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We generalize and improve the Zeldovich’s regularization of the vacuum energy density
and pressure. To do this we reinterpret his divergent sums. Also we introduce a scaling mass
parameter m™ in order to cure a dimensionality inconsistence. It turns out that vacuum energy
and pressure are scale dependent but not the state equation ¢ = —P.

1. Introduction

One of the most interesting puzzles concerning the physical vacuum is how to
conciliate its quantum (microscopic) structure with its structure at large. Ya Zeldovich
took this puzzle seriously [1].

In appendix II of reference (1] he first used special relativity to show that, macro-
scopically, the physical vacuum can be regarded as a perfect fluid with a state equation
given by

e=-P (1)

where ¢ is the energy density and P is the pressure. There is no argument from quantum
physics in such appendix.

Equation (1) is well-known, mainly by cosmologists. It comes from the fact that
the vacuum energy-momentum tensor is given by

T, = Aguv = —Pg,., (2)



where A is the so-called cosmological constant. Eq(s) (1) and (2) were, for the first
time, ascribed to physical vacuum by Gliner (2]. Zeldovich deduced Eq(2), in the same
paper, using the Lorentz Invariance of T},,. A more explicit proof was given by Gr¢n
[3]. The difference between the theoretical (in QFT) and experimental estimates of the
cosmological constant A is, nowadays, a puzzling chalenge to the theoretical physicists

[4].

In the same remarkable paper [1], appendix VIII, Zeldovich gave a proof of eq(1)
using a kind of Pauli-Villars regularization [6-8] for energy density and pressure. In this
work we point out some deficiences of Zeldovich’s regularization proof and we propose a
more general one that we also believe to be more physical and mathematically correct.

In section 2 we resume, for the sake of completeness, Zeldovich’s regularization. In
section 3 we introduce our proposal of regularization. In section 4 we introduce a scaling
mass m” in order to cure the dimensionality inconsistence of Zeldovich’s regularization.
In section 5 we make some conclusions.

2. Zeldovich’s regularization

The zero point energy (ZPE) (or vacuum energy) of a scalar field with mass m is

given by
= Y [
-5 T 2\2mn/ S VP TR STRAP
= k/O VP2 + pu? pldp = kI(p) (3).

where p =m c .
For a spin one half field, the vacuum energy is negative

€= —4kI(u) . (4)

The vacuum pressure is given by

1 P’
])Zk— —_— p? =X
3/ T P up=EE ) (5)

for spin zero field, and

P = -4k F(u) ) (6)
for spin one half fields, where I() and F(4) are obvious from (3) and (5).



Zeldovich considers the physical vacuum as a perfect fluid which, in turn, is a
mixture of zero-point oscillations of bosons and fermions fields. So, Zeldovich proposes
that the vacuum’s energy and pressure be defined by

e= Y Cil() (7a)
pP= Z CiF(p:) (7b)

where the coefficients C; are positive for bosons and negative for fermions. Now, “gen-
eralizing further”, he writes, in the case of a continuous dependence on the mass of the

fields,
e= [ S 1w (8a)

P=[" fW)F(wdu (8b)

where the function f(u) is the continuum limit of C; in Eq(s) (7).
Now, he introduces a cut-off for the momentum p, and use a kind of Pauli-Villars

regularization [6] to conclude that, if the function f(u) satisfies the constraint equations

[ fwdu=0 (9a)
/ f(p)urdu =0 (9b)
/ f(pidp =0 (9¢)
then the renormalized energy and pressure are given by
€= % / f(w)pttn pdu (10a)
P= —%/ f(p)puttn pdp (10b)

and therefore the equation (1) is satisfied.
The reader can make acquaintance with the details of this last part in the Zel-

dovich’s paper. We don’t repeat all the calculations here because ours follows his closely.



3. Generalized Zeldovich’s regularization

Zeldovich’s regularization has to do with the diverging integrals (8). Observe that
integrals (8) implie that we have an infinite continuum of different fields (different masses)
in the vacuum. If ones think the vacuum, in turn, as a kind of fluid, we have to conclude
that this vacuum is a mixture of an infinite number (non countable) of fields, at their
group states. Our approach does not eliminate this possibility, but, on the other hand, it
allows any number of fields: finite, infinite countable and infinite non-countable.

Another shortcoming of integrals (8) is that f is a function only of the mass of the
field and then it can not be a well defined function. For example, if we have two massless
fields (e.g. neutrinos and photons), then we have an ambiguity to assign the value f(u),
Yvi.th # = 0 since, for neutrinos (fermions), its vacuum energy is negative and for photons,
it 18 positive.

Our proposal is very simple. We just have to modify Eq(s) (7) to:

e=3 Clp)(p) (11a)

pED

P =73 Cle)F(p,) (11b)

vED

where the sums are taken on the all vacuum fields, p,, is the mass of the field ¢ and C(e)
is a real function defined on the set of fields ® = {¢}. Observe that, formally, Eq(s) (11)
are identical to Zeldovich’s (7), but now the sum is on the set of fields ® which can have
any number of fields.

The integrals in (3) and (5) can be calculated for a cut-off p, and using the

expansion
2 4
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2
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we find



_Hin pe By P BePo  Bgln 2po (#ﬁ,)
I(pgpo) = ~—5—+ 35+ T+~ 5 ol (13a)
4 4 4 2.2 4 6
poln me  Tug  P3  BoPo | Puln 2po (l‘w)
= L —£), 13b

Substituting these expressions in (11) we obtain
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(14b)

To get finite (renormalized) € and P, with pp — oo, we must impose the constraint

equations:

> Cle)uy =0

and then the renormalized energy and pressure turns out to be:

(15a) |
(15b)

(15¢)
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Z potn p, (16a)

1
= -—gz ln Ko (16b)
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and again Eq.(1) is obtained.

Now we can see in what sense our approach is a generalization of the Zeldovich’s.

If the set of fields ® has a non-countable number of fields in a “non-degenerated state of

mass”, then the two definitions, namely (8) and (11), coincide. In a more mathematical
language, if the application

® — R

¢ — p€R i

is injective and onto, we can write f(¢) = f(u,) for any function f defined on ®. Appli-
cation (17) is nothing but & change of variables. Taking in account (17) we obtain

¥ £ = [ Fluo)du, (18)

and, therefore, the Zeldovich regularization is just a particular case of ours.

If we have a mass degenerescence then application (17) fails to be injective and
Zeldovich’s early regularization can not be applied. Of course, Zeldovich assumed corre-
spondence (17) in some way without, apparentely, taking into account this kind of mass
degenerescence described above.

Observe, in addition, that the Lorentz Invariance implies only Eq.(1) but QFT,
in turn, provides a further mathematical expression for the renormalized energy and pres- '
sure of the vacuum.

4. Scaling the Generalized Zeldovich’s Regularization

It is easy to show that to get Eq(s) (16) for vacuum energy and pressure the
constraint equation (15¢) is superfluous. The proof is as follows. We can rewrite Eq(s)
(14a) and (14b) as

— l q He 1
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r . (19)
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r= P(po) .
Therefore, the state equation ¢ = —P is independent on the logarithmic diver-

gence and the constraint equation (15¢) is not necessary to prove it.

Nevertheless Eq.(15¢) will be necessary to get a mathematically well defined ex-
pression for the vacuum energy and pressure. Observe that in Zeldovich’s renormalized
energy and pressure (Eq(s) 10), as well as in our Eq(s) (16), the logarithm has an argument
which is not adimensional. In fact, p, has dimension of momentum.

This is because constraint Eq(15c) spoils the adimensionality as it is easy to
see in Eq(s) (14). To remedy this situation we use a procedure often used in Zeta-
Function regularization [5). We introduce an arbitrary scaling mass parameter m* and
then pu* = m" c. Th_e mass m~ is a constant independent on the fields ¢.

Inserting *— = 1 in the argument of the logarithm in Eq(s) (19) and (20) we get
w

1 . 1 =
o) = FECEI (32) + 5T Clomn(g)
¢ % >
(23)
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(24)
s .7_. N~ (O 4 Eﬁ 2 }\‘) T
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*Observe that, above, we have proved that ¢ = —P keeping the adimensionality of the argument of
logarithm.



It follows immediately from Eq(s) (23) and (24) that all constraint equations (15)
are necessary to get a vacuum energy and pressure independent on the cut-off p,. We
obtain

() = § = Clolustn(£2) (25)

P() = -5  Clelustn(2) (26)

e(w) = —P(u7) . (27)

Although now the expressions for vacuum energy and pressure are scale depen-
dent, they are cut-off independent an don’t suffer of inconsistence of dimensionality. Ob-
serve also that Eq.(27) is independent on the scale mass parameter. In the wording of
reference [5], “the physics does not change, only our way of interpreting the constants”.

5. Conclusions

In this work we generalize the Zeldovich’s regularization of vacuum energy and
pressure by Eq(s) (11). This avoids ambiguities to sum contributions from fields of same
mass. In addition we show that the Zedolvich condition Eq(15¢) is superfluous to prove
state equation of the vacuum € = —P, or in other words, this equation is independent on

the logarithmic divergence.
However the Zeldovich expressions for vacuum energy and pressure, Eqs(10), suf-

fer of dimensionality inconsistence. To cure this we introduce a scaling mass parameter
m=. Now the vacuum energy and pressure are scale dependent but not the state equation

e =-—P.
One of us (A. Maia) thanks Dr. Ademir Sales de Lima for having brought to our

attention the Zedolvich’s paper. We thank CNPq (Brasilian Research Council) for partial
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