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Abstract 

O 5 .J ll ! íCY.1 

We consider aspects of the problem of the control of dimensionality in projection 
methods for integral equations of the first kind. We show that by combining the error 
~timates of the regularized solution and the approximate results of the projection space, it 
is possible to choose a satisfatory dimension of this projection space. We apply the spect~al 
method to traditional ill-posed problems to performe some numerical experiments. 
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1. Introduction. 

Let H1 and H2 be Hilbert spaces and /( : H1 -. H2 an integral operator. It is well 

known that linear Fredholm integral equations of the first order, 

(l.l) J( x = j K(s, t)x(t)dt = g(s) 

a.re ill-posed problems: even if a unique solution exists an arbitrarily small perturbation 
o{ the right-hand side can give rise to a large perturbation of the solution. 

When the kernel /((s, t) is compact the nature of the problem is completely spec-
ified by the Picard theorem (see Groetsch [5] for further details ): there exist adjoint 
Lrorthogoqal functions {4>i(s)}, {1Pi(t)} and real scalars >.i --+ O (the singular system) 
such that 

Thus, if g(s) = E /3i1P;(s) then x(t) = r;( ~) 4'i(t). However x E L2 only if E( t) :;i < oo, 
this is the called Picard condition which specifies whether a nice solution exists to the 
problem. 

Due to this ill-posed nature of the problem it is necessary to regularize (1.1). A 
well-known aQd effective procedure is the Tikhonov regularization method (5}, (11]. This 
method, in an abstract sense, essentially replaces ( 1. 1} wi th the prnblern of minirnizing 
the functional 
(1.2) fo(x) = lll(x - 911 2 + a11Lxll2 

where o > O is the regularization parameter and L is a suitably· defined differential 
operator (which "smoothes" the approximation). 

Typically, the equalion ( 1.1) is discretized at some stage of its solution, which re-
duces lhe original prohlem to solving a system of linear equations. Another well-known 
procedure for dealing with ill-posed problems is the truncatcd singular value decompo-
sition (TSVD) of the discretized 8yi,tem matrix. ln [6j Hansen showed that if there is a 
distinct gap in tbe singular value spectrum of finite dimensioual approximation matrix 
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then the TSVD met,hod is equivalent to the Tikhonov regularization. For matrices with 
ill-determined numerica.l rank Hansen also showed in [7} that the existence of a satisfactory 
approximate solution depends on the satisfation of a discrete Picard condüion. Through 
theoretica.l arguments and numerical experiments, he showed that when the discret Picard 
condition is satisfied then T~VD and Tikhonov regularization always yield very similar 
solutions, even for problems with ill-determined numerical rank matrices. 

The crux of the difficulty in solving ill-posed problems is that, in general, the data. 
are only imprecisely known. ln other words, only some garbled version g6 is a.vailable. 
We will assume that, in this case, 

(1.3) 

where ô ts an a priori known error levei. ln this inexact data case the regularization 
method consists of choosing space norms and a = a( b) for the regularization para.meter. 
This last choice may be made in either an a pPiori or an a posteriori way but in any case 
the matching of the regularization para.meter with the noise is at the heart of the theory 
of regulariza.tion. 

The more general a posteriori strategy for choosing the regularization parameter, 
o:, as a function of the errar level is the discrepancy principie. This principie was firstly 
clearly enuncia.ted by Morozov [9) and it is based on the point that the quality of the 
results of any computation must be comparable to the quality of the input data. Several 
authors have analysed this compromise using different approachs. 

On the other hand, the regularization approximation scheme turns into algorithms 
once a resolution strategy can be effectivelly implemented. Whichever the method chosen 
for solving the ill-posed prnblem, there is a criticai parameter choice whose "optimal" 
value is crucial to the amenability and numerical implementation of the method. This is 
nota trivial problem siuce it involves a trade-off between accurncy and numerical stability, 
a situation that does 11ot usua.lly arise in the numerical solution of well-pose<l problems. 
ln other wordi;, it rnu,;l he recalled that there are conflicting forces in attempts to solve ill-
posed problemB. The 1wc••ssity of e111ploying a finite basis set is always prm,ent, intrnducing 
a trunca.tion error. l11 gcueral, t,hc larger ÍK the !iet, the smaller is the truncation error. ln 
contrast, the increasc! in Ll1c size of the set intro<luces the kind of conditioning problems 
that have been analyse<l hy severa! authors (10), [12). 
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ln this paper we analyse the relative effects of the mentioned errors when we use 
projection methods in orthogonal polynomial subspaces to solve the problem (1.1). We 
present some arguments that allow the choice of the subspace dimension based on the 
minirnization of the overall error. 

2. The discretization procedure. 

The minimizer of JII<v - gll in H1 is called the least square solution of (1.1). It is 
easy to prove that if J( is a bounded linear operator from H 1 into H 2 , whose range R(T) is 
not necessarily dose, then a least square solution exists if and only if g E R(T) + R(T)l., 
which is adense set in H2. ln this case the set of least square solutions is a closed convex 
set and (1.1) has a unique solution of smallest norm which is denoted by x = K+g. 

Let us consider a simple example of the regularization function (1.2): 

(2.1) Ío(z) = IIKz - 9112 + odlzll2 • 
A direct computation shows that x'\ the unique minirnizer of (2.1) in H1 , is the 

solution of the equation 

(2.2) (J(*J(z + az,v) = (JCg,v) Vv E H 1 

where J(• is the adjoint of J{. The rates of convergence of xº, as a --+ O, are known: (see 

Groetsch, chapter 3 for example): 

(2.3) i. if 

i i. if 

x = j{+g E R(K*) then lla· - xºII = O(y'o) 

x = g+ g E R([K* I<]") then llx - xºl1 = O(a"). 

Now we will consider regularized Ritz a.pproxirnations obtained by minimizing the 
Tikhonov íunctiona.l over a finite dimensional supspa.ce. We assume that { V,n} is a.n 
expanding sequence of finite dimensional subspaces of H1 whose nnion is dense in H1, i.e. 

and UV,,. = H1. 

The finite dimensional problem corresponding to ( 1.1) is 
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Here Km = K Pm where Pm is the orthogonal projection of H1 onto Vm. Let x~ be 
the minimizer of the Tikhonov functional (2.1) over Vm. If { v1, v2, ... , Vm} is a basis for 
Vm we can use (2.2) with v = v;,j = l, ... , m to find 

m 
(2.4) X~= LYjVj. 

i=l 

ln this way y = (yi, ... , Ym) is the unique solution of the linear system 

(2.5) (B+aM)y = w, 

where w; = (Kv;,9), M;; = (t•;,v;), B;; = (Kv;,Kv;), 1::::; i,j m. 
The sucess of this scheme depends on how well ]( m approximates J( or equivalently 

how quickly the number 

(2.6) /m = IIJ((J - Pm)II 

becomes small. Since /( is assumed compact, the properties of the subspaces {Vm} guar-
antee that ,m ---+ O as m ---+ oo ( Groetsch pag, 7 4 ). 

Tbe convergence analysis for the approximation follows from the standard arguments 
used in this case. We will present some points for the sake of self sufficiency of this paper. 
The following results tel1 us about the rate of convergence in the error-free case and in 

the noisy data case. 

Thwrem J; Let x = J(+g E R(l(*) and Xm be the approximation defined by (2.4)-(2.5) 

with o(,m) = O(,!). 
Then 

(2.7) 

Proof: Let x = K•w. lt is known that 

Therefore, if we liike o= O(,!) we will have 
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The desired result follows from the inequality 

combined with (2.3). 

We now suppose that g is not exactly known but we have approximate data g6 sat-
isfying (1.3). We will denote by Xm the minimizer of (1.2) with g = g6. 

Theorem 2: Let x = ](+ g E R(J(•) and Xm be tlie approximation defined by (2.4)-(2.5) 
with o{,m) = O{,!) and /m =O(~)- Then 

(2.8) 

Proof: It is known ( c.f. Groetsch) that 

But 

(2.9) 

and consequently (2.8) follows from (2. 7) and· the supposition ,m = O(~)- · 

The inequality (2.9) is typical for approximations in ill-posed problems. Looking at 
the bounds of each term in this inequality we recognize two terms in the error estimate: 
one due to approximation and another due to the measurement error. The first term 
(responsib)e for the regularization error) tends to zero as m -t oo while the second term 
{resporn,ible for the ma.gnification of contamination error <lue to ill-posedness) tends to 
infinity as m -+ oo. The balance of t.hese two terms gives an "optimal" approximation. ln 
our case this bala.nce is obtained if we take finite-dimensional spaces such that -y,,. = ·o(~)-

By (2.7) we can conclu<fo tliat if the data are exact we ca.n choose -Ym, the dimension 
of V.n, in accordance with the desired approximation. 011 the other hand we can see by 
Theorem 2 that we havc more severe restrictions ou the noise data case. ln this case, 
given a value 6 we must choose V,.11 such that 1111 = k1 /5, k1 > O, and solve (2.5) taking 
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o = /vi6 for some k2 > O. 

3. Nupierical considerations 

The theoretical results presented in the previous section yields some insight int.o the 
order of approximatioos of the combination of the Tikhonov regularization and -Ritz ap-
proximation, Like any numerical method for an ill-posed problem, th-is one ultimately 
involves solutions of linear systems of equations in order to obtain numerical approxima-
tions. ln our case the discretized version (2.5) must be solveci. The increase in the size 
o{ the matrices introduces the kind of conditioning problems. ln [12) Wing ~tudied the 
condition numher of the matrices corresponding to Galerkin and collocation methods for . . • 

integral equations of the first order. lt can be shown that condition number of B must 
grow with the dimension m, .since the eigenvalues of B must decay to zero without any 
particular gap in the spectrum. 

As a ro1.1gh rule of thumb, we know that if we are working on a computer whose 
arithmetic carries, say, p significant digits, then the computed solution to a _syste~ with a 

condition number oond(A) = 109 may have only p-q accurate significant digits. We must 
say "rule of thumb" and "may" because the error boun_d is only a bound and hecause 
different scalings of the matrix may alter what we mean by "significant digits". But in 
general, we should become increasingly concerned as q increases towards p, and alarmed 
whenever q excreds p. 

It is well-known that the condition number of a matrix A can be used in the sensitivity 
measure of the Ax = b solution when there exists a perturbation ó.b on the right-hand 

side: 

lló.xll < 
llxll --

l ló.bll cond(A)libif. 

Thereíore, eveu if the error in b is very small, the larger cond( A) is, . the less information 
about the relative error in x can be taken out. 

Since we are u11ing variable subspace dimensions, there is a practical question: how 
this invitable blow-11p can hP- usc<l on the dimeusion control'! We tr3/ to answer this 
question witb a reasou suggestcd by the role of the Picard con<lition in the truncated 
singular value decompoHition methods (6J, (7J. 
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Let V1, V2, ..• , Vm be an orthonormal basis for Vm and Xm the approximation calcu-
lat~ by (2.4)-(2.5) using a = a(m) as in the previous section. By the orthogonality of 
the basis we have, 

m 
(3.1) llxmll2 = LYl.m • 

i=t 
j 

Let s, = LY~.,. Since the sequence of finite dimensional subspace is dense in H1, by 
i=l 

Theorem l the sequence Sj is convf!rgent. Theoretically as a Cauchy sequence in the set 
of positive real numbers, Sq - sP ----+ O if p, q ----+ oo. Similar arguments can be used in the 
noisy dat;t. case if we assume that i~ Theorem 2, 8----+ O. With this reason we can set up 
a pra.dica) rule for the choice of the dimension of Vm . 

To test the convergence of the partia! sums (i.~. the convergence of the sequence 3;) 
we ca.n use the L-curve [7]. If we consider the Tikhonov regularization method (1.2), the 
L-curve is a plot of the side constraint l[Lxregll versus the residual norm IIK Xre8 - 911, The 
L-curve is a useful tool in connection with ill-posed problems because it is a convenient 
way of displaying the inter-relationship between the norm of x"' and the corresponding 
residual. Also the L-shaped corner corresponds to a regularization parameter that bal-
ances the regu)arization error and the perturbation error from the noise data. ln our case 
the para.meter is the dimensjon of the subspace and we will consider set of points such 

that (IIKxm - 911, llxmll). 

4. Some approximation spaces and their order of approximation 

Methods based on the Fourier series of orthogonal polynomials have becorne increas-
ing)y popular in recent years. These are the spectral methocls wich have showed tQ be 
oompetitive with the traditional methods of finite difference and finite elements in the 
numeriul solution of differential equations. It seems to us that the use of orthogona.l 
polynomial is also a good choi<"..e in dealing with integral equations [4]. Here we present 
the error estimalef.i for 1;ome orthogonitl systems. • 

Aa we observed ín Section 2, given an operator I< we nee<l to know how quickly the 
number im = IIK(J - Pm)II go«~A to iero as ryi----+ oo. First we observe that 

IIK(J - P,,. )li = 11(1 - Pm)/CII = sup 11(1 - Pm )H•ull. 
llvll=l 
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• · Let z(t) = l(*v, v E H 2 such tha.t llúll = 1. ln this case we have ·: • 

whére Pm : Hi -+ \lm is the orthogonaJ pfojection. Let V~ = · span[vi ·; ... , v·m] ·where 
. m 

Vi, i = 1, ... m, are the orthogona.l polynomials. We know that P;.,.z ' ;, 'I)iv;(t) where 
;=t 

b; = (z, v;), i = 1, ... , m, are the Fourier coefficients. 
On the other hand, 

z(t) = ]Cv = 1b J((t,s)v(s)ds .-

lf the differentiation is allowed we have 

'( ) -1b ôK(t,s) ( )d zt~o ât vs s. 

ln fact, if the deriva.tive ~!( exists and is an integrable function then .. z(t) pi(a, b). 
and 

j 1b âi ](( t, S) z ( t) = ô .. v( s )els . 
!J tJ 

The rate óÍ convergence of the Legendre and Chebyshev expansions for 'a general 
function z(t) have been studied by various authors [1], [2], [8]. Let n be an open bounded 
interval. The weight Sobolev spaces are 

6 . • .. 

where 114>ll~.w = L w(s) íJDi</>)2dx and w(x) is a weight function (tv(x) > O and i~te-. 
O j:;;O 

grable function). ln [2] Canuto aud Quarteroni prove the following estimates. 
i - Chebyshev polynomials. Let us' take n = ( -1, 1) and w( ;) .::;; ( 1 - x1t 111. • Let 

Vm be the m-dimensioual subspace of H~(O) spanned by the Chebyshev polynomials of 
de~ree l~ast than or equal to m. lf P,,. is th~ orthogonal projection , ~nt~ Vm then fo1· any 
realµ and u such that O ,, q there exista a constaut C s11cl1 tlrnt 

( 4.1) 

where 
(4.2) ( ) _ { 'l.1, _, u - 0.6, • Jt • l 

e 1'• u - 1.5,, - u , . O $ µ $ 1 



ii - Legendre polynpmials. ln this case O = ( -1, 1) and w( x) = 1. If now we consider 
Vm as the m-dimen.sional subspace of H(1(0) spanned by the Legendre polynomials of 
degree least than pr equal t.o m, the sarne estimates ( 4.1 )-( 4.2) are achieved. 

lf the Laguerre functions are used as an orthogonal system, the following estimatea 
can b_e used. The l,aguerre fonctioos are defined by 

<f>Ht) = f'ii,e-P'L1c(2pt), p >O, 
1c i • 

wheI"e. Lk(t) ·= ~( n ( ~? are the classical Laguerre polynomials ( orthogonal in (O, oo ), 

wei~ht f~ndi~n w(x) = e-x). It can be showed [4) that if K = L2(0, oo) _. L2 [(c, d)), e> O 
then for p• = . JéJ there exi&ts C > O such that 

where 

5. Numera, expt'rim~nts. 

~xample l; As a first example we consider the Laplace transform inversion problem. ln 
the nota.tion of thif paper, let H1 = L2(0, oo) , H2 = L~(c, d) , O< e< d,. and 

g(s) = fo00 e-atx(t)dt : 

We t~ke the data values g(s) = (•)l)2 , s E (1,4). ln this case it ca~ be showed tut 
z(t) ;= te-•. As the finite dimensional subspace Vm we consider the space spanned by the 
La~uerre functions, defined by 

</>~(t) = fii,e-P'L1c(2pt), k:::; m, 

where L1c(.) are the Laguene polynomials, what means that 

1o= e-t L;(t)Li(t)dt = 8ii 

The parameter p can he appropriately chosen as a function of e and d. ln our example 
p = ~- Also, it is showed in [4) that 

{ 2p(,l - e) }''" 
(5.1) im = (d+ 1,)(c + p) 

for these suhspaces V,,.. Some values of ,,.,. are presented in table 5.1, where the numbers 
between parenhesis indicate decimal exponents. 

H) 
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m 4 5 6 7 8 9 10 
'1m 3.37(-3) 1.16(-3) 3. 75(-4) 1.25(-4) 4.16(-5) 1.39(-5) 4.63(-6) 

Table 5.1 

We must observe that, even in the exact data case, during the calculations we work 
with values that depend on the machine precision. Using double precision arithmetic, for 
example, the "exact data" means fJ = 10-14 . ln this case, by Theorem 2, it is convenient 
to take Vm such that ,m = 0(10-7). Using (5.1) we obtain m = 13. 

On the other hand, the condition number of the matrix B on (2.5) increases drasti-
cally wit'h the increasing of the subspace dimension. Some of these values are presented 
Table 5.2. 

m 5 6 7 8 9 10 11 12 13 
cond(P) 1.1(6) 4.1(7) 1.5(9) 5.3(10) 1.9(12) 7.0(13) 2.6(15) 9.1(16) 3.4(18) 

Table 5.2 

Looking at these values we see that it is not be possible to use m - 13, because 
the condition numbers blew up before. ln fact, working with double precision arithmetic, 
in accordance with the numerical consideration of Section 3, we can only rely on the 
ca.lculations which come from m = 8 or m = 9. The results obtained for various values of 
m are presented in lhe table 5.3. The va)ues of llxmll are, in fact, the square root of the 
partia) sums defined in ( 3.1), i.e, they are approximations of l lx li = 0.5 in this example. 
The residuais are calculated by III( Xm - gll- We see by this table that the partia] sums 
grow out of control for m l O . 
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m llxmll IIKxm - 911 
2 4.4244(-1) 9.0090(-2) 
3 4.9331(-1) 9.0083(-2) 
4 4.9987(-1) 9.0083(-2) 
5 5.0013(-1) 9.0083(-2) 
6 5.0004(-1) 9.0083(-2) 
7 5.0001(·1) 9.0083(-2) 
8 5.0000(-1) 9.0083(-2) 
9 5.0001(-1) 9.0083(-2) 
10 5.0156(-1) 9.0083(-2) 
11 7.9165(-1) 9.0083(-2) 
12 8.8928 9.0083(-2) 
13 1.2068(2) 9.0083(-2) 
14 1.5529(3) 9.0083(-2) 
15 1.9040(4) 9.0083(-2) 
16 2.2360(5) 9.0083(-2) 

Table 5.3 

Example 2; ln this example we consider again the Laplace transform inversion problem, 
but now we test the noisy data case. ln this case we replace g( s) by the noisy version 

ó 1 • (7rS) 
g (5) = (s + 1)2 + ô sm 4 

with h = 10-4 . Using Theorem 2 we can choose Vm such that ,m = 0(10-2). By the 
equation (5.1) we must take rn = 4. Also by Theorem 2, the recommended regularization 
parameter must be a = 0(10-4). The condition numbers of the matrices of (2.5) with 
o= (10-4 ) are presented in Table 5.4 . The effect of the regularization is now clear: the 
condition numbers are moderate if double precision arithmetic is used. 

m 3 4 5 6 8 9 
cond(A) 8.0(2) 5.5(3) 6.6(3) 6.7(3) 6.7(3) 6.7(3) 

Table 5.4 

Table 5.5 is the version of Table 5.3 for this example: it contains tpe values of llxmll 
and the residual measure IIKxm -lll- As the exact solution is such that llxll = 0.5 this 
example confirm the forecast : there is no improve in the results for m > 4. 
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m llxmll III<xm - 96 11 
1 2.3069(- 1) 8.9686(-2) 
2 4.4121(-1) 9.0089(-2) 
3 4.8068(-1) 9.0083(-2) 
4 4.8028( -1) 9.0083(-2) 
5 4.8000(-1) 9.0083(-2) 
6 4.8000(-1) 9.0083(-2) 
7 (8000(-1) 9.0083(-2) 

Table 5.5 

Example 3: Let Uli consider the integral equation 

with the kernel 

fo1 k(s,t)x(t)dt = g(s) 

{ s(l - t) 
k(s,t) = t(l - s) 

if s :$ t 
if s > t 

This example have been used hy severa) authors. ln our particular case we choose g(s) = 
•in!r>. ln this case the solution is x(t) = sin(11't). As we are looking for a solution defined 
in a bounded domain we use the Legendre polynomials of degree less than or equal to 
m to span the finite dimensional subspace Vm. For these polynomials the values o{ the 
condition number of the matrix B in (2.5) are not alarming (at least for m :5 13) if we 
use double precision arithmelic. The bound for 'Ym, in this case (4.1), depends on the 
regularity of the solution, CY in that expression, and on the constant C. However we do 
not have informatiou about the values of C . Let us now consider the error estimates on 
L2 (0,1 ), i.e. µ = O. The noisy data case will be simulated by 

5( ) sin(1rs) , . (,rs) g s = _....:..-...:.. + u sm -,r'l 4 
with 6 = 10-•. By Theorem 2 we must take Vm such that ;,,. = 0(10-1) and o = O( 10-4 ). 
To choose m we assume CY = 11 and Cllzll4 :5 10. ln this case it is reasonable to take 
m = 6 to guarantee ;·,,, = O(lo- 1). The obtaincd values of ll xmll and lll( x ,.. - 9"11, for 
aome values of m, are preseuled i11 Tahle 5.6. The exact solution is such that llxll = v/4>.5. 

m 2 3 4 6 8 10 
1 lx,,.11 0.7753 o. 7289 0.7289 0.7294 0.7294 o.1i94 

IIKz,,. - gbll 0.27(•4) 0.13(-4) 0.13(-4) 0.13(-4) .16(-5) .46(-5) 

Table 5.6 
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