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Abstract

We obtain the Casimir operators associated to the Fantappié-de Sitter Group
(isomorphic to the 5-dimensional pseudo-rotation group) which is the group of motions
admited by the de Sitter cosmological spacetime, using the generalized derivative opera-
tors.

1. INTRODUCTION

The de Sitter space is the curved spacetime which has been most studied by
quantum field theoristics because togheter with the anti-de Sltt.er space are the uniques
maximally symmetric curved spacetimes(?).

The symmetry group of de Sitter space is the ten parameters group SO(4, 1)
of homogeneous Lorentz transformations in the 5-dimensional embedding space known as
the de Sitter group!®.

There are many possible coordinatizations for the study the de Sitter space
time, for exemple the steady-state universe (parametrization) of Bondi & Gold® and
Hoyle!®) which covers the half of the de Sitter manifold and the static system which also
only covers the half of the de Sitter manifold®. Tagirov!® studies the Einstein universe
using a conformal time where the coordinates cover the whole of the de Sitter manifold.

The theory of hyperspherical models of universe (tied to the integer numbers)
proposed by Fantappié!”) and perfected by Arcidiacono®¥ based on group theory is a
original way to study the cosmological problem. In this theory it is necessary to distin-
guish the absolute spacetime (with constant curvature) effective seat of the physics events
from the infinite relative space time (tangents) where each observer localize and see the
phenomena. Then we use a flat representation of the de Sitter universe on their tangent
spaces. Among the infinite representations we use the Beltrami (19) geodesic representation
where the geodesics of the hyperspherical spacetime corresponds to the straight lines of
the flat tangent space time of the observer’s location.



It follows that the group of motions in itself of the de Sitter universe is rep-
resented by the so called Fantappié-de Sitter Group (Isomorphic to the 5-dimensional
pseudo-rotation group.) i.e. by the projectivities of the tangent space, which change in
itself the Cayley-Klein absolute of equation

R2A2 = (1:1)3 + (x-z]’ + (Ig)a + (1‘0)2 a o Ra =0

where xp = ict. (For the definition of A see eq (2.2))

This paper, which is the first of three, is organized as follow: in section two we
present how to pass from the de Sitter formulation to the orthogonal coordinates using the
Beltrami geodesic representation and we obtain the formulas with relates the derivatives;
in section three we discuss the Fantappié-de Sitter group and we obtain the explicit
formulas for the invariant associated operators (Casimir operators); in section four, using
spherical coordinates we present the comutation relations and construct explicity the
Casimir invariant operators and finally we present ours comments.

In the following papers we solve the equations obtained from the second and
fourth orders Casimir invariant operators.

2. ORTHOGONAL COORDINATES AND DERIVATIVES

In this section we consider how to pass from the Beltrami representation
z,{p = 0, 1, 2, 3) of the de Sitter Universe to the homogeneous coordinates

£4(A =0, 1, 2, 3, 4) of the embedded space R; ;. They are related by (see Apen-
dice).

Eu ' T
=8 (2.1)

satisfying the relation of normalization £ A{ 4 = R? where R is the radius of the de Sitter
universe.

Introducing the following notation

Al=14a'"-Y=1+a,0, : (2.2)
where
1 1 t
oy = ﬁ"'” and = -ﬁ i

we can remove the &, coordinate, then we ha.ve the following relations

b= and b=
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To obtain the relation for the partial derivates we consider a function @(£,)
being an homogeneous function of degree N in all five variables {4, and using Euler’s
theorem for homogeneous functions, we have

§a40ap(6a) = Nip(£a) (2.3)
where we have put 84 = 8/08¢4. Using the definition of homogeneous function we can
write

G ph Lo
o(Re RE...) = (5) ol (24)
and finally we get the following relation
RVp(€a) = (€)"@(R, 2,) (2.5)

where the function in the right hand side is a function obtained from (£4) with the
substitutions, { = Rand §, — z,.

Deriving eq. (2.7) firstly in relation to £ and secondly in relation £, we obtain,
respectively

Rop-ol€a) = AN ~ 2,0,)p(R, 7,) (2.80)
and 3
%, (€a) = A" NOup(R, 3,) (2.8b)

where A is given by eq. (2.2) and we have put 9, = 3/9z,,.
Introducing a function 1(z,) defined by

Pz,) = A“N‘P(R: z,) (2.9)

in the above equations we can finally write the derivates, respectively, as follows

R%{p({; Yo (’—:- i A:r,.&.) ¥(z,) (2.10a)
sad 8 N
5 (e = (Aa,, + mz"):b(x“) (2.10b)

Then, we have solved the problem to pass of the 5-dimensional formulation, £4,
to spacetime formulation, z,, i.e. in orthogonal cartesian coordinates. The relations eq.
(2.10a) and eq. (2.10b) are the link between the two formulations.



3. THE FANTAPPIE-de SITTER GROUP

In this section we present the Fantappié- de Sitter Group and write its invariant
operators,

The Fantappié-de Sitter Group - isomorphic to the 5-dimensional pseudo rota-
tion group - is the group of motions admited by a cosmological space with line element
given by

~ds? = A’dz,dz, = A(dz,)* + (dx3)’ + (dzs)® + (dzo)?]

where 2z, = ict, and R?A’ = R? + p? — z} and p? = (2,)? + (22)* + (2a)”.
This space can be embedded in a flat 5-dimensional space time, being the z,,,
the Beltrami projection from the “sfere” with equation

Y Eaba = (&) + (€)® + (&) + (&) — (&)’ = B’ (3.1)

A=0

The coordinates are related by the following expressions

¢ 1 1
2, -—Ré: f“mzmn. £4§*A-R
where u = 0, 1, 2, 3 and for the differential operator we have
o N H ' ;
'a-g; = A0, + —= ARQ | (3.3a)
and _ -
' 7, LN _
E___E(Z-Axa) _ (3.3b)

where N is a parameter R is the radius of the de Sltter universe and A is given by eq.
(2.2).
The generators of the 5d1menszlonal.- pseudo rotation group satisfy(®,
[ S, Jiu) = Sidny = Skudsw + Sxudir — b,
--i[r,\, J“,] = 5;‘”!‘“ w.é,\,ﬁr”
1

—tfmy, m) = ==l

R?

where 7, = ?]'2-.]0,,. We note that to R — oo we have

Tu =2 Pu

which is the four dimensional operator associate with the translations of the Minkowski
space time, when R — oo we obtain the Lie Algebra of the non homogeneous Lorentz
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group.
Introducing
— ~i8,

we have a representation for the Fantappié-de Sitter group which is given by the 5-
dimensional angular momentum operators

7}
e Fz( -~) =1
A = —ih| Lo T ~&p 7, AB
where A, B =0, 1, 2, 3, 4 which in terms of the Beltrami coordinates are given by
Ly = 2ypy ~ Tupy (3.4a)

and
=zl (3.4b)

where u, v, A =0, 1, 2, 3.

We note that in the above equations (where 7, are the analogous of the mo-
mentum operators in the Minkowski space) that the linear momentum and the angular
momentum mix in a unique tensor. This mixing is due to the fact that transformation
of displacents are the analogous of the translations and therefore the energy-momentum
operators are not conserved in relation to the Fantappié-de Sitter group.

Now, we consider the explicit form to the ten operators. Introducing the Ty
operator, representing the temporal translations, defined by

g )
Lo = =RTy = :ﬁ(&a& a&)
we have

Ty = —ﬁc(ac * Io%a ) : (3.5)

where 8, = 8/0z, and u =0, 1, 2, 3.
The T,-operators, representing the “spatial translations”, are defined by

L= RT, = ~in(, 57 %~ “o )
"
and we obtain . ' ' |
i lﬁ(ﬂ’& + 2"2,0,) (3.6)
where p= 1,2, 3and v =0, 1, 2, 3. j



Introducing the V,-operators which are related to the center of mass inertia
momentum, given by

Lo, = icV, = 4&(5.,-5'2—” - 5“5%))

we have A
V, = —;(103.. ~ z,00) (3.7)

where u =1, 2, 3.
Finally, we introduce Ly-operators, representing the spatial rotations, defined
by

Ly=Ly= —ih(c,.a—‘:: - f”'a%)

and we obtain

Ly = =ib(z,0, — 2,0,) (3.8)

where y, ¥, A=1, 2, 3 and in the above expressions h and ¢ have the usual meanings.
Now, we can write the two invariant operators of the Fantappié-de Sitter group
(Casimir operators) using To, T,, V, and L, as follow

LT~ ng) + -;,—(L’ ~ V) = M (3.9a)

and
- e 1 - - - & s e
I4=(L'T)’—§(T0L+C’Tx V)’—E,-(L-V)’=N° (3.95)
where M? and N? are constants.
We note that, in the limit B — oo we obtain

- and I, = mPs(s + 1)

I; —m
where m and s are, respectively, the rest mass and the spin which caracterize the repre-
sentations of the Poincaré Group!d. Then, the representations of the Fantappié-de Sitter
group are labeled by eigenvalues of [; and Iy which generalizes the usual mass and spin.
Yet, a particle in a Fantappié-de Sitter universe has not a well defined mass and a spin
but eigenvalues of the I; and 1, invariant operators.

4. COMUTATION RELATIONS AND CASIMIR OPERATORS
In this section we introduce a spherical coordinate sistem (r, 8, ¢) and we

obtain the explicit comutation relations and the explicit form of Casimir operators, n
these coordinates. This result is important for the following papers(''®),




The relativistic spherical coordinates are given by zo = t, z3 = rcosé,
2y = rsinfsiné and r, = rsinfcos$, and we obtain ten differential operators in the
explicit forms given by

T = (14 75) 5+ o )
e g 2
T, = -—% (r’+R’)sin3cos¢-?-+E—(cosﬂcosqﬁ:% ii:ﬁ;)-i-rtamamtﬁai]
Sl : ANl ¢ cos ¢ 3
T = | (r + R )smﬂsmq&a (cosﬂsmtii -+ 81n06¢)+rtmnﬂsm¢at]
oLl PR R oA
Iy = —R’.(r +R)cosﬂar = s:nﬂag+rtcosﬂat]
| a1 0 lsing 0 ! a
B = ;[t(smﬂcoscﬁar rcosécosﬂa'? rsinﬂ@Tﬁ)_TSlnem¢3t]
% St R y lcosg 8
Vi = E—[z(mnﬂsmqb§+’—_cmﬁsmd’ag rsmﬂaé) rsmﬁsmc&—]
h ' L § 0 d
o = c[t(cosﬁg—;—smﬂaﬁ)—rcos&a—]
Ly = 1?’1(—sm¢g——cot9coa¢ :
i ae a¢
L = zﬁ(—cosd)% + cot # sin ¢Z—3;)
L:; = Iﬁ%

Now, considering a ciclic permutation of the index u, » and A we obtain the
following comutation relations for the differential operators,

2

[T, T) = ~ih V. (To, Vi) = ~inT, (To, R} =
ih : th :
[Tju Tv] - _-EQ-LA [Tln V-’J i _czsuvTﬂ [Tilt LD] = ﬁT}
ih i 4
Var Vi = 5 s (Lo, Vi = ~ikVs (Ly, L] = —ihLy

where p, v, A=1, 2, 3.



Finally, we obtain the explicit forms for the Casimir operators, introducing the
differential operators given above in eq. (3.9a) and (3.9b).
The Casimir operator of second order is given by

I = -h’A’{ (1 0 %)3% + 2rt 8%? & (1 - %)a(id)ﬁ.

2(1+r3)0+2t8+ L’} "

or ROt
where we have put t — ict and the £* operator is
6’ a } &
z — e
Llmon T 5 T adoop

We note that when B — oo the above equation reduces to, the D’Alembert
wave operator, i.e.,

2 la_z)
lim h=0= n(A—c,&,‘,

where A is the Laplacian operators writen in spherical coordinates.
For the fourth order Casimir differential operator we have

Sk’

2
I._4—-—R4£H‘
where
& & i d TR
o LN = Ryl IS - Pt - P
W =i os + (R - )5 — (R — ') + (207 - RY) - — (R} — ')

and L% is given above.
5. COMMENTS

In this paper we have discussed an alternative way to obtain the Casimir invariant op-

. erators of the Fantappié-de Sitter Group whlch is isomorphic to 5-dimensional pseudo .
rotation group.
It is clear the dependence in the two Casimir invariant operators in both spatial &

.+ and temporal parts, given by the Ty, T, V, and L, operators. In consequence, a particle

in a Fantappié-de Sitter universe has not a well defined mass and a spin but has constant
eigenvalues of the I; and I, Casimir invariant operators.

The next point is solve the generalized Klein-Gordon wave equation for the
scalar field"" 1219 ghtained from the second order Casimir invariant operator and the



equation obtained from the fourth order Casimir invariant operator, which must general-
izes the concept of mass and spin** %), These topics are presented in another paper.
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APENDICE

The de Sitter space can be represented as the surface of a four-dimensional
pseudosphere (of a hyperbolic character in one direction) embedded in a five-dimensional
space. It is described by five coordinates &, &, &, &, & connected by the relation of
normalization condition

G+H+6+68-G=FR
R being the radius of the “sphere”.

To see how to pass from the five dimensional formulation to the four-dimensional
orthogonal coordinates z,(p = 0, 1, 2, 3) we consider the Beltrami representation
(geodesic representations) as in the figure:

| E,

% i

where ¢
z, = R*
T §4
Introducing p? = z#z, = —(z0)* + (2:)* + (23)* + (23)* and using normalization
condition we can write R

“ 0t AR
Then, the relations to pass from the pentadimensional formulation to the four-
dimensional formulation are given by

R z
b= and =2t

where A? = | + p*/R?
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