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Abstract 
The use of 4D seismic (4DS) (or time-lapse seismic, TLS) in data assimilation (DA) makes the 
process more complex due to the higher amount of data to be assimilated, requiring more robust 
methods and better computational resources (processing capacity and memory). The 
development and application of permanent seismic monitoring technologies have increased in 
recent years, improving the overall 4D seismic quality in terms of signal resolution and 
repeatability. However, a massive amount of data is generated from the multiple monitors, 
making the incorporation of 4DS data in the DA process more complex. Therefore, robust DA 

methods capable of dealing with huge amount of data effectively and efficiently are essential. This 
paper aims to assess the performance of an iterative ensemble smoother method, named 
subspace ensemble randomized maximum likelihood with a local analysis, to assimilate a big 
dataset. The method was applied in a challenging pre-salt-like benchmark case with eight seismic 
surveys, one base, and seven monitors. The 4DS data are the impedance ratios (between two 
consecutive monitors) in 15 seismic horizons, totaling 105 maps to be assimilated. To our best 
knowledge, this is state of the art in terms of practical applications in DA. It was possible to 
assimilate all the data simultaneously: the 105 horizons for the 4DS data and the wells’ 
production and pressure data. The DA was successful in terms of results quality and method 
performance. We also ran a case assimilating only well data for comparison purposes. 

Keywords: reservoir simulation; data assimilation; 4D seismic data; big dataset; iterative 
ensemble smoother 

1. Introduction 

Brazilian pre-salt is an important oil province, contributing 
to a significant portion of the country’s reserves and daily 
production (Cruz et al. 2016 , Abelha and Petersohn 2018 , 
Vasquez et al. 2019 ). Located in Santos and Campos sedi- 

mentary basins, the pre-salt reservoirs consist of microbial 
and coquina rocks at depths that surpass 5000 m ( Johann 
and Monteiro 2016 ). The task of building geological simu- 
lation models for these reservoirs is highly challenging, in- 
volving significant technical uncertainties. Some of the main 
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An iterative ensemble smoother assimilating big 4DS datasets

uncertainties related to pre-salt simulation models are reser- 
voir connectivity, facies, and petrophysical properties dis- 
tributions, response to the enhanced oil recovery strategy, 
distribution and behavior of faults and fractures, and fluid 
properties (Moczydlower et al. 2012 ). Furthermore, the 
projects in this province involve huge investments (Pizarro 
and Branco 2012 ). All these characteristics corroborate the 
importance of mitigating the model uncertainties using all 
the information available. In this respect, well and time-lapse 
seismic (TLS) data are complementary sources of informa- 
tion to calibrate the reservoir simulation models. The former 
provides information abundant in time but scarce in space, 
especially in offshore projects, which is the case of the pre- 
salt province. The latter provides information distributed in 
space, helping to update parameters far from the wells. 

Iterative ensemble smoothers are a popular choice for 
assimilating well and TLS data to improve reservoir mod- 
els quality (Skjervheim et al. 2007 , Fahimuddin et al. 2010 , 
Emerick and Reynolds 2013a , Emerick 2016 ). Nevertheless, 
this type of application is associated with relevant challenges 
related to pre-salt reservoirs. The reservoirs are big and highly 
heterogeneous in terms of permo-porous and facies distribu- 
tion, diagenesis, faults, and fractures ( Johann and Monteiro 
2016 ). These characteristics complicate the representation 
of the reservoir’s main features using an ensemble with a lim- 
ited number of models, each with a restricted number of ac- 
tive cells. Both the ensemble and the model sizes contribute 
to increase the computational cost of the process. The pro- 
duction involves complex physics, with volatile fluids, often 
associated with high CO2 contents, miscible gas injection al- 
ternated with water (Moczydlower et al. 2012 , Johann and 
Monteiro 2016 ). Therefore, compositional fluid models are 
necessary to represent this process, increasing the complexity 
of both reservoir flow and TLS forward models. The reser- 
voir sizes and the application of seismic monitoring tech- 
nologies ( Johann and Monteiro 2016 , Deplante et al. 2019 ) 
contribute to increase the number of data points, requiring 
efficient ensemble-based methods to handle big datasets. 

Batzle and Wang (1992 ) proposed classical correlations, 
which have been the standard method for fluid characteriza- 
tion in quantitative TLS studies (Avseth et al. 2005 ). Never- 
theless, the presence of volatile fluids containing significant 
amounts of CO2 limits classical correlations’ applicability to 
estimate the speed of sound in the oil phase (Tahani 2012 , Al- 
tundas et al. 2017 , Silva Neto et al. 2020 ). There are specific 
correlations for fluids with such characteristics (Han et al. 
2012 , 2013 ). However, they require significant extra compu- 
tations to integrate with compositional reservoir simulators, 
and one sti l l needs to validate them for conditions that are 
different from the ranges applied during the experiments. 

With this in mind, Silva Neto et al. (2020 ) proposed 
the application of a standard cubic equation of state (EOS) 
calibrated for the reservoir fluids to estimate the speed of 

sound in the reservoir hydrocarbons as part of the petroe- 
lastic model (PEM). This model has the advantage of effi- 
ciently coupling with the compositional reservoir flow simu- 
lator, which involves the same EOS. Furthermore, in their test 
with the Peng–Robinson EOS (Peng and Robinson 1976 , 
Robinson and Peng 1978 ), they obtained simulations match- 
ing the experimental data in a similar level as Han et al. (2012 , 
2013 ) correlations, when they calibrated the EOS parame- 
ters with pressure-volume-temperature (PVT) data, a stan- 
dard procedure in reservoir engineering. However, Silva Neto 
et al. ’s study (2020 ) did not include a TLS data assimilation 
(DA) experiment, which is done in the present work using 
the same compositional fluid model. Therefore, this is the 
first application of this fluid model in a TLS DA case, includ- 
ing miscible gas injection and water-alternating-gas (WAG) 
injection. 

The ensemble randomized maximum likelihood (En- 
RML) method was pr imar ily proposed as an iterative scheme 
to improve the performance of the ensemble Kalman filter 
(Evensen 1994 ) for highly nonlinear applications (Gu and 
Oliver 2007 ). Later, Chen and Oliver (2012 , 2013 ) adapted 
the method for batch DA (iterative ensemble smoother) in- 
stead of the previous sequential approach, thus avoiding the 
need for time-consuming simulation restarts in reservoir ap- 
plications. Another difference between filter and smoother 
is that, in the filter, data are assimilated sequentially in time, 
being necessary to update both parameters (reservoir prop- 
erties such as porosity and permeability) and states (dy- 
namic variables such pressure and fluid saturations). In the 
smoother, all data are assimilated simultaneously, and there 
is no need to update state variables (Emerick 2016 ). Re- 
cently, Raanes et al. (2019 ) improved the EnRML method 
conceptually and computationally using the fact that the so- 
lution is in the ensemble subspace. Evensen et al. (2019 ) fol- 
lowed their work in the same year and proposed an efficient 
algorithm to calibrate reservoir models using big datasets, 
the Subspace EnRML (SEnRML). Silva Neto et al. (2021 ) 
applied the SEnRML method with local analysis to assim- 
ilate TLS data in synthetic applications. They concluded 
that this method could lead to similar results to the ensem- 
ble smoother with multiple data assimilations (Emerick and 
Reynolds 2013b ) with Kalman gain localization. They also 
reported that the SEnRML with local analysis has the advan- 
tage of requiring lower computational costs when there is a 
big dataset. 

In this work, we apply the SEnRML method with lo- 
cal analysis to assimilate well and TLS data. This method 
is promising for pre-salt-related applications due to the big 
reservoir models and seismic monitoring. SEnRML with lo- 
cal analysis provided reasonable results in the previous ap- 
plication in TLS DA to update reservoir grid parameters us- 
ing a relatively small seismic dataset (Silva Neto et al. 2021 ). 
In this work, we increase the problem complexity in terms 
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Maschio et al.

of the model, the amount of seismic data, the inclusion of 
well data, and the calibration of different parameter types in- 
volving grid, scalar, and categorical. Therefore, this applica- 
tion mimics most of the challenges of a real field. The cur- 
rent case study uses the benchmark UNISIM-IV, based on the 
benchmark UNISIM-III (Correia et al. 2020 ), which follows 
a pre-salt reservoir’s characteristics. To our knowledge, this 
work is the first application of SEnRML with local analysis in 
a DA workflow to improve reservoir characterization using 
both well and seismic data in a pre-salt-like field. 

The SEnRML is a well-established and consolidated 
method (Evensen et al. 2019 , Raanes et al. 2019 ). Addi- 
tionally, the method SEnRML-LA was exhaustively tested in 
other cases and validated against the method ES-MDA by 
Silva Neto et al. (2021 ). Therefore, the comparison of the 
SEnRML-LA with other methods is beyond the scope of this 
paper. 

1.1. Motivation and objectives 

The main motivation for this work is the lack of practical ap- 
plications documented in the literature regarding the assim- 
ilation of huge 4D seismic dataset in conjunction with well 
data in complex fields with many seismic surveys. Since the 
development and application of permanent monitoring tech- 
nologies have been growing in the last few years, it is essen- 
tial to seek data assimilation methods capable of dealing with 
the huge amount of data generated by these technologies. Ef- 
ficient and effective methods are important to assimilate the 
data in a suitable time frame to take advantage of the value of 
these technologies, optimizing the time required to make the 
decisions in the context of reservoir management. 

The main objective of this work is to show a practi- 
cal application of the method Subspace EnRML (Evensen 
et al. 2019 , Raanes et al. 2019 ) with a local analysis scheme 
(SEnRML-LA), implemented by Silva Neto et al. (2021 ), in 
a complex pre-salt benchmark case with a huge amount of 4D 

seismic data. The specific objectives are: 

(i) Prove the robustness of the method in assimilating 
eight seismic surveys simultaneously, together with the 
well data. The main contribution of the paper is the vali- 
dation of the method SEnRML-LA in a challenging DA 

problem typical of Brazilian pre-salt fields, confirming 
it as an alternative to solve practical problems involving 
permanent seismic monitoring technologies. 

(ii) Compare two DA processes: (a) assimilation of time- 
lapse seismic and wells data simultaneously (labeled 
throughout this text as ‘TLS-Well’) and (b) assimila- 
tion of wells data only (labeled as ‘Well’). The assimi- 
lation of only TLS is not of practical interest and is not 
tested in this work. 

Figure 1. Well and TLS DA workflow. 

(iii) Apply the compositional fluid model proposed by Silva 
Neto et al. (2020 ) in TLS DA in a realistic case. 

(iv) Evaluate the TLS benefits in a complex pre-salt-like 
case. 

2. Theoretical background 

This work integrates two methods proposed previously to 
enable the well and seismic DA in a pre-salt-like synthetic ap- 
plication. We apply a compositional fluid model to perform 

the forward seismic modeling and use an iterative ensemble 
smoother implementation that is suitable for big datasets and 
big reservoirs, called SEnRML, with local analysis, to cali- 
brate the parameters. Figure 1 i l lustrates our workflow, in- 
cluding the reservoir flow model (1), which provides the in- 
puts for the compositional model of the speed of sound in 
the fluid (2), enabling the PEM computations (3). We ran 
the reservoir flow models with the compositional reservoir 
simulator GEM v.2020.1 (CMG 2020 ). The production and 
TLS data from the reservoir flow and the PEMs are compared 
to the observed data. The differences cause model parameter 
updates through the SEnRML with local analysis (4). 

We describe the compositional fluid model and the DA 

method in the following subsections. Besides the DA work- 
flow, we use a quadratic metric called normalized quadratic 
dev iation w ith a sign (NQDS) to analyze the well data match. 
We define this metric in Subsection 2.3 and address the PEM, 
step (3), in Section 3.4 . 

2.1. Compositional fluid model for seismic simulation 

The current work’s application considers volati le oi l with 
around 40% CO2 content. The widely known Batzle and 
Wang (1992 ) correlation shows a relatively high deviation 
in representing the speed of sound in the oil phase with 
these characteristics (Tahani 2012 , Altundas et al. 2017 ). 
Silva Neto et al. (2020 ) proposed the use of a calibrated cubic 
EOS to model the speed of sound in the hydrocarbon phases. 
We apply this model to compute the second step of the work- 
flow depicted in Fig. 1 . 

Considering the Peng–Robinson EOS (Peng and 
Robinson 1976 , Robinson and Peng 1978 ) with volume 
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An iterative ensemble smoother assimilating big 4DS datasets

translation (Péneloux et al. 1982 ), the PVT relation is 

P = 
RT 

( ̄V + c PR − b PR ) 

−

a PR 

[
1 +m PR 

(
1 − T 0 . 5 

T 0 . 5 c 

)]2 

( ̄V +c PR ) ( ̄V +c PR +b PR ) +b PR ( ̄V +c PR −b PR ) 
, 

(1) 

where P is the pressure, T the temperature, V̄ the molar vol- 
ume, R the gas constant, and the parameters aPR , bPR , cPR , 
and mPR undertake different values for different components. 
One can calculate them as a function of the acentric fac- 
tor, critical pressure, Pc , and critical temperature, Tc . Further- 
more, it is necessary to apply mixing rules to represent the 
oil and gas phases as mixtures of components and pseudo- 
components (Pedersen et al. 2015 ). From the relation de- 
fined in Equation ( 1 ), one can compute the heat capacity at 
a constant volume 

C V = 
𝜕H 

id 

𝜕T 

||||P 
−

m PR a PR ( 1 + m PR ) 

4
√
2 T 

0 . 5 T 
0 . 5 
c b PR 

× ln 

{ 

V̄ − [(− 1 +
√
2 )b PR − c PR ] 

V̄ − [(− 1 −
√
2 )b PR − c PR ] 

} 

− R , 

(2) 

where the first term on the right is a derivative of the ideal 
enthalpy at a constant pressure, which can be calculated from 

the relations that the Winprop (CMG 2015 ) fluid simulator 
provides for the reservoir flow simulation. After calculating 
the heat capacity at a constant volume, it is possible to obtain 
the heat ratio using 

C P 

C V 

= 1 −
T 

C V 

(
𝜕P ( T ,V̄ ) 

𝜕T 

|||V̄ 
)2 

𝜕P ( T ,V̄ ) 

𝜕V̄ 

|||T 
, (3) 

in which the pressure partial derivative at a constant molar 
volume (numerator) and a constant temperature (denomina- 
tor) are calculated analytically from Equation ( 1 ). Finally, the 
speed of sound in the fluid is 

v P =

√ 

C P 

C V 

×
1 
𝝆c T 

, (4) 

where 𝜌 is the fluid density and cT is the isothermal com- 
pressibility, which are outputs from the reservoir flow simula- 
tor. We built the EOS model for the reservoir simulator using 
Winprop v.2015.10 (CMG 2015 ). 

Silva Neto et al. (2020 ) concluded that the present model 
could reasonably represent the speed of sound in the oil, as 
long as one calibrates the EOS parameters using PVT data, 

which is a standard procedure in reservoir engineering. Fur- 
thermore, if the speed of sound laboratory data are available, 
it is possible to calibrate the EOS with this information to im- 
prove the model without impairing the PVT data match. 

2.2. Subspace ensemble maximum likelihood (SEnRML) 
with local analysis 

Focusing on the fourth step of the workflow depicted in 
Fig. 1 , the current SEnRML implementation with local anal- 
ysis follows the revision presented by Raanes et al. (2019 ), 
the efficient algorithm for big datasets proposed by Evensen 
et al. (2019 ), and the local analysis scheme of Silva Neto et al. 
(2021 ). In this section, we present a method summary, high- 
lighting the main features of this algorithm. 

The SEnRML method aims at minimizing the objective 
function 

 (w j ) =
1 
2 
w 
T 
j w j +

1 
2 

[
g ( x a ) − d j 

]T 
C 
− 1 
dd 

[
g ( x a ) − d j 

]
, 

(5) 
where g (x a ) is the forward simulation model as a function of 
the updated parameters, x a , the variable d j is the perturbed 

observed data and it follows the distribution  (d 
obs ,C dd ) , 

with a covariance matrix of measurement errors C dd , and w j 

are column vectors that define the changes in the parame- 
ters during the calibration for each model. Therefore, the first 
term on the right of Equation ( 5 ) relates to the distance to the 
prior ensemble, and the second one refers to the data misfit. 
These two terms form the total cost function of the Bayesian 
methods (Evensen 2009 ). The ensemble of updated param- 
eters forms the matrix 

X 
a = X 

f + AW , (6) 

in which X 
f is a matrix whose columns are prior parameters 

samples and A are ensemble anomalies defined as 

A = X 
f 1 
√
N − 1 

(
I N −

1 
N 
1N 1

T 
N 

)
= X 

f ΠN , (7) 

where N is the ensemble size and the projector ΠN removes 

the mean and normalizes the matrix by 
√
N − 1 . Note that 

the change of variables defined in Equation ( 6 ) means that 
the model updates are a linear combination of the prior 
ensemble anomalies. The algorithm updates the matrix W , 
which defines this linear combination. 

One obtains the iterative procedure to update the matrix 
W and the parameters applying the Gauss–Newton method 
in the cost function defined by Equation ( 5 ). After some ma- 
nipulations, it is possible to find 

W 
i + 1 = W 

i − 𝜸[W 
i − (S i ) 

T 
(S i (S i ) 

T 
+ C dd ) 

− 1 
H 

i ] , 
(8) 

in which the step-length parameter, 𝛾 , controls the update 
speed, and S i is the matrix of predicted and deconditioned 
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ensemble anomalies 

S i = (D 
sim ) 

i 
ΠN (I N +W 

i ΠN ) 
− 1 
, (9) 

where the simulated data form the matrix D 
sim , and I N is the 

identity matrix with size equals to the ensemble size, N. H 
i is 

called the matrix of innovations, defined as 

H 
i = S i W 

i + D − (D 
sim ) 

i 
, (10) 

considering the matrix containing the perturbed observed 
data, D . Note that we previously defined each column of D 

as d j . 

We compute the matrix inverse (S i (S i ) T + C dd ) 
− 1 

by rep- 
resenting the covariance matrix C dd with the approximation 
C dd ≈ E E 

T , where E columns are samples of the distribution 
 (0 ,C dd ) normalized by 

√
NE − 1 . The number of samples 

that form E , NE , is a tradeoff between the approximation fi- 
delity and the computational cost. After that, we project the 
approximated matrix onto the subspace defined by S . Aiming 
at performing the matrix inverse, we compute a truncated sin- 
gular value decomposition (TSVD) of S and an eigenvalue 
decomposition of the modified covariance matrix of mea- 
surement errors. It is relevant to note that the user needs to 
define the fraction of the S matrix singular values to keep in 
the TSVD. The final update equation scales linearly with the 
data size, improving the efficiency for big datasets compared 
to other ensemble-based methods that form the full matrix 
C dd . In these methods, the equations scale with the square 
of the number of data points. For instance, see the algorithm 

in Emerick (2016 ). For more details regarding this method, 
we refer readers to Evensen et al. (2019 ) and Silva Neto et al. 
(2021 ). 

2.2.1. The local analysis scheme. The limited ensemble size 
makes it vital to apply a localization strategy in ensemble- 
based DA. This technique mitigates exaggerated uncertainty 
reduction due to spurious correlations and limited degrees 
of freedom (Emerick and Reynolds 2011 ). Silva Neto et al. 
(2021 ) proposed a local analysis scheme to assimilate TLS 
data using the efficient implementation of the SEnRML 

method. We apply this algorithm here to assimilate well and 
TLS data in the current case study. 

In the local analysis scheme, we divide the DA problem 

into independent analyses. In each one of them, we update 
a predefined subset of the parameters, called local group, us- 
ing only the part of the dataset that we assume correlated to 
the group. Each problem follows the same DA procedure, de- 
scribed in Equations ( 6 )–( 10 ). 

One can segregate the parameters using their physical po- 
sitions or considering the correlation between them and the 
data. A popular choice is to include in the same analysis all the 
parameters in vertical columns of grid cells from the reservoir 
model (Chen and Oliver 2017 , Silva Neto et al. 2021 ), which 

is the configuration that we adopted in the current study. Fur- 
thermore, we updated each scalar parameter in an individual 
group, enabling a refined analysis for these parameters that 
significantly affect the model response. It is worth mention- 
ing that creating a local group for each scalar parameter causes 
a minor increase in the computational costs in practical ap- 
plications because the number of parameters of this type is 
usually much lower than the number of grid parameters. 

One approach of selecting the data that influence each lo- 
cal group is called distance-based localization, in which the 
algorithm computes the physical distance between each lo- 
cal group and the data point. Note that a well data is at the 
well position. The method includes any data located at the 
same position as the group with weight 1. Moreover, it tapers 
the influence of the remaining data using the Gaspar i–Cohn 
function (Gaspari and Cohn 1999 ), defining the argument as 
the distance, normalized by the so-called localization lengths. 
One can consider these localization lengths as tuning param- 
eters of the method. In our tests, the whole dataset influences 
scalar parameters that do not have a specific physical posi- 
tion in the model, for instance, relative permeability tables. 
We call this procedure a global update. We assumed that one 
well data do not influence scalar parameters related to other 
wells’ productivity or injectivity during the DA. 

Another method to select the data that influence the lo- 
cal groups is correlation-based localization (Luo and Bhakta 
2020 ). In this case, the algorithm assumes the correlation 
threshold 

𝜽 =
1 

√
N 

√ 

2 ln ( n ac ) , (11) 

where nac is the number of active cells in the reservoir model. 
This threshold relates to the statistical noise in the ensemble 
estimate of the correlation matrix between the data and pa- 
rameters. For each parameter in a group and each data point, 
the influence tapering is the result of the Gaspar i–Cohn func- 
tion using the argument 

z = max 

( 

1 . 67 − 0 . 67
|r |
𝜽
, 0 

) 

, (12) 

in which z is called the pseudo-distance dummy variable, and 
r is the correlation between the parameter and the simulated 
data point, computed from the prior ensemble results (Silva 
Neto et al. 2021 ). Note that each group comprises a certain 
number of parameters. Therefore, it is necessary to define 
which pseudo-distance value wi l l prevai l for the group. If one 
chooses the minimum value, all data that influences at least 
one parameter in the group wi l l influence the whole group. 
The maximum z wi l l include only data points that relate to all 
parameters in each group. Finally, an intermediate option is to 
use a percentile of the z distribution in the groups. Note that 
the smaller the groups, the more insignificant this choice is. In 
this work, we tapered the data influence using the minimum 
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An iterative ensemble smoother assimilating big 4DS datasets

value of z for each local group, which seems to be a conserva- 
tive choice, avoiding neglecting correlated data at the cost of 
a more severe uncertainty reduction. 

2.2.2. Computational efficiency of the SEnR M L-LA method. 
A detailed analysis of the computational requirements with 
increasing dataset size was performed by Silva Neto et al. 
(2021 ). The authors made it clear the advantages of the 
SEnRML-LA method compared to other ensemble-based 
methods. They carried out several tests in a controlled en- 
vironment (a dedicated computer) to measure accurately 
several important indicators such as memory consumption, 
comparing the SEnRML-LA w ith the ES-MDA w ith Kalman 
gain localization. The authors showed that the ES-MDA 

memory requirement increased with the square of the dataset 
size while the growth of the SEnRML-LA memory require- 
ment was linear to the dataset size. This makes it possible to 
apply the SEnRML-LA to assimilate big datasets, which is the 
case of the present study. 

It is worth nothing that the comparison of memory con- 
sumption between ES-MDA and SEnRML-LA may depend 
on the implementation strategy. In their comparisons, Silva 
Neto et al. (2021 ) updated the parameters using 5000 rows 
of the Kalman gain at a time, to reduce the memory require- 
ments at this stage of the analysis scheme. More details about 
this ES-MDA implementation can be found in Appendix 
B of Emerick (2016 ). Other implementations or updated 
schemes could also be possible. 

2.3. Normalized quadratic deviation with sign (NQDS) 

To assess the quality of the well data matching on a well-by- 
well basis, we used the metric NQDS, defined for each data 
series, j (for example, producer P1 oil rate, producer P2 water 
rate, and so on) as follows: 

NQDSj =
QDSj 

AQDj 

, (13) 

where the normalization term AQD stands for accept- 
able quadratic deviation and is defined according to equa- 
tion ( 14 ): 

AQDj =

Nobs ∑

i = 1 

(
Tol × dobs 

i 
+ Cp 

)2 
, (14) 

where Nobs is the number of observed data, dobs 
i 

is the ob- 
served data, and Tol and Cp are tolerances applied to the 
observed data. The quadratic deviation with sign ( QDS ) is 
defined as 

QDSj =
LD 

|LD |

Nobs ∑

i = 1 

(
dsim 

i 
− dobs 

i 

)2 
, (15) 

where dsim 
i 

is the simulated data and LD (Equation ( 16 )) is 
the linear deviation used only to define the sign ( LD ∕|LD |) . 
The sign is useful to determine the position of the simulated 
curve in relation to the observed data. In other words, the sign 
is important to evaluate if an ensemble of simulated curves 
is biased or not with respect to the history data. If the sign 
is positive, the simulated curve is above or predominantly 
above the history, and vice versa: 

LD =

Nobs ∑

i = 1 

(
dsim 

i 
− dobs 

i 

)
. (16) 

More details about the NQDS can be found in Avansi et al. 
(2016 ) and Maschio and Schiozer (2016 ). 

2.4. Global objective function 

To assess the evolution of the SEnRML-LA along the itera- 
tions in terms of data mismatch, we computed the cost func- 
tion for well and 4DS data separately. For well data ( w ), we 
applied Equation ( 17 ), considering a diagonal measurement 
error matrix: 

w =

Nobs ∑

i = 1 

(
d 
sim 

i − d 
obs 
i 

)2 

𝝈2 
i 

, (17) 

where 𝜎2 
i 
is the variance of each measured data point, iden- 

tified by the index i . For 4DS data, we applied the data term 

of Equation ( 5 ) with data error correlations described in the 
end of Section 3.3.2 . It is important to highlight that the 
method SEnRML (intrinsically) minimizes the whole cost 
function (following Bayesian formalism). But, in practice, it 
is useful to analyze (after the DA process) the data mismatch 
terms separately. 

3. Case description and problem setup 

3.1. General case description (UNISIM-IV) 

The case studied in this work is the UNISIM-IV, a reser- 
voir model based on the UNISIM-III benchmark case repre- 
senting a giant field composed of fractured carbonate karst 
reservoir from the pre-salt province (Correia et al. 2020 ). 
The UNISIM-IV is a sector of UNISIM-III and corresponds 
to one platform’s drainage area. The reference model for 
the UNISIM-IV (UNISIM-IV-R) is represented by a corner- 
point grid with 170 × 157 × 595 blocks and the dimen- 
sions of each block are 50 × 50 × 2 m. The UNISIM-IV- 
R is a high-resolution geo-cellular model that represents our 
“real response” with challenges typical of a real field and the 
total simulation time is ∼5 days in a Linux computer with 
16 processors. 

To create the simulation model, a geological model 
was firstly created using the same resolution of the 
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Maschio et al.

Figure 2. The UNISIM-IV model. The figure depicts an intermediate layer porosity map sample from the prior ensemble (a), including well and fault 
locations, and the 3D model (b), highlighting the two zones, stromatolites and coquinas. In the well’s names, the letter P refers to a producer and I to an 
injector. 

UNISIM-IV-R. This geological model was constrained 
to the information of well logs. Since it is not feasible to run 
many simulation models using high-resolution grid, it was 
necessary to make an upscaling process to a coarser grid. Fi- 
nally, the simulation model is represented by a corner-point 
grid with 47 × 39 × 291 blocks. The reservoir simulation 
model represents partial information from the synthetic 
truth at the wells’ locations. Therefore, the reference model 
contains unknown characteristics during the simulation 
studies, mimicking a real field application. The model, de- 
picted in Fig. 2 , has two zones. The upper zone consists 
mainly of stromatolites, while the lower zone corresponds 
to the coquinas. We present the model geometry and these 
zones in Fig. 2 b. There are three faults in this sector, whose 
locations are indicated in Fig. 2 a. The production strategy 
consists of 17 vertical wells, eight producers, and nine injec- 
tors. The recovery strategy in this benchmark case assumes 
that the injectors reinject all the produced gas in the reservoir. 
Furthermore, each injection well operates in WAG cycles 
of 6 months, except for well I16, which only injects gas. We 
control the total water injection rate to maintain the average 
reservoir pressure at a target value of 61 000 kPa (Botechia 
et al. 2021 ). Table 1 lists the general models’ characteristics. 
For more details regarding the geological models, we refer to 
Correia et al. (2020 ). 

The benchmark reservoir model, which emulates chal- 
lenges and difficulties typical of complex real fields, includes 
hydrocarbon fluids whose characteristics reproduce the pub- 
lic report (Petrobras 2015 ) regarding a pre-salt field. We 
present the reservoir fluids’ main characteristics in Table 2 . 
Among them, it is worth highlighting the high CO2 content, 
∼40%. Furthermore, the fluid volatility is associated with the 
initial gas-oil ratio (GOR) of 415 and the high oil forma- 

Table 1. General simulation model characteristics. 

Characteristic Value 

Horizontal permeability (mD) 0 to 9000 (median ≈ 50) 
Vertical permeability (mD) 0 to 900 (median ≈ 1) 
Porosity 0 to 0.3 (median ≈ 0.11)
Average depth (m) ≈5500 
Initial datum pressure (kPa) 63 000 
Average cell size (m) ≈200 × 200 × 5 
Number of active cells 77 071 
Total number of cells 533 403 

Table 2. General fluid properties. 

Characteristic Value

API (°) 27
Initial GOR (m3 /m3 ) 415 
Oil formation volume factor (m3 /m3 ) 2 
Initial saturation pressure (kPa) ≈49 000 
Initial oil viscosity (cP) ≈0.4 
CO2 in the gas phase (%) 44
CO2 in reservoir fluid 37% 

Temperature at the reservoir (°C) 90

tion volume factor of 2. The oil phase at reservoir conditions 
presents low viscosity, ∼0.4 cP, which is favorable to the re- 
covery process sweep efficienc y. A s the fluid consists of light 
oil with a high content of CO2 , we used a compositional fluid 
model for the reservoir simulations. 

Al l wel l completions include interval control valves 
(ICV), allowing the flow control in two zones for the injec- 
tors and three intervals for the producers. The injectors’ ICV 

aim at uniformizing the injection of water and gas between 
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An iterative ensemble smoother assimilating big 4DS datasets

Table 3. Scalar and categorical attributes summary. 

Attribute Type Quantity Minimum a Maximum a 

Fault transmissibility multipliers Scalar (continuous) 3 − 8 0
Well index multipliers Scalar (continuous) 44 − 2 2
Relative permeability tables (stromatolites) Categorical (7 levels) 1 
Relative permeability tables (coquinas) Categorical (7 levels) 1 
Equation of state Categorical (3 levels) 1 

a Logarithmic (log10 ) transformed domain. 

Figure 3. Monitors date according to injection scheme and WAG cycles (M stands for monitor and the extended well test (EWT) is for I11). 

Figure 4. Illustration of the seismic horizons for the UNISIM-IV. 

the zones. Therefore, when it detects a predefined level of 
unbalance between the two intervals, the ICV closes the one 
that received a larger volume and opens the other. In the pro- 
ducers, the ICV aim at avoiding high GOR production from 

each interval. If it detects a GOR value above a predefined 

threshold, it closes the respective production zone. For more 
detail on the operation and optimization of the ICV for this 
benchmark, we refer to Botechia et al. (2021 ). 

During the history-matching process, each well oper- 
ates with measured rates as boundary conditions. The total 
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Figure 5. Observed time-lapse maps (acoustic impedance ratios) for the seven pairs of monitors for the horizons 4, 5, 6, and 12. 
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An iterative ensemble smoother assimilating big 4DS datasets

Figure 6. Analysis of the pair of monitors M1/Base for the Horizon 4: (a) map of IR, (b) map of pressure difference (dp), (c) crossplot between dp and 
IR, (d) and (e) gas and water saturation differences, respectively, (f) crossplot between dSg and IR, and (g) crossplot between dSw and IR. 

liquid rate represents this condition for each producer, while 
the injected water or gas rate plays the same role for each in- 
jector. It is worth mentioning that all ICVs must reflect the 
same states as the actual operation during this period. Fail- 
ing to report the valve restrictions in the forward simulation 
wi l l act as a modeling error, which may impair the parameter 
calibration. Although not considered in this work, mechan- 
ical failure may be represented as an uncertain attribute and 
included in the DA workflow (Evensen 2019 ). 

Besides those boundary conditions, it was vital to limit 
the pressure during the history-matching to avoid unphysi- 
cally high or low values in any model. One of the benefits of 
preventing unphysical conditions in the simulation models 
is to avoid numerical problems related to exaggerated gas lib- 
eration in the porous media due to extremely low pressures. 
When one sets these pressure limits, it is crucial to avoid 
restricting the pressure at levels too close to the measured 
bottom-hole pressure (BHP), as this condition wi l l tend to 
conceal productivity or injectivity mismatches. One way to 
do so is to check each well’s BHP NQDS, using the respective 

pressure limit as the simulated data. All wells should exhibit 
a relatively high normalized quadratic deviation in this test: 
> 10, for instance. 

3.2. Uncertain attributes 

We apply the DA workflow presented in Fig. 1 to calibrate 
the reservoir simulation models of the UNISIM-IV bench- 
mark case. The simulation models represent partial informa- 
tion of the fine-scale reference model, and they carry geologi- 
cal uncertainties regarding the permeability fields at the three 
main directions ( x , y , and z ) and the porosity field. As shown 
in Correia et al. (2020 ), the porosity is correlated with hori- 
zontal permeability. We represent all the four grid-related pa- 
rameters using an ensemble of 100 geostatistical realizations. 
The truncated Gaussian simulation is applied for modeling 
facies, whereas porosity and horizontal permeability were 
generated using Gaussian simulation. More details about the 
geological/geostatistical modeling can be found in Correia 
et al. (2020 ). During the generation of the initial (prior) 
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Figure 7. Analysis of the pair of monitors M6/M5 for the Horizon 6: (a) map of IR, (b) map of pressure difference (dp), (c) crossplot between dp and 
IR, (d) and (e) gas and water saturation differences, respectively, (f) crossplot between dSg and IR, and (g) crossplot between dSw and IR. 

geostatistical realizations (in the geostatistical software mod- 
eling), the seed number is considered a random variable. 
However, we did not consider the seed as an update vari- 
able in the DA because, during the DA, the petrophysical 
properties are directly updated by the SEnRML method. 
This ensemble size is a tradeoff between the representation 
of the uncertainty statistics and the computational costs to 
simulate the forward models. Furthermore, we apply a loga- 
rithmic transformation to the permeability to compute the 
DA, the fourth step of Fig. 1 . This transformation aims at 
approximating the problem to linear Gaussian since the 
permeability commonly has a log-normal distribution. 

Besides the grid-related attributes, the benchmark case 
also considers 50 additional attributes (summarized in 
Table 3 ): 47 scalar attributes, x ∈ ℜ1 ×1 , and three categor- 
ical variables. We apply a logarithmic transformation to all 
scalar parameters during the calibration process. First, there 
are three transmissibility multipliers related to the three faults 
presented in Fig. 2 a. We represent the faults using a uniform 

distribution in the transformed domain, from closed to fully 

opened or equivalently from nearly zero transmissibility to 
100% transmissibility. Secondly, each producer has uncertain 
productivity (well index) at each of the three intervals, repre- 
sented by a multiplier with a Gaussian distribution, centered 
at 1 in the transformed domain. The same occurs in each in- 
jector but with two intervals. These intervals are related to 
the ICV operation. The fault transmissibility multiplier has 
a logarithmic impact in the flow behavior, which is conve- 
nient working with a logarithmic distribution. For the well 
index multiplier, the idea was to allow larger values, but less 
frequent (less spaced) than smaller ones. 

The simulation model also assumes three categor ical var i- 
ables, the relative permeability curves of each zone (Fig. 2 b) 
and the EOS. SEnRML, with local analysis, handles these 
variables by representing them with auxiliary continuous 
variables with a prior standard normal distribution. The al- 
gorithm selects thresholds to determine the discrete levels 
based on the prior probability of each category. During the 
calibration process, the analysis equation updates each model 
auxiliary variable to determine the calibrated categories. 
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Figure 8. Impedance ratio for the field (seven pairs of monitors) and for the regions (depicted in the bottom-right image) for each pair of monitors. 

Note that one should order each variable’s categories in a way 
that generally enables a monotonic tendency between the 
discrete levels and the impacts on the simulated data. For in- 
stance, the relative permeability curves should cause an in- 
crease or decrease in water and gas production among the 
categories. This procedure aims to reduce the nonlinearity of 
the relation between the parameters and the simulated data. 

Finally, the prior ensemble is composed of 100 geosta- 
tistical realizations combined with 50 scalar and categorical 
attributes. 

3.3. Observed data 

The observed data assimilated in this work was generated 
from the UNISIM-IV-R and is composed of well and 4D 

seismic data. There are 86 004 data points in total to be as- 
similated: 69 426 related to TLS data plus 16 578 related to 
well data. It is worth mentioning that this amount of data 
is very challenging for most ensemble-based assimilation 

methods. The description of each kind of data is presented 
as follows. 

3.3.1. Well data. The well data considered in this study com- 
prises oil, gas, and water rates, and BHP for each producer. 
Moreover, each injector provided the BHP and the individual 
rate, gas, or water, depending on WAG cycles. Each measured 
data contains uncorrelated noise with a standard deviation of 
10% for the rates and ∼2% for the pressures. This noise is ap- 
plied to the reference output to generate more realistic data. 
For the well data measurement error, we assumed a diagonal 
covariance matrix (which is a common choice for production 
data) with a standard deviation equal to 10% of the observed 
data. 

3.3.2. 4D seismic. The 4D seismic dataset assimilated in this 
work comprises one baseline acquisition, after 608 days of 
the beginning of the extended well test and seven mon- 
itors in the times shown in Fig. 3 , which shows the in- 
jection scheme according to the monitors date and WAG 
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Table 4. SEnRML with local analysis parameters. 

Parameter Configuration

E matrix size 1000 columns ( 10 × N) 
Fraction of the singular values in TSVD 0.99 
Step-length control ( 𝜸) Declining from 0.5 to 0.1 
Parameter segregation Grid: vertical columns of cells 

Scalar: one parameter per group 
Localization distance (distance-based local analysis) Well data: based on the influence area 

Seismic: 1400 m (7 grid cells) 
Pseudo-distance (correlation-based local analysis) Minimum value 

Table 5. Operational constraints for the production forecast of the simulation models with physical limits for the platform and wells. 

Constraint Value Applies to 

Maximum oil rate (m3/d) 28 617 Platform 

Maximum liquid rate (m3/d) 28 617 Platform 

Maximum water production rate (m3/d) 23 848 Platform 

Maximum water injection rate (m3/d) 35 771 Platform 

Maximum gas production rate (m3/d) 12 million Platform 

Minimum BHP (kPa) History period last value Producer well 
Maximum BHP (kPa) History period last value Injector well 
Maximum liquid rate (m3/d) 8000 Producer well 
Maximum gas injection rate (m3/d) 4 million Injector well 
Maximum water injection rate (m3/d) 10 000 Injector well 

cycles. It is worth mentioning that the benchmark UNISIM- 
IV considers permanent seismic monitoring, where most of 
the monitors were “acquired” every 6 months. We generated 
the observed data by applying a PEM in the fine-scale ref- 
erence model results. After that, we extracted maps consid- 
ering the vertical resolution of seismic data for this case, a 
permanent monitoring system, and performed scale transfer- 
ence to the simulation scale. At this scale, each seismic map 
corresponds to five to ten model layers. Each map consists of 
the acoustic impedance ratio between two consecutive mon- 
itors, representing the flow-related variations. There are 15 
seismic horizons, as i l lustrated in Fig. 4 , totaling 105 maps 
to be assimilated, being seven pairs of surveys multiplied by 
15 horizons. 

Starting with a qualitative analysis of the 4D seismic 
data, Fig. 5 shows the observed time-lapse maps (acoustic 
impedance ratios) for the seven pairs of monitors for the 
horizons 4, 5, 6, and 12. In these maps, “hot” colors (yellow 

to red) represent impedance reduction (softening effect) 
and “cold” colors (green to blue) represent impedance in- 
crease (hardening effect). To highlight the most important 
anomalies, impedance variations lower than 1% were set to 
gray. From the maps in Fig. 5 , several important aspects can 
be highlighted: 

(i) The WAG cycles anomalies are clearly identified by 
changes in the color between successive pair of moni- 
tors; see, for example, “M1/Base” to “M3/M2” for the 
Horizon 4 (column 1) and “M6/M5” to “M7/M6” for 

the Horizon 6 (column 3). This behavior in impedance 
ratio variation indicates the injected fluids changing: 
that is, injected water after a period of injecting gas in 
the porous media and vice versa. This behavior is pre- 
dominant in the northwest region that contains most 
injector locations. 

(ii) In the northwest region of the M1/Base, Horizons 4, 
5, and 6, there is a huge softening-anomaly, which is a 
combination of pore-pressure with localized increased 
gas saturation. In this region, the acoustic impedance 
variation (reduction) reaches 10%. This happens be- 
cause of a strong pressure increase caused by injection 
and a volcanic rock that is acting as a pressure barrier 
(Davolio et al. 2021 ). 

(iii) In the center-south region of M1/Base, Horizons 4, 5, 
and 6, there is a huge hardening anomaly where the 
impedance increase reaches ∼5%. As can be seen from 

Fig. 2 a, this region contains only producer wells. Gen- 
erally, hardening-anomalies are typically found in vicin- 
ity of water injector wells. However, this is not the case 
here. To better understand these anomalies, we ana- 
lyzed the correlation between the pressure differential 
and the acoustic impedance ratio. Figure 6 a and b show 

the maps of IR and dp (pressure difference between 
M1 and Base), respectively, for M1/Base Hor4. Note 
that the signature of the IR anomalies is very similar to 
the pressure anomalies. It is noteworthy that this anal- 
ysis is possible because we have the dp map from the 
reference model (ground truth). To complement the 
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Figure 9. Evolution of the objective function along the iterations for the seismic (a) and wells (b) data for the case TLS-Well and wells data (c) for the 
Well case. 

analysis, Fig. 6 c depicts a strong correlation between 
dp and IR showing that the hardening anomaly in 
the center-south region is caused by a pressure drop 
(depletion). 

(iv) Sti l l, considering M1/Base, the effect of injected fluid 
saturations in the acoustic impedance ratio is also 
analyzed in Fig. 6 d–g. Figure 6 parts d and e show, 
respectively, the gas and water saturation differences be- 
tween M1 and Base (Horizon 4), and Fig. 6 f and g show 

the corresponding cross-plots. We can see that there is 
a poor correlation between the fluid saturations (gas 
and water) and the impedance ratio. The concentration 
of points in the bottom-right quadrant in the plots in 
Fig. 6 f and g is due to the predominance of the pressure 
effect. 

(v) Figure 7 shows the same analysis (presented in the pre- 
vious paragraphs) for M6/M5 (Horizon 6). Based on 

this figure, we can see that for later monitors, there is 
a balance between the influence of pressure and fluid 
situations in the impedance variation. The correlation 
between dp and IR is not too strong as in M1/Base. 

Additional analysis of the seismic data along the moni- 
tors is presented in Fig. 8 . The histograms exhibit the per- 
centage of blocks whose impedance ratio is ≤ 0.99 (red) and 
≥ 1.01 (blue), representing impedance variation (decrease or 
increase) ≥ 1%. The IR for the entire reservoir is shown in 
Fig. 8 (top-left plot) where it can be noted an alternation be- 
tween softening and hardening effects along the monitors. In 
Monitors 1, 2, 5, and 7 there is predominance of softening 
effects and in others, the hardening effects predominate. To 
go into more detail on the IR variation, we divided the reser- 
voir in four regular regions, as shown in the bottom-right im- 
age of Fig. 8 , and computed the percentage of blocks with 
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Maschio et al.

Figure 10. NQDS for oil rate ( Qo ) for the producer wells, water ( Qw ) and gas ( Qg ) rates and BHP for producers and injectors comparing the prior 
ensemble (gray) and the posterior ensemble for the cases TLS-Well (blue) and Well (green). The closer the NQDS is to the range centered at the zero 
line, the better the results are. 

significant hardening and softening effects, similar to what we 
did for the entire reservoir, however, in this case for each re- 
gion and pair of monitors. 

Similar to the entire reservoir, we can see (Fig. 8 ) that 
there is an alternation in softening and hardening effects 
along the monitors (due to WAG cycles). The alternation of 
positive and negative anomalies indicates that the fluid sub- 
stitution plays a key role in the observed data behavior of the 
monitor pairs. It can also be noted that most changes occur 
predominantly in Region 1 (northwest part of the reservoir), 
where there are more injectors and the volcanic rock previ- 
ously mentioned. Another point is that the IR variation tends 
to reduce along the monitors. This suggests that physical ef- 
fects with opposite influences, hardening and softening, may 
attenuate the time-lapse signal. 

We highlight that the 4D seismic data used here corre- 
spond to a quasi-ideal data, since they were generated from 

the application of the PEM to the reference model (with- 
out running the whole seismic forward modeling). There- 
fore, these data do not suffer from common problems of 
real data such as low vertical resolution and data repeatabil- 
ity issues. We named them “quasi-ideal” data because of the 

information loss caused by scale transference to the simula- 
tion scale. As the focus of the work is to evaluate the potential 
of SEnRML-LA to assimilate big data, using this 4D seismic 
data is a fair practice. 

In the DA process, we perturbed the seismic data using 
Gaussian noise with standard deviation ( 𝜎4D ) equal to 0.2% 

(IR = 0.002) and 600 m exponential correlation length. We 
estimated the correlation length based on synthetic seismic 
modeling that considered the noise characteristics expected 
in permanent reser voir monitoring sur veys. Furthermore, 
the standard deviation allowed balanced cost-function con- 
tributions between seismic and production data in the prior 
ensemble. To define the value of 𝜎4D , we simulated the prior 
ensemble models and computed the production data cost 
function for all models. Then, we computed the 4DS cost 
function for all models for several values of 𝜎4D comparing 
the cost-function distributions in a boxplot. The value of 𝜎4D 

that resulted in a 4DS cost-function distribution closer to the 
production data cost function was adopted. This strategy for 
the selection of the diagonal elements of the data error ma- 
tr ix tr ies to reduce the effect of the larger number of data 
points from the seismic acquisitions when compared to the 
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An iterative ensemble smoother assimilating big 4DS datasets

Figure 11. Water rate curves for P15 and P16 comparing the prior ensemble (gray) and the posterior ensemble for the cases TLS-Well (blue) and Well 
(green). 

well data. Furthermore, it tends to reduce the risk of excessive 
uncertainty reduction with an associated risk of biasing the 
solutions. 

3.4. Petroelastic model 

The PEM applied in this work, the third step of Fig. 1 , consid- 
ers a mixture of three minerals in the rock, calcite, dolomite, 
and quartz, with fractions of 85, 11, and 4%, respectively. 
The dry-rock properties as a function of effective pressure 
were represented by logarithmic functions fitted using labo- 
ratory data regarding a pre-salt field, as detailed in Costa et al. 
(2016 ) and Silva et al. (2020 ). Declining exponential func- 
tions matching data from a pre-salt reservoir represented the 
dry-rock moduli as a porosity function were used. We con- 
sidered different pressure and porosity laws for each reser- 
voir zone, stromatolites, and coquinas. Vasquez et al. (2019 ) 
and Silva et al. (2020 ) reported that the Gassmann equa- 
tion (Gassmann 1951 ; see Mavko et al. 2009 ) provides a 
reasonable representation of the fluid substitution in reser- 
voirs similar to ours. Therefore, we apply the Gassmann 
equation to the current PEM. The Batzle and Wang (1992 ) 
equations represent the water phase bulk modulus, while the 
fluid model (Silva Neto et al. 2020 ) described in Section 2.1 

enables computing the gas and oi l bul k moduli and densi- 
ties. It is noteworthy that, in general, there are uncertainties 
related to the petroelastic modeling. However, dealing with 
PEM’s uncertainty during the DA process is an open research 
subject and it is not treated in this paper. 

3.5. Configuration of the SEnRML method with local 
analysis 

The SEnRML method with the local analysis scheme has 
some user-defined parameters. Table 4 shows the list of pa- 
rameters defined for the application in UNISIM-IV. The well 
data localization lengths related to the drainage area and 
each well’s influence region were estimated from streamlines 
(Emerick and Reynolds 2011 , Soares et al. 2018 ). Ten itera- 
tions with 100 models per iteration were carried out for each 
case (TLS-Well and Wel l). Si lva Neto et al. (2021 ) showed 
that 10 iterations of the method are enough to reach conver- 
gence. 

3.6. Production forecast 

The objective of the DA is not only matching the observed 
data. As part of the solution of the whole problem, it is 
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Maschio et al.

Figure 12. Time-lapse maps (acoustic impedance ratios) for the seven pairs of monitors for the Horizon 5 comparing: observed (first column), prior 
(second column) and posterior for cases TLS-Well and Well (third and fourth column, respectively). 
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An iterative ensemble smoother assimilating big 4DS datasets

Figure 13. WAG anomalies resulting from injected water after a period of injecting gas in the porous media (bluish changes surrounded by a hot area 
in the northwest part of the reservoir). 

essential to assess the forecast capability of the matched 
models. In this work, we perform, after the DA, a human- 
intervention free forecast, whose objective is to avoid the ef- 
fects of reservoir management rules, for instance GOR and 
water-cut limits, and assess the models regarding the reser- 
voir properties quality. The motivation to do so is that there 
are cases where a minor difference in a model can lead to 
a substantial effect due to differences in reservoir manage- 
ment operations, for instance, ICV changes and/or well shut- 
in due to GOR or water-cut limits. For example, two mod- 
els may be very similar (in terms of reservoir properties) 
and due to a minimal difference between the simulated and 
allowable GOR, certain wells can close in one model but 
not in another, hindering the analysis. Therefore, for human- 
intervention free purposes, we ran the reference case and the 
simulation models without reservoir management rules. It is 
worth mentioning that for production strategy optimization 
problems, it is necessary to consider reservoir management 
rules. Table 5 shows the basic operational constraints for the 
production forecast of the simulation models. Note that we 
considered some physical limits for the platform and wells. 

4. Results and discussions 

This section is organized in five subsections: first, the evolu- 
tion of the objective function (Subsection 4.1) is presented 
to show the global consistency of the method. In the follow- 
ing, the well (Subsection 4.2) and seismic (Subsection 4.3) 
data match are presented and discussed. The next subsection 
treats the analysis of the attributes’ variability (Subsection 
4.4) and, finally, the production forecast assessment is pre- 
sented in Subsection 4.5. 

4.1. Evolution of the objective function 

Figure 9 a and b show the evolution of the global objective 
function (see Section 2.4 ) along the iterations for the seismic 
(Fig. 9 a) and wells (Fig. 9 b) for the case TLS-Well. For each 
iteration (and the prior) a box plot generated using the 100 
models is depicted. The OF is normalized for the prior me- 
dian value so that the median shown in the box for the prior 
is equal to 1. Some points deserve consideration: (i) first, it 
is possible to note that there is a good convergence of the 
method, we can see a gradual and consistent reduction of the 
OF, showing consistency of the DA process; and (ii) there is 
a reduction of 75% in the seismic OF and a reduction of 97% 

in the wells OF, both related to the prior median value, which 
means an expressive OF reduction for both seismic and wells 
data. 

Figure 9 c shows the wells OF evolution for the Well case 
(DA using only well data). Although there are some minor 
differences, the overall shape of the OF evolution is similar 
to the case TLS-well. There is a reduction of 95% in the wells 
OF compared to 97% for the case TLS-Well. It is worth men- 
tioning that the inclusion of TLS in the DA was beneficial 
to the process since it improved not only the seismic data 
matching but also well data matching. Rosa et al. (2023 ) also 
concluded that using 4DS data allowed generating better- 
calibrated models than assimilating production data only. 

4.2. Well data match 

The well-by-well data match, in terms of NQDS, is shown in 
Fig. 10 for oil rate ( Qo ) for the producer wells, water ( Qw ) 
and gas ( Qg ) rates and BHP for producers and injectors. To 
compute the NQDS, we considered the tolerance as 10% 
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Maschio et al.

Figure 14. NQD for the 105 acoustic impedance ratios maps classified according to the percentage of blocks (three groups) with impedance variation 
greater than 1% (the red arrows indicate the monitors analyzed in Fig. 15 ). The closer the NQD is to the zero line, the better the results are. 

( Tol = 0.1) of the rate measurements, the constant ( Cp ) for 
the produced water rate is equal to 40 m3 ∕d , and the BHP 

tolerance is 3% ( Tol = 0.03). 
There is a significant reduction in the NQDS distribution 

for the posterior ensemble for both cases (Well and TLS- 
Well) compared with the prior ensemble, which agrees with 
the analysis of the well OF shown in Fig. 9 b and c. However, 
especially for the water rate, the results from TLS-Well are 
better for three out of the six producer wells (P14, P15, and 
P16). The NQDS plots show that the oil and gas rate were 
properly matched for both cases. Analyzing the BHP behav- 
ior from the prior ensemble, one can note that there is a signif- 
icant pressure deviation with an underestimation tendency 
in the producers, while the injectors exhibit an opposite 
tendency. 

The results in Fig. 10 for wells P14, P15, and P16 indi- 
cate that TLS data may improve well data match. At the first 

glance, this result seems unusual, as a new data source in- 
creases the complexity of the DA problem. However, well 
and TLS data are partially redundant. This redundancy act 
as an increased data weight and tends to shift the DA result 
toward a better data match, when searching the optimal so- 
lution of the summation of the two cost-function terms in 
Equation ( 5 ). 

Figure 11 shows the water rate curves for P15 and P16 
comparing the prior ensemble (gray) and the posterior en- 
semble for the cases TLS-Well (blue) and Well (green). The 
set of observed data points above the main curve of observed 
data is due to the well stops defined in the reference case. This 
happens due to the group control : w hen a well stop, the sim- 
ulator increases the rate of other wells following apportion- 
ment rules. 

Analyzing the posterior simulation curves, one can see 
that there is a trend of underestimation of water production 
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An iterative ensemble smoother assimilating big 4DS datasets

Figure 15. IR maps for each pair of monitors indicated with a red arrow in Fig. 14 representative of each group. 

for the Well case, as also depicted in the NQDS plot (Fig. 10 ). 
On the other hand, the inclusion of the seismic data im- 
proved the well data match. The seismic data provides 
spatially rich information related to the reservoir fluid dis- 
tribution and this allows the assimilation method to better 
detect the influence between a given attribute (relative per- 
meability, for example) and the fluid movement, and as a re- 
sult improving the well data match. It is noteworthy that the 
seismic dataset used in this work is not contaminated by is- 
sues related to real seismic acquisitions and processing, such 
as noise and repeatability problems, for example. However, 
even being a synthetic dataset, it is not perfect because there 
are scale issues, which cause information loss. In real cases, 
the more advanced the acquisition and processing technolo- 
gies are, the higher the seismic quality is; in other words, the 
higher the capability of representing the true reservoir fluid 
distribution. 

4.3. Seismic data match 

This section shows in detail the seismic DA by assessing 
the match quality qualitatively and quantitatively. Starting 
with qualitative analysis, Fig. 12 shows the time-lapse maps 
(acoustic impedance ratios) for the seven pairs of monitors 
for the Horizon 5. The color legend follows the same scheme 
as Fig. 5 . The first column is the observed data and the second 

is the prior ensemble mean. The third and fourth columns 
are the posterior (last iteration) ensemble mean for the cases 
TLS-Well and Well, respectively. For the Well case, we run the 
reservoir simulations again for the models of the last iteration 
to generate the data necessary to compute the impedance ra- 
tios, since during the DA for this case only well data were gen- 
erated. From the maps in Fig. 12 , some important aspects can 
be highlighted: 

(i) The first three pairs of monitors show the compartmen- 
talization of the prior models, characterized by the tran- 
sition of colors from one side of the main fault to an- 
other, more pronounced in M2/M1. 

(ii) In general, the high deviation in the prior models, espe- 
cially in the three first pairs of monitors, was corrected 
after the DA for both cases, TLS-Well and Well. The 
post models follow the same alternation trend in the 
impedance ratio variation along the monitors verified 
in the observed seismic data. 

(iii) For the set of maps shown in Fig. 12 , the match qual- 
ity of the cases TLS-Well and Well is qualitatively sim- 
ilar comparing with the observed maps, although there 
are some differences. For example, in the pairs M1/Base 
and M4/M3, the shape of some anomalies for the case 
TLS-Well is closer to the observed maps compared to 
the Well case. 
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Figure 16. IR maps for the pair of monitors M2/M1 (Horizon 4) for Models 1 and 2 (a) and the corresponding cross-plots (b). 

The 4D seismic data used in this work is capable of de- 
tecting WAG anomalies, resulting from injected water af- 
ter a period of injecting gas in the porous media. This 
kind of anomaly is highlighted in Fig. 13 (M5/M4 Hor4 
and M2/M1 Hor6) where it is possible to observe bluish 
changes surrounded by a hot area in the northwest part 
of the reservoir. In M5/M4 Hor4, the observed anoma- 
lies are correctly represented by the post-ensemble mean 
for both cases (TLS-Well and Well), whereas for ‘M2/M1 
Hor6’ the anomalies are better represented in the case 
TLS-Well. 

The assessment of the seismic data match is comple- 
mented by a quantitative analysis. Figure 14 shows the NQD 

(|NQDS|) for the 105 pairs of monitors. The NQD (abso- 
lute value) was chosen in this case to permit logarithmic scale 
plots, more convenient than linear scale in this analysis. To 
compute the NQD, an additive tolerance [constant Cp in- 
Equation ( 14 )] of 0.005 (which represent an impedance vari- 
ation of 0.5%) was used. In the NQD plots, M1 represents 
the pair M1/Base, M2 the pair M2/M1 and so on, and H 

(1 to 15) represents the 15 horizons. To facilitate the anal- 
ysis, we separated the maps in three groups according to the 
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An iterative ensemble smoother assimilating big 4DS datasets

Figure 17. Boxplots of the percentage of blocks with impedance variation (decrease or increase) greater than or equal to 1% for four pairs of monitors 
for the four regions shown in Fig. 8 . The green arrows indicate where the results from post TLS-Well were better than the post Well. 

percentage of blocks with impedance variation greater than 
1%. In the first group, composed of 22 maps, this percent- 
age is ≥ 5%. In the second, composed of 33 maps, the per- 
centage is between 1 and 5% and in the third, composed of 
the remaining 50 maps, the percentage is ≤ 1%. Note that the 
order of magnitude of the NQD values decreases from the 
first to the third group. These plots allow us to assess and 
compare quantitatively all the 105 pairs of monitors, com- 
paring the pre-and the post-ensemble for both assimilation 
cases. Clearly, we can see that the case assimilating TLS and 
wells together provides better results comparing to the case 

assimilating only well data. For most pairs of monitors, the 
impedance ratio deviation is lower in the TLS-Well. 

To complement the analysis, Fig. 15 shows one pair of 
monitors representative of each group shown in Fig. 14 . 
These monitors are indicated with a red arrow in Fig. 14 . 
Note that in M1/Base (Hor2) there is a big hardening 
anomaly in the northeast region of the reservoir in the prior 
ensemble. In the post-ensemble case TLS-Well this anomaly 
is much smaller than the prior and very similar to the ob- 
served map. In the Well case, although the size of the anomaly 
was reduced in the matched models, it is sti l l bigger than the 
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Figure 18. (a–c) The variability of the transmissibility multiplier (TM) of the faults comparing prior, and posterior ensembles for the cases TLS-Well 
and Well; (d and e) position of the faults; and (f) NSD (post divided by the prior) of all scalar attributes. 

Figure 19. Normalized posterior standard deviation of grid properties with respect to the prior distribution (represented by the vertical black line, 
NSD = 1): (a) porosity, (b) horizontal permeability in the x -direction ( kx ) and (c) vertical permeability ( kz ); comparison between TLS-Well and Well 
cases. 

observed map. The same can be said for another hardening 
anomaly in the south region of the reservoir. In the TLS-Well 
case, this anomaly is also more similar to the observed map 
compared to the Well case. 

Figure 16 a shows the IR maps for the pair of monitors 
M2/M1 (Horizon 4) for Models 1 and 2 from the prior en- 
semble and from the posterior ensembles for the cases TLS- 
Well and Well comparing with the observed map. Note that 
the prior anomalies in Model 1 are totally different compared 
with Model 2. In Model 1, there is a hardening anomaly in the 
region above the fault. In this model, the fault transmissibil- 
ity multiplier is practically zero, characterizing a sealing fault, 

which causes a hydraulic isolation area in the region above 
the fault. The limit of the anomaly follows exactly the fault 
position. 

In the post model (after the DA), this problem is cor- 
rected and the anomalies are closer to the observed map. 
The behavior of Model 2 (prior) is completely different be- 
cause the fault transmissibility multiplier characterizes a fully 
opened fault. There is a predominance of softening effect 
with a smaller hardening anomaly in the center. As in Model 
1, in the post model the anomalies are closer to the ob- 
served map. Figure 16 b depicts cross-plots for both models 
comparing the prior and post for the two assimilation cases, 
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An iterative ensemble smoother assimilating big 4DS datasets

Figure 20. NQDS (computed in the forecast period) for all producers. The closer the NQDS is to the range centered at the zero line, the better the 
results are. 

showing that for the case TLS-Well the posterior points 
(blue) is more symmetr ically distr ibuted around the 45° line 
when compared to the Well case (green points), indicating 
that the TLS-Well case results are in better agreement with 
the observed data. 

Figure 17 shows boxplots of the percentage of blocks 
with impedance variation (decrease or increase) ≥ 1% for 
four pairs of monitors for the four regions shown in Fig. 8 
(bottom-right image). The first column is the prior, and the 
second and third columns correspond to the cases TLS-Well 
and Well, respectively. Red boxes represent softening effects 
and blue boxes represent hardening effects. The circles rep- 
resent the percentage corresponding to the observed seismic. 
It is possible to observe, especially in Region R1, the alterna- 
tion of impedance variation. For example, in M1/Base (sti l l 
considering R1) there is a predominance of softening effects, 
and this behavior gradually changes until the predominance 
of hardening is reached in M6/M5. We see that the prior en- 
semble exhibits a high variability. For instance, the percent- 
age of blocks for softening in Region 1 varies from 3 to 46%. 
On the other hand, the posterior ensembles for both cases 
significantly reduce the variability, encompassing, in general, 
the observed value. The green arrows indicate where the re- 
sults from TLS-Well were better than Well, in the sense that 
the TLS-Well results tend to better encompass the observed 
data in the posterior distribution. 

4.4. Analysis of the attributes’ variability 

In Fig. 18 a–c, we analyze the three faults variability before 
(prior) and after the DA (post) comparing the cases TLS- 

Well and Well. It is interesting to observe that the Faults 2 
and 3 converged to similar ranges for both assimilation cases. 
Another observation is that both cases reduced the variabil- 
ity of these faults in a similar way. We can see from Fig. 18 d 
and e that the Faults 2 and 3 are located in regions of the 
reservoir close to the wells’ locations. This explains why both 
cases reduced the uncertainty in the transmissibility multi- 
pliers of these two faults similarly: in the Well case, there 
was enough well data to constrain the faults transmissibil- 
ity, in other words, the fault effects are captured by the wells. 
For the TLS-Well case this result was expected because, be- 
sides the well data, there was the spatial information from the 
TLS. For the Fault 1, we can see that the results are differ- 
ent from Faults 2 and 3. For the TLS-Well case, the uncer- 
tainty reduction was similar to Faults 2 and 3, however, the 
Well case practically maintained the prior distribution. This 
can be explained by the fact that the Fault 1 is located in a re- 
gion more distant from the wells. Therefore, the wells’ data 
were not enough to constrain this fault transmissibility and 
the method (SEnRML-LA) correctly maintained the uncer- 
tainty for this attribute. On the other hand, the spatial infor- 
mation from the TLS enabled the uncertainty reduction of 
this fault (TLS-Well case). 

Figure 18 f shows the cumulative frequency curves for 
the normalized standard deviation (NSD), of the posterior 
ensembles for all scalar attributes. The NSD is the poste- 
rior standard deviation normalized with respect to the prior 
standard deviation. These curves indicate that the DA pro- 
cess using the TLS data have a more significant uncertainty 
reduction. For example, for the Well case, the ratio be- 
tween the post and the prior (that measures the uncertainty 
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Figure 21. Oil and water production forecast for the Well P15 comparing the prior and posterior ensembles for cases TLS-Well and Well. 

reduction) for 50% of the attributes (P50) is lower than or 
equal to 0.64; while for the TLS-Well case, the P50 is 0.36, 
indicating a higher uncertainty reduction. 

In Fig. 19 , we analyze the posterior variability of the 
grid properties (porosity and permeability in x and z di- 
rections) normalized with respect to the pr ior distr ibution 
(represented by the vertical black line, NSD = 1). The y - 
permeability is not shown because its behavior is very similar 
to the x -permeability. First, the TLS data allows a more effec- 
tive uncertainty reduction compared to the case assimilating 
only well data. Second, comparing with the scalar attributes, 
the assimilation process using the TLS leads to a more signif- 
icant uncertainty reduction, which is normally expected be- 
cause both the grid properties and the TLS data are spatially 
distributed or, in other words, the grid properties tended to 
be more strongly conditioned by the TLS than the scalar at- 
tributes. However, it is worth mentioning that this explana- 
tion is valid for the case studied and we could not necessarily 
generalize for all cases. Another aspect is that, in general, the 
higher the amount of data to be assimilated, the higher the 
uncertainty reduction. 

4.5. Production forecast 

To assess the forecast quality of the models (see Section 3.6 ) 
in a well-by-well basis, we first computed the NQDS in the 

forecast period (using the same tolerances applied to the his- 
tory period). Note that this is possible because we know the 
reference solution. In real cases, this may be accomplished 
by dividing part of the history data to assimilate and part to 
compare with the models in the extrapolated (forecast) pe- 
riod (an example of this kind of analysis can be seen in Mas- 
chio et al. 2022 ). The NQDS for the producer wells (fore- 
cast period) is shown in Fig. 20 . Overall, these plots show 

significant uncertainty reduction in the forecast period for 
both cases, especially for oil and gas rates and BHP, com- 
pared with the prior ensemble. Nevertheless, incorporating 
TLS data does not seem to improve the water rate fore- 
cast for some wells, especially wells P11, P12, and P13. This 
can be explained by the fact that these wells do not pro- 
duce water during the history period, not contributing, as a 
consequence, to water-related anomalies in the TLS maps. 
On the other hand, for the wells P15 and P16 (which pro- 
duce more water during the history) the water rate fore- 
cast is better, as shown in the NQDS distribution for these 
wells. Another complimentary explanation (related to the 
previous one) is the fact that these wells (specially P11 and 
P13) are located close to the hardening-pressure anomaly in 
the center-south region (M1/Base, Fig. 5 ), in other words, 
the absence of water anomaly in the vicinity of this re- 
gion made it difficult to forecast water production in these 
wells. 
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Figure 22. Gas, oil, and water rates for the wells P17 and P18 (opened after the end of the history period) comparing the prior and the posterior 
ensembles for cases TLS-Well and Well with the reference. 

In Fig. 21 we present the oil and water rate for the Well 
P15. We can see that the better water rate matching in the 
case TLS-Well (as shown in Figs 10 and 11 ) reflects in a better 
water rate forecast when the seismic data is assimilated. Note 
(from Fig. 11 ) that P15 water rate is significant. Regarding 
the oil production, the sudden oil rate drop in the beginning 

of the forecast period is due to the opening of the produc- 
ers P17 and P18. To honor the group production, the rate of 
some wells is reduced automatically by the simulator. But it is 
important to observe that the models follow adequately the 
reference behavior in both cases (TLS-Well and Well) in the 
forecast period. 
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Figure 23. NQDS (computed in the forecast period) for all injectors. The closer the NQDS is to the range centered at the zero line, the better the results 
are. 

Figure 24. Water rate for the injectors I18W and I19W (opened after the end of the history period) comparing the case TLS-Well and Well. 

To complement the analyses of the producer wells, Fig. 22 
shows gas, oil, and water rates for the wells P17 and P18 com- 
paring the prior and the posterior ensembles for cases TLS- 
Well and Well with the reference. These wells open after the 
end of the history period. Therefore, they are examples of 
how the models can predict a new well performance (without 
history). For P17, the distribution of gas and oil rate curves 
(posterior ensemble) is similar for TLS-Well and Well cases; 
however, the water rate for the TLS-Well is closer to the ref- 
erence when compared to the Well case. P18 water rate is 
a little bit underestimated for both cases, but this well does 
not produce much water. P18 gas and oil production con- 

firm the TLS benefits for this well since the reference solu- 
tion is better represented in the TLS-Well posterior curves 
compared to the Well case. Note that the TLS-Well posterior 
curves are more symmetr ically distr ibuted around the refer- 
ence. Another observation is that the osci l lations in the P18 
posterior curves for the case Well do not appear in the TLS- 
Well case, in which the behavior of the models is very similar 
to the reference solution. 

The wells P17 and P18 are in a central portion of the reser- 
voir and the Well case results for P17 and P18 reflect the 
lack of spatial information to condition the reservoir prop- 
erty perturbation far from the wells that operate during the 
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history. In this sense, the TLS data provides complementary 
information to the well data, evidencing the benefit of the 
seismic data. 

Besides the production wells, it is also important to an- 
alyze the injector wells. Figure 23 shows the NQDS (com- 
puted in the forecast period) for all injectors. Note that the 
injected water forecast for all injectors is better for the TLS- 
Well case, since the NQDS distribution is closer to the range 
around zero (and more symmetrical) compared to the Well 
case. 

These results indicate that the WAG injection forecasted 
by the models conditioned to the well and seismic data is 
more balanced than the WAG injection forecasted by the 
models conditioned only to the well data, evidencing the 
benefits of the TLS data. Figure 24 shows the water rate for 
the injectors I18W and I19W comparing the cases TLS-Well 
and Well. As the producer P17 and P18, the injectors I18 and 
I19 also open after the end of the history period. The expla- 
nation for these results is similar to the producers, that is, 
the TLS data provides additional (spatial) information for a 
more appropriate reservoir properties updating far from the 
wells operating during history period. 

The case TLS-Well took 135 hours (elapsed-time) to run 
and Well took 116 hours. The case TLS-Well took more time 
than Well because it is necessary to extract much more infor- 
mation from the reservoir output to compute the impedance 
ratio. For both cases, the reservoir simulations were dis- 
tributed (and parallelized) in a cluster of Linux computers. 
Each simulation used eight processors (in parallel) in a com- 
putational environment where 200 processors are available 
for each user. It is important to note that this time depends 
on several factors such as the characteristics of the reservoir 
model, computational resources available and number of li- 
censes for the reservoir simulator. The SEnRML-LA was run 
in a shared Windows machine Intel(R) Xeon(TM) CPU @ 

2.20 GHz and 64 GB memory available. 

5. Conclusions 

In this work, we performed well and TLS DA in a realistic 
case that represents challenges similar to a Brazilian pre-salt 
reservoir. The case studied corresponds to a carbonate reser- 
voir with a light oil and high CO2 content. All produced gas is 
reinjected back to reservoir in a WAG strategy for enhanced 
oil recovery (and CO2 discard). A compositional fluid model 
was considered for the reservoir simulations and a recent pro- 
posed approach (Silva Neto et al. 2020 ) was applied to esti- 
mate oil and gas properties in the petro-elastic model. The 
case also considers ICV in the wells, and permanent seismic 
monitoring. We employed the SEnRML method with local 
analysis to assimilate seven pairs of seismic monitors together 
with the well data. The specific conclusions are: 

(i) The method SEnRML with local analysis 
(SEnRML-LA), proposed by Silva Neto et al. 
(2021 ), can handle big datasets originated from 

multiple monitor acquisitions, being an alternative 
to solve practical problems involving permanent 
seismic monitoring technologies. 

(ii) The problem solved in this work with the SEnRML- 
LA is the state of the art in DA process. It was possi- 
ble to assimilate all the data simultaneously, includ- 
ing the 105 horizons for the TLS and the wells’ pro- 
duction and pressure data. 

(iii) The DA was successful in terms of the quality of 
the results and method performance. Good conver- 
gence was verified for both objective functions (seis- 
mic and wells) for the TLS-Well case. For the Well 
case, good convergence was also verified for the well 
objective functions. 

(iv) The assimilation of TLS data together with well 
data provided better well matching compared with 
the case assimilating only well data. The TLS data 
provide information that is coherent and partially 
redundant to the well data. Therefore, it allows a bet- 
ter well data match with Bayesian methods by shift- 
ing the optimal solutions toward a smaller data cost 
function. 

(v) The case assimilating only well data allowed a rea- 
sonable seismic data match, indicating the well data 
reveal part of the information associated with the 
TLS data. However, a detailed analysis showed that 
TLS-Well case provided better seismic data match. 

(vi) Our data indicates that it is possible to detect WAG 

effects through TLS data in conditions close to ours, 
although the combination of hardening and soften- 
ing effects may attenuate the anomalies in late mon- 
itor pairs. 

(vii) Seismic simulation using a compositional fluid 
model provided useful information for reservoir pa- 
rameters calibration in a miscible gas injection alter- 
nating water synthetic case. 

(viii) The assimilation of TLS data jointly with well data 
improved the reservoir forecast compared to the 
prior ensemble and the one calibrated only with 
production data. This result corroborates the im- 
portance of TLS data in a pre-salt reservoir applica- 
tion. Moreover, it demonstrates that integrating the 
compositional fluid model and SEnRML with local 
analysis is a viable solution to take advantage of the 
TLS information. 

(ix) The assimilation of TLS data improved the reservoir 
characterization in regions far from the wells opened 
during the history period, improving the TLS data 
match and the production/injection forecast of new 

wells. It was shown that the two new producers and 
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the two new injectors (opened after the history pe- 
riod) provided better forecast results for the TLS- 
Well case. 

Finally, this work showed the benefit the TLS data gath- 
ered from multiple monitors using permanent monitoring 
technologies and proved the robustness of the SEnRML-LA 

method in assimilating all seismic monitors simultaneously. 
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