

(i) semi-globally solvable with respect to Ω1, if for any U 1 Ť Ω1,

@f P Epb , Du P
ľp

D1
pU 1;H´8

q such that Pu “ f in U 1 (3.36)

(ii) smoothly semi-globally solvable with respect to Ω1, if for any U 1 Ť Ω1,

@f P Epb , Du P
ľp

D1
pU 1;H8

q such that Pu “ f in U 1 (3.37)

3.4 Condition pψq and proper decay on the coefficients

To better understand the phenomena at play, we investigate the conditions of
solvability which arise when ν “ 1, p “ 0 and Ω is connected. The inhomogeneous term f

will then be a 1-form, which can be naturally identified with a scalar function. Doing so
(and replacing dt with Bt), we have a single pseudo-differential equation to solve for –

pBt ` bpt,Dxqqu “ f (3.38)

Fourier transforming on x leads to a family of ODEs

pBt ` bpt, ξqqû “ f̂ (3.39)

varying with ξ P Rn. Referring once again to (3.35), we have Btpe
Bûq “ eB f̂ , so we can

integrate with respect to t to solve for the frequency-domain function

pupt, ξq “ e´Bpt,ξq

ż t

t0pξq

eBps,ξqf̂ps, ξqds (3.40)
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with each t0pξq P Ω a base point of our choice.

To be able to reconstruct a solution u P D1pΩ;H˘8q, the function of ξ defined by
(3.40) must decay like a tempered distribution, which amounts to appropriate bounds on
the growth of its derivatives. To this end, the behaviour of the real exponent eBps,ξq´Bpt,ξq

can be a problem. Unless we can choose starting points t0pξq such that Bpt, ξq ´Bps, ξq is
bounded below for s in the interval of integration (and uniformly on ξ), we won’t have the
appropriate estimates to ensure we have a solution in the sense of distributions.

Say we wish to choose t0pξq so that

Bpt, ξq ´ Bps, ξq ě 0 (3.41)

for each s between t0pξq and t. In this case, it is quite easy to come up with a condition
which is both necessary and sufficient to allow such choice. They are given in a couple
different ways below.

Proposition 3.5. Suppose ν “ 1 and U 1 “ pa, bq Ť Ω, then the following are equivalent

(i) there exists t0 : Rn Ñ U 1 so that, for all pt, ξq P U 1 ˆ Rn, Bpt, ξq ´ Bps, ξq ě 0
whenever s lies between t0pξq and t;

(ii) for every pt, ξq P U 1 ˆ Rn, bpt, ξq ą 0 implies bps, ξq ě 0 for every s ą t;

(iii) for every t P U 1 and r P R, the sublevel sets tt P U 1 : Bpt, ξq ă ru are connected.

Proof. Let ξ be fixed and α “ Bp¨, ξq. We can read the statement of piq separately for the
cases t ď t0pξq and t0pξq ě t. In the former, piq says α is non-increasing in pa, t0pξqs while in
the latter it says α is non-decreasing in rt0pξq, bq. Consequently, t0pξq is necessarily a point
of global minimum for α with derivative α1 non-positive for t ď t0pξq and non-negative
elsewhere. Implication piq ùñ piiq then readily follows. With those same considerations,
we can see the pre-images of p´8, rq by α restricted to the monotonic intervals are both
convex with common point t0pξq (if any) so tt P U 1 : Bpt, ξq ă ru is again an interval and
we conclude piiiq follows from piq.

The converse statements follow just as easily. Since this is a simple illustration for
the more general case, we leave them without a proof.

It turns out that the statement of piiiq, with its condition of connectivity for sublevel
sets of Bp¨, ξq, is better suited for a generalization to higher dimensions.
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(a) Some r P R split the precompact region U 1

into a disconnected set U 1
r. However, there is

U Ť Ω containing U 1 such that each compo-
nent of U 1

r falls within the same component
of Ur “ tt P U : Bptq ă ru.

U
′

U
′

r

(b) Some r P R split U 1 into disconnected re-
gions. Since the sublevel tt : Bptq ă ru is
itself disconnected, no choice of U Ť Ω can
possibly make the components of U 1

r fall
within a single component of Ur.

Figure 1 – Example and non-example for condition pψq

Condition pψq

For the remaining part of this section, we keep a shorthand for the sublevel sets
determined by B. If U Ă Ω is open and pξ, rq P Rn ˆ R, we denote

Upξ, rq
.
“ tt P U : Bpt, ξq ă ru (3.42)

Taking into account the formulation of Proposition 3.5 piiiq, as well as the semi-global
character of the solutions under consideration, we make the following generalization.

Definition 3.6. Let Ω1 Ă Ω be an open connected set. Then Ω1 satisfies condition pψq if it
fits the following:

For all U 1 Ť Ω1, there exists U Ť Ω with U 1 Ă U such that, for any pξ, rq P Rn ˆ R,
the intersection U 1pξ, rq X Ω1 is contained in a single component of Upξ, rq.

Example 3.7. Consider Ω “ R2 and B constant in ξ given by Bpt1, t2q “ t1 ¨ t2. Then
Ω1 “ tpx, yq : x, y ă 0u satisfies pψq in Definition 3.6, but Ω1 “ R2 does not.

Consider U 1 Ť Ω given and U 1
r “ tt P U 1 : Bptq ă ru for each r P R. Figure 1(a)

illustrates how, for a given a non-convex pre-compact set U 1 (in golden), there exists U Ť Ω
(in green) as pψq requires. By contrast, no corresponding U fitting the requirement can be
chosen for U 1 in Figure 1(b).

As our remarks in the proof of Proposition 3.5 suggest, the ideal choice of base points
t0pξq to produce an appropriate bound on Bpt, ξq ´ Bps, ξq involves making t0pξq a point
of minimum for Bp¨, ξq. We follow this same approach for the general case, but in doing
so, we need to make sure some choice of t0pξq turns out measurable.
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Lemma 3.8. Let K1 Ă Rν , K2 Ă Rn be compact subsets and B : K1 ˆ K2 Ñ R a
continuous function.

Then, there exists a measurable function t˚ : K2 Ñ K1 such that

Bpt˚pξq, ξq “ inf
K1
Bp¨, ξq, @ξ P K2 (3.43)

Proof. Given B is continuous in a compact domain, α : ξ ÞÑ minK1 Bp¨, ξq must be
continuous as well. Now suppose the Lemma holds in the special case where the function
B0 non-negative and such that

@ξ P K2, Dt P K1 with Bpt, ξq “ 0 (3.44)

Then, given any B continuous, B ´ α is continuous, non-negative and also reaches a value
of 0 for any ξ P K2 fixed. Therefore, our assumption implies the existence of t˚ measurable
such that @ξ P K2, Bpt˚pξq, ξq ´ αpξq “ 0, which is precisely condition (3.43) with respect
to B. This means it suffices to construct t˚ for B in the special case to conclude.

As a further simplification, we will assume K1 is a cartesian cube. Indeed, by Tietze’s
extension theorem, B can be continuously extended to a cube Q Ą K1 where it remains non-
negative. Adding to this extension a function which vanishes on K1 and is strictly positive
on QzK1 (known to exists by Urysohn’s lemma), we retain infQBp¨, ξq “ infK1 Bp¨, ξq “ 0,
so there is no issue taking Q “ K1 from the start.

We now prove the existence of t˚ by an inductive argument on ν. When ν “ 1, one
has K1 an interval and it suffices to let t˚pξq “ infK1tt : Bpt, ξq “ 0u, as that gives an
upper semicontinuous function (Definition 1.20), which is clearly measurable.

Let ρν : K1 Ñ Rν´1 and πν : K1 Ñ R be the coordinate projections such that ρν ˆπν

is the identity on K1. For ν ą 1, analogously to the case ν “ 1, we have semicontinuous
scalar mappings tν : K2 Ñ πνpK1q , which are given by

tνpξq “ inf
tPK1

tπνptq : Bpt, ξq “ 0u (3.45)

Again, they are measurable and will be used in the construction of t˚.

To that end, we decompose K2 into a disjoint countable union
Ů

j Sj \ T which
attains the following:

(i) The sets in pSjq are compact

(ii) T has Lebesgue measure µpT q “ 0

(iii) for each j, the restriction of tν to Sj is continuous

Those can be met by bringing together the compact sets obtained through an inductive
iteration of Lusin’s theorem (Theorem 1.21). Start by letting ϵ1 “ 1, Lusin’s theorem gives
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a compact S1 Ă K2 with µpK2zS1q ă ϵ1 where tν |S1 is continuous. Inductively, at the j-th
step, we let ϵj “ 2´j and consider tν restricted to K2z

Ůj´1
l“1 Sl. Then, Lusin’s theorem

provides an Sj compact and disjoint from
Ťj´1
l“1 Sl where tν restricts to a continuous

function and µpK2z
Ůj
l“1 Slq ă ϵj. The remaining part of K2, not covered by any Sj, will

have measure 0: let T “ K2z
Ť8

l“1 Sj, then the standard continuity property of measures
for decreasing sequences (with the fact µpK2q ă 8) implies

µpT q “ µ

˜

č

j

K2zSj

¸

“ lim
j
µ

˜

K2z

j´1
ď

l“1
Sl

¸

“ lim ϵj “ 0 (3.46)

so we accomplish what we intended.

Having that, notice for each j P N the mapping

Bj : ρνpK1q ˆ Sj Ñ R (3.47)

prt, ξq ÞÑ Bprt, tνpξq, ξq (3.48)

is continuous and ρνpK1q Ă Rν´1, Sj Ă Rn are compact, so the inductive hypothesis gives
measurable functions rt˚j : Sj Ñ ρνpK1q such that

@ξ P K2, Bprt˚j pξq, tνpξq, ξq “ 0 (3.49)

Then it suffices to take

t˚pξq “

$

&

%

prt˚j pξq, tνpξqq, if ξ P Sj,

arbitrarily in tt : Bpt, ξq “ 0u if ξ P T
(3.50)

This makes Bpt˚pξq, ξq “ 0 for all ξ and, given a measurable M Ă K2

t˚´1
pMq “ tξ P T : t˚pξq P Mu Y

ď

j

rt˚´1
j pMq X t´1

ν pMq (3.51)

is again measurable due to the basic properties concerning measurable functions and
sets.

Remark 3.9. Making t˚ upper semicontinuous in each entry would work if not for the
fact such choice is not generally possible beyond the base case ν “ 1, as the following
example illustrates:

Let B : r´1, 1s2 ˆ r´1, 1s Ñ R be a continuous non-negative function with

tpt, ξq : Bpt, ξq “ 0u “ tp1, 0, ξq : ξ ď 0u Y tp0, 1, ξq : ξ ě 0u (3.52)

then t˚ is uniquely determined by (3.43) except at ξ “ 0, where the value of t˚ is either
p1, 0q or p0, 1q. In the first case, the second entry t˚ fails to be upper semicontinuous, while
in the other, the first entry does so.
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Going from the case ν “ 1 to higher dimensions, we are met with new difficulties.
We can still solve for the Fourier coefficients with a line integral from t0pξq to t, but our
choice of integration path γpt, ξq will affect the estimates, as the length of the paths must
be factored in. The growth of the coefficients would be suitable for Fourier inversion if
we could find path choices so that Bpt, ξq ´Bps, ξq ě 0 for s P γpt, ξq while the length of
γpt, ξq remains uniformly bounded on ξ. However, those requirements are incompatible in
general. The solution is to loosen the constraints a bit – the length of γpt, ξq is allowed to
grow with |ξ|, but only asymptotically less than |ξ|ν´1.

Lemma 3.10. Suppose pψq holds for Ω1 Ť Ω open and connected, with U 1 and U pairs
of precompact sets related as they appear in Definition 3.6. Also let t˚ : Sn´1 Ñ U be a
measurable function such that

Bpt˚pξq, ξq “ inf
U
Bp¨, ξq, @ξ P Sn´1 (3.53)

and t0pξq
.
“ t˚pξ{|ξ|q for ξ P Ωzt0u.

Then there exists a constant C ą 0 depending on U 1 such that for all ξ P Rn, t P U 1

we have an integration path γpt, ξq Ă Ω from t0pξq to t with the following properties

1. Bpt, ξq ´ Bps, ξq ě ´1, @s P γpt, ξq

2. the length |γpt, ξq| of γpt, ξq is bounded by

|γpt, ξq| ď Cp1 ` |ξ|q
ν´1 (3.54)

Remark 3.11. Notice since B is positive homogeneous, the first condition can be refor-
mulated as

Bpt, ξ{|ξ|q ´ Bps, ξ{|ξ|q ě ´
1

|ξ|
, @s P γpt, ξq (3.55)

highlighting the fact that, although the endpoints t0pξq and t of γpt, ξq do not change as ξ
increases in module along the same direction, the bound for the values of B along γpt, ξq

gets increasingly strict.

Proof. Let D0 be the collection of closed unit cubes in Rν with vertices in Zν . Take pDkq

the sequence where each Dk is the image of D0 through the contraction t ÞÑ 2´kt.

For pt, ξq P U 1 ˆ Rn given, set rt,ξ “ Bpt, ξq ` 1{2 and consider for each k the
sub-collections Qkpξ, rt,ξq “ tD P Dk : D X Upξ, rt,ξq ‰ Hu Ă Dk of those cubes that do
intersect Upξ, rt,ξq non-trivially. Also denote U`

k pξ, rq the union of all D P Qkpξ, rq and
observe each s P U`

k pξ, rq belongs to a cube of diameter 2´k
?
ν which intersects Upξ, rq at

some point s1.

Similarly, we take U`
k “

Ť

tD P Dk : D X U ‰ Hu. Since U Ť Ω, either Ωc is
empty or it sits within a positive distance of U . Either way, there exists δ ą 0 such that
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U ` Bδp0q Ă Ω. Then, taking k0 P N so that 2´k0
?
ν ă δ, we have U`

k Ă Ω for every k ě k0.
We make use of the following global estimate:

M
.
“ maxt sup

tPU`
k0

|ξ|“1

|dtBpt, ξq|, 1u (3.56)

Notice if N .
“ #tD P D0 : D X U ‰ Hu is the number of unit cubes intercepting U

then for all k the amount of cubes in Qkpξ, rq is bounded above by #Qkpξ, rq ď 2νkN .

Now let pt, ξq be fixed. Given s P U`
k pξ, rt,ξq take s1 P Upξ, rt,ξq such that s and s1

partake a common cube in Qkpξ, rt,ξq. Then if k ě k0 we obtain

Bps, ξq ď |Bps, ξq ´ Bps1, ξq| ` Bps1, ξq (3.57)

ď M |ξ||s ´ s1
| ` rt,ξ ď 2´kM

?
ν|ξ| ` rt,ξ (3.58)

There is a unique integer kξ ě 2 such that 2kξ´2 ă M
?
νp1 ` |ξ|q ď 2kξ´1. Thus applying

k1 .“ k0 ` kξ to the previous we end up with

Bps, ξq ď 2´pk0`kξqM
?
ν|ξ| ` rt,ξ (3.59)

ď 2´pk0`kξq2kξ´1
` rt,ξ ď 1{2 ` rt,ξ, @s P U`

k1 pξ, rq (3.60)

On the other hand, the statement of pψq says points in U 1
k1pξ, rq partake a common

connected component of Upξ, rq. Then since Upξ, rq Ă U`
k1 pξ, rq, we have a piece-wise linear

path γpt, ξq Ă U`
k1 pξ, rq joining t and t˚pξq. 4 If we avoid traversing the same cube more

than once, this may be achieved with length

|γpt, ξq| ď #Qk1p2´k1?
νq “ N

?
ν 2k1pν´1q (3.61)

ď N
?
νp2k0`2M

?
νp1 ` |ξ|qq

ν´1
“ Cp1 ` |ξ|q

ν´1 (3.62)

with C a constant independent of pt, ξq. Apply (3.59) in particular to points in the paths
we constructed to get the uniform bounds

Bpt, ξq ´ Bps, ξq ě Bpt, ξq ´ Bps, ξq ě ´1, @s P γpt, ξq (3.63)

so both conditions are met and the proof is concluded.

Theorem 3.12 (Sufficiency of pψq). If pψq holds for an open connected Ω1 Ă Ω, then Pp0q

is smoothly semi-globally solvable with respect to Ω1 at p “ 0.

Proof. Let f P E0
b and U 1 Ť Ω1, then pψq gives a suitable set U . Take t˚ : Sn´1 Ñ U

obtained from Lemma 3.8 with K1 “ Sn´1 Ă Rn and K2 “ U , then we are set to apply
Lemma 3.10, which provides paths pγpt, ξqqpt,ξqPU 1ˆRn where the appropriate estimates hold.
4 t˚pξq P U 1pξ, rq due to equation (3.53)
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Given pt, ξq P U 1 ˆ Rn, we let

vpt, ξq
.
“

ż

γpt,ξq

eBps,ξq´Bpt,ξq
pfps, ξq (3.64)

Notice the values of v are not dependent on the particular choice of integration path, since
the integrand is closed.

Properties 1. and 2. in Lemma 3.10 ensure v satisfies the estimates

|vpt, ξq| ď |γpt, ξq| sup
sPγpt,ξq

|eBps,ξq´Bpt,ξq
|| pfpt, ξq| (3.65)

ď e Cp1 ` |ξ|q
ν´1 sup

sPU

| pfps, ξq| (3.66)

Now given f P
Ź1 C8pΩ;H8q, we have pf P

Ź1 C8pΩ;H8q a function whose decay
in the second variable is faster than arbitrary powers of |ξ|´1 when ξ Ñ 8. A similar
estimate holds for the t-variable, and the standard inductive argument shows F´1v is
smooth in t. Therefore, we conclude F´1v is in

Ź1 C8pΩ;H8q.



63

4 A model with real coefficients

4.1 Definition

Consider a system of vector fields in Tn ˆ T as follows.

Lj “ Btj ` ajptqBx, j “ 1, . . . , n, pt, xq P Tn ˆ T (4.1)

where aj P C8
R pTnq.

By direct computation, the Lie bracket between any two of those fields is

rLj, Lks “ pBtjak ´ BtkajqBx (4.2)

so the requirement of commutativity is equivalent to the equalities

Btjak “ Btkaj (4.3)

for j, k “ 1, . . . , ν. In such case, our introductory discussion determines we can naturally
associate a chain complex of differential operators, given by

Lpa “ dt ` aptq ^ Bx, pp “ 0, . . . , n ´ 1q (4.4)

with aptq
.
“
ř

j ajdtj P C8pTn,
Ź1 Tnq and dt denoting the exterior derivative with respect

to the t variable only. Notice (4.3) is precisely the condition of a being closed.

The first cohomology group of the de Rham complex for Tn is H1
dRpTnq – Rn, with

the constant 1-forms dtj giving representatives for a set of generators. Therefore, there
exists A P C8pTnq and a0 P spanRpdtjqj such that

a “ a0 ` dA (4.5)

The constant 1-form a0 will sometimes be identified with a constant in Rn by means of its
real coordinates respect to the generators pdtjqj.

The action of the differential maps (4.4) will take place between ascending levels of
currents over Tn ˆ T, as they are defined in Example 2.4. A slight difference, however,
is that only p-currents spanned by dtJ with |J | “ p are considered. For this reason we
denote the domains D1pTn ˆ T;

Źp,0
q. An element in it is therefore written uniquely as

u “
ÿ

|J |“p

uJdtJ , uJ P D1
pTn ˆ Tq (4.6)

This modification should make sense in view of the fact (4.4) does not involve dx in
any way. The subspace of p-forms with the same restriction is denoted, analogously, as
C8pTn ˆ T;

Źp,0
q
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Fourier series are adapted in a straight-forward manner: with u P D1pTn ˆ T;
Ź1,0

q

represented by coefficients uJ as before, the (total) Fourier series of u reads

u “
ÿ

pj,kqPZnˆZ

pupj, kqeipj¨t`kxq (4.7)

where the coefficients are defined by

pupj, kq “
ÿ

rJs“p

puJpj, kqdtJ (4.8)

with puJ now the standard Fourier coefficients.1 Similarly, we also have the partial Fourier
series with respect to x

u “
ÿ

kPZ
puxpt, kqeikx (4.9)

where puxp¨, kq P D1pTnq. We will omit the x from pux if there is no risk of confusion.

The problem under consideration is to ascertain the solvability, and determine explicit
solutions if it has, for the linear systems

Lpau “ f, p “ 0, . . . , n ´ 1 (4.10)

where f P C8pTnˆT;
Źp,0

q is in a suitable subset of the codomain defined by compatibility
conditions. The developments of [BP99] characterize the global solvability of Lpa with
an algebraic condition on the vector a, namely whether or not it is a Liouville form.

4.2 Liouville forms

Liouville numbers

The concept of a Liouville numbers goes back to the middle of the 19th century,
when Joseph Liouville first showed all such numbers are transcendental, thus proving the
existence of non-algebraic numbers for the first time. Liouville’s constant, defined through
its decimal representation

Lb “

8
ÿ

l“1
10´l!

“ 10´1
` 10´2

` 10´6
` . . . (4.11)

is among the first known examples.

Liouville numbers are characterized by the existence of very tight approximations
by rational numbers: x P R is Liouville if for every l P N, there exists pp, qq P Z ˆ Z with
q ě 2 such that

ˇ

ˇ

ˇ

ˇ

x ´
p

q

ˇ

ˇ

ˇ

ˇ

ă
1
ql

(4.12)

1 to avoid confusion: the indices j and J are not related
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In a more refined classification, we can assign to every number x P R an irrationality
exponent µpxq as follows. Let Rx Ă Rą0 be the set of positive reals µ such that

␣

pp, qq P Z ˆ Zą0 : 0 ă |x ´ p{q| ă q´µ and gcdpp, qq “ 1
(

(4.13)

is finite and take µpxq
.
“ infµPRx µ, with µpxq “ 8 if Rx is unbounded.

Comparing with (4.12), it is easy to see a Liouville number corresponds to the
extreme case µpxq “ 8 and, by contrast, µpxq “ 1 whenever x P Q.

It follows from an important theorem of Dirichlet in the subject of Diophantine
approximations that for x R Q, we have 2 P Rx in the previous construction, and therefore
µpxq ě 2 for all irrationals. A rational number x has irrationality measure µpxq “ 1, of
course, so there is a ‘gap’ between 1 and 2 in µpRq. As Roth’s theorem would later show,
this is already the best lower bound one can get in the case of irrational algebraic numbers,
since every such x has irrationality exponent µpxq “ 2.

Global hypoellipticity

In regards to solvability of PDEs, Liouville numbers make their first appearance in
[GW72] in the form of a necessary and sufficient algebraic condition for hypoellipticity.
The name comes from the well-know regularity property of elliptic operators

if P is elliptic, Pu P C8
ùñ u P C8 (4.14)

which becomes the defining property of hypoellipticity. Indeed, the condition is much
weaker than a trivial characteristic set.

To be more precise, what the authors found in [GW72] is that global hypoellipticity
of a constant coefficients differential operator

P “ Bt ` c Bx, pt, xq P T ˆ T (4.15)

is equivalent to c being a non-Liouville constant. This has to do with the necessary decay
of Fourier coefficients to reconstruct a solution. Many conditions related to this idea have
been proposed and proved since then.

Liouville vectors and forms

When dealing with systems of vector fields, as is our case, multiple coefficients appear,
so we have to make sense of a Liouville vector.

Definition 4.1. A given α “ pα1, . . . , αnq P Rn is said Liouville if α R Qn and there are
sequences ppjqlPZ`

“ ppj,1, . . . ,pl,nqlPN Ă Zn and pqjqjPN such that
"

max
j

ˇ

ˇ

ˇ

ˇ

αj ´
pl,j
ql

ˇ

ˇ

ˇ

ˇ

¨ ql
l : l P N

*

(4.16)
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is bounded.

Remark 4.2. Notice the denominator ql used for the approximations is common to all
numerators.

Definition 4.3 ([BCM93, Def. 2.1]). A closed 1-form α P
Ź

C8
R pTnq is said

(i) integral if
1

2π

ż

σ

α P Z (4.17)

for all 1-cycles σ

(ii) rational if qα is integral for some q P Zą0

(iii) Liouville if α is not rational and there exist sequences pαjq Ă
Ź1 C8pTnq, pqlq Ă Zě2

such that
"

ql
l

ˇ

ˇ

ˇ

ˇ

α ´
αj
ql

ˇ

ˇ

ˇ

ˇ

*

lPN
Ă
ľ1

C8
pTnq (4.18)

is bounded.

Making a choice of 1-cycles σ1, . . . , σn which represent generators of H1pTnq in the
homology of chains, we can define a linear map I : H1

dRpTnq Ñ Rn

rβs ÞÑ
1

2π p

ż

σ1

β, . . . ,

ż

σn

βq (4.19)

We can then relate the previous definitions through the following.

Proposition 4.4 ([BCM93, Prop.2.2]). Let α P
Ź

C8
R pTnq be a closed form, then

(i) α is integral iff Irαs P Zn

(ii) α is rational iff Irαs P Qn

(iii) α is Liouville iff Irαs is Liouville (according to Definition 4.1)

In view of the fact we can decompose a “ a0 ` dA as in (4.5), a is homologous
to a constant 1-form, which is Liouville iff a is. It’s immediate to verify that the linear
map I applied to ra0s is simply its identification in Rn, therefore, rather than relying on
Definition 4.3 to classify a, we can work solely with Definition 4.1 as applied to a0.

There is one final remark regarding Diophantine approximations which will have
an important role in the main proof. One may read it as saying that, if q is the smallest
integer such that qα is integral, then rationals approximate α as if it were non-Liouville,
provided that denominators in qZ are precluded in the approximations. The elementary
proof is given below.
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Lemma 4.5. Let α P Qn and q “ mintn P Ną0 : nα P Znu, then

}jα ´ k}8 ě
1
q
, @k P Zn, j P Z ´ qZ (4.20)

Proof. Write α “ 1
q
p with p P Zn, then

jα ´ k “
jp ´ qk

q
ùñ }jα ´ k}8 “

1
q

}jp ´ qk}8 (4.21)

so the lower bound holds unless there are k P Zn and j P Z ´ qZ such that jp “ qk.

If we did have the equality, it would entail k “
j
q
p P Zn. Now since j is not divisible

by q, it must be the case that q divides the gcd of the entries of p. This, however, would
mean q is not minimal, a contradiction.

4.3 Global solvability

To determine the appropriate notion of global solvability for Lpa, we must find a
requirement on f P ranpLpaq so we can expect to solve Lpau “ f . The approach is similar to
(3.35), where the differential equations for the x-Fourier coefficients lead to a requirement
of exactness involving f̂p¨, ξq. Things are a bit trickier this time, however, because a is only
assumed to be closed. To write the equations as exact differentials, we rely on a primitive
defined in the universal covering of Tn.

Lemma 4.6. Let f P C8pTn ˆT;
Źp`1,0

q be such that there exists u P D1pTn ˆT;
Źp`1,0

q

with Lpau “ f and Π : Rn Ñ Tn the universal covering map of Tn. Then Lp`1
a f “ 0

and taking ψj P C8pRnq such that dψj “ Π˚pja0q, we have eipψj`jAq
pfp¨, jq an exact form

whenever ja0 is integral.

Proof. That Lp`1
a f “ 0 readily follows from La being a chain complex, i.e. Lp`1

a Lpa “ 0.
For the next part, we use the Fourier series on x to represent u “

ř

j pupt, jqeijx and
f “

ř

j
pfpt, jqeijx, so that

Lpau “ f ðñ pdt ` ija^qûp¨, jq “ f̂p¨, jq, @j P Z (4.22)

ðñ pdt ` ija0^qpeijAûp¨, jqq “ eijAf̂p¨, jq, @j P Z (4.23)

Now let j P Z be such that ja0 is integral. Then Π˚pja0q P
Ź1

pRnq gives a closed form
in Rn. Because Rn is simply connected, Π˚pja0q is in fact an exact form, say dψj “ Π˚pja0q.

Since π1pTnq is abelian, Hurewicz’s theorem implies each 1-cycle in Tn is homologous
to a smooth loop. Thus, if p, q P Rn are in the same fiber of Π (that is, Πppq “ Πpqq),

ψjppq ´ ψjpqq “

ż q

p

dψj “

ż q

p

Π˚
pja0q P 2πZ (4.24)
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This implies eiψj : Rn Ñ R factors through the quotient Π : Rn Ñ Tn, so it induces a
smooth function eiψj P C8pTnq. Equation (4.23) can be rewritten as

dtpe
ijAûp¨, jqq “ eijApf̂p¨, jq ´ ija0ûp¨, jqq (4.25)

thus

dt
`

eipψj`jAqûp¨, jq
˘

“ eiψj pija0ûp¨, jq ` dtpe
ijAûp¨, jqqq “ eipψj`jAqf̂p¨, jq

confirms exactness of the right-side.

Definition 4.7. Let Epa Ă C8pTn ˆ T;
Źp`1,0

q be given by

Epa “ tf P ImpLpaq : ja0 integral implies eipψj`jAqf̂p¨, jq exactu

We say Lpa is globally solvable ((GS) for short) if given f P Epa there exists u P D1pTn ˆ

T;
Źp`1,0

q such that Lpau “ f .

An automorphism of D1pTn ˆ T;
Źp`1,0

q allows us establish a conjugation between
operators Lpa with homologous coefficients a. Indeed, let SA act over D1pTn ˆ T;

Źp,0
q by

u “
ÿ

jPZ
pupt, jqeijx ÞÑ

ÿ

jPZ
pupt, jqeijpx`Aptqq (4.26)

then SA is bounded with pSAq´1 “ S´A, thus it defines an automorphism. Since

pdt ` ija0^qpeijApup¨, jqq “ eijApdtpup¨, jq ` ijpa0 ` dAq ^ pup¨, jqq (4.27)

the conjugate relation

Lpa0SA “ SALpa (4.28)

follows. Finally, given f P C8pTn ˆ T;
Źp,0

q,

ySAfp¨, jq “ eijA pfp¨, jq, @j P Z (4.29)

so we have

Epa “ tf P ImpLpaq : @ ja0 integral, eiψj
ySAfp¨, jq is exactu “ SApEpa0q (4.30)

Those considerations lead to the following.

Lemma 4.8. Let a, b P C8pTnq with a and b homologous, then Lpa is (GS) iff Lpb is.

Proof. It suffices to verify the statement when b is the constant 1-form a0 in the homology
class of a. The result is almost immediate from our considerations – by (4.30), each f P Epa
corresponds bijectively to g “ SAf P Epa0 , therefore (4.29) leads to

Du : Lpau “ f ðñ Dg : Lpa0v “ g (4.31)

where the solutions are related by v “ SAu. Global solvability of Lpa0 is then equivalent to
global solvability of Lpa.
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We are now in place to state the main result of the paper.

Theorem 4.9. For each p “ 0, . . . , n ´ 1, Lpa is globally solvable if and only if a is not a
Liouville 1-form.

Naturally, Lemma 4.8 reduces the problem to the cases a “ a0 a constant 1-form.
We will only concern ourselves with the proof of sufficiency, that is, Lpa is (GS) if a is
non-Liouville, doing so in a constructive manner (that is, making an explicit choice of
Fourier coefficients).

4.4 Exactness of ξ ^ ¨

The proof of solvability will involve the standard procedure of determining the
Fourier coefficients of candidate solutions. In solving for the coefficients of the total Fourier
series (4.40), the differential problem is replaced with a system of algebraic equations in
the alternating algebra spanned by pdtjq, which is isomorphic to

Ź‚ Rn. More precisely,
Lpu “ f leads to a system of equations of type

ξj,k ^ pupj, kq “ pfpj, kq (4.32)

indexed by pj, kq P Zn ˆ Z, where pξj,kqpj,kqPZn`1 is a family of covectors in
Ź1 Rn.

Each equation in the system corresponds to a linear, non-homogeneous problem
with regards to the linear map ξj,k ^ ¨ :

ŹpRn Ñ
Źp`1 Rn. Existence and general form of

solutions are thus fully understood once kernel and image of the operators ξ^¨, determined
by some ξ P

Ź1 Rn, are characterized – (4.32) is solvable iff pfpj, kq P Impξj,k ^ ¨q and, in
such case, the general solution is a coset in

ŹpRn{ ker ξj,k ^ ¨. Fortunately, complexes
of such type are already familiar to us from Example 2.13, where we showed the Rham
complex is elliptic. Indeed, the induced linear complexes (2.39), generated by iξ

Ź

¨ for
some ξ P

Ź1 Fν were found to be exact, so we do know kerpξj,k ^ ¨q “ Impξj,k ^ ¨q at each
level in (4.32).

The present situation still requires a bit more. We are unable to make estimates on the
decay of the Fourier coefficients to ensure they come from a distribution, unless coordinates
of a particular solution are constructively specified. The next lemma complements our
discussion by doing so.

Lemma 4.10 ([BP99, Lemma 2.1]). Consider V a vector space of dimension n (over
R or C) and γ “ pe1, . . . , enq a basis for

Ź1 V . Let ξ “
ř

j ξjej P
Ź1 V zt0u, then for

any g “
ř

|J |“p`1 gJeJ P
Źp`1 V chosen p1 ď p ď n ´ 1q the equation p˚q ξ ^ v “ g

has a solution v P
Źp V iff ξ ^ g “ 0 holds. Furthermore, when solutions do exist, take
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r P t1, . . . nu such that ξr ‰ 0, then a particular solution of p˚q is

v0 “
1
ξr

ÿ

|J |“p`1
rPJ

sgnpr, J ´ truqgJeJ´tru (4.33)

where the summation is over ascending pp`1q-tuples which contain r, and sgnpr, J´truq P

t˘1u denotes the sign of the permutation pr, j1, . . . , r̂, . . . , jp`1q. Finally, the full set of
solutions for (*) is given by

v “ v0 ` ξ ^ w, w P
ľp

V

Proof. The only claim which cannot be derived directly from the preceding discussion is
the fact v0 as given by (4.33) is a solution, so we restrict ourselves to that.

Since ξr ‰ 0, we can rewrite er as a linear combination of ξ and the remaining
elements of the basis

er “
1
ξr
ξ ´

ÿ

l‰r

ξl
ξr
el (4.34)

We split the terms of g according to whether or not r P J . If it does, we can substitute
eJ “ sgnpr, J ´ truqer ^ eJ´tru to make er the leading covector in the expressions.

g “
ÿ

|J |“p`1
1PJ

gJep1,J´t1uq `
ÿ

|J |“p`1
1RJ

gJeJ´t1u (4.35)

“
ÿ

|J |“p`1
1PJ

gJ sgnpr, J ´ truqer ^ eJ´tru `
ÿ

|J |“p`1
1RJ

gJeJ´t1u (4.36)

Then, substituting er for (4.34) so as to obtain g in terms of the base tξuYpγ´truq Ă
Ź1 V ,

the expression for v0 appears. We have

g “
ÿ

|J |“p`1
1PJ

1
ξ1

sgnpr, J ´ truqgJ ξ ^ eJ´t1u (4.37)

´

n
ÿ

l“2

ÿ

|I|“p`1
1PI

ξl
ξ1

sgnpr, J ´ truqgJel ^ eI´t1u `
ÿ

|J |“p`1
1RJ

gJeJ´t1u (4.38)

“ξ ^ v0 ` g˚ (4.39)

where g˚ is a vector spanned by pe2, . . . , enq.

The boundary condition ξ ^ g “ 0 then leads to ξ ^ g˚ “ 0. But since the restriction
of ξ ^ ¨ to the span of pe2, . . . , enq is injective, ξ ^ g˚ “ 0 implies g˚ “ 0, and therefore
g “ ξ ^ v0.

It is worth pointing out that the denominator ξr in the expression obtained for
v0, which is a coordinate of ξ, is what later requires the Diophantine estimates on the
coefficient a to obtain some bound on the growth of the Fourier coefficients.
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4.5 Proof of sufficiency

All is set for the main proof.

Proposition 4.11. If a is not a Liouville form, then Lpa is globally solvable.

Proof. Again, in view of Lemma 4.8, it suffices to show Lpa is (GS) when a “ a0 P
Ź1 Tn

is non-Liouville. Let f P Ea0 , we split the argument in regards to a0 being rational or not.

First suppose Ira0s R Qn. Let pa0jq
.
“ Ira0s, a solution u for the equation pdt ` a0 ^

Bxqu “ f requires the total Fourier coefficients to be such that

i

˜

n
ÿ

m“1
jmdtm ` ka0

¸

^ pupj, kq “ i

˜

n
ÿ

m“1
pjm ` ka0mqdtm

¸

^ pupj, kq (4.40)

“ pfpj, kq, pj, kq P Zn ˆ Z (4.41)

Let ξj,k .
“
řn
m“1pjm ` ka0mqdtm. Since Ira0s R Qn, ka0 is never integral and therefore ξj,k

doesn’t vanish - except, of course, if pj, kq “ 0. The compatibility condition on f implies
the partial Fourier coefficient f

Ź

x
p¨, 0q is exact, thus

pfp0, 0q “

ż

Tn

f
Ź

x
p¨, 0q “ 0 (4.42)

in virtue of Stoke’s theorem. Therefore, it suffices to set pup0, 0q “ 0 to solve (4.40) for
pj, kq “ 0. Otherwise, for any pj, kq ‰ 0, we have ξj,k ‰ 0 and, given f P Ea0 Ă kerLp`1

a0 ,
the equation ξj,k ^ pfpj, kq “ 0 holds and Lemma 4.10 applies, yielding solutions

pupj, kq “
1

ipjM ` ka0M
q

ÿ

|J |“p`1
MPJ

sgnpr, J ´ tMuqp pfpj, kqqJdtJ´tMu (4.43)

to (4.40) with M
.
“ arg maxt|kl ` ja0l

| : l P t1, . . . , nuu.

Given a0 is non-Liouville, Definition 4.1 implies there are constants C ą 0 and
L P Z` such that

max
1ďmďn

|qa0m ´ pm| ě C|q|´L, @pp, qq P Zn ˆ Zą0 (4.44)

On the other hand, given f is a smooth function, the growth of its coefficients is sub-
polynomial, so there exist N P N and another constant C ą 0 with

ˇ

ˇ

ˇ

pfpj, kq

ˇ

ˇ

ˇ
ď Cp1 ` |pj, kq|q

´N , @pj, kq P Zn`1 (4.45)

Combining the estimates and changing the constants, we conclude

|pupj, kq| ď C

ˇ

ˇ

ˇ

ˇ

ˇ

pfpj, kq

jM ` ka0M

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cp1 ` |k|q
´L

p1 ` |pj, kq|q
´N (4.46)

ď Cp1 ` |pj, kq|q
´pL`Nq, @pj, kq P Zn`1

´ t0u (4.47)
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and therefore the coefficients do come from a p-form u P
Źp,0 C8pTn ˆ Tq which solves

the differential problem. This concludes the proof for the case a0 not rational.

Now suppose a0 P Qn and take q P Z` minimum such that qa0 P Zn. We split the
domain of the operator into two complementary subspaces

D1
pTn ˆ T;

ľp,0
q “ D1

qZ
p,0

‘ D1
Z´qZ

p,0

where, given A Ă Z, D1
A
p,0 corresponds to the subset of pp, 0q-currents whose partial

Fourier coefficients with respect to x are supported on a subset A, so that u P D1
A
p,0 can

be written

upt, xq “
ÿ

kPA

puxpt, kqeikx (4.48)

The action of Lpa corresponds to a linear action on the partial Fourier coefficients
(which is given by (4.23)), so the operator acts invariantly over the complementary subspaces
just defined. The linear subspace projections therefore induce differential complexes
pLpa,qZ,D1

qZ
p,0

qp, pLpa,Z´qZ,D1
Z´qZ

p,0
qp where the differential maps on each level add up to

Lpa. Solving Lpau “ f is therefore equivalent to solving the equations
$

&

%

Lpa,qZu1 “ f1

Lpa,Z´qZu2 “ f2

(4.49)

where pu1, u2q and pf1, f2q are the respective images of u and f through the natural
isomorphisms D1

qZ
p,0

‘ D1
Z´qZ

p,0
Ñ D1

qZ
p,0

ˆ D1
Z´qZ

p,0

To solve the first equation, we show Lpa,qZ is a conjugate of dt. Let T P AutpD1
qZ
p,0

q

be given by

u “
ÿ

NPZ
puxpt, qNqeiqNx ÞÑ

ÿ

NPZ
puxpt, qNqeipqNx´ψqN ptqq (4.50)

with ψqN as in Lemma 4.6. Then, notice

Lpa,qZTu “
ÿ

NPZ
pdt ` iqNa0 ^ ¨ ´ dtψqN ^ ¨qpuxpt, qNqeipqNx´ψqN ptqq

“ T´1dtu (4.51)

so indeed dt “ T´1Lpa,qZT . Thus, the bijective correspondences g Ø f1 and v Ø u1 given
by g “ T´1f1 and v “ T´1u1 are so that solutions in D1

qZ
p,0 for Lpa,qZu1 “ f and dtv “ g

are equivalent.

Set g .
“ T´1f1, then since f1 has partial Fourier coefficients supported in qZ with

f1

Ź

x
p¨, qNq “ f

Ź

x
p¨, qNq for N P Z, the compatibility conditions over f P Ea0 imply the

partial Fourier coefficients

g
Ź

xp¨, kq “

$

&

%

eiψkf
Ź

x
p¨, kq, if k “ qN

0, otherwise
(4.52)
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are all exact. Then, the same argument we used to show pfp0, 0q “ 0 in (4.42) works here
to assure pgp0, kq “ 0 for all k P Z.

In solving dtv “ g, we obtain a system of equations

i
n
ÿ

m“1
jmdtm ^ pvpj, kq “ pgpj, kq, @pj, kq P Zn ˆ Z

By (4.52), the coefficients

pgpj, kq “

ż

Tn

g
Ź

xpt, kqeit¨j (4.53)

are identically zero for k R qZ, so the equations can be solved if we take pvpj, kq “ 0 for
either j “ 0 or k R qZ, and the solutions provided by Lemma 4.10 in the remaining cases.
The denominators (originally denoted ξr) for the particular solutions obtained from the
Lemma are all non-zero integers, so instead of (4.46), the estimates for the coefficients
become

|pupj, kq| ď C| pfpj, kq|, pj, kq P Z˚
ˆ Z (4.54)

which is already sufficient to verify the chosen coefficients have sub-polynomial growth.
They are thus obtained from some v P

Źp,0 C8pTn ˆ Tq. Furthermore, since v
Ź

xpt, kq “
ř

j pvpj, kqeij¨t “ 0 for k R qZ, v belongs to the appropriate subspace of smooth functions
in D1

qZ
p,0. Hence the first equation in (4.49) is solvable.

The proof that Lpa0,Z´qZu2 “ f2 is solvable goes analogously to the case of a0 irrational
non-Liouville. The equations for the Fourier coefficients are

i

˜

n
ÿ

m“1
pjm ` ka0mqdtm

¸

^ pu2pj, kq “ pf2pj, kq, pj, kq P Zn ˆ Z (4.55)

but since f2 P D1
Z´qZ

p,0 the coefficients

pf2pj, kq “

ż

Tn

f2

Ź

x
pt, kqeit¨j (4.56)

are all zero for k P qZ. Then, we can take pu2pj, kq “ 0 for k P qZ and a solution like (4.43)
otherwise, since

ř

m jm ` ka0mdtm ‰ 0 in the latter case. In view of Lemma 4.5, we have
C ą 0 such that

|qa0 ´ k| ě C, @j P Z ´ qZ, k P Zn

so we have the estimate maxm |qa0m ´ pm| ě C, @pq, pq in place of (4.46) to show

| pu2pj, kq| ď C| pf2pj, kq|, @pj, kq P Zn`1 (4.57)

thus concluding the coefficients come from a smooth u2 which solves the second equation
in (4.49).
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Remark 4.12. As shown in [BCM93], in more generality, with M a compact smooth
manifold in place of Tn, the differential operator L0 defined by (4.4) is globally hypoelliptic
(cf. Section 4.2) iff a is neither rational nor Liouville. In particular, solutions in the case
Iras R Q non-Liouville are necessarily smooth. By contrast, although we were also able to
determine smooth solutions in the case Iras P Q, not all solutions are of that sort. The
counter-example given in [BCM93, Theorem 2.4] is

upt, xq “

8
ÿ

N“1
e´iNpqx´ψqptqq (4.58)

Indeed lim inf |k|Ñ8 |u
Ź

xpt, kq| “ 1 implies pu
Ź

xpt, kqqkPZ are slowly increasing, but not rapidly
decreasing sequences. Then, u P D1pTn ˆ TqzC8pTn ˆ Tq even though pdt ` aptq ^ Bxqu “

0 P
Ź1 C8pTn ˆ Tq .
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