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Charge-dependent two- and three-particle correlations measured in Xe–Xe collisions at 
√

𝑠NN = 5.44 TeV are 
presented. Results are obtained for charged particles in the pseudorapidity range |𝜂| < 0.8 and transverse 
momentum interval 0.2 ≤ 𝑝T < 5.0 GeV/𝑐 for different collision centralities. The three-particle correlator 𝛾𝛼𝛽 ≡
⟨cos(𝜑𝛼 +𝜑𝛽 − 2Ψ2)⟩, calculated for different combinations of charge sign 𝛼 and 𝛽, is expected to be sensitive to 
the presence of the Chiral Magnetic Effect (CME). Its magnitude is similar to the one observed in Pb–Pb collisions 
in contrast to a smaller CME signal in Xe–Xe collisions than in Pb–Pb collisions predicted by Monte Carlo (MC) 
calculations including a magnetic field induced by the spectator protons. These observations point to a large non-
CME contribution to the correlator. Furthermore, the charge dependence of 𝛾𝛼𝛽 can be described by a blast wave 
model calculation that incorporates background effects and by the Anomalous Viscous Fluid Dynamics model 
with values of the CME signal consistent with zero. The Xe–Xe and Pb–Pb results are combined with the expected 
CME signal dependence on the system size from the MC calculations including a magnetic field to obtain the 
fraction of CME contribution in 𝛾𝛼𝛽 , 𝑓CME. The CME fraction is compatible with zero for the 30% most central 
events in both systems and then becomes positive. This yields an upper limit of 2% (3%) and 25% (32%) at 
95% (99.7%) confidence level for the CME signal contribution to 𝛾𝛼𝛽 in the 0–70% Xe–Xe and Pb–Pb collisions, 
respectively.

1. Introduction

The theory of the strong interaction applied to many-body systems 
predicts that, at sufficiently high densities and temperatures, the protons 
and neutrons that compose ordinary matter melt into a plasma where 
quarks and gluons are no longer confined into hadrons. This hot and 
dense state of matter is called the quark–gluon plasma (QGP) [1]. The 
transition from normal hadronic matter to a QGP is supported by Quan-
tum Chromodynamics (QCD) calculations on the lattice [2–5], where 
it is found to occur at a temperature of about 155 MeV, and at an en-
ergy density 𝜖 of about 0.5 GeV/fm3 [6–8]. Collisions between heavy 
ions accelerated to ultrarelativistic energies can produce the necessary 
conditions for such a transition to take place [9–11].

Heavy-ion collisions may also allow us to access novel QCD phe-
nomena associated with parity violation in strong interactions [12–20]. 
Theoretical expectations indicate that the interaction of quarks with glu-
onic fields describing transitions between topologically different QCD 
vacuum states changes the quark chirality and leads to a local chiral 
imbalance. In the presence of the strong magnetic field produced by the 
colliding ions [21–23], this leads to a charge separation (electric cur-
rent) relative to the reaction plane, the plane defined by the impact 
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parameter and the beam axis. This phenomenon is known as the Chiral 
Magnetic Effect (CME) [20].

The effects from local parity violation are quantified via the coeffi-
cient 𝑎1,𝛼 in a Fourier decomposition of the particle azimuthal distribu-
tion [24,25]

d𝑁

dΔ𝜑𝛼

∼ 1+ 2𝑣1,𝛼 cos(Δ𝜑𝛼) + 2𝑎1,𝛼 sin(Δ𝜑𝛼) + 2𝑣2,𝛼 cos(2Δ𝜑𝛼) + ..., (1)

where Δ𝜑𝛼 = 𝜑𝛼 − ΨRP, 𝜑𝛼 is the azimuthal angle of the particle of 
charge 𝛼 (+, −), and ΨRP is the reaction plane angle. The coefficients 
𝑣n,𝛼 characterise the anisotropic flow, i.e., the azimuthal anisotropies 
in particle production relative to ΨRP due to initial spatial asymme-
tries of the collision. The degree of overlap between the two colliding 
nuclei is estimated by the centrality, with low percentage values corre-
sponding to head-on collisions. The first- and second-order flow coeffi-
cients (𝑣1,𝛼 and 𝑣2,𝛼) are called directed and elliptic flow, respectively. 
Since 𝑎1,𝛼 changes sign from event to event and the average ⟨𝑎1,𝛼⟩ over 
many events is equal to zero, one can only measure ⟨𝑎2

1,𝛼
⟩ or ⟨𝑎1,+𝑎1,−⟩

that can be accessed through azimuthal correlation techniques. Thus 
the CME is expected to have an experimentally accessible signal im-
printed in the azimuthal correlations between two particles relative to 
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the reaction plane [25] of the form 𝛾𝛼𝛽 ≡ ⟨cos(𝜑𝛼 + 𝜑𝛽 − 2ΨRP)⟩. The 
charge-dependent difference of 𝛾𝛼𝛽 is commonly used to search for the 
CME. In practice, the reaction plane angle is estimated by constructing 
the second harmonic symmetry plane angle Ψ2 using azimuthal particle 
distributions [26], which is why 𝛾𝛼𝛽 is often referred to as a three-
particle correlator. The 𝛾𝛼𝛽 correlator measures the difference between 
the correlations projected onto the reaction plane and perpendicular to 
it. The contributions from correlations in- and out-of-plane can also be 
evaluated by measuring the charge-dependent two-particle correlator 
𝛿𝛼𝛽 ≡ ⟨cos(𝜑𝛼 −𝜑𝛽 )⟩.

The first experimental results in Au–Au collisions at a centre-of-mass 
energy per nucleon–nucleon collision 

√
𝑠NN = 200 GeV at the Rela-

tivistic Heavy-Ion Collider (RHIC) [27,28] were compatible with initial 
expectations for the existence of the CME. The subsequent first mea-
surements at the Large Hadron Collider (LHC) in Pb–Pb collisions at √

𝑠NN = 2.76 TeV [29] showed a surprising agreement with the results 
at lower energies, despite the differences in magnitude of the magnetic 
field [21–23]. Considering that the charged-particle density, d𝑁ch∕d𝜂, 
at the LHC is about three times larger than at RHIC [30,31], any signal 
due to CME will be considerably diluted since it is expected to follow a 
1∕(d𝑁ch∕d𝜂) scaling [19]. This effect will be referred to as dilution in the 
following. The similarity of the two measurements was indicative of the 
existence of background effects, coming mostly from “flowing clusters” 
– charge-dependent correlations modified by elliptic flow [25,32–34]. 
It was shown in Refs. [35,36] that the local charge conservation cou-
pled to the anisotropic expansion of the medium could explain most if 
not all the measurements.

To study background effects, the CMS Collaboration performed 
measurements of charge-dependent correlations in p–Pb collisions at √

𝑠NN = 5.02 TeV [37] and the STAR Collaboration in p–Au and d–
Au collisions at 

√
𝑠NN = 0.2 TeV [38]. The results suggest that these 

correlations are similar to those measured in peripheral Pb–Pb and Au–
Au collisions. These results might further indicate the dominance of 
background effects in peripheral collisions where there is no strong cor-
relation between the magnetic field direction and the orientation of the 
medium via ΨRP.

These measurements highlighted the need to identify ways of isolat-
ing the CME signal from the background. A first attempt was presented 
by the ALICE Collaboration in Ref. [39] using the Event Shape Engineer-
ing method [40]. This method utilises the fluctuations in the shape of 
the initial state of the system and allows one to select events with the 
same centrality but different initial geometry, thus varying the back-
ground contributions. The study sets an upper limit of 26–33% at 95% 
confidence level for the CME signal contribution to the charge depen-
dence of 𝛾𝛼𝛽 in the 10–50% centrality interval. A similar study was 
performed by the CMS Collaboration [41] and the results agree with 
the measurements in Ref. [39]. A recent study by the ALICE Collabora-
tion [42] found that charge-dependent correlations relative to the higher 
harmonic symmetry planes can be used as a proxy for the background, 
assuming that the correlations relative to Ψ2 and Ψ3 can be factorised. 
An upper limit of 15–18% at 95% confidence level for the CME signal 
has been reported for the 0–40% centrality interval, consistent with pre-
vious measurements.

Another approach to address the large backgrounds experimentally 
is to compare measurements performed in collision systems where the 
CME contribution is expected to vary significantly, while the back-
ground is similar. The STAR Collaboration has recently reported the 
results of the CME search in an analysis of the three-particle correlator 
𝛾𝛼𝛽 measured in collisions of isobar 

96
44
Ru–96

44
Ru and 96

40
Zr–96

40
Zr nuclei at √

𝑠NN = 200 GeV [43]. No anticipated CME signature (i.e., a larger mag-
nitude of 𝛾𝛼𝛽 in Ru–Ru than in Zr–Zr collisions due to a larger magnetic 
field in the former) was observed in that analysis. However, a quan-
titative analysis taking into account the small geometrical differences 
between the isobar nuclei is needed for the interpretation of the mea-
surements. One can also try to separate the CME signal and background 
by comparing the results from Pb–Pb and Xe–Xe collisions at the LHC 

since the differences in 𝑣2 are typically within 10% in the 5–70% cen-
trality interval [44] but the magnetic field is expected to be significantly 
larger in Pb–Pb collisions [45], leading to an increase in the CME con-
tribution.

In this article, measurements of charge-dependent azimuthal corre-
lations from Xe–Xe collisions at 

√
𝑠NN = 5.44 TeV are presented. The 

results are compared with earlier measurements in Pb–Pb collisions at √
𝑠NN = 5.02 TeV [42] and calculations from a blast wave parameter-

isation that incorporate background effects and from the Anomalous 
Viscous Fluid Dynamics (AVFD) model [46–48]. Furthermore, Monte 
Carlo (MC) simulations of the magnetic field induced by spectator pro-
tons with different initial conditions are used to evaluate the expected 
change in the CME signal between the Xe–Xe and Pb–Pb collisions. This 
change is then employed to estimate the fraction of the CME signal in 
both collision systems.

2. Analysis details

The data set used for these measurements was recorded with the 
ALICE detector during the 2017 Xe–Xe run at 

√
𝑠NN = 5.44 TeV. A de-

tailed overview of the ALICE detector and its performance are available 
in Refs. [49,50]. The Inner Tracking System (ITS) [51], the Time Projec-
tion Chamber (TPC) [52], the V0 [53], and the Zero Degree Calorimeter 
(ZDC) [54], the main subsystems used in this analysis, are briefly de-
scribed in the following. The ITS and TPC cover the full azimuth within 
the pseudorapidity range |𝜂| < 0.9. The ITS consists of six layers of sil-
icon detectors and is employed for tracking, vertex reconstruction, and 
event selection. The TPC is used to reconstruct charged-particle tracks 
and to identify particles via specific energy loss, d𝐸∕d𝑥. The V0 detec-
tor, two arrays of 32 scintillator tiles covering −3.7 < 𝜂 < −1.7 (V0C) 
and 2.8 < 𝜂 < 5.1 (V0A), is used for triggering, event selection, and the 
determination of centrality [55] and symmetry plane Ψ2. Both V0 de-
tectors are segmented in four rings in the radial direction with each 
ring divided into eight sectors in the azimuthal direction. Two tungsten-
quartz neutron ZDCs, installed 112.5 meters from the interaction point 
on each side, are also used for event selection.

The trigger conditions and the event selection criteria can be found 
in Ref. [56]. Beam-induced background and pileup events are removed 
using an offline event selection, employing information from the V0, 
ZDC, and tracking detectors. The primary vertex position is determined 
from tracks reconstructed in the ITS and TPC as described in Ref. [50]. 
Approximately 106 Xe–Xe events in the 0–70% centrality interval, with 
a primary vertex position within ±10 cm from the nominal interaction 
point along the beam direction, are used in the analysis. The centrality 
of the collision is estimated from the energy deposition measured in the 
V0 detector [55].

The charged-particle tracks reconstructed using the ITS and TPC 
within |𝜂| < 0.8 and 0.2 ≤ 𝑝T < 5.0 GeV/𝑐 are used to measure the 
charge-dependent correlations. Each track is required to have a min-
imum number of 70 space points (out of a maximum of 159) with a 
𝜒2 per TPC space point lower than 4, to cross at least 70 TPC read-
out rows, and to have the ratio between the number of crossed rows 
and the number of findable space points in the TPC larger than 0.8. 
The selected tracks are also required to have at least 2 ITS hits and a 
𝜒2 per ITS hit smaller than 36. In addition, tracks are selected with a 
distance of closest approach (DCA) to the reconstructed vertex position 
smaller than 3.2 cm and 2.4 cm in the longitudinal direction (𝑧) and 
transverse plane (𝑥𝑦), respectively. These selection criteria reduce the 
contamination from secondary charged particles (i.e., particles originat-
ing from weak decays, conversions, and secondary hadronic interactions 
in the detector material) and fake tracks (random associations of space 
points) and ensure a track momentum resolution better than 4% in the 
considered 𝑝T interval [56]. The charged-particle track reconstruction 
efficiency is estimated from simulations with the HIJING event gener-
ator [57,58] combined with the GEANT3 transport model [59]. These 
simulations include a detailed description of the detector response. The 
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𝑝T averaged charge-dependent correlations are corrected for track re-
construction efficiency.

The charge-dependent correlations are measured using two- and 
three-particle correlators expressed as

𝛿𝛼𝛽 ≡ ⟨cos(𝜑𝛼 −𝜑𝛽 )⟩ = ⟨cos(Δ𝜑𝛼) cos(Δ𝜑𝛽 )⟩+ ⟨sin(Δ𝜑𝛼) sin(Δ𝜑𝛽 )⟩

= ⟨𝑣1,𝛼𝑣1,𝛽⟩+𝐵in + ⟨𝑎1,𝛼𝑎2,𝛽⟩+𝐵out ,
(2)

𝛾𝛼𝛽 ≡ ⟨cos(𝜑𝛼 +𝜑𝛽 − 2Ψ2)⟩

= ⟨cos(Δ𝜑𝛼) cos(Δ𝜑𝛽 )⟩− ⟨sin(Δ𝜑𝛼) sin(Δ𝜑𝛽 )⟩

= ⟨𝑣1,𝛼𝑣1,𝛽⟩+𝐵in − ⟨𝑎1,𝛼𝑎2,𝛽⟩−𝐵out ,

(3)

where Δ𝜑𝛼(𝛽) = 𝜑𝛼(𝛽) − Ψ2, and 𝐵in and 𝐵out denote background con-
tributions projected onto Ψ2 and perpendicular to it, respectively. The 
term ⟨𝑣1,𝛼𝑣1,𝛽⟩ is expected to have negligible charge dependence at 
midrapidity [60]. In addition, ⟨𝑣1⟩ at midrapidity is zero for a symmetric 
collision. While 𝛾𝛼𝛽 suppresses background contributions at the level of 
𝑣2 (i.e., the relative difference between the particle production in-plane 
and out-of-plane), 𝛿𝛼𝛽 is dominated by short-range correlations unre-
lated to Ψ2 (“non-flow”), such as inter-jet correlations and resonance 
decays.

The orientation of the symmetry plane Ψ2 is estimated from the 
azimuthal distribution of the energy deposition measured by the V0A 
detector, with the 𝑥 and 𝑦 components given by

𝑄2,x =
∑

𝑗

𝑤𝑗 cos(2𝜑𝑗 ), 𝑄2,y =
∑

𝑗

𝑤𝑗 sin(2𝜑𝑗 ), (4)

where the index 𝑗 runs over the 32 sectors of the V0A detector, 𝜑𝑗 is the 
azimuthal angle of sector 𝑗 defined by the geometric centre, and 𝑤𝑗 is 
the amplitude of the measured signal in that sector. The symmetry plane 
resolution is calculated from correlations between the symmetry planes 
determined with the TPC, the V0A, and the V0C detectors [26]. The ef-
fect of the decorrelation of Ψ2 between mid and forward pseudorapidity 
has been estimated to be less than 3% for 𝑣2 [61]. Any non-uniform de-
tector response is taken into account by adjusting the components of the 
𝐐2 vector using a recentering procedure (i.e., subtraction of the 𝐐2 vec-
tor averaged over many events from the 𝐐2 vector of each event) [62]. 
The non-flow contributions to the charge-dependent azimuthal corre-
lations are greatly suppressed by the large pseudorapidity separation 
between the TPC and the V0A (|Δ𝜂| > 2.0).

The absolute systematic uncertainties were estimated from the vari-
ation of the results with different event and track-selection criteria. The 
event selection contributions were determined by varying the range of 
the reconstructed collision vertex position from the nominal interaction 
point along the beam direction, estimating centrality from the num-
ber of hits in the first or second layer of the ITS, and imposing stricter 
pileup rejection criteria than the default selection. Systematic uncer-
tainties related to track selection criteria were evaluated by changing 
the ITS hit requirements, varying the minimum number of TPC space 
points, changing the minimum number of crossed TPC readout rows 
and the ratio between the number of crossed rows and the number of 
findable space points in the TPC, rejecting tracks close to the TPC sec-
tor boundaries to which the sensitive readout rows do not extend, and 
comparing any differences between results with only positive and only 
negative charges for pairs of particles with same charge. Finally, changes 
of the results due to uncertainties in the tracking efficiency arising from 
an imperfect description in the simulation of the relative abundances 
of different particle species and their different reconstruction efficien-
cies [63] were considered as part of the systematic uncertainties. The 
largest contribution to the systematic uncertainties for 𝛾𝛼𝛽 and 𝛿𝛼𝛽 is 
given by the centrality estimation and track-selection criteria, respec-
tively. The systematic uncertainties are evaluated for each centrality 
interval. The different sources are assumed uncorrelated and are added 
in quadrature as an estimate of the total systematic uncertainties if their 
deviations from the nominal values are significant according to the Bar-

Table 1
Summary of absolute systematic uncertain-
ties on the charge-dependent correlations. 
The uncertainties depend on centrality, 
whose minimum and maximum values are 
listed here.

Opposite charge Same charge

𝛿𝛼𝛽 (6.8 − 33) × 10−5 (3.8 − 13) × 10−5

𝛾𝛼𝛽 (1.0 − 8.3) × 10−5 (1.4 − 5.9) × 10−5

low criterion [64]. The resulting systematic uncertainties increase from 
central to peripheral collisions and are summarised in Table 1.

3. Results

Fig. 1 compares the 𝛿𝛼𝛽 and 𝛾𝛼𝛽 correlators for same- and opposite-
charge pairs in Xe–Xe collisions at 

√
𝑠NN = 5.44 TeV to those measured 

in Pb–Pb collisions at 
√

𝑠NN = 5.02 TeV [42] as a function of cen-
trality and average charged-particle multiplicity density ⟨d𝑁ch∕d𝜂⟩ at 
midrapidity [65,66]. The results for same-charge pairs denote the av-
erage between pairs of particles with only positive and only negative 
charges since the two combinations are consistent within statistical un-
certainties. Both correlators exhibit strong dependence on the charge-
sign combination and qualitatively similar centrality dependence in the 
two systems. For 𝛿𝛼𝛽 , the magnitude of the same- and opposite-charge 
pair correlations is positive and increases from central to peripheral 
collisions. In contrast to the CME expectation, the correlation for the 
opposite-charge pairs is stronger than for the same-charge combinations, 
indicating that background dominates these measurements. For 𝛾𝛼𝛽 , the 
magnitude of opposite-charge pair correlations is close to zero within 
uncertainties for most of the centrality intervals, while it decreases from 
central to peripheral collisions becoming more negative for same-charge 
pairs. Thus, the correlation of opposite-charge pairs is weaker than for 
same-charge pairs. This ordering is compatible with a charge separation 
with respect to the reaction plane expected in the presence of the CME.

The 𝛿𝛼𝛽 for same-charge pairs shows small (if any) differences be-
tween Xe–Xe and Pb–Pb collisions within uncertainties, while the corre-
lations for opposite-charge pairs have larger magnitude in Xe–Xe colli-
sions in the 10–70% centrality interval. The 𝛾𝛼𝛽 for same- and opposite-
charge pairs from Xe–Xe and Pb–Pb collisions have similar magnitudes 
within uncertainties in the 0–10% and 50–70% centrality ranges, while 
the correlations are stronger in Xe–Xe collisions in the 10–50% central-
ity interval. These observations can be attributed to the different number 
of particles produced in the collision within a given centrality interval 
between the two systems that dilutes the correlations. This is supported 
by the fact that the 𝛿𝛼𝛽 and 𝛾𝛼𝛽 for same- and opposite-charge pairs 
from Xe–Xe collisions are consistent within uncertainties with the cor-
responding Pb—Pb results when reported as a function of ⟨d𝑁ch∕d𝜂⟩.

The 𝛾𝛼𝛽 correlator is also investigated as a function of the pseu-
dorapidity difference Δ𝜂 = |𝜂𝛼 − 𝜂𝛽 |, the transverse momentum differ-
ence Δ𝑝T = |𝑝T𝛼

− 𝑝T𝛽
|, and the average transverse momentum ⟨𝑝T⟩ =

(𝑝T𝛼
+ 𝑝T𝛽

)∕2 of the pair. Fig. 2 presents these results for same- and 
opposite-charge pairs in the 20–30% centrality interval compared to 
measurements performed in 30–40% Pb–Pb collisions [42]. Different 
Xe–Xe and Pb–Pb centrality intervals are selected since they have similar 
transverse densities (1∕𝑆 d𝑁ch∕d𝜂 ∼ 10 fm−2 with 𝑆 being the trans-
verse area) and transverse sizes (𝑅 =

√
𝑆∕𝜋 ∼ 4 fm) [44], thus the con-

tribution from dilution effects is comparable. In addition, the value of 
𝑣2∕𝜀2 (𝜀2 is the second-order eccentricity coefficient and characterises 
the elliptic shape of the initial geometry) and the influence of radial flow 
are similar in the two systems for these centrality classes [44,56]. The 
opposite-charge pair correlations from Xe–Xe collisions show a weak 
dependence on Δ𝜂 and ⟨𝑝T⟩, while they increase with increasing Δ𝑝T
of the pair. The correlations for the same-charge pairs do not exhibit 
any significant dependence on Δ𝑝T and ⟨𝑝T⟩ within uncertainties. These 
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Fig. 1. The 𝛿𝛼𝛽 (top panels) and 𝛾𝛼𝛽 (bottom panels) correlators as a function of centrality (left panels) and charged-particle density [65,66] (right panels) for pairs 
of particles with same (closed markers) and opposite (open markers) charges from Xe–Xe collisions at 

√
𝑠NN = 5.44 TeV (red circles) compared to Pb–Pb collisions 

at 
√

𝑠NN = 5.02 TeV (black squares) [42]. The Pb–Pb points are slightly shifted along the horizontal axis for better visibility in the left panels. Bars (boxes) denote 
statistical (systematic) uncertainties.

Fig. 2. The dependence of 𝛾𝛼𝛽 on the pseudorapidity difference |𝜂𝛼 − 𝜂𝛽 | (left panel), the transverse momentum difference |𝑝T𝛼
− 𝑝T𝛽

| (middle panel), and the average 
transverse momentum (𝑝T𝛼

+𝑝T𝛽
)∕2 (right panel) for pairs of particles with same (closed markers) and opposite (open markers) charges from 20–30% Xe–Xe collisions 

at 
√

𝑠NN = 5.44 TeV (red circles) compared to results from 30–40% Pb–Pb collisions at 
√

𝑠NN = 5.02 TeV (black squares) [42]. The Pb–Pb and Xe–Xe same-charge 
points are slightly shifted along the horizontal axis for better visibility in all panels. Bars (boxes) denote statistical (systematic) uncertainties.

correlations show a strong dependence on Δ𝜂 with a width of approx-
imately one unit in pseudorapidity difference. The Xe–Xe and Pb–Pb 
results are compatible within uncertainties demonstrating similar be-
haviour of this observable despite the differences in the magnetic field.

To get insight into the origin of the charge-dependent effects ob-
served in Xe–Xe collisions, two different approaches were investigated. 
The first one relies on a blast wave (BW) model based on a parameterisa-
tion from Ref. [67]. Input parameters of the model are tuned to describe 
the 𝑝T spectra [68] and the 𝑝T-differential 𝑣2 values [69] of charged pi-
ons and kaons, as well as of protons and antiprotons, measured in the 
same collision system and centre-of-mass energy. To account for the 
main source of background in the measurements reported in this ar-
ticle, the model was further extended by including effects from local 
charge conservation (LCC). This was done by generating sources uni-
formly at the surface of the ellipse that surrounds the centre of the 
system and allowing them to decay into particles with opposite charge. 
In this extension of the BW model, the number of sources that emit 
oppositely-charged pairs is tuned separately for each centrality inter-
val to reproduce the centrality dependence of Δ𝛿𝛼𝛽 ≡ 𝛿

opp.

𝛼𝛽
− 𝛿same

𝛼𝛽
, the 

correlator that is mainly sensitive to background effects. This is illus-
trated in the upper panel of Fig. 3, where the BW curve is represented 

by the blue, solid line that goes through the experimental data points. 
The tuned model is then used to extract the expectation for the cen-
trality dependence of Δ𝛾𝛼𝛽 ≡ 𝛾

opp.

𝛼𝛽
− 𝛾same

𝛼𝛽
, shown in the lower panel of 

Fig. 3. The width of the band reflects the uncertainty obtained by propa-
gating the corresponding uncertainties of the model parameters using a 
sub-sampling method. It can be seen that the BW model describes fairly 
well the measured data points for all centrality intervals. This is in con-
trast to the picture that emerged in Pb–Pb collisions, where following a 
similar procedure the same model underestimated the measurements of 
Δ𝛾𝛼𝛽 by as much as ≈ 40% [42].

Additional insight can be obtained by comparing the results with 
calculations from the Anomalous Viscous Fluid Dynamics (AVFD) 
model [46–48]. It relies on a Glauber model description of the initial 
state of the collision and accounts for the development of the early-
stage electromagnetic fields as well as for the propagation of anomalous 
fermion currents. The expanding medium is described using a 2+1 
dimensional viscous hydrodynamics (VISH2+1) code [70] which is cou-
pled to a hadron cascade model (UrQMD) [71,72]. Within AVFD, the 
final-state CME signal induced by the initial chirality imbalance is con-
trolled by the axial current density 𝑛5∕s. At the same time, the relevant 
background in AVFD is governed by the amount of positive and nega-
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Fig. 3. Centrality evolution of the difference between opposite- and same-charge 
pair correlations for 𝛿𝛼𝛽 (top panel) and 𝛾𝛼𝛽 (bottom panel) compared to model 
calculations: blast wave (BW) parameterisation [67] coupled to local charge 
conservation (LCC) effects (blue curves) and Anomalous Viscous Fluid Dynam-
ics (AVFD) [46,47] (green curves). The BW+LCC model is tuned to reproduce 
the centrality dependence of Δ𝛿𝛼𝛽 , while AVFD is tuned to describe simultane-
ously the centrality dependence of Δ𝛿𝛼𝛽 and Δ𝛾𝛼𝛽 . Bars (boxes) denote statistical 
(systematic) uncertainties on the data points, while the thickness of the curves 
represents the uncertainties on the model calculations.

tive charged partners emitted from the same fluid element relative to 
the total multiplicity of the event, i.e., the LCC percentage. The model 
was first calibrated to describe the centrality dependence of both the 
charged-particle density [66] and the elliptic flow [44]. As a second 
step, the dependence of Δ𝛿𝛼𝛽 and Δ𝛾𝛼𝛽 on both the CME signal and 
the background was determined, by analysing samples with either in-
creasing values of 𝑛5∕s or LCC percentage, respectively [45]. These 
results made it possible to extract the combination of 𝑛5∕s and LCC per-
centage that describes the data and led to a quantitative simultaneous 
description of the centrality dependence of Δ𝛿𝛼𝛽 and Δ𝛾𝛼𝛽 [45]. This 
is illustrated in the two panels of Fig. 3. Also in this case, the width 
of the band reflects the uncertainty obtained by propagating the corre-
sponding uncertainties of the model parameters using a sub-sampling 

method. The experimental data points can be described by large values 
of LCC contribution, between 40% and 60% for peripheral and more 
central Xe–Xe collisions, respectively. In addition, the values of 𝑛5∕s
extracted from this procedure did not exhibit any significant centrality 
dependence and were compatible with zero within uncertainties [45]. 
Similar to the conclusion extracted from the BW model, the study within 
the AVFD framework indicates that the experimental measurements in 
Xe–Xe collisions are dominated by background.

The charge separation effect can be further studied using the dif-
ference between opposite- and same-charge pair correlations Δ𝛾𝛼𝛽 and 
the CME signal expectations from MC calculations employed as guid-
ance. A comparison between Δ𝛾𝛼𝛽 divided by 𝑣2 [44] in Xe–Xe collisions 
and that measured in Pb–Pb collisions [42] is presented as a function 
of centrality and charged-particle density [65,66] in Fig. 4. The value 
of Δ𝛾𝛼𝛽∕𝑣2 is positive for all centralities and its magnitude increases 
from central to peripheral collisions. Furthermore, it is slightly higher 
in Xe–Xe than Pb–Pb collisions in the 10–60% centrality interval. How-
ever, the Xe–Xe and Pb–Pb data points fall approximately onto the same 
curve when reported as a function of ⟨d𝑁ch∕d𝜂⟩.

The expected centrality dependence of the CME signal in Xe–Xe and 
Pb–Pb collisions is estimated from MC Glauber [73] simulations includ-
ing a magnetic field [39]. In these calculations, the 208Pb nucleus is 
spherical while the 129Xe nucleus is deformed with a deformation pa-
rameter 𝛽2 = 0.18 ±0.02 [55]. The centrality classes are determined from 
the multiplicity of charged particles in the acceptance of the V0 detec-
tor, which is generated according to a negative binomial distribution 
with parameters taken from Ref. [74]. The magnetic field is calculated 
at the origin from the number of spectator protons using Eq. (A.6) from 
Ref. [19] with the proper time 𝜏 = 0.1 fm/𝑐. Fig. 5 shows the centrality 
dependence of ⟨(𝑒𝐵)2 cos(2(ΨB −Ψ2))⟩ (ΨB is the direction of the mag-
netic field �⃗�), which is the expected CME signal contribution in 𝛾𝛼𝛽 , for 
the two collision systems. The expected CME signal is stronger in Pb–Pb 
than Xe–Xe collisions in a given centrality interval due to the smaller 
magnetic field strength and a larger decorrelation between ΨB and Ψ2

in Xe–Xe collisions. Similar results are found using TRENTo [75] initial 
conditions. This observation coupled to the agreement of Δ𝛾𝛼𝛽 between 
the two collision systems (see Fig. 4) points to a large background con-
tribution to 𝛾𝛼𝛽 in Xe–Xe collisions.

The large differences in the CME signal expectations and the small 
variations in 𝑣2 (< 10% for the 5–70% centrality interval) [44] be-
tween the two collision systems can be used to disentangle the potential 
CME signal from the background in Xe–Xe and Pb–Pb collisions. Assum-
ing that both the CME signal and the background scale with d𝑁ch∕d𝜂, 
the charge dependence of 𝛾𝛼𝛽 for the two collision systems can be ex-

Fig. 4. Difference between opposite- and same-charge pair correlations for 𝛾𝛼𝛽 divided by 𝑣2 [44] as a function of centrality (left) and charged-particle density (right) 
compared to results from Pb–Pb collisions at 

√
𝑠NN = 5.02 TeV [42]. The Pb–Pb points are slightly shifted along the horizontal axis for better visibility in the left 

panel. Bars (boxes) denote statistical (systematic) uncertainties.
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Fig. 5. The expected CME signal as a function of centrality from MC Glauber 
simulations for Xe–Xe and Pb–Pb collisions [73] (see text for details).

pressed using a two-component approach similar to the one proposed in 
Ref. [76]

ΓXe−Xe = 𝑠𝐵Xe−Xe + 𝑏𝑣Xe−Xe
2

, (5)

ΓPb−Pb = 𝑠𝐵Pb−Pb + 𝑏𝑣Pb−Pb
2

, (6)

where Γ ≡ 𝛾𝛼𝛽 d𝑁ch∕d𝜂, 𝐵 ≡ ⟨(𝑒𝐵)2 cos(2(ΨB − Ψ2))⟩, and 𝑣2 is taken 
from Ref. [44] and 𝛾Pb−Pb

𝛼𝛽
from Ref. [42]. The 𝑠 and 𝑏 parameters quan-

tify the signal and background contributions, respectively, and do not 
depend on collision system within a given centrality interval as a result 
of the assumption that both scale with d𝑁ch∕d𝜂. While the d𝑁ch∕d𝜂

scaling is expected for 𝑏 since it is dominated by flowing clusters [25], 
the domains responsible for 𝑠 can be considered small and thus they can 
be regarded as “usual” clusters which scale with d𝑁ch∕d𝜂. This scaling 
is further supported by the AVFD calculations performed for Pb–Pb and 
Xe–Xe collisions [45]. The 𝑠 and 𝑏 parameters can be used to calculate 
the fractions of the CME signal (denoted as 𝑓CME) in Xe–Xe and Pb–Pb 
collisions as

𝑓CME =
𝑠𝐵

𝑠𝐵 + 𝑏𝑣2
. (7)

The smaller CME signal in Xe–Xe collisions also results in a tighter limit 
on 𝑓CME in Xe–Xe than in Pb–Pb collisions. It is worth noting that the 
CME fractions in the two collision systems are correlated because both 
are calculated with the same 𝑠 and 𝑏 parameters, extracted from the 
data using Eqs. (5) and (6).

Fig. 6 presents the centrality dependence of 𝑓CME in Xe–Xe and Pb–
Pb collisions for the two models used in this study. The uncertainties 
in the CME fractions are obtained adding in quadrature the statisti-
cal and systematic uncertainties in Eqs. (5) and (6). The 𝑓CME does 
not depend significantly on the proper time used to calculate the mag-
netic field since varying the value from 0.1 fm/𝑐 to 0.01 fm/𝑐, 0.5 
fm/𝑐, and 1 fm/𝑐 yields similar CME fractions. Furthermore, the de-
pendence on the centrality range used in Pb–Pb collisions has been 
studied. The analysis was performed using only a single centrality in-
terval of Pb–Pb collisions and all Xe–Xe centrality classes. For all eight 
Pb–Pb centrality intervals, a good agreement is found with the nomi-
nal 𝑓CME. The 𝑓CME is compatible with zero up to 30% centrality in 
both systems and then becomes positive for midcentral and peripheral 
collisions with larger values in Pb–Pb than in Xe–Xe. The CME frac-
tion for the 0–30% centrality interval in Pb–Pb collisions agrees with 
the one reported in Ref. [42]. Fitting the data points in the centrality 
range 0–70% with a constant function neglecting any centrality de-
pendence gives 𝑓CME = −0.003 ± 0.010 (𝑓CME = −0.001 ± 0.012) and 
𝑓CME = 0.147 ±0.061 (𝑓CME = 0.150 ±0.062) for MC Glauber (TRENTo) 
initial conditions in Xe–Xe and Pb–Pb collisions, respectively. These 
results are consistent with zero CME fraction in Xe–Xe collisions and 
correspond to upper limits on 𝑓CME of 2% (3%) and 25% (32%) at 95% 
(99.7%) confidence level for the 0–70% centrality interval in Xe–Xe and 
Pb–Pb collisions, respectively. The limits are estimated assuming Gaus-
sian uncertainties.

4. Summary

The charge-dependent two- and three-particle correlators 𝛿𝛼𝛽 and 
𝛾𝛼𝛽 have been measured in Xe–Xe collisions at 

√
𝑠NN = 5.44 TeV. The 

charge dependence of these correlators is strongly correlated with cen-
trality, increasing from central to peripheral collisions, and is quali-
tatively similar to those reported in Pb–Pb collisions. The difference 
between the Xe–Xe and Pb–Pb results mostly arises from dilution ef-
fects since the data points from both collision systems fall approximately 
onto the same curve when presented as a function of charged-particle 
density. Monte Carlo simulations with different initial state models pre-
dict a significantly larger magnitude of the CME signal in Pb–Pb than 
Xe–Xe collisions, which implies that the dominant contribution to 𝛾𝛼𝛽
in Xe–Xe collisions is due to background effects. The magnitude of the 
charge dependence of 𝛾𝛼𝛽 is described over the entire centrality range 
by a blast wave parameterisation that incorporates local charge con-
servation tuned to reproduce the components of the background. This 
magnitude is also reproduced by Anomalous Viscous Fluid Dynamics 
calculations with large contributions from local charge conservation ef-
fects and values of the CME signal close to zero, thus indicating that the 
background is the dominant contribution to the three-particle correla-

Fig. 6. Centrality dependence of the CME fraction extracted using Eq. (7) with the expected CME signal from MC Glauber [73] (closed markers) and TRENTo [75]
(open markers) models (see text for details). The TRENTo points are slightly shifted along the horizontal axis for better visibility.



Physics Letters B 856 (2024) 138862

7

ALICE Collaboration

tor. In order to get a quantitative estimate of the signal and background 
contributions, the measured values of 𝛾𝛼𝛽 in Xe–Xe and Pb–Pb colli-
sions are compared using a two-component approach. This procedure 
allows one to estimate the fraction of the CME signal in both collision 
systems. Averaging over the 0–70% centrality interval, an upper limit of 
2% (3%) and 25% (32%) is estimated at 95% (99.7%) confidence level 
for the CME contribution to the charge dependence of 𝛾𝛼𝛽 in Xe–Xe and 
Pb–Pb collisions, respectively.
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