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THE MOTION OF A CHEMICAL ACTIVE FLUID.

M.A. ROJAS-MEDAR
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13081-970 Campinas, SP, Brazil.

ABSTRACT. By using the spectral Galerkin method, we prove a result on global eris-
tence in time of strong solutions for the motion of a chemical active fluid without assuming
that the external forces decay with time. We also derive uniform in time estimates of the

solution that are useful for obtaining error bounds for the approximate solutions.
KEY WORDS: Chemical active fluid, global strong solutions, Galerkin method.

RESUMO: SOLUCAO GLOBAL FORTE DAS EQUACOES DO MOVIMENTO DE
UM FLUIDO QUIMICAMENTE ATIVO. Usando o metodo de Galerkin espectral, prova-

mos um resultado de existéncia global no tempo de solugées fortes para o movimento de
um fluido quimicamente ativo sem supor que as forgas erternas decaem com o tempo.

Também derivamos estimativas uniforme no tempo da solugio que sdo utieis para obter

limitagées do erro para as solugdes aprorimadas.

PALAVRAS CHAVE: Fluido quimicamente ativo, solugdes globais fortes, metodo de

Galerkin.



1. INTRODUCTION.

In this work we study global existence of strong solutions for the equations that de-
scribes the motion of a viscous-chemically-active fluid in a bounded domain 2 C R",n = 2
or 3, in the time interval [0,7),0 < T < +00.

Let us denote by u(t,:r),p(t,a:),ﬁ(t,a:) and (¢, z) the unknown velocity vector, the
pressure, the temperature, and the degree of dissociation of the fluid at point z time ¢,

respectively. Then the evolution equations in the Oberbeck-Boussinesq approximation

are (to see Joseph [9]):

u+ (u.V)u—vAu+ Vp=j+ (0 + )g,

00 + (u.V)f — kA8 = f

O + (w.V)p — kyAd = h

div u.= 0 (1.1)
where g(1,z),7(t,z), f(t,z) and h(t,z) are source functions; v > 0 is the viscosity, the
constants k; and k; are the thermal and solute diffusity, respectively.

On the boundary I', we assume that

u(t,z) =0; 8(t,z) =6y Y(t,z) =y (1.2)

where 6, and ¥, are known functions; and the initial conditions are expressed by

u(0,z) = uo(:z:);0~(0,:c) — 50(:::); tZ(O,::) = d:o(x) (1.3)

where uo, 8o and 1, are given functions on the variable z € Q.

The expressions V,A and div, as usual, denote the gradiente, Laplace, and diver-

gence operators, respectively; the i** componente of (u - V)u is given by [(u- V)u; =
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When chemical reactions are absent (3 = 0), the problem (1.1) - (1.3) is equivalent
to the classical Boussinesq’s problem (or Bernad’s problem), which has been investigated
by several authors; see for instance Hishida [8], Korenev [10], Morimoto [12], Shinbrot,
Kotorynski [16] and references therein. Concerning the system (1.1) - (1.3), Gil's [6]
studied the stationary model, Belov and Kapitonov [2], the stability of the solutions of
the system (1.1) - (1.3) with different boundary conditions. They used linearization and
fixed point arguments. The more construtive Spectral Galerkin method was used by
Rojas-Medar and Lorca [13], [14] to obtain global in time of the weak solution for n > 2
and local in time of the strong solutions for n = 2 or 3. Also, regularity conditions for
t > 0 were studied [14].

We observe that all known results on global existence of strong solutions for the
system (1.1) - (1.3), as well as in the Boussinesq equations (see, for instance Hishida [8])
require some sort of decay in time of the associated external forces.

However, in the case of the classical Navier-Stokes equations (§ = ¢ = 0), this kind
of decay requirement is not necessary (see, for instance, Heywood and Rannacher [7]).
Therefore, one should be able to prove global existence without this decay condition in
the case of equations (1.1) - (1.3).

This is indeed true, and we shall prove it under certain regularity assumptions on the
initial data and external forces. This proof will be the main result of the present article. In
particular, for the three - dimensional case, we will require smallness of the H'-norm of the
initial data as well as of the L*°(0, co; L*(2)) - norm of the forces. The two-dimensional
problem is uniquely solvable for all ¢ > 0 without any smallness restrictions.

Thus we rearch basically the same level of knowledge as the one in the case of the
classical Navier-Stokes equations.

Also, we present a sequence of estimates for the strong solutions of (1.1) - (1.3) and



their spectral approximations. These estimates are relevant because they are used in an
essencial way to obtain uniform in time error bounds for the spectral approximations of
(1.1) - (1.3). This will be the matter of another publication [15]. We observe that, as it is
usual we will denote by C a generic positive constant depending only on  and the data

of the problem.

Acknowledgments. We would like to thanks J.L. Boldrini for estimulating conversa-

tions on the subject of the present work.
2. PRELIMINAIRES.

Let @ C IR*,n = 2 or 3, be a bounded domain with boundary T of class C'1. Let
H™ () be the Sobolev spaces on {2 with norm || ||, (-,-) denote the usual inner product
in L?(R2) and || || denote the L? norm on Q . By Hg(2) is the completion of C§°(Q2) under
the norm || - ||:, the L? norm on { is denoted by || - ||zr,1 < p < co. If B is a Banach
space, we denote by L(0,T; B) the Banach space of the B-valued functions defined in
the interval (0,7") that are L?-integrable in the sense of Bochner. The functions in this
paper are either IR or IR"-valued and we will not distinguish them is our notations.

We shall consider the following spéces of divergence free functions

Ce () = {vely(Q)|divv=0 in Q}
H = closureof C3o, in L*Q),
V = closure of C3, () in H'(Q).

We observe that the space V is characterized by

V = {u€ Hy(R), divu=0}.
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The space L?(1) has the descomposition L?() = H@®H*, where H = {¢ € L}(R)/ exist
p € H'(Q) with ¢ = Vp}; it means that for every v € L?() there exists v, v; € L}(Q)
such that

v=1v 4

with v € H and v, € H*, or any may, for every v € L?(Q) there exists v; € L%() and
p € H'(Q) such that the vector field v, is solenoidal (div v; = 0) and parallel with the

boundary (vi.n = 0 on T') and as same as it holds

v=uv,+Vp

where p is defined as the solutions of

Ap = 0 in Q,

9p
on

(to see, Constantin and Foias [3] or Temam [17]).
We define the mapping P : L*(?) — H by Pv = v,. Then the operator A: H — H
given by A = —PA with domain D(A) = H¥(Q)NV is called the Stokes operator. It is well

known that the operator A is positive definite, self-adjoint operétor and is characterized

by the relation
(Aw,v) = (Vw,Vv) forall we D(A),veV.

The operator A™' is linear continuous from H into D(A), and since the injection
of D(A) is I is compact, A~! can be considered as a compact operator in H. As an
operator in H it is also self-adjoint. By a well know theorem of Hilbert spaces, there

exists a sequence of positive numbers u; > 0,454, < p; and anorthonormal basis of

H,{w;}32, such that A w; = piw;.



We denote \; = p;'. Since A™! has range in D(A) we obtain that

ij = /\,-wj y wj; € D(A)

0< A< <A< < ...Jlirglo)‘j = +o00 and {w;}, are an orthonormal basis of
H,

Therefore, {w_,l\//\j}‘;‘;l and {w;|A;}%2, form an orthonormal basis in V' (doted of
inner product (Vu,Vv),u,v € V) and H*(Q)NV (doted of inner product (Au, Av),u,v €
D(A)), respectively. We denote by Vi = span[w?,...,w"].

We observe that for the regularity properties of the Stokes operator, it is usually
assumed that Q is of class C?; this being in order to use Cattabriga’s results [4]. We use
instead the stronger results of Amrouche and Girault [1] which implies, in particular, that
when Au € L*(2) then u € H*(Q) and ||u||= and ||Au|| are equivalent norms when 0 is
of class C*.

Similar considerations are true for the Laplacian operator B = —A : L?(2) — L%(Q)
with the Dirichelet boundary conditions with domain D(B) = H*(2) N H}(R?) and we
will denote @*(z),yx by the eigenfunctions and eigenvalues of B, respectively. We denote
by Hi = span [¢',...,¢".

Before of to define strong solution, we transform to the problem (1.1) - (1.3) into
another problem with homogeneous boundary value. In order to do it, we consider ex-
tensions 67 and ¥, of the functions 6; and 1y, respectively, such that

00, — A0, =0 ; Opa — A2 =0 in (0,00) x Q

0, =0, ; Y3 = on (0,00) xT (2.1)
0,(0) € H'(2) ; 2(0) € H'(Q)

where 0,(0) = 0,(0) on I' and ,(0) = ¥,(0) on I'. We know that problems (2.1) are
uniquely solvable for suitable conditions for 8; and ¥, (see (11], (14] and references there

in) with continuous dependence on the initial datas.
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Now, we can transform the equations (1.1) - (1.3) by introduction the new variables

0 =0 — 6, and v = ) — 1, obtaining

Ou+ (uViu—Au+Vp = (0+¢)g+g

0.0 + (u.V)o — A6 = f—uVl, (2 2)
O+ (V) — Ad = h—uVi, '
divu=0 in (0,7) xQ

u=0 ; 0=0 ; %=0 on (0,7)xT (2.3)

u(0)=uo ; 6(0)=08 =08 —030) ; %(0)=to=o—1:(0) (24)

where g, = (02 + ¥,)g + j. Here, without loosing generality, we have scaled the variables
in order to tﬁe viscosity and coeficientes of diffusity to be one.

We observe that the problem (2.2) - (2.4) is equivalent to the problem (1.1) - (1.3);
with this in mind, it is enough to study the problem (2.2) - (2.4).

Nowt, using thie properties of P, we can sefarmuilate probilem (53] - (24} = il
lows find (u,8,v) € C([0,T); V x (Hg(2))* N L*(0,T; D(A) x (D(B))?), (8eu, 8,0, 8:) €
L3(0,T; H x (L*(R))?) (0 < T < +00) such that

(@6, ¢) + (uV8,¢) + (BO,¢) = (f,() — (uV0,(), V(€ Hy()
(O, #) + (uV,8) + (B, ¢) = (h,4) — (uVia, ¢), Vo € Hy(Q)

(u(0),8(0), $(0)) = (v, bo, Yo)- (2.6)

(Giu,v) + (uVu,v) + (Au,v) = ((0 + ¥)g,v) + (91,v), Y€V ]
(2.5)

The above functions (u,d, ) are called strong solution for the system (2.2) - (2.4).
The spectral Galerkin approximations for (u,#, ) are defined for each k € IV as the
solution (u*,0%,y*) € C*([0,T); Vi x (Hk)*)NC'([0,T) x Q) of

(Biu*,v) + (W Vub,v) + (Au*,v) = ((0* + ¥*)g,v) + (91,v), Yo € Vi

(00*,¢) + (W V0, ¢) + (BO* () = (f,() — (W V8s,C), VC € Hy "
(Ot 8) + (WTY, 8) + (BY*, ) = (hy ) — (ubVn, §), Vo€ Hy (1)
u¥(0,z), = uk(z),0%(0, z) = 0§(z),¥*(0,z) = ¥§, ().
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Here, uf are the projections of ug on Vi, analogously, 65 and % are the projections of 8,

and %o on Hy, respectively.
By using these approximations, Rojas-Medar and Lorca [14] proved a local in time

existence theorem for (2.2) - (2.4). Her results are the following.

Theorem 2.1 Let Q2 be a bounded domain in R"(n = 2 or 3) with boundary T of class
C™!. Suppose that

(02,%2) € L=(0,T; (H'(R))*); (uo, b0, %0) € V x (Hy (D))
j € L*(0,T; L*(Q)); 9 € L*(0,T; L*(Q)); f € L*(0,T; L*(92))

and h € L%*(0,T; L%)). Then, there exists T; > 0 with 7} < T such that the problem

(2.2) - (2.4) has a unique strong solution in the interval [0,7;). ™

Also in [14] is proved

Theorem 2.2, Under the hypothesis of the above theorem and suppose the forces in

theorem 2.1 satisfies Jy (||8igl[* + [ |I* + 1|0 ||* + |10:h||*)ds < +o0 and the initial data
satisfies fOT ”6‘02”2 + H(?,z,bgllz)ds < +00,ug € D(A),8,%0 € D‘(B). Then the solutions
(u, 8, %) obtained in Theorem 2.1 belongs to C([0,Th]; D(A) x (D(B))?).®

3. GLOBAL EXISTENCE IN THE THREE - DIMENSIONAL CASE.

We have the following result.

Theorem 3.1. Let © C IR with boundary T' of class C. Sup-

pose that (92,1,/)2) € LOO(O:OOi(Hl(n))z));(umeo'd’O) € V x (Hé(n))2 and g €

8




L=(0,00;L%(R)),j € L=(0,00L3(Q)),f € L=(0,00;LXQ)),h € L=(0,00; X(®)).
Then, if ||uo|l1, [16o]l1, |[%oll1, 1182]lLe 0,001 (0))s  |1¥2]ILoo(0,00:81 (@) [1 1] L0 0,00522(02))
”h”LM(o,oo;H?(n)), [17]] o0 (0,00:L2(02))» @0 ||g]|L(0,00;L3(2)) are small enough, the solution de-

scribed in theorem 2.1 exists globally in time. Moreover, we have

sup [17u(2)l, 11900)l, [1(2)]1} < +oo; @)
sup{e=™ [ e (|| Au(s)I + 1BO)IP + [IBH(s)IP)ds} < +oo  (32)

and
sup et [ ()P + 1B + ()IP)ds) < +oo (3.3)

for all a > 0. Also, the same kind of estimates hold unifomly in & for the Galerkin ap-

proximations.

Proof. We will combine arguments used by Rojas-Medar and Lorca [14] with of a variant
of arguments used by Boldrini and Rojas-Medar [3] and Heywood and Rannacher [7]. The
crucial estimate will be one for ||[Vu*(2)||*+ [|[V6*(2)]|* + || V4*(2)||* and to obtain it, we

proceed as follows: working as the proof of the local existence theorem (Theorem 2.1),

for any t € (0,00), we have the estimates

;l,étIIVU"(t)II2 + At (@)* < ClIVEF)II° + C(IIVE@)I1?
(3.4)

+ IV OIPlgllZs + Cllgu(OIF;

LIeWIP + 1BEOIF < CITEOIIPe 01



+ Cll A @)V + ClFDI

ZUVHOIF + IBSOIF < CITLOIITEF I
(3.6)
4 ClACOIFITSLIP + CIROIP

Now, we put R(t) = ||[Vu*()||> + ||V6*(2)||* + ||[V¥*(t)||?, the above inequalities imply
for R(t) the following differential inequality

%R(t) < CR(t) + CR()M — (1 - CM)(|Au* ()| + || B + 1B @)IIP)  (3.7)

where M = sup{|lg()I|Zs; llga OIS RGP VDI IV2(2)][?}. Now, we ob-

serve that \;||Vu*(t)||> < ||Auf(2)||> and 1 ||VS(2)|> < ||B4(t)|?, so in the above in-

equality we obtain

% R(t) < CR() + CR{M + CM = Cu(1 - (M)R() (3.8)

where C; = min(A;,m)-

2C" " \6C
M3 for all t > 0 when ||Vuol[? + ||V6o|[* + || Vbl |* < M3,

C 3/2 .
Assume M < min {—1— 1,( l) } We will show by contradiction that R(t) <

In fact, suppose the opposite, then, there exist T; > 0 and € > 0 such that R(T3) =
M3 and R(t) > M3 for t € (T2, T2 + €). Then, due to our choice of M and estimate
(3.8), we have

gR(Tz) < CA1+CM4/3+CN[____C‘;'_M1/3
t -
= e 'CT)lMl/a = M'PECM™ - %) <0

which is a contradiction. Thus, we have

10



R(t) < M'Y? forall t>0.

From the estimate (3.7) we find

d
SR+ SUAOIP + B O + 11840

(3.9)
< CR)t)+ CR(t)M + CM.

Multiplying the above inequality by e** and integrating the result, we have

1 t
R+ 5 [ e (A + 1B + || By P)ds

t
< c/o e**(R® + BRM + M + aR)ds + R(0)

and so, from this, and the hypothesis of the initial data, we conclude the estimate (3.2).

In continuation, we observe that

ot ()P < CUVEE@)II® + CUIVO* O + [V @)Illg (2]
+ Cllgi@I* + [l Au* @)1 (3.10)

o041 < CIVEEOIPIVE DI + ClIAR )11 Voy(0)]1®
+ CISWIP + IBE* ()11 (3.11)

o (O)IIF < CHVU"U)||2||V0"(f)Il"+CllAuk(f)lI"'HV_’ll’z(‘)ll2
+ ClAOI* + 11BY* ()11, (3.12)
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Thus, by using the above estimates, we conclud the estimate (3.3) for all a > 0.

Hence, by standard one methods [17], these estimates enable us to assert that a
solution exists. The uniqueness is proved as usual. ®
Corollary 3.2. The assumptions are those of Theorem 3.1, and we assume moreover
that g € L?(0,00; L3(Q)), j € L*(0,00; L*()) and f, h € L*(0, 00; L*(£2)).

Then, estimates (2.2) and (3.3) are valid for a = 0.

Proof. We have the energy equalities,

t - t y t : " "
@I+ [I7u@I = [+ [0+ )g,u) + luol’

loiP+ [1vewi = [0~ [ @90s,6) + 116l

I + [ IV = [ tow) = [T ) + ol

By using the hypothesis and the estimates obtained in Theorem 3.1, we deduce that

sup [[(IIVu(s)I +11V0)I + [ V(s)])ds < +oo. (3.13)

The differential inequalities (3.4) - (3.6), together with the estimates given in Theorem

3.1, implies

LT+ IO+ VIR + A + 1B + 1By

cM||Vu*|* + CM*Pllgllzs + Cllgy(8)]]?

IA

4 CMYPIVEIE +CMYPIVIHE 4 CIFIP + CUMIE + ClA (I ball? + [V ay ).

12



Since by hipothesis ||V;||?,||V0;|| are small enough, then we can conclude that.

t
LA + 11411 + 1By 11)ds

t t
CM [ [I9u¥|ds + CM¥° [ |lgl[3sds
0 0

IA

t t
+C [lanllPds + CM¥ [([V6 +||73**)ds

¢ [P +11A)ds
Gy

+

for all ¢ > 0, due to our hypothesis and the estimates (3.13).
Now, writer these estimates, together with the hypothesis, by using the inequalities
(3.10) - (3.13) we obtain the estimates (3.3) for a = 0, thus we conclude the result. This

completes the proof of the corollary. ®

Theorem 3.3. Suppose the forces in Theorem 3.1 satisfies (0.j,0:9) €
L=(0,T; (L*(52))%); (Ocf, 0:h) € L=(0,T5(L*(R2)?), (082, 0rb2) € L=(0,00;(L?(£2))?) and
the initial data uo € V N H?(Q),00,%0 € HY(Q) N H*(N). Then the solution obtained in

Theorem 3.1 satisfies

sup{[13:u(t)[, 1O 106 ()} < -+ (3.14)
sup{l4u(t)ll, | B, 1BY(OI) < +oo; (3.15)

and
suple [ e (10u()I + VOO +IVag(s)INds}  (3.16)

for all @ > 0. ALso, the kind of estimates hold uniformly in k for the Galerkin approxi-

mations.

13



Proof. From the proof of Theorem 2.2, for any ¢, we have the estimates

2dt |I3zukll2 +IVout|* < CsIIyIIZs(H(M"H’ +]10a0*(1” + 110,021 + [1e211?) .
+ CslloglP(IVEHII? + IV*I1” + [1V6a]” + [[Veball?)
+ Csllaa*|*[[u*IEe + 811V Ou*|® (3.17)

3 FIOGIE + 1190851 < CulIallte + 1112110
+ Csl|Au*|*[10:I1* + Cslloef I
+ 8||Va.8*|)? + 6| Vou*|)? (3.18)

%(—j—llaﬂb I1* +[IVo 1I” < Co(llallze + [19*]1Ze)[0?
+ Csl|Au*|||0cba||* + Csl|0:hII?
+ 8||VoF||* + 8||Vaut|)? (3.19)

Thus, by choosing § appropriate and using Theorem 3.1, the function R(t) = ||8,u*(t)||*+

|18:6%(2)||? + ||18exb* () ||? satisfies in (0, 00) the following estimate

ditlz(t) < CR(t)M? + C(M? + M) 4+ CM||Auk(2)||? (3.20)

where M = sup{llg(t)| s V00N 1942015 10,9 I 13 (1 13ch(e) P
18211 18 DI VA I IV 9 OIP) < oo

Next, we multiply inequality (3.20) by e** obtaining

%(eofzz(t)) < CM’eR(t) + C(M? + M)e™ + CMe®||Au*(2)|?

+ aeafR(t). (321) ;
One can integrate (3.21) from 0 to ¢, obtaining
2 ¢ . .
e R(t) - R(0) < (CM +0)'[, e®* R(S)ds + C(M? + M)/ e ds
0

14



t
as k 2374
+ CM/0 e°*|| Au¥(s)|[*ds. (3.22)
On the other hand, we deduce from the inequalities (3.10), (3.11) and (3.12) that
R(0O) <N

where N is independent of k, since ug € VNH?*(Q), 6y, %o € HL(Q)NH?(Q). Consequently,

by using the energy inequality (3.2), (3.22) implies

Consequently, we obtain (3.14).
Next, we note that estimates (3.17) - (3.19) imply

d
7 ROHIVou  @)P+[Vas* ()P + Vo ()| < CR(t)M*+C(M*+M)+CM|| Au*(1)|.

Now, the estimates (3.14) and (3.22), together with the above differential inequality,
imply (3.16).

Finally, from the estimates obtained in Theorem 3.1 and setting v = Au* in (2.7) we

have

Ak @)IP < ClIVEE @I + CUIVE @) + IV I g (Bl
+ Cllai@I* + Cllow*(t)|I?
< Ks.

Similarly, we can obtain
IBE*)II° < Ko, [1BY* (DI < Ks

for all t > 0. This completes the proof. ®

Analogously as in Corollary 3.2, we can prove.

15



Corollary 3.4. The assumptions are those of Theorem 3.3 and Corollary 3.2, and
we assume moreover that g, ji, fi, he € L?(0,00; L*()). Then, the estimates (3.16) is

valid for a = 0.

4. GLOBAL EXISTENCE IN THE TWO - DIMENSIONAL PROBLEM.

We shall prove that for chemical active fluids it is possible to recover the classical
result that for the usual Navier-Stokes equations, it is not necessary to assume smallness

of initial data and external forces in the two dimensional case. In fact, we have the fol-

lowing result.

Theorem 4.1 Let §2 be a bounded domain of class C"' in IR?. Suppose that
0,,%, € L(0,00; H*(2)),up € V, 800,90 € Hy(R), g € L*(0,00; LP(R)), with p > 2 and
7, f h € 1.°(0,00; L*(S2)). Then the solution described in Theorem 2.1 exists globally in

time and satisfies

sup{[IVu(t)], IVEOIL 1)} < +oo (4.1)
sup{e™" [ e {[lAu(s)IP + |BOS)IP +1BY(s)|Phds < 400 (42)

and
sup(e™ [/ e {lluII* + ) + ()]s < +0o (43)

for every a > 0.

Also, the same kind of estimates hold uniformly in k for the Galerkin approxima-

tions.

Proof. There hold the same remarks as the ones made in the proof of Theorem
3.1 (just after (3.12)) corning the fact that the estimates should first be derive for the

approximates and then carried out to the limit.
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From the proof of the local existence Theorem 2.1, for any ¢ > 0, we have the equality

LI + 1001 + I )1P)
+HIVu* ()| + V6 @)I1° + [V ()11
= ((6* + ¥*)g,u") + (g1, u") + (£,6°) — (4", 6%
+(h, %) — (u* Ve, ¥*).
Consequently, by multiplying the above equation by e®* and recalling that ||8||* <

Cql|Vé||? for EHL(S), we conclude

L OIP + I8P + IO

1
+§e°‘(lqu"(t)II2 +[IV8* )11 + |IVy* ()17
| P 1.2 q
< 50%6 ‘g I* + AP + 112117 + 5056 “Ngllz»
1
+§Cf‘§e“‘(llﬂzlli;= + [1%a2lla)-

for0<a$4—cl¥

The above inequality implies,
™ @I + 165 @I + [19* ()]
t
+ e [T O +IVE () + 199 s) s
< 2ol + [18ll* + lboll®)
Csup(llgall* + A1 + AI" + llgl1s + 116113 + |12]13)

+

where C is a constant positive independent of k.

Also, working as in the proof of Theorem 2.1, we have

ZUTROIP + IV-OIP + 1964 0) |7
< TR0 + CUTWOIR + 1))
VU OIPITOI + VO] g (e) P
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+C(IVu @)IPI] 1V + ClIVu (I y(2)])?
+C(llgllZ> + llgall® + [1AIPI + [1RI? + [16a]13 + [[32]13)-

Setting R(t) = [|Vu*(t)|| + ||[VE*(2)[]> + ||V¢*(t)]|? in the last inequality, we have

d
B S CR 4 CllgllEs + gl + A7 + 11RI* + 116113 + 1al 3).

1/2
Now, we observe that CR? + C; < 2CR? for R > (%) where C; =

C ﬁlzlg(lly(t)llin g OIF + O + AP + [162()113 + [[2()]13)-

1/2
If we call ¢+ = max{(%) y L|Vuol|? + ||V6o||? + ||V¢vo||2)}, then either we
have 0 < R(t) < €~ for all t > 0 or there exists some interval [t;,1,], t, > t; for which

[[Vuk(t1)[12 + || V65 (t1)])? + || Vepk(8)]|? = €* and for t € [t1, 23] it is true that
IV @I + IV )P + ([ V* () > €.

Then, due to our choise of I*, in this interval [t;, ¢,] there holds %R < CR? or, equiva-

lently,

d
dthR <CR

Multiplying the above inequality by e** we have

d
Ee‘"é’nR < Ce*R + ae®'fnR.

Now, we observe that there exists a positive constant d such that énR < d + dR, conse-

quently, using this and integrating the last inequality from ¢, to t € [t,,1,], we get

e*tnR(t) — e**tnR(t,)
t t
<(C+ ad)/ e’ s(s)ds + ad [ e*ds

17 ty

80,
tnR(t) — e~ enR(t)

18



< (C + ad)e™ /: e* R(s)ds + ade™* /t: e*’ds
< (C + ad)[2(||uol[* + [16olI* + |[toll?)
+C sup(llo|I*+ 11+ IBIP + ol + 11815 + 1l
+d[1 — e*]
< (C + ad)[2(|luol* + [16oll* + lI%olI*)
+C sup(laal + 1717 + 1A + ol + 1613 + 1ol + d
M.

Consequently, since —e*"~9¢nR(¢;) > —¢nR(t,), we have ¢n

implies, for all ¢ € [t,, tz]
IVt @I + V@I + [V DI < [V (t)]Pe™ = e,
Since this is independent of ¢, and ?;, we conclude that for all t > 0, we have
IVt (@)]12 + IV @)I1* + 1IV9*(1)]|* < max{e", £°eM} = €M,

The rest of analysis is now done exactly as in the tridimensional case. ®

Corollary 4.2. The assumptions are those of Theorem 4.1, and we assume moreover
that g € L?(0,00; L?()),p > 2,7, fyh € L*(0,00; L*(RN)). Then the estimates (4.2) and

(4.3) are valid fora=0. ®

Analogously as in the Theorem 3.3, we can prove the following result.

Theorem 4.3. Suppose the forces in Theorem 4.1 satisfies (0,7,0,9) €
L(0,00; L*()); (8:f, 0ih) € L= (0, 00; L*(R)); (8103, dpa) € L*(0, 00; L*(Q)) and the
initial data up € VN H?*(R2), 00, Yo € Hy(2)N H?(Q). Then the solution (u, , ) obtained
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in the Theorem 4.1 satisfy
sup{lloa(V)ll, 1AOIL 1521} < +oo (4.4

sup{|| Au(®)l, I BEO)I, 1B(0)]]} < +oo (4.5)

and

sup{e~ ["e(|[Vau(s)|F + VA8(s)IP + V0w (s)I)ds}) < +o0,  (46)

>0

for @ > 0. Also, the some kind of estimates hold uniformly is k for the Galerkin approxi-

mation. ®

Corollary 4.4. The assu‘mptions are those of Theorem 4.3 and Corollary 4.2, and we

assume moreover that g;, j:, fi, h; € L?(0,00; L?(2)). Then the estimate (4.6) is valid for

a=0. =

5. RESULTS ON THE PRESSURE

In a standard way we can obtain information on the pressure. In fact, we have

Proposition 5.1. Under the hypothesis of Theorem 3.1 or Theorem 4.1, if (#,0,9) is
strong solution (2.2)-(2.4), there exists p € L*(0,T, H'(R)/R) for all T > 0, such that
(u, 8,9, p) satisfies (2.2)-(2.4) a.e. and satisfies

t
sup{e™* [ e2*||p(s)l I3 nyds < +oo (5.1)
t>0 0

for all a > 0.

Proof. We observe that (2.5) is equivalent to Au = PF where F = '(0 +¥)g+ gy —
uVu — u;. Now, our estimates for u,0 and v implies that F € L3(0,T; L’(Q)) for all

20



T > 0, and, therefore Amrouche and Girault’s results [1] imply that there is a unique

p € L*0,T; H(Q)/IR) such that
~Au+Vp=F
and the following estimates holds

1Pl )y r < el FI

almost everywhere in [0,T]; now, the estimate (5.1) follows easily from the previous es-
timate and the estimates given in the above section. This completes the proof of the

Proposition. ™
Similarly, we can prove the following.

Proposition 5.2. Under the hypothesis of Theorem 3.3 or 4.3, if (u,8,v) is a strong
solution of (2.2)-(2.4), there exists p € L>(0, c0; H'(Q)/ R) such that (u,8,v,p) satisfies

(2.2)-(2.4) ae. ®
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