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On R-automorphisms of R[X] 

Miguel Fe,n:,ro and Antonio Paques 

Let R be a ring with an identity element and let R[XJ be the polynomial ring over 

R in ari indet~rminate X. The R-automorphisms o{ R[XJ have been characterized 

by R. W. Gilmer when R is a commutative ring ([6], Theorem 3). It follows that if 
n 

cp is an R-automorphism of R[X], r.p is completely determined by cp(X) = I:aiXi. 
i=O 

This is also true if R is a non-commutative ring and since <p(X) is a central element 

of R[X], the description given by Gilmer shows that r.p is an R-automorphism of 

R[X] if and only if ai E Z(R), for O < i < n, a1 is a unit and ai is nilpotent for 

i > 2. 

On the other hand, if G is a group of R-automorphisms of R[X], the computation 

of the invariant subring R[XJº is a question of interest. ln particular, if G is a finite 
. . 

group and Ris an integral domain, J. B. Castillon (1] showed that R[X]º = R[J], 
where J = IT r.p(X). The original motivation of our study was to obtain an extension 

'{)€0 
. of this result and to determine conditions under which R[XJ is a Galois extension 

of R[X]º. Since every automorphism of such a group is of finite order, we found 

that it is interesting to characterize such kind of automorphisms. Also, in section 3 

we show that when there exists a finite group G o{ R-automorphisms of R[XJ such 

that R[XJ is a Galois· extension of R[XJº, then the characteristic of R is finite. So, 

this case is of particular interest. 

Jn § 1 we study automorphisms of finite order. The main theorem of this section 

ºThis paper was partially supported by Conselho Nacional de· Desenvolvimento Científico e 
Tecnológico (CNPq) and Coordenação de Apnfeiçoamento de Pessoal Superior (CAPES), Brazil. 
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states that when the characteristic of R is finite, then an automorphism such as cp . ' 

given above is of finite arder if and only if there exists an integer t > 1 with a; = 1. 

ln § 2 we extende the result of [l]. We prove that if G is finite and cp(X) - X is not 

a zero divisor i~ R[X], fo~ any 1 ;/ cp E G, then R[X]ª = R[J] where f = II cp(X). 
cpEG 

The converse is also true if R ha.s no non-zero nilpotent-elements. 

ln § 3 we consider the question ~f whether R[X] is a Galois extension of R[X]ª 
. . ' 

under som~ addi~ional assumptions. The main result of this section gives a charac-

terization of a Galois automorphism of R[X), i.e., an R-automorphism cp such that 
. . . . . • 

~[X] is a Galois extensiori"_of R[X](<P), where ( cp) is the cyclic group generated by 

cp. It follows that t~e order of t.p rhust be a prime integer p and the characteristic 

of R must be pe , e > 1. Also we show that a. group G as above is necessarily a 

p-elemeritary abelian group. 

Throughout this paper Ris a (not necessarily commutative) ring with an identity 

element. The center of R is denoted by Z and the group of units of Z by U( Z). 

The set of all the nilpotent elements of R will be denoted by N ( R) and we put 

N(Z) = .N. Finally, the arder of cp is denoted by lc;,I. We recall that a commutative 

ring is said to be reduced if it has no non-zero nilpotent elements. 

1. Automorphisms of finite order 

Througho~t this section we assume that rp is an R-automorphism o{ R[X] defined 

by rp(X) = ao+ a1X + · · · + anXn; where ai E z,· i = O, 1, ... , n, a1 E U(Z) and 

a; E N for j > 2. 

Recall that an element a E R is sai d to be a ( ~-) torsion element if there exists 

an integer t >. 1 such that ta = O. The ring R is sai d to be torsion free ( or ha.ving 

cha.racteristic zero) if R has no non-zero torsion elements. ln the case. that there 

exists an integer m > 2 such that mR = O, R is said to be of fi~té chara.cteristic 
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and the characteristic of R is the smallest such integer m. 

The main result oí this section gives-, a , ·complete description of the R-

automorphisms of R[X] which are of finite order, under the assumption that R 

is ª ring of finite characteristic. ln fact, we will prove the following more general 
result 

. , ' . 

Theorem 1.1. Assume that a; is a torsion element, for j = O, 2, 3, ... , n. Then 

l"PI < oo if and only if a1 is a root of the unit element of R. 

To prove the theorem we need some lemmas. We begin with the following 

Lemma 1.2. Assume that bi E N are torsion elements of R, for i = 1, 2, ... , n, and 
n 

a is the R-automorphism of R[X] defi.ned by a(X) =X+ LbiXi. Then !ai < oo. 
i=l 

Proof. Denote by J the ideal of R generated by {bi, ~' ... , bn}· Note that u 2(X) = 
X + Ê b;X; + tb; (x + Êb,Xi); = X + 2tb;X; + EckXk, for some elements 

i=l •=l 1=1 •=l A:~1 
n 

c1: E J2. An easy induction argument gives u-'(X) = X +sí:biXi+ Ld;Xi,. for any 
i=l j~l 

integer s > 2, where d1 E 12 • Since bi, b2, ... , bn are torsion elements there exists an 

integer v > 2 with uv(X) =X+ Ee1X1, where et E /2. Repeating the argument 
t~l 

starling with av we obtain o-v\X) = X+ Í:,f1r:X\ for some elements f1c E J''. Now 
k>l 

it is easy to complete the proof since / is a -nilpotent ideal. 

Le 1 3 Assume that b, E N, for i = O, ... , n, and let o- be the R-mma . . . n 

automorphism of R[XJ defined by a(X) = bo + X + L"1Xi. Then for every 
i=l 

8 > 2 there exist elemen ts Co E 12 and c1 , ••• , Cm E J such that (X) -
- m 

sbo + Co + X + I:c;X;, where / is the ideal of R generated by { bo, bi, .•. , bn} . 
j=l 
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Proof. We have u2(X) = + (~+X + tb;Xi) + t,b;(~ +X+ tb;X'Y = 
n n n 

2bo +X+ LbiX' + Lb;b/i +~ctX', for some Ct E J. Note that Lb;l/o E / 2 and SÓ 
i=l j=l l>l i=l 

the result is true for s = 2. NÕw it is ea.sy to complete the proof using an induction 

a.rgument. 

)~ . ;. • 

Corollary 1.4. Assume that bi E N are torsion elements of R, for i = O, 1, ... ·, n, 
n 

and let a be the R-automorphism of R[X] defined by a(X) 

Then la! < oo. 

bo +X+ LbiXi. 
i=l 

Proof. By the assumption there exists an integer s > 2 such that sb; = O, for 

i = ·o, ... , n. Then there exist Co E / 2 and c1 , ... , Cm E / such that tT' (X) = 
m 

Co +X+ 1:e;Xi, by Lemma 1.3. Applying the sarne a.rgument to the automorphism 
t 

tT' we obtain a-2 ( X) = do + X + :EdiXi, where do E /3 , d1, ... , d, E /. Since the 
i=l 

u 
ideal J is nilpotent, repeating this way we arrive to o-v(X) = X+ 1:e;Xi, for some 

i=l 
integer v > 2 and e1, ... , eu E /. Hence O'v is of finite order by Lemma 1.2 and we , 

have lul < oo. 

Proof of Theorem 1. 1. Assume that there exists an integer s > 1 such that at = 1. 
•-1 m · 

By an induction argument we can easily see that 'P'(X) = a0 Lªi + bo +X+ Lb;Xi, 
i=O j=l 

where bo, b1 , ••• , bm are in the ideal / generated by { al, .. . , a,J. Then <p2'(X) = 
•-1 t 

- 2aoI:a; + Co +X+ Ec;Xi, where· Co, ... , Ct are in /. Repeating the argument and , 
i=O J=l 

using the fact that a0 is a torsion element we obtain an integer v > 1 and elements 
u 

do, di, ... , d., in / such that (;? 11{X) = do + X + LdiX'. Then cp is of finite order by 
Corollary 1.4. i=l 

Conversely, assume that l<l'I = m < oo. From the formula obtained for <p'(X) 
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above it follows that ai + b = 1, for some b E J = ( a 2, ••. , an)· Since bis a torsion 

element there exists an integer u > 1 with ub = O. Then af'ª = (1 - b)ª = 1 + b2r, 

for some r E R. Thus af"' = 1 + e, where e e / 2 . Repeating the argument and using 

the fact that I is a nilpotent ideal we find an integer t > I such that a~ = 1. 

Now we include some additional remarks concerning the easy particular case in 

which cp(X) = a0 + a1X , a 1 E U(Z). This is the case for any R-automorphism of 

R[X] if the center Z of Ris reduced. 

An easy cnmputation shows the following 

Proposition 1.5. Let <.p be the R-automorphism of R[X] defined by cp(X) 

ao+ a1X. Then <.pn = 1 if and only if af = l a.nd ao(l + a1 + · · · + af-1) = O. 

We say that the ring R satisfies the condition (C) if the following holds: 

(C) For every 1 f: é E Z such that ên = 1, for n > 2, we have 1 - ê E U(Z). 

Condition (C) holds, for example, if the center Z o( R is a field. 

Corollary 1.5. Let <.p be the R-automorphism of R[XJ defined by cp(X) = a0 +a1X 

and assume that R satisfies the condition (C). Then <.p" = 1 if and only if one of the 

following conditions holds 

i) a1 = 1 and nao = O 

ii) ai. f:. l and ai = 1. 

Proof. It is clear that if i) holds, then y," = 1. Assume that ii) holds. Since 

(1 _ ai)(l + a 1 + . · · + aj-1 ) = 1 - af = O we have l + a1 + • • • + ar-1 = O by the 

condition (C). Hence Proposition 1.5 gives y," = 1. 
Conversely, assume that y," = 1. Hence aj = 1 and we have either a1 -::/= 1 or 
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a1 = 1 and so nao = ao(l + a1 + · · · + a~-t) = O. 

Rem'llrk 1. 7. The above Corollary shows that if rp(X) = ao+ X, then lcpl < oo if 

and only if a0 is a torsion elernent. Now, if u is defined by O'(X) = bo + b1X, where 

b'[' = 1 and 1 + bi + •. • • + b'{'-1 = O we have um = 1 for any bo E Z. This is the case, 

for exarnple, if a 1 is a root of the unity of order m and Z is a field. This remark 

shows that probably is very diflicult to obtain a general theorem corresponding to 

Theorentl .1 without any additional assumption. 

Proposition 1.5 has a.lso the following 

Corollary 1.8. Assume that R is a ring of characteristic a prime integer p and Z 

is reduced. If cp is an R-a.utomorphism of R[X], then the following conditions are 

equivalent 

i) l'PI = pe, for some integer e > 1. 

ii) l<t0l = P· 

iii) cp(X) = a0 +X, for sorne a0 E Z. 

Proof. Assume that cp(X) = ªº + a1X and l'PI = pe. Jf ª1 # 1 we have ar = 1. 

Thus ( a1 - 1 )?., = O and so a1 - 1 = O, a contradiction. Hence i) -+ iii) and the rest 

is clear. 

From Corollary 1.8 the following is clear. 

Remark 1.9. lf Ris as in Corollary 1.8 we have 

i) The set o{ all the R•autornorphisms of R[X] of order pe, for some e > 1, is a. 

subgroup of AutR(R(X]) which is isomorphic to the group (R, +) 

ii) Assume that G is a p-group which is a subgroup o{ AutR(~[Xl). Then G is 
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abelian and any element of G has order p. 

Example 1.10. Assume·that Ris a field of characteristic p and let e be a primitive 

root of the unity of order a prime q =f p. Then the automorphism <1 defined by 

u(X) = ªº+EX, ao E R, has order q. This example shows that the subgroup of all 

the R-automcrphisms oí R[X) of order pe considered in the Remark 1.9 may be a 

proper subgroup of Autn(R[X]). 

2. The fixed subring 

Let G be a group of-R-automorphisms of R[X]. The computa.tion of the invariant 

subring R(X]ª is a subject of interest ([1), [4]). ln particular, in (4) the author studied 

R[X]ª when G is the group of all the R-automorphisms of R[X], for a commutative 

ring R. On the other hand, J. B. Castillon (1) proved tha.t if R is a commutative 

domain and G is a finite group, then R[XJª = R[J], where / = I1 cp(X). 
v,EG 

The purpose of this section is to extend the ahove result. Throughout R is a 

( not necessarily commutative) ring and G is a finite group of R-automorphisrns of 

R[XJ whose order is n. We put J = IT cp(X) E Z[X). We will prove the following 
rpEG 

Thorem 2.1,.; Assume that for every t.p E G, t.p =f 1, i.p(X) - X is not a zero divisor 

in R[X]. Then R[X]ª = R[J] and R[X] is a free left {right) R[X)ª-module with the 

basis { 1, X, ... , X"-1 } • 

Note that cp(X) -- X E Z[X). Then the following is clear. 

Corollary 2.2. lf R is a prime ring, then R[X)ª = R[/]. 

By the definition of / it is clear that R[/] C R[X)ª. We begin with the following 
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Lemma 2.3. Assume that <;?(X) - X is not a zero divisor in R(X] for every cp e 
n-1 

G, 'f' :/= 1. Then R[X] = í:R[J]Xi. 
j=O 

Proof. An easy computation shows that there exist g E Z[X] with 8g = n and the 

leading coeffi.cient of g is invertible and h E N[X] such that f = g + h, where N 

is the set of a.ll the nilpotent elements of Z. Then there exists an integer m > 1 
m 

with hm = O. Hence gm = ·L}ifigm-i, for some bi E Z, and we easily obtain 
nm-1 

xnm E L Z[J]Xi. It follows that Z[X] is finitely generated over Z[f]. 
j=O 

If Z is a reduced ring, then h = O and we obtain that Z[X) is generated over 
n-1 

Z[J] by {1, X, ... , X"- 1 }. Consequently R[X] = R ®z Z(X] = LR(J]Xi. The 
j=O 

result follows in this case. 

Assume now that R is arbitrary. Put Z = Z/ N and note that every 'f' E G 
. ' 
induces a Z-automorphism of Z[X]. Also, by the assumption <;?(X) :/= X if 'f' :/= 1. 

n-1 
Thus the group G = { 'f' : 'f' E G} G and we have Z[X] = LZ[J]Xi' where 

• j=O 
n-1 

J = IT <;?(X) = J + N[X] E Z(X]. Consequently Z(X] = I:Z[J]Xi + N(X] 
~EG i=O 

n-1 
and the Nakayama's Lemma gives Z(X] = LZ[J]Xi. Finally, as above we obtain 

J=O 
n-1 

R[X] . í:R[J]Xi. • 
J=O 

Remark 2.4. We point out that when Z is a reduced ring the result R[X] 
n-1 
I:R[J]Xi is independent of the assumption. Also, since 8/ = n and the lead-
i=O 

n-1 n-1 

ing coefficient of / is invertible we easily obtain that L R[JJXi = L EB R(JJXi • 
j=O j=O 
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n-1 
Consequently in this case R[X] = L EB R(J]Xi holds for any finite group G. 

j=O 

Now we are able to prove the theorem. 

n-1 n-1 
Proof of Theorem 2.1. Note that R[XJ = }:R[J]Xi e }:R(XJª X; e R[XJ. 

i=O j=O • 
n-1 n-1 

Thus it is enough to show that I:R[X]G X; = I: EB R[XJª Xi. 
j=O j=O 

n-1 
Assume that hi E R[X]ª, i = O, ... , n - 1, and }:h1Xi = O. Then 

i=O 
n-1 

Lhi<,:>;(X)i = O, for every 'Pi E G. Denote by A the matrix whose entries are 
i=O 
<pj{X)i E Z[X]. We easily obtain det(A)ht = O, for l = O, ... , n - 1. However 

det(A) is a Wandermonde determinant and by the assumption is not a zero divisor 

in R[X]. ConJequently ht = O for l = O, ... , n - 1, and the proof is complete. 

It is an open problem whether the converse of Theorem 2.1 holds. We can prove 

this under an additional a.ssumption. 

Proposition 2.5. Assume that the ring R has no non-zero nilpotent elements. 

Then the following conditions are equivalent 

i) R[XJª = R[JJ 
n-1 

ii) í:R[XJª Xi is a direct sum 

iii) i;(X) - X is not a zero divisor in R[X], for every 1 =/: 'P E G. 

· Proof. The equivalence between i) and ii) follows from the Remark 2.4. We prove 

i) -+ iii). 
Assume, by contradiction, that there exists cp E G, 'P :/: 1, such that <p(X) - X. 

is a zero divisor in R[X). Since cp(X) - X E Z[X) it follows easily that there exists 

a 000.zero e E R such that c(cp(X) - X) = O. Then H = {u E G: u(cX) = cX} 
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is a subgroup of G with IH! > 2. Take a set ; 17 ... , Ti of representatives of the 
t 

distinct left cosets of H in G and put g = II ;i( cX). Then g is a non-zero element 
i=l 

of R[X]ª whose degree is t < n and the leading coefficient is of the type c'd, for 

some d E U(Z). By the assumption g = bnf" + • • • + bo, for some bi E R, which is a 

contradiction since the leading coefficient of /n is invertible. 

We finish thi~ section with the following 

f. 

Remark 2.6. The subring R[/] of R[X] is a polynomial ring over R, i.e., there 

exists and an R-isomorphism 1/J: R[t] --+ R[/] such that -rp(t) = f. ln fact, note that 

the coefficient of X" in f is always invertible. Since J E Z(X) this implies that f is 

not a zero di~isor in R[X]. Assume that a0 + a1J + · · · + anf'" = O, ai E R. Then 

a0 = O because the constant term of J is zero. Thus ( a1 + a2 / + · · · + anf"-1 )f = O 

and so a 1 + a2f + · · · + anf"-1 = O. Repeating the argurnent we obtain ai = O for 

i = O, ... , n. 

3. Galois automorphisms and Galois groups 

----Let S be a ring and G a finite group of automorphisms of S. Recall that S is said 1 

to be a Galoir. extension of Sª with group G if there exist xi, Yi in S, i = 1, . .. , m, •• 
m . 1 

such that í::::io(yi) = 61," for every a E G ([2], [7]). The set { Xi, Yi h~i~m is called 
i=l 

a Galois coordinate system for S over Sª. 

Throughout this section G is again a finite group of R-automorphisms of R[X]. 

We study here under which conditions R[X] is a Galois extension of R[X]ª with 

group G. When this is the case we say that G is a Galois group of R[X). An R~ 

automorphism of R[X] is said to be a Galois automorphism if the cyclic group ( 'P) 
generated by r.p is a Galois group of R[X]. Clearly, every element .º{ a Galois group 

of R[X) is a Galois automorphism. 
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Every group G of R-au tomorphisms of R[X] induces a group of Z-automorphims 

of Z[X] which is 1somorphic to G. Assume that 1 =/ '{) E G. Then '{)(X) - X E Z[X] 

and so '{)(X) - X is invertible in Z[X] if and only if '{)(X) - X is invertible in R[X]. 
Hereafter we will say simply "'{)(X) - X is invertible" when this is the case. 

We begin this section with the following 

, Lemma 3.1. The following conditions are equivalent: 

. 1 i) G is a Galois group of R[X] 
ii) G is a Galois group of Z[X] 

iii) '{)(X) - X is invertible, for every '{) E G, r.p =/ 1. 

Proof. i) -+ iii) By the assumption there exist x;, Yi E R(X], 1 < i < m, such that 
m 

í:xicp(yi) = 61 ,v:,, for every '{) E G. Suppose that r.p(X) - X is not invertible. Then 
i=l 
there exists a. maximal ideal M of R[X] such that cp(X)-X EM. We easily obtain 

m 
that 'P(h) - h EM, for every h E R[X], and so Lxi(yi - 'P(Yi)) EM. Thus cp = 1. 

i=l 
iii) -+ ii) This follows directly from ([2], Theorem 1.3). 

ii) -+ i) This is clear since the Galois coordinate system for Z[X] is in R[X]. 

Combining Lemma 3.1 with Theorem 2.1 we immediately have 

Corollary 3.2. If G is a. Galois group of R[X], then R[X]ª = R[f] a.nd R[X] is a 

free left (right) R(X]G-module with the basis {1, X, ... , xn-t }, where f = IT '{)(X) 
r..pEG 

and n =order( G). 

Now we give a. characterization of a Galois automorphism. Assume that '{)(X) = 
a0 + a1X + • • • + anX", a0 E Z, a1 E U(Z) anda; EN for i > 2. We have 

Theorem 3.3. The following conditions are equivalent: 

i) '{) is a non-trivial Galois automorphism of R[X] 



ii) .ao E U(Z) and there exists a prime integer p such that the characteristic of 

R is pe, e > 1, and l'PI = p. 

Moreover, under the above conditions a1 = l(mod N). 

Proof. i) -+ ii) Suppose that <p is a Galois automorphism o{ R[X] with l'PI = p. We 

may write <p(X) = ao+ a1X + g, where g = a2X 2 • • • + anX" E N[X). By Lemma 

3.1 <p(X)-X =ao+ (a1 - l)X + g is invertible in Z(X), so we have a0 E U(Z) and 

ª1 - 1 E N. Then we can easily show that for every i > 1 there exists hi E N[X] -

such that <pi(X) = ia0 +X+ hi. Therefore ia0 = (<pi(X) - X) - h, is invertible in 

Z if i < p and is nilpotent if i = p. It follows that the integer i is invertible in Z if 

i < P and is nilpotent if i = p. Consequently p is prime and pt = O for some integer 

t > 1. Thus the characteristic of R is a power of p. 

ii) -+ i) We write again cp(X) = ao+ a1X + g, g E N[X]. Then X = <p"(X) = 
bo + af X+ h, for some b~ E Z and h E N[X]. lt follows that af = l(modN) and so 

(a1 - l)Pe = O(modN). Thus a1 = l(modN) and we have <p'(X) - X= iao + h;, for 

some hi E N( X]. Since i and ao are invertible, for 1 < i < p, Lemma 3.1 completes 

the proof. 

For a ring with reduced center we have the following particular case. 

Corollary 3. 4. Assume that Z is a reduced ring and <p is an R-:-automorphism of 

R[X]. Then the following conditions are equivalent 

i) <p is a non-trivial Galois automorphism of R[X] 

ii) <p(X) : X+ a0 , for some a0 E U(Z), and the characteristic of Ris a prime 

integer p. 

Now we are in position to give a description of a Galois group of R[XJ. Recall 

that a p-elementary abelian group is a group which is isomorphic_ to a direct product 
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of cyclic groups of order p. We have 

Proposition 3.5: Assume that the cha.racteristic of R is p~ a.nd G is a. Galois group 

of R[X). Then G is a p-elementary a.belia.n group. 

Proof. \\Te-know that G is a Galois group of Z[X]. Denote by Z the factor ring Z / N 

and consider the group G of Z-automorphisms of Z[X} induced by G. It is easy to 

see that G is a. Galois group of Z[X) which is isomorphic to G. So we may assume 

tha.t Z is a reduced ring of cha.racteristic p. ln this case, for every cp E G, C{) -:f 1, 

we have cp(X) =X+ª'-'' for someª"' E U(Z). Also, cp o -rp(X) =X+ (a,t, + a.p), 

Therefore the group G is isomorphic to a subgroup of the ab~lian group ( Z, + ). The 

result is now evident. 

Now we can give a representation of all the Galois groups in the reduced case. 

Assume that V is a non-empty subset of units of Z. We say tha.t H = V U {O} is 

an additive group of. units of z if for every u, V E H we have u - V E . H. 

If H is a finite a.dditiv.e group of units of Z, for any u E H we define an R-

automorphism of R[X] by 'Pu(X) = X + u. Then it is clear that { 'Pu : u E H} is a 

Galois group of R[X} which is _isomorphic to J-{. The.converse is apparent from the 

proof of Prop~sition 3.5. Then we _have 

Corollary 3.6. Assume that Z is a reduced ring. Then the above correspondence 

is a one-to-one correspondence between the set of all the Gal~is 'groups of R[X] an<;l 

the set of all the finite a.dditive gróups of units of Z. -

Remark 3.7. It is clea.r that in the general case if G is a G_alois group of R[~], 

then G is isomorphié to a finite additive group of units o{ Z / N. But we do not know 
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whether any such a group can be realized as a Galois group of R[X]. 

- We fiuish the paper with some examples, remarks and questions. 

First, by Theorem 3.3 if a Galois automorphism of R[X] exists, then the char-

acteristic of R is pe, for a prime p and e > 1. The following examples show that any 

such a characteristic is possible. 

Example 3.8. Let R be any ring of characteristic 2e, e > l, and let c.p be the R-

automorphism of R[ X] defined by c.p( X) = 1-X. Then c.p is a Galois automorphism. 

Example 3. 9. Let R be any ring of characteristic p2 , where p is any prime integer 

and let c.p be the R-automorphism of R[X] defined by c.p(X) = 1 +X+ pXP-1 . We 

show that c.p is a Galois automorphism. Put r(X) = X+ 1 and g = xp-t. Using 
i-1 

an induction a.rgument we obtain c.pi(X) = ri{X) + p Eri(g), for 1 < i < p. Then 
j=O 

p-1 
c.pi(X)-X is invertible for 1 < i < p-1 and c.pP(X) = p+X +PLTi(g). Thus it is 

j=O 
p-1 p-1 p-1 

enough to show that p+ p Eri(g) = O in R[X]. ln fact, Eri(g) = L(X + j)P-l = 
j=O j=O j=O 

p-1 p-1 
LCjSp-t-;X·;, where e; is a combinatorial number with <;,-t = p, s; = Lfi, for 
j=O l=l 
1 < j < p - 1, and Co = s0 = l. Clearly s1 = O{mod p). -~ow we use the formula 

( iJ1 )s1 + (1:! )s2 + · · · + ( ;~t )s;-1 + ( ;it )s; = pi+1 -;, for any j = 1, ... ,P - -2 

([3], E16, p. 17). Taking j = 2 we obtain s2 = O(mod p). Continuing this way, 

ta.king successively j = 3, ... ,P - 2 we prove that s; = O(mod p) for 1 < j < p - 2. 
p-1 p-1 

Also sp-l = Llp-l = (p - l)(mod p). Consequently, p Eri(g) = p(p - l) = -p 
l=1 i=O 

and the proof is complete. 

The following example shows that there always exists a ring R of characteristic 
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pe such that R[X] has a Galois automorphism. 

Example 3.10. Let A be a commutative ring of characteristic r and denote by / 
'P 

the ideal of the polynomial ring A[t] generated by the polynomial h = ~( )ti-t. 
i=l 

Put R = A[t]/ I anda = t + 1 E R. Then the characteristic of Ris pe and a E N(R) 
p-1 

beca use a,,- i = - L ( ) ai = pb, for some b E R. Then cp( X) = a + X + aX defines 
i=l 

an R-automorphism of R[X]. It is easy to check that if a E U(R), then cp is a Galois 

automorphism of R[X]. 

Remark 3.11. The above examples a.nd several other particular cases we have 

considered, suggest that for every ring R of characteristic pe there should exist 

Galois automorphisms of R[X}. However we were unable to prove this conjecture. 

Remark 3.12. Assume that G and H are Galois groups of R[X] and R[X]º = 
R[X]H. If ff, is a connected ring, it follows from the results in [2] that G = H. 

However the result is not true in general. ln fact, let R be a commutative ring 

of characteristic p, cp(X) = X + a, for a E U(R), and { e1, ... , e,,_t} a family of 
p-1 

orthogonal idempotents whose sum is 1. Put u = Leicpi. Then we easily see that u 
i=l 

p-1 p-1 

is also a Galois automorphism and íl cpi(X) = fI ui(X). Thus R[X](i;l = R[X](u), 
i=O j=O 

where ( cp) and ( u) are the cyclic groups generated by cp a.nd u, respectively. 

Remark _ 3.13. If R is_ a. non-commutative ring and G is a Galois group of R[X], 

then G is a Galois gróup of Z[X] and R[X] = R®z Z[X]. Then, this is a.n example 

in which the results on Galois theory for R[X) over R[X]ª are trivial extensions of 

the results for Z[XJ .over Z[X]ª ([5], Theorem 2.1 ). 

Question. It should be interesting to obtain a description of the R-automorphisms 

of R[X] of order p when the characteristic of Ris pe. We could not give a.n a.nswer 
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to this question. 
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