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ABSTRACT: By using the spectral Galerkin method, we prove the existence and unique-
ness of strong local solutions for a system of equations of magnetohydrodynamic type.
Several estimates for the solution and their approzimations are given. These estimates

could be used for derivation of error bounds.
KEY WORDS: Magnetohydrodynamic, Galerkin method, strong solution.

RESUMO: SOBRE UM SISTEMA DE EQUACOES DE EVOLUCAO DO TIPO DA

MAGNETOHIDRODINAMICA. Pelo uso do método de Galerkin espectral, provamos a’

ezisténcia local e unicidade de solugies fortes de um sistema de equagoes do tipo da mag-
netohidrodindmica. Diversas estimativas para a solugdo e suas aprozimagées sdo obtidas

Tais estimativas poderiam ser usadas para obter estimativas de erro.

PALAVRAS-CHAVE: Magnetohidrodinamica, método de Galerkin, solugées fortes.




1. INTRODUCTION

In several situations the motion of incompressible electrical conducting fluids can
be modelled by the so called equations of magnetohydrodynamics, which correspond to
the Navier-Stokes’ equations coupled with the Maxwell’s equations. In the case where
there is free motion of heavy ions, not directly due to the electric field (see Schliiter [9]

and Pikelner [8]), these equations can be reduced to the following form:

0 1
[ 22 _ L Ap V= Lh Tk f——Vp s E3),
ot Pm Pm Pm 2
h
) 6_ = -I_Ah +u.Vh — hVu = —grad w, (1.1)
ot o
divu=0,
\ div h =0,

together with suitable boundary and initial conditions.

Here, u and h are respectively the unknown velocity and magnetic fields; p* is
the unknown hydrostatic pressure; w is an unknown function related to the motion of
heavy ions (in such way that the density of electric current, jo, generated by this motion
satisfies the relation rot jo = —oVw); p,, is the density of mass of the fluid (assumed
to be a positive constant); g > 0 is the constant magnetic permeability of the medium;
o > 0 is the constant electric conductivity; n > 0 is the constant viscosity of the fluid; f-

is an given external force field.
The stationary problem corresponding to (1.1) was considered by Chizhonkov
[2]; while the question of (local) existence of solution of the evolution problem (1.1) was
analysed by Lassner [7] by making the use of semigroup techniques as the ones in Fujita
and Kato [5] (he also studied the asymptotic behavior of the solution as ¢t — 0%).
In this paper we will consider the problem of local existence of strong solutions of
(1.1) as in Lassner (7], with homogeneous boundary condition for u an h for simplicity of
exposition, but under weaker assumptions on the initial data. Also, differently from (7],
we will use the more constructive spectral Galerkin method of approximation. Thus, the
results in this paper form the theoretical basis for future numerical analysis of the problem:
here we will obtain estimates for the approximate solutions that will be fundamental in

a forthcoming paper in which we will obtain optimal error estimates for such Galerkin
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approximations. These estimates will also play a role in the proof of global existence of
solutions of (1.1).

Finally, the paper is organized as follows: in Section 2 we state the basic assump-
tions and results that will be used later in the paper; we also rewrite (1.1) in a more
suitable weak form; we describe the approximation method and state the results of the

paper (Theorems 2.1, 2.2 and 2.3). Each one of the following sections will be devoted to
their proofs.

2. PRELIMINARIES AND RESULTS

Let @ C IR", n =2 or 3, be a bounded domain with boundary 91 of Class C'*.
We denote by H*(2) the Sobolev Spaces on © with norm |||, (+,*) denotes the L*-norm

on . HJ(N) is the completion of C§°(Q) under the norm |[-||;. Also, we denote by L?(Q2)
for 1 < p < oo the usual Lebesgue Spaces and by || - ||z» the LP-norm on Q. With the
same symbols we denote the spaces of n-dimensional vector functions.
We put
Cow = {ve€Cy(R)/divv =0}
H = closureof Cgo () in (L*(Q))"
V = closureof Cgo(R) in (H'(Q)".

It is possible to show that
V = {ve H)(N)|div v = 0}.

We recall the Helmholtz decomposition of vector field: L*(Q) = H & G, being
G={glé="Vp, pe H'(Q))}.

Throughout the paper P will denote the orthogonal projection from L*(f2) onto

H. Then, the operator A: H — H given by A = —PA with domain D(A) = H}(Q)NV
is called the Stokes’ operator. It is well know that A is a positive definite self-adjoint
operator and it is characterized by the relation

(Aw,v) = (Vw,Vv) forall we D(A), veV.

The operator A~" is linear continuous from H into D(A), and, since the injection

of D(A) in H is compact, A~' can be considered as a compact operator in H. As an
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operator in H, A™! it is also self-adjoint. By a well know theorem of Hilbert, there exists
a sequence of positive numbers u; > 0, ;41 < p; and an orthonormal basis of H, (w;)
such that A~'w; = p;jw;. We denote A\; = pj'. Since A~! has range in D(A) we obtain
that Aw; = \jw; , w; € D(A) ,0< ), <... £ X £y £...and lim )j = +oo.

=400

Also, {w;}%2, is an orthonormal basis for H, and {w,/\/)\_,}jf’_=1 and {w;/};}%2, form

orthonormal basis in V' (with the inner product (Vu, Vv),u,v € V) and H*(Q)NV (with
the inner product (Au, Av),u,v € D(A)), respectively.

By using the properties of P, we can reformulate the problem (1.1), with homo-

geneous boundary conditions, as follows: find u, k, in suitable spaces to be exactly defined

later on, satisfying
( (g, )+a(u Vu,$) — (h.Vh,$) + v(Au,¢) = (af, d)

(he,) + (w.Vh, %) — (h.Vu,$) + 7(Ah, %) = 0

v e——

(2.1)
for 0<t<T , VopeV

u(0) =uy , h(0) = ho.

\

Here we have denoted

Pm N 1
a=— , v=— , y=—,
© 7 po

Now, we define strong solutions of the problem (2.1).

Definition. Let ug,ho € V and f € L*0,T;L*(Q)). By a strong solution of
the problem (2.1), we mean a pair of vector-valued functions (u,k) such that u,h €
L=(0,T;V)N L*0,T; D(A)) and that satisfies (2.1).

Remark. In what follows, we will prove that if (u, k) is a strong solution of (2.1) then
u, hy € L*(0,7; H). This condition, together with u,h € L?(0,T;D(A)), implies by
interpolation (see, Temam p. 260), that u, h are almost everywhere equal to a continuous

function from (0,7 into V, consequently the initial conditions u(O) = ug and h(0) = hq
are meaningful.

To prove (local) existence of strong solutions we will use the spectral Galerkin

method applied to (2.1). That is, we consider the finite dimensional subspaces
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Vi = span(w',...,w*], k € N, the corresponding orthogonal projections P, : H — V;

and the approximate solutions

k k .
uF(z,t) = Y cult)w'(z), h(z,t) =) du(t)w'(z),
=1 =1
developed in terms of eigenfunctions of Stokes’ operator, satisfying the following equations:
auf + v Auf + Py (uF. Vur) — Py(h*.Vh*) — P f =0,
h¥ + yAR* + Py(uk . Vh*) = Py(hE.Vut) =0, (2.2)

uk(0) = Paup ,  h*(0) = Pyho.
This is equivalent to the weak form
out, 6) + UV, V) + alut. Ve, ¢) — (K.VA% §) = a(/,4) Vb€ Vi
(hE, ) + Y(Vh*, Vi) + (uk.VR%, ) — (RE.Vur ) =0 Vo € Vi (2.3)
uk(0) = Pauo , h*(0) = Pyho.

By using these approximations, we will prove the following results.

Theorem 2.1. Let the initial values ug,hg € V and the external force f €
L*(0,T; L*(f)). Then, on a (possibly small) time interval [0,77], 0 < T} < T, prob-
lem (2.1) has a unique strong solution (u, k). This solution belongs to C([0, T3], V).

Moreover, there exist continuous functions F' and G such that for any t € [0,T}),
there hold

9u(t, I + 194N+ [ (1Autr I + 1A4hGr, Y|P < Fe),

and
[ s, NP + e, PN < G,

Also, the same kind of estimates hold uniformly in k € N for the Galerkin ap-

proximations (u*, h*).



= 2a(f,u*) < C|IfIP? + ellu*] %,

for any € > 0 and a suitable positive constant C,.
By using Poincaré’s inequality and by taking € small enough, after 2n integration
in time and an application of Gronwall’s inequality, (3.1) implies the globzl existence of

u* and h* and also that
“u*,h*  are uniformly bounded in L*(0,T; H) N L*(0,T; V). (3.2)

By taking ¢ = Au* and = Ah* in (2.3) (i) and (ii), respectively, we hzve

ad .
Eauvu"u’ + v||AuF|? = a(f, Au®) + (RE. VR, Au¥) — a(uf. Tk, Au®), (3.3)
1d, ,
EZ“WW + 7||ARF|? = (hE.Vu, AR®) — (u*.Vh*, AR%). (3.4)

As before, for any ¢ > 0 and suitable C, > 0 we have

I(f, Au)| < CelIfIP + el Auf|” -

* » -

On the other hand, we can use the estimate in Duff [4, p. 464] in the thizd term

of the right-side of (3.3) to obtain
[(u*Vu¥, Au)| < C|IVu|l® + ef | Aut|

To estimate the second term in the right-side of (3.3). we use the Soholev type

inequality (see [10]) [le|l} < llel[*/4||Ve|P/4 as follows

RS LI A* | ol Au]|
CIIVA*|I(I[Z 5|/ AR® [P/ Ax]|
CIIVA [P AR* P/ Au]|
CIVA (PP ARFIP/ + <[] Au®|]?
C.Cs||VAX(|'® + 8]|ARE|]? + <[] Au®]],

|(h*.V h*, Au*)|

IANIANIAN N IA

where we have used Hélder's and Young’s inequalities and § > 0 (with suitable C; > 0).

Analogously, we can prove that the terms in the right hand side of (3.4) satisfy
|(u*. VA, ARY)] < CllDub||*| VAP + 8] AR,
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Theorem 2.2. In addition to the assumptions of Theorem 2.1, assume that ug, ho €
V N H*(Q) and that f, € L?(0,T; L*(Q)). Then, the functions u, h satisfy

et M+ Wty P+ [ (17, P + 19, PN < e

|1 Aut, I + 11 4A(E, I < L(2);
/Ot(“uu(ﬂ MG + Jhe(ry )]

for every t € [0, T], where H(-), L(-) and M(-) are continuous function in ¢ € [0,7}]. Also,
u,h € C'([0,Th]; H) N C([0, T3], D(A)).

Moreover, the same kind of estimates hold uniformly in & for the Galerkin ap-

Ve)dr < M(t),

proximations (u*, h¥).

As a consequence of the above, by using the results of Amrouche and Girault [1],

we conclude:

Theorem 2.3. Under the hypothesis of Theorem 2.1, there exist unique functions p,w €
L?(0,T; H'()/IR) such that by taking p* = p— %h’ ,  (u,h,p",w) is solution of (1.1).
Under the hypothesis of Theorem 2.2, p, w € L*(0,Ty; H'(Q)/IR) N C([0,Ty), L*(R)/ R).

3. THE PROOF OF THEOREM 2.1

The following estimates show the global existence (in ¢) of the approximate solu-
tions u*, h*.
Setting ¢ = u* and ¥ = A* in (2.3) (i) and (ii), respectively, we have

ad

2dt“u“||2+u||Vul‘||2 = a(f,u*) + (hE. VA", u*)

S AP 4 IR = (B9, ),

since (u*. Vur u*) = (u*. Vh* 1*) = 0.

Adding the above inequalities and observing that (h*.Vh* u*)+(h*.Vu* h¥) = 0,
we obtain

d - - ; .
=7l I+ 1AH) + 2(u ][V ut|]? + 4| VA ?) (3.1)




[(h*. 0k, ARR)| < C,C4l | VAPV ||? + el Auk|[? + 8] AR*|2.

If we add equalities (3.3) and (3.4) and use the above estimates with suitable

small enough & and 8, we are left with the following differential inequality,
d
7 VI + VR4 + vl Aut|? + Al AR41? (3.5)

S CITIP + CAUITWEI + VAP + | Vut|FIVAH + [9RHPITuH ).
That is,

d
& (0 < 7(t) + Cer(ty°

where £*(t) = a||Vu*(t)||? + ||VAk(2)||? and 7(t) = C||f(t)||>. By using Lemma 3 in of
Heywood [6, p. 656], we conclude that there exists 7} € (0,7 such that

ol [Vu(@)|[* + [[VAA)II? < Folt,€(0))
where £(0) = a||Vuo||* + ||Vhe||?, and Fy is the solution of the initial value problem
Fo=CFs+1(t) , Fo(0)=¢(0).
Returning to (3.5), we are left with

t
o[V + [IVEOIF + [ (4wt + 11| A4 [)ds (3.6)

< ollVuol? + [[Vholl* + [ 7(s)ds + CF3(t,€(0))
F(t).

Thus,
u* h* are uniformly bounded in L*®(0,T; V)N L*(0,T; D(A)) . (3.7)
Now, by taking ¢ = u¥ and ¥ = A in (2.3) (i) and (ii), respectively, we get

0““5”2 = off,u)+ (hk-th,uf) - a(u".Vu",uf) - u(Au",u:‘),
[B5)12 = (R*.Vu* h¥) — (uk . Th* hE) — y(AR* BY) .

From this, we have

t t L ! v A
/ ||uk(s)||*ds < C /0 (LSO + 115 TR + [k Fub)? + (A, (3.8)
0
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t t
. IRk ) IPds < € [ (1B uH? + It VRHI? + | A4 P)ds. (3.9)
0

Now, bearing in mind (3.7) and the Sobolev embedding H? — L*, we obtain the

following estimates:

|[R*. R

IN

|[B*[12 [V 5|

C||ARK||*||VR¥||?

< C sup F(t) ||Ahk||2,
0<t<T

IN

Similarly,

VR < C sup FQOlIAC,
0<t<Ty

||k Vuk|2 < € sup F(2)]|AR|)?,
0<t<T

lu*.Vh*||* < C sup F(t)||Au*|]*.
OSlSTj

t
Since, / (v||Auk(s)[|* + || AR*(s)||*)ds < F(t) for all t € [0,T}] (see (3.6)), we
0
deduce from the above estimates, together with (3.8) and (3.9), that

uf;h¥  are uniformly bounded in L*(0,Ty; H). (3.10)

Now, by standard methods (see for instance [3], [6], [10]), these estimates enable-
us to take the limit as k£ — +oo in (2.3) and conclude that a solution for (2.1) exists in
the stated class.

In the following we prove the uniqueness of such a solution. Consider that (u,, ;)
and (uz, hy) are two solutions of the problem (2.1) with the same f and ug, ko and define

the diferences w = u; — ug and v = h; — hy. They satisfy

a(wy, §) + v(Aw, ) = —a(w.Vu,,¢) — a(uz.Vw, ¢) + (v.Vhy, @) + (h2. Vv, 8)
(ve, ) + Y(Av,¥) = —(u).Vv,9) — (0. Vhy, ¥) + (v.Vu,¥) + (h2.Vw, )

for.any ¢,% € V; also w(0) = v(0) = 0.
By setting ¢ = w and ¥ = v in the above in equalities, we obtain
@ d

2 dt“sz + v||Vwl|]? = —a(w.Vuy, w) + (v.Vhy, w) + (h2.Vo,w), (3.11)



1d
5 7P+ A11V0|]? = —(0.Vhg, v) + (v.Vur,v) + (h2.Vw, v). (3.12)

Now, we observe that for any € > 0 and suitable C, > 0

lo(w. Vuy, w)|

IA

||w||||VU1||u ”wHu
Cllwl|[|Aw|[[|Vwl|
< CellAw|*||w]? + €] Vw] %,

IA

thanks to the Sobolev embedding H? < L* and Holder and Yuong inequalities.

Similarly,
(0. Vh1,w)| < CellAm|P|[oll* + el Vel
|(h2. Vv, w)| < Csl|Aha*[Jwll® + 8]V,
[(w.Vhs,0)| < Csll Aha|?|[w]? + 8] Vo] [,
(0.Vuy,0)| < CsllAw|P[o]]* + 8]Vl [,
|(h2-Vw,v)| < Ccl| Aha|*|[0]|* + €] Vuo] 2,

for any positive € and § and suitable positive constants C,, Cj.
Consequently, by taking ¢ = v/6 and § = 7/6, in the above inequalities, (3.11)

and (3.12) imply the differential inequality
2 (ol + Il + #I[ Tl + 1[Il
< Clalll + [WIPYIARIP + AR + 1Al + | Ausl ).

By integration in time, the use of Gronwall’s inequality and (3.6), we obtain

ol + I +v [ IFls)ds + [ 190(s)]ds
< (allw()II? + [[o(0)]2)eCF®,

Since w(0) = v(0) = 0, we finally obtain w(t) = v(t) = 0 for all t € [0,T3]. Hence u, = uy
and h, = hg and the uniqueness is proved. For the proof of the continuity of u(t) and A(t)
in the H'(§}) -norm, we proceed as in the remark after the definition of strong solution.
i .

This completes the proof of the Theorem.
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4. THE PROOF THE THEOREM 2.2

To prove Theorem 2.2 we will need further estimates for the approximations u, h*.

To this end, we differentiate (2.3) (i) and (ii) with respect to t and set ¢ = u¥f and ¥ = hf.
We are left with

a
5 el + v|IVuf|? = a(fi, u¥) — a(ub.Vu*, uk) (4.1)

—a(u*Vuf, uf) + (RX.VR* ub) + (h*. VR ub),
1d

5 g I + VRS = —(ub. VA%, bE) — (u*. VAE, BY) (4.2)

+(hE.Vu* h¥) 4 (5. Vuk, BF) |

By using the Cauchy-Schwarz and Young’s inequalities, we obtain

1 a
al(fe, u) < SIAIP + §|qu‘||2 :
Also, we observe that
(k. Vuf, uf) = (uF.VRE RFY =0 .

The second term in (4.2) can be estimated in the following form

lo(ug Vuk,ug)] < allug ]|Vl fug]| e

< Cellug|PllAut| + €] Vug)?

for any € > 0 and suitable C, > 0. Here we have used the Holder’s and Young’s inequali-
ties, together with the Sobolev embedding H' — L*.

Similarly, we have

(. V5 )l < Cellbg 1P| AR + el Vu] I,

(k. VU, B < Col IREIPI A + 81V A,
|(uf VRSB < CollugPILARM + 811V AT,

for any €,6 > 0 and suitable C,,C5 > 0.
To estimate the fifth term in (4.1), we use the Holder’s and Young's inequalities

together with the Sobolev embedding H? «— L. We obtain for any & > 0 and suitable

11



Cs > 0,
((REDhE )l < JIR¥]) oo [ VA o]
< CollARM|P|luf]* + 8]V REN® .
Similary, for any € > 0 and suitable C, > 0, we have
(R Vg, RE)| < CLI|ARH|PI[RE][2 + €| V]2 .

By taking small enough € > 0 and & > 0, by adding (4.1) and (4.2) and by using
the above estimates, we are left with the following differential inequality

d
2l + BN + I Vufl? + A1V RE?)

S AP+ Clalludl® + |REP)(1Au*|? + |REI? + 1),

where C > 0 is a generic constant. Consequently, for 0 < ¢ < T,, we obtain
ollef I+ WIKEP+C [ IVl + IV Pds
< alluOIF + IO + [ CliziPds
+C [ @l + IRIP)LAHE + AR + 1)ds
Now, analogously as in Heywood [6, p. 665], we can prove that
afuf (0)|I” + [A(O)I* < L,

where L > 0 is a constant independent of k.

Thus, by applying Gronwall’s inequality to the above integral inequality, we obtain

t
ol[uf I+ IREI + C [ IVl + 411V )ds (43)
t t
< ([ (IfPds + Lyek oo

= G(t)

for all t € [0,T3], with 8(t) = C(||Au*||* + ||AR¥||> 4 1). By the estimates in (3.6), we
have

/' 0(s)ds < Ct + CF(1)
0

12
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for all t € [0, T3], where F(t) is a function independent of k. Consequently, we conclude
that

u;,h; are uniformly bounded in L*(0,Ty; H) N L*(0, Ty; V). (4.4)
Now, by taking ¢ = Au* and 4 = Ah* in (2.3) (i) and (ii), respectively, we obtain
vl AWK < COIFIP + [lufl[? + lluk. Fub|]? + [R5V RH]2), (4.5)
YIAREI? < C(IRFIIP + ||u® Vuk|[? + ||B*.Vub|?) . (4.6)

We observe that

[lu®. Vot ?

IN

[u* (17117 u*|[7e

ClIVu* |21V u*?)| Au*| >/
C||Vu*|*/?| Au*| >/

Cel| V| |" + ¢]| Au*||?

IAN IN A

for any € > 0 and suitable C, > 0.
Analogously as above, we obtain
|IRE.VAH[P < Csl|VA*|I" + ]| AR%| %,
. VRH? < Cs|[Vub|*II VA + 6]|AR%|P%,

IRE.VuH|? < CIVRH|P||Tub||" + e | Aut) .
Now, by adding the inequalities (4.5) and (4.6) and by using the above estimates,

together with a suitable choice of small enough ¢ and é, we are left with.

v||Au®|[? + Al AR < CUAIP + el + |21
V¥ + [[VR¥||" + (|7 ub| PV A¥?
IVu**19u4|%)
C(IfII* + F(2)* + G(1)
H(t)

In + +

for all t € [0,T}).
Here we have used the estimates obtained in the proof Theorem 1 and (4.3).

Hence, we have

u*, h* are uniformly bounded in L*(0, Ty; D(A)) . (4.7)

13



Now, by standard methods (3], [6], [10], these estimates enable us to assert that
the solution (u, k) of the problem (2.1) satisfies the stated estimates.

To prove the continuity of u,(t) in the L?-norm, we only need to show that ug
is in L*(0,Ty; V*). In fact, if u, € L*(0,Ty; V") then the fact that wu, is in L*(0,Ty; V).
implies that u € C'([0,T); H) (Lemma 1.2, p. 260 in Temam [10]).

To prove that u,, € L?*(0,Ty, V"), we observe that it is enough to show the exis-
tence of C > 0 (independent of k) such that

T
L lub@)lds < € .

To this end, we differentiate equation (2.2) with respect to t; we obtain

ub = Pi(ofi+ hEVAE + b VRE - auk Yk — out Vuk) — vAul

= ¢*.
The above estimates for u* and h*¥ imply that g* is uniformly bounded in
L?*(0,Ty; V*). In fact, we have

|| P (h.Vh*)] sup |(Pehy. VA, v)|

V. =
llvllv <1
< sup |(RE.VR%, P))
lvllv <1
<

C sup ||hglleel[VA¥||[[v]] e
llollv <1
< ClIVRI.

Here we have used the Sobolev embedding H' < L*, the estimate (3.7) and the
continuity of Py in L* (von Wahl (11, p. XXIII]); C denotes a general constant depending

only the previous estimates.

Consequently, due to estimates (4.4) we obtain

A ko k(|2 T -
JR AL N-ds < C [ lIVAHIPs < C,

where C > 0 is independent of k € N.

Also, we have

llvllv <1

ClIVu]].

1P Vufllve = sup |(u*Vuy, Po)| < [lu*les Vel

IN
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Ty
Consequently, /o | Pru*.Vuf||}.ds < C thanks to the above estimates.
Also, from

lAufllve = sup |(Aub,v)|= sup |(Vut, Vo) < ||Vl

vllv <1 [lvllv <1

T
we conclude that / ||Auf||?.ds < C.
’ 0 -

The other terms in the g* are analogously estimated.

To prove the continuity of h,(t) in the L?-norm, we work exactly as before.

To finish the proof we have to show the continuity of u(t) and h(t) in the H*(2)-
norm. We will only prove the continuity of h(t); the proof for u(t) is quite similar. Also,
we will prove this continuity only at to = 0; for other ¢, > 0 the argument is analogous.

We observe that h € L*(0,Ty,D(A)) (see (4.7)). Thus, given any sequence
{tx}2o C IR, with tx — 0F we can extract a subsequence such that h(t,,) — h weakly
in H? for some h € H?. Since we konw (Theorem 2.1) that A(t,,) — ho strongly, the
above implies that A = hy. Moreover, since this holds for any sequence {tx}n=0, with
t, — 0%, we conclude that h(t) — ho weakly in H? as t — 0*. Consequently, due
tovt}-le.lower semicontinuity with respect to the weak topology of the norm, we have
[|Ahol| < tl_i'roqr inf ||Ah(t)|| Now, if we are able to prove that

Jim sup [|AR(2)|| < [|Aholl, (4.8)

then we will have llm ||AR(t)|| = ||Aho||, which together with the fact that Ah(t) — Aho
weakly in L? will 1mply that Ah(t) — Ahg strongly in L2.
In order to prove (4.8) we proceed as follows: put 3 = PAR¥ in (2.3) to obtain

||VREI? + ||Ah’°||2 (u* . Vh* — h* Vu*, PARY)

(uF VR — k¥ Tk, PARY)
kR 4wk VhE — hE Uk — b5 .Vup, PART) .

1
274

d
dt
(u

; : k
By integration with respect to time, and by using our previous estimates for u
and h*, we obtain
< || Aho|* + 2{(uk. VA* — h*.Vuk, PARF)
— (uk.Thk — Rk Vuk PARG)Y + Mt,

FllARF @I <
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where M is a positive constant depending on the previous estimates in k. From this, we
conclude

VAR < 4]|Ako|[? + 2{(w.Vh — h.Vu, PAR)

= (Uo.Vho = ho.V’Llo, PAho)} + Mt

Now, since u.Vh — uy.Vhg, h.Vu — ho.Vg in L? and PAh — PAhg weakly
in L? as t — 0*. We obtain the desired result.

5. THE PROOF OF THE THEOREM 2.3

The observe that (2.1) (i) and (i) are equivalent to Au = P(f) and Ak = P(g),
where ? =of —uy — au.Vu+ h.Vh and § = h.Vu — u.Vh — h,, respectively.

Now, we observe that under the hypothesis of the Theorem 2.1 (respectively of
Theorem 2.2), we have f,g € L*(0,Ty; L*(Q)) (respectively f,g € L=(0, Ty; L*(R))).

Therefore, Amrouch and Girault’s results [1] imply that there are unique p, w €

L?(0,Ty; H'(Q)/IR) (respectively p,w € L*(0,Ty; H'(Q)/RR N C([0,T;); L*(R)/IR)) such
that

—vAu+Vp=f
divu=0

ulsn =0
and

—-‘)’Ah +Vr= gJ
divh=0
hlsa = 0.

Now, it is enough to take p* = p — %hg and Theorem 2.3 is proved.
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