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Abstract

We consider aspects of the problem of the control of dimensionality in projection
methods for integral equations of the first kind. We show that by combining the error
estimates of the regularized solution and the approximate results of the projection space, it
is possible to choose a satisfatory dimension of this projection space. We apply the spectfal

method to traditional ill-posed problems to performe some numerical experiments.
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1. Introduction.

Let H, and H, be Hilbert spaces and K : H, — H, an integral operator. It is well

known that linear Fredholm integral equations of the first order,

(L1) Kz = / K(s,t)z(t)dt = g(s)

are ill-posed problems: even if a unique solution exists an arbitrarily small perturbation
of the right-hand side can give rise to a large perturbation of the solution.

When the kernel K(s,t) is compact the nature of the problem is completely spec-
ified by the Picard theorem (see Groetsch [5] for further details): there exist adjoint
Ly-orthogonal functions {¢;(s)}, {#:(t)} and real scalars A; — 0 (the singular system)
such that

/K(s,t)qﬁ,-(s)ds = Mii(t) and | /K(s,t)r/z,-(t)ds = \igi(s) .

: 2
Thus, if g(s) = & Bii(s) then z(t) = Z(%) ¢,~(t). However & € L, only if E(%) < 00,
this is the called Picard condition which specifies whether a nice solution exists to the

problem.

Due to this ill-posed nature of the problem it is necessary to regularize (1.1). A
well-known and effective procedure is the Tikhonov regularization method (5], [11]. This
method, in an abstract sense, essentially replaces (1.1) with the problem of minimizing

the functional
(1.2) fa(z) = ||Kz — g|* + of|L2||?

where a > 0 is the regularization parameter and L is a suitably defined differential
operator (which “smoothes” the approximation).

Typically, the equation (1.1) is discretized at some stage of its solution, which re-
duces the original problem to solving a system of linear equations. Another well-known
procedure for dealing with ill-posed problems is the truncated singular value decompo-
sition (TSVD) of the discretized system matrix. In [6] Hansen showed that if there is a

distinct gap in the singular value spectrum of finite dimensional approximation matrix



then the TSVD method is equivalent to the Tikhonov regularization. For matrices with
ill-determined numerical rank Hansen also showed in [7] that the existence of a satisfactory
approximate solution depends on the satisfation of a discrete Picard condition. Through
theoretical arguments and numerical experiments, he showed that when the discret Picard
condition is satisfied then TSVD and Tikhonov regularization always yield very similar
solutions, even for problems with ill-determined numerical rank matrices.

The crux of the difficulty in solving ill-posed problems is that, in general, the data

are only imprecisely known. In other words, only some garbled version g’ is available.
We will assume that, in this case,

(1.3) llg—g°ll <&

where § is an a priori known error level. In this inexact data case the regularization
method consists of choosing space norms and a = «a(6) for the regularization parameter.
This last choice may be made in either an a priori or an a posteriori way but in any case
the matching of the regularization parameter with the noise is at the heart of the theory
of regularization.

The more general a posteriori strategy for choosing the regularization parameter,
a, as a function of the error level is the discrepancy principle. This principle was firstly
clearly enunciated by Morozov [9] and it is based on the point that the quality of the
results of any computation must be comparable to the quality of the input data. Several
authors have analysed this compromise using different approachs.

On the other hand, the regularization approximation scheme turns into algorithms
once a resolution strategy can be effectivelly implemented. Whichever the method chosen
for solving the ill-posed problem, there is a critical parameter choice whose “optimal”
value is crucial to the amenability and numerical implementation of the method. This is
not a trivial problemn since it involves a trade-off between accuracy and numerical stability,
a situation that does not usually arise in the numerical solution of well-posed problems.
In other words, it must be recalled that there are conflicting forces in attempts to solve ill-
posed problems. The necessity of employing a finite basis set is always present, introducing
a truncation error. In general, the larger is the set, the smaller is the truncation error. In
contrast, the increase in the size of the set introduces the kind of conditioning problems

that have been analysed by several authors [10], [12].



In this paper we analyse the relative effects of the mentioned errors when we use
projection methods in orthogonal polynomial subspaces to solve the problem (1.1). We

present some arguments that allow the choice of the subspace dimension based on the
minimization of the overall error.

2. The discretization procedure.

The minimizer of ||Kv — g|| in Hj is called the least square solution of (1.1). It is
easy to prove that if K is a bounded linear operator from H, into H,, whose range R(T)is
not necessarily close, then a least square solution exists if and only if g € R(T) + RLTY
which is a dense set in Hj. In this case the set of least square solutions is a closed convex
set and (1.1) has a unique solution of smallest norm which is denoted by z = K*g.

Let us consider a simple example of the regularization function (1.2):
(2.1) fa(2) = 1Kz = glI” + all2]]*.

A direct computation shows that z*, the unique minimizer of (2.1) in Hy, is the

solution of the equation

(2.2) (K"K z + az,v) = (K"g,v) Yv€ H,

where K* is the adjoint of K. The rates of convergence of 2%, as a — 0, are known: (see

Groetsch, chapter 3 for example):

(2.3) i.if a=K*tgeR(K*) then |lx—2°||=0(Va)
i.if 2=K'tge€ R([K*K]") then ||z — z°|| = 0(*).

Now we will consider regularized Ritz approximations obtained by minimizing the
Tikhonov functional over a finite dimensional supspace. We assume that {V,,} is an

expanding sequence of finite dimensional subspaces of H, whose union is dense in H,, i.e.
nwcv,c... and UV = H,.
The finite dimensional problem corresponding to (1.1) is

Knz =g.




Here K,, = KP,, where P,, is the orthogonal projection of H, onto V,,. Let zj, be
the minimizer of the Tikhonov functional (2.1) over V,,. If {v1,v2,...,vm} is a basis for

Vi we can use (2.2) with v = v;,j =1,...,m to find

m

(2'4) I; = Zy,-v,- .

=1

In this way y = (y1,...,ym) is the unique solution of the linear system
(25) \ (B+aM)y =w,

where w,- = (va,g) 5 A’I,'_,' = ('U,',‘UJ') ’ B.‘_,‘ = (Kv,-,va),l S l,] S m.
The sucess of this scheme depends on how well K,, approximates K or equivalently
how quickly the number

(2.6) Tm = [1K(I = Pr)l|

becomes small. Since K is assumed compact, the properties of the subspaces {V;,} guar-
antee that v,, — 0 as m — oo (Groetsch pag, 74).

The convergence analysis for the approximation follows from the standard arguments
used in this case. We will present some points for the sake of self sufficiency of this paper.
The following results tell us about the rate of convergence in the error-free case and in

the noisy data case.

Theorem 1; Let = K*g € R(K*) and z,, he the approximation defined by (2.4)-(2.5)

with a(1m) = 0(12).
Then

(2.7) l|Zm — || = 0(Fm) -

Proof: Let z = K*w. It is known that

le® = wll < /1 + Lol

Therefore, if we take a = 0(7?%) we will have

“*”a = -Tm“ = 0(ym).




The desired result follows from the inequality

lzm — ]| < [l2pm = 2°|| + ||2* - 2|

combined with (2.3). =

We now suppose that g is not exactly known but we have approximate data g° sat-

isfying (1.3). We will denote by ,, the minimizer of (1.2) with g = ¢°.

Theorem 2: Let x = K*g € R(K*) and #,, be the approximation defined by (2.4)-(2.5)4
with a(ym) = 0(v%) and 7,, = 0(/8). Then

(2.8) 1Zm — 2| = 0(vm)

Proof: It is known (c.f. Groetsch) that
6
ey
[|Zm — Zml| < N

But

(2.9) lz = &ml| < |2 = Zmll + ||2m — nll

and consequently (2.8) follows from (2.7) and the supposition 7,, = 0(v/8). ™

The inequality (2.9) is typical for approximations in ill-posed problems. Looking at
the bounds of each term in this inequality we recognize two terms in the error estimate:
one due to approximation and another due to the measurement error. The first term
(responsible for the regularization error) tends to zero as m — oo while the second term
(responsible for the magnification of contamination error due to ill-posedness) tends to
infinity as m — o0o. The balance of these two terms gives an “optimal” approximation. In
our case this balance is obtained if we take finite-dimensional spaces such that v,, = 0(\/3)

By (2.7) we can conclude that if the data are exact we can choose 7,,, the dimension
of Viu, in accordance with the desired approximation. On the other hand we can see by
Theorem 2 that we have more severe restrictions on the noise data case, In this case,
given a value § we must choose V,, such that 7, = ki Vé,ky > 0, and solve (2.5) taking



a = ky6 for some k, > 0.
3. Numerical considerations

The theoretical results presented in the previous section yields some insight into the
order of approximations of the combination of the Tikhonov regularization and Ritz ap-
proximation, Like any numerical method for an ill-posed problem, this one ultimately
involves solutions of linear systems of equations in order to obtain numerical approxima-
tions. In our case the discretized version (2.5) must be solved. The increase in the size
of the matrices introduces the kind of conditioning problems. In [12] Wing studied the
condition number of the matrices corr&spondmg to Galerkin and collocation methods for
mtegral equations of the first order. It can be shown that condition number of B must
grow with the dimension m, since the eigenvalues of B must decay to zero without any
particular gap in the spectrum. |

As a rough rule of thumb, we know that if we are working on a computer whose
arithmetic carries, say, p significant digits, then the computed solution to a system with a
condition number cond(A) = 10° may have only p—gq accurate significant digits. We must
say “rule of thumb” and “may” because the error bound is only a bound and beéause
different scalings of the matrix may alter what we mean by “significant digit.s”'. But in
general, we should become increasingly concerned as ¢ increases towards p, and alarmed
whenever g exceeds p. . .

It is well-known that the condition number of a matrix A can be used in the sensitivity
measure of the Az = b solution when there exists a perturbation Ab on the right-hand

side:

1A
< cond(A
=l SRNTTI

- Therefore, even if the error in b is very small, the larger cond(A) is,.the less information

about the relative error in z can be taken out.

Since we are using variable subspace dimensions, there is a practical question: how
this invitable blow-up can be used on the dimension control? We try to answer this
question with a reason suggested by the role of the Picard condition in the truncated

singular value decomposition methods [6], (7).




Let vy, vy, ...,v, be an orthonormal basis for V,, and x,, the approximation calcu-

lated by (2.4)-(2.5) using a = a(m) as in the previous section. By the orthogonality of
the basis we have,

(3.1) lzml? = 3042,

i=1

J
Let s; = zy?_j 3 Since the sequence of finjte dimensional subspace is dense in Hj, by

Theorem 1 thé—sleqlleﬂce s; is convergent. Theoretically as a Cauchy sequence in the set
of positive real numbers, s, — s, — 0 if p,q — co. Similar arguments can be used in the
noisy data case if we assume that in Theorem 2, § — 0. With this reason we can set up
a practical rule for the choice of the dimension of V.

To test the convergence of the partial sums (i.é. the convergence of the sequence s;)
we can use the L-curve [7). If we consider the Tikhonov regularization method (1.2), the
L-curve is a plot of the side constraint ||L#,eg|| versus the residual norm || K 2,eg— g||. The
L-curve is a useful tool in connection with ill-posed problems because it is a convenient
way of displaying the inter-relationship between the norm of z* and the corresponding
residual. Also the L-shaped corner corresponds to a regularization parameter that bal-
ances the regularization error and the perturbation error from the noise data. In our case

the parameter is the dimensjon of the subspace and we will consider set of points such

that (|| Kz, — gl], l|zm])-

4. Some approximation spaces and their order of approximation

Methods based on the Fourier series of orthogonal polynomials have become increas-
ingly popular in recent years. These are the spectral methods wich have showed to be
competitive with the traditional methods of finite difference and finite elements in the
numerical solution of differential equations. It seems to us that the use of orthogonal
polynomial is also a good choice in dealing with integral equations [4]. Here we present
the error estimates for some orthogonal systems. -

As we observed in Section 2, given an operator K we need to know how quickly the
number 7,, = ||K(/ ~ P,,)|| goes to zero as m — oo. First we observe that

WK = Pl = I = Pu) K| = sup |[(1 = P ) K70]|.

ul:l



Let z(t) = K*v, v € H, such that ||[v|| = 1. In this case we have":
(I = Pu)K*v|| = ||(I = Pu)zl| = |lz = Pmzll

where P, : Hy — V,, is the orthogonal projection. Let V, ='span[vi,'...,t;m] where
m

v,¢ = 1,..m, are the orthogonal polynomials. We know that P,z = Zb;v;(t) where
i=1

bi = (z,v;),t = 1,...,m, are the Fourier coefficients.

On the other hand,
b
2(t)= K"'9= / K(t,s)v(s)ds .

If the differentiation is allowed we have

2'(t) = : Qlia(—:ﬂv(s)ds.

y T.”

0t1" exists and is an integrable function then z(t) € C(a,b).

() = /ab Q{-I;—E.fr’j—)v(s)ds ;

The rate of convergence of the Legendre and Chebyshev expansions for a general

In fact, if the derivative
and

in

function z(t) have been studied by various authors (1], [2], [8]. Let Q be an open bounded

interval. The weight Sobolev spaces are

H, () ={¢€ LQ(Q) i |llsw < 00}

where |||, = / w(s) Y (D'¢)*dz and w(z) is a weight function (w(z) > 0 and inte-
n i=0
grable function). In [2] Canuto and Quarteroni prove the following estimates.

i - Chebyshev polynomials. Let us take @ = (—1,1) and w(z) = (1 — 2?)~/2, Let
Vi be the m-dimensional subspace of HZ(f) spanned by the Chebyshev polynomials of
degree least than or equal to m. If P, is the orthogonal projection onto V,, then for any

real p# and o such that 0 < j < g there exists a constant C such that

(4.1) 12 = Puzllw < C m#)z)|pw, V2 € HI(RN)
where 5 | s S ‘

_ ) 2u—=0-05," pn21
(4.2) 6(/"0) - { 1.5” -0, . 0 S m _<- 1



ii - Legendre polynpmials. In this case @ = (—1,1) and w(z) = 1. If now we consider
Vin as the m-dimensional subspace of H°(§) spanned by the Legendre polynomials of
degree least than or equal to m, the same estimates (4.1)-(4.2) are achieved.

If the Laguerre functions are used as an orthogonal system, the following estimates

can he used. The Laguerre functions are defined by
KO = \2pe ™ Lpt), p>0,

where Lk(t) = 2;( ( ) are the classical Laguerre polynomials (orthogonal in (0, 00),

wexght functlon w(z)=e ’) It can be showed [4] that if K = L?(0,00) — L?*[(c,d)},c >0
then for p* = v/od there exists C > 0 such that

I|K — Knll < C 6™*,
d-p

<1.
d+p

where 0=

5. Numeral experiments.

Example 1: As a first example we consider the Laplace transform inversion problem. In
the notation of this paper, let H, = L?(0,00) , H, = L*(c,d) , 0 <ec< d, and

o) = [ ezt

We take the data values g(s) = W , 8 E (1,4). In this case it can be showed that
z(t) = te~*. As the finite dimensional subspace V;, we consider the space spanned by the
Laguerre functions, defined by

() = 2 Lu(2pt), k< m,
where L;(-) are the Laguerre polynomials, what means that
/ T e Li(t)L;(t)dt = 6
0

The parameter p can be appropriately chosen as a function of ¢ and d. In our example
p = 2. Also, it is showed in [4] that

[ — 1/2 l —- m+1 2 1 m+1
(5.1) _ {_EPL__)_} (...2) _ /2. (_)
(d + p)(c+p) d+p 3 \3

for these subspaces V,,. Some values of 4, are presented in table 5.1, where the numbers

between parenhesis indicate decimal exponents.
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m 4 5 6 7 8 9 10
Ym | 3.37(-3) | 1.16(-3) | 3.75(-4) [ 1.25(-4) | 4.16(-5) [ 1.39(-5) | 4.63(-6)
Table 5.1

We must observe that, even in the exact data case, during the calculations we work
with values that depend on the machine precision. Using double precision arithmetic, for
example, the “exact data” means § = 10~. In this case, by Theorem 2, it is convenient
to take V;, such that +,, = 0(1077). Using (5.1) we obtain m = 13.

On the other hand, the condition number of the matrix B on (2.5) increases drasti-
cally with the increasing of the subspace dimension. Some of these values are presented
Table 5.2.

m 5 6 7 8 9 10 11 12 13
cond(B) | 1.1(6) | 4.1(7) [ 1.5(9) | 5.3(10) | 1.9(12) | 7.0(13) | 2.6(15) [ 9.1(16) | 3.4(18)
Table 5.2
Looking at these values we see that it is not be possible to use m = 13, because

the condition numbers blew up before. In fact, working with double precision arithmetic,
in accordance with the numerical consideration of Section 3, we can only rely on the
calculations which come from m = 8 or m = 9. The results obtained for various values of
m are presented in the table 5.3. The values of ||z,,|| are, in fact, the square root of the
partial sums defined in (3.1), i.e, they are approximations of ||z|| = 0.5 in this example.
The residuals are calculated by ||Kz,, — g||. We see by this table that the partial sums

grow out of control for m > 10.
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m | |lzmll |l|Kem —gll
2 | 4.4244(-1) | 9.0090(-2)
3 |4.9331(-1) | 9.0083(-2)
4 |4.9987(-1) | 9.0083(-2)
5 |5.0013(-1) | 9.0083(-2)
. 6 |5.0004(-1) | 9.0083(-2)
7 | 5.0001(-1) | 9.0083(-2)
8 |5.0000(-1) | 9.0083(-2)
9 |5.0001(-1) { 9.0083(-2)
10 | 5.0156(-1) | 9.0083(-2)
11 | 7.9165(-1) | 9.0083(-2)
12| 88928 | 9.0083(-2)
13 | 1.2068(2) | 9.0083(-2)
14 | 1.5529(3) | 9.0083(-2)
15 | 1.9040(4) | 9.0083(-2)
16 | 2.2360(5) | 9.0083(-2)

Table 5.3

Example 2; In this example we consider again the Laplace transform inversion problem,

but now we test the noisy data case. In this case we replace g(s) by the noisy version

1 TS
6 - — 1 A
9= Grp +‘5S‘“( Z )
with § = 10~%. Using Theorem 2 we can choose V;, such that v, = 0(10~%). By the
equation (5.1) we must take m = 4. Also by Theorem 2, the recommended regularization
parameter must be o = 0(10~*). The condition numbers of the matrices of (2.5) with
a = (1074) are presented in Table 5.4. The effect of the regularization is now clear: the

condition numbers are moderate if double precision arithmetic is used.

m 3 4 5§ 6 8 9
cond(A) 8.0(2) 5.5(3) 6.6(3) | 6.7(3) | 6.7(3) | 6.7(3)
Table 5.4

Table 5.5 is the version of Table 5.3 for this example: it contains the values of ||zx||
and the residual measure ||Kz,, — g°||. As the exact solution is such that ||z|| = 0.5 this

example confirm the forecast: there is no improve in the results for m > 4.

12



m | ewll | 1Kzm —¢°l
1 [2:3069(-1) [ 8.9686(-2)
2 | 4.4121(-1) | 9.0089(-2)
3 | 4.8068(-1) | 9.0083(-2)
4 | 4.8028(-1) | 9.0083(-2)
5 | 4.8000(-1) | 9.0083(-2)
6 | 4.8000(-1) | 9.0083(-2)
7 | 4.8000(-1) | 9.0083(-2)
Table 5.5

Example 3: Let us consider the integral equation

/01 k(s,t)x(t)dt = g(s)

with the kernel -t i
s(l—-t 1

EGH = { Hl-s) if

This example have been used by several authors. In our particular case we choose g(s) =

9%'3'—'1. In this case the solution is z(t) = sin(xt). As we are looking for a solution defined

in a bounded domain we use the Legendre polynomials of degree less than or equal to

s<t
s>t

m to span the finite dimensional subspace V,,. For these polynomials the values of the
condition number of the matrix B in (2.5) are not alarming (at least for m < 13) if we
use double precision arithmetic. The bound for v,,, in this case (4.1), depends on the
regularity of the solution, o in that expression, and on the constant C. However we do
not have information about the values of C. Let us now consider the error estimates on
L? (0,1), i.e. 4 =0. The noisy data case will be simulated by

P(s) = smﬂ(':rs) + 5sin(£4§)
with § = 107*. By Theorem 2 we must take V;, such that v,, = 0(107?) and a = 0(10~4).

To choose m we assume o = 4 and C||z||4 £ 10. In this case it is reasonable to take

m = 6 to guarantee v,, = 0(107%). The obtained values of ||2,|| and ||Kz,, — ¢°||, for
some values of m, are presented in Table 5.6. The exact solution is such that ||z|| = V0.5.
m 2 3 4 6 8 10
[|2m]| 0.7753 | 0.7289 | 0.7289 [ 0.7294 | 0.7294 | 0.7294
|Kz,, —¢°|| [ 0.27(-4) | 0.13(-4) [ 0.13(-4) | 0.13(-4) | .46(-5) | .46(-5)
Table 5.6

13
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