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RESUMO

O tráfego de caminhões com carga acima do permitido é uma das principais causas de danos

ao pavimento das rodovias. Para identificar e multar caminhões sobrecarregados, balanças de

pesagem estática são geralmente utilizadas, exigindo a parada dos veículos, o que resulta em

atrasos e custos de transporte. Uma alternativa é a Pesagem em Movimento (WIM), capaz

de pesar os caminhões na rodovia sem necessidade de paradas. No entanto, para aplicação

em pesagem punitiva, os sistemas WIM devem fornecer medições confiáveis e precisas, o que é

desafiador devido à dinâmica dos veículos em movimento. Ao longo dos anos, diversos métodos

foram propostos para calcular o peso de veículos em movimento, visando melhorar a acurácia

desses sistemas. Esses métodos são divididos em duas fases: a estimativa de cargas instantâneas

dos eixos e a estimativa do peso bruto total (PBT) do veículo. Este estudo avalia a precisão e a

acurácia de sistemas WIM, abordando os métodos e algoritmos de pesagem por meio de análises

experimentais e simulações. As simulações avaliaram diferentes configurações de sistema, com

resultados indicando que o uso de mais de oito sensores não apresenta uma redução de erro

considerável. A distância entre sensores teve impacto mínimo em baixas velocidades e maior

relevância em velocidades mais altas. Em relação aos estimadores avaliados nas simulações,

o simples cálculo do valor médio mostrou-se uma escolha prática para sistemas WIM, com

resultados robustos em diversos cenários. Nas análises experimentais, métodos de estimativa de

carga instantânea do eixo foram testados com um caminhão de seis eixos, e o método de Área

sob o Sinal apresentou erros na faixa de 5% para a maioria dos casos, sendo o método de maior

acurácia.

Palavras–chave: Weigh-in-motion, Estimativa de Peso Dinâmico, Pesagem Punitiva.



ABSTRACT

The traffic of trucks with loads above the permitted limit is one of the main causes of pave-

ment and road damage. To identify and penalize overloaded trucks, static weighing scales are

generally used, requiring vehicles to stop at highway weigh stations, resulting in delays and

increased transportation costs. An alternative to avoid this inconvenience is through Weigh-in-

Motion (WIM) systems, capable of weighing trucks on the highway without requiring them to

stop. For WIM systems to be employed in direct enforcement, they must provide reliable and

accurate measurements, which is challenging due to the dynamics of moving vehicles. Over

the years, various methods for calculating the weight of moving vehicles have been proposed,

as the accuracy of WIM systems heavily depends on the weight estimation methods employed.

These estimation methods are typically divided into two phases: instantaneous axle load esti-

mation and gross vehicle weight estimation. This study evaluates the accuracy and precision of

WIM systems, focusing on these weight estimation methods through both simulations and ex-

perimental analyses. Simulations assessed different system layouts and estimation algorithms

(estimators), with results indicating that using more than eight sensors provides diminishing

returns in error reduction. Sensor spacing had a minimal impact on errors at lower speeds but

became more significant at higher speeds. Regarding estimators, the simple mean value calcu-

lation proved to be a reliable choice for WIM systems, providing robust results across various

scenarios. Experimentally, instantaneous axle load estimation methods were tested on a six-axle

truck, with the Area Under the Signal method showing errors around the 5% margin in most

cases, making it the most accurate method.

Keywords: Weigh-in-motion, Dynamic Weight Estimation, Direct Enforcement.
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1 INTRODUCTION

This chapter provides a brief introduction to Weigh-In-Motion (WIM) systems,

highlighting their importance and challenges to identify overloaded trucks. The main goals

of this work are presented, focusing on exploring methods to estimate vehicle weight in mo-

tion using both simulated and real-world data. Finally, the chapter provides an overview of the

structure of this thesis.

1.1 Motivation

Road infrastructure plays a crucial role in economic and social development, fa-

cilitating interconnectivity between regions and contributing to overall progress. The proper

maintenance of highways is a fundamental factor in ensuring efficiency, safety and reducing

traffic congestion.

One of the factors that causes highway degradation is the traffic of overloaded

trucks, which is a concern for infrastructure authorities and transportation departments world-

wide. When trucks carry loads that exceed the recommended weight limits, they exert excessive

pressure on the road surface, leading to various types of damage, such as pavement deforma-

tion, rutting, structural damage, bridge and culvert damage (Pais et al., 2013). Furthermore,

they pose safety risks to other vehicles.

Considering this, effective weight measurement of trucks and heavy vehicles is

essential to enforce compliance with weight regulations, contributing to the preservation of

road infrastructure and safety. Developing accurate and efficient systems for measuring vehicle

weights is crucial to address these concerns (Sujon; Dai, 2021). Traditionally, truck weighing

has relied on static or very low-speed scales (operating at speeds below 5 km/h), requiring vehi-

cles to stop or nearly stop at designated weigh stations or weighing sites. While these methods

provide considerable accuracy, they present various inconveniences and limitations, including

traffic congestion, queues, and delays for drivers (Benekohal et al., 2000). Both static scales and

very low-speed scales can be financially inefficient and time-consuming, requiring significant

resources from highway concessionaires and vehicle operators (Giacinto et al., 2021).

To overcome these challenges, Weigh-In-Motion (WIM) systems have emerged as

an efficient solution. WIM technology enables the measurement of vehicle weights while they



16

are in motion on the road, eliminating the need for vehicles to stop or divert to designated

weighing points. By integrating weight measurement into the normal flow of traffic, WIM

systems provide real-time data without disrupting the efficiency of the transportation network.

Weigh-in-motion systems are generally categorized into two types: low-speed (LS-

WIM) and high-speed (HS-WIM) systems. LS-WIM sites are typically located near toll booths

or motorway entries, requiring vehicles to travel within a speed range of 10 to 20 km/h. HS-

WIM systems are designed to dynamically weigh vehicles traveling at any speed within legal

limits (up to 90 km/h in most countries), eliminating the need for specific infrastructure such as

toll booths and dedicated low-speed points along highways (Benekohal et al., 2000).

Legislation related to truck weighing varies across different countries and regions,

but there are common elements. These elements include the need for identification of the ve-

hicle’s silhouette (number of axles and distance between them), measuring axle and the overall

weight of the vehicle, establishing maximum allowable error margins, and specifying the range

of vehicle speeds for precise weight measurement. In the European Union, the accuracy re-

quirements for Weigh-In-Motion systems are determined by the R134 standard developed by

the International Organization for Legal Metrology (OIML) (International Organization of Le-

gal Metrology (OIML), 2006). The primary accepted WIM standard in the United States is the

ASTM E1318-09 (ASTM International, 2010). These standards generally define different ac-

curacy classes, specifically the maximum permissible error in relation to the true static weight

of a vehicle or axle. The most accurate systems (Type I in ASTM E1318-09 Standard and Class

0.2 or A in OIML R134) are suitable for direct enforcement purposes, while other systems

with lower accuracy classes are often used for data collection, and traffic and vehicle moni-

toring. In Brazil, recent legislation from INMETRO details the metrological requirements for

automated Weigh-In-Motion (Instituto Nacional de Metrologia, Qualidade e Tecnologia (IN-

METRO), 2022). This legislation introduces Classes 1 (with a maximum permissible error of

5% in GVW estimation) and A (with an 8% maximum permissible error in static axle load) as

the highest levels of precision. However, it is still under consideration whether these systems,

especially HS-WIM systems, can be utilized for direct enforcement purposes in the Brazilian

territory.

Weigh-In-Motion systems use load sensors to obtain the weight of moving vehi-

cles as they pass over the WIM site. The collected sensor data is then processed and analyzed

using algorithms to estimate the weights of individual axles and the overall weight of the vehi-
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cle, also known as Gross Vehicle Weight (GVW) (Burnos et al., 2007; Cebon; Winkler, 1991).

Systems equipped with more than one sensor are often labeled as multiple-sensor Weigh-In-

Motion systems (MS-WIM). The continuous advancements in sensor technology, data process-

ing techniques, and machine learning algorithms have significantly enhanced the accuracy and

efficiency of WIM systems over time.

One of the challenges faced by WIM systems is their exposure to various weather

conditions, as they are installed in open-air areas. This exposure can lead to decreased sensor

accuracy (Lu; Tolliver, 2023). Calibration algorithms have been used to mitigate this issue,

often requiring a pre-weighted vehicle in the calibration process (Gajda et al., 2021; Huhtala

et al., 2000). Advanced auto-calibration methods have been studied in recent years (Burnos;

Gajda, 2020; Burnos, 2008). However, they have not been widely adopted in WIM applications

due to their requirement for complex and long-term datasets.

A crucial factor that influences the precision and accuracy of WIM systems is the

impact of dynamic loads generated by the moving vehicles during measurement (Oubrich et

al., 2017; Saburdo; Topolev, 1964). The mechanical oscillations of a vehicle’s suspensions and

tires can lead to erroneous weight estimations for individual axles, as the instant measurements

may coincide with the high or low point of these oscillations. While weather conditions such

as wind force can impact these oscillations, they are primarily influenced by the mechanical

properties of the vehicles, the quality of the road surface, and the speed at which the vehicles

are traveling (Cebon; Winkler, 1991; Oubrich et al., 2017).

These factors significantly impact the accuracy of WIM systems, which has very

restrictive requirements for the direct enforcement of moving vehicles. Various techniques have

been proposed to enhance the precision of these systems, this work categorizes them in two

stages: the estimation of the instantaneous axle weights applying weighing algorithms and

methods on the signals captured by WIM sensors; and the estimation of the Gross Vehicle

Weight (GVW), by utilizing different methods, also known as estimators, to calculate the true

axle load based on the instantaneous axle load measurements obtained from the sensors.

One of the major challenges in developing WIM systems is validating different tech-

niques and setups. This process involves expensive experimental tests that require modifying

system infrastructure (e.g., sensor distance), conducting tests with various trucks of different

models, and performing system calibrations. Therefore, simulation is a crucial tool in WIM

design, allowing for a preliminary assessment of the performance of various weighing tech-
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niques and approaches to system implementation. In this context, in this work we developed

a simulator to evaluate GVW estimators under different system configurations. Additionally,

experimental data were used to analyze different instantaneous axle load estimation algorithms.

1.2 Objectives

The present work proposes a performance evaluation of methods to estimate the

instantaneous axle and gross vehicle weights of vehicles in motion using simulated and experi-

mental data. To achieve this goal, the following objectives were defined:

1. Study and comprehend the advantages and limitations of the main weighing methods

applied in Weigh-In-Motion systems;

2. Implement a simulator to evaluate methods to estimate the Gross Vehicle Weight;

3. Explore Weigh-In-Motion system layouts through simulations, varying parameters such

as the number of sensors, sensor spacing, and vehicle parameters. This helps further

understanding of the layout impact in dynamic weighing measurement;

4. Implement methods to estimate the instantaneous axle load using real data collected from

an experimental site and evaluate their performances.

1.3 Structure

This work is structured as follows: In Chapter 2, an overview of WIM systems is

provided, covering aspects such as weighing sensors, the influence of road surface and weather

conditions on weight measurements, and techniques for system calibration. Chapter 3 intro-

duces the effect of dynamic loads on WIM systems, focusing on a review of weight estimation

techniques. These techniques are categorized into dynamic axle weight estimation and Gross

Vehicle Weight (GVW) estimation. Chapter 4 details the implementation and design of the

proposed methodologies, including both simulation and experimental analyses. In Chapter 5,

we present the results of these analyses, including simulation and experimental data. Chapter 6

presents the main conclusions and suggestions for future work. Appendix A includes additional

simulation results that complement the analysis presented in Chapter 5.
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2 WEIGH-IN-MOTION OVERVIEW

This chapter provides an overview of Weigh-In-Motion (WIM) systems, presenting

knowledge of their basic elements and concepts. Initially, WIM sensors are discussed, such

as load cells, bending plates, piezoelectric and fiber optic sensors. Then, the effects of road

surface quality and weather conditions on WIM systems are discussed. Lastly, this chapter ex-

amines different calibration methods, including the use of a pre-weighed vehicle and continuous

calibration methods, also known as auto-calibration.

The content of this chapter was adapted from the paper (Rocheti; Bacurau, 2024),

which was published as part of this research.

2.1 Sensors

The most fundamental hardware component of a WIM system is its sensors, which

are used to measure the vehicle’s load passing over the road. Although there are different types

of weight sensors for different applications, WIM systems require sensors with robust mechan-

ical characteristics (heavy vehicles axle’s load can reach up to 20 tons) and high immunity from

climate variations, as these sensors are installed directly into the road and exposed to all sorts

of weather conditions. The main sensors used for permanent WIM sites as a weighing platform

include load cells, bending plates, fiber optic sensors (FOS), and piezoelectric sensors (Janota

et al., 2016; Al-Qadi et al., 2016). Each type of sensor has its advantages and disadvantages

in the WIM applications, and these characteristics will be discussed below. Besides weighing

sensors, inductive loops are installed in the pavement at the beginning and end of each system.

These loops are used to initiate a weighing measurement and to detect its end. This work won’t

discuss inductive loops, as they are not a key part of WIM systems.

2.1.1 Load Cells

Load cells are devices that convert a mechanical force, such as the vehicle’s weight,

into an electrical quantity, such as voltage, current, or resistance. Typically, load cells use

strain gauge-type sensors; the most common configuration uses a pair of strain gauges placed

on opposite sides of a machined shear beam’s web. Connected in a Wheatstone bridge circuit,

the strain gauges convert resistance changes into voltage changes. These voltage changes are
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proportional to the strains experienced by the web, enabling the calculation of the applied load

(Al-Qadi et al., 2016; Zhang et al., 2007; Agape et al., 2019). The Wheatstone full-bridge

and half-bridge configuration allow for temperature variation compensation, which is highly

effective for WIM systems frequently exposed to various weather conditions (Tutak, 2014; Lee

et al., 1995).

Although not common, load cells can also use a hydraulic system to measure me-

chanical force. This type of load cell consists of a plate atop hydraulic cylinders changing its

pressure based on the load applied to the cell (Al-Qadi et al., 2016; Agape et al., 2019).

Load cell-type sensors are generally installed in the pavement; they are known for

being robust, reliable, and one of the most accurate sensors for weighing in motion applications

(Al-Qadi et al., 2016; Zhang et al., 2007; Agape et al., 2019). They are also very durable

and resilient systems, with an average lifetime durability of 12 years. However, considering its

installation and maintenance costs, load cells are one of the most expensive technologies for

WIM sensors (Zhang et al., 2007; Agape et al., 2019; Ryguła et al., 2021).

2.1.2 Bending Plates

Bending plate sensors consist of steel plates, called weigh pads, with strain gauges

mounted on the underside. The sensors are embedded in asphalt, with the flexible plate on top

and the strain gauges on the bottom (Al-Qadi et al., 2016; Zhang et al., 2007; Agape et al.,

2019).

These types of sensors have lower accuracy when compared to load cells (Agape et

al., 2019). They are not usually recommended for HS-WIM systems as they can be damaged

easily by high-speed heavy vehicles passing over them, reducing their accuracy and longevity.

Also, most bending plate sensors have wider weigh pads when compared to piezoelectric, fiber

optic sensors, and load cell sensors, meaning their inertia to respond to a force applied from a

high-speed vehicle will be greater (Agape et al., 2019).

2.1.3 Piezoelectric Sensors

Piezoelectric sensors are constructed from materials such as ceramics, polymers,

and quartz, which have an asymmetric crystal structure that generates an electric charge propor-

tional to the mechanical force applied on them (Kwon, 2007). This phenomenon is referred to

as the piezoelectric effect (Al-Qadi et al., 2016).
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Piezoceramic and piezopolymer sensors typically have small diameters and are

revested with flat brass or metal channels reinforced with fiberglass, similar to conventional

coaxial cables (Al-Qadi et al., 2016; Wang et al., 2009). However, these two types of piezo-

electric sensors are susceptible to temperature changes, and compensation is required during

weighing measurements (Gajda et al., 2015). Additionally, they have a significant degree of

heterogeneity sensitivity along their length, reducing their accuracy and making them primarily

suitable for axle detection and vehicle classification.

On the other hand, piezoelectric quartz technology is composed of materials in-

sensitive to temperature changes, resulting in higher accuracy in weight measurements (Kwon,

2007; Hallenbeck; Weinblatt, 2004). Although more expensive than other piezoelectric sen-

sors, quartz-based piezo sensors are a good option for in-motion vehicle weighing due to their

superior accuracy (Wang et al., 2009; Kwon, 2007; Gajda et al., 2015; Al-Qadi et al., 2016;

Hallenbeck; Weinblatt, 2004).

2.1.4 Fiber Optic Sensors

A fiber optic cable is a light conductor composed of a photoconductive material

coated with a reflective layer. This technology is widely used in various systems, including

medical devices, high-speed data transmission, and Weigh-In-Motion systems.

Fiber optic sensors (FOS) used on WIM systems typically operate using two main

principles: Bragg grating and fiber’s photo-elastic property (Batenko et al., 2011a). Fiber Bragg

grating sensors (FBG) are based on the principle of wavelength shifting, where a slight change

in the load applied to the sensor results in a corresponding change in the light wavelength

reflected from the sensor (Li et al., 2009).

Other types of FOS use the principle of fiber’s photo-elastic property. The variation

of optical properties of the sensor under a certain type of strain, such as changes in light signal

polarization, phase, or frequency, can be used to measure the load being applied to the sensor

(Zhang et al., 2015; Grakovski; Pilipovecs, 2017c). For example, the load applied to an FOS

can be measured using the phase shift between the vertical and horizontal polarization modes

of the fiber’s optical signal.

Fiber optic sensors are immune to EMI (Electromagnetic Interference) and, there-

fore, are a suitable option for WIM systems in noisy environments. Due to the absence of

metallic components, their long-term stability can provide a lifetime of 20-30 years of opera-
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tion. Despite these advantages, they are mainly used today for vehicle detection and counting

due to their dependence on temperature and the effect of the vehicle speed on its accuracy

(Zhang et al., 2015; Grakovski; Pilipovecs, 2017c; Batenko et al., 2011a; Agape et al., 2019).

Temperature compensation techniques, especially for FBG sensors, have been explored to ad-

dress this issue (Li et al., 2019; Xiong et al., 2019).

2.2 Road Surface

Road surface is another factor that significantly influences the accuracy of WIM

systems. Pavement irregularities and texture can directly impact load distribution across the

sensors, leading to inaccurate weight measurements. A smooth road surface, without the pres-

ence of cracks and potholes, is necessary for the efficient operation of the vehicle’s suspension

system, minimizing road noise and vibration (Huang, 1993). High-quality pavement plays a

crucial role in providing more accurate weight results (Gajda et al., 2015). Previous work has

highlighted the importance of having a flat and horizontal road segment at least 30 meters long

before the vehicle passes over the WIM sensors (Batenko et al., 2011a).

Currently, the most used surface types for WIM systems are concrete and bitumi-

nous (Gajda et al., 2015). In the aforementioned study, an evaluation of the road surface quality

for the installation of a WIM system was made. Measurements were conducted to determine

the suitability of the road surface, including road profiles obtained through a profilograph and

geodetic measurements. The unevenness and quality of the road surface were assessed based

on these measurements and compared to the standard defined by International Organization for

Standardization (1995). The installation site chosen was a bituminous surface selected after the

tests were carried out.

Additionally, the study by Ryguła et al. (2021) assessed the pavement quality of a

WIM site in Poland, following the recommendations shown in COST 323 (Jacob et al., 2002).

This specification defines pavement characteristics, such as pavement deflection, rut depth, and

longitudinal evenness to classify the WIM site into three categories: Excellent (I), Good (II), and

Acceptable (III). The authors of Ryguła et al. (2021) employed a Falling Weight Deflectometer

(FWD) to measure the pavement’s dynamic and static deflections.

Road unevenness increases the impact of dynamic loads on WIM systems, as it’s

detailed in Section 3.1, thereby reducing overall system accuracy. Considering all these factors

is crucial when selecting the appropriate installation location for WIM systems.
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2.3 Weather Conditions

Weather conditions can significantly impact on the accuracy and reliability of WIM

systems. Extreme temperatures, wind, rain, and snow can all cause errors in the measurement

of vehicle weight (Lu; Tolliver, 2023; Administration, 2018).

Temperature influences on WIM systems are directly related to the type of sensors

used. As noted in Section 2.1, some sensors are more sensitive to temperature variations than

others. For instance, piezoceramic and piezopolymer sensors have relatively high sensitivity

to temperature, while others, such as piezoelectric quartz, are less sensitive. Strain gauge-

type and fiber optic sensors can exhibit reduced sensitivity to temperature variations, but only

when subjected to appropriate compensation methods. Another factor to consider is the effect

of road and pavement temperature on WIM accuracy. Higher temperatures can cause thermal

expansion of the pavement and sensors, impacting the accuracy of WIM systems (Gajda et al.,

2013; Gajda; Burnos, 2016). Moreover, rain and snow can accumulate on sensors’ surface,

causing them to malfunction or providing inaccurate readings due to humidity exposure or low

temperature.

To overcome these temperature-related effects, a compensation method was pro-

posed to compensate for thermal effects on the sensors (Burnos, 2008). The proposed tem-

perature compensation method was tested in a WIM system equipped with piezoelectric sen-

sors. The results demonstrated a relative root-mean-square error of 0.0164 when comparing the

temperature-corrected data to the actual load. Nevertheless, the temperature correction demands

continuous monitoring of asphalt temperature, pre-calibration procedures, and long-term data

recording (Burnos, 2008).

Besides the effect of high humidity and low temperatures, rain and snow can also

affect the road surface condition. Wet or icy road conditions can cause the tires of the vehicles

to lose traction and slide, which can result in errors in the weight measurements taken by WIM

systems (Carlson; Vieira, 2021).

Wind forces can generate air currents that change the forces acting on the vehicle,

causing it to sway, lift or lean, affecting WIM sensors’ readings (Lu; Tolliver, 2023). High-sided

vehicles, such as trucks with empty containers or trailers, are particularly susceptible to the

influence of wind due to their larger surface area and higher vulnerability to crosswinds (Hucho;

Ahmed, 1998). The aerodynamic interactions between the wind and the vehicle can lead to

changes in the vertical load distribution and lateral stability (Balsom et al., 2006). Consequently,
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these wind-induced effects can introduce measurement errors in the readings obtained by WIM

systems, especially in regions or areas prone to high wind speeds or where wind conditions

frequently fluctuate.

2.4 System Calibration

System calibration is the process of adjusting the output of a measuring system

to match the known or expected input. Calibration is a critical step in ensuring the accuracy

and reliability of measurement systems, as it establishes a reference relationship between the

measured signal and the true value of the measurement. WIM sensors are installed outdoors,

making them susceptible to various weather conditions. Fluctuations in WIM system parame-

ters, including temperature changes and aging effects, generate inaccurate measurements that

can result in significant errors in data analysis and decision making. Therefore, calibration is a

important procedure for these systems.

Several calibration methods have been proposed for WIM systems employing static,

dynamic, and continuous calibration methods (Cole; Cebon, 1989; Burnos, 2008; Burnos et al.,

2007; Burnos; Gajda, 2020; Pratt et al., 2022; Gajda et al., 2021; Huhtala et al., 2000). Each of

these methods has its advantages and disadvantages, and the most effective method depends on

the specific requirements of the WIM system and the application.

One simple way to calibrate WIM systems is to apply a known mechanical force

on the weighing sensors and compare it with the force measured by the system. For example,

a static hydraulic calibrator can be used as demonstrated by Cole and Cebon (1989). While

these static methods provide an initial calibration analysis of the system, they are generally used

together with other dynamic calibration methods, providing a more accurate system adjustment.

The most common dynamic method used for WIM system calibration is using a

pre-weighed vehicle. The vehicle, weighted on a high-precision static scale, is driven over

the sensor for several runs, and the measurements of the dynamic weight are related to the

static weight using a simple linear regression or other mathematical models (Gajda et al., 2015;

Burnos et al., 2007; Cebon; Winkler, 1991). This process yields calibration coefficients that are

used to determine the static weight from the dynamic measurements. The study by Gajda et al.

(2021) evaluated four different estimators (algorithms) for estimating the static characteristic

coefficients based on measurement results of the pre-weighed vehicle. The obtained results

demonstrate the potential to enhance the accuracy of WIM systems through these algorithms,
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indicating the need for further research with these methods. On the other hand, methods based

on a pre-weighed vehicle necessitate multiple trucks repeatedly traversing the measurement site,

leading to significant logistical challenges and often requiring the closure of a road section for

regular traffic (Burnos, 2008).

Ongoing calibration procedures, also known as auto-calibration or continuous cal-

ibration, have been extensively studied for Weigh-In-Motion systems (Burnos, 2008; Burnos;

Gajda, 2020; Pratt et al., 2022). These methods involve continuous estimation of the calibration

coefficients, eliminating the need for repetitive passes of pre-weighed trucks. While some ap-

proaches may utilize pre-weighed vehicles initially for system calibration, ongoing calibration

eliminates the requirement for periodic calibration using test trucks. In the research by Burnos

(2008) and Burnos and Gajda (2020), the authors proposed an auto-calibration method for con-

tinuously estimating the calibration coefficient based on a known reference quantity. The axle

load of specific vehicle classes can be used as the reference quantity. For example, precise

static weighing of a large population revealed that the weight of the first axle of a two-axle

tractor with a three-axle semi-trailer has a relative standard deviation of approximately 7.3%

(Burnos, 2008). With these known references exhibiting small random variability, the loads

exerted by these vehicles serve as reference values for estimating the calibration coefficient.

Additionally, Pratt et al. (2022) presents a system that continuously calibrates WIM systems

using static scale data from downstream truck inspection stations. The system utilizes an auto-

mated closed-loop algorithm to match vehicles at both locations and uses the static weight scale

data as the calibration reference for WIM. The algorithm minimizes the error between WIM

and static Gross Vehicle Weight measurements based on vehicle class and speed.

Another innovative approach to WIM system calibration was introduced by the

WAVE Project (Huhtala et al., 2000). They have used an instrumented three-axle single-unit

truck equipped with strain gauges and accelerometers to measure bending and vertical accelera-

tion, allowing for the estimation of dynamic axle loads. The instantaneous dynamic axle load is

then compared to the WIM sensor reading. The challenge was identifying the relevant segment

of the dynamic load measurements to synchronize them with the WIM sensor measurements.

These are just a few examples of the calibration methods for WIM systems. It is

important to note that the effectiveness of each method depends on various factors, including the

type of WIM system (LS-WIM or HS-WIM), the accuracy requirements, the employed sensors,

and the operating conditions. Therefore, careful consideration should be given to selecting the
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most suitable calibration method for a particular system.
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3 WEIGH-IN-MOTION METHODS REVIEW

In-motion weighing involves two stages: (i) capturing samples of the dynamic tire

forces and estimating the instantaneous axle loads; and (ii) estimating the static gross weight

using the instantaneous loads obtained in the first stage. This chapter provides a brief analysis of

works related to both of these stages. It begins with an introduction to dynamic loads, offering

a fundamental understanding of load signals generated by moving vehicles. Then, it delves into

the first stage, which encompasses instantaneous axle weight estimation algorithms. Finally,

it explores the second stage, focusing on the estimation of Gross Vehicle Weight. The discus-

sion considers the impact of system layout and examines statistical and numerical methods to

estimate the vehicle weight.

The content of this chapter was adapted from the paper (Rocheti; Bacurau, 2024),

which was published as part of this research.

3.1 Dynamic Loads of Moving Vehicles

To accurately determine the static weight of a moving vehicle with maximum pre-

cision, the vehicle needs to exert all its vertical forces on perfectly round and dynamically

balanced rolling wheels, maintaining a constant speed on a smooth, level surface within vac-

uum. Under these ideal conditions, none of the vehicle components would experience vertical

acceleration (Lee; Ferguson, 1983; Mimbela et al., 2003). Such ideal circumstances never exist

in practical situations, which makes WIM challenging.

The overview presented in Chapter 2 has discussed several key factors that impact

the dynamic load of a moving vehicle, such as:

1. Road surface factors: longitudinal and transverse profile, cross slope and curvature;

2. Weather conditions: wind speed and direction, road surface and ambient temperature,

rain, ice and snow;

3. Vehicle factors: speed and acceleration, axle and vehicle body configuration, suspension

system, center of gravity (distribution of load inside the trunk), air pressure inside the

tires, and vehicle aerodynamic characteristics. These topics will be discussed in this

chapter.



28

The closer the actual conditions align with the ideal conditions, the more accurately

the vehicle’s weight can be estimated by measuring the vertical forces applied to the road surface

using load sensors.

Vehicle oscillation is classified into transverse and longitudinal oscillations (Figure

3.1). Transverse oscillations are usually compensated by measuring the entire axle weight, ei-

ther by summing left and right sensor readings or using a single sensor for the whole axle. How-

ever, dealing with longitudinal oscillations requires a more thorough examination and consid-

eration of multiple sensors measuring the dynamic weight (Grakovski et al., 2013; Grakovski;

Pilipovecs, 2017a).

Figure 3.1 – Vehicle longitudinal and transverse oscillations (Grakovski; Pilipovecs, 2017a).

3.1.1 Simulated Load Signal

Some pioneering studies have introduced the Equation (3.1) as a starting point for

representing the load signal of a vehicle traveling at a constant speed (Saburdo; Topolev, 1964;

Cebon, 1990; Cebon; Winkler, 1991). This equation has served as a theoretical foundation

in numerous studies conducted in recent years (Ono, 2003; Burnos et al., 2007; Gajda et al.,

2015):

P (t) = P0 +
M∑
k=1

Pk · sin(2πfkt+ ϕk). (3.1)

In the equation above, P0 represents the static load of the vehicle, M denotes the

number of dynamic harmonic components in the load signal, and Pk, fk, and ϕk represent the
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parameters of these dynamic components (amplitude, frequency, and phase angle, respectively).

The value of M in Equation (3.1) depends on the vehicle suspension models under considera-

tion. For the sake of simplicity, it is often set as M = 1 or M = 2, which correspond to the

effects of vertical balancing and wheel hopping of the vehicle, respectively (Gajda et al., 2015;

Burnos et al., 2007).

In order to gain a deeper understanding of the load signal described in Equation

(3.1), various dynamic vehicle models based on the mass-spring-damper system, which repre-

sents the vehicle suspension system, have been proposed (Mangeas et al., 2002; Cebon; Win-

kler, 1990; Oubrich et al., 2017; Oubrich et al., 2018). These models can be utilized to generate

simulations by applying their equations of motion and setting the relevant vehicle parameters

and constants. In addition to the vehicle equation of motion, simulations might also consider the

road surface profile and the vehicle speed. As proposed by Mangeas et al. (2002), the simplest

model is a one-degree-of-freedom (1DOF) spring-damper system that treats the suspension and

tire as a single block (Figure 3.2).

Figure 3.2 – Suspension/tire block model (Mangeas et al., 2002).

The study conducted by Cebon and Winkler (1990) employed two other models

to represent the vehicle dynamic system. The first model is the quarter-car model (Figure

3.3(a)), which is a 2DOF system. It accurately reproduces suspensions that generate a large

low-frequency wheel force spectral peak due to the motion of the sprung mass. The second

model is the walking-beam model (Figure 3.3(b)), which has 3DOF. It represents suspensions

that generate large dynamic wheel loads due to the motion of the unsprung mass, particularly

the lightly damped pitching of the walking-beam.

Furthermore, the longitudinal half-vehicle model of two axles was used by Oubrich

et al. (2017) and Oubrich et al. (2018). This model is similar to the walking-beam model, but it

has 4DOF. It considers body movements (rebound and pitch), axle (rebound), and the influence
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Figure 3.3 – Quarter-car model (a) and Walking-beam model (b) (Cebon; Winkler, 1990).

of gravitational forces (Figure 3.4).

Figure 3.4 – Half longitudinal vehicle model (Oubrich et al., 2017).

One of the most complete vehicle models was the non-linear two-dimensional ve-

hicle model proposed by Cole and Cebon (1992). It represents a truck with four axles, two on

the tractor and two on the trailer. This system includes non-linear leaf spring elements and has

11DOF. The sprung masses of the tractor and trailer were assumed to be rigid, and the influence

of the trailer suspension radius arms was also included in the model.

Figure 3.5 – Non-linear two-dimensional vehicle model with 11 degrees of freedom (Cole; Ce-
bon, 1992).
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It is important to note that the presented models are simplified and/or specific, and

do not provide high-fidelity representations of the dynamics of all vehicle types in real-world

scenarios (Cebon; Winkler, 1991). A significant challenge in these models lies in the vehicle

parameters used, as they are typically not provided by vehicle manufacturers, and obtaining

them experimentally is often impractical.

Several studies have conducted simulations using different vehicle models and sur-

face road profiles (Oubrich et al., 2017; Mangeas et al., 2002; Cebon; Winkler, 1991; Cebon;

Winkler, 1990; Oubrich et al., 2018). These simulations allow the observation of dynamic mass

variation across different road profiles (Figure 3.6). The waveforms observed in these studies

exhibit a sum of sinusoidal signals, consistent with the theoretical signal proposed in Equation

(3.1).

Figure 3.6 – Dynamic loads of the half longitudinal vehicle model traveling at 40 km/h (Oubrich
et al., 2017).

The study by Oubrich et al. (2017) employed the half-vehicle model of two axles

to simulate dynamic load waveforms for two different road profiles and three different vehicle

speeds per road profile. These simulations indicate that the dynamic loads experienced by the

vehicle are significantly influenced by the vehicle speed, even when the road profile unevenness

varies within the range of -1 cm to 1 cm. Based on this road profile, the conducted simulations

reveal that a vehicle speed of 100 km/h exhibits oscillations twice as high as a speed of 70 km/h

and six times higher than a speed of 40 km/h. In comparison to the static mass of the vehicle,

the dynamic load variations range from 0% to 30% of the static load modulus (Oubrich et al.,

2017).

Another interesting analysis is to observe the frequency spectrum of this simulated

signal. Research by Oubrich et al. (2017) and Cebon and Winkler (1991) has shown that the
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simulated signal exhibits two main frequency ranges: f1 and f2 (Figure 3.7). The frequency

range f1, typically around 1 to 5 Hz, corresponds to the dominant modes of the vehicle’s sprung

mass, including bounce and pitch movements. This frequency range is influenced by factors

such as the vehicle’s total mass, mass distribution, and suspension system characteristics. The

frequency range f2, approximately 8 to 15 Hz, is associated with the vehicle’s unsprung mass

parameters, primarily the tires and suspension components.

Figure 3.7 – Spectral density for the half longitudinal vehicle model traveling at 70 km/h,
adapted from (Oubrich et al., 2017).

Vehicle models are valuable tools for conducting preliminary studies at lower costs,

eliminating the need for field measurements. However, since models offer only approxima-

tions of real-world systems, implementing high-precision WIM systems requires experimental

measurements to ensure reliability and practical application.

3.1.2 Experimental Load Signal

To enhance the analysis of the dynamic load of a vehicle, field tests are conducted,

with a primary focus on understanding the dynamic force signals in real-world conditions

(Gajda et al., 2015; Huhtala et al., 2000; Cebon; Winkler, 1991; Ryguła et al., 2021). Mea-

suring the load signal of a moving vehicle is not a trivial task. The width of WIM sensors is

generally smaller than half a meter, which is insufficient to capture the load signal for a signifi-

cant duration, such as capturing the natural frequencies observed in simulation results (Oubrich

et al., 2017; Cebon; Winkler, 1991). Some studies have employed accelerometers to instrument

the moving vehicle’s wheels as it traverses the road. The sensor readings are then used to re-
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construct the load signal of the vehicle (Gajda et al., 2015; Huhtala et al., 2000). Figure 3.8

displays the load signal of the driving axle across three vehicle passes in a single WIM system.

Figure 3.8 – Dynamic load of the driving axle over one WIM system, three vehicle passes (Huh-
tala et al., 2000).

The frequency spectrum of the reconstructed signal obtained by Gajda et al. (2015)

is presented in Figure 3.9. The spectrum observed from the real load signal is similar to the

one observed in vehicle model simulations (Figure 3.7), exhibiting low-frequency components

in the range of 1 to 4 Hz (f1) and another peak at approximately 8 Hz (f2). Although the tests

conducted by Gajda et al. (2015) and Jacob (2001) focused on a specific type of heavy vehicle,

various studies suggest that these two main frequencies, f1 and f2, typically fall within the

ranges of 1 to 5 Hz and 8 to 15 Hz, respectively (Burnos et al., 2007; Wang et al., 2009; Jacob,

2001; Grakovski; Pilipovecs, 2018; Cole; Cebon, 1992).

Figure 3.9 – Frequency spectrum of the dynamic load signal from the instrumented vehicle
(Gajda et al., 2015).

The analysis of vehicle load signals obtained at different speeds demonstrates that

dynamic oscillations vary in amplitude as a function of the vehicle’s speed. As indicated by

the simulation results presented in Section 3.1.1, vehicle speed is expected to have a significant
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impact on load oscillation, and this impact has been demonstrated experimentally in the research

by Jacob (2001) and Gajda et al. (2015). Figures 3.10 and 3.11 illustrate this effect, with

variations in amplitude of up to 40% when compared to the static load (Jacob, 2001; Gajda et

al., 2015), exceeding those observed in simulations using vehicle models.

Figure 3.10 – Dynamic axle load of the steering axle at four speeds (Huhtala et al., 2000).

Figure 3.11 – Relative changes in the dynamic load of a single axle of the instrumented vehicle
at two speeds as a function of the distance traveled (Gajda et al., 2015).

It is important to note that WIM systems are typically installed on straight and level

roads to minimize the influence of dynamic load generated by unevenness and curved road

surfaces. However, the effect of vehicle speed on the dynamic load is beyond the control of

WIM system designers. When installing these systems on regular highways, which generally

have speed limits of at least 60 or 80 km/h for heavy vehicles, the accuracy of static weight

estimation is inevitably impacted by the vehicle speed.
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3.2 Axle Weight Estimation

Estimating the Gross Vehicle Weight (GVW) begins with the measurement of the

individual axle weights. However, direct vehicle instrumentation using accelerometers or load

cells is impractical for real-world applications where many vehicles must be weighed daily.

Thus, weighing sensors are utilized to sample the force exerted by the vehicle as it passes over

them.

Figure 3.12 – Sensors’ output when an empty truck passes it at 90 km/h (Grakovski et al., 2013).

The WIM sensors convert the applied load into an electrical signal proportional to

the force. This electrical signal is digitized and can be processed by a computer or other digital

device, usually involving analog-to-digital converters (ADCs) and analog and digital signal

processing techniques.

The digitized signal is then used to estimate a vehicle’s instantaneous axle weight

using algorithms. In the case of static scales, the read values are converted into static weight

using a formula provided by the sensor’s manufacturer, typically based on a linear curve. How-

ever, in Weigh-In-Motion (WIM) applications, the weight cannot be assumed as a constant

value throughout the sensor reading due to the dynamic components of moving vehicles (Ce-

bon; Winkler, 1991) and bandwidth of the sensors, as discussed in Sections 2.1 and 3.1, and to

the fact that the vehicle tire footprint is generally larger than the sensor width. Consequently,

the measured signal requires processing by an algorithm to estimate the instantaneous load of

the axle accurately.

It is important to mention two vehicle parameters that directly influence the WIM

signal: the vehicle speed and the tire footprint of the vehicle (Kwon, 2007). As discussed in

Section 3.1, the vehicle speed affects the vehicle’s oscillations and, from the sensor’s perspec-

tive, determines the number of signal samples obtained by the sensor. Since the sensor width

and the sampling rate of the analog-to-digital converter (ADC) component are typically con-
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stant, the number of samples obtained during a weighing operation is inversely proportional to

the vehicle speed. Lower speeds result in wider curves, while higher speeds produce narrower

curves (Kwon, 2007; Wang et al., 2009).

Figure 3.13 – WIM signal at different speeds (Kistler, 2004).

The vehicle tire footprint is another external factor that impacts the sensor’s reading.

The area of the tire footprint is determined by the tire width and the air pressure inside the tire.

The sensor width is generally smaller than the tire footprint, especially for heavy vehicles with

larger tires, which is the main focus of weight tracking on roads. Therefore, the peak of the

WIM signal does not represent the entire wheel load but rather only a portion of the total load

corresponding to the tire footprint in contact with the sensor (Figure 3.14). It is possible to

see in Figure 3.15 the signal measured from a wheel with 4,500 N and different tire pressures

(Kwon, 2007). It is worth noting that as the air pressure inside the tire decreases, the area of

the footprint increases while the peak of the signal decreases, as can be seen in Figure 3.15.

One crucial relationship between the measured signal and the tire footprint is that, although

signal peak varies, the area under it remains constant across different tire pressures for the same

vehicle (Kistler, 2004).

These effects must be considered by the weighing algorithms. While obtaining

the air pressure inside the tire is challenging in WIM systems, determining the vehicle speed

is relatively simple, especially in a multiple-sensor Weigh-In-Motion system (MS-WIM). By

measuring the time difference between the same axle passing over two different sensors and

knowing the distance between them, it is possible to calculate the approximate vehicle speed.

The challenge in evaluating these methods lies in determining the ground truth of

the instantaneous axle load. The impact of the dynamic load at the moment the sensors take

their measurements is unknown unless the vehicle is instrumented. This uncertainty reinforces

one of the reasons why most Weigh-In-Motion systems employ several load sensors and incor-
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Figure 3.14 – Waveform of WIM signal vs footprint lengths (Grakovski et al., 2013).

Figure 3.15 – Footprint lengths with different tire inflation pressure (Kistler, 2004).

porate some form of calibration procedure, typically involving the use of various vehicle types

traveling at different speeds.

The correct estimation of the axle static weight impacts calculating the Gross Ve-

hicle Weight (GVW); thus, this step is crucial for achieving an accurate and reliable WIM

system. Below, an exploration of various methods documented in the literature for estimating

axle weight based on the WIM signal is presented.
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3.2.1 Basic Method

The Basic Method for calculating the weight of an axle over a sensor involves mul-

tiplying the wheel’s contact area (tire footprint) on the sensor by the air pressure inside the tire

(Grakovski et al., 2014). In Equation (3.2), W represents the weight of an axle or half-axle

(depending on the system layout), Atire is the area of the wheel’s footprint, and Ptire is the air

pressure inside the tire, which is proportional to the axle weight according to Newton’s 3rd law:

W = Atire · Ptire. (3.2)

The values required in Equation (3.2) are typically not directly measured in WIM

systems. However, if the vehicle speed can be measured, as commonly implemented in MS-

WIM systems, it becomes possible to estimate the tire footprint area using the length of the

sensor output (usually, a voltage signal) and the vehicle speed. The tire width can be assumed

as a fixed value based on the vehicle type. The air pressure inside the tire can be considered

proportional to the peak amplitude of the WIM pulse (Figure 3.15) or even obtained from the

manufacturer’s recommendations for a given vehicle type (Batenko et al., 2011b). While more

sophisticated methods for estimating the parameters in Equation (3.2) are discussed in subse-

quent sections of this chapter, it is important to note that this fundamental method serves as the

foundation for other methods employed in practical systems.

3.2.2 Peak Voltage

The Peak Voltage Method involves extracting the maximum value from the WIM

signal. This peak value is then multiplied by a calibration coefficient (α), which is determined

through experimental measurements using a vehicle with a known weight. The resulting product

provides an estimation of the axle or half-axle weight (Kwon, 2007; Kistler, 2004):

W = α · Vmax. (3.3)

Although the Peak Voltage Method is relatively insensitive to the vehicle’s speed

(Figure 3.13), it is important to note that the signal peak may not directly correspond to the

actual wheel load. This discrepancy arises because the load sensor is typically only partially

covered by the tire footprint, which is also unknown. Moreover, the peak voltage value is influ-

enced by the air pressure inside the vehicle’s tire, as different pressure values can significantly
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Figure 3.16 – Output signal of a single axle highlighting the signal peak, adapted from (Kwon,
2007).

impact the amplitude of the WIM pulse (Figure 3.15). Accurately measuring the air pressure

inside the tire is often impractical in real WIM systems. Consequently, the precision of the Peak

Voltage Method may be compromised without precise measurement and compensation of this

parameter.

3.2.3 Area Under The Signal

This method involves integrating the signal measured by the sensor over the du-

ration of contact between the vehicle’s wheel and the sensor (Cebon; Winkler, 1991; Kwon,

2007; Kistler, 2004). The resulting area is then adjusted using the vehicle speed (S) and the

calibration coefficient (α), obtained during the calibration process:

W = α · S
∫

V (t)dt. (3.4)

Measuring the vehicle speed is crucial for the reliability of this method since the

speed directly affects the area of the WIM signal. As the vehicle’s speed increases, the signal

obtained from the sensor becomes narrower (Figure 3.13). In the calibration process, several

runs are conducted with a pre-weighed vehicle at different speeds to enhance the accuracy of

this method.

From a computational standpoint, the Area Under The Signal Method can be pro-

cessed in real-time execution since it basically involves summing the sensor samples. Therefore,

this algorithm is a convenient way to calculate the weight of the vehicle’s axle, and it is widely

employed by sensor manufacturers for WIM applications (Kistler, 2004).
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Figure 3.17 – Output signal of a single axle highlighting the signal area, adapted from (Kwon,
2007).

3.2.4 Re-sampling of Area

The Re-sampling of Area algorithm is proposed by Kwon (2007) as a method to

enhance the accuracy of the Area Under The Signal technique. While the practical implemen-

tation of the Area Under The Signal method involves adding the digital samples of the load

sensor and multiplying them by the sampling period, this approach can be fully accurate only if

the sensor width is nearly zero, which is not the case in real-world applications. Consequently,

the area under the signal curve does not accurately represent the wheel force applied to a single

punctual region on the ground but rather a convolution of the wheel footprint load with respect

to the sensor width.

To address the effect of the non-zero sensor width, Kwon (2007) proposes sampling

the signal with a new period TL, referred to as the re-sampling period, as shown in Equation

(3.5):

TL = L/S, (3.5)

where L represents the sensor width, and S is the vehicle speed. It is worth noting that, although

most measurement systems operate with fixed sampling rates, the re-sampling period calculated

by Equation (3.5) can be achieved through downsampling techniques, such as discarding sam-

ples.

The algorithm suggests utilizing sensor samples with the period TL to prevent sam-

ple overlap. For instance, if a vehicle travels at 10 m/s and the load sensor has a width of 0.05

m, samples are obtained every 5 ms. This ensures that the area of the tire footprint over the
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sensor in one sample is outside in the next sample, effectively avoiding sample overlap.

Within the period TL, sample points are determined, and the load is divided into N

slices, each with a width equal to the sensor width. The algorithm treats the weight of each slice

independently and then combines them to calculate the total weight. The measurements for

each slice (Vj) are summed and adjusted by the vehicle speed (S) and the calibration coefficient

(α), as shown in Equation (3.6):

W = α · S
N∑
j=1

Vj. (3.6)

Figure 3.18 – Re-sampling of area signal example with N = 13 (Kwon, 2007).

The study by Kwon (2007) conducted numerical tests and simulations to evaluate

the Re-sampling of Area Method. However, it should be noted that the study does not include

the results of practical testing using real signals. Although the study indicates an improvement

in accuracy compared to the area integral method, there is a need for further evaluation of this

method.

3.2.5 Tire Footprint Reconstruction

The Tire Footprint Reconstruction Method is based on Equation (3.2). However, a

new technique for estimating the area of the tire footprint is presented in the research Grakovski

et al. (2014) and Grakovski et al. (2015). The authors employed fiber optic sensor (FOS) signals

from a real WIM system to analyze the forces between the vehicle wheel and the road (or the

sensor), decomposing the signal into its odd and even components.

This approach is based on the fact that the tire-road system can be modeled by con-

sidering the interaction between two forces: the friction forces and the vertical weight of the

wheel (Figure 3.19). Thus, the waveform captured by weight sensors can be separated into its
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Figure 3.19 – Vertical and tangent components of forces in wheel’s dynamics (Grakovski;
Pilipovecs, 2017a).

vertical component, which corresponds to the weight of the static wheel (this component should

be symmetrical according to the wheel geometry), and its tangential component, which repre-

sents the friction force and depends on factors such as pavement and wheel material properties,

wheel speed, and weight (Grakovski; Pilipovecs, 2017a; Grakovski et al., 2014) (Figure 3.20).

The tangential component should have an asymmetric waveform.

The decomposition of the non-symmetric signal (Figure 3.20(a)) into its symmetric

and asymmetric components can be achieved through polynomial approximation using the least

squares method or by applying the standard even-odd decomposition of the signal with a finite

window (Grakovski et al., 2014).

The proposed technique for reconstructing the wheel footprint involves estimating

the wheel’s footprint using the footprint length, calculated by multiplying the pulse length by

the wheel speed (i.e., vehicle speed) and an elliptical approximation based on the maximum

and minimum points of the asymmetric component of the signal (Figure 3.21). This method

assumes that the vehicle moves uniformly; thus, the friction force is as minimal as possible

(rolling friction without sliding friction). The tire pressure used in Equation (3.2) is obtained

using the Peak Voltage Method, and in combination with the footprint approximation, the axle

or half-axle weight is calculated using the Basic Method (Grakovski et al., 2014).

In Grakovski and Pilipovecs (2016), a different sensor layout was used to further

enhance the estimation of the wheel footprint further, as illustrated in Figure 3.22(a). This

layout involved installing a first group of sensors transversally on the road and a second group

of sensors diagonally on the road. After appropriate calibration, this layout was capable of
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Figure 3.20 – (a) FOS output signal, (b) Approximated vertical weight component (symmetric),
and (c) Approximated asymmetric component depending on horizontal velocity
and friction (Grakovski et al., 2014).

estimating the dynamic tire width of a vehicle by utilizing the difference in pulse width between

transversal and diagonal sensors (Figure 3.22(c)).

The study presented by Grakovski and Pilipovecs (2017b) combined this layout

with the footprint estimation technique described by Grakovski et al. (2014) and Grakovski

et al. (2015) to calculate the half-axle weight of a vehicle using the dynamic area of the tire

footprint and the tire pressure waveform, as presented in Equation (3.7). This weight calculation

method is a hybrid approach incorporating elements of the Basic Method and the Area Under

The Signal Method.

W =

∫ lB

lF

w(l)dl, (3.7)

where w(l) = Atire ·Ptire is the weight distribution (Figure 3.23(b)) along the tire footprint length
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Figure 3.21 – (a) Approximated asymmetric component, and (b) approximated vertical weight
component (symmetric) and tire footprint reconstruction in case of minimal fric-
tion condition (Grakovski et al., 2014).

Figure 3.22 – (a) System layout, (b) Fibre optic sensors position against the vehicle wheel, and
(c) Normalized and filtered signals of straight (FOS A) and diagonal (FOS 1d)
sensors (Grakovski; Pilipovecs, 2016).
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Figure 3.23 – (a) Reconstruction of air pressure distribution after linearization of FOS signal
and dynamic tire width correction, and (b) estimated weight distribution along
the tire footprint length(Grakovski; Pilipovecs, 2017b) .

(l = S ·t, where S is the vehicle speed). It should be noted that tire footprint estimation methods

also involve a calibration process using a reference vehicle with known parameters (speed, tire

width, etc.) (Grakovski; Pilipovecs, 2017b; Grakovski et al., 2013; Grakovski et al., 2014).

From a computational perspective, the algorithm for estimating the tire footprint is

considerably more demanding than the previously mentioned methods due to the need for com-

putationally intensive operations such as multiplication, division, and potentially even square

root operations, depending on the implemented least squares algorithm for signal decomposi-

tion. This may be a challenge for WIM systems that must deliver weighing measurements in

real-time, such as direct enforcement systems.

3.3 Gross Weight Estimation

The accurate determination of a Gross Vehicle Weight (GVW) poses a challenge due

to various factors, including dynamic loads caused by the suspension system, vehicle speed, and

road surface unevenness, as discussed in Section 3.1. It is evident from the load signals shown in

Figure 3.8 that the instantaneous axle weight estimation may not represent the true static weight

of the axle, depending on the time the load signal is sampled. The methods and algorithms for

axle weight estimation presented in the previous section are unable to solve this problem, as the
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WIM sensors are not wide enough to capture the vehicle’s dynamic oscillation.

This section aims to explore techniques for mitigating the impact of dynamic com-

ponents in the vehicle load signal by optimizing the number of sensors employed and determin-

ing the optimal sensor distance in the WIM system layout. Furthermore, the section explores

statistical and AI-based data fusion methods to estimate the static load of a vehicle (GVW)

based on the dynamic axle load data obtained through the approaches presented in Section 3.2.

These estimation methods are commonly referred to as "estimators" (Gajda et al., 2020).

3.3.1 System Layout Optimization

This phase involves determining the number of sensors to be used in the WIM sys-

tem and their spacing based on vehicle parameters, such as its speed. The influence of these

two variables on system accuracy has been discussed in several studies (Cebon; Winkler, 1991;

Burnos et al., 2007; Gajda et al., 2015), and their proper definition can significantly enhance

the accuracy of GVW estimation by reducing the impact of vehicle oscillations in the system’s

measurements.

To begin the analysis of WIM sensor layout, consider that the static axle load is

computed as the simple average of axle load samples from successive sensors, while the Gross

Vehicle Weight is the sum of these axle loads. Theoretically, if the number of sensors tends

to be infinite, the average axle load would converge to the true static value, eliminating the

impact of dynamic oscillations. However, optimizing the number of sensors used in WIM

applications is necessary for economic reasons and real-time processing constraints (especially

in direct enforcement systems). Additionally, optimizing the spacing between sensors is crucial

as it enables sampling the moving vehicle load signal at different intervals, leading to a more

reliable signal representation.

The relationship between the number of sensors and their spacing is impacted by

vehicle speed. Vehicle speed influences the amplitude of the oscillations, as discussed in Section

3.1. Understanding this effect is essential to ensure system accuracy across various vehicles

(frequencies) and speeds (Cebon; Winkler, 1991).

In the work presented by Cebon and Winkler (1991), simulations were conducted

using the quarter-car model to evaluate different sensor spacings. The simulations considered a

road profile characterized as a good road surface and vehicle speeds of 60 km/h and 100 km/h.

Based on the results and mathematical analysis of the error coefficient of variation (ECOV), the
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authors proposed the following equation to find the best sensor spacing:

∆D1 =
2(N − 1)V

fN2
, (3.8)

where V represents the average traffic speed in meters per second, N is the number of sensors,

and f is the frequency in Hz of the dominant spectral component. Equation (3.8) focuses on

the first frequency range of the load signal spectrum (Figure 3.9), with a mean value typically

around 2.5 - 3 Hz.

Moreover, the study conducted additional simulations using Equation (3.8) with

different speeds and different numbers of sensors. The findings indicate that increasing the

number of sensors allows the system to maintain accuracy over a broader speed range. The

system’s accuracy likely decreases as the vehicle speed deviates from the average value V .

Based on numerical and statistical assumptions, a new equation to calculate sensor

spacing in WIM systems was proposed by Jacob (2001). Equation (3.9) considers the frequency

of the load signal as two mean values in the spectrum (f1 and f2), consistent with the results

obtained from simulations and experimental tests discussed in Section 3.1.

∆D2 =
V

2N

(
1

f1
+

N − 1

f2

)
, (3.9)

where V represents the average vehicle speed, N is the number of sensors, and f1 and f2 are

the mean frequencies of the dynamic components of the load signal. The author Jacob (2001)

highlights the significance of the ratio f2/f1. A system designed with a low f2/f1 ratio will

require fewer sensors, making it more cost-effective compared to systems designed for higher

f2/f1 ratios. However, the specific value of this ratio depends on the characteristics of the

vehicles using the road, including their suspension and tire types, as well as the weights of their

axles and bodies.

In the work presented by Gajda et al. (2015), the author employed the sensor spac-

ing distance described by Equation (3.9) during the system design stage. Since different vehicle

speeds generate different ideal sensor spacing according to Equation (3.9), one approach to ad-

dress this variability is to estimate the ideal sensor spacing for maximum and minimum speeds

and then interpolate a distance based on these assumptions (Gajda et al., 2015).

Although Equation (3.9) considers both frequency ranges presented in the load sig-

nal spectrum (Figure 3.9), further simulations using this equation can be conducted to evaluate

its performance, similar to Equation (3.8). Exploring different sensor distances in MS-WIM
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systems poses a challenge regarding experimental tests. Conducting such tests in real WIM

sites is not feasible, as the sensors are generally installed in the pavement and cannot be easily

moved.

3.3.2 Estimators

The methods discussed in Section 3.2 enable the WIM system to estimate a vehicle’s

instantaneous (dynamic) axle loads, depending on the number of sensors employed. When a

vehicle with Na axles passes over an MS-WIM system with N sensors, it generates Na · N

instantaneous weight results. These instantaneous axle load values are then used to estimate the

corresponding static axle load using data fusion based on statistical or AI-based methods and

algorithms. These estimation techniques, also known as Estimators, are employed to determine

the total static weight of the vehicle (GVW), reducing random variability in the weighing results

(Stergioulas et al., 2000; Gajda et al., 2020).

Estimators in MS-WIM systems can be applied in two distinct ways. Firstly, they

can utilize the instantaneous load of individual axles measured by each sensor and combine

these values into the static load of that axle. The GVW is then obtained by summing all static

axle loads. Alternatively, estimators can use the sum of loads from all axles measured by each

sensor and combine these sums results to estimate the GVW (Gajda et al., 2020).

3.3.2.1 Mean Value

The simplest approach to minimize random fluctuations in any data is to calculate

the average of its samples (Stergioulas et al., 2000; Gajda et al., 2020). This method has been

widely utilized in various WIM applications (Zhang et al., 2007; Giacinto et al., 2021; Cebon;

Winkler, 1991; Ryguła et al., 2021). The mean value, obtained by taking a simple average of

the samples, is commonly utilized as:

Nmean =
1

N

N∑
i=1

yi. (3.10)

In Equation (3.10), Nmean represents the estimated value, which can be the estimated

static load of a specific axle or the Gross Vehicle Weight (GVW), N represents the number of

load sensors, and yi represents the result of weighing a selected axle from the i-th sensor or the

sum of all axle weighings from this sensor, depending on the chosen solution.
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One interesting variation of this method is demonstrated by Gajda et al. (2020).

Due to variations in technical specifications, installation processes, and sensor wear, successive

sensors may exhibit discrepancies in their uncertainty levels. This uncertainty is quantified

using the standard deviation, calculated from a dataset of measurements for the same axle under

consistent conditions. The authors of Gajda et al. (2020) found that, after operating an MS-WIM

system for two to three years, the standard deviation for the most and least reliable polymer

sensors could differ significantly, often by a factor of two or three. The analysis examined the

standard deviation of the measurement results using an exemplary MS-WIM system equipped

with 16 piezoelectric load sensors. During experiments, three vehicles with known mass and

static load on each axle repeatedly passed through the WIM station. The standard deviation for

each load sensor was expressed relative to the mean value of the weighing results for each axle.

Averaging across all test runs revealed significant divergence in the measurement uncertainty of

sensors indicated by numbers 3 and 4 (Figure 3.24(a)).

Figure 3.24 – (a) 1 — Standard deviation arbitrarily assumed for successive load sensors, and
(b) 2 — averaging in the order in which the sensors are installed in the pavement,
3 — averaging in the order based on the increasing uncertainty of measurement
for successive sensors, 4 – measurement uncertainty of all sensors is uniform
(σ = 0.1) (Gajda et al., 2020).

Considering that the measurement uncertainty is not the same for all sensors, one

can calculate the result from Equation (3.10) using only the most precise sensors, i.e., sensors

with the lowest uncertainty of measurement (curve 3 in Figure 3.24(b)). By considering only

nine of the most precise sensors, the authors of Gajda et al. (2020) observed a slightly lower

standard deviation than when using all 16 sensors (curve 2 in Figure 3.24(b)). Although this

indicates a reduction in measurement uncertainty, monitoring individual sensor performance

generates additional technical effort (Gajda et al., 2020).
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The subsequent section will present a comparative analysis of the Mean Value Es-

timator and the Maximum Likelihood Estimator (MLE) based on works found in the literature.

This analysis is founded on simulations and field tests conducted at WIM sites.

3.3.2.2 Maximum Likelihood Estimator

The Maximum Likelihood Estimator (MLE) has been explored in several studies

(Gajda et al., 2020; Stergioulas et al., 2000; Burnos et al., 2007; Jacob, 2001). This tech-

nique combines measurement data with expert knowledge gained from experience (Gajda et

al., 2020). In an MS-WIM system, the MLE algorithm leverages statistical assumptions and

prior information, including the standard deviation of individual sensor measurements, to for-

mulate the likelihood function (Burnos et al., 2007; Jacob, 2001; Gajda et al., 2020). Given

the sought value, this function quantifies the probability of obtaining measurement results that

align with the model. The key concept of a Maximum Likelihood Estimator involves searching

for the sought value at which the likelihood function reaches its maximum value (Gajda et al.,

2020).

Assuming the statistical independence of measurement results from multiple sen-

sors, the following equation can be formulated:

yi = Nc + εi, (3.11)

where yi represents the result of weighing a selected axle from the i-th sensor or the sum of all

axle weighings from this sensor, Nc represents the sought value, which depends on the solution

adopted for yi, and εi represents the random additive component, i = 1, 2, . . .N (the number of

load sensors).

Practical application of the maximum likelihood algorithm requires knowledge of

the probability distribution of εi. Considering a normal distribution of this random component,

the following likelihood function is obtained (Gajda et al., 2020):

p(y1, y2, ...yN/Nc) =
N∏
i=1

(
1√
2πσi

e
− (yi−Nc)

2

2σ2
i

)
=

(
1√
2πσi

)N

e
−

∑N
i=1

(yi−Nc)
2

2σ2
i . (3.12)

The likelihood function is maximized when the sought value is given by Equation

(3.13):
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NMLE =

∑N
i=1

yi
σ2
i∑N

i=1
1
σ2
i

, (3.13)

where σi indicates the standard deviation of εi. When the measurement uncertainty is uniform

for all load sensors, Equation (3.13) simplifies to the mean value of the results obtained from

individual sensors. However, when the uncertainty varies among load sensors, the measure-

ment results from each sensor are given different weights based on their respective uncertainties

(Gajda et al., 2020). It should be noted that the likelihood function described by Equation (3.12)

can vary depending on the statistical assumptions and prior information used.

Numerical experiments conducted by Stergioulas et al. (2000) and Jacob (2001)

compared the Maximum Likelihood Estimator with the Mean Value Estimator using different

vehicle models. Simulations were performed with a 1DOF spring-damper model, a quarter-car

model (2DOF), and a walking-beam vehicle model (3DOF), varying the number and spacing of

sensors. The results showed that the MLE method is not significantly affected by the resonant

frequency of the vehicle model or speed variations over a wide range of sensor spacings in both

noiseless and noisy cases. However, the relative benefits of MLE are diminished in the presence

of higher noise levels, as the performance of both the mean and MLE methods becomes similar.

Another study evaluated the performance of the MLE using an MS-WIM system equipped

with piezoelectric strip sensors (Burnos et al., 2007). A pre-weighed vehicle with a constant

GVW underwent 21 passes at different speeds. The Maximum Likelihood Estimator’s results

were compared with those of the Mean Value Estimator to assess the WIM accuracy. The

two methods yielded similar results, with the MLE demonstrating slightly better performance

(Figure 3.25).

In addition, another comparative analysis was conducted by Gajda et al. (2020) us-

ing the Mean Value Estimator and the MLE while considering different numbers of sensors.

Three pre-weighed vehicles completed a total of 147 runs at the WIM site. The authors con-

cluded that the MLE marginally outperforms the Mean Value Estimator when the number of

sensors exceeds 10.

While the MLE method effectively reduces random variability and improves accu-

racy, it is important to acknowledge its limitations. As WIM systems typically employ a limited

number of sensors, achieving the asymptotic properties of the MLE estimator may be challeng-

ing (Burnos et al., 2007; Gajda et al., 2020). However, evidence suggests that the MLE method

remains justified and accurate even when applied to systems equipped with a moderate number
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Figure 3.25 – Reliability characteristic of the WIM system. These characteristics correspond to
different algorithms of gross weigh estimation: mean value of the measurement
results of separate sensors and Maximum Likelihood Estimator (Burnos et al.,
2007).

of sensors, such as 8-10 load sensors (Gajda et al., 2020; Jacob, 2001).

Moreover, the MLE method’s dependence on the knowledge of each sensor’s uncer-

tainty (standard deviation) poses another practical limitation. This information can be acquired

by gathering data from individual sensors through multiple passes of a pre-weighed vehicle.

Data from previous periodic calibrations can further improve the calculation of the uncertainty

of individual sensors (Gajda et al., 2020).

3.3.2.3 Signal Reconstruction

Signal reconstruction techniques typically involve reconstructing a signal from dis-

crete samples obtained from the original signal. They have been widely explored in applica-

tions such as image reconstruction, signal processing, and AI algorithms (Oyamada et al., 2018;

Haupt; Nowak, 2006; Jonscher et al., 2014; Nagahara, 2015). These methods have also been

applied to various types of measurement systems that depend on sensor readings (Jonscher et

al., 2014; Yang et al., 2023b; Yang et al., 2023a).

In the context of Weigh-In-Motion systems, signal reconstruction involves recon-

structing the original load signal from individual weight samples obtained from load sensors

(Oubrich et al., 2018). The reconstructed signal can then be used to estimate the static load of

the vehicle, e.g. by calculating the average of its samples.

Common techniques used for signal reconstruction, particularly when dealing with

signals of limited bandwidth, include the Inverse Fourier Transform (IFT), the Adaptive weights
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Conjugate gradient Toeplitz (ACT), and Lagrange Polynomial Interpolation (Oubrich et al.,

2018). The IFT method requires the sampling stage to adhere to the Nyquist-Shannon theorem,

which can be difficult to achieve across a broad speed range with a single system layout. The

ACT algorithm, although accurate, demands the estimation of the signal bandwidth. Overes-

timating this parameter may lead to high-frequency noise in the reconstructed signal. In this

context, the study by Oubrich et al. (2018) proposed using interpolating methods, which often

do not require prior information about the signal and can be applied to irregularly sampled time

series. Specifically, they employed Lagrange Polynomial Interpolation, adding the Tchebyshev

conditions, a modification expected to mitigate extreme errors in signal reconstruction.

This study conducted simulation tests using the half longitudinal vehicle model

and 10 load sensors. The evaluation criterion for signal reconstruction quality was the relative

error between the original and reconstructed signals. The Lagrange Polynomial Interpolation

technique exhibited a relative error of 2% at low speeds (20 km/h) and 0.54% at high speeds

(100 km/h), demonstrating robustness across a broad range of vehicle speeds.

(a) Vehicle speed = 20 km/h. (b) Vehicle speed = 100 km/h.

Figure 3.26 – Axle load reconstructed signals at different speeds (Oubrich et al., 2018).

The authors Oubrich et al. (2018) also point out that the Lagrange Polynomial In-

terpolation may not be an appropriate algorithm to apply when the polynomial approximation

degree is higher than three, as the Runge’s phenomenon occurs, resulting in oscillations at the

edges of the interpolation interval.

Signal reconstruction and interpolation techniques have yet to be extensively ex-

plored in WIM systems, particularly for estimating vehicle weight. Further research is nec-

essary to evaluate the advantages and limitations of various signal reconstruction methods in

WIM systems, focusing on their accuracy and reliability across different scenarios.
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3.3.2.4 Neural Networks

Methods based on neural networks (NN) have emerged as a powerful approach

for data fusion in non-linear systems, including MS-WIM systems, demonstrating significant

advancements in accuracy and performance. Several studies have investigated the application

of neural networks in this context (Mangeas et al., 2002; Jia et al., 2019; Lin et al., 2017; Lin

et al., 2014; Lin et al., 2017). Neural networks use interconnected layers of nodes, known as

neurons, to process input data and generate predictions for individual axle weights or the GVW.

By training on large datasets and optimizing their internal weights, neural networks can capture

complex patterns and relationships between sensor measurements and true values, resulting in

more accurate estimations (Dornfeld; DeVries, 1990; Maxwell et al., 2021).

The fusion of multiple WIM sensors using neural networks, as explored by Mangeas

et al. (2002) and Jia et al. (2019), improves the estimation of axle weights, particularly in non-

linear modeling scenarios. The method presented in Mangeas et al. (2002) consists of learning

how to estimate efficiently static weight, axle by axle, using a Feedforward Neural Network

(FNN) with simulated data from a simple suspension model (1DOF). This approach is shown

to be more accurate than traditional linear regression methods (Ono, 2003; Izadmehr; Lee,

1987) commonly used for sensor fusion. In the study Jia et al. (2019), the authors designed a

Backpropagation Neural Network (BPNN) for signal classification and prediction, improving

accuracy by identifying ideal samples acquired by load sensors closest to the tire-pavement

contact area. These selected samples were then used to estimate the GVW using another BPNN.

Experimental results using real road traffic data show that 96.9% of the analyzed samples had a

relative error of less than 5% (Jia et al., 2019).

Furthermore, the studies of Lin et al. (2014) and Lin et al. (2017) have explored

Neural Networks in the GVW estimation. The research by Lin et al. (2014) utilizes Prior

Knowledge and Neural Network Ensembles (PKNNEs) in neural network-based truck weight

estimation. Simulation experiments showed that incorporating prior knowledge into neural net-

works improved their ability to generalize and compensate for weighing errors using different

training sets. When comparing PKNNEs with SPKNNs (Supervised Prior Knowledge Neural

Networks), PKNNEs outperformed SPKNNs in this particular case. In the research by Lin et al.

(2017), a neural network was optimized based on input-vector correlation and prior knowledge

of the truck scale. This approach improves the neural network’s generalization performance,

mainly when training samples are limited.
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While neural network-based methods offer promising results for Weigh-In-Motion

estimation, they come with certain limitations. As mentioned by Jia et al. (2019), these meth-

ods’ accuracy relies heavily on training data. This implies that the training dataset’s quality and

the number of samples are critical factors in achieving accurate estimations. The study of Lin

et al. (2017) proposed a method to improve the NN’s generalization ability in the case of a lack

of samples. Moreover, it is crucial to maintain optimal performance to regularly retrain these

network models with new data to adapt to changes in the system and environment.

Another challenge lies in the regulatory approval of systems employing neural net-

work methods in different countries. Regulatory agencies require thorough validation and test-

ing procedures to ensure system reliability and consistency. Given the variations in results based

on different training datasets, obtaining regulatory approval for these methods can be complex

and, in some instances, unachievable due to jurisdictional constraints.

3.4 Considerations

In this chapter, we provided an in-depth review of key aspects related to weight

estimation methods in Weigh-In-Motion systems, including dynamic loads, instantaneous axle

load estimation, and Gross Vehicle Weight estimation.

The exploration of dynamic loads involved an examination of theoretical load sig-

nals, vehicle model simulations, and experimental data. This analysis provides valuable insights

into the complexities involved in dynamic estimating Gross Vehicle Weight. The precision of

WIM systems is directly impacted by dynamic loads, potentially resulting in inaccurate weight

estimations. Factors such as vehicle mechanical characteristics, road surface conditions, and

vehicle speed are the primary sources of impact in dynamic loads.

Moreover, this chapter presented various methods and algorithms for axle weight

estimation found in the literature. The examined methods and algorithms each possess their

own set of advantages and disadvantages, depending on factors such as vehicle speed compen-

sation, tire footprint estimation, the necessity of employing calibration procedures, and required

computational processing power. Some techniques, such as the Peak Voltage Method and the

Area Under The Signal Method, offer practical implementation due to their relative mathemat-

ical simplicity. However, the Peak Voltage Method is susceptible to variations in air pressure

within the vehicle tire, which may be challenging to measure in practical situations. On the

other hand, the Area Under The Signal Method is influenced by vehicle speed, a parameter
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easy to measure in MS-WIM systems. Techniques employing Tire Footprint Reconstruction

demonstrate potential for improving axle load estimation. While they may involve additional

computational steps, these operations are generally manageable for modern computing systems,

given their high processing capabilities.

Instantaneous axle weight measurements provide a means to estimate the Gross Ve-

hicle Weight (GVW). This work explored some estimation methods, also known as estimators.

The simplest and most used method is the mean value calculation. Another approach to es-

timate the GVW is based on the Maximum Likelihood Estimator. This approach has shown

minor improvements over the Mean Value Estimator when the number of sensors employed in

the system is above 10. In addition to statistical approaches, neural networks and signal re-

construction techniques have been mentioned, although they are not yet widely implemented

in WIM systems. Adjusting parameters such as the number of sensors and sensor spacing for

a given vehicle speed range aims to mitigate the influence of dynamic loads, as sensor mea-

surements may struggle to estimate the static vehicle weight when the oscillating load is at its

maximum and minimum values.

There is a research gap in comparing various instantaneous axle weight estimation

methods under similar conditions. Some of these methods remain untested with real-world data,

highlighting the need for validation to ensure their efficacy in practical applications. Several

studies are conducted exclusively through simulations due to the complexity and costs associ-

ated with experimental tests. Conducting simulations under diverse conditions, including vary-

ing vehicle speeds and sensor configurations, can enhance the understanding of the relationship

between the number of sensors, their spacing, and the system’s accuracy. Exploring different

GVW estimators using simulated data offers an opportunity to evaluate their performance and

robustness across different scenarios, which may be otherwise impracticable in experimental

sites. However, simulations do not eliminate the need for experimental tests and validation to

ensure the reliability of these systems in direct enforcement applications.
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4 METHODOLOGY

This work centers on vehicle Weight-in-Motion estimation techniques, organizing

them into two stages: firstly, the estimation of instantaneous axle weights using algorithms

applied to signals obtained by force sensors; and secondly, the estimation of the Gross Vehicle

Weight (GVW) through techniques commonly known as estimators, which calculate the static

load based on previously obtained measurements of instantaneous axle loads. This chapter

presents the methodological procedures for investigating these techniques using both simulated

and experimental data.

The simulations were used to analyze system layout (number of sensors and sensor

spacing) while varying vehicle parameters, such as vehicle speed and axle spacing. Subse-

quently, simulations were developed to evaluate the estimators detailed in Section 3.3.2, using

the most appropriate system layouts previously analyzed, while also varying vehicle parame-

ters. Then, the experimental study conducted at a real WIM site is described, detailing system

layout, vehicle characteristics, number of runs, and other relevant factors. This study used field

data to assess instantaneous axle load estimation techniques detailed in Section 3.2.

4.1 Simulation

Simulations were conducted in MATLAB to evaluate system performance, specifi-

cally the accuracy and precision of static axle or vehicle weight (GVW) estimation. Figure 4.1

shows a diagram describing the simulation design. This simulation allowed us to analyze the

influence of various vehicle and system parameters:

1. Vehicle parameters: frequency and amplitude of vertical oscillations, speed, number of

axles, and axle spacing;

2. System parameters: number of sensors and sensor spacing.

This work employed Equation (3.1) with M = 2 to generate the dynamic load

signal for vehicle simulation. Figures 3.8, 3.10, and 3.11 present the dynamic load of a real

vehicle, resembling a sum of sine waves with two main low-frequency oscillations, as expected

given the frequency spectra shown in Figures 3.7 and 3.9. This indicates that Equation (3.1)

with M = 2 is a reasonable approximation of the dynamic load signal (Ono, 2003; Burnos et
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Figure 4.1 – Simulation process using proposed methodologies.

al., 2007; Gajda et al., 2015). While vehicle models from Section 3.1.1 offer a more complete

method for generating dynamic load signals, their application can be impractical due to the

difficulty in obtaining vehicle parameters, especially when analyzing a variety of vehicles.

The load signal with M = 2 is a sinusoidal wave with two frequency components,

f1 and f2. Frequency analysis conducted through simulations with vehicle models and real-

world data highlights the concentration of spectral density in two primary ranges: 1-5 Hz and

8-15 Hz (Cebon; Winkler, 1991; Huhtala et al., 2000; Oubrich et al., 2017). The values of f1

and f2 were treated as uniformly distributed variables within the ranges of 1-5 Hz and 8-15 Hz,

respectively. Additionally, the load signal had a random phase between 0° and 359° to simulate

different weighing scenarios, with load signals from axles of the same vehicle sharing the same

phase.

It is important to note that a limitation of using Equation (3.1) lies in the amplitude

of the two sinusoidal components, which may vary depending on the vehicle speed and road

surface (Huhtala et al., 2000; Gajda et al., 2015; Oubrich et al., 2017). Simulating this phe-

nomenon accurately poses a challenge. To address this, we considered the amplitudes of the
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sinusoidal components (P1 and P2) as being linearly related to vehicle speed. The authors of

Huhtala et al. (2000) conducted tests with a three-axle vehicle equipped with strain gauges and

accelerometers to estimate the dynamic load of the vehicle at various speeds. Using this data,

it is possible to estimate the impact of the dynamic component relative to the static axle loads

for each vehicle speed. Considering data from the three vehicle axles, an approximation of the

dynamic load amplitude compared to the static axle loads was obtained, as shown in Table 4.1.

Table 4.1 – Relative dynamic load amplitude according to vehicle speed (obtained from (Huh-
tala et al., 2000)).

Vehicle Speed [km/h] Relative Dynamic Load
50 0.15
60 0.18
70 0.21
80 0.25

The relative dynamic load amplitudes in Table 4.1 focus on the vehicle’s sprung

mass, i.e., the first dynamic load component (f1). Using this data, the impact of speed on the

amplitude of the first dynamic component was estimated using the linear regression method.

The linear regression is defined by Equation 4.1:

y = 0.0033x− 0.017. (4.1)

Figure 4.2 – Linear regression of the relative dynamic load (Y-axis) and vehicle speed (X-axis).

The amplitude of the second dynamic component (f2), corresponding to the ve-

hicle’s unsprung mass, is considerably smaller than the first. As it would be challenging to

measure its precise impact in the load signals obtained by Huhtala et al. (2000), the amplitude
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of this component was considered to be one-fifth of the first dynamic component’s amplitude, a

reasonable approximation given the signals from Figures 3.10 and 3.11.

It is worth noting that our simulation exclusively addressed the impact of longitu-

dinal oscillations in vehicle load, given that transverse oscillations are typically smaller and

mitigated by measuring the whole axle load (Grakovski et al., 2013; Grakovski; Pilipovecs,

2017a). Therefore, our simulation treated the load sensor as an ideal zero-width sensor and a

singular element for both vehicle wheels, measuring the overall axle weight. This implies that

the entire axle load was represented by a single point of the load signal at the corresponding

sensor position. Consequently, the techniques to estimate the instantaneous axle load from the

sensor signal, described in Section 3.2, were not evaluated through this simulation.

The most recent legislation from INMETRO, the National Institute of Metrology,

Standardization, and Industrial Quality in Brazil, defines the methodology to test WIM sys-

tems (Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), 2022). These

tests involve employing four vehicle types, with each vehicle being tested 15 times within the

minimum, maximum, and average speeds of the system’s operational speed range. This work

utilized these definitions as a basis to conduct the simulation tests. However, instead of using

only the minimum, maximum, and average speed values, we chose to use a more gradual range

of speed variations to further understand their impact on static load estimation.

The four vehicle categories employed in simulations were 3C, 2S3, 3I3, and 34D,

as illustrated in Figure 4.3. Tables 4.2, 4.3, 4.4, and 4.5 show the axle load and the distance

between the axles for the vehicles 3C, 2S3, 3I3, and 34D, respectively. Each axle distance is

calculated relative to the first axle.

Table 4.2 – Axle load and distances of the 3C vehicle.

Vehicle Axle Axle Load [kg] Axle Position [m]
1 6000 0
2 6750 3
3 6750 4.5

A vehicle with NA axles passing over a system with N sensors generates NA · N

weight samples. These samples are then used to estimate the static load of individual axles

and the Gross Vehicle Weight (GVW). The estimated load values are compared to the known

static values (Tables 4.2 to 4.5), and statistical data are calculated to assess the system precision

and accuracy, including root mean square error (RMSE), maximum relative error, and relative

standard deviation (RSD).
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Table 4.3 – Axle load and distances of the 2S3 vehicle.

Vehicle Axle Axle Load [kg] Axle Position [m]
1 6000 0
2 10000 3
3 8500 7
4 8500 8.5
5 8500 10

Table 4.4 – Axle load and distances of the 3I3 vehicle.

Vehicle Axle Axle Load [kg] Axle Position [m]
1 6000 0
2 6750 3
3 6750 4.5
4 9000 7.5
5 9000 10.5
6 9000 13.5

Table 4.5 – Axle load and distances of the 34D vehicle.

Vehicle Axle Axle Load [kg] Axle Position [m]
1 6000 0
2 6750 3
3 6750 4.5
4 8500 7.5
5 8500 9
6 8500 12
7 8500 13.5

Using the definitions mentioned earlier in this chapter, the following methodology

was proposed to study the two main goals of the simulations: exploring system layouts and

evaluating methods to estimate vehicle static loads, known as estimators.

4.1.1 System Layout Evaluation

The two main parameters of WIM system layout are the number and distance of

sensors. System layout design is a critical aspect of WIM system planning, given that this

configuration is not easily altered after the system is installed. In this context, simulation is a

valuable tool to evaluate various layouts.

This evaluation involved varying simulation parameters to gain a deeper understand-

ing of the dynamic load and the impact of layout on WIM measurements. Another objective

was to assess the accuracy of Equations (3.8) and (3.9) for calculating sensor distance. The sim-

ulation parameters analyzed are presented in Table 4.6. The estimator chosen for this analysis
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(a) Vehicle category 3C. (b) Vehicle category 2S3.

(c) Vehicle category 3I3. (d) Vehicle category 34D.

Figure 4.3 – Vehicle categories employed in simulations, adapted from (Departamento Nacional
de Infraestrutura de Transportes (DNIT), 2012).

was the simple mean value calculation, as other estimators were subsequently evaluated using

the methodology detailed in Section 4.1.2. Additionally, sensors were uniformly distributed,

meaning the sensor spacing was the same for all sensors.

Table 4.6 – Simulation parameters for system layout evaluation.

Parameter Type Value
Estimator Fixed Mean Value
Number of sensors Variable 2, 4, 6, 8, 10, 12, 14, 16
Sensor spacing [m] Variable 0.5, 1, 2, 3, 4, 5, ∆D1, ∆D2

Vehicle speed [km/h] Variable 20, 40, 60, 80, 100

Each system layout (set of number of sensors and sensor spacing) was assessed

using different vehicle speeds, generating the results presented in Section 5.1. The values ∆D1

and ∆D2 were obtained from Equations (3.8) and (3.9), respectively, and were calculated for

each vehicle run as they depend on parameters such as vehicle speed and number of sensors.

4.1.2 Estimators Evaluation

After identifying the most suitable sensor distance in the system layout analysis,

the estimators detailed in Section 3.3.2, excluding Neural Network techniques, were evaluated.

This work employed estimators to combine the instantaneous load of individual axles into the
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static load of that axle. The Gross Vehicle Weight (GVW) is obtained by summing all these

static axle loads. The estimators evaluated in this study are:

• Mean Value Estimator;

• Maximum Likelihood Estimator (MLE);

• Signal Reconstruction Techniques.

The Mean Value estimator does not require prior information about the system be-

ing tested, as it involves the straightforward calculation of sample averages. In contrast, the

Maximum Likelihood Estimator requires information regarding sensor uncertainty in its com-

putation, as demonstrated in Equation (3.13). In a study conducted by Gajda et al. (2020), the

standard deviation of measurement results from a WIM system equipped with sixteen load sen-

sors was measured. The relative standard deviations (RSD) measured from the sixteen sensors

in this study are used to emulate sensor uncertainty in our experiment, except for the RSD mea-

sured from sensors 3 and 4, which clearly deviated from other measurements. To address these

outliers, the RSD of these two sensors was considered as the average value of the other fourteen

sensors, which is 10%. Figure 4.4 exhibits the RSD values for each load sensor.

Figure 4.4 – Relative standard deviation of load sensors employed in the simulation.

Additionally, signal reconstruction and interpolation techniques were also evaluated

in this work. These methods involved reconstructing axle load signals from the samples mea-

sured by load sensors. Each axle’s static load was determined by calculating the signal average.

The evaluation employed methods available in MATLAB software, including Shape-preserving



64

Piecewise Cubic interpolation, Modified Akima Cubic Hermite interpolation, and Spline inter-

polation.

The simulation parameters employed in the estimators analysis are presented in

Table 4.7. For this step, we used the sensor distance that demonstrated greater robustness across

vehicle speeds in the system layout evaluation.

Table 4.7 – Simulation parameters for the estimators evaluation.

Parameter Type Value
Estimator Variable Mean Value, MLE, Signal Reconstruction
Number of sensors Variable 2, 4, 6, 8, 10, 12, 14, 16
Sensor spacing Fixed Defined by previous analysis
Vehicle speed [km/h] Variable 20, 40, 60, 80, 100

Analyzing Weigh-In-Motion systems in real-world scenarios poses challenges due

to the expense and complexity of experimental setups. Simulation offers a preliminary under-

standing of these systems. While simulations cannot substitute for experimental analysis, they

serve as a crucial initial phase in designing Weigh-In-Motion systems.

4.2 Experimental Data

To assess instantaneous axle weight estimation, an experimental study was con-

ducted using a real Weigh-In-Motion system. Data were collected from a moving truck, pre-

weighed on a static scale. The experimental setup flowchart is presented in Figure 4.5.

Figure 4.5 – Flowchart illustrating the experimental setup, data collection process, and analy-
ses.

The layout of the WIM site used for data collection is presented in Figure 4.6. This

site has six in-pavement load cells employing strain-gauge sensors to measure vehicle load.
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Additionally, there is one inductive loop utilized to trigger the system measurements. Each load

cell has a width of 7 cm, and the distances between the cells are indicated in Figure 4.7.

Figure 4.6 – Experimental WIM system equipped with 6 in-pavement strain-gauge load cells.

Figure 4.7 – Diagram of the experimental WIM system layout showing sensor distances.

The experimental site is located on a highway detour with a slight incline, making

it difficult to conduct experiments with loaded heavy trucks at high speeds. To explore various

vehicle speeds, data were collected using a heavy truck both loaded and empty. Figure 4.8

shows the six-axle heavy truck (category 3S3) used in this test. Vehicle static loads for both

cases are presented in Table 4.8, along with the distances between vehicle axles. Each axle

distance is calculated relative to the first axle.

The tests were conducted at vehicle speeds ranging from 5 to 35 km/h when loaded

and 10 to 60 km/h when empty, representing the maximum speeds achievable on the test road
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Table 4.8 – Axle loads and distances of the test vehicle.

Vehicle Axle Axle Load (Loaded) [kg] Axle Load (Empty) [kg] Axle Position [m]
1 5960 5630 0
2 9090 3770 3.7
3 6180 2370 4.95
4 6960 1830 7.9
5 9160 2860 9.15
6 7530 2240 10.4

Figure 4.8 – Test vehicle used for experimental data collection.

for both cases.

One of the main challenges of the experimental tests was developing a system ca-

pable of reading all six sensors using a sampling frequency high enough to capture axle signals

with sufficient resolution. This was accomplished using a custom hardware board containing

a microcontroller and six analog-to-digital converters (ADCs) continuously capturing sensor

data at 25 kSPS. The ADC features an internal anti-aliasing filter. Moreover, the signal was

digitally filtered by the microcontroller using a FIR filter of order 45 with a cutoff frequency of

170 Hz. Filtered data were sent to a PC located near the experimental site through an Ether-

net cable. While the development of this embedded system was carried out by an experienced

team of technicians and engineers and is not the primary focus of this study, the author made a

significant contribution to the firmware development of the system.

The algorithms for estimating instantaneous axle weight, detailed in Section 3.2,

were then applied to the collected signals. This study evaluated several methods for estimating

instantaneous axle load, such as the Area Under the Signal, Peak Voltage, Re-sampling of Area,

and Tire Footprint Reconstruction. In this study, the Tire Footprint Reconstruction method

considered footprint length proportional to the load sensor’s pulse width multiplied by vehicle
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speed, while its width was set to 300 mm for single-wheel axles and 600 mm for dual-wheel

axles.

The Estimator utilized in the experimental analysis was the Mean Value estimator.

The Maximum Likelihood Estimator (MLE) requires information about the standard deviation

of measurements from each sensor. However, due to the unavailability of this data in these

initial tests, it was not evaluated. Meanwhile, Signal Reconstruction techniques are heavily

dependent on the number of samples available. In our setup, each vehicle wheel is weighed by

three sensors on each side of the road, resulting in three load samples, which is not sufficient to

ensure reliable signal reconstruction (Haupt; Nowak, 2006; Oubrich et al., 2018).

It is crucial to note that the resulting instantaneous axle load values cannot be in-

dependently evaluated due to the lack of ground truth information. The ground truth of static

axle loads is available, but the ground truth of instantaneous axle loads of the moving vehicle,

subject to vertical dynamic oscillations, is not. To properly assess the effectiveness of each axle

weight estimation technique, the vehicle ideally should be equipped with load cells and/or ac-

celerometers, providing data of the dynamic weight as the vehicle passes over the WIM sensors.

Unfortunately, implementing this instrumentation was not feasible for our experimental study.

After applying the instantaneous axle weight algorithms, the raw values for each

axle was calculated using signals from multiple runs, and the algorithms’ outputs were com-

bined using the mean value calculation. These results were then used to evaluate the precision

and accuracy of each algorithm.

The precision evaluation involved calculating the average of the raw values for a

given axle across multiple runs, and then comparing each raw value to this average. This step

indicates the consistency of the algorithm in its estimations.

The accuracy of the algorithms was assessed by first calculating the ratios between

the raw values of the truck’s front axle and all other axles: A1/A2, A1/A3, A1/A4, A1/A5,

and A1/A6. The ratios produced by each algorithm were then compared to the ratios of the

static axle weights shown in Table 4.8. The algorithm with ratios most closely aligned with

the static ratios was considered more accurate. The truck’s front axle was chosen for all ratios

as it is expected to be less affected by dynamic load impacts from the oscillating vehicle body

(Huhtala et al., 2000; Grakovski; Pilipovecs, 2018). This step was used to mitigate the lack of

ground truth for the dynamic loads and the absence of proper system calibration.

Both analyses were conducted using data from both the empty and loaded truck con-
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figuration. Statistics such as the root mean square error and relative deviations were calculated

from these analyses.
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5 RESULTS

This chapter presents the results of this study. Simulations conducted in MATLAB

were used to assess the influence of various vehicle and system parameters on weight estimation.

Meanwhile, field tests involved collecting data from a six-axle heavy truck as it passed through

an experimental site equipped with six in-pavement load cells.

The study categorizes methods into instantaneous axle load estimation and gross

vehicle weight (GVW) estimation. Instantaneous axle load algorithms were tested using real-

world data, while static axle and vehicle load (GVW) estimators were evaluated using simula-

tion data.

5.1 Simulation

Simulations were conducted using Equation (3.1) with M = 2 to generate the dy-

namic load signals. The MATLAB code for the weigh-in-motion (WIM) simulator developed

as part of this research is available on (Rocheti, 2024). Figure 5.1 illustrates a single axle

load signal at different speeds, using the parameters: P0 = 7, 500 kg, f1 = 2 Hz, f2 = 8 Hz,

N = 4 sensors, and ∆sensor = 2.5m.

In various cases, the axle load sampled by the WIM sensors cannot accurately rep-

resent the static weight of the axle, even if its instantaneous axle load, calculated by the methods

in 3.2, is precisely determined, as considered in this simulation. If the number of sensors in-

creases, the estimated weight tends to approximate the true static load. Additionally, equipping

a system with too many sensors is not financially viable due to the high costs involved. This em-

phasizes the need to identify an adequate number of sensors and their spacing to handle various

vehicle types at different speeds.

Figure 5.1 also shows the impact of vehicle speed in determining the instant that

the load signal is measured. Higher speeds result in the load signal being sampled over shorter

periods compared to lower speeds, a condition also affected by sensor spacing.

The proposed simulations were first used to analyze system layout, including the

number of sensors and sensor spacing. Subsequently, simulations evaluated the estimators de-

tailed in Section 3.3.2, using the most appropriate sensor spacing previously identified.



70

(a) Vehicle speed = 20 km/h. (b) Vehicle speed = 40 km/h.

(c) Vehicle speed = 60 km/h. (d) Vehicle speed = 80 km/h.

Figure 5.1 – Dynamic load of a single vehicle axle for different vehicle speeds.

5.1.1 System Layout Evaluation

The evaluation of the system layout involved running the simulation model with the

parameters shown in Table 4.6. For each configuration, the simulation was run 15 times, with

the signal phase and the f1 and f2 frequencies of the dynamic loads treated as random Gaus-

sian variables within the ranges of 0 to 360°, 1 to 5 Hz, and 8 to 15 Hz, respectively. Various

statistical measures, including maximum relative error, root mean square error (RMSE), and

relative standard deviation (RSD), were used to compare system performance under different

conditions. The results for GVW estimation are presented in Figures 5.2 and 5.3, while the

results for axle load estimation are presented in Appendix A, Figures A.1 and A.2. The rela-

tive standard deviations (RSD) for vehicle type 3C are presented in Table 5.1. The results for

the other vehicle categories (2S3, 3I3, and 34D) are presented in Tables A.1, A.2, and A.3 in

Appendix A.

Both the maximum relative error and RMSE of axle weight estimation were consis-

tently higher than those observed for GVW estimation, as expected. This occurs because GVW
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(a) Vehicle speed = 20 km/h. (b) Vehicle speed = 40 km/h.

(c) Vehicle speed = 60 km/h. (d) Vehicle speed = 80 km/h.

(e) Vehicle speed = 100 km/h.

Figure 5.2 – GVW root mean square error from the system layout evaluation in the simulation
analysis, with each curve representing a different sensor distance.
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(a) Vehicle speed = 20 km/h. (b) Vehicle speed = 40 km/h.

(c) Vehicle speed = 60 km/h. (d) Vehicle speed = 80 km/h.

(e) Vehicle speed = 100 km/h.

Figure 5.3 – GVW maximum relative error from the system layout evaluation in the simulation
analysis, with each curve representing a different sensor distance.
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Table 5.1 – Relative standard deviation of GVW estimation for the system layout evaluation in
the simulation analysis, vehicle category 3C.

Speed Distance N = 2 N = 4 N = 6 N = 8 N = 10 N = 12 N = 14 N = 16

20

0.5 3.76 2.98 2.01 1.61 1.58 1.54 1.66 1.45
1 3.78 2.95 1.99 1.57 1.54 1.52 1.66 1.43
2 3.56 3.04 1.95 1.59 1.58 1.58 1.69 1.45
3 3.97 3.04 2.21 1.89 1.77 1.53 1.70 1.46
4 3.42 3.11 2.00 1.90 1.67 1.79 1.72 1.59
5 3.72 3.31 2.38 1.80 1.80 1.71 1.80 1.62

∆D1 3.66 2.89 2.00 1.60 1.56 1.52 1.70 1.44
∆D2 3.69 2.94 2.01 1.59 1.56 1.52 1.71 1.45

40

0.5 4.91 3.41 2.40 2.42 1.88 2.24 1.74 1.43
1 4.79 3.05 2.02 1.89 1.79 1.92 1.67 1.41
2 4.49 2.73 1.87 1.90 1.75 1.85 1.62 1.39
3 4.58 2.69 2.03 2.04 2.00 1.81 1.81 1.56
4 4.12 2.77 2.02 2.02 1.85 1.84 1.60 1.36
5 4.46 2.67 2.02 2.04 1.91 1.84 1.61 1.43

∆D1 4.56 2.83 2.01 2.22 1.77 2.09 1.75 1.51
∆D2 4.68 3.14 2.20 2.32 1.78 2.02 1.70 1.39

60

0.5 6.32 6.39 4.44 4.45 5.06 2.94 2.69 2.54
1 5.95 5.62 3.38 2.82 2.32 1.86 1.97 1.79
2 5.53 3.67 2.51 2.11 2.05 1.66 1.84 1.46
3 5.24 3.02 2.54 2.21 1.92 1.76 1.78 1.58
4 4.28 3.21 2.41 2.17 1.92 1.66 1.95 1.59
5 4.92 3.15 2.55 2.18 2.03 1.77 2.05 1.56

∆D1 5.22 3.55 3.03 2.42 2.32 2.02 2.05 2.02
∆D2 6.11 4.80 3.25 2.85 2.57 1.99 1.98 1.82

80

0.5 11.16 9.70 9.55 8.96 6.44 6.64 5.02 4.09
1 11.11 7.97 6.77 5.11 3.35 3.51 2.27 2.10
2 9.86 5.68 3.30 2.85 2.16 2.33 1.92 1.97
3 8.47 3.91 2.92 2.66 2.33 2.11 1.75 2.09
4 7.49 3.42 2.86 2.18 1.93 1.91 1.71 1.74
5 7.31 4.06 3.07 2.34 2.11 2.37 1.82 1.95

∆D1 7.92 4.23 3.10 3.51 2.60 2.95 2.30 2.45
∆D2 8.88 6.86 4.50 3.70 2.76 2.72 2.02 2.08

100

0.5 14.82 14.93 13.66 13.97 12.57 11.49 9.20 8.57
1 14.07 13.67 8.93 10.15 6.28 5.11 4.96 4.36
2 13.03 10.39 3.76 3.95 2.76 2.79 2.90 2.59
3 10.84 6.97 3.17 3.08 2.47 2.46 2.17 2.04
4 9.98 5.05 3.07 3.00 2.34 2.07 2.15 2.21
5 8.77 4.39 2.75 2.72 1.91 2.24 2.09 2.00

∆D1 8.84 5.51 3.34 3.83 3.50 3.54 3.42 4.07
∆D2 10.95 10.13 4.17 5.41 3.77 3.36 2.63 2.85
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is calculated by summing the estimated static axle loads, which helps to average out individual

errors and minimize the overall error.

Increasing the number of sensors indeed tends to diminish the weight estimation

errors. This is most notable when comparing arrays of two, four, and six sensors, where the

errors are sometimes three times lower when using six sensors compared to two sensors. Con-

figurations with more than eight sensors started showing diminishing returns in error reduction,

although their robustness to speed variations improved considerably for larger sensor arrays –

this was also observed in the study by Cebon (1990). Through simulations involving the quarter-

car and walking-beam vehicle models, they noted that system accuracy improves gradually as

the number of sensors increases beyond two, with diminishing improvements for larger sensor

arrays. The study also denotes that larger arrays generate more insensitivity to vehicle speed

variation, as observed in our study.

For both axle weight and GVW estimation, sensor distance for low vehicle speeds

(20 km/h) had a minimal impact on the errors, although shorter distances demonstrated slightly

lower errors compared to others. However, as vehicle speed increased, the influence of sensor

distance became more pronounced. For higher speeds, longer distances showed slightly lower

errors. The longest distance experimented, 5 meters, was only viable at the very high speed

of 100 km/h. These observations align with the results presented by the authors Cebon and

Winkler (1991).

These results highlight the crucial role of vehicle speed in defining sensor distance.

The study by Cebon and Winkler (1991) also pointed out that the greater the deviation of ve-

hicle speed from the average speed used in defining the sensor distance, the greater the weight

estimation error will be. This is visible in our analysis, as no single sensor distance consistently

performed better than all others across the tested vehicle speeds (20, 40, 60, 80, and 100 km/h).

Thus, a fixed sensor distance optimized for one speed may not be optimal for others. These

results highlight the importance of considering a reasonable average speed at the installation

site, so the sensor distance can be adjusted to minimize errors.

This also highlights the influence of vehicle speed in this simulation. As dynamic

load amplitude is directly increased by vehicle speed, error statistics are likely to increase cor-

respondingly, with maximum relative errors reaching up to 40% in GVW estimation and 65%

in axle weight estimation (Figures A.2 and 5.3). The study by Gajda et al. (2015) observed

similar variations of up to 40% of the static load when measuring the dynamic load of a real
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vehicle traveling at 80 km/h. In the present study, the effect of vehicle speed on the amplitude

of the dynamic loads was approximated by considering a linear relationship, which may not

accurately reflect real-world conditions, especially at high speeds.

The RSD of the GVW values indicates that estimation accuracy improves with an

increasing number of sensors, as noted when analyzing the maximum relative error and the

RMSE. Comparing different vehicle types, vehicles with fewer axles, such as the 3C vehicle,

exhibited higher RSD values, particularly at higher speeds, indicating greater sensitivity to ve-

hicle speed and sensor configuration. In contrast, vehicles with more axles, such as the 2S3,

3I3, and 34D vehicles, showed better stability and lower RSD values across various speeds and

sensor configurations. The 34D vehicle, with the most axles, demonstrated the most stable and

lowest RSD values. This is because in GVW estimation, having more axles to measure tends to

lower the average GVW error.

Based on the simulation results, a sensor distance of 3 meters was selected for

subsequent estimator analysis. In general, the 3-meter distance performed better at speeds above

40 km/h, while the 2-meter distance performed better at lower speeds. Although the 2-meter

distance showed improved performance at lower speeds, the overall errors at these speeds are

generally lower. Considering this, the 3-meter distance offers a balanced solution that provides

good performance across a range of speeds.

It is worth noting that ∆D1 also delivered accurate results across a wide speed range.

Equation (3.8) considers only the primary frequency component (f1) of the dynamic load sig-

nal, which had a more substantial impact than the secondary component (f2) in the simulated

load signal in this study. However, ∆D1 is not a fixed distance but is calculated for each vehicle

run based on its speed and the number of sensors, making it unsuitable for practical applica-

tions where a fixed distance is required. Although both ∆D1 and ∆D2 generally demonstrated

good performance, they cannot be considered as the optimal distances based on our simulation

results.

5.1.2 Estimators Evaluation

The evaluation of estimators involved running simulations to assess the performance

of different estimation algorithms using the parameters shown in Table 4.7. The sensor distance

employed in this analysis was previously evaluated in Section 5.1.1 and defined as 3 meters.

The estimators evaluated include Mean Value (MV), Maximum Likelihood Estimator (MLE),
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and Signal Reconstruction algorithms such as Shape-preserving Piecewise Cubic interpolation

(Pchip), Modified Akima Cubic Hermite interpolation (Makima), and Spline interpolation.

Figures 5.4 and 5.5 present the results for the root mean square error (RMSE) and

maximum relative error for GVW estimation. Figures A.3 and A.4 present similar results for

axle load estimation and are included in Appendix A. Table 5.2 presents the relative standard

deviation (RSD) for different vehicle speeds and estimator algorithms for vehicle type 3C. The

RSD results for other vehicle types (2S3, 3I3, and 34D) are presented in Tables A.4, A.5, and

A.6 in Appendix A. As mentioned in Section 5.1.1, the maximum relative error and RMSE for

axle weight estimation were generally higher than those observed for GVW estimation.

The Mean Value estimator, despite its simplicity, showed robust performance across

various speeds and sensor configurations. Analyzing the RMSE and the maximum relative

error for all simulation scenarios, the mean value calculation was only outperformed by the

MLE at very low speed (20 km/h). Furthermore, the mean value calculation maintained lower

RSD values compared to other estimators, particularly at higher speeds. This consistency in

performance was also observed by Gajda et al. (2020).

The MLE demonstrated superior performance at low speeds (20 km/h); however, at

speeds greater than 40 km/h, MLE errors increased significantly, surpassing other estimators.

For the other estimators, the gains become marginal when more than 10 sensors are employed.

The performance gains of MLE were not as substantial as might be expected from

theoretical analysis. The authors Gajda et al. (2020) found analogous results when comparing

the Mean Value method and the MLE in an experimental study, where both estimators showed

similar results. However, the study by Stergioulas et al. (2000) conducted a simulation analysis

using vehicle models and found that the MLE performed better than the MV for different system

layouts, although they grouped results from various vehicle speeds, with the maximum speed

being 60 km/h. The referred study also indicated that the mean value calculation performed

slightly better than the MLE in high noise levels, which is comparable to high vehicle speeds in

our work since dynamic load amplitude is considered linearly dependent on vehicle speed.
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(a) Vehicle speed = 20 km/h. (b) Vehicle speed = 40 km/h.

(c) Vehicle speed = 60 km/h. (d) Vehicle speed = 80 km/h.

(e) Vehicle speed = 100 km/h.

Figure 5.4 – GVW root mean square error from the estimators evaluation in the simulation anal-
ysis, with each curve representing a different estimator.
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(a) Vehicle speed = 20 km/h. (b) Vehicle speed = 40 km/h.

(c) Vehicle speed = 60 km/h. (d) Vehicle speed = 80 km/h.

(e) Vehicle speed = 100 km/h.

Figure 5.5 – GVW maximum relative error from the estimators evaluation in the simulation
analysis, with each curve representing a different estimator.
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Table 5.2 – Relative standard deviation of GVW estimation for the estimators evaluation in the
simulation analysis, vehicle category 3C.

Speed Estimator N = 2 N = 4 N = 6 N = 8 N = 10 N = 12 N = 14 N = 16

20

MV 3.97 3.04 2.21 1.89 1.77 1.53 1.70 1.46
MLE 3.45 2.86 1.93 1.82 1.74 1.33 1.41 1.22

Makima 3.97 3.77 2.53 2.09 1.84 1.58 1.69 1.54
Pchip 3.97 3.81 2.55 2.10 1.84 1.59 1.69 1.55
Spline 3.97 3.80 2.63 2.16 1.85 1.63 1.70 1.52

40

MV 4.58 2.69 2.03 2.04 2.00 1.81 1.81 1.56
MLE 4.08 2.85 1.76 1.80 1.92 1.57 1.78 1.55

Makima 4.58 3.56 2.42 2.09 2.14 1.81 1.78 1.60
Pchip 4.58 3.61 2.44 2.09 2.15 1.81 1.79 1.60
Spline 4.58 3.59 2.50 2.17 2.21 1.87 1.80 1.58

60

MV 5.24 3.02 2.54 2.21 1.92 1.76 1.78 1.58
MLE 5.50 3.86 2.87 2.76 2.79 1.96 2.04 2.19

Makima 5.24 4.27 2.86 2.37 2.05 1.85 1.95 1.63
Pchip 5.24 4.33 2.87 2.39 2.06 1.86 1.96 1.63
Spline 5.24 4.32 2.95 2.51 2.11 1.91 2.00 1.64

80

MV 8.47 3.91 2.92 2.66 2.33 2.11 1.75 2.09
MLE 9.99 5.07 4.73 3.92 3.43 2.88 2.90 2.85

Makima 8.47 5.58 3.44 2.74 2.38 2.20 1.87 2.23
Pchip 8.47 5.66 3.48 2.77 2.40 2.22 1.88 2.24
Spline 8.47 5.64 3.83 2.98 2.54 2.31 1.94 2.24

100

MV 10.84 6.97 3.17 3.08 2.47 2.46 2.17 2.04
MLE 12.94 8.86 6.14 4.81 4.10 4.33 3.61 3.52

Makima 10.84 9.46 3.63 3.40 2.45 2.50 2.26 2.26
Pchip 10.84 9.55 3.68 3.44 2.47 2.52 2.27 2.28
Spline 10.84 9.55 4.05 3.67 2.64 2.68 2.31 2.29

Signal reconstruction techniques, including Pchip, Makima, and Spline interpola-

tions, exhibited similar performance profiles across different vehicle speeds. These techniques

showed the exact same performance as the mean value estimator with just two sensors, as the

mean of a signal reconstructed with two samples by these methods will be equal to the mean

value calculation. Moreover, signal reconstruction techniques exhibited higher errors when

compared to the mean value calculation. Notably, tests with four to eight sensors showed higher

errors, whereas tests with more than ten sensors showed an approximation to the mean value

errors. This result is expected since signal reconstruction performance is heavily dependent on

the number of samples available. High-fidelity signal reconstruction can yield valuable data

for weight estimation in WIM systems, such as signal spectrum information and dynamic load

filtering, as suggested by Oubrich et al. (2018).

The observed trends suggest that while the MLE offers advantages under specific
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conditions, the simple mean value calculation remains a consistently reliable and practical

choice for a wide range of WIM applications. It is important to note that the simplest forms

of signal reconstruction techniques result in inferior performance compared to the Mean Value

method. However, by incorporating knowledge of the typical oscillation spectrum of trucks,

more advanced signal reconstruction techniques could be developed to achieve better perfor-

mance.

5.2 Experimental Data

The experimental study was conducted at the Weigh-In-Motion (WIM) site de-

scribed in Figures 4.6 and 4.7 using the six-axle test truck. Figure 5.6 captures the precise

moment when one of the vehicle’s tires applies pressure to a strain-gauge load cell. The tire

footprint is larger than the sensor width, indicating the need for proper algorithms to calculate

the instantaneous axle load, as a single measurement from this sensor is insufficient.

Figure 5.6 – Moment of contact between the vehicle tire and a strain-gauge load cell.

The test vehicle underwent multiple runs at various speeds while being both fully

loaded and empty. The empty vehicle was able to reach higher speeds, up to 60 km/h, while

the loaded vehicle was tested at a maximum speed of 35 km/h due to the WIM site constraints

explained in Section 4.2.

During each vehicle run, load sensor signals were captured by ADCs and digitally

filtered by the data collection system. The data, stored on a computer near the WIM site, were

then normalized to correct any DC offsets and ensure consistent reference levels across all load

sensors. A threshold value was used to detect vehicle axles in the signal. Figure 5.7 shows the

readings from the six sensors, three on the left and three on the right, for the loaded vehicle

traveling at 30 km/h. The red line present in all plots indicates the threshold value used for
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vehicle axle detection. The pulses in the signals correspond to the passage of each axle over the

sensors.

(a) First left sensor (S1L). (b) First right sensor (S1R).

(c) Second left sensor (S2L). (d) Second right sensor (S2R).

(e) Third left sensor (S3L). (f) Third right sensor (S3R).

Figure 5.7 – Readings from the left and right sensors of the loaded vehicle traveling at 30 km/h.
The red line indicates the threshold value.

There is a general consistency in the shape of the peaks between the corresponding

left and right sensors. However, slight variations in amplitude between the left and right sen-

sors may suggest differences in sensor sensitivity or a variation in the vehicle’s transverse load

distribution. These discrepancies also highlight the need for calibration adjustments to ensure

more accurate measurements, which were not performed in this initial experimental study.



82

The vehicle axle pulses detected through the threshold value from all vehicle runs

were then used by the algorithms described in Section 3.2 to estimate the instantaneous axle

weights. The results were separated into precision and accuracy analyses.

5.2.1 Precision Evaluation

The precision of the instantaneous axle weight estimation algorithms was evaluated

by calculating the mean of the raw results for each vehicle axle. This mean value was then

compared to each individual results for that axle, and the relative error of the deviation from the

mean was grouped by speed. Figures 5.8 and 5.9 illustrate the relative deviation of each axle’s

weight estimation method for both loaded and empty configurations, respectively. Additionally,

Figure 5.10 presents the same analysis for the gross vehicle weight (GVW) of the vehicle.

This approach aimed to assess the consistency of each algorithm across various vehicle runs at

different speeds.

The GVW precision exhibited generally lower relative deviations compared to most

individual axles, which is expected since GVW is the sum of all axle weights, thereby averaging

out the errors from individual axles. This observation aligns with the results from the simula-

tion analysis (Section 5.1). However, the front axle displayed consistently lower deviations

compared to other axles, even lower than the GVW. This trend is likely due to the front axle be-

ing less affected by dynamic oscillations, which tend to intensify toward the rear of the vehicle

due to the cumulative effects of suspension dynamics and load transfer during motion (Hucho;

Ahmed, 1998; Jacob, 2001). In the loaded vehicle configuration, the additional mass appears

to dampen these dynamic effects, leading to more stable weight measurements across all axles

when compared to the empty vehicle configuration.

The experimental study included runs at speeds up to 60 km/h, but the impact of

vehicle speed on precision was not entirely clear. Higher speeds reduce the interaction time be-

tween the axle and the sensor, making the measurements more susceptible to transient dynamic

loads. While higher speeds (above 30 km/h when loaded and 60 km/h when empty) did show

increased variability in the results, similar variability was also observed at very low speeds (5

km/h loaded and 10 km/h empty). This suggests that while speed is a factor, the relationship

between speed and precision is not straightforward, and other factors, such as vehicle type and

sensor configuration, might also influence the results.

Among the algorithms evaluated, the Peak Voltage method demonstrated superior
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(a) First vehicle axle. (b) Second vehicle axle.

(c) Third vehicle axle. (d) Fourth vehicle axle.

(e) Fifth vehicle axle. (f) Sixth vehicle axle.

Figure 5.8 – Relative deviation of instantaneous axle weight algorithms for each vehicle axle
from the experimental analysis (vehicle loaded).
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(a) First vehicle axle. (b) Second vehicle axle.

(c) Third vehicle axle. (d) Fourth vehicle axle.

(e) Fifth vehicle axle. (f) Sixth vehicle axle.

Figure 5.9 – Relative deviation of instantaneous axle weight algorithms for each vehicle axle
from the experimental analysis (vehicle empty).
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(a) Loaded vehicle. (b) Empty vehicle.

Figure 5.10 – Relative deviation of the gross vehicle weight from the experimental analysis with
the test truck, for both loaded and empty conditions.

precision in most scenarios. The Area Under the Signal method also performed well across var-

ious vehicle axles, while the Resampling of Area and Tire Footprint Reconstruction algorithms

showed higher variability in their results, performing well in a few specific scenarios but gener-

ally worse in others. This trend is also evident in Figure 5.10, where the Peak Voltage method

consistently shows better GVW precision, followed by the Area Under the Signal method.

Although precision analysis indicates how consistently a measurement can be re-

peated under a specific scenario, the accuracy of the algorithms remains the most crucial metric

of a WIM system, determining whether it is suitable for direct enforcement applications. The

results of the precision analysis underscore the need for WIM systems to be carefully calibrated

and adjusted based on the typical speed range of vehicles and the various vehicle types, as some

axles exhibited higher deviations than others.

5.2.2 Accuracy Evaluation

The accuracy analysis involved comparing the ratios of the axle results obtained

from the instantaneous axle weight algorithms with the static weight ratios of the test truck

presented in Table 4.8. This comparison helps to mitigate the absence of ground truth data

for instantaneous axle weight, as the vehicle’s dynamic load at the moment of measurement

is unknown. Additionally, it allows for the evaluation of algorithms independently of system

calibration, which was not performed in these initial experimental tests. The root mean square

errors (RMSE) calculated for each algorithm are illustrated in Figures 5.11 and 5.12 for the

loaded and empty vehicle configurations, respectively. Data were grouped by vehicle speed and
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displayed for each axle ratio evaluated.

(a) A1/A2 ratio. (b) A1/A3 ratio.

(c) A1/A4 ratio. (d) A1/A5 ratio.

(e) A1/A6 ratio.

Figure 5.11 – Root mean square error of instantaneous axle weight algorithms for each axle
ratio from the experimental analysis with the test truck loaded.

The comparison of results between the loaded and empty vehicle configurations re-

flects similar trends observed in the precision evaluation (Section 5.2.1), where methods applied

to the empty vehicle signals showed substantially higher errors compared to the loaded vehicle.
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(a) A1/A2 ratio. (b) A1/A3 ratio.

(c) A1/A4 ratio. (d) A1/A5 ratio.

(e) A1/A6 ratio.

Figure 5.12 – Root mean square error of instantaneous axle weight algorithms for each axle
ratio from the experimental analysis with the test truck empty.

This can be attributed to the greater mass of the loaded truck, which dampens the suspension’s

response to road irregularities, resulting in less oscillation. In contrast, an empty truck, with

less mass, allows the suspension to compress more readily, leading to increased oscillations

(dynamic load amplitude), which directly contributes to higher errors in weight estimation (Hu-
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cho; Ahmed, 1998; Jacob, 2001).

The variability of RMSE across algorithms also aligned with results from the preci-

sion analysis, where the Peak Voltage method exhibited the lowest variability among all meth-

ods (Figures 5.11 and 5.12). As noted in the precision analysis, the impact of vehicle speed on

algorithm accuracy was not as significant as expected, contrasting with the simulation results

discussed in Section 5.1.

Despite its consistency, the Peak Voltage method showed higher RMSE when com-

paring its ratios to the static weight ratios. This method’s sensitivity to tire air pressure (Kwon,

2007)–which was not measured in this experimental setup–may explain its inferior performance

in this accuracy analysis. On the other hand, the Area Under the Signal method, which com-

pensates for vehicle speed, resulted in the lowest RMSE for most of the tested scenarios. Given

that vehicle speed is easily measured by MS-WIM systems (multiple-sensor Weigh-In-Motion),

this supports the use of the Area Under the Signal algorithm as one of the most reliable methods

for instantaneous axle weight estimation (Cebon; Winkler, 1991; Kistler, 2004; Ryguła et al.,

2021).

The Tire Footprint Reconstruction method yielded promising results in the loaded

vehicle configuration, showing similar performance to the Resampling of Area method and

slightly worse results than the simple area calculation. This technique was implemented using

a fixed tire width and tire length proportional to pulse length, the simplest way to reconstruct

the tire footprint. However, certain factors such as dynamic tire pressure variations and friction

forces (Grakovski; Pilipovecs, 2017b) were not accounted for. More sophisticated approaches,

such as elliptical approximation using signal decomposition techniques and diagonally posi-

tioned sensors, could further enhance footprint reconstruction (Grakovski; Pilipovecs, 2016;

Grakovski; Pilipovecs, 2017b). Unfortunately, this sensor configuration was not available in

the experimental setup. In the empty vehicle configuration, this method exhibited one of the

highest RMSEs among all methods, which may be related to footprint deformation when the

vehicle experiences bouncing (Huang, 1993; Grakovski et al., 2014).

The Resampling of Area algorithm also showed interesting results in some cases.

However, it generally performed worse than the simple area calculation, except in very specific

scenarios. This method was initially proposed by Kwon (2007) as an improvement of the Area

Under the Signal method, but this enhancement did not manifest in this analysis, as the addi-

tional computational steps to prevent sampling overlap did not yield significant improvements.
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It is important to note that this method had not been extensively tested with experimental data

prior to this study, suggesting that further refinements may be needed.

Considering the Area Under the Signal as the most accurate method and the loaded

test vehicle as the primary focus of WIM systems, the observed root mean square error (RMSE)

values for this scenario were all below 10%, with only a single point exceeding this threshold in

the A1/A6 ratio (Figure 5.11e). In fact, most of these values were around or below the 5% mar-

gin. Based on these results, the system would likely be classified as Class B or C according to

INMETRO standards (Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO),

2022), which correspond to error thresholds of 6% and 8% for axle weight estimation, respec-

tively. However, it’s important to note that this accuracy analysis did not include a system

calibration process, which is essential for accurately estimating axle and vehicle weight in kilo-

grams or tons. Additionally, INMETRO’s classification relies on the maximum observed error,

not the RMSE as used in this study. To achieve the highest INMETRO classifications (Class

A for axle load with a 4% error margin and Class 1 for GVW with a 2.5% error margin), the

system would require a calibration procedure, ideally using multiple vehicles with varying num-

bers of axles and configurations. Another significant factor affecting the system’s accuracy is

the detour from the main road, which requires the vehicle to leave the main lane and navigate

a slight incline just before the weighing area. This combination considerably impacts vehicle

dynamics and makes it challenging to compensate for through calibration or weighing methods.
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6 CONCLUSION AND FUTURE WORKS

Weigh-In-Motion (WIM) systems offer a practical solution for measuring vehicle

load to ensure road safety and preservation. The dynamic measurement eliminates the need for

static scales, reducing traffic congestion and vehicle stoppages. This study provides an analysis

of WIM systems through simulation and experimental data, focusing on the two key stages of

weight estimation: instantaneous axle load estimation and Gross Vehicle Weight estimation.

The study began with a review of the impact of weather and road conditions on

system accuracy. The influence of environmental and structural factors varies depending on

the location of the WIM site. Choosing a smooth, straight road without pavement irregularities

is crucial to minimize vehicle vibrations and oscillations. The review also highlighted differ-

ent types of sensors, such as load cells, bending plates, piezoelectric sensors, and fiber optic

sensors, discussing their main advantages and disadvantages, including sensitivity to tempera-

ture variations and accuracy levels. Some calibration techniques were also reviewed, including

static, dynamic, and continuous methods—which have the advantage of being more economical

but the drawback of being less accurate.

The simulation analysis revealed that estimation errors were notably high, espe-

cially at higher speeds, with maximum relative errors reaching up to 40% in GVW estimation

and 65% in axle weight estimation. This is likely due to the dynamic load amplitude being

directly proportional to vehicle speed, as well as the introduction of relative standard deviation

(RSD) in sensor measurements based on an experimental study using 16 piezoelectric load sen-

sors after operating the WIM system for two to three years, which can lead to sensor degradation

and system wear. In contrast to the simulation results, such high errors were not observed in

our experimental study.

In the system layout analysis, sensor spacing had a minimal impact on errors at

lower speeds but became more significant at higher speeds. No single sensor spacing was ideal

across all tested vehicle speeds; however, distances of 2 and 3 meters performed well across

multiple scenarios, making them reasonable choices for various conditions. When considering

the number of sensors, it was observed that using more than eight sensors resulted in only

marginal gains in error reduction. This information is valuable for WIM system design, as

the number of sensors directly influences the system’s cost. Nevertheless, systems with more
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sensors exhibited greater robustness to variations in vehicle speed.

Regarding the evaluated estimators, the Mean Value (MV) estimator consistently

provided reliable results across all scenarios, making it a practical choice for many WIM ap-

plications. The Maximum Likelihood Estimator (MLE) outperformed the Mean Value only at

very low speeds, and its overall gains were less substantial than expected. Signal reconstruction

techniques demonstrated potential for WIM systems equipped with a larger number of sensors;

although these methods showed higher errors with fewer sensors, their performance tended

to align with the Mean Value method when more than ten sensors were used. Additionally,

advanced signal reconstruction techniques could leverage information about the vehicle’s me-

chanical system, such as the ranges of f1 and f2 values, to better reconstruct the load signal,

thereby yielding better weight estimation results. The use of neural networks for more robust

signal reconstruction is another potential approach, though it would require network training,

which could be supported by simulations. It is also worth noting that the frequency ranges of 1-

5 Hz for f1 and 8-15 Hz for f2 used in simulations were the broadest possible. Narrowing these

ranges based on specific truck populations could lead to more refined and optimized system

designs.

In the experimental analysis, various instantaneous axle weight estimation meth-

ods were assessed using data collected from a six-axle truck under both loaded and unloaded

conditions. The accuracy and precision of these methods varied significantly depending on the

specific algorithm and the vehicle’s load condition. Tests with the empty vehicle consistently

showed higher errors across all algorithms compared to the loaded vehicle, likely due to in-

creased dynamic oscillations in the unloaded vehicle. However, these errors are less critical

for direct enforcement applications, where the focus is on identifying overloaded vehicles. The

analysis also indicated that the front axle exhibited consistently lower errors and deviations

compared to the rear axles, likely because it is less affected by the dynamic oscillations that

intensify toward the rear of the vehicle, where suspension dynamics and load transfer have a

more pronounced effect during motion. This finding suggests that front axle measurements

could be used as a reference for calibrating or validating other axle measurements for specific

truck configurations.

While higher vehicle speeds were expected to introduce greater measurement er-

rors due to reduced interaction time between the axles and sensors, the experimental study did

not show a clear, consistent relationship between speed and weight estimation accuracy. This
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suggests that other factors, such as road surface conditions, tire characteristics, and vehicle

dynamics, may play a more significant role in influencing system precision and accuracy at

different speeds.

Among the algorithms evaluated, the Peak Voltage method demonstrated good pre-

cision but struggled with accuracy. This method’s sensitivity to changes in tire footprint area–

affected by factors such as tire inflation–may explain its relatively higher errors in accuracy

analysis. The Area Under the Signal method exhibited robust performance across both loaded

and empty vehicle tests. This method is adjusted based on vehicle speed, and this might have

helped it achieve lower root mean square errors (RMSE) compared to the other methods.

The Resampling of Area algorithm, proposed as an improvement over the Area Un-

der the Signal method, demonstrated good results but did not consistently outperform the sim-

pler area calculation method. While it accounted for sensor width and aimed to refine the sam-

pling period to prevent overlap, these additional steps did not yield significant improvements in

accuracy in our experimental setup. The higher variability observed in its performance suggests

that further refinement and testing with experimental data are needed before this method can

be considered a feasible alternative. Finally, the Tire Footprint Reconstruction technique, while

theoretically promising, exhibited higher variability and lower accuracy in this study. This can

be attributed to the simplified implementation that did not consider the complex interactions

between the tire and the road surface, such as tire deformation and load distribution across the

contact path.

When comparing the experimental results of the loaded truck with INMETRO leg-

islation (Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), 2022), the

Area Under the Signal method exhibited root mean square error (RMSE) values around the 5%

margin in most cases, which would classify the system as Class B or C (with 6% and 8% er-

ror thresholds for axle weight estimation, respectively). It is important to note that INMETRO

uses the maximum relative error in its classification, rather than the RMSE, and the accuracy

analysis conducted in this study did not include calibration procedures using multiple types of

vehicles. Therefore, a more comprehensive analysis is required before conducting formal tests

in accordance with the current Brazilian legislation.

This study aimed to address the research gap in comparing various instantaneous

axle load estimation methods under similar conditions. Although the tests did not account for

system calibration or dynamic load amplitude ground truth information, the results indicate
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that certain algorithms, particularly the Area Under the Signal method, have great potential for

application in direct enforcement systems, consistently achieving RMSEs lower than 10% in

most loaded vehicle tests.

Furthermore, conducting simulations under diverse conditions, including varying

vehicle speeds and sensor configurations, aided in further understanding the system layout

stage. Defining an optimal number of sensors for specific conditions is crucial, as this directly

impacts the cost of installation and maintenance. While the Mean Value estimator remains a re-

liable choice, the MLE’s gains were not as substantial as anticipated, and signal reconstruction

techniques require further development to be effectively applied in WIM applications.

Future research could explore advanced signal reconstruction techniques by lever-

aging information about the dynamic load signal, such as the frequency ranges characteristic of

a specific truck population. Integrating this data into the reconstruction process may help reduce

distortions between the original and reconstructed signals, enabling more accurate reconstruc-

tions. Such reconstructions can be applied in various ways, including filtering out dynamic

components, gaining deeper insights into a vehicle’s mechanical system, and even identifying

road irregularities that amplify vehicle oscillations. Another promising approach for recon-

structing the moving vehicle load signal involves using cameras to capture the vehicle’s motion

as it passes through the WIM system. By synchronizing these images with the load sensor read-

ings, it becomes possible to calculate vehicle load variations (i.e., vertical acceleration) over

time, enabling a highly precise signal reconstruction.
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APPENDIX A – SIMULATION FIGURES AND TABLES

This appendix contains additional figures that complement the main analysis pre-

sented in Chapter 5. These figures include detailed results for axle load estimation, as well

as the relative standard deviation (RSD) for different vehicle categories (2S3, 3I3, and 34D),

covering both the system layout and estimators evaluation.
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(a) Vehicle speed = 20 km/h. (b) Vehicle speed = 40 km/h.

(c) Vehicle speed = 60 km/h. (d) Vehicle speed = 80 km/h.

(e) Vehicle speed = 100 km/h.

Figure A.1 – Axle root mean square error from the system layout evaluation in the simulation
analysis, with each curve representing a different sensor distance.
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(a) Vehicle speed = 20 km/h. (b) Vehicle speed = 40 km/h.

(c) Vehicle speed = 60 km/h. (d) Vehicle speed = 80 km/h.

(e) Vehicle speed = 100 km/h.

Figure A.2 – Axle maximum relative error from the system layout evaluation in the simulation
analysis, with each curve representing a different sensor distance.
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Table A.1 – Relative standard deviation of GVW estimation for the system layout evaluation in
the simulation analysis, vehicle category 2S3.

Speed Distance N = 2 N = 4 N = 6 N = 8 N = 10 N = 12 N = 14 N = 16

20

0.5 3.26 2.46 1.46 1.48 1.43 1.45 1.29 1.28
1 3.13 2.42 1.51 1.48 1.42 1.45 1.31 1.25
2 3.24 2.44 1.59 1.50 1.48 1.48 1.33 1.21
3 3.45 2.50 1.67 1.54 1.46 1.52 1.35 1.30
4 3.31 2.45 1.60 1.49 1.45 1.46 1.40 1.25
5 3.22 2.50 1.55 1.55 1.50 1.55 1.39 1.32

∆D1 3.17 2.38 1.47 1.47 1.40 1.48 1.30 1.25
∆D2 3.25 2.42 1.54 1.45 1.41 1.49 1.31 1.26

40

0.5 5.58 3.12 2.04 2.05 1.65 1.53 1.51 1.29
1 4.53 2.96 1.91 1.76 1.41 1.27 1.46 1.31
2 4.09 2.18 1.67 1.64 1.35 1.26 1.38 1.18
3 4.62 3.20 2.25 2.44 2.21 2.02 2.04 1.56
4 3.91 2.45 1.94 1.84 1.48 1.36 1.40 1.29
5 4.02 3.17 2.18 1.67 1.91 1.27 1.62 1.37

∆D1 4.19 2.68 1.90 1.75 1.43 1.44 1.53 1.45
∆D2 4.27 3.02 1.88 1.90 1.48 1.43 1.39 1.30

60

0.5 6.33 5.82 5.56 4.31 3.99 3.37 2.85 2.64
1 5.94 4.22 4.20 2.88 1.98 1.71 1.47 1.38
2 4.97 2.61 2.01 1.71 1.49 1.54 1.33 1.35
3 5.12 2.56 2.10 1.69 1.39 1.53 1.37 1.42
4 3.94 3.14 2.61 1.95 1.94 1.88 1.56 1.47
5 4.16 2.42 1.76 1.63 1.51 1.45 1.38 1.40

∆D1 5.06 2.56 2.62 2.21 1.98 1.84 1.77 1.88
∆D2 5.30 3.89 4.00 2.93 2.17 1.76 1.56 1.47

80

0.5 9.61 9.62 10.21 6.83 8.52 6.57 5.12 5.12
1 8.80 8.40 7.67 3.84 4.69 2.97 2.65 2.44
2 8.53 5.79 3.35 1.85 1.95 1.89 1.60 1.80
3 8.82 3.73 2.34 2.04 2.22 1.80 1.69 1.67
4 7.08 3.21 2.13 1.70 1.75 1.70 1.66 1.59
5 6.01 2.91 2.33 1.83 1.89 1.81 1.76 1.54

∆D1 7.52 4.21 3.18 2.18 3.24 2.62 2.69 2.79
∆D2 8.59 7.03 5.15 2.95 3.60 2.45 2.26 2.14

100

0.5 14.96 15.36 13.31 12.59 12.31 9.03 9.40 8.67
1 13.62 13.88 9.92 9.04 6.06 4.56 4.90 2.98
2 11.26 8.52 5.77 3.23 2.98 2.36 2.14 2.01
3 10.62 5.61 3.24 3.18 2.35 2.45 2.08 1.70
4 8.90 5.22 2.64 2.48 2.57 1.91 1.84 1.51
5 8.12 4.14 2.76 2.62 2.20 2.00 1.96 1.45

∆D1 8.07 5.40 4.15 3.17 3.84 3.07 3.90 2.64
∆D2 10.76 8.23 6.34 4.28 4.13 2.86 3.00 2.27
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Table A.2 – Relative standard deviation of GVW estimation for the system layout evaluation in
the simulation analysis, vehicle category 3I3.

Speed Distance N = 2 N = 4 N = 6 N = 8 N = 10 N = 12 N = 14 N = 16

20

0.5 3.26 2.13 1.64 1.53 1.17 1.24 1.07 1.02
1 3.31 2.08 1.63 1.47 1.13 1.21 1.07 1.01
2 3.41 2.22 1.80 1.54 1.21 1.24 1.11 1.03
3 3.43 2.22 1.90 1.78 1.45 1.41 1.33 1.19
4 3.42 2.45 1.86 1.70 1.48 1.40 1.20 1.14
5 3.08 2.38 1.83 1.72 1.33 1.37 1.11 1.03

∆D1 3.21 2.12 1.63 1.53 1.18 1.20 1.05 1.00
∆D2 3.10 2.24 1.59 1.50 1.20 1.19 1.03 0.97

40

0.5 3.95 3.26 2.61 2.34 1.78 1.54 1.47 1.08
1 4.11 2.39 1.72 1.46 1.17 1.24 1.25 1.02
2 3.90 1.96 1.62 1.34 1.11 1.28 1.19 1.05
3 3.45 1.99 1.82 1.44 1.43 1.52 1.28 1.34
4 3.28 2.23 1.79 1.48 1.38 1.58 1.35 1.15
5 4.03 2.59 2.04 1.89 1.41 1.41 1.40 1.32

∆D1 3.78 2.08 1.69 1.70 1.25 1.46 1.48 1.10
∆D2 4.00 2.95 2.13 1.79 1.33 1.44 1.36 1.03

60

0.5 7.33 6.20 5.20 5.24 4.00 3.40 2.31 1.66
1 6.71 4.86 3.35 3.10 1.81 2.03 1.31 1.39
2 5.94 3.32 1.81 1.84 1.66 1.86 1.27 1.24
3 5.08 2.65 2.02 1.99 1.60 1.69 1.39 1.18
4 4.82 3.29 2.27 2.23 2.03 1.87 1.79 1.18
5 4.61 3.01 2.61 2.65 2.33 1.95 1.54 1.57

∆D1 4.91 3.16 2.27 2.67 1.81 2.26 1.53 1.60
∆D2 6.59 4.21 3.16 3.13 1.97 2.16 1.45 1.28

80

0.5 11.99 11.46 10.17 8.70 8.40 7.21 4.75 5.49
1 12.42 8.11 7.58 4.86 4.53 3.14 2.09 1.91
2 10.63 5.44 3.53 2.50 2.15 2.08 1.69 1.47
3 7.24 3.29 2.62 2.28 2.01 1.72 1.66 1.58
4 7.33 3.67 2.59 2.04 1.77 1.88 1.57 1.32
5 8.36 4.54 3.86 3.21 2.17 2.79 2.39 2.15

∆D1 7.21 3.60 3.38 3.05 2.73 2.73 2.13 2.45
∆D2 9.08 5.85 5.56 3.73 3.20 2.54 1.90 1.68

100

0.5 16.99 17.00 15.81 14.87 11.96 11.67 8.74 9.36
1 16.25 14.84 10.58 10.11 5.63 6.17 3.92 3.90
2 14.64 10.12 5.68 4.39 2.96 2.91 2.85 2.52
3 12.72 7.04 3.24 3.13 2.55 2.60 2.16 1.59
4 10.96 5.72 2.61 2.79 2.01 2.11 2.07 1.75
5 10.58 4.56 3.06 2.49 1.88 2.02 1.72 1.53

∆D1 10.27 6.26 4.16 4.25 3.33 4.07 3.66 3.46
∆D2 12.85 9.82 6.18 5.18 3.33 3.72 2.94 2.49
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Table A.3 – Relative standard deviation of GVW estimation for the system layout evaluation in
the simulation analysis, vehicle category 34D.

Speed Distance N = 2 N = 4 N = 6 N = 8 N = 10 N = 12 N = 14 N = 16

20

0.5 3.11 2.02 1.42 1.12 1.17 1.11 1.19 1.06
1 2.83 1.99 1.49 1.08 1.17 1.08 1.13 1.02
2 3.30 2.20 1.61 1.34 1.41 1.24 1.35 1.21
3 3.26 2.17 1.64 1.43 1.25 1.16 1.28 1.10
4 3.56 2.34 1.72 1.53 1.55 1.34 1.51 1.43
5 3.09 2.40 1.77 1.39 1.36 1.24 1.25 1.13

∆D1 2.81 2.01 1.39 1.21 1.15 1.09 1.20 1.05
∆D2 2.90 2.03 1.58 1.10 1.17 1.07 1.17 1.06

40

0.5 5.93 3.86 3.00 2.56 2.31 1.30 1.47 1.21
1 4.29 2.69 1.58 1.61 1.31 1.30 1.28 1.16
2 4.21 1.92 1.57 1.57 1.18 1.28 1.16 1.07
3 4.37 3.27 2.18 2.12 1.85 1.82 1.91 1.53
4 3.95 2.71 2.25 1.85 1.55 1.61 1.53 1.57
5 4.57 3.14 2.58 2.64 1.96 2.17 2.08 1.38

∆D1 4.20 2.25 1.52 2.01 1.50 1.30 1.48 1.38
∆D2 4.58 3.56 2.22 2.08 1.67 1.31 1.38 1.22

60

0.5 8.91 8.94 6.79 5.26 4.73 4.74 3.35 3.02
1 8.21 6.72 3.56 3.06 2.17 1.78 1.53 1.41
2 7.38 4.03 2.29 2.10 1.60 1.66 1.41 1.19
3 6.49 3.37 2.00 2.05 1.35 1.56 1.38 1.18
4 7.39 4.10 3.81 3.92 3.02 2.25 2.50 2.53
5 5.72 4.67 4.42 3.07 2.73 2.63 2.43 1.63

∆D1 5.91 3.83 2.84 2.60 2.17 2.29 2.10 1.94
∆D2 8.67 5.71 3.36 3.10 2.32 2.15 1.82 1.31

80

0.5 13.38 13.24 10.72 10.64 8.78 7.15 6.33 5.93
1 12.68 10.70 6.51 5.79 3.38 3.70 2.45 2.49
2 12.82 6.65 3.91 3.02 2.79 1.98 2.22 1.94
3 8.43 3.89 2.41 2.25 1.73 1.74 1.90 1.83
4 9.78 4.12 2.71 2.24 2.10 1.69 1.70 1.80
5 10.61 6.18 4.42 4.60 4.19 4.14 3.86 3.04

∆D1 9.96 4.20 3.67 3.53 2.48 3.03 2.57 2.51
∆D2 10.96 7.72 4.37 4.21 2.64 2.83 2.19 2.30

100

0.5 19.42 18.57 17.43 14.05 12.71 10.55 8.78 8.15
1 19.01 15.16 11.95 7.99 7.83 5.23 3.58 3.75
2 18.60 10.85 6.99 4.21 3.58 3.28 2.54 2.83
3 12.92 6.38 3.43 2.65 2.79 2.31 1.78 1.61
4 10.95 5.86 4.05 2.82 2.63 2.52 1.92 2.10
5 10.72 5.53 3.32 2.94 2.60 2.04 1.75 1.51

∆D1 10.55 5.42 3.99 4.02 3.50 3.49 2.72 3.31
∆D2 13.21 10.50 7.32 4.83 3.78 3.38 2.81 2.40
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(a) Vehicle speed = 20 km/h. (b) Vehicle speed = 40 km/h.

(c) Vehicle speed = 60 km/h. (d) Vehicle speed = 80 km/h.

(e) Vehicle speed = 100 km/h.

Figure A.3 – Axle root mean square error from the estimators evaluation in the simulation anal-
ysis, with each curve representing a different estimator.
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(a) Vehicle speed = 20 km/h. (b) Vehicle speed = 40 km/h.

(c) Vehicle speed = 60 km/h. (d) Vehicle speed = 80 km/h.

(e) Vehicle speed = 100 km/h.

Figure A.4 – Axle maximum relative error from the estimators evaluation in the simulation
analysis, with each curve representing a different estimator.
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Table A.4 – Relative standard deviation of GVW estimation for the estimators evaluation in the
simulation analysis, vehicle category 2S3.

Speed Estimator N = 2 N = 4 N = 6 N = 8 N = 10 N = 12 N = 14 N = 16

20

MV 3.45 2.50 1.67 1.54 1.46 1.52 1.35 1.30
MLE 2.94 2.03 1.42 1.30 1.29 1.34 1.07 1.08

Makima 3.45 3.26 2.05 1.70 1.56 1.50 1.31 1.37
Pchip 3.45 3.30 2.07 1.71 1.56 1.50 1.31 1.37
Spline 3.45 3.29 2.11 1.77 1.58 1.52 1.31 1.34

40

MV 4.62 3.20 2.25 2.44 2.21 2.02 2.04 1.56
MLE 4.07 3.29 2.20 2.30 2.34 2.14 2.13 1.39

Makima 4.62 3.72 2.59 2.50 2.32 2.06 2.14 1.63
Pchip 4.62 3.75 2.61 2.51 2.32 2.06 2.15 1.63
Spline 4.62 3.74 2.67 2.57 2.33 2.08 2.15 1.61

60

MV 5.12 2.56 2.10 1.69 1.39 1.53 1.37 1.42
MLE 5.79 2.94 3.30 2.27 2.19 1.93 2.01 1.75

Makima 5.12 3.53 2.19 1.95 1.43 1.47 1.39 1.44
Pchip 5.12 3.57 2.20 1.97 1.44 1.48 1.40 1.45
Spline 5.12 3.57 2.36 2.09 1.45 1.52 1.42 1.45

80

MV 8.82 3.73 2.34 2.04 2.22 1.80 1.69 1.67
MLE 10.59 5.58 5.04 3.25 3.18 3.02 2.47 2.78

Makima 8.82 5.02 2.62 2.22 2.27 1.92 1.67 1.64
Pchip 8.82 5.08 2.65 2.25 2.29 1.93 1.68 1.64
Spline 8.82 5.08 2.79 2.35 2.39 1.98 1.74 1.66

100

MV 10.62 5.61 3.24 3.18 2.35 2.45 2.08 1.70
MLE 13.74 8.64 5.85 5.03 4.65 4.17 4.08 3.36

Makima 10.62 7.39 4.17 3.37 2.56 2.49 2.24 1.73
Pchip 10.62 7.48 4.22 3.41 2.60 2.51 2.26 1.74
Spline 10.62 7.47 4.39 3.62 2.77 2.63 2.33 1.79
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Table A.5 – Relative standard deviation of GVW estimation for the estimators evaluation in the
simulation analysis, vehicle category 3I3.

Speed Estimator N = 2 N = 4 N = 6 N = 8 N = 10 N = 12 N = 14 N = 16

20

MV 3.43 2.22 1.90 1.78 1.45 1.41 1.33 1.19
MLE 2.89 2.19 1.73 1.69 1.54 1.32 1.38 1.01

Makima 3.43 2.62 2.11 1.86 1.47 1.47 1.37 1.27
Pchip 3.43 2.65 2.12 1.86 1.47 1.47 1.37 1.27
Spline 3.43 2.64 2.13 1.88 1.46 1.50 1.37 1.26

40

MV 3.45 1.99 1.82 1.44 1.43 1.52 1.28 1.34
MLE 3.76 2.37 1.82 1.65 1.53 1.57 1.25 1.44

Makima 3.45 2.59 2.03 1.67 1.41 1.52 1.28 1.44
Pchip 3.45 2.62 2.04 1.69 1.41 1.52 1.28 1.44
Spline 3.45 2.62 2.07 1.76 1.45 1.58 1.29 1.46

60

MV 5.08 2.65 2.02 1.99 1.60 1.69 1.39 1.18
MLE 6.34 4.00 2.98 2.74 1.94 2.29 1.94 1.87

Makima 5.08 3.09 2.55 2.13 1.61 1.73 1.42 1.25
Pchip 5.08 3.14 2.59 2.16 1.62 1.74 1.42 1.25
Spline 5.08 3.12 2.79 2.26 1.70 1.82 1.44 1.28

80

MV 7.24 3.29 2.62 2.28 2.01 1.72 1.66 1.58
MLE 10.31 4.76 4.75 3.79 3.80 2.92 2.84 2.82

Makima 7.24 4.87 2.60 2.40 2.05 1.85 1.64 1.49
Pchip 7.24 4.95 2.65 2.43 2.07 1.87 1.65 1.50
Spline 7.24 4.93 2.84 2.62 2.16 2.03 1.74 1.51

100

MV 12.72 7.04 3.24 3.13 2.55 2.60 2.16 1.59
MLE 15.43 8.80 5.86 5.35 5.18 4.22 4.30 4.29

Makima 12.72 8.98 4.57 3.03 2.42 2.53 2.11 1.68
Pchip 12.72 9.05 4.64 3.07 2.45 2.55 2.13 1.69
Spline 12.72 9.06 4.95 3.37 2.69 2.65 2.15 1.78



111

Table A.6 – Relative standard deviation of GVW estimation for the estimators evaluation in the
simulation analysis, vehicle category 34D.

Speed Estimator N = 2 N = 4 N = 6 N = 8 N = 10 N = 12 N = 14 N = 16

20

MV 3.26 2.17 1.64 1.43 1.25 1.16 1.28 1.10
MLE 3.16 2.29 1.73 1.35 1.09 1.10 1.27 0.99

Makima 3.26 2.73 1.83 1.59 1.37 1.20 1.29 1.14
Pchip 3.26 2.76 1.84 1.60 1.38 1.21 1.29 1.15
Spline 3.26 2.75 1.89 1.64 1.42 1.24 1.28 1.13

40

MV 4.37 3.27 2.18 2.12 1.85 1.82 1.91 1.53
MLE 4.79 3.68 2.35 2.50 2.05 1.89 2.04 1.74

Makima 4.37 3.81 2.49 2.15 1.87 1.80 1.85 1.60
Pchip 4.37 3.85 2.51 2.16 1.88 1.80 1.85 1.60
Spline 4.37 3.84 2.59 2.21 1.93 1.80 1.85 1.62

60

MV 6.49 3.37 2.00 2.05 1.35 1.56 1.38 1.18
MLE 8.19 5.44 3.17 3.20 2.85 2.99 2.58 2.37

Makima 6.49 4.35 2.51 2.09 1.39 1.39 1.48 1.26
Pchip 6.49 4.43 2.56 2.12 1.41 1.40 1.49 1.27
Spline 6.49 4.41 2.79 2.30 1.56 1.44 1.55 1.35

80

MV 8.43 3.89 2.41 2.25 1.73 1.74 1.90 1.83
MLE 10.77 6.06 5.35 4.56 4.08 3.41 3.34 3.67

Makima 8.43 5.97 2.46 2.41 1.80 2.00 2.10 1.78
Pchip 8.43 6.09 2.54 2.46 1.83 2.03 2.12 1.79
Spline 8.43 6.07 3.02 2.83 2.09 2.26 2.35 1.88

100

MV 12.92 6.38 3.43 2.65 2.79 2.31 1.78 1.61
MLE 15.77 8.31 7.67 5.09 4.15 4.94 4.68 4.37

Makima 12.92 8.29 4.05 2.58 2.97 2.31 1.91 1.52
Pchip 12.92 8.39 4.11 2.63 3.02 2.34 1.94 1.53
Spline 12.92 8.38 4.42 3.08 3.42 2.54 2.13 1.67
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