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Abstract
We discuss the Klein-Gordon wave equation in the de Sitter Universe. This equation

is obtained for the second order Casimir invariant operator, using Fantappié-Arcidicono
methods.

Introduction |
- There are some papers published many years ago discussing wave equations (we call
wave equation; D’Alembert, Klein-Gordon and Dirac wave equations) in the de Sitter
_Universe. Some of then study the unified description of elementary particles(’?) and some
“others study the spherically symmetric in general reativity(®%. One of then presents a
five-simensional representation of the electromagnetic and electron field equations in a
curved spacetime which is then compared with the formalism proposed by Dirac in the
case of the de Sitter spacetime(®. In another paper Takeno(® discussed a generalization
of special Lorentz transformations in the Sitter spacetime. Raje(” discussed the linear
meson wave equation in the Sitter spacetime and obtained the second order wave equation
‘using a method proposed by Kemmer® where he eliminates matrices which appear in the
linear wave equation. The equation obtained by Raje is essentially the same proposed
formely by Goto(®. We also mention Snyder’s paper(!®) where he discussed a quantized
space time.

~ More recently there are the papers by Giirsey(*"'?) where in the first of then he
present an introduction to the de Sitter group which a discussion of the structure of the
group (de Sitter group), commutation relations, invariants and the generators of the de
Sitter group which are rotation operators in a five-dimensional euclidean space. In the
second paper he presented the Casimir operators for the de Sitter group and concludes
the paper showing that a particle in a de Sitter Universe does not have a definite mass
and spin, but definite eigenvalues of the two invariant Casimir operators of the group. He

. did not discuss the equations obtained from the invariant Casimir operators.
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Tagirov(™® solved the D’Alembert wave equations in the de Sitter spacetime ob-
taining the solution of a second order differential equation* in terms of the spherical
harmonics and Gegenbauer polynomials. The fourth order differential wave equation iz
not mentioned. This theme was also the subject of studies by some other authors. Speci-
fically we mention firstly, the paper by Borner and Diirr(**) where they discussed the de
Sitter spacetime and derived an eigenvalue equations for the Casimir operator; Roman and
Aghassi('®) constructed quantum mechanical equations of motion associated with particles
of a given spin; and Fulling’s book(*®) where the author presents and discusses the aspects
of quantum field theory in curved spacetime, where the de Sitter spacetime is a particular
spacetime and secondly, Birrell & Davies book(*”) where they discusses the same subject
where many parametrizations of the de Sitter spacetime are presented, for example; the
Steady-State Universe of Bondi & Gold™®) and Hoyle'®) which covers the half of the de
Sitter manifold, in contradiction to Tagirov(*® which studies the Einstein Universe using
a conformal time, where the coordinates cover the whole of the Sitter manifold.

Now, an original way to study the cosmological problem is the theory of Hypersphe-
rical Models Universe (tied to the integers numbers) proposed by Fantappié(®? and per-
fected by Arcidiacono(®'?2), In this theory it is necessary to distinguish the absolute
spacetime (with constant curvature) effective seat of the physic events from the infinite
relative spacetime (tangents) where each observer localize and see the phenomena. Then
we use a flat representation of the de Sitter Universe on one of their tangents spaces.
Among the infinite representations we use the Beltrami(?®) geodetic representation where
the geodetics of the Hyperspherical spacetime corresponds to the straightlines of the flat
tangents spacetime of the observer’s localization. It follows the group of motion in it-
self of the de Sitter Universe is represented by the so called Fantappié-de Sitter group,
isomorphic to the five-dimensional pseudo-rotation group, i.e. by the projectives of the
tangents space which change in itself the Cayley-Klein absolute(??),

Recently, Arcidiacono and Capelas de Oliveira have discussed the Laplace
equation(?*) and D’Alembert wave equation(**®) in the de Sitter Universe, using the
technique proposed by Fantappié-Arcidiacono, in terms of the ultraspherical polynomi-
als. More recently, we have discussed the homogeneous D’Alembert generalized wave
equation®”) when we have a small distance situation (a local problem) using the same te-
chnique. In another recent paperm) we have proposed a new construction of the Casimir
invariant operators for the Fantappié-de Sitter group using the same technique mentio-
ned above, in that paper we obtained the commutation relations and Casimir invariant
operators for the Fantappié-de Sitter group but the result equations (differentials wave
equations) are not solved, this is done in the present paper which is organized as follow: in
section one we present a brief review of the technique proposed by Fantappié- Arcidiacono;
in section two we briefly discuss the Fantappié-de Sitter group, presenting the operators

0+ For second order differential wave equation we understand the equation obtained by the Casimir
invariant operator of second order. The fourth order differential wave equation is an equation obtained
by the second Casimir invariant operator of fourth order.



and the Casimir invariant operators; in section three we discuss and solve the second
order differentinl wave equation in terms of the aspherical harmonics and hypergeometric
function (ultraspherical polynomial in some cases); in scction four we discuss and solve
the fourth order differrentinl wave equation; we note that in all sections above mentioned
the clasnical renults obtained in Relativistic Quantum Theory in Minkowski spacetime are

recovered when the radius of the de Sitter Universe goes to infinite. Finally we present
ours comments and conclusions,

I. A Brief Review of the Method

In this section we present a brief review of the method proposed by Fantappié-
Arcidiacono. Connider a fivedimensional space Ey with the homogeneous coordinates and
the fourdimensional Beltrami coordinates in the de-Sitter space.

Therefore the five dimensional homogeneous coordinates denoted by
€A(A = 0,1,2,3,4) and the four dimensional coordinates denoted by z,(x = 0,1,2, 3),
are related by

z,m R & (L1)
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satisfying the relation of normalization 464 = R? where R is the radius of the de Sitter

Universe.
Introcuding the following notation we have for the Cayley-Klein absolute

A =1+’ =4y=14aqu, (1.2)
where
1 1
& = F and N = -R;ct (1.3)
and now, we can remove the €, coordinate and we obtain
R z
b= A and §u = 7{1 (1.4)

where A is given by equation (1.2). . .
To obtain the relation for the partial derivatives we consider a function ©(£4) being
an homogeneous function of degree N in all five variable ¢4, and using Euler’s theorem

for homogencous function we have

EA0ap(£a) = Np(£a) ' (1.5)

where we have put 94 = 8/0¢a.



Using the definition of homogeneous function we can write

No(€a) = (&) V(R 2,) (1.6)

where the function which appear in the right side of the above equation is a function
obtained from (£4) with the substitutions £, — R and £, — z,.

Deriving the above equation, firstly in relation to & and secondly in relation to §,
and introducting a function ¥(z,) by

Y(eu) = ANp(R, ) (1.7)
we obtain, respectively
0 N 0
R-éa (EA) = (-X = Am“-a—x-:) 1/)(:::,,) (l.8a)
and
d 7] N
g7 = (450 + ) s )

which is the link between the two formulations. Then, we have solved the problem to pass
of the five dimensional formulation, €4, to spacetime formulation, z,, i.e. in orthogonal
Cartesian coordinates.

II. Casimir Invariant Operators

In this section we present the Fantappié-de Sitter group; the respective operators
and the Casimir invariant operators.

The Fantappié-de Sitter group, isomorphic to the five-dimensional pseudo rotation
group, is the group of motions admited by a cosmological space with line element given
by

— ds? = A’dz,dz, = A*[(dzy)’ + (dzy)’ + (dwa)? + (dzo)?) (2.1)

where 2o = i ¢t and R?A? = R? 4 p? — 2} and p? = (2;)? + (2,)? + (23)%. This space can
be embedded in a flat five-dimensional space time, being the z,, the Beltrami projection
from the “sphere” with equation

,§ Eaba = (6)* + (€2)* + (&)* + (&4)" = (€0)* = R?

The coordinates are related by the equation (1. 4) and the differential operators by the
equation (1.8a) and equation (1.8b).



The representations for the Fantappié-de Sitter group®® is given by the five-
dimensional angular momentum operators

0 3}
Jap = —th = 5

\B = —1 (64553 —€B (%A) Las (2.2)

where A,B =0,1,2,3,4 which in terms of the Beltrami coordinates are given by
Luu =ZTupPy — TuPu (2.33)

and
1

\ = ELO,\ = A? Pa+ 77 e L (23b)

where v, u, A =0,1,2,3.

We note that in the above equations(where 7, are the analogous of the momentum
operators in the Minkowski spacetime) that the linear momentum, p,, and the angular mo-
mentum, L,,, mix in an unique tensor. This mixing is due to the fact that transformation
of displacement are the analogous of the translation and therefore the energy-momentum
operators are not conserved in relation to the Fantappié-de Sitter group.

Introducing the spherical coordinates and defining the following operators:

Ty _'="t‘emporal translations, with To = (—t¢/R)L4o
"T,, = spatial translations, with T,=(1/R)L,4
V, = center of mass inertia momentum, with V.= (-1/¢)Lo,
L, = spatial rotation, with L,= 1L,

where p,v,A = 1,2,3, we obtain ten differential operators corresponds to the generators
in the explicit forms given by

2\0 tr 0
_ Fye T 2.4
To = hc[(1+R2)0t+R20r] | (242)

ih _ 0 R? 0 sing @
Ty = _%ﬁ[(rz + R?)sin 0 cos ¢5;+ —r-(cosﬁcos«ﬁ—az = sin06—-¢5)+

+7rt sin 0 cos ¢-g—t-] (2.4b)

, i " . 8 R? ., 0 cosgd
T, = —#[(rg+R2)smﬂsm¢5;+T(60805m¢5§+ sinO%)_’-

+rtsin @ sin ¢§t_] (2.4¢)




Ty = ———-[(r‘ + 1 ;.mr/;}r- - -l;{zamf/ - rz,mo,fi] (2.4d)
= nvcnsf  omscaly 80 rinvensd]
V, = :_—j[l(zinﬂzin r,‘,’,;lr + %m«/)nm /?fl é:{%ﬁ;};) ~ rainf sin fﬁ%] (2.41)
V, = g[t(an,o; - }ﬂmﬂ;%) - m,..o% (2.48)
L = ih(-— sin ,-;’5 ~ cot 8 cos 4,”%) (2.4h)
Ly = it(+om ,-}"5 ~ cotdeind-2: ;) (2.43)
L3 = zh% (2.4j)

where in the above expressions h and ¢ have the usual meaning.
Considering a ciclic permutation of the index p,v and A we can obtain the commu-
tation relations for the above differential operators of the Fantappié-de Sitter group(?®.
Using the above expressions for the operators we have for the second order Casimir

differential operator the following expression

(7(ct)’
2 r’\d 29 1,
* ("fm)ar*?p‘az ) (23)
where the L£? operator is given by
o (') l i
2 1 —
L= ,)m-}-cow 00 270 04 (2.6)

it is the usual angular momentum operator.
We note that, when /i — co the equation (2.5) reduces to the D’Alembert wave

operator, i.e.

— h’ 1 J* .
kui [,=0=~-h"|A- 790 (2.7)

where A is the Laplacian operator writen in spherical coordinates.
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For the fourth order Casimir ditferential operator we have

4h1

li= S O (2.8)
where
. & d? a* d 7]
H2=t v I 2 2_py__ S ) — 2.9
a,+(R t)é}t’ 2rt(R z)arat+r(2t R)ar 2t(R t)at (2.9)
and £? given above. When R — oo we have the usual relation, i.e.
4h" 2 0%

The second order Casimir differential operator is associated with a mass and the
fourth order Casimir differential operator is associated with a spin. In consequence, a
particle in a Fantappié-de Sitter Universe has not a well defined mass and a spin but has
constant eigenvalues of the I; and I; Casimir invariant operators.

III Second Order Invariant Operator

In this section we discuss the second order differential equation obtained for the
Casimir invariant operator of second order, which is the Klein-Gordon wave equation i.e.,
the following differential equation

Lyp(r,0, 6,t) = M*)(r, 0, 6, 1) (3.1)
where M? is a constant which is associated with a mass of the particle and the I, operator

is given by equation (2.5)%.
Then, introducing the I, operator in equation (3.1) we obtain the following partial

differential equation

2 2 ﬁ & 2 3_2 g 9 9
A1+ €5 + 2 — (=) + 0+ €0 + 21+ e 0,) =
o = —]Woziﬁ(f,'), 01 ¢) (3'2)
where we have put
r M '
f = E’ n = % and E;l— = Mo (33)

‘and A2 =146 -2

O+we note that, in the limit R — oo we have the classical D’Alembert wave equation(®*325:26),
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To solve this partial differential equation we use the method of separation of variable.
Introducing a function as a product

v(&,n,0,8) = ZTA(f.n)S,\w, ) (3.4)

we have an equation in the angular variables (0, 4), and another equation in (§,7) varia-
bles, as follows

2 2
R (B KU (Y

6 6
a M X\
9 2o _ A =
+2ng0 + E,}T(E.n) =0 (3.5)
and
0? 0 1 .
{W+cot060 n20W+A}S(0,¢)=O (3.6)

where \? is a constant.

The second of the above differential equations, for A* = —I({+ 1) with 1 =0,1,2...
has the usual solution given by

—m)! i .
50,6) = (-1 2L G P (eonpeme 37)

with £ > m (m is an integer) where P;"(cos ) are the associated Legendre functions®.This

solution is exactly the spherical harmonics which is the same obtained with the classical

treatments of the Klein-Gordon differential equation writen in spherical coordinates.
Finally, wetmust solve the follow differential equation

9 N 9
o e+1) M

+ong + S T ) = (38)

For this purpose we introduce firstly the changement of independent variable defined

by

{(1+£)aa£2+2£7

E=p cht and n=p shr - (39)

and we obtain the following partial differential equation

0*Qur notation for special function is the same of ref. 29.
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2 2
no 1 nd 19 ,thrd
{(l+p)p2+p(3+2p)ap i
M He+1)
14 p?  pPch?r

}T(,;, ) =0 (3.10)
‘Now, we introduce
T(p,7) = F(p)G(7)
in'the above equation and we have two ordinary differential equation given by

(e+1)

G" 4 2thr G' + G -G =0 (3.11a)
Cchir
2 12
P14 p?)F" + p(3 + 2p*) F' + +”° F-MF=0 (3.11b)

where /\g is a constant and the comma denote differentiation.

Taking A2 = k(k + 2) where k = 0,1,2... we obtain the solution of the equation
(3.11a) as follow (in r and t variables)

' St i k+3/2 [ ct
G(r,t)=|(1- 3 Cilks (;‘) (3.12)
where CJ(z) are the Gegenbauer polynomials.

The solution of equation (3.11b) is given by

A2 )""‘ Ik —v)
A-1 F(k+v+3)

F(p) — e-—i1r/2 (k+v+3) ( 20+3/2F(V + 5/2)‘

v 1 v43/2 1
a e (-———) Qki,n (-*—— (3.13)
J1— A2 J1— Az

where M = v(v+3) and A2 = 1+£2—n? = 1+ p? and P}(z) and Q;(z) are the Legendre
associated functions of the first kind and the second kind, respectively.

Finally, we can write the solution of the second order Casimir operator (equation

3.1) as follow:

© o0 oo (¢
o= 233 3 SO.H1E)

v=0k=0¢=0 m=-

9



where S(8, ¢) is given by equation (3.7); T'(£,7) is given by a product of equations (3.12)
and (3.13) and ¢ and 7 are given by equations (3.3).

IV Fourth Order Invariant Operator

In this section we discuss and solve the fourth order differential equati?n obtail.\ed
for the Casimir invariant operator of fourth order, i.e. the following differential equation

I, Q(r,0, $,t) = N*Q(r, 6, 4,t) (4.1)

where N? is a constant which is associated with a spin of the particle and I; operator is
given by equation (2.8).

Introducting the I, operator in equation (4.1) we have the following partial differen-
tial equation

9? ] 1 0
(5@; + cot 030 sin? 0.6—55)
& 0 ] d
2.2 7 2 . 42 2__pA\_ -~ __ 2 _ 4\
[‘ rig T (R =) g = 2ri(R? t)a (20— B o~ (R — ) 2 0,6, 4,) =
| = NoQp, 9, 4,1) (4.2)

2 p4
where N¢ = 6423 N2,

We note that, when we take the limit B — oo in equation (4.2) we have exactly the
classical results.

To solve the above equation (fourth order differential equation) we note that, this
equation can be write in the following way

L20(8, YH* (1, t) = N3 (6, 4)Qn(r, 1)

and therefore we have two partial differential equations of second order,

L£2Q(0,¢) = N} Qu(0, ¢) (4.3a)

H2*Qy(r,t) = N2 Qy(r,2) (4.3b)
where N2 N? = N2.
The equation (4.3a) is the same equation solved above (equation 3.6) when we have
N} =£(£+1) with 1 =0,1,... and the solution is given by equation (3.7).

Then, we must solve, ﬁnally, the following partial differential equation (parabolic
equation)

d* ik i O
s p 3 _ 2
{ g + (R —1%)? 6 5 — 2rt(R? — ¢ )ara¢+ (4.4)
+r(2t* - RQ)—BP - - }Qz nt) = N3 Qy(r,t)
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Therefore we introduce the variables 7 and p defined as follow

t=Rr and r=Rp

and introducing the following changement of independent variable

£ = ﬁ(r’ NV gl wep

we get

2
{rfu e 4+ 25’1;’)53,;} Q(en) = N2 Da(Eo) (45)

where No = NQ/R
We note that, in this equation the £ variable does not appear explicit in the solution

Q2(€,7n).. To see this fact we introduce a new variable defined by
{n=u
and we obtain the following ordinary differential equation*

d? d
{u2(1 + uz)m +u(l + 2u2)&-t: - Ng} Qy(u) = 0. (4.6)

The solution, for Ny non integer, of the above differential equation is given by (in ¢
variable)

gy No No+11 # t  (No+1 No+2 3 83
Qy(r,t) = (1-— ﬁ) {Aan (*2—,'2—;5;15) +B§zFx( 5 3 ;E;F)}
(4.7)
where ;Fj(a, b; c; z) is the usual hypergeometric function and A and B are constants. For
No an integer the solution is given by

Qa(r,t) = t(1 — t)* Po(2)

where ) and yu are parameters and P,(t) is a polynomial.
Finally, the solution of fourth order differential equation is given as follow

Q(r,0, ¢, t) = N,(0, $)(t,7) ’ (4.8)
where 2,(0, ¢) is given by equation (3.7) and Q4(t,r) is given by equation (4.7).

0+This equation is the same obtained from the equation (4.4) taking r = 0.
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V. Conclusions

In this paper we discussed and solved, by an alternative way, (Fantappié-Arcidiacono
method) firstly the second order differential wave cquation obtained for the second or-
der Casimir invariant operator and secondly the fourth order differential wave equation
obtained for the fourth order Casimir invariant operator.

For the second order differential equation our result are the same obtained by several
authors using a different techniques but the fourth order differential equation our results
seens to be new and must be interpreted.

The next point is solve the generalized Dirac wave equation for the scalar field but
this topic are present in another paper®0),
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