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13081-970 - Campinas - S.P. - Brazil

Abstract: We prove, for non-null electromagnetic fields and for their respective free
cases, that Maxwell and Dirac equations are equivalent. Our proof is based on the use of
Rainich-Misner-Wheeler theorem and on general assumptions which are indeed satisfied
for the case under consideration. This equivalence is discussed in terms of relationship
between a non-linear Dirac-like equation (with is a spinorial representation of Maxwell
equation) and Dirac equation. This relationship is interpreted by means of a Riemann-
Cartan-Weyl geometry which is metric compatible and with the trace of the torsion 1-form
playing the role of the Weyl 1-form. We also discuss the relationship between Maxwell
and Dirac fields in the light of the above resuts. All calculations are performed in terms
of the Clifford algebra of spacetime, the so-called spacetime algebra.

1. Introduction

There is a paradoxical situation in Physics: electrodynamics and relativistic
quantum mechanics can be said to be well established theories, but the same is not true
for the concepts of photon and electron. One can support this assertion by quoting the
greats Einstein and Dirac: “You know, it would be sufficient to really understand the
electron” (Einstein, quoted in [8]); “Every physicist thinks that he knows what a photon
is. I spent my whole life to find out what a photon is, and I still don’t know it" (Einstein,
quoted in (3]); “I really spent my life mainly trying to find better equations for quantum-
electrodynamics, and so far without success, but I continue to work on it" (Dirac, quoted
in [3]). It is therefore a fundamental issue that one understands things like the (real)
meaning of Dirac theory, the meaning of spinors, the range of applicability of Maxwell's
electrodynamics, etc. Questions like these ones and others were studied, for example, by
Barut [1-3], Campolattaro [4, 5], Hestenes [6-8], etc.

The problem we want to study here is related to the above one but it is a
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little more general: the relation between electrodynamics and quantum mechanics. More
specifically, we shall prove, for non-null electromagnetic fields and for their respective free
cases, that Maxwell and Dirac equations are equivalent. In order to prove our claim, we
start showing by means of the theorem of Rainich-Misner-Wheeler [9, 10] how one can
associate a spinor field to any non-null electromagnetic field, and by using this result we
can find a spinor representation of Maxwell equations [11-13]. A pioneering work in this
direction is the one of Campolattaro [4, 5], but our approach is different from his one since
we do not use the traditional tensor and spinor calculus (which is often intricated, and
sometimes does not help in the physical interpretation). We shall use instead the Clifford
bundle formalism, which we briefly review in the next section. In our approach, pages
of Campolattaro’s calculations [4] are performed in a line, and the equivalence between
our spinor representation of Maxwell equations and the one of Campolattaro is proved
in [14]). We can show therefore that under general assumptions the spinor equation that
represents Maxwell equations reduces to the Dirac equation [11-14].

Some of the results we shall present have already been discussed in [11-14], but
these references left open some question to which we shall give an answer here. More
specifically, the spinor representation of Maxwell equation is a non-linear equation, but
Dirac equation is linear. Moreover, the non-linear term in that equation is of quantum-
potential type. We have therefore to interpret the non-linear term and to clarify how one
goes from a non-linear to a linear equation. Our interpretation of the non-linear term
is very interesting; we shall exploit the fact that the spinor field we associate to that
non-null electromagnetic field is the so-called Dirac-Hestenes (DH) spinor field (which
has a well-defined geometrical meaning, to be discussed in the next section) and use the
fact that DH spinor field can be viewed as generating an effective Riemann-Cartan-Weyl
geometry in spacetime, as explained in [15]. The quantum potential type non-linear term
will be interpreted as an effective torsion in spacetime (but in a way different from [15],
which will be briefly reviewed for a self-contained presentation).

It is clear that equivalence of Maxwell and Dirac equations does not imply
the equivalence of Maxwell and Dirac fields, but suggests indeed the existence of a deep
relationship between them. We shall exploit the fact that a DI spinor field can represent
a non-null electromagnetic field and that the amplitude of a DH spinor field can be used to
define a conformal mapping in order to suggest that the difference between Maxwell and
Dirac fields is due to different transformation properties of DH spinor fields under that
conformal mapping. We shall also discuss in connection with this problem and in the light
of our results the two gauge conditions used by Campolattaro [5] in order to eliminate the
two additional degrees of freedom present in the spinor field if it is to represent a Maxwell

field.



2. Dirac Equation in the Clifford Bundle.

Let M = (M. 4. r) be a Lorentzian manifold, i.e.. M s a Hausdordf, para
compact, C™  connected, four-dimensional manifold, oriented by the volume element
4-form 7 and time-oriented, and the tensor field g € T% (M) is a metric of signature (1,
3). Let TM and 1°M denote the tangent and cotangent bundles, respectively. Cross-
sections € € secT'M [4 € sec T M] are called 1-vector [I-form] fields. Let {e,} € secTM
(a =0, 1, 2, 3) be an orthonormal basis of T'M and {1*} € secT"M be the dual basis:
97" (v, ) = 1™, glea, e) = nas, with ™ = diag (1, =1, =1, =1)and g7' € T%°(A).
If (z#) is a chart for U7 C M and if {7)8—“} and {dz*} (p =0, 1, 2, 3) are the natural
coordinate basis of T/ and T"U, rv:epq,-rrtivvly, we have e, = h%d, and ¥* = hjdz* with
n° = hahbg  ¢# = ¢~ '(dx*, dr*).

The Clifford bundle can be defined in different ways [16] which are equiva-
lent for fields of characteristic # 2. We define the Clitford bundle of M as the bundle
CUT"M, ¢g~') =ClHM) = UrenCOTTM, y;') = 1(M)/J, where T"(M) is the tensor
bundle over the cotangent bundle of M and J is the ideal generated by the elements of
T"(M) of the form a @ 3 + 3 Y a - 297" (a, 3), with o, 3 € secT"M C T(M). The
Clifford bundle is a vector (algebra) bundle. It can be shown [17-19] that (M) =
Pso, (1,3 X aa Ry 3, where Pgo, (1 3) is the principal bundle of orthonormal frames, Ad is
the adjoint representation of SO4(1,3), Ad : SO4(1,3) — Aut(R,;), and IR, 3 (which
is the typical fiber of the bundle) is the spacetime algebra [20]. Sometimes CZM) is also
called the Kahler-Atiyah bundle of differential forms [21].

Intuitively we have at each point of M a local spacetime algebra. As a vector
space IR; 3 is 16-dimensional and one basis is {1, 7% ...,9% 2 A4, ;92 A% A% A
AN Y AYEAYS AR) with T = 9% = 9% A9 A9% A4 being the volume element
and A being the exterior product. We also have 4* - 7% = 4% where - is the interior
product. The Clifford (or geometrical) product of 1-forms is 2% = 7% . 4% 4+ 42 A 4,
with 4% - 9% = ;;-('y“‘yb + 7*9*) and y* A7 = -1‘)-(7“7" —7*9%). For a general definition
of these products see [22]. We note that, since the base manifold is always a metric
one, the use of I-forms or vectors is only a matter of convenience; and in this case one
may replace v* by ¢, in the above definitions and define the reciprocal basis {e*} by
e - e, = 63, use the boundary theorem [20, 22] to “integrate” vectors, etc., as explained
by Hestenes. Therefore we shall use raised or lowered indices whenever convenient, like
YaTb = Ya Yo + Yo A s, and interpret these v, as vectors e,, etc. (this, of course, does not
cause confusion, despite its redundancy).

Now let V be a connection on M; if ¥V is a Riemann-Cartan connection, i.e.,
non-null curvature and non-null torsion and null nonmetricity (i.e.: Vg = 0), then V
pass to the quotient bundle C{(M) = T=(M)/J. The Dirac operator acting on sections
of C¢M) is defined as d = da*V, = 4°V,, where (for example) V, is the covariant
derivative in the direction of e,. The connection coeficients 15, in the {7} basis are



defined by V,1¢ = —T,7". Since V5% = V,(7*:7°) = 0 we have that ['* = —T'?, which
enable us to define:

Fa = %r?(‘n A 7c)v (1)

with 9% - 1, = §;. It follows that:

Vart = 5[0, 7, 2

where [ , ] is the commutator, with %[Fo, 7] = =9 - T, = =T, = —T? 4. Since the
commutator of a 2-form [2-vector] and a multiform [multivector] preserves the grade of
that multiform [multivector] [22], eq. (2) can be generalized to any multiform [multivec-
tor]: B as
1
Va(B) = 0.B + 5[1‘,, B] (3)

where 0, is the Pfaff derivative.
It is easy to see that the above expression for the covariant derivative of a

multiform is related to the fact that under a active Lorentz transformation described by
R € Spin,(1,3) ~ SL(2,) the multiforms transform like 7* — Ry R, where

R R=R R = 1 with ~ (called reversion) is the principal anti-automorphism in R, 5 :
(aB)~ =Ba with a= a for a scalar or 1-form. Note that R= R~ and that R € IRf, the
even subalgebra of IR, ;.

Now, let us consider the covariant derivative of a spinor. First of all, the ex-
istence of spinor structures on arbitrary manifolds is an intricated problem since the
existence of either Milnor-Lichnerowicz spinor structure or algebraic spinor structure is
restricted to a certain class of manifolds [17, 23]. Moreover, it is very difficult to see
any geometrical meaning underlying these spinor fields. On the other hand, the Clifford
bundle always exists (as we have seen) and its elements have a clear geometrical inter-
pretation. It would be convenient, therefore, to define a spinor by means of the Clifford
bundle. One such spinor has been introduced by Hestenes [24] and named operator spinors
(see [25])). Although the existence of operator spinors in arbitrary manifolds is a question
that deserves specific attention [26], we shall not be worried with this topic here since
the manifolds we shall consider later admit a spinor structure. One great advantage of
working with operator spinor is its geometrical interpretation described below.

An operator spinor ¥ is an element of the even subalgebra of IR, 3, i.e: Ri3 3

v=a +~B + 7°p, where a and p are scalars and B a 2-form. Since 17): a— B+~°p we
have ¢ = (¢’ — p* ~ B- B) + v*(2ap + 7*B A B) = pcos B + 7*psin B = pe”™”, and we
can define a normalized spinor ¢ = ¢(pev’ﬂ)-l/2 sl Uik 5__: | with ¢ € m.s with
¢ € 5. But since ¢ € I}, with ¢ ;5:3 ¢ = 1, we can identify ¢ with R that describes
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a Lorentz transformation. and write Y as:
L)
) =pl/lc~v "/)R. (n

This is the canonical decomposition of an operator spinor (valid whenever it is non-

singular: ¥ ¥# 0). It can be shown [16. 27] that ¥ carries the same information as the
standard covariant Dirac spinor yip € T*; the difference is that ¢ does not involve complex
numbers since it is a sum of real multiforms of IRt . This great achievement of Hestenes
enable him to develop a real formulation of Dirac theory within the spacetime algebra
(6-8, 28, 29]. The Dirac algebra of matrices @'(4) is isomorphic to MR, 5 complexified:
CR®IRy 3~ Ry ~@(4). but there is no need for such complexification to formulate Dirac
theory (see [16] for details). We call ¢ a Dirac-Hestenes (DH) spinor.

DH spinor fields that are sum of even sections of Cl(M) possess a very impor-
tant property: its canonical decomposition (eq. (4)) which clearly shows its geometrical
content: R is a Lorentz transformation, ™2 represents a duality rotation [30] and p'/? a
dilation. The angle 3 is the so-called Takabayasi angle (31]. In view of this interpretation
and since the composition of a Lorentz transformation R, and a Lorentz transformation
R, is equivalent to a Lorentz transformation Ry = R, R, it is clear that a DH spinor
must transform under as active Lorentz transformation R as ¢ Ry. Now, remember
that the covariant derivative of a multiform A is, from eq(2):

V.A=08,A+ %[r.,, A, (5)

where §, is the Pfaff derivative [32]: 9.4 = 0,(A4y*) = (8.A4)7*, and this expression is
related to the fact that A transforms as A — RAR. Since ¥ transforms as 1 — Ry we
must have:

Vab =0+ STt (6)

This is not a proof, of course, but a justification which is enough for our purposes. A rigor-
ous exposition of those topics (definition, transformation properties, covariant derivative,
etc.) related to operator spinors is to be found in [26).

Now, the represenattive in C€(M) of the Free Dirac equation when M is
Minkowski spacetime is [6-8, 27]:

mc

M"Y + 2= =0 (7)

where 8 = %0, and 4* = da*. When M is a Riemannian spacetime, Hestenes [33]
generalizes eq. (7) to: '

, ,  mc
W'yt + 2=’ =0, (8)
where now {7¢} is an orthonormal basis and d = v°V, = da*V, with V,¢ given by eq.
(6). When M is a [tiemann-Cartan spacetime, we propose the following expression for




the representative of free Dirac equation in C(M):

mc |
[0 + %Tv,"]':"r’ Fasgn =l (9)

where T = dz*T, = 7°T, with, for example, T, being the trace T}, of the t.orsio.n
T?, =T, —T7,, and the other symbols with the same meaning as in eq. (8). Eq.. (9) is
ju“st the translation in Cf(M) and in terms of DH spinor field of the equation given by

Hehl et. al. [34], Ivanenko and Obukhov (35).

We shall need to consider the DH equation in Riemann-Cartan spacetime only
in sec. 5; 80, in the following two sections we restrict our attention to Minkowski space-

time.

3. Maxwell Equations and Rainich-Misner-Wheeler Theorem

Let us consider M to be Minkowski spacetime, so that the Dirac operator is
8 = dz*V, = v°V, with V, = d,. The representative of Maxwell equations in C{(M) is
[20]:
OF = [ (9)
It has been shown in [27] that all spinorial forms of Maxwell equations found in the litera-
ture can be deduced from the above one after a suitable choice of a global idempotent field.
This form of Maxwell equations is due to Juvet & Schidlof [36] and Mercier [37], and re-
considered by Riesz [38]. In eq. (10) the electromagnetic field F' € sec A2M C secCé(M)
and the electric current J € sec A'M C secCl(M). When J = 0 the free Maxwell equa-
tions assume of course the simple form 9F = 0.

The Rainich-Misner-Wheeler Theorem: Let an “extremal field” be any electromagnetic
field for which the magnetic [electric] field is zero and the electric [magnetic] field is par-
allel to one of the spatial axis. Then at any point of Minkowski spacetime any non-null
electromagnetic field can be reduced to an extremal field by a Lorentz transformation and
a duality rotation.

. An elementary proof of this theorem by using the spacetime algebra can be
found in [14]. Now, under an active Lorentz transformation described by L the electro-

magnetic field F transforms into F/ = LFT and under a duality rotation by an angle «

the field F” transforms into F* = ' f. Therefore, F” = ¢ LF [, is an extremal field.

Since we can always choose the extremal field to be a magnetic one along the z-direction
we have:

e °LF I=hy' A~?, (10)
where h > 0 is the magnitude of the extremal field (note that the symbol A is not to be
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confused with Planck constant, since in this case we shall always use the reduced one A).
If we redefinea = —g and L =;?, we have from eq. (11)

F =he™R(~' A7) R, (11)
or:
where
é=h"e’R (14)

is a DH spinor field. This is a very important result since it permit us to interpret the
DH spinor on the basis of the above discussion; that is: in the canonical decomposition
given by eq. (4) of DH spinor, the Lorentz transformation R and the angle B are just
the ones discussed above, and the dilation VA is the square root of the extremal field
magnitude. This is indeed a remarkable relation between a non-null electromagnetic field
and a DH spinor.

4. Spinor Representation of Maxwell Equations and its Rela-
tionship with Dirac Equation

We have seen in the preceeding section that any non-null electromagnetic field
can be written as F' = ¢v'y? ¢, where ¢ is a DH spinor field and 7'y? = 4! A 42 because
{#°} is an orthonormal basis. It is natural, therefore, to use this fact into Maxwell
equations to find a spinor representation of them. For our purposes we need to consider
only the free equations, but its extension to the general case is trivial. Then, introducing

F = ¢y'y* ¢ into OF = 0 (the representative of Maxwell equations in the Clifford bundle),
we get:

~

(087"’ 8 +7" 67" 70, ¢=0, (15)
and multiplying eq. (15) on the right by ¢(¢ ;)“

Y 0,87'7* + 1467 1*(8, $)d(4 $)* = 0. (16)

We must note that the spinor representation eq. (16) of the free Maxwell equations is
equivalent to the one found by Campolattaro [4], as proved in [14); however, while our
approach is trivial Campolattaro’s one is mtncatul The simplicity of our approach is due

to the fact that DH spinor ¢ has an inverse ¢! -—qS (¢ ¢) , while the standard covariant
Dirac spinor used by Campolattaro does not have an inverse.




O

Before we continue, let us make a simplifying hypothesis, supposing g = con-
stant. (We shall discuss later the meaning of this simplification) This assumption implies
from eq. (14) that

" 1
0.6 = E[f)“ln h+Q,]0, (17)
where we defined the 2-form .
N, =20R)R. (18)
Eq. (16) then becomes:
1 1 . "
T0,67'7" + 57"() Inh)dy'y" = 596"y 8 Q,8(4 ¢)7' = 0 (19)

where we used ﬁ,,: —Q,,. If we define the spin 2-form S.
hoas B 2% T
§=3R'y R=5v'7 8 (6 4)7, (20)

eq. (19) assumes the form:

1
7 0u87'7 = 27"

$0u6 = —5(0Inh)gr'" (21)

This non-linear equation for ¢ is equivalent to the free Maxwell equations when the
electromagnetic field F' is non-null and the duality rotation is constant.

In eq. (21) the term SR, is the Clifford product of 2-forms S and 0, which
results in a sum of a scalar, a 2-form and a pseudo-scalar according to [22]:

1
SQ“ =SQ“+§[S, Qu]'f-S/\Q“. (22)

Now, Hestenes [6-8] has shown that the component p, of the momentum p in Dirac theory
(for the free case) can be written as:

Pu=—5-Q,. (23)

such that
P=7"Pp. =€ Pmey, (24)

where v = Ry° R We note that eq. (23) differs by a sign from the one of Hestenes
because our definition of S also differs by a sign from his one. Then, if we suppose that

the pr?duct S0, has only a scalar part §-Q, (which is true in Dirac theory for its free
case), it follows

mc

1 1
~ VS = ppd = =417 (25)




and eq. (21) finally becomes:

67" +? + Thf‘ﬁ‘r" = —(dInVh)$r'y* . %5}

Eq. (27) is a non-linear DH equation which is equivalent to the frec Maxwell cquations
for the case where the electromagnetic field is non-null, the duality rotation is constant
and the product SQ, has only scalar part. For the case where S, has also 2-form
and pseudo-scalar parts, the generalized equation has been considered in [11]. Since €2,
describes [39] the infinitesimal rotation of {A\*}(A\ = Ry” R) along the direction pre
the assumption that S, has only a scalar part means that this is a rotation in the plane
A A A% which in view of def. (20) is just the spin plane. As a consequence, mass has a
kinetic origin as suggested by llestenes [6-8] - now from a different view point.

The nonlinearity of eq. (27) provides ¢ with those known properties of solu-
tions of non-linear equations, which is a welcome fact. It is important to note that the

v 10k
nonlinearity of eq. (27) is just of quantum potential type, i.e., dInvh = =—. In the

2k
next section we shall look for an interpretation of this term.
We must observe now that eq. (27) can be linearized. In fact, if we multiply it

by vk we have:

VR, 6y + v (8,Vh)gy'y? + Ehti\/ﬂqho =l (26)

and defining a D H spinor :

Y = Vhe (29)

we have that 1) satisfies:

Oy'y? + "_;f¢7o =0 (30)

which is just DH equation, i.e., the representative of Dirac equation in C¢(M). From eq.
(14) and eq. (29), ¢ is of the form:

V= p‘/zew’ﬂ/'lﬂ (31)
with p given by:

Lp=# (32)

i.c.. p.is the square of the magnitude of the extremal field, ie., it is proportional to the
intensity of the extremal field. We remember that p is assumed Lo be the probability
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density in Dirac theory, i.e, p = v ¥ for the cases 3 = 0 and 3 = r. Moreover, these
values of A distingnish electrons (3 = 0) from positrons (J = =) in Dirac theory [6\\] in
this way, our hypothesis that 3 = constant is satisfied in these cases.

Finally, we observe that studies in the same direction were performed by Daviau

[40,41]; however, in writing F = wy'4? ¥ that author attempted for associating an elec-
tromagnetic field with Dirac waves, which certainly is not the case in our approach. There
are other differences also, but it is not our purpose to discuss them here.

5. Interpretation of the Non-Linearity as Torsion.

In this section we shall look for an interpretation of the nonlinear D H equation
and its quantum potential type nonlinearity by means of the geometry of spacetime. We
first discuss how one can do this for Dirac equation in terms of an effective Riemann-
Cartan-Weyl geometry generated by a DIl spinor field, as discussed in [15]. Then we
show how to do the same with the nonlinear DI equation in terms of Riemann-Cartan
geometry where the trace of the torsion plays the role of the effective Weyl gauge field.

In order to present that interpretation of DH equation, we first add a “twist”
on spacetime; that is: we take orthonormal vectors and rotate them differently at each
spacetime point along some direction; clearly the original and the rotated vectors are not
parallel but we shall take these rotated vectors as being parallel. More specifically, let the
rotated vectors be A, = R'y,,fz; to say that the rotated vectors are parallel mathematically
means to have a new connection ¥V on M such that V,.z\“ = 0, in place of the old connection
V such that V, v, = 0. Since the connection coeficients T, = 0 where V,4* = T‘-:a»,",
the curvature is null but torsion is non-null as a result of that “twist” because [, \,] # 0.
(The Dirac commutator of 1-form fields is defined in [42, 43].) Let us calculate the torsion:

from A\* = R’y“fl it follows V, A* = %[Q“, N = —Q, A7, where Q, = 2(6“}2);2 and
Iy, = Qy,. But for the connection V the torsion is null: T,;, = I'; —T7 ~C}, =0, which
gives for the structure coeficients of {A\*} : C}, =T}, —I'7, = Q, — Q7 . Consequently,
for the new connection

T:a = —(Q:a - Q:u) ) ﬁ:op =0. (33)
Consider now DH equation (7) and take again 8 = 0 for simplicity, i.e: ¥ = n'/2R. In
this case, DH equation can be written as :

nmc

1
7u[ai‘\/77 . 5\/7_7041] = T\/'_)AOAIA?‘ (34)

where A\ = R+* ;Z After splitting eq. (34) into its 1-form and 3-form parts, we have:

1
I+ Sy - D) =0, . (35)
10




~'-(W.‘=2(”R"“"’F; (36)

| e

Eq. (36) can be rewritten after some manipulations Jescribed m details in 1131\ Ad

AR - (v M)RI'Y + 'L;‘inf' =0, (7)

1
3
2
that is, DH equation s spavalent to the two equations (15) and (J7). But for 1, =

]50';"’(-7. Aqs) we have (3 11,) = (Y‘_,q"_ ot sinee (15, = 0, that
= () =Ty =T (38)

where 7, = Tr, s the trace of the torsion gven by eq. (33). Eq. (35) and eq. (37)
becomes:

l
0\/6 + ':’Tﬁ = (), (39)
[OR - %Tllh'v' - r—';—c[f~," = 0. (40)
Solving eq. (39) fot 1 and introducing it into eq. (10) we have:
l
O] + (@) Ry + "bﬁnf’ =0, (41)

which is just DH equation for the unimodular spinor R in Riemann-Cartan spacetime
" 77 A : :
(eq. 9), with the term dlny = e playing the role of a torsion l-form. This result
Y]

was interpreted in [15] as follows: first, note that the non-null torsion comes from the
contribution of the structure coeficients; then think of a Lorentz vacuum characterized by
{dz*} and which define a cosmic lattice [44]; then the presence of “matter” as described
by DH spinor field induces dislocations in the cosmic lattice so that the dislocated lattice
is characterized by {dé”} with the transformation z* — £* = £“(z) being singular.

Now, if we look to eq. (27) we see that the same arguments above outlined can
be applied to that non-linear equation. However, we shall adopt a slightly different point
of view here, which we believe is more interesting and promising than the above one. We
can implement this idea by noting that the amplitude \/p of the D H spinor field ¥ (see eq.
(4)) can be seen as the generator of the conformal transformation of a basic set of 1-form
fields on the original Minkowski space, i.e. C,: v* — /p7*\/p = pv*. This conformal
transformation introduces a Weyl 1-form which is the trace of the torsion tensor, and
it defines an effective Riemann-Cartan-Weyl geometry which is metric compatible, in
distinction with Weyl’s geometry [15, 45, 46).

Let us be more specific; for the conformal transformation:

C,:T°M — T°M
V- =, (42)
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let us define a “new” metrw § by
g ) = 937 57 ) = 9(,”. n7) (43)

and a *new” connection T such that

Uy = V.(5) N V..(:‘l')- (44)
p
Eq. (43) gives:
g =plg= e, (45)

which is the conformal transformation of the metric, i.e: g — § = ¢¥g with o = Inp,
while eq. (44) gives for the connection coeficients:

", =1, —(0,Inp)s;, (46)

"

where V 4% = —r:n‘, ctc, Note that:
V3" = 009" ) + (0 = Quln pb)p’g"" +
(12, = 8,Inps2)p’g"® = p’V,4"" =0, (47)
which proves the metric compatibility of the connection v.
It is very important to note that for an orthonormal basis T:b = I‘:M and from
eq. (1): T, =T, In fact, for y* = k" with = hehbg" we have 1* = hlp~'py* =
p"‘hj‘,’?“, which gives for 7" = Tafﬁ“ that 7;: = p~'hi. But for I'}, given by V 4* = —I‘:W‘

we have I, = hyhiTy, - (0,h8)hy; then, by using B, = RS, hY = ph* and eq. (46),
we have:

™, = KR, - @5k =
= hohy (I}, = (Oulnp)by) — Au(p~ h%)phy =
= hShgTs, — (8,h8)hy =TS, (48)

Moreover, note that while for v we have ¥* — py*, for v, we must have v, — p7'7,;
and, since for V,, = V,, we have V-1, = £V, then eq. (48) implied the invariance
of the Dirac operator:

d=0 (49)

It is clear that eq. (48) does not imply that curvature and torsion remain
unchanged, since the structure coelflicients are changed. In order to calculate the torsion
and the curvature, it is easy to work with a natural coordinate basis; then, from eq. (46)
we have;

711:;: =Ty, +((9In ps; - (9, In p)&7], (50)

pv
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R,..=R.,+1(08,, 8,]lnps. (81)

Eq. (50-51) imply that if our original spacetime is the Minkowski one, then as a result of
that conformal transformation we have:

T.. = (3.1np)5] - (8,1np)s, (52)
R., = [0,, 8,]Inps. =R,,8]. (53)

In particular, the trace of the torsion is:

T,=T, =-3(0,lnp), (54)

and the torsion 1-form T = T,9* = =38Inp plays the rote of the Weyl 1-form in this

geometry, which contrary to other Weyl's ones, is metric compatible and does not meet

therefore the kind of problems we have when the connection is not metric compatible.
Now we are in position of interpreting the non-linear eq. (27) in the light of the

geometry just introduced. The crucial step is to forget the (possible) identification given
by eq. (32), but instead to define now

1
P=7%- (55)
Moreover, we rewrite ¢ (remember that § = 0) as ¢ = VAR = LR = }-\/b'R o ltb,
/R p
that is: : y
® = p¢ (56)
with .
® = \/pR. (57)
Eq. (56) implies that
1
0¢ = ,;[-—(mn p)® + 09). (58)

If we use eq. (55) to rewrite the nonlinear term in eq. (27) as (81nv/Ah)¢ = —%(aln p)lpO

and use eq. (58) in that eq. (27), it assumes the noticeable form:

mc

h Q‘yo =0. (59)

[aq) _ (33;11 P) (p],’l,y? +

Eq. (59) is just the DH equation in Riemann-Cartan spacetime (eq. (9))
particularized for the geometry we have just introduced, where T = v*T, = —301n p (eq.

(54))-
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Now, in order to DH equation to remain invariant under the conformal trans-
formation (42), we mmst define a DH spinor field v = P and take @ in eq. (39) o
this G, 1.e

& =M% (60)

and use eq. (60) into eq. (59) we get:

'-:-‘-'g-f =0 (61)

which is DH equation in Minkowski spacetime. Note that, from eq. (56) and eq. (60)
that:

'y’ +

¢ =p'ly (62)

which is just the transformation given by eq. (29) in view of our new definition of p given
by eq. (55). The above results show that our “old™ definition of p given by eq. (32)
has only a first sight appealing interest, while the one of eq. (53) is related to a deep
geometrical context.

It remains to discuss the relation between the electromagnetic (Maxwell) field
and the Dirac field, which will be done in the next section.

6. The Relation Between Maxwell and Dirac Fields

Although we have shown the equivalence between Maxwell and Dirac equations
for their free cases and for non-null electromagnetic fields, this does not imply the equiv-
alence between Maxwell (electromagnetic) and Dirac fields,. In this section we shall look
for a relationship between these fields, which, because of the Rainich-Misner-Wheeler the-
orem, can be discussed in terms of the relationship between those DH spinor fields ¢ and
¥, in the notation of the previous sections,

The natural way of introducing these fields is to use the results of the preceeding
section for the geometry there discussed. Let us think in terms of the following scenary:
suppose we have in Minkowski spacetime an unimodular DH spinor field R satisfying
DH equation:

; me
ORy'Y* + ~A—-R1° =0, (63)

This spinor field, being unimodular, induces no conformal transformation on the basic
1-form fields. Now suppose we have a change in the amplitude of the DH spinor field,
from pp = 1 to p. The natural, but speculative, way of interpreting this is to think of a
change in the density of a “fluid”. The amplitude of the DH spinor field is now VP, that
is, ® = \/pR, and p induces the conformal transformation described in the preceeding

14



section, which give rise to the Riemann-Cartan-Weyl gecometry there discussed. In this
space, the DH equation for ¢ is:

(301np), ,_, , me
09 -——h""r+3

One can define now two other DH spinor fields, namely:

$+° = 0. (64)

. ¢ = p-IQ ) (65)
and

p=p0. (66)

The case of eq. (65), which is just eq. (56) when introduced into eq. (64) gives
02" + 2o = S(OIn ), (67)

which is just the non-linear eq. (27) in view of eq. (55), and therefore equivalent to the free
Maxwell equations under the hypothesis we assumed and for the non-null electromagnetic

field F = ¢7'+? Z On the other hand, the case of eq. (66), which is just eq. (60), when
introduced into eq. (64) gives the DH equation for ¢

O + 9 = 0. (68)

Clearly the scenary outlined above is still speculative, but its beauty and sim-
plicity suggest that it may be relevant from the physical point of view. We note that due
to the definitions eq. (65-66) the spinor fields ¢ and 3 are related by

¢ = p'/*y, (69)

which is that eq. (62) and ¢ = VAR after using eq.(55), which gives eq.(14). Note
moreover for the electromagnetic field F:

F=¢v'y ¢= ppy'+* é= oM, (70)
. which suggest us to interpret M as a “density” of F, where M = yy'4? ;; for  satisfying
D H equation (68); and, in fact, M is interpret in Dirac theory as the density of magnetic

moment.
Another thing that must be discussed is related to the fact that the electro-
maguetic ficld /" has 6 real degrees [reedom, while a DH spinor field has 8 real degrees of

freedom; in another words, the spinor field ¢ that represents F' via F = ¢9'v? ¢ has two

15
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additional degrees of freedom. Let us discuss a way of eliminating these two
degrees of freedom.

First, consider a DH spinor field X; which will be assumed to be either ¢ or ¥
whenever convenient. Let us define the following 1-form fields:

additional

7 = (9. X7 X)en", (71)
9= (8.X7*7"y" X)v", (72)

where ( ), indicates “the scalar part™. Next, note that:
(0X7™' X1 = 1*(B,X7"" X)o + 7* - (B, Xv%" X), (73)

where ( ), and ( ); indicated “the 1-form part” and “the 2-form part”, respectively.
But for a 2-form B we have B = — é, while for a scalar @ =a and for a pseudo-scalar

(a7®) = (ay®)~; from this fact we can write
- 1 - .
(aux727l X)2 = 5[(6ﬂx727l X) — (aux“lz'Y‘ X) ] =
1 - - 1 "
= 510.X7*y' X +X9%7'0, X] = 50.(X7*y" X). (74)

Then, using eq. (71) and eq. (74) into eq. (73) we get:

- 1 -
j=(0X7*7" Xh + 50 (Xv'9" X) (75)

A similar calculation gives:
~ 1 ~ ~
(0X7*y" X)s = SO A (X" X) +9+ - (0, X7*y" X)), (76)

and after using eq. (72):

~ 1 ~
7°9 = (0X7*7" X)a + 50 A (X7'y* X) (77)

Now, X is an arbitrary D H spinor field, which can be either that 1 which sat-
isfies DH equation (30) or (68) or that ¢ which satisfies non-linear DH equation (27) or
(67). Let us consider the two cases in separate:

(i) | X =1 | In this case, after using DH equation and noting that (¥2° ¥), =% ¢,
we have from eq. (75):

= 20 +a-(%-/n‘7" ), : (78)
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or
v h ~

¥y° Y= Tt a- (—y’n’vl ¥), (79)

which is iust Gordon decomposition for the Dirac current iy d) The part 9 - M for

= zmclﬁ"‘/’ l :j; is the so-called Gordon current, due to the density of magnetic

h
moment M, while the part m—] is due to the overall motion. On the other hand, since
(¥° '/’)3 =0, eq. (77) gives:
1 na
19 = A (59" ¥), (80)
or
1 ~
g=29- (“ls-ll)‘rl 79), (81)

which is a Gordon current for the density of electric moment 4° M. Finally, if we use the
identify [22]:

a-(b-B)=(aAb)-B (82)
for a, b 1-form and B a 2-form, we see that
0-[0-M]=(0A0)-M =0, (83)
9-[0- (M) =(0A0)-(*"M) =0, (84)
since & A @ = 0, and these results when introduced into eq. (79) and eq. (81) give:
9-5=0, (85)

where in order to arrive at eq. (85) we have also used the conservation of Dirac current,

that is: 9 - (¢7° ;Z) = 0. Note that eq. (85) and eq. (86) are strict consequences of DH
equation.

(ii) | X = ¢ |In this case, after using the non-linear DH equation (27), one obtains from
eq. (75),

J= T B 4500 h) - (9147 D)+ 30- (47 B, &)
or
~ & ~ ~
& ¢= —j - 5;-’;;[(31!! h)- (47'7* 8) + 8- (87'" ¢)), (88)
while eq. (77) gives:
= SO A (417 ) + DA (14" ), (#9)
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One can also establish the following identities after using eq. (82) and 8 A 8 = 0:

9-[0-(év'* @) =0, (90)

9-[(dInh) - (67'77 8)] = —(dInh) - [3- (¢7'7* D)), (91)
IN[DA (674" §)] =0, (92)

dA[(@lnh) A ($7'7* 8)) = —(0In k) AD A (7' B)), (93)

If we use eq. (90-91), we have from eq. (88):

. 0 = —(0-9 i 5 5 1,2
8-(¢1° ) = 1 (0-1) + (3l h) - [0 (474" D)} (94
and from eq. (89), after using eq. (92-93) and the fact that 8 A (v°g) = —7°(9 - g):

(8- 9) = 5010 k) AL A (7177 D) (99)

Note also that for non-linear DH equation, the Dirac current is not conserved; in fact,
we have that 9 - (h¢y°® ¢) = 0, which gives: '

9-(47° 4) = —(8Inh) - (1° 4). (96)

Now, eq. (88, 89, 94, 95, 96) are consequences of the non-linear equation
for ¢. This non-linear equation, on the other hand, follows from Maxwell equation for
F = ¢y'4? ; under certain assumptions which are, indeed, assumptions about ¢. One
can, of course, follow the steps of sec. 4 backwards and obtain (from the non-linear
DH equations and under the same assumptions) the Maxwell equations 0F = 0 for

F = ¢y'9? ;, that is:

8- (71" 4) =0, (o7)
A ($7'y* ¢)=0. (98)
In this case, we have from eq. (88-89):
Wy ;:—cj _ E%(a‘“ h) - (61" 9), (99)
o= @M AT D, (100)
and from eq. (94-95): i
8- (41° 9) = 7= (9 ), (101)
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d-¢g=0. (102)
Eq. (99-102) are not anymore direct consequences of the non-linear D ! equation but are
now consequences of the assumptions we made about ¢ in order to the non-linear DH

equation be a spinorial representation of Maxwell equation for F' = ¢v'y? é. Eq. (99-100)
are therefore two equations for @ which must be thought as “compatibility equations”.
One can use eq.(101-102) as a kind of “gauge conditions” to be used in order to eliminate
the two additional degrees of freedom of the DH spinor field 4. Note moreover that if

one assumes also the conservation of Dirac current ¢4° ¢, these two “gauge conditions”
reduce to:

d-j=0, 3.-9=0. (103)

It is time now to observe that the “gauge conditions” (103) are just the ones
discussed by Campolattaro in [5]. In fact, note first that

(0617110, 80 = 51@61"1'8, Do+ (@477, D3]

l ~ ~
. 5[(a“¢727lau $)o — (3u¢’77‘1'a” $)o] =0, (104)
and in the same way
(0"¢7°1*1'0, $)o = 0 (105)
Then, from eq. (71) and using eq. (104), we have:
8- = 0,(0°67°7 B)o = B.(067°1" 8o — (9*67*7" B
= (3,0"$7*" $)o = (347" B)o, (106)
and from eq. (72) and using eq. (105), we have:

d-g=209,0"¢r"vy E)o = 9,(0"$7v°y* ;)o — (0"$7°11'8, d)o

= (0,087 ¢)o = (O ° 14" é)o, (107)

and the two “gauge conditions” (103) can be written as:
(O¢71™7" 8)o =0, (108)
(O67°7*7" d)o- (109)

In terms of the standard covariant Dirac spinor field ¢p(z) € €4, having as representative
in the Clifford bundle ¢p = ¢¢ for € an appropriate idempotent field (see [16, 17, 25] for
details), conditions (108) and (109) are written respectively as: .

InfB5040) = 5[30(060) ~ (BFp)60] = O, (110)
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In(37°0¢0] = 5[857*(04p) ~ (OBp)1*40] = 0, (111)

which are eq. (28-29) of [5]. According to our approach, however, the gauge condition
(110) is consistent only when the Dirac current is conserved, which is the case when

(@lnh) - (47° ;) = 0 according to eq. (96).
7. Concluding Remarks

The objective for this paper was to show the equivalence between Maxwell and
Dirac equations for their respective free cases and when the electromagnetic field is non-
null. The hypothesis we have assumed were very general and indeed satisfied for the
cases considered. The geometrical interpretation we gave to the relationship between
the non-linear DH equation and the DH equation, and to the quantum potential type
non-linear term, suggests further developments which may be physically relevant. Finally,
the relation we discussed between Maxwell and Dirac fields and its comparison with the
one of Campolattaro may also lead to further interesting developments, especially when
one confronts our analysis with the interpretation given by Campolattaro to his results.
However, such possible developments are an issue to be considered elsewhere.
| The generalization of this work for general cases (i.e., the non-free ones) re-
quires the consideration of several issues outside the scope of this work. We do not need
to consider them here, but let us quote an specific example: the role of the Takabayasi
angle B. The way we introduced it exhibits in a clear manner its meaning in connection to
electromagnetism, that is, it is identified with the “complexion” of the field [10]. However,
its role in Dirac theory is still mysterious [30]. Indeed, it appears that when we consider
external interactions, the angle 3 is variable. This is the case, for example, for the Darwin
solutions of the hydrogen atom [30]. However, it has been-found-recently-solutions - the
Kriiger solutions [30, 47] - of the hydrogen atom with 8 = 0. It may happen that a full
understanding of the role of this angle in Dirac theory depends in generalizing this work

for the cases with interactions.
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