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Puri and Re.lescu [10] given, recentl y, an embedding of the class IE'l, of fuzzy sets u with the level 
application o-+ L0 u Lipschitzi nn on C([O, lJ x S"- 1). ln this work we extend the above result to the 
class IEê of the continuous levei applicalions . Moreover, we prove that /Eê is a complete metric space 
while at the 1E2 is not, and that 7E;, = IEê, Also, we deduce some properties in the fuzzy random 
variables. 

Keywords: fuzzy sets , levei applicationa, embedding of level continous fuzzy seta, fuzzy random 

variables 

1. INTRODUCTION. 

Recently, Puri and Ralescu [10] showed that there is an ernbedding j : IEi -+ C([O, 1] x 
s1- 1 ), where IE2 is the su bspa.ce of (JEn, D) with Lipschitzian levels and IEn denote the class of 
normal convex· fuzzy sets with compa.ct support. This fact is very irnportant, since (JEn, D) is 
not separable and this is an empea.chment to develop clearly an integration theory for the fuzzy 
randorn variables . Unfortnnatcdly (JE2, D) isn't a complete subspace of (JEn, D) as to will be 
showed in the section 4. We observe that the application j can be defined by the sarne expression 
as in Puri and Ralescu ([9], (10]) for all IEn (obviosly with a different image space). So, it is 
raised the following question: is there sorne subspace of (IEn, D) that is separable and complete 
for the rnetric D and in such manner that it is still ·embeddies in C([O, 1] x sn-I) through of j? . 
ln this paper, we prove that the space that answers the above question is IEê, which consist of 
the fuzzy sets with leveis continuous; also we prove that IE2 <j, IEê and that JE0 is the maximal 
subspace of JEn with this propertie (see Section 3) and IEP, = IEê (see Section 4). Also, we 
give sorne applications for the theory of the fuzzy random variables (see Se<:tion 5). Actually, it 
was only for simplicity that we del'ived our resulte in JRn ; they extend easily to the case of real 
eeparable Banach Spaces. 

(•) Resea.rch pa.rtialy supported by the "Direcci6n de lnve1tigaci611 y Desarrollo de la. Univeraidad de Ta.ra­
pac'", through Project 4731-92. 
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To st ress the im por ?.n c of '1 mbe<ldi '7 j . ~ r ca.ll t h, t Kal~\~ [i u · d h em <:ddin 
j together witb one charac eriza ion of he fui y e p e b e :. f lt"'. du , Di;\mond nd 
Kl oeden [5] , in the snbcla.s.· of IEi, wic.h he ca.lle<l equi•Lip· hitzic1.11 . to dcmonstrn.te th xi -
t ence of t he solutions of the Ca11chy Problem for fuzzy differential equ.ition with va.lues in the 
equi-Lipschit zi a.n subse s. Al so, Puri and Ralescu used the embeddi ng to st udy fuzzy random 
variables and t he convergences of fuzzy ma.rtingales . 

ln a previous work [13], we proved t he equi valence of t he various not ions of convergence in 
the class of fuzzy sets with cont inous le,·els, but not necessari ly with convex leveis . Obviously, 

these results a.re true fo r 1Eê-
ln a. forthcoming paper we will describe applications to the problem of the convergence of 

fuzzy martingales. 

2. PRELIMIN AIRES 

ln the seque! D( (Jnn) will denote the set of the nonempty compact subsets of ./Rn. The 
Hausdorff metric H over thi s class is defined by 

H( A, B) = max{sup d(a, B),sup d(b, A)} 
aEA bEB 

where d is usual distance, anel cl( a, B) = su pd( a, b ). 
bEB 

It is well known that (JJ{(Dln), H) is a separable complete metric space (see [4} and [91). 
If Âq is a sequence of subsets of mn, we define the lower and upper limits in the Kuratowski 

sense as 

and, 

lim sup Aq = {x e .nrix = _lim Xq ,Xq - e Aq -} 
q-oo J-+OO ' ' ' 

respectively. 

We say that a sequence of sets Aq converges to a set A, A Ç IRn, in the Kuratowski sense, 

if lim inf A9 = lim sup A .. = A-, in this case we write A = lim A9 or Aq !S. A and we say that 
q-+oo q-+oo • , q-+oo , 

Aq 1( -converges to A. 
The Kuratowski li111its a re closcc.l sets. Moreover, the following rélation are true: 

lim inf Aq Ç lim sup A9 q-+oo q ..... oo 

lim inf A,, = lim inf A,, aud 
q-+oo q-+ oo 

lim sup Aq = lim sup A9 . 
q-+oo q ..... oo 
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The following result is well know (see (9]) 

PROPOSITION 2.1. A sequence (Aq) Ç D( (JR.n) converges to a compact set A respect to the 

HatuJdorff metric i/ and only if there is /( E D<( IR.n) such that Aq Ç K for ali q and 

lim inf Aq = lim sup Âq = A. 
q-oo q-oo 

We can understand a fuzzy set in IR.n as a function u: IR.n -+ [O, 1]. 
As an extension of D((IR.n), we define the space JEn of fuzzy sets u : JR.n -.. [O, 1] with the 

following properties: 
i) u is normal, i.e., {x E Dlnltt(x) = 1} ,- r/>; 
ii) u is fuzzy-convex, i.e ., for all x, y E m.n and ). E [O, lj we have, 

u(>.x + (1- >.)y) ~ min{u(x),u(y)}; 

iii) u is upper semiconti11uous; 
iv) The clousure of the set {x E Dlnlu(x) > O} is a nonempty compact subset in JR.n. This 

set is call the suppo,·t of u a.nd it's denoted by L0u. 
The linear structure in JEn is defined by the operations 

(u + v)(x):::: sup min[u(y), v(z)], and 
i+z=z 

(>.u)(x):::: { lt(x) 
X{o}(x) 

if ). # o 
jf ). = o, 

Where u, v E JEn, >. E IR and XA denote the characteristic function of A. 

Reca.11 that every fuzzy set is chara.cterized by his family of o-level ( o: E {O, 1 ]), where the 
a-level of u is defined by 

We observe that Lou 2 Lou 2 Lpu for aJl O 5 a 5 /3. So, if u E JE", then L0 u E .D((IR.n) 
for a.11 a E {O, l]. Moreover, the linear structure in terms of the family (L 0 u) is given hy: 

for a.11 o E [O, 1 ]. 

Lo(tt + v) = L 0 u + L 0 v and 

Lo(>.u) == >.Lou 

We extend the llausdorff rnetric by defi11ing the D-metric: 

D(u,v)::; sup ll(L0 u,L0 v). 
O<oSl 
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Concerning th e prop r i " of t Li sp , P · :-i .\.1;d Ra.l ·- u [ 10 pro;: d \h , (/E", D) i 
complete met ric space; Kale--.',\, , ] pro, d a.e ( IE ... . D ) i • not • p. ,:\bl ( Exrm pi' '2.1 ) . 

Tbe D-met ric is homogent.: n. and in\- ri;\nt y ti , n:la ions und •r the opc ration (1) a.nd 
(2), and con5equent ly, applying the Throrem of R d trom [ l'lj. Di mond and Klocden (5) , Kaleva 
[7] and, Puri and Ral cu [IOj show-ed t hat /E'' e n be embedd~d as con,rex cones in certain 

Banach spaces. 
We denote by IEê th e subs pace of JEn for which t he element 11 u are such the mapping 

o - L0 u ia H-continuous on [O , lj, i.c., gi ven ! > O, there is é > O such th a.t 

Also, we denote by IEZ lhe subspa.ce of IEê for which the element u are such tha.t the 
appllcation o - L0 u is Lipschitz conlinuous, i.e., there is v > O such that, for ali o.,/3 E [0,1] 

The following exemple shows that IEi ~ IEc . 

EXEMPLE 1. Let u ; lll - (O, l] defined by u( x ) = :r2 if x E [O, l] and u(z) = 0 1f 
z e (JR \ [O, 1]). Then, L0 u = [Jõ, 1] for all o E [O . 1) , consequently, 

1 
Jl(L 0 u, L13u) = l ✓<i - JlJI = Jõ + Ji11° - .BI 

for ali a ~ {). So, u E IEê \ 1E2-

By using the following properties of H-metric, 

JI(A + B, C + D) s H(A, C) + H(B, D), 

JI(>.A, >.B) = >.H(A, B) 

for all A, B E D((JRn) and >. > O, we deduce that JE0 and IE2 are closed under the opera.tions 
(1) and (2). 

Moreover, recall that the support function of a nonempty subset A of JRn is the function 
8A : 5n-i - IR U { +oo} defined by 

sA(x) = sup{(x, a)/a E A} 

where sn-l = {x E Hln/llxll = 1} and (·,·) denotes the inner product in mn. If we take 
A E D((JRn), then 

sA(x):::: max{(x,ll)/a E A}. 

Some properties of the function s A ( ·) are 
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SA+B = SA + 8B (3) 

SÀA = ÀSA (4) 

-'A is Lipschitz continuous with constant: IIAII = H( {O}, A). (5) 
Moreover, the H-metric can be written as 

The a.bove result ca.n be seen in [1] or (3]. We consider C(sn- 1 ) = {/ : sn-1 - IR;/ is 
continuous} with usua1 norm of uniforme covergence. 

The following Theorem is due to Minkowski: 

THEOREM 2.2. The applicalion j : JI((D?.") -+ C(sn-l) defined by j(A) = SA is positively 
homogeneous, subadditive, and it is also an isometry. 

Puri and Ralescu (10) extended the definition of support functions to the fuzzy· context 
setting 

for all {a,z) E [0,1] x sn-t 
It is easily seen n that Su+v = Su + Sv for ali u, v E JEn and >. > O. We denote by 

C((0,1) X sn-l) = {/: (0,1) X sn-l-+ R;J continuous} with the usual norm. 
One of the principal results of [10] is: 

THEOR.EM 2.3. The <lJJJ)lícation j: 1E2 - C([0, 1] X sn-l) defined by j(tt) = Su is positively 
homogeneous, subaddilive, and it is also an isometry. M01·eover, j( u) is Lipschitz continuous. 

3. 'fllE JSOMETRY j D8FINED ON 1Eê, 

Our purpose in this scction is to show that JE0 is a complete metric space and that j is an 
isometry when defined on IEc with values on C([O, 1) x sn-t ). Also, we will show that IEê is 
the maximal subspace of lE'i with this property. 

THEOREM 3.1. (IEê, D) is a complete metric· sp<1ce. 

Proof. Let (up) a D-Cauchy sequence in JE0. Theu, by using lhe completeness of IE", we 

deduce tha.t there ex.ist u E JF, 11 suclt that ·up _g u. 
ln continuation, we prove that u E /Eê, ln fact, given e > O there·is n E /N such that 

D(up, u) < t/3 for ali 1, ~ 'fi. For a fixed Po > ir, we hc.1.vo that there exist 6 = 6(e,p0) > O such 
that 



aince u"° E IE;. Consequently, 

H(L 0 u, L{Ju) < ll(Lau , Lo uPo) + ll (L0 u'PO , L11 uro ) + H(Lou~, L{Ju) 

5 D(11 , u-po ) + E/3 + D(uPo, u) < ~, 

for all lo - ,BI < 6. So, u E IE'ê and this completes the proof. 

Now, we give an extension of the Theorem 2.3. 

THEOREM 3.2. The application j : 1Eê - C([O, l] x 3n-l) define.d by j( u) = 31.1 ia positively 
laomogeneous, subadditive and it is also an ísometi11. 

Proo/. The positively homogeneous and subadditivity of j are clear. We show that if 
• E IEê, then j(u) is continuous. ln fa.ct, given é> O we canto choose 61 > O such that 

Moreover, since u E 1Eê, we ha.ve supllL.oull = q < +oo and we can take 61 > O such that 
{J>O 

q6a < e/2. 
Now, we consider a.,/3 E (O, l] and x, y E sn-I such that lo - ,81 < 61 and llz - YII < 61, 

and it follows that 

::; lsL0 u(x) - 8L13 u(x)I + lsLpu(x).:.. 8Ltiu(Y)I 

By using (5) and the chosen 62 , we obtain 

lsL13u(x)-: 8Lpu(Y)I < IILJ3ull llx - YII 

< q82 

< t /2. 

Moreover, by using (6) and the chosen 51 , we have 

lsLou( x )- SLp u(x)I < sup{lsLa'u(z)- SL/J u(z); lz E sn-l} 

;:: Jl ( SL 0 u , SL/ju) 

< e/2. 

Consequently, (8) aud (9) together (7) imply tha t j(u) is continuous on (0,1) x sn-1 . 

Now, we proceed to prove that j is an isonrntry. We ha.ve 
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IU(u) - j( u) I!~ = sup l-',.(o.z) - .!v(o ,.r )I 
o.z 

= su p su p{l .!,.(o,.r ) - .!v(o , .r)l;.t E 5"- 1} 
o >O 

= supsup{l-'L0 ,. (:r)- -'La v(z) l; .r E 5"-1} 
o>O 

= sup ll(L 0 u, Lc»v) 
o:>O 

= D(u,v). 

Therefore, the proof of the Thcorem is complcted. 

Since [O, l] X sn-l is compacl , we can deduce imediately the following 

COROLLARY 3.3. (IEê , D) is n epamble metric space. 

COROLLARY 3.4 . lf Up, u E !Eê , t/1en Up E_ u iff -' up - .,,. uniformly on (0, l] X 5n-l. 

ln what foJlows, we show that 1Eê is the maximal subspace of lE" that ca.n be embedded 
in C([O, 1] x sn-l) through the isometry j. 

THEOREM 3.5. Let u E IE" \ IEê be, then j(u) (/ C((O, l] X 5n-t ). 

Proof. Let o:' E [O, 1 J be such that o _. La u is not continuous for o:'. Then, there exists E > O 
1 

such that for each p E 1N, we can find o:P E [O, 1) such that lo:P - o:'I < p and H ( La,. u, L 0 ,u) ~ E. 

Thus, for ali p, we have 

and, consequently, lsu(ap,x) - su(o:',x)I > E for all p; that is, j(u) is not continuous for 
(a',x),x E sn-1 . 

4. TIIE SPACE JE'l, IS NOT COMPLETE. 

We begin with some definitions a.nd preliminary results: 

DEFINITION 4.1. We say tha t a sequence (u9) Ç IE" L-converges to u E JE", (u9 ~ u), if 
for ai) a E (O, 1) we have, 

Now we are going to use the following rcsults that were proved in [13] 
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PROPOSITIOS 4 .2. u E !Eê if and only ií 

L0 u = {u > o} , Vo E (O, l f 

PR.OPOSITION 4.3. Let uq, u E En ; if u E 1Eê , then the followin g are equjvalent: 

') D J u9 - U 

.. L dL "L 11) u9 - u an ou9 - ou. 

Applying the above propositions we have 

COROLLARY 4.4. Let u9 , u E JE"; if u E IEê, satisfying u9 / u and Li u9 -+ Li u, then 
D 

Uq-+ U. 

Pr-oo/. Let us considero E (O, l)i since u9 / u, then (L 0 u9 ) 9 is an increacing sequence a.nd 

lim sup L0 u9 Ç LJL0 u9 Ç La u. 
,-oo 

q 

Now, if o< u(x) $ 1, then u(x) =o+ E with E > O. Consequently, there exists N E JN 
such that u(x )- uq(x) < t for ali q ~ N, i.e., u9 (x) > u(x)- t = o for all q ~ N. ln other words, 
z E L0 u9 for all q ~ N it that implies x E lim inf L0 u9 . Whence, {u > o} Ç lim inf Lau9 • 

~00 --- ~= 
Since the lower limit is closed, the Proposition 4.2. implies that {u >o}= L0 u Ç lim inf L0 u9 • 

q-= 

'fhus, we get: lim inf L0 1t9 = lim supL0 u9 = L0 u for ali o E (0,1). 
q-oo q-oo 

Being Lo,u compact and L0 u9 Ç Lo,u for all q, Proposition 2.3. implies 

Lc,uq !! Lo,u for ali o E (O, 1). By hypothesis L1 u9 !!. L1 u; consequently by definition, u9 .!:.. u. 

Now, we prove that L0 u9 • !!. Lou. By using the sarne arguments above, it is enough to 

prove tha.t L0 u9 & L0u. It is easy to see that 

lim sup L0 u9 Ç LJ Lou9 Ç Lou 
q-oo q 

. . 
beca.use {u9 > O} Ç L0 u for all q E JN. Thus, if we prove that L 0u Ç Um inf Louq, we can 

• q-oo 

conclude the proof of Corollary. ln fact, if u(x) > O then there is . N E JN such that uq(x) > O 
for all q E JN due to the fact that u9 / u. Thus, by definition, x E L0u9 for all q e JN, a.nd it 
followa . that x E lim inf L0u9 . Consequently, { u > O} Ç lim inf Louq, and being this last set 

q-oo ___ q-oo 

closed, we obtain L0 u == { u > O} Ç lim inf Lo'tt9 . 
q-oo 

ln continuation, we will analyse of the case n = 1, and we will show that JEl is a. noncom­
plete subspace of (/E1 , D). To build an exemple, we will work with a. spedal class of polygonal 
functions with support equal to interval [O, 1). 

LEMMA 4.5, Let xo, to E [O, 1) and define p: 1ft - [O, 1) such that 

{ 
1 jf Q S X S Xo 

p(x)= 
0
l+(x-xo)(to-l)/(l-xo) if xo<xSl 

elsewhere 
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it. Then p E JEL with Lip chitz con~tant equal to (1 - .ro)/(1- to) ­

Proof: Ea.'fily we observe that the leveis of pare: 

L _ { [O, l] if O ~ o ~ to 
oP - (0,(1 - x0)(1 - o)/(1 - to)+ xo] if to< o 5 l, 

consequently if O 5 o 5 /3 5 t0 we have H(L 0 p, L{Jp) = O; also if lo < o 5 f3 S 1 we deduce 
H(L 0 p, Lpp) = 1(1 - x0 )(1 - t0 )1 lo - /31 and finally if OS o S to < /3 S 1 we ob.tain 

H(LoP, Lo11) = 11 - {(1 - xo)(l - {))/(1 - to)+ xo}I 

This, in all cases we have 

< 1(1 - xo)/(1 - to)I lo - .81-

J-/(LaP, L{Jp) S 1(1 - xo)/(1 - to)I lo - .81 

= 1(1 - xo)/(1- to)I lo - .81, 

Since xo, to E (O, 1 ). This complete the proof of Lemma. 

Remark .,1.6. If in the above Lemma xo = 1 or to= 1, then p = X[o,I] a.nd, it is a. Lipschitzia.n 
with null constant. 

We denote by P the set of ali polygona.ls functions such that consider in above Lemma. 

LEMMA 4.7. // p 1 ,p2 E P with Lipschitz constant c1 and c2, respectively, then p = 
min{p1,p2} E JEl wíth Lipchilz conslant eqtwl to (c1 + c2). 

Proof. The no trivia.Js cases are two as to show the following figures a and b: 

j • 

' ' : p 1 

' 1 • 
1 ' : : 
1 j 

~ ··---+---~------ -
1 • 
1 1 

.. ···-·7--··i·-- --·--
, 1 . ' 

··~· 
1 " r--{ 
' ' 

.i -----~--·-~·- -- -- -
! : 

t. ·----~:.--- i- -- -- --· 
' . . ' 

We prove only tlrn case of thll figure", since the other case (figure b) is analogous. 
If p = min{p1,P2} we havc 
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ln continua.tion, we observe that L1P1 = L1P., consequently we ha.ve, 

H(L L ) _ { H(LoP2, L11p2) S c1 la - .BI 
oP, fJP - H (LoP1, L11pi) $ cila - ,131 

Flnally, if O 5 a 5 t < {J $ 1 then 

H(LoP, L11p) :;: H(LoP2, L11P1) 

if o :5 a 5 /3 5 t 
if t 5 o 5 /3 5 1. 

5 H(LoP2,L1P2) + H(LtP1,LfJP1) 

= H(Lop2, LtP2) + H(L1p1, LfJPi) 

5 c2lo - .BI + c1 la - /31 
5 (c1 + c2)la - .BI-

This conclude the proof of the Lemma. 

LEMMA 4.8. Let f, g E JE}, be Lipschitz functions with constant M and N, respectiuely. 
We assume that f and g are continuous and decreusing on their supports, and such that Lo/ = 
Log = [a, b]. 

IJ Gr(J) n Gr(g) n (a, b] x (O, 1] = {(xo, to)}, then q = min(J,g) belongs to JEi, 

Proof. We remark that, in this case, we have 
i) L,0 / = Lt0 9i 
ii) over the subintervals [a, xo] and [xo, b] we have q = f or q = g (see figure e) a.nd the 

proof is essentialy the sarne thà.t of the Lemma 4.7 . 

.. 

THEOREM 4.9: (/E},. D) is a noncomplete 111el1·ic s1x1ce. 

Proof: We colll;i<l"r u( x ) = 1- x1 if :r E (O, l) an<l u( x ) = O if :i: E .m \ [O, l]. Clea.rly, u E JEb 
t.nd u 'IEL. 

I.u fa.ct, 

10 



lf we suppose that u E JE},. then there exists C > O such that 

H(L 0 11, L{Jtt) ~ Cio - .BI for all o 'f ,B, 

consequently, by using (10) we conclude that C > (~ + ,,1T::7])- 1 for all o# {3 which is 
an absurd. This proves that u 'f. IE},. 

Let us consider the sequence of polygonal functions where each pq consist of the union of 
2q-l rectilineal segments which are obtained by sucessive divisions of the graph of u as shown 
in the following figures: 

',,,< 

Fillure d 

' ' ' ' ' , ' ~,·<:,~ 

Combining the Lcmmas 4 .. 5, 4. 7 and 4 .8 we have that pq E JEl for all q E JN . On the other 

hand, since u E IEê, then Pg / u anel L1]Jg !! Liu, we conclude that pq S u thanks to the 
Corollary 4.4. It follows that the space (JEl, D) is not complete. 

We and this section by chara.cterizing the closure of IE2. 

THEOREM 4.10. IE2 = IEê. 

Proof Let u E 1Eê, then the multifunction F: [O, 1) -+ H((!Rn) given by F(a) = L 0 u is 
H-continuous on (0,1). We consider the qth Bernstein polynomial B9(F;o) associated with F: 

B,;(F;a) = t (;) F (i) a'(l - o)q-,,o $o$ 1 
J=O q 

R.A. VitaJe [15) ha.~ proved th at 

D(F, JJq(F, •))-+ O as q-+ +oo . 

We observe that Bv( F ; o ) E //(( J/l" ) for each q E 1N aud o E (O, l] . Now, we verify the 
hypothesis o{ the Rep rcscnt a tio11 Thcorem given hy Negoita and Ralescu [8] to show tha.t the 
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family Na= B9(F; o ), for each (J E N, defi ne an uni que fu zzy set . If o ~ /3, lhen F(o) ~ F(/3) 
a.nd, consequently, Bq(F ;a ) J Bq( F ;/3 ) (see Vitale [15}, p. 312) . So, we only hM-e to prove 
tha.t, jf 01 5 02 5 · · · 5 0 1 - o 1 O a.s l - oo, thcn 

00 

Bq(F;a) = íl Bq(F;ar). 
I== 1 

We observe that o - Bq(F; o) is a. H-continuous multifunction, consequently, for each 
fixed q, we have 

B9 (F;o:,) !!.. B9(F;o:) as l- oo, 

as Bq(F; a) E ll((lRn), and we deduce from lhe Proposition 2.1 tha.t 

r B9(F;o:,)~ B9(F ;a ) as l-oo. (11) 

Being {Bq(F;o1)ll E JN}, one decreasing sequence, we have 

j so it follows from (11) that it hol<ls the require<l equality 
This completes the hypothesis of the Negoita-Ilalescu Theorem. 
Finally, we prove that o - B,1(F; o) for each q E JN is a Lipschitzian application. By 

virtue of (6) is sufficient to show that 

ma.x{lsBq(F;o}(x) - sa'l(F;,8)(x)l;x E sn-l} $ Cio - .81 

with C > O independent of o and (3. 
Note that the support function of Bernstein approximant of F is given by 

•o,(F;o)(x) = t. (} ) aÍ{l - o)•-i·Fw<•l 

with z E sn-l, so that 

: 

lsa"(F;o}(x) - SB 9(F;.O)(x )1 

$ t ( '~) l.'JF(i/x)I 101(1- 0)9-j - ,81(1 - .ar1-;1 
1=0 J q 

$ IISF(o)lloo t ( '~ ) lo1(1 - o)"-j - ,61(1- /3)9-j.l 
J=O J 

~ Cio - /JI, 

Since F(O} 2 F(~) 2 F(l) for all O< j < q implies that 
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for ali X E 5n- 1. This completes the proof. 

5. APPLICATIONS 

ln this section we give some applications of our previous results to the convergence of the 
fuzzy random variables in IEê. 

We will briefly go over some basic material on the measurability and integration of multi­
functions that we will needed in the sequei. For more details we refer to Aumann [2], Castaing 
and Valadier [4], Hukuhara [6] and, Klein and Thompson [8]. 

Let P(JR") be the set of nonempty subsets of IR" and (n, }:,µ) a complete finite measure 
space. Let F : n -+ JP(JR") be a multifunction from n into IR.". Let Gr(F) = {(w,x) E 
n X lR"/x E F(w)} be the graph of F. We say that F is measurable if Gr(F) E E xJB(JR"), 
where JB(IR.") is the Borel a-field of JR,". 

For any multifunction F : n -+ JP(JR") we can define the set S(F) = {/ E 
L1(fi,JR")l/{w) E F(w),Jt - a.e.}, i.e., S(F) contains all integrable selectors of F. The in­
tegral introduced by Aumann [2] as a generalization of the single-valued integral and of the 
Minkowski sum of sets is defined by 

lo F(w)dJt(w) = {Ío f(w)dJt(w)lf e S(F)}. 

and denoted simply by J F. 

It is natural to ask under what conditions j F (or equivalenty, S(F)) is nonempty. 

The multifunction F will be called integmbly bounded if there exist cp E L1 ( n, .IR) such tha.t 
llzll ~ ip(w) µ_ - a.e., alrnost ali x and w such that x E F(w). The following resulta are in 
Aumann [2]. 

THEOREM 5.1. // the measul'e Jt on the a-álgebra E of n is atomless, then the integral 

j F i, a convex set . 

THEOR.EM 5.2. // F is inlegmbly bounded and F(w) is closed for almost all w E O, then 

j F E JK(JR"). 

Also, we mention the following gcneralization of Lebesgue's domina.ted convergence Theo­
rem, 

THEOREM· 5.3. // F11 : íl - IP(//l") are measurables and the,-e is f E L1{il,JR) such that 

supllgp(w)II $ /(w) Jo,- ali 9,, E S(F~), t/1en i/ Fp(w) li. F(w) we have 
,,~1 
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THEOREM 5.4. Let F : n .... JP(Dl") be a measurable and intcgrably bounded, i/ ir i3 a 
linear form over Dl" , then 

sup r.(j Fdµ) = j sup if(F(w))dµ(w). 

A fuzzy rondom variable is a function r : n - JE" such that for every a E [O, l] the 
multifunction r 0 : íl - IP(IR") defined by f 0(w) = L0 f(w) is measurable [10]. Moreover, we 
say that r is integrab/y bounded if r O is lntegrably bounded for ali o E [O, 1]. We observe that 
for r to be integrably bounded it is necessary and sufficíent that r O be integrable bounded; thls 
is a consequence of the following fact: OS o S fJ implies f,o(w) Ç r0 (w) Ç Fo(w), for all w E n. 

The following Theorem due a Puri and Ralescu [10) permit us to define the integral of a 
fuzzy random variable r : íl -+ /E". 

THEOREM 5.5. IJr: n _. lE" is an integrab/y boundedfuzzy variable, there exists o unique 

fuzzy set u E JEn such that L0 u = j r crdJ,, for every o E [O, 1]. 

The element u E /En obtained in Theorem 5.5 define the integral of the fuzzy random 
variable r, i.e., 

j I'dµ = u {::} Lcrv. = j I' 0dµ, for every o E [O, l]. 

THEOREM 5.6. Let r : n _. IEê be a fuzzy random variable integrably bounded, then 

·/r E JE0. 

Proof. We consider an sequence ( ap') Ç [O, 1] such that ap -+ a, a E [O, 1 ]. Since 
F( w) e IEê, it follows that Lop f( w) -+ Lo f ( w) for all w E O as p -+ oo. Thus, we de­
duce that for all w E íl,f ap(w)-+ f o(w) as p-+ oo. Moreove:r; heing r integrably bounded, 
we conclude that each f ºP is also integrably bounded, and, if f E L1(Sl,JR) is such that for all 
z E fo(w): llxll :$ f(w), we also conclude that sup{llxllx E f ap(w)} :$ f(w). Consequently, 

p~l 

using Theorem 5.3, we have j r ºP -+ j r O as p ...:.+ oo. ln other words, L0 ,, j r -+ La j r as 

p-+ oo, and therefore j r E 1Eê. 

COROLLARY 5. 7. Let r p, r : íl -+ IEô be an integmbly bounded fuzzy random varioble. 

Then, J fp -Ir on (1El7,D) {:} s Jr,, - s Jr on C([0,1) X sn-1),ll,lloo), • 

Also, we have 
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THEOREM 5.8. Let r : f} - IEê be an integmbly bounded ft,:::y random variable. Then, 

Proof. lt follows imedia tcly from Theorem 5.4 . ln fact, 

3 Jr(ec,x) = S I,º Jr(x) = S JrJ:r) = J 3fo(w)(x)dp( w ) 

= j s1,0 r(w)(x)d11(w) = j Sf(w)(a,x)dµ(w). 

Remark 5.9 . . It is well know that if A E JI((Ul") then 

A= n {x E IR" 1 (x,y) 5 sA(y)}, 
11esu-1 

see [l) or [3]. 
lf we apply this in the fuzzy context, we have that if u E IEê, then for each a E [O, l] 

Lou = n {x E IRn 1 (x,y) 5 su(a,x)}. 
yesn-1 

Thus, given. some relations involving fuzzy sets in IEê, we obtain the corresponing rela.tions 
for the fuzzy support function s,,. On the other ha.nd, from relations involving fuzzy support 
functions Su we can obtain analogous relations for the a-Level of the fuzzy set u E 1Eê and, 
consequently, for u. Thus, wc can apply the dua!ity theory between support functions a.nd 
D((Dl") in the fuzzy context . 
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