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Puri and Ralescu [10] given, recently, an embedding of the class E7 of fuzzy sets u with the level
application & — Lou Lipschitzian on C([0,1] x S*=!). In this work we extend the above result to the
class IE} of the continuous level applications. Moreover, we prove that EZ is a complete metric space
while at the [E} is not, and that E; = E2. Also, we deduce some properties in the fuzzy random
variables.
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1. INTRODUCTION.

Recently, Puri and Ralescu [10] showed that there is an embedding j : JE} — C([0,1] x
§1-1), where IE} is the subspace of (JE", D) with Lipschitzian levels and JE™ denote the class of
normal convex fuzzy sets with compact support. This fact is very important, since (E™, D) is
not separable and this is an empeachment to develop clearly an integration theory for the fuzzy
random variables. Unfortunatedly (JE},D) isn’t a complete subspace of (JE™, D) as to will be
showed in the section 4. We observe that the application j can be defined by the same expression
as in Puri and Ralescu ([9], [10]) for all JE™ (obviosly with a different image space). So, it is
raised the following question: is there some subspace of (IE™, D) that is separable and complete
for the metric D and in such manner that it is still embeddies in C([0,1] x S™~!) through of 5?.
In this paper, we prove that the space that answers the above question is JE®, which consist of
the fuzzy sets with levels continuous; also we prove that IE7 G Eg and that JEG is the maximal
subspace of JE™ with this propertie (see Section 3) and E} = IE} (see Section 4). Also, we
give some applications for the theory of the fuzzy random variables (see Section 5). Actually, it
was only for simplicity that we derived our results in IR"; they extend easily to the case of real
separable Banach Spaces.

(*) Research partialy supported by the “Direccién de Investigacién y Desarrollo de la Universidad de Tara-
pacd”, through Project 4731-92.




To stress the importance of the embedding j, we recall that Kaleva (7] used the embedding
j together with one characterization of the fuzzy compact subsets of E™, due a Diamond and
Kloeden (5], in the subclass of [E7, wich he called equi-Lipschitzian, to demonstrate the exis-
tence of the solutions of the Cauchy Problem for fuzzy differential equations with values in the
equi-Lipschitzian subsets. Also, Puri and Ralescu used the embedding to study fuzzy random
variables and the convergences of fuzzy martingales.

In a previous work [13], we proved the equivalence of the various notions of convergence in
the class of fuzzy sets with continous levels, but not necessarily with convex levels. Obviously,
these results are true for JEZ.

In a forthcoming paper we will describe applications to the problem of the convergence of
fuzzy martingales.

2. PRELIMINAIRES

In the sequel JI{(JR™) will denote the set of the nonempty compact subsets of IR". The
Hausdorff metric H over this class is defined by

H(A, B) = max{supd(a, B),supd(b,A)}
a€A beB

where d is usual distance, and d(a, B) = supd(a,b).
beB

It is well known that (JX'(IR"), H) is a separable complete metric space (see [4] and [9]).

If A, is a sequence of subsets of IR", we define the lower and upper limits in the Kuratowski
sense as

. . - n -1
lim infA; = {z € R"|z = ql_g& TesZy € Aq}

g—00
and,
" _ nyi. _ 1
ql_l}’go supA, = {z€eR"z= jl_l_’r&x%,mqj € Ay}
o e]
- AT,
=1 \m2>q
respectively. |

We say that a sequence of sets A4 converges to a set A,A C IR", in the Kuratowski sense,

if qlif&i“f Ag = lim sup A, = A; in this case, we write A = lim A, or 4, Lt A, and we say that
g—0 g—00
Ay K-converges to A.

The Kuratowski limits are closed sets. Moreover, the following rélation are true:
ql-Ln‘)loll]f aA; C qll_.ngosup Aq

lim ianq'
g—0

lim inf A, and
g—0co

lim sup A, lim su
g—00 p q P pAq



The following result is well know (see [9])

PROPOSITION 2.1. A sequence (A,) C IK(IR™) converges to a compact set A respect to the
Hausdorff metric if and only if there is K € IK(IR") such that A, C K for all ¢ and

q"_f&ian" = ql_x_‘xgo sup A, = A.

We can understand a fuzzy set in IR" as a function u : R™ — [0,1].
As an extension of JK(IR"), we define the space IE™ of fuzzy sets u : JR™ — [0,1] with the

following properties:
i) u is normal, i.e., {z € R"|u(z) = 1} # ¢;
il) u is fuzzy-convez, i.e., for all z,y € IR™ and A € [0,1] we have,

u(Az + (1 = A)y) > min{u(z),u(y)};

iii) u is upper semicontinuous;
iv) The clousure of the set {z € I2"|u(z) > 0} is 2 nonempty compact subset in /R". This

set is call the support of u and it’s denoted by Lou.
The linear structure in JE™ is defined by the operations

(u+v)(z) = .‘s}ug min[u(y), v(2)], and

u(}) if A#0

Au)(z) =
() {X{o}(-”) if A=0,

Where u,v € IE™, ) € IR and x4 denote the characteristic function of A.
Recall that every fuzzy set is characterized by his family of a-level (e € (0, 1]), where the

a-level of u is defined by
Lou = {z € R"|u(z) > a}.

We observe that Lou D Lou D Lgu for all 0 < @ < . So, if u € IE™, then Lou € K (IR™)
for all a € [0,1]. Moreover, the linear structure in terms of the family (L,u) is given by:

Lo(u+v) = Lau+ L,v and (1)
La(M) = M,u (2)

for all a € [0,1).
We extend the Hausdorff metric by defining the D-metric:

D(u,v) = sup H(Lou,Lyv).
. 0<agl



Concerning the properties of this space, Puri and Ralescu (10] proved that (E™, D) is a
complete metric space; Kaleva (7] proved that (E™, D) is not separable (Exemple 2.1).

The D-metric is homogeneons and invariant by translations under the operations (1) and
(2), and consequently, applying the Theorem of Radstrom (12], Diamond and Kloeden 5], Kaleva
[7) and, Puri and Ralescu [10] showed that E™ can be embedded as convex cones in certain
Banach spaces.

We denote by [EZ the subspace of E™ for which the elements u are such the mapping
a — L,u is H-continuous on [0,1], i.e., given € > 0, there is § > 0 such that

la =Bl < 8§ = H(Lau,Lgu) < ¢.

Also, we denote by JE} the subspace of [EZ for which the element u are such that the
application a — L,u is Lipschitz continuous, i.e., there is » > 0 such that, for all a,8 € [0,1]

H(Lau, Lyu) < vla - B|.

The following exemple shows that [E} G EZ.

EXEMPLE 1. Let u : I — [0,1] defined by u(z) = z? if z € [0,1] and u(z) = 0 if
z € (R\[0,1)). Then, Lou = [\/a, 1] for all a € [0,1], consequently,

H(Lou, Lgu) = |Va - /B = 7‘6'1_\/3“’ =l

for all a # . So, u € IEZ \ IE}.
By using the following properties of H-metric,

H(A+ B,C + D)< H(A,C) + H(B, D),
H(M,AB) = AH(A, B)

for all A,B € IK(JR™) and A > 0, we deduce that JE} and JE} are closed under the operations
(1) and (2).

Moreover, recall that the support function of a nonempty subset A of IR™ is the function
84:5" ! - RU {+00} defined by

sa(z) = sup{(z,a)/a € A}

where §"~! = {z € I"/||z|| = 1)} and (,-) denotes the inner product in IR". If we take
A € IK(IR™), then .

sa(z) = max{(z,a)/a € A}.

Some properties of the function s4(-) are



SA+B = 85T 8B (3)
sxa = Asa (4)

84 is Lipschitz continuous with constant: [|A]| = H({0}, A). (5)
Moreover, the H-metric can be written as

H(A, B) = max{|sa(z) — sp(z)|;z € S '}. (6)

The above result can be seen in [1] or [3). We consider C(§*~!) = {f : §*7! — RR; f 18
continuous} with usual norm of uniforme covergence.
The following Theorem is due to Minkowski:

THEOREM 2.2. The application j : I{(IR™) — C(S™') defined by j(A) = 34 is positively
homogeneous, subadditive, and it is also an isometry.

Puri and Ralescu [10] extended the definition of support functions to the fuzzy-context
setting

su(a,z) = sp_u(z)

for all (o, z) € [0,1] x §™!

It is easily seen n that sy, = 84 + 8 for all u,» € IE™ and A > 0. We denote by
C([0,1]) x §"1) = {f : [0,1] x $"~! — R; f continuous} with the usual norm.

One of the principal results of [10] is:

THEOREM 2.3. The application j : IE} — C([0,1]x S™~1) defined by j(u) = s, is positively
homogeneous, subadditive, and it is also an isometry. Moreover, j(u) is Lipschitz continuous.

3. Tue ISOMETRY j DEFINED ON JER.

Our purpose in this section is to show that 5% is a complete metric space and that j is an
isometry when defined on JEZ with values on C([0,1] x §*~'). Also, we will show that ES is
the maximal subspace of JE™ with this property.

THEOREM 3.1. ([ER, D) is a complete metric space.

Proof. Let (uy) a D-Cauchy sequence in IEZ. Then, by using the completeness of IE™, we
deduce that there exist u € IE" such that u, L%

In continuation, we prove that u € I£3. In fact, given ¢ > 0 there-is @ € IV such that

D(up,u) < &/3 for all p > 7. For a fixed py > W, we have that there exist § = §(¢,po) > 0 such
that

la = 3] <8 = H(Laup,, Lpu,,) < €/3,




since uy,, € E?. Consequently,
H(Lou, Loup,) + H(Loup,, Lytpy) + H(Lgtipy, Lu)

H(Lyu,Lgu) <
< D(uyup,)+¢/3+ D(up,u) <ce,

for all |a — 3| < §. So, u € IEZ and this completes the proof.
Now, we give an extension of the Theorem 2.3.

THEOREM 3.2. The application j : IER — C([0,1] x s~ 1) defined by j(u) = 3y is positively
homogeneous, subadditive and it is also an isometry.

Proof. The positively homogeneous and subadditivity of j are clear. We show that if
¥ € IEZ, then j(u) is continuous. In fact, given £ > 0 we can to choose §; > 0 such that

|a =B < & = H(Lou,Lgu) < /2.
Moreover, since u € IEZ, we have sup||Lgu|| = ¢ < 400 and we can take §; > 0 such that
>0
géy < /2.

Now, we consider &, € [0,1] and z,y € S*~! such that |a — 8] < §; and ||z — y|| < &3,

and it follows that
ISu(a,I) - su(ﬂa y)l = |sLau(x) - stu(y)I

(M
< IsLau(z) - 'stu(x)I + ISL,gu(I) = 3L,gu(y)|
By using (5) and the chosen §,, we obtain
IsLeu(2) = sLpu(¥)l < ||Lpull |z - yl|
< g¢b,
< gf2 A (8)
Moreover, by using (6) and the chosen §;, we have
lsLau(z) = sLpu(2)] < sup{lsLau(2) = sLgu(2); 12 € $™71)
= }1(31,‘,1“ S[,pu) (9)
< g/2.

Consequently, (8) and (9) together (7) imply that j(u) is continuous on [0,1] x ™1,
Now, we proceed to prove that j is an isometry. We have .



I

[17(u) = j(v)ll sup [su(a.z) = s,(a,2)|

= supsup{|e.(a,z) - s,(a,z);z € S*7")
a>0

= supsup{|sz () = s1,0(2)]iz € gy
a>0

= sup H(Lgu,L,v)
a>0

= D(u,v).

Therefore, the proof of the Theorem is completed.

Since [0,1] x S™~! is compact, we can deduce imediately the following

CoROLLARY 3.3. ([ER, D) is a separable metric space.
COROLLARY 3.4. If up,u € [ER, then u, 2 iff 3., — su uniformly on [0,1) x S~-1.

In what follows, we show that JE3 is the maximal subspace of JE” that can be embedded
in C([0,1] x $™~!) through the isometry j.

THEOREM 3.5. Let u € IE™\ IER be, then j(u) € C([0,1] x S*~1).

Proof. Let o’ € [0,1] be such that @ — L,u is not continuous for a’. Then, there exists& > 0
1
such that for each p € IV, we can find a, € [0,1] such that |a, —o/| < ; and H(La,u, Loru) 2 €.
Thus, for all p, we have

sup [sL,,(2) = sp,.u(2) 2 €,
$651i—l

and, consequently, |sy(ap,2) — sy(a’,z)| > € for all p; that is, j(u) is not continuous for
(e/,z),z € S™1. '

4. Tue space IE] 1S NOT COMPLETE.
We begin with some definitions and preliminary results:

DEFINITION 4.1. We say that a sequence (u,) C IE™ L-converges to u € IE™, (ug = u), if
for all a € (0,1] we have,

H(Laug,Lou) = 0 as g — oo.

Now we are going to use the following results that were proved in [13]



ProprosITION 4.2. u € IEZ if and only if
Lou={u>a), Yae(0,1)
ProposiTION 4.3. Let uy,u € E™; if u € [E2, then the following are equivalent:
i) uq-l?o u
ii) u'-eo u and LouqﬁLou.

Applying the above propositions we have

COROLLARY 4.4. Let ug,u € IE™; if u € [E}, satisfying u, /* u and Lyug — Lyu, then

2
ug = u.

Proof. Let us consider o € (0,1); since ug / u, then (Lqu,), is an increacing sequence and
}_i_gxo sup Loug C ULauq C L,u.

Now, if a < qu(a:) < 1, then u(z) = a + ¢ with ¢ > 0. Consequently, there exists NeN
such that u(z)—u(z) < eforallg > N, i.e.,, u(z) > u(z)—¢ = aforallg2> N. In other words,
2 € Lou, for all ¢ > N it that implies z € ql.i_.r&inf Lou,. Whence, {u > a} C ql_i.xgoinf Latigs
Since the lower limit is closed, the Propasition 4.2. implies that {u > a} = Lau C ql_i_.xgo inf Lou,.
Thus, we get : ql_i.rgoinf Loty = qlipolo sup Loty = Lou for all a € (0,1).

Being L,u compact and Louy C Lou for all ¢, Proposition 2.3. implies
Laug .4 L,u for all « € (0,1). By hypothesis Lju, L8 Lyu; consequently by definition, u, L .

Now, we prove that Lou, il Lou. By using the same arguments above, it is enough to

prove that Lou, % Lou. It is easy to see that

lim sup Loug C ULouq C Lou
q

g—0o0

because {u, >\0} C Lou for all ¢ € IN. Thus, if we prove that Lou C lim inf Loué, we can
: 1Y

conclude the proof of Corollary. In fact, if u(z) > 0 then there is N € IN such that ug(z) > 0
for all ¢ € IN due to the fact that uy / u. Thus, by definition, x € Lou, for all ¢ € IV, and it
follows that z € ql_l_}{.lo inf Lou,. Consequently, {u > 0} C qllrgl‘D inf Loug, and being this last set

closed, we obtain Lou = {u > 0} C ql_i_}})loinf Louy,.
In continuation, we will analyse of the case n = 1, and we will show that IE} is a noncom-
plete subspace of (IE?, D). To build an exemple, we will work with a special class of polygonal

functions with support equal to interval [0, 1).

LEMMA 4.5, Let 20,1 € [0,1) and define p: IR — [0,1) such that

1 if 0 <z S Zo
()= 14 (z=20)(to~1)/(1—20) if To<z<1
0 elsewhere




it Then p € [E] with Lipschitz constant equal to (1 = x0)/(1 — to).

Proof: Easily we observe that the levels of p are:

(5 if 0<a<to
°P =1 10,(1 - zo)(1 = @)/(1 - to) + zo) if to<a <1,

consequently if 0 < a < 3 < to we have H(Lqap, Lgp) = 0; alsoif tp < a < 8 < 1 we deduce
H(Lop, Lgp) = |(1 = zo)(1 = to)] |a = ] and finally if 0 < a < to < 8 < 1 we obtain

H(Lop,Lgp) = |1-{(1-20)(1=B)/(1~ to)+ zo}|
< (1 =20)/(1 = to)| |a = BI.
This, in all cases we have

H(Lap,Lgp) < I(1 = 20)/(1 = to)| |a = B
(1 = z0)/(1 - to)| la — B,

Since zg,to € [0,1). This complete the proof of Lemma.

Remark 4.6. If in the above Lemma zo = 1 or to = 1, then p = x| ) and, it is a Lipschitzian
with null constant.

We denote by P the set of all polygonals functions such that consider in above Lemma.

LEMMA 4.7. If p1,p2 € P with Lipschitz constant ¢, and c;, respectively, then p =
min{py,p2} € IE} with Lipchilz constant equal to (cy + ¢3).

Proof. The no trivials cases are two as to show the following figures a and b:
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Figure b

We prove only the case of the figure a, since the other case (figure b) is analogous.
If p = min{p),p2} we have

B i Lops if 0La<t
@P=\ Lopy if t<a<l.



In continuation, we observe that L;p; = Lp;, consequently we have,

t

H(L ,L < - " g <
H(LaP'LaP)={ (Lap2, Lgp2) S cala—-g| if 0<a<p ;

H(LopryLgp)) S cila -8 if t<a<p
Finally,if 0 < a <t < 4 <1 then

H(Lap: Lﬁp)

<
<

H(Laps, Lapy)

H(Lapa, Lipa) + H(Lipa, Lppy)
H(Lapz, Lip2) + H(Lip1, Lpp)
cola = Bl + erla — B]

(€14 c2)la - B

This conclude the proof of the Lemma.

oA

IN IA

LEMMA 4.8. Let f,g € IE} be Lipschilz functions with constant M and N, respectively.
We assume that f and g are continuous and decreusing on their supports, and such that Lof =

Log = [a,b].
If Gr(f)n Gr(g) N [a,b] x [0,1) = {(zo,0)}, then ¢ = min(f,g) belongs to IE}.
Proof. We remark that, in this case, we have
1) Lo f = Leyg;

ii) over the subintervals [e,z¢] and [z¢,b] we have ¢ = f or ¢ = g (see figure c) and the
proof is essentialy the same that of the Lemma 4.7.

\
", \\t j
N
B e o o s
|
|
LN
1
Figure o

THEOREM 4.9: (IE], D) is a noncomplete metric space.

Proof: We consider u(z) = 1-2?ifz € (0,1) and u(z) = 0if 2 € R\[0,1]. Clearly, u € Eg
and u ¢ [E}.

Iu fact,

10



H(Lou,Lgu) = H([0,vT=a),[0,VI-8))=IVIi-a-1-4|

- a-— ra 10
v i uo

If we suppose that u € JE}, then there exists C > 0 such that

H(Lou,Lgu) < Cla— | forall a # 3,

consequently, by using (10) we conclude that C > (V1 —a + /T = f)~! for all « # B which is

an absurd. This proves that u ¢ E}.
Let us consider the sequence of polygonal functions where each p, consist of the union of
29-1 rectilineal segments which are obtained by sucessive divisions of the graph of u as shown

in the following figures:

Figure d
Combining the Lemmas 4.5, 4.7 and 4.8 we have that p, € Ei for all ¢ € IN. On the other

hand, since u € IEZ, then p, / u and Lip, 4 Lyu, we conclude that p, L 4 thanks to the
Corollary 4.4. It follows that the space (I}, D) is not complete.

We and this section by characterizing the closure of FE}.

THEOREM 4.10. E} = JER.

Proof. Let u € IE%, then the multifunction F : [0,1] — IK(IR™) given by F(a) = L,u is
H-continuous on [0,1]. We consider the ¢g'* Bernstein polynomial B,(F;a) associated with F:

g N .
B(Fia)=5 (1 F(l) d(1-a),0<a<
=0 J q
R.A. Vitale [15] has proved that
D(F,B(F,")) =0 as ¢ — +o0.

We observe that By(F;a) € IK(I") for each ¢ € IV and « € [0,1). Now, we verify the
hypothesis of the Representation Theorem given by Negoita and Ralescu [8] to show that the

11



family N, = B,(F; a), for each g € IV, define an unique fuzzy set. If a < 8, then F(a) 2 F(B)
and, consequently, B,(F;a) 2 B,(F;B) (see Vitale {15], p. 312). So, we only have to prove
that,ifa; < a; < ---<a;— a #0as! — oo, then

By(F;a) = ﬂB (F;ai).
=1

We observe that a — B (F;a) is a H-continuous multifunction, consequently, for each
fixed ¢, we have

By(Fian) & By(Fia) as | — o0,
as By(F;a) € I((IR"), and we deduce from the Proposition 2.1 that
B,(F;a0) & B (Fia) as | - . (11)
Being { B,(F; )|l € IN}, one decreasing sequence, we have
By(Fyon) & () By(Fi i) as | — oo

=1

Jj so it follows from (11) that it holds the required equality
This completes the hypothesis of the Negoita-Ralescu Theorem.

Finally, we prove that a — B,(F;a) for each ¢ € IN is a Lipschitzian application. By
virtue of (6) is sufficient to show that

max{|sp, (Fa)(2) = spy(Fip)(z)iz € §"1} < Cla - B)

with C' > 0 independent of a and S.
Note that the support function of Bernstein approximant of F' is given by

$5y(ria)(® '2( )af(l—a)q isp(1) (@)

3=0

with z € §™~1, so that

|83q(k-a)(f) - qu(F.ﬁ)(z)l

< Sk©)lleo z ( ‘Jl ) la?(1 = a)¥™7 = g1 - B)¥)

=0

< Cla -4,

Since F(0) 2 F(‘é) 2 F(1) for all 0 < j < ¢ implies that

12



spay(z) < 8;(:‘)(-"-') < sr(0)(2)
for all z € S"~1. This completes the proof.
5. APPLICATIONS

In this section we give some applications of our previous results to the convergence of the
fuzzy random variables in JE3.

We will briefly go over some basic material on the measurability and integration of multi-
functions that we will needed in the sequel. For more details we refer to Aumann [2], Castaing
and Valadier [4], Hukuhara [6] and, Klein and Thompson (8].

Let IP(IR™) be the set of nonempty subsets of JR™ and (2, Y, ) a complete finite measure
space. Let F : Q@ — JP(JR") be a multifunction from Q into R*. Let Gr(F) = {(w,z) €
QX R"[z € F(w)} be the graph of F. We say that F is measurable if Gr(F) € Y xIB(RR"),
where IB(IR") is the Borel o-field of IR™.

For any multifunction F : Q@ — IP(IR") we can define the set S(F) = {f €
L'(Q, R™)|f(w) € F(w),p — a.e.}, i.e., S(F) contains all integrable selectors of F. The in-
tegral introduced by Aumann [2] as a generalization of the single-valued integral and of the
Minkowski sum of sets is defined by

| Fwydu(w) = { [ fw)auu)lf € S(F)).

and denoted simply by [ F.
It is natural to ask under what conditions / F (or equivalenty, S(F)) is nonempty.

The multifunction F' will be called integrably bounded if there exist ¢ € L(Q,R) such that
llz]| € ¢(w) g — a.e., almost all = and w such that z € F(w). The following results are in
Aumann [2].

THEOREM 5.1. If the measure pu on the o-dlgebra ¥ of Q is atomless, then the integral
/F 18 a convez set.

THEOREM 5.2. If F is integrably bounded and F(w) is closed for almost all w € Q, then
/ F € K(R™).

Also, we mention the following generalization of Lebesgue’s dominated convergence Theo-
rem,

THEOREM-5.3. If F, : Q — IP(IR") are mcasurablea and there is [ € L}(Q, R) such that
suplly,(w)" < f(w) for all g, € S(F,), then if F, (w) F(w) we have
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/F,ﬁ/F as p— 0

THEOREM 5.4. Let F : 0 — IP(IR™) be a measurable and integrably bounded, if x is a
linear form over IR", then

sup ,-.(/ Fdp) = /sup *(F(w))dp(w).

A fuzzy random variable is a function T' : @ — [E™ such that for every a € [0,1] the
multifunction Ty : @ — IP(IR") defined by I'y(w) = L,I'(w) is measurable [10]. Moreover, we
say that T is integrably bounded if T, is integrably bounded for all a € [0,1]. We observe that
for T to be integrably bounded it is necessary and sufficient that Iy be integrable bounded; this
is a consequence of the following fact: 0 < a < A implies ['s(w) C I'y(w) C Fo(w), for all w € Q.

The following Theorem due a Puri and Ralescu [10] permit us to define the integral of a
fuzzy random variable I': Q — [E".

THEOREM 5.5. IfT : Q — JE™ is an integrably bounded fuzzy variable, there ezists a unique
fuzzy set u € IE™ such that Lou = /I‘adp, for every a € [0,1].

The element u € IE™ obtained in Theorem 5.5 define the integral of the fuzzy random
- variable I, i.e.,

/I‘du =u& Lu= /I‘,,dp, for every « € [0,1].
.~ THEOREM 5.6. Let T : Q — IEG be a fuzzy random variable integrably bounded, then
~ / T e Ep.

Proof. We consider an sequence (ap) C [0,1] such that @, — a,a € [0,1). Since
F(w) € Eg, it follows that L,,[(w) — LoI'(w) for all w € Q as p — oco. Thus, we de-
duce that for all w € Q,T,,(w) — T'a(w) as p — co. Moreover, being T integrably bounded,
we conclude that each I, is also integrably bounded, and, if f € L*(Q, IR) is such that for all
z € To(w) : ||z]] £ f(w), we also conclude that sn;;;{lla:llx € Tay(w)} < f(w). Consequently,

P2

using Theorem 5.3, we have /I‘ap - /I‘a as p — oo. In other words, LOP/I‘ — La/F as
p — 00, and therefore /I‘ € IEG.

COROLLARY 5.7, Let I'y,I': Q — IE, be an integrably bounded fuzzy random variable.
Then, /r,, -.-/r on (I8, D) ¢ s, — 8 . on C((10,1] x §*1), [lo). -

Also, we have
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THEOREM 5.8. Let T : Q — [EZ be an integrably bounded fuzzy random variable. Then,

s(rla,2) = /.sr(w)(a,x)dp(w).

Proof. 1t follows imediately from Theorem 5.4. In fact,
SL., fr(z) = SIFG(x) = /sro(w)(x)(lp(w)
/sbar(w)(:x:)dp(w) = /sr(w)(a,z)dp(w).

sfr(a)z)

Remark 5.9..1t is well know that if A € I{(/R"™) then

A= () {zeR"|(z,y) <sa(¥)}
yes"=!

see [1] or [3].
If we apply this in the fuzzy context, we have that if u € IE3, then for each a € [0,1]

Lou = m {z € R" | (z,y) < su(a,2)}.
yesn—l

Thus, given some relations involving fuzzy sets in E7, we obtain the corresponing relations
for the fuzzy support function s,. On the other hand, from relations involving fuzzy support
functions s, we can obtain analogous relations for the a-Level of the fuzzy set u € JE3 and,
consequently, for u. Thus, we can apply the duality theory between support functions and

IK(IR™) in the fuzzy context.
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