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On R-automorphisms of R[X]

Miguel Ferrero and Antonio Paques

Let R be a ring with an identity element and let R[X] be the polynomial ring over
R in an indeterminate X. The R-automorphisms of R[X] have been characterized
by R. W. Gilmer when R is a commutative ring ([6], Theorem 3). It follows that if
¢ is an R-automorphism of R[X], ¢ is completely determined by ¢(X) = Zn:a.-X o
This is also true if R is a non-commutative ring and since ¢(X) is a central 'e=l(<)ament
of R[X], the description given by Gilmer shows that ¢ is an R-automorphism of
R[X] if and only if a; € Z(R), for 0 < i < n, a is a unit and a; is nilpotent for
t > 2.

On the other hand, if G is a group of R-automorphisms of R[X], the computation
of the invariant subring R[X]€ is a question of interest. In pafticular, if G is a finite
group and R is an integral domain, J. B. Castillon [1] showed that R[X]® = R[f],

where f = H ©(X). The original motivation of our study was to obtain an extension

v€EG
of this result and to determine conditions under which R[X] is a Galois extension

of R[X]C. Since every automorphism of such a group is of finite order, we found
that it is interesting to characterize such kind of automorphisms. Also, in section 3
we show that when there exists a finite group G of R-automorphisms of R[X] such

that R[X] is a Galois extension of R[X]°, then the characteristic of R is finite. So,

this case is of particular interest.
In § 1 we study automorphisms of finite order. The main theorem of this section

OThis paper was partially supported by Con_selho Nacional de Desenvolvimento Cientifico e
Tecnolégico (CNPq) and Coordenagao de Aperfeioamento de Pessoal Superior (CAPES), Brazil.
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states that when the characteristic of R is finite, then an automorphism such as ¢
given above is of finite order if and only if there exists an integer t > 1 with af = 1.
In § 2 we extende the result of [1]. We prove that if G is finite and ¢(X) — X is not |

a zero divisor in R[X], for any 1 # ¢ € G, then R[X]° = R[f] where f = I »(X).
: e
The converse is also true if R has no non-zero nilpotent-elements.

In § 3 we consider the question -of whether R[X] is a Galois extension of R[X i
under some addition;al assumptions. The main result of this section gives a charac-
terization of a Galois automorphism of R[X], i.e., an R-automorphism ¢ such that
R[X] is a Galois exfen.sioh’of R[X]®), where (i) is the cyclic group generated by
@. It follows that the order of ¢ rhust be a prime integer p and the characteristic
of R must be p®, e > 1. Also we show that a group G as above is necessarily a
p—elerﬁeritéry abelian group.

Throughout this paper R is a (not necessarily commutative) ring with an identity
element. The center of R is denoted by Z and the group of units of Z by U(Z).
The set of all the nilpotent elements of R will be denoted by N(R) and we put
N(Z) = N. Finally, the order of ¢ is denoted by |p|. We recall that a commutative

ring is said to be reduced if it has no non-zero nilpotent elements.

1. Automorphisms of finite order

Throughout this section we assume that ¢ is an R-automorphism of R[X) defined
by ¢(X) = a0+ a1 X + - + ap, X", where @; € Z, i = 0,1,...,n, a, € U(Z) and
a; € Nforj>2.

Recall that an element a € R is said to be a (Z-) torsion element if there exists
an integer t > 1 such that ta = 0. The ring R is said to be torsion free (or having
characteristic zero) if R has no non-zero torsion elements. In the case that there

exists an integer m > 2 such that mR = 0, R is said to be of finite characteristic



and the characteristic of R is the smallest such integer m.
The main result of this section gives- a' complete description of the R-
automorphisms of R[X] which are of finite order, under the assumption that R

is a ring of finite characteristic. In fact, we will prove the following more general

result

Theorem 1.1. Assume that a; is a torsion element, for j = 0,2,3,...,n. Then

| < oo if and only if a, is a root of the unit element of R.
To prove the theorem we need some lemmas. We begin with the following

Lemma 1.2. Assume that b; € N are torsion elements of R, fori = 1,2,...,n, and

o is the R-automorphism of R[X] defined by o(X) = X + Zb,-X‘. Then |o| < oo.

=1

Proof. Denote by I the ideal of R generated by {by, b, ..., b,}. Note that o?(X) =
X + Zb,-X‘ + Zb.- <X + ijXj) =X+ 226;/\" -+ EckX", for some elements
=1 i=1

i=1 i=1 k>1

cx € I®. An easy induction argument gives oA (X)=X +st,-X‘ + Zdej,. for any
=1 i1
integer s > 2, where d; € I*. Since by, by, ..., b, are torsion elements there exists an

integer v > 2 with 0*(X) = X + ) "ecX*, where e, € I?. Repeating the argument
>1
starting with 0¥ we obtain gv’(X) =X+ kaX", for some elements f; € I*. Now
k>1
it is easy to complete the proof since I is a nilpotent ideal.

Lemma 1.3. Assume that b € N, for it = 0,...,n, and let ¢ be the R-

automorphism of R[X] defined by o(X) = b+ X + ) _b;X'. Then for every

i=1

s > 2 there exist elements co € I* and ¢,...,cm € I such that o*(X) =
ofc e o I icjxj, where I is the ideal of R generated by {by, b,...,b.}.

j=1



Proof. We have 0%(X) = by + (bo + X+ ib.-x") + Zb (bo FX4+3H X') Lo
i=1 ]

i=1

2bo+ X + Eb.-X" + Eb b{;+‘EC¢X‘, for some ¢, € I. Note that Eb-b{, € I* and so
i=1 1=1 21 i=1
the result is true for s = 2. Now it is easy to complete the proof using an induction

argument.

PO .
Corollary 1.4. Assume that b; € N are torsion elements of R, for : = 0,1,...,n,
and let o be the R-automorphism of R[X] defined by o(X) = bp + X + > _bX".

1=1
Then |o| < oo.

Proof. By the assumption there exists an integer s > 2 such that sb; = 0, for
: = 0,. aLe Then there exist ¢¢ € I? and ¢,...,¢m € I such that o*(X) =

cot+X+ Ec,X ', by Lemma 1.3. Applying the same argument to the automorphism
=1

o* we obtain o (X) =dp + X + zd,-x", where do € I, d,,...,d; € I. Since the
=1
ideal I is nilpotent, repeating this way we arrive to 6¥(X) = X + ) e; X, for some
=1
integer v > 2 and e,,...,e, € I. Hence 0" is of finite order by Lemma 1.2 and we

have |o| < oo.

Proof of Theorem 1.1. Assume that there exists an integer s > 1 such that a{ =
a—1
By an induction argument we can easily see that ¢*(X) = aozal +bo+ X+ Zb XJ
=0
where by, b,,...,b, are in the ideal I generated by {aj,...,a,}. Then gp"’(X j =

-1

. 200201 +co+ X+ Ec_,X where co, ..., ¢ are in I. Repeating the argument and
1=0 j=1

using the fact that ag is a torsion element we obtain an integer v > 1 and elements

do,dy,...,d, in I such that ¢*(X) =do + X + Y d;X*. Then ¢ is of finite order by
Corollary 1.4, =

Conversely, assume that |p| = m < co. From the formula obtained for ¢*(X)



above it follows that a* + b = 1, for some b € I = (as,...,a,). Since b is a torsion
element there exists an integer u > 1 with ub = 0. Then aJ** = (1 — §)* = 1 + br,
for some r € R. Thus a* = 1+c, where ¢ € I>. Repeating the argument and using
the fact that I is a nilpotent ideal we find an integer ¢ > 1 such that a} = 1.

Now we include some additional remarks concerning the easy particular case in
which ¢(X) = ag + a;X , a; € U(Z). This is the case for any R-automorphism of
R[X] if the center Z of R is reduced.

An easy computation shows the following

Proposition 1.5. Let ¢ be the R-automorphism of R[X] defined by ¢(X) =
ao + a; X. Then " =1 if and only if a? = 1 and ag(1 +ay + --- +a™') = 0.

We say that the ring R satisfies the condition (C) if the following holds:
(C) For everyl #c € Z such that €" =1, forn > 2, we have 1 — e € U(2).
Condition (C) bolds, for example, if the center Z of R is a field.

Corollary 1.8. Let ¢ be the R-automorphism of R[X] defined by ¢(X) = ag+a; X
and assume that R satisfies the condition (C). Then ¢" =1 if and only if one of the

following conditions holds
i) a; =1 and nag =0

ii)a; #1and af = 1.
Proof. It is clear that if i) holds, then @™ = 1. Assume that ii) holds. Since
(1-—a))(1+ay+---+af7")=1-af =0 wehave 1 +a,+:--+a™" =0 by the

condition (C). Hence Proposition 1.5 gives ¢ = 1.

Conversely, assume that ¢" = 1. Hence af = 1 and we have either a, #1or



a; =1 and sonao=ao(l+a1+--'+a;‘"l)=0.

Remark 1.7. The above Corollary shows that if ¢(X) = ao + X, then || < oo if
and only if ag is a torsion element. Now, if o is defined by o(X) = by + b1 X, where
b7 =1and 14 by 4---4 bl = 0 we have 0™ = 1 for any by € Z. This is the case,
for example, if a, is a root of the unity of order m and Z is a field. This remark |

shows that probably is very difficult to obtain a general theorem corresponding to

Theorem 1.1 without any additional assumption.

Proposition 1.5 has also the following

Corollary 1.8. Assume that R is a ring of characteristic a prime integer p and Z

is reduced. If ¢ is an R-automorphism of R[X], then the following conditions are

equivalent
i) |¢| = p°, for some integer e > 1.
i) |p| = p.
iii) ¢(X) = ao + X, for some ag € Z.

Proof. Assume that ¢(X) = ao + a1X and |p| = p*. If a; # 1 we have a" = 1.

Thus (a; — 1)” = 0 and so a; — 1 = 0, a contradiction. Hence i) — iii) and the rest

is clear.

From Corollary 1.8 the following is clear.

Remark 1.9. If R is as in Corollary 1.8 we have

i) The set of all the R-automorphisms of R[X] of order p°, for some e > 1, is a
subgroup of Autg(R[X]) which is isomorphic to the group (R, +)

i1) Assume that G is a p-group which is a subgroup of Autr(R[X]). Then G is



abelian and any element of G has order p.

Example 1.10. Assume that R is a field of characteristic p and let € be a primitive
root of the unity of order a prime q # p. Then the automorphism o defined by
o(X) =ao+eX,q € R, has order ¢. This example shows that the subgroup of all

the R-automerphisms of R[X] of order p* considered in the Remark 1.9 may be a
proper subgroup of Autg(R[X]).

2. The fixed subring

Let G be a group of ‘R-automorphisms of R[X]. The computation of the invariant
subring R[X]C is a subject of interest ([1], [4]). In particular, in [4] the author studied
R[X]€ when G is the group of all the R-automorphisms of R[X], for a commutative
ring R. On the other hand, J. B. Castillon [1] proved that if R is a commutative
domain and G is a finite group, then R[X]® = R[f], where f = [] p(X).

»€G
The purpose of this section is to extend the above result. Throughout R is a

(not necessarily commutative) ring and G is a finite group of R-automorphisms of

R[X] whose order is n. We put f = [[¢(X) € Z[X]. We will prove the following
w€G

Thorem 2.1.. Assume that for every ¢ € G, ¢ #1, o(X) — X 18 not a zero divisor
in R[X]. Then R[X]¢ = R[f] and R[X] is a free left (right) R[X]C-module with the

basis {1,X,...,X""'}.
Note that ¢(X) = X € Z[X]. Then the following is clear.
Corollary 22 If R is a prime ring, then R[X |¢ = R[f].

By the definition of f it is clear that R(f] C R[X ]6. We begin with the following



Lemma 2.3. Assume that ¢(X) — X is not a zero divisor in R[X] for every ¢
n-—1

G, ¢ # 1. Then R[X] = Y R[f]X’.
j=0

Proof. An easy computation shows that there exist ¢ € Z[X] with 99 = n and the
leading coefficient of g is invertible and h € N[X] such that f = g + h, where N
is the set of all the nilpotent elements of Z. Then there exists an integer m > 1

with A™ = 0. Hence g™ = ) b;fig™, for some b; € Z, and we easily obtain

=1

nm—1
X" e " Z[f)X’. 1t follows that Z[X] is finitely generated over Z[f].
=0
If Z is a reduced ring, then A = 0 and we obtain that Z[X] is generated over

n-1

Z[f] by {1,X,...,X"'}. Consequently R[X] = R®z Z[X] = Y _ R[f]X’. The
=0

result follows in this case. ’

Assume now that R is arbitrary. Put Z = Z/N and note that every ¢ € G

induces a Z-automorphism of Z[X]. Also, by the assumption B(X) # X if ¢ # 1.
. — —_— n-l—— .

Thus the group G = {% : ¢ € G} ~ G and we have Z[X] = > Z[f]X?, where

1=0
n—1

f = Jle(X) = f+ N[X] € Z[X). Consequently Z[X] = Y Z[f1X’ + N[X]

7€G 1=0
n-1 :
and the Nakayama’s Lemma gives Z[X]| = ZZ [f]X?. Finally, as above we obtain
Jj=0
n—1
R[X]= > _R[f]X’.
j=0 .

Remark 2.4. We point out that when Z is a reduced ring the result R[X] =
n—1
Y_R[f]X’ is independent of the assumption. Also, since 3f = n and the lead-

j=0
n-1

n—1 .
ing coefficient of f is invertible we easily obtain that > R[f]X’ = S @ R[f]X°.
. =0

i=0



n-1

Consequently in this case R[X] = Y @ R[f]X? holds for any finite group G.
i=0

Now we are able to prove the theorem.

) n—1
Proof of Theorem 2.1. Note that R(X] = 3 R[f]X’ C ZR[X]GX’ € R[X].
J—O J=0
=
Thus it is enough to show that ZR[X X7 = E ® RIX]°X.
7=0 =0

n—1
Assume that h; € R[X]% i = 0,...,n — 1, and Y _h;X' = 0. Then
=0 '
n—1
Zh,-cp,-(X )' = 0, for every p; € G. Denote by A the matrix whose entries are
1=0
@;(X)' € Z[X]). We easily obtain det(A)h, = 0, for £ = 0,...,n — 1. However
det(A) is a Wandermonde determinant and by the assumption is not a zero divisor

in R[X]. Consequently h; = 0 for £ =0,...,n — 1, and the proof is complete.

It is an open problem whether the converse of Theorem 2.1 holds. We can prove

this under an additional assumption.

Proposition 2.5. Assume that the ring R has no non-zero nilpotent elements.

Then the following conditions are equivalent

i) R[X]° = R[/]

ii) ZR[X]GX' is a direct sum
iii) i;%X) — X is not a zero divisor in R[X], for every 1 # ¢ € G.

Proof. The equivalence between i) and ii) follows from the Remark 2.4. We prove

i) o iii).
Assume, by contradiction, that there exists ¢ € G, ¢ # 1, such that ¢(X) — X
i a zero divisor in R[X). Since o(X) — X € Z[X] it follows easily that there exists

a non-zero ¢ € R such that c(¢(X) = X) =0. Then H = {0 € G : o(cX) = cX}



is a subgroup of G with |H| > 2. Take a set 7,...,7; of representatives of the
t

distinct left cosets of H in G and put g = [[7i(cX). Then g is a non-zero element
i=1

of R[X]® whose degree is t < n and the leading coefficient is of the type c'd, for

some d € U(Z). By the assumption g = b, f™ + - - - + by, for some b; € R, which is a

contradiction since the leading coefficient of f™ is invertible.
We finish this section with the following

Remark 2.6. The subring R[f] of R[X] is a polynomial ring over R, i.e., there
exists and an R-isomorphism % : R[t] — R[f] such that ¥(t) = f. In fact, note that
the coefficient of X™ in f is always invertible. Since f € Z[X] this implies that f is
not a zero divisor in R[X]. Assume that ag +a;f+---+a,f* =0, a; € R. Then
ao = 0 because the constant term of f is zero. Thus (ay +axf +---+af"1)f =0
and so a; + azf + -+ + a,f*' = 0. Repeating the argument we obtain a; = 0 for

t=20,...,n.

3. Galois automorphisms and Galois groups

~Let S be a ring and G a finite group of automorphisms of S. Recall that S is said
to be a Galoic extension of S¢ with group G if there exist z;,5;in S, i = 1,...,m,
such that ix.-a(y.-) = §,, for every o € G ([2], [7]). The set {z;, yi}r1<i<m 18 called
a Galois c:(-)lrdinate system for S over S€.
Throughout this section G is again a finite group of R-automorphisms of R[X].
We study here under which conditions R[X] is a Galois extension of R[X]® with
group G. When this is the case we say that G is a Galois group of R[X]). An R-
automorphism of R[X] is said to be a Galois automorphism if the cyclic group (¥)
generated by ¢ is a Galois group of R[X]. Clearly, every element 'of a Galois group

of R[X] is a Calois automorphism.
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Every group G of R-automorphisms of R[X] induces a group of Z-automorphims
of Z[X] which is isomorphic to G. Assume that 1 # ¢ € G. Then p(X)—-X € Z[X]
and so ¢(X) - X is invertible in Z[X] if and only if ¢(X) — X is invertible in R[X].
Hereafter we will say simply “p(X) — X is invertible” when this is the case.

We begin this section with the following

Lemma 3.1. The following conditions are equivalent:
., i) G is a Galois group of R[X]
ii) G is a Galois group of Z[X]
iii) p(X) — X is invertible, for every p € G, ¢ # 1.

I"nroof. i) — iii) By the assumption there exist z;,y; € R[X], 1 <i < m, such that

Zzi‘P(yi) = 61,4, for every ¢ € G. Suppose that p(X) — X is not invertible. Then

't-_l-llere exists a maximal ideal M of R[X] such that o(X)—X € M. We easily obtain

that @(h) — h € M, for every h € R[X], and so iz;(y; —p(y;)) € M. Thus ¢ = 1.
7)) —» i) This follows direstly Som ([2], Theorem: 1.3).

ii) — i) This is clear since the Galois coordinate system for Z[X] is in R[X].
Combining Lemma 3.1 with Theorem 2.1 we immediately have

Corollary 3.2. If G is a Galois group of R[X], then R[X]® = R[f] and R[X] is a

free left (right) R[X]®-module with the basis {1, X, ..., X""}, where f = [[e(X)
0€G

and n =order(G).

Now we give a characterization of a Galois automorphism. Assume that ¢(X) =

ag+a; X+ +a,X" ao € Z,ay € U(Z) and a; € N for i > 2. We have

Theorem 3.3. The following conditions are equivalent:

i) ¢ is a non-trivial Galois automorphism of R[X]

|




ii) ap € U(Z) and there exists a prime integer p such that the characteristjc of
Ris p®, e 2> 1, and |p| = p.

Moreover, under the above conditions a; = 1(mod N ¥

Proof. i) — ii) Suppose that ¢ is a Galois automorphism of R[X] with |p| = p. We
may write o(X) = ao + a;X + g, where g = a,X?--- + a, X" € N[X]. By Lemma
3.1 o(X)—X = ag+(a; —1)X + g is invertible in Z[X], so we have ao € U(Z) and
a1 —1 € N. Then we can easily show that for every i > 1 there exists h; € N[X]
such that ¢*(X) = iag + X + h;. Therefore iag = (¢'(X) — X) — h; is invertible in
Z ifi1 < pandis nilpotent if ¢ = p. It follows that the integer ¢ is invertible in Z if
¢ < p and is nilpotent if i = p. Consequently p is prime and p' = 0 for some integer
t 2 1. Thus the characteristic of R is a power of p.

ii) — i) We write again ¢(X) = ag + a; X + g, g € N[X]. Then X = (,o"(X) =
bo + ai X + h, for some by € Z and h € N[X]. It follows that a} = 1(modN) and so
(a1 —1)*° = 0(modN). Thus a; = 1(modN) and we have ¢*(X) — X = iag + h;, for
some h; € N[X]. Since i and aq are invertible, for 1 <1 < p, Lemma 3.1 completes

the proof.
For a ring with reduced center we have the following particular case.

Corollary 3.4. Assume that Z is a reduced ring and ¢ is an R-automorphism of
R[X]. Then the following conditions are equivalent

i) ¢ is a non-trivial Galois automorphism of R[X]

ii) p(X) = X + ao, for some ag € U(Z), and the characteristic of R is a prime

integer p.

Now we are in position to give a description of a Galois group of R[X]. Recall

that a p-elementary abelian group is a group which is isomorphic to a direct product

12



2l o

of cyclic groups of order p. We have

Proposition 3.5. Assume that the characteristic of R is p® and G is a Galois group

of R[X). Then G is a p-elementary abelian group.

Proof. We know that G is a Galois group of Z[X]. Denote by Z the factor ring Z/N
and consider the group G of Z-automorphisms of Z[X] induced by G. It is easy to
see that G is a Galois group of Z[X] which is isomorphic to G. So we may assume
that Z is a reduced ring of characteristic p. In this case, for every ¢ € G, ¢ # 1,
we have ¢(X) = X + a, for some a, € U(Z). Also, po%(X) = X + (ay + ay)-
Therefore the group G is isomorphic to a subgroup of the abelian group (Z, +). The

result is now evident.

Now we can give a representation of all the Galois groups in the reduced case.
Assume that V is a non-empty subset of units of Z. We say that H = V U {0} is
an additive group of units of Z if for every u,v € H we have u — v € H.

If H is a finite additive gfoup of units of Z, for any u € H we define an R-
automorphism of R[X] by p.(X) = X + u. Then it is clear that {¢, : u € H} is a
Galois group of R[X] which is isomorphic to H. The converse is apparent from the

proof of Proposition 3.5. Then we have

Corollary 3.6. Assume that Z is a reduced ring. Then the above correspondence
is a one-to-one correspondence between the set of all the Galois groups of R[X] and
the set of all the finite additive groups of units of Z. |

Remark 3.7. It is clear that in the general case if G is a Galois group of R[X],

" then G is isomorphic to a finite additive group of units of Z/N. But we do not know
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whether any such a group can be realized as a Galois group of R[X].

- We finish the paper with some examples, remarks and questions.
First, by Theorem 3.3 if a Galois automorphism of R[X] exists, then the char-
acteristic of R is p°, for a prime p and e > 1. The following examples show that any

such a characteristic is possible.

Example 3.8. Let R be any ring of characteristic 2°, ¢ > 1, and let ¢ be the R-
automorphism of R[X] defined by ¢(X) = 1—X. Then ¢ is a Galois automorphism.

Example 3.9. Let R be any ring of characteristic p?, where p is any prime integer
and let ¢ be the R-automorphism of R[X] defined by ¢(X) =1+ X + pX?~'. We
show that ¢ is a Galois automorphism. Put 7(X) = X + 1 and ¢ = X?~!. Using

‘ . _ _ i-1
an induction argument we obtain ¢'(X) = 7/(X) + pY_77(g), for 1 < i < p. Then
Jj=0

@*(X) — X is invertible for 1 <i < p—1and (X)) =p+ X +pY_71/(g). Thus it is

=0
p—1 p—1 p—-1
enough to show that p+p) 77(g) = 0 in R[X]. In fact, ) 7i(g) = Y (X +j)P~' =
J=0 =0 =0

p—1 ) ) p—1
chsp_l_jX-', where c; is a combinatorial number with ¢,_; = p, s; = ) _#, for
3=0 =1
1<j<p-—1,and ¢ = 5o = 1. Clearly s, = 0(mod p). Now we use the formula

(J'-Jljl)sl + (ji—:)32+"'+ (j';‘l)sj_l + (j':'l)sj = p’+! —p, for any j = 1,...,p—\2
([3], E16, p. 17). Taking j = 2 we obtain s; = O(mod p). Continuing this way,

taking successively j = 3,...,p — 2 we prove that s; = 0(mod p) for 1 < j <p-—2.
r—-1

p—1
Also s,_; = 3 _£~1 = (p — 1)(mod p). Consequently, pY t(g)=p(p—1)=—p
(=1 1=0

and the proof is complete.

The following example shows that there always exists a ring R of characteristic
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p® such that R[X] has a Galois automorphism.

Example 3.10. Let A be a commutative ring of characteristic p* and denote by I
p .
the ideal of the polynomial ring A[t] generated by the polynomial A = Z( ",)t'-l'

f
i=1

Put R = A[t)/] and @ = t+ I € R. Then the characteristic of R is p* and a € N(R)
r—-1
because P! = —E(f)a‘ = pb, for some b € R. Then ¢(X) = a+ X + aX defines

=1

an R-automorphism of R[X]. It is easy to check that if a € U(R), then ¢ is a Galois
automorphism of R[X].

Remark 3.11. The above examples and several other particular cases we have
considered, suggest that for every ring R of characteristic p® there should exist

Galois automorphisms of R[X]. However we were unable to prove this conjecture.

Remark 3.12. Assume that G and H are Galois groups of R[X] and R[X]® =

R[X])®. If R is a connected ring, it follows from the results in (2] that G = H.

However the result is not true in general. In fact, let R be a commutative ring

of characteristic p, p(X) = X + a, for a € U(R),1 and {ey,...,ep—1} a family of
o

orthogonal idempotents whose sum is 1. Put o = Ze;<p‘. Then we easily see that o

=1

r—1 p—1
is also a Galois automorphism and [J¢'(X) = [J¢?(X). Thus R[X]® = R[X]®,
1=0 1=0

where () and (o) are the cyclic groups generated by ¢ and o, respectively.

Remark 3.13. If R is a non-commutative ring and G is a Galois group of R[X],
then G is a Galois group of Z[X] and R[X] = R®z Z [X]. Then, this is an example
in which the results on Galois theory for R[X] over R[X]® are trivial extensions of

the results for Z[X] over Z[X]% ([5], Theorem 2.1).

Question. It should be interesting to obtain a description of the R-automorphisms

of R[X] of order p when the characteristic of R is p°. We could not give an answer

15



to this question.
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