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Abstract 

 

In recent years, machine learning applications have gained much attention in numerous 

fields. In the industry, it opened a wide range of possibilities to monitor, identify, and predict 

components health status. Rolling element bearings are present in a wide range of applications 

and to predict their conditions it is necessary to prevent catastrophic failures and unnecessary 

production interruption. To tackle this, algorithms and computational capability had to improve, 

and the critical requirement is good quality and proper quantity of fault information. In this 

context, the present work proposes to create a rolling element bearing fault data set, with the 

simulated signal. To build reliable computational models, the rolling bearing is modeled by its 

reaction force, and its parameters represent the elastohydrodynamic contact between ball 

elements and internal races. The fault is represented as an imposed displacement and velocity 

in the established locations, and a smooth function is proposed to include varied faults in the 

model. The simulated vibration envelope is obtained by the Hilbert transform and its spectrum 

composes the training data set. To extract necessary information from the envelope spectrum 

and make this comparable to other measured signals, it was necessary to evaluate the spectrum 

by pieces and guarantee the reproducibility of the procedure in all samples. A pipeline with an 

encoder that extracts features from the sample envelope spectrum and applies it to build a 

machine learning model is proposed. A support vector machine algorithm is the classifier 

employed due to its advantages in high feature dimension performance and good generalization 

capability. The elastohydrodynamic contact ball bearings model with the proposed fault 

functions are compared with experiments in the literature. The machine learning models are 

tested with the Paderborn University accelerated life damage bearings dataset, and the results 

show a compatible prediction compared with real measured fault signal, and the potential to be 

applied in fault classification in further applications. 

Key Word: Ball-bearings, Machine learning, Elastohydrodynamic lubrication, Feature 

extraction (Artificial intelligence), Equipment Failure Analysis. 

  



     

Resumo 

 

A aplicação de aprendizado de máquina ganhou muita atenção nos últimos anos, em 

diversos campos. Na indústria, abriu uma ampla gama de possibilidades para monitorar, 

identificar e prever a integridade dos componentes. Rolamentos de elementos rolantes são 

utilizados em uma ampla variedade de aplicações, e prever suas condições é necessário para 

prevenir falhas catastróficas e interrupções desnecessárias na produção. Para enfrentar esse 

desafio, os algoritmos e a capacidade computacional tiveram que melhorar, e agora o requisito 

crítico é a boa qualidade e quantidade adequada de informações sobre falhas reais. Nesse 

contexto, o presente trabalho propõe criar um conjunto de dados de falhas em rolamentos 

esferas com sinais simulados. Para construir modelos computacionais confiáveis, o rolamento 

é modelado por sua força de reação, e seus parâmetros representam o contato 

elastohidrodinâmico entre os elementos esféricos e as pistas internas. A falha é representada 

como um deslocamento e uma velocidade impostos nas localizações determinadas, e uma 

função suave é proposta para incluir várias falhas no modelo. O envelope do sinal de vibração 

simulada é obtido pela transformada de Hilbert e seu espectro compõe o conjunto de dados de 

treinamento. Para extrair as informações necessárias do espectro do envelope e torná-las 

comparáveis a outros sinais medidos, foi necessário avaliar o espectro por partes e garantir a 

reprodutibilidade do procedimento em todas as amostras. É proposto uma linha de processos 

com um codificador que extrai características do espectro do envelope das amostras e as aplica 

para construir um modelo de aprendizado de máquina. Um algoritmo de máquina de vetores de 

suporte é o classificador empregado devido às suas vantagens em desempenho em alta 

dimensão de características e boa capacidade de generalização. O modelo de rolamentos de 

contato elastohidrodinâmico com as funções de falha propostas é comparado com experimentos 

na literatura. Os modelos de aprendizado de máquina são testados com o conjunto de dados de 

rolamentos com falhas de vida acelerada da Universidade de Paderborn, e os resultados 

mostram uma previsão compatível com o sinal de falha real medido, com potencial para ser 

aplicado na classificação de falhas em futuras aplicações. 

Palavras-chave: Rolamento de esferas, Aprendizado de máquinas, Lubrificação 

elastohidrodinâmica, Extração de características (Inteligência artificial), Análise de Falha de 

Equipamento.  
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1 INTRODUCTION 

Ball bearings are present in most rotating machine applications and other countless devices 

ranging from common domestic appliances to simple tools, skateboards, and even toys. 

Furthermore, these components are extensively used in industrial machinery including trains, 

torque converters, and wind turbines. To ensure optimal performance across diverse 

applications and operating conditions, scientists, engineers, and designers employ theoretical 

models, to enhance performance, predict reliability and robustness under various operating 

conditions and optimize resources. 

The performance of these components is crucial for efficient operations as well as 

establishing effective maintenance practices. Both are crucial to prevent premature crashes and 

catastrophic failures. The monitoring tools are constantly improved aiming for better 

applicability in health monitoring of complex systems and promising applications, wind 

turbines having been the recent focus of new advances. It has been reported that bearing fault 

is the primary cause of downtime in gearboxes and generators (Azevedo et al, 2016). The 

mechanisms and conditions for bearing faults are commonly separated into two categories, 

localized/incipient or distributed defects.  

Localized faults are usually referred to as pits, cracks, or spalls. The spalling resulting from 

fatigue is the most common cause of premature bearing failures (GUPTA, PRADHAN, 2017; 

ZHANG et al., 2022). Fatigue failure leads to the material removal from the inner race, the 

outer race, or the rolling elements. The types of fatigue are commonly divided into three groups, 

surface distress, pitting, and spalling (FREITAG, 2014).  

The distributed fault, usually represented as waviness and surface roughness, can be from 

initial fault propagation but typically it is due to manufacturing errors (SUNNERSJÖ, 1985). 

Different types of failure and its induced factors can overlap, or one type may start, and the new 

condition (with the fault) then leads to another failure mode (HOWARD, 1994). 

Recent industrial production and quality assessment prevents and mitigates manufacturing 

inadequacies. Therefore, in this work, the representation of fault in the ball bearing is a localized 
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spall. The objective is to develop a fault model and implement diagnostic tools capable of 

identifying potential faults at their inception. The aim is to quickly detect anomalies and alert 

the user. The maintenance schedule can then be programmed accordingly, while simultaneously 

monitoring the fault behavior to anticipate further failures. 

Both early stop and catastrophic failures are a hazard to production. Early stops can result 

in undesired delays and costs, while catastrophic failures lead to an unscheduled stop, 

compromising deadlines, and budgets, and risk damaging other components. In this context, 

the Internet of Things (IoT) plays a major role in the 4.0 industry. Its application in predictive 

maintenance aims to reduce unplanned downtime by identifying potential equipment failure 

(SOORI; AREZOO; DASTRES, 2023). The correct use of new techniques, constantly referred 

to as the 4.0 industry, allows real-time analysis for predictive maintenance, integrating health 

monitoring into the maintenance of equipment, avoiding failures, reducing downtime, and 

possibly extending components' lifespan.  

For this purpose, is essential to develop and maintain reliable fault models and tools to 

evaluate and classify the equipment components conditions. One possible way to conduct these 

monitoring procedures is by applying Machine Learning (ML) models trained for a specific 

component and under its possible operational conditions. The processes usually consist of, but 

it is not restricted to, the following steps: 

1. Selecting appropriate sensors and positioning: for ball bearing fault identification 

accelerometers are usually placed in the housing, in one or two directions.  It is important 

to guarantee that the information has desirable properties, with a suitable resolution, 

sufficient amount of data, and proper filtration to avoid aliasing and leakage on the digital 

representation of the signal. 

2. Data pre-processing usually includes other filtering techniques, demodulations, and scaling 

of the data. It is necessary to be aware of the risks of removing important information about 

the conditions together with undesirable noise. 

3. Extracting and selecting features from the data is a crucial stage. The data is summarized 

and encoded to represent normal and abnormal operations. Most authors usually apply each 

sample signal as a distribution and synthesize this data into statistical features (such as root 

mean squared, variance, kurtosis, and other profile indicators, including shape and crest 

factor).  
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4. Develop the machine learning model: The ML will be properly trained with the selected 

features. This involves selecting the better suitable algorithm for the task and setting its 

hyperparameters, if applicable. When needed, the definition of the hyperparameters can 

result in a time-consuming and usually computation-costly optimization or search tool. 

There are a few good practices to prevent overfitting the model, and to guarantee its 

generalization capability for the variety of input conditions expected to be evaluated, when 

in use.  

5. After tests and identification of the model accuracy (or other metrics) rate, the model can 

be applied to unlabeled data to, within certain confidence, diagnose Rolling Element 

Bearings (REB) health status. 

Pre-processing data is fundamental to understanding its behavior in the desirable 

monitoring conditions. As widely known, the fault in REB modulates the vibration time signals 

and can excite high frequencies in the initial stage. Demodulating the signal to identify those 

frequencies is one of the most used paths for fault identification. Since its development, in the 

1970s decade, the High Frequency Resonance Technique (HFRT) has been largely used, what 

today is usually referred to as envelope analysis. Other methods for improving and filtering the 

signal, such as kurtogram, are applied to extract the most informative part, without 

compromising important information. 

The main obstacle for ML applications is the deficiency of good quality signals for a variety 

of conditions, as mentioned in (RANDALL ; ANTONI, 2011). Another recurrent issue is the 

fact that these methods heavily rely only on statistical patterns, in addition, usually, the model 

is specific for one type of machine and its configuration, resulting in a model not being robust 

enough for different sets of inputs. To tackle this issue, this work proposes a non-dimensional 

feature extraction that can be representative of a broader machine configuration.  

One of the major setbacks to exploring machine-learning algorithms for classification is the 

need for good-quality data from faulty bearings. It is challenging to acquire damaged bearing 

signals since the majority of data is from health operational conditions. Even when fault signals 

are obtained the variety of conditions is limited. As a solution, it is proposed a fault model for 

lubricated ball bearings. The fault is a spall located in one of the regions, Outer Race Fault 

(ORF), Inner Race Fault (IRF), or rolling element fault.   
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This model is applicable for a variety of systems and implementations, by simply including 

the effect of the bearing as a reaction force in the center of the bearing node. The reduced model 

comprehends Elastohydrodynamic (EHD) lubrication (NONATO, CAVALCA, 2014) and it is 

especially advantageous for creating datasets based on the machine configuration and the 

bearing operational condition. 

The process of analyzing the data, both experimental and simulated, implies training ML 

models to perform the diagnoses and identification in a given system. Among a vast number of 

theories and algorithms for machine learning models, this thesis performs a brief analysis of 

constantly used methods found in the literature and motivations for selecting a Support Vector 

Machine (SVM) as the model classifier.  

The proposed bearing model can easily be applied to simulate the fault under different sets 

of conditions and this data is incorporated with experimental health and fault conditions, to 

obtain a comprehensive dataset. The features are extracted from the Envelope Spectrum (ES), 

where the amplitudes of the spectrum are normalized and the frequencies are adimensionalized 

by the rotating frequency. Then the ES is encoded. The encoding process is a feature selection 

that designates the scaled amplitude per range of frequencies. The parameters for this feature 

selection are defined by Bayesian optimization, simultaneously with the classifier 

hyperparameters tuning.  

The thesis is organized into five chapters, including this introduction, and subdivided into 

specific topics as follows: 

• 2. Literature Review: This chapter revisits the main foundation and latest works on rolling 

elements bearings modeling, fault modeling, signal analyses for fault identification, and 

feature extraction for diagnoses based on machine learning models.  

• 3. Methodology: Representation of the EHD lubricated contact model to obtain the reduced 

force applied in the simulated ball bearings time response. The fault models and their 

expected behavior with or without the defects and faults. The theory of Hilbert Transform 

and the classification algorithm, SVM, are briefly presented. The encoding method for 

feature selection is proposed. The methodology for evaluating the machine learning model 

is divided into three: first applying the same nested cross-validation as literature, with the 

same data set, to evaluate the applicability of the proposed encoding method for feature 
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extraction, and selection. The second one is training the ML model with simulated faults 

and testing with the measured real fault signals. The last one is to evaluate if augmenting a 

real data set with simulated fault samples can improve the accuracy. 

• 4. Description of Experimental and Simulated Data: This section presents the literature used 

to validate the model, the experimental public dataset (from Paderborn University), and the 

configuration for the simulated data generator used to validate the method for feature 

extraction and its capability of model training. 

• 5. Results and Discussion: This section shows the model validation with the literature and 

experimental data. The process of building the ML model with the steps of feature analysis 

and extraction, learning curve, parameters, and feature optimization, leads to the final model 

presentation. 

• 6. Conclusion: The synthesis of the foremost findings and contributions of this thesis are 

presented in the conclusion, showing the advantages of the proposed methodology, next 

steps, and recommendations.  

The contributions of this work are the bearing model with a smooth fault path and lubricated 

contact, applying the elastohydrodynamic reduced model function. This model application in 

building a data set, with simulated data, for training a machine learning model to identify fault 

measurements of bearing with real faults. For this, an encoding algorithm performs a feature 

extraction and selection, suitable for adimensionalized data, and specifically convenient when 

operating with data from different sources, simulated and measured.  
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2 LITERATURE REVIEW  

Ball bearings, as general rolling element bearings, are present in a wide range of 

applications, from household appliances to heavy machinery. The design and construction of 

ball bearings have continued to evolve and improve over time, with advancements in computer 

modeling and simulation to optimize their performance. The expertise in ball bearings' behavior 

and their interactions with other components is necessary for reliable diagnoses. 

Measured signals must be pre-processed, and properly interpreted. Therefore, various tools 

have been proposed, based on mathematical, statistical, or empirical methods. The goal is to 

de-noise, de-modulate, or enhance the signature of failures and incipient defects. The 

technological advance for maintenance based on predictive models and conditioning 

monitoring expertise have driven the status up to nowadays research, namely, a widespread 

application of automatized identification, and Machine Learning (ML) algorithms.  

Machine learning applications do not surpass past identification techniques. Rather, those 

techniques are the pathway for constructing models that are both general and precise for 

classification tasks. These signal analyses and theoretical bearing models leverage information 

to extract and select the most suitable features for the task. Feature extraction, a crucial step in 

ML, is sometimes overlooked, with the focus predominantly on the algorithms themselves.  

In the present work, the feature extraction is obtained from bearing signal analysis, from 

both measured and simulated data. The numerical models must be reliable in representing the 

machinery. The theory is ground-based in contact interaction, as forces and deformation, and 

how to translate it to parameters and function.  

2.1 Rolling bearings 

One of the leading contributions in elastic deformation Hertz (1896)models the conditions 

when two rigid spherical surfaces are in contact. This sets a new ground for the following 

studies of Rolling Element Bearings (REB). The contact between the rolling element (RE) and 

the raceways is a critical aspect that determines its performance, durability, and efficiency. It 

provides a fundamental basis for modeling REBs. (HARRIS, 1991) 
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Lundberg and Palmgren (1949) established a connection between the applied loads and the 

bearing durability. The Lundberg-Palmgren theory helped increase REB material quality and 

lubrication contribution in bearings life after the development of the elastohydrodynamic 

(EHD) theory (HOWARD, 1994). Taking the research further, Jones (1960) presented a more 

comprehensive approach, proposing an analytical model that uses both forces and elastic 

deformations experienced by the internal components of the bearing. 

Perret (1950) and Meldau (1951) investigate cyclic movements in bearings. Perret's work 

focused on symmetric arrangements of rolling elements, while Meldau provided a more 

comprehensive description, deriving shaft loci for ball and roller bearings in a plane 

perpendicular to the rotation axis. Later, Tamura and Taniguchi (1960 and 1961) conducted 

measurements aligned with Meldau's proposition. 

Dowson (1962) suggests that under certain conditions, the contact in the bearing surfaces 

generating elastic deformation could lead to a significant increase in the lubricant film 

thickness, which in turn could reduce friction and wear, paving the way for of EHD lubrication 

theory. Later, a book (DOWSON; HIGGINSON, 1977) expanded this concept by presenting a 

comprehensive analysis of the physics and mechanics of EHD lubrication. They developed 

mathematical models for calculating the pressure distribution and film thickness in lubricated 

contacts, considering the effects of surface roughness, viscosity, and relative velocity. 

Harris and Mindel (1973) applied non-linear stiffness coefficients to describe radial and 

axial contact forces, known as the Hertzian contact relationship. Harris (1991) focused his book 

on the analysis and design of rolling bearings. It provides comprehensive coverage of bearing 

types, their operation principles, and various factors affecting their performance. The equations 

presented in his book are the basis for estimating the initial forces of the bearing model 

developed in the present work.  

(GUPTA, P. K., 1979a, b, c, d, 1975) endeavored to obtain a complete dynamic model for 

REB, reported by solving a generalized differential equation of motion for angular contact ball 

bearing. His extensive work comprehends interaction in roller-race, roller-cage and cage-

raceway, lubricant drag and churning, roller skew, cage instabilities, varying the components 

material properties, as well as a wide range of operating conditions, adding a considerable 

computational complexity for that time and major difficulties for experimental verification. 
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Gupta’s book (1984)also comprehends geometrical unconformities, some of these conditions 

validated through experiments(GUPTA, P. K.; DILL; BANDOW, 1985). 

In 1978, Sunnersjö discussed the main cause of noise and unsteady running in rolling 

bearings. His experiments confirmed the occurrence of predicted phenomena associated with 

varying compliance vibrations, although quantitative comparisons between theoretical and 

experimental results were challenging, given the influence of bearing clearance besides other 

components. In a similar line, Fukata et al.(1985), compared simulations and experiments, 

analyzing the system with two degrees of freedom and finding its sub- and super-harmonic 

resonances.  

Kraus et al. (1987) conducted an experimental study to characterize the physical properties 

of lubricated roller bearings to approximate the values of bearing stiffness and damping, 

employing modal parameters to obtain these approximations. Following a similar approach, 

Lim and Singh (1990a, b, 1991, 1992), in their multiple works, proposed a stiffness matrix 

connecting the shaft and bearings by taking the derivative of the forces and moments for each 

degree of freedom, assuming dry contact.  

By the 1980-decade, profuse scientific investigation had been reported on vibration signals 

from a regular operating ball bearing. In 1982, Igarashi and Hamada conducted experiments 

with artificially damaged ball bearings to analyze the frequencies that rose from the fault to 

compare with the natural undamaged signals from health bearings, using the Fast Fourier 

Transform (FFT) of the signals. It is observed the presence of several components in the 

spectrum. The authors even suggested that the modulation of the vibration pulse train is affected 

by the axial length of the defect. In Johnson’s book (1985)the focus was on the fundamental 

theory and mathematical modeling of contact between elastic bodies. It extensively discussed 

Hertzian contact theory, including the Hertzian theory for spherical and cylindrical contacts. 

Lubrecht et al., (1986) show the solution of the EHD lubrication of the linear contact by the 

Multilevel method, reducing time and computational consumption. Venner (1991) proposed a 

simplification of the Lubrecht system. Later Verner and Lubrecht (2000) came out with the 

method of Multi-Level Multi-Integration (MLMI) for the elastic deformation equation of the 

contact. The EHD theory aims to accurately represent the lubricated contact under the 
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conditions of the full fluid film, where both surfaces are completely separated under load and 

relative motion between them. 

Wijnant (1998) studied the ellipticity of the contact area and starvation situations in 

lubrication, presenting an approximation of stiffness and damping for the lubricated contact. 

Subsequently, this methodology is applied to a complete bearing, Wijnant et al. (1999), 

proposing an approximation of the lubricated contact by a mass-spring-damper model. 

The EHD lubrication model involves the solution of the equations of motion, iteratively 

with Reynolds equation and Hertz contact equation at each step of time, leading to a complex 

and time-consuming numerical simulation. To overcome this issue, Nonato and Cavalca (2014 

and 2010) proposed a reduced nonlinear force model for the lubricated contact of a bearing, as 

a function of displacement and residual force due to oil film’. 

Sequentially, Carvalho (2010)analyzed the influence of different inner race clearance and 

rotation speed values on the load distribution in a radial ball bearing. Based on (HARRIS, 

1991), Radaelli (2013) modeled an angular contact ball bearing with five degrees of freedom 

under radial and thrust loads, including inertial forces and gyroscopic moments.  

Bizarre et al.(2016) integrate the work of Radaelli (2013) and Nonato and Cavalca (2014), 

seeking the convergence of the contact force and the displacement approach for EHD 

lubrication. Parameters for nonlinear stiffness and linear damping are obtained. In sequence, 

Bizarre et al. (2018) evaluated the behavior of the parameters of nonlinear contact force, 

compared to dry contact for several loads and rotation speeds, pointing to the consistency of 

pressure distribution and fluid film thickness parameters. In Carrer et al. (2020) a complete 

rotor-bearing system was modeled, based on the work of (1990) for experimental comparison 

purposes.  

2.2 Rolling element bearings fault 

There have been great efforts to model rolling elements bearing, from the development and 

investigation of mathematical representation to computational tools to understand frequency 

vibration from the natural motion of REB. The last led to the investigation of the vibration 

signature, which is also associated with the most common faults in these components. Darlow 
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et al. (1974) addressed the problem of transmission bearing wear causing defects undetected in 

normal maintenance procedures.  

 also applied the narrow band envelope analysis, primarily denoted by High Frequency 

Resonance Technique (HFRT) to the investigation of resonance frequencies of rolling bearings. 

The fundamental idea behind it is the interaction between fault and surface, generating a short-

duration burst, and its energy is dispersed in a wideband frequency. The method consists of 

band-pass filtering around the excited resonance frequency, followed by amplitude 

demodulation to identify the fault characteristic frequency and associated harmonics.  

The classical work of (MCFADDEN; SMITH, 1984) modeled bearing fault signals and 

reviews the state-of-art of HFRT to obtain the envelope signal spectrum, stating that while the 

latter is a well-established procedure, its spectrum features, as sidebands, were yet not fully 

understood at that moment.  

By that time, most identification analyses used the transducer resonance for demodulated 

frequency as an effective way to improve the signal-to-noise ratio, although it has been reported 

the downside in the presence of other frequencies, such as pump cavitation, which may mask 

the REB fault signal (RANDALL; ANTONI, 2011). It is also pointed out that, once this 

technique assumes sharp impacts in the presence of fault, it has limitations in advanced 

distributed damage when the fault signal can be submerged in this spectrum background. 

Moreover, this is still a widely used technique(GUPTA; PRADHAN, 2017). 

Tandon and Choudhury (1997) presented an analytical model to estimate the frequency and 

magnitude within the low-frequency range, resulting from a bearing localized defect. They 

assume the vibration signal received by the transducer incorporates the race vibrations passed 

by a transmission media, as the bearing housing. Several impulse shapes were used. Howard 

(1994) addresses the principles of kinematics, dynamic behavior, and vibration monitoring of 

REB over the prior years. His work reviews the fundamentals of REB and several applications, 

as well as procedures for measuring vibration and signal processing.  

Those were numerous and significant contributions to the development of techniques for 

condition identification of REB, from optimal bandwidth selection, to filtering out noise, 

separating undesirable signal components, and other demodulation techniques. McFadden and 
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Toozhy (2000) extended the synchronous averaging technique to bearings vibration monitoring, 

applied only for inner race (IR) defect, resulting in an envelope spectrum that contains only IR 

characteristic harmonic frequencies and combinations of sidebands modulation at shaft 

multiples rotation frequency. 

Antoni and Randall (2002) proposed a procedure for advanced spectral analysis. Pointed 

out the differences between gear and REB signals, the first one being simply periodic while 

bearing signal can induce pseudo-cyclo-stationary signals, which take into consideration the 

stochastic natures of REB signals, distinguishing it from cyclo-stationary processes, and 

analyzing the interactions with gear signal. Antoni and Randall (2003) proposed a broad 

stochastic model for describing and simulating localized fault vibration in REB. It was 

established the most relevant indicators are the Fourier transform and the power spectral density 

(PSD) of the squared signal, emphasizing the squaring advantages. In recent work, a pseudo-

cyclo-stationary signal model was analyzed, comparing clearance (jitter) and joint slip in the 

rolling element locations, contributing to diagnostic based on spectral analysis. 

(BORGHESANI et al., 2022) 

One of the proposed methods for enhancing the bearing signal for spectral analysis is the 

Spectral Kurtosis (SK) (ANTONI, 2006; ANTONI; RANDALL, 2006). The methodology was 

first introduced by Dwyer (1983) as a statistical tool that indicates the non-Gaussian signal 

components and the respective location in the frequency domain. SK supports incipient fault 

identification, based on the aforementioned impulse-like trait in signals with early symptoms 

of fault. Kurtosis is a statistical moment that represents peak characteristics in a distribution, 

consequently, SK indicates the ideal frequency band to extract the mechanical signature of the 

fault. The kurtogram is a representation of the SK in frequency and spectral resolution 

coordinates and it can provide the optimal parameters to design a band-pass filter (ANTONI; 

RANDALL, 2006) 

Antoni(2007) presented the Fast computation of Kurtogram (FK), to overcome the 

computation complexity of the spectral kurtogram and make it suitable for online industrial 

applications. The proposed algorithm has the resolution as a function of levels, stating the 

frequency band and carrier optimal frequency for the envelope analyses.  
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Variations of FK or other kurtogram-based tools were presented, contributing to the need 

for a more generalist approach able to de-noise the REB signal and select the best bandwidth to 

demodulate and analyze its spectrum. (LEI et al., 2011) claims the shortcoming of kurtogram 

based on the Short Time Fourier Transform (STFT) or Finite Impulse Response (FIR) filters, 

can be improved by Wavelet Packet Transform (WPT) based on the Daubechies wavelet. 

(SINGH; DARPE; SINGH, 2018) proposed to update the Kurtogram to improve sensitivity to 

shifting the variance of the input signal. The method is known as the Over-Complete Rational 

Dilation Wavelet Transform (ORDWT) for filter design. The criteria proposed for band 

selection is a Temporal Energy Operated Auto-correlated Kurtosis (TEO-AK). (LIN; QU, 

2000) compare Morlet wavelet decomposition with other decomposition methods, including 

de-noising rolling bearings and gears fault signals. Qiu et al. (2006) investigate its application 

in REB prognostics. Both works concluded that the Morlet wavelet can be more suited for 

impulse-like REB initial faults.  

Sawalhi and Randall (2008b) compared numerical models and test rig vibration for gear-

bearing systems. The REB model included localized faults on the outer and inner race and ball 

elements. Although the contact model was Hertzian, clearance was considered in the model 

between the RE and raceways, and also small damping coefficients to represent the dissipative 

effect of the lubricant film. The identification applied spectral kurtoses for optimized 

demodulation, and the squared envelope spectrum for those fault locations are presented for 

simulated and tested data. As an extension, Sawalhi and Randall (2008a) completed the 

numerical model incorporating the extended fault model, representing rough surfaces, into both 

the inner and outer races. Due to the small energy dissipated in these conditions, noticeable in 

the power spectral density, the SK was no longer an option for band demodulation. In both 

cases, the presence of strong gear-modulated excitations demands filtration and optimum band 

demodulations to isolate the faults indicative frequencies.  

Mishra, Samantaray, and Chakraborty (2017) compared three distinct models of REB and 

validated them through experimental data. These models include a five Degree of Freedom 

(DOF) model dry contact; a bond graph model; and a spatial Multi-Body dynamics Simulation 

(MBS) model in ADAMS® software. The envelope spectrum resulting from different models 

was compared against experimental data, showing similar frequency bands and sidebands for 
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MBS and experiments. For faults in the outer race and inner race, all models showed 

satisfactory results. 

Randall and Antoni (2011) present a tutorial on bearings fault modeling and best practices 

for signals analysis, covering possible steps to a successful envelope spectrum, discrete/random 

separation, removing effects of small speed fluctuation, and filtration of the optimum band 

frequency for demodulation. Gupta and Pradhan (2017) condensed recent work on REB 

vibration analysis, comprehending diverse stages and locations for fault and defects, and their 

most suitable techniques for fault detection. 

Other techniques for faults identification in rolling bearings include decompositions in 

Intrinsic Mode Frequency (IMFs), based on the Huang-Hilber transform(HUANG et al., 1998) 

(LEI et al., 2013) reviewed the Empirical Mode Decomposition (EMD) application to the fault 

diagnosis of rotating machinery, including improvements and combinations with other 

techniques. Although IMF decomposition, EMD, and Variational Mode Decomposition (VMD) 

were applied for demodulation or filter-bank in numerous articles. Their advantages on REB 

diagnoses over STFT and wavelets are debatable (RANDALL; ANTONI, 2023). 

2.3 Machine learning fault identification 

Recently, many authors have shown automatized methods for fault detection based on 

machine learning algorithms. Such processes are becoming more popular every day, and as 

important as choosing the best approach and methodology, feature extraction and selection are 

some of the key characteristics of this process. Most authors use multi-dimensional statistical 

features.  

Guo et al. (2009) performed feature selection from the maximum amplitudes of the 

envelope spectrum, predefining four characteristic frequencies analytically calculated based on 

dimensions and operation conditions. This approach is not ideal, since small fluctuations in the 

rotation or sampling frequency may lead to false information and it is impractical for broad 

application.  

A great number of works for REB fault classification, select statistical data from the time, 

frequency, and time-frequency domains have been published. All these works apply static and 
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shape attributes of both the time and frequency domain, usually the fast Fourier transform (FFT 

(NGUYEN; KIM, 2015) of the raw signal. Other features from the time-frequency domain 

include the application of wavelet kurtogram to evaluate the envelope power spectrum 

harmonics as features. Other applications use the biorthogonal WPD coefficients as time-

frequency domain and perform feature selection to identify the most significant 

ones.(KIMOTHO; SEXTRO, 2014; LESSMEIER et al., 2016)  

Yan and Jia (2018) use the spectrum of IMFs obtained via VMD in combination with other 

common time-signals-based features. Cui et al. (2022) applied sensitivity analysis to select the 

features for REB wind turbine applications. Wang et al. (2023) proposed a framework method 

for a digital twin to construct a data model using Pearson correlation to update the model with 

healthy, faulty, and other simulated numerical data for online information, the features are time-

domain based obtained by the simulated twin model. 

These studies represent noteworthy efforts to improve methods and practices for REB fault 

vibration diagnostic. The growth in published articles has been significant, and comprehensive 

work that collects and reviews all this information greatly contributes to the field. Worden et 

al. (2011) sampled data on the emerging works between 2008 and 2010, and detailed the feature 

extraction algorithms and practices in machine learning. The author disclosed that the bearings 

were the most common component for condition monitoring, and Multi-Layer Perceptron 

(MLP) and SVM were the two most applied algorithms for this purpose. In industrial 

applications, most Artificial Intelligence (AI) applications combine feature extractors with 

signal-preprocessing techniques, according to Liu et al. (2018) in the review of rotating 

machine fault diagnosis. Lei et al. (2020) overviewed machine fault diagnosis based on machine 

learning including potential guidelines for future developments.  

More specific reviews in REB fault severity assessment were presented Cerrada et al. 

(2018), focusing on relevant techniques and data-driven methods, between 2010 and 2016, to 

estimate fault size and degradation progress. Hakim et al. (2023) through a systematic review 

of rolling bearing fault diagnoses, covered the main public datasets for bearings fault diagnoses 

and the most used machine learning and deep learning algorithms.  

This literature presented fundamentals for developing this study, and, in light of the latest 

research, the present ball bearings model is in good agreement with the representation applied 
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in industrial and academic applications. The demand for ML models to supervise health 

conditions on in-site applications motivates the presented technique as useful for data 

generation, in a context of deficiency of broad data, in terms of faulty location, size, and general 

operation conditions for rolling element bearings.  

The approach for feature extraction, in many ML classifiers, is essentially rooted in 

statistical methods based on shape or pattern recognition. In addition, those procedures rely on 

data that have not been adimensionalized, turning the model specific, and valid only for a 

particular set of conditions. The proposed method fills the gap in creating broad datasets and 

extracting information by combining simulated and experimental data. 
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3 METHODOLOGY  

This chapter comprehends the theoretical formulation involved in the bearing motion, the 

contact theory basis for characterizing the force parameters, how the REB effects can be 

transported to a system, and by what means this system response can be interpreted and used to 

create features. The simulated data supply the information to construct broader models for fault 

classification in real data. The application of signal analyses to treat both simulated and real 

data is also covered in this chapter.  

Vibration is usually measured to be a failure criterion, the normal operation of a rotating 

system has its response amplitudes and frequencies altered when subjected to any kind of 

unusual condition. REB already has a cyclic vibration pattern as a result of RE internal 

arrangement, and when affected by a localized fault, the elements passing through the surface 

irregularity cause the REB to respond by modulating the input vibration. However, this 

discrepancy is unclear in some failure stages or can be hidden in the spectrum due to other 

vibration sources. 

Accordingly, the information from time-response, vibration goes through an envelope 

transformation, Hilbert Transform, and its squared envelope spectrum is encoded to be applied 

in a Machine Learning classifier algorithm, to identify patterns on the signal that may not be 

trivial for manual interpretation.  

The ML algorithm selected for diagnoses is the Support Vector Machine (SVM) classifier, 

based on solving an optimization problem, with necessary and sufficient conditions for a global 

optimal solution, with the model behavior accessible to interpretation.  

The analysis methodology shows the careful process of creating representative signals, 

using the EHD model for the REB contact lubrication, and adding defects in the dynamic model 

to obtain the time domain vibration response. The method for encoding these signals and 

choosing the best parameters for the estimator is simultaneously defined by optimizing the 

training set of samples, and the ML model is tested against unseen data for evaluation. This is 

performed in a nested cross-validation. 
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3.1 Ball Bearings Contact Model 

The equations presented in this section are derived from the movements observed in a ball 

bearing, Figure 1, representing the most common type of rolling bearing. Initially, it is assumed 

dry contact for the load and displacement distribution. Later on, these equations will be 

extended to incorporate the model with full fluid film lubrication. 

 
Figure 1. Ball bearing representation, adapted from SKF,(2024) 

The first assumption is a bearing under static load, applied on the center of the inner ring 

by the shaft. This load is divided among the rolling elements placed in the load zone, and those 

elements are in contact with the inner and outer ring, the deformation and therefore the reaction 

force are expressed in both contacts.  

 
Figure 2. Rolling bearing load distribution and element deformation. 

The dry contact can be express through a relation between static load, 𝑄𝑖,𝑜, and 

displacement, 𝛿𝑖,𝑜, by Hertz equation,   
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𝑄𝑖,𝑜 = 𝐾𝑖,𝑜𝛿𝑖,𝑜
𝑑  (1) 

where the inner and outer race, are represented by the subscripts 𝑖 and 𝑜, respectively.  

In this model the exponent 𝑑 is 3/2 for ball bearings and 10/9 for roller bearings, the  𝐾𝑖,𝑜 

is the dry contact stiffness, given by the relationship of the races and ball material, as well as 

equivalent curvatures radius (SAWALHI, N.; RANDALL, 2008b). The resultant stiffness 

coefficient, 𝐾𝐻, is valid for all elements positions: 

𝐾𝐻 = (𝐾𝑖
−1/𝑑

+ 𝐾𝑜
−1/𝑑

)
−𝑑

 
(2) 

The ball is subject to the maximum load, when positioned in line with the applied force 𝐹𝑅, 

and in this case, when the azimuth angle is zero, it is represented by the Stribeck approximation 

for a zero clearance and pure radial load. 

𝑄𝑚𝑎𝑥𝑅 =
4.37𝐹𝑅
𝑍 𝑐𝑜𝑠 𝛼  

 
(3) 

where 𝑍 is the total number of elements in the bearing and 𝛼, is the nominal contact angle.  

The maximum radial displacement, 𝛿𝑚𝑎𝑥, can be found through Equations (1) and (3). The 

displacements of all other balls are determined as a function of the azimuth position and the 

radial clearance, 𝐶𝑟.  

𝛿𝑗 = (𝛿𝑚𝑎𝑥 − 𝐶𝑟) cos 𝜑𝑗 − 𝐶𝑟 (4) 

The first approximation is the displacement and load distribution due to a static load. To 

represent the dynamic behavior, the gyroscopic moment, 𝑀𝑔𝑗, and the inertia are account for 

each element, and it result in a separate contact angle for the inner race, 𝛼𝑖𝑗, and outer race, 𝛼𝑜𝑗, 

as represented in Figure 3, where 𝑄𝑜𝑗 and 𝑄𝑖𝑗 are the loads supported by each element contacts. 

The subscript 𝑗 goes from 1 to Z, representing the number of rolling elements. 
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Figure 3. Ball-races dynamic equilibrium. 

The dynamic equilibrium on each element is given by: 

𝑄𝑖𝑗 sin 𝛼𝑖𝑗 − 𝑄𝑜𝑗 sin 𝛼𝑜𝑗 −
𝑀𝑔𝑗

𝑑𝑒
(𝜆𝑖𝑗 cos 𝛼𝑖𝑗 − 𝜆𝑜𝑗 cos 𝛼𝑜𝑗) = 0 (5) 

𝑄𝑖𝑗 cos 𝛼𝑖𝑗 − 𝑄𝑜𝑗 cos 𝛼𝑜𝑗 +
𝑀𝑔𝑗

𝑑𝑒
(𝜆𝑖𝑗 sin 𝛼𝑖𝑗 − 𝜆𝑜𝑗 sin 𝛼𝑜𝑗) +

𝜌π𝑑𝑒
3

6
𝑑𝑝𝜔𝑝

′ cos 𝛼𝑖𝑗 = 0 (6) 

where 𝑑𝑒 is the spherical element diameter, and 𝑑𝑝 is the pitch diameter, 𝜆𝑜𝑗 and 𝜆𝑖𝑗 are slip 

coefficients for both raceways, 𝜌 is the ball specific mass and 𝜔𝑝 is the rotational velocity at 

the ball center. The complete development can be found in (Radaelli 2013)when applying 

Equation (1) and the geometrical relation on the bearing equilibrium, there will be dependence 

of two variables, 𝛿𝑖𝑗 and 𝛿𝑜𝑗.  

To obtain the adjusted displacement and load in all the contacts between balls and raceways, 

an encapsulated Newton-Raphson algorithm runs the equilibrium for Equations (7) and (8) to 

find the pair 𝛿𝑖𝑗 and 𝛿𝑜𝑗 in each element. Then the bearing equilibrium adjusts the distribution 

of load on the bearing, as in: 
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𝐹𝑅 −∑ (𝑄𝑖𝑗 cos 𝛼𝑖𝑗 −
𝑀𝑔𝑗

𝑑𝑒
𝜆𝑖𝑗 cos 𝛼𝑖𝑗  ) cos𝜑𝑗

𝑍

𝑗=1
 = 0 (7) 

𝐹𝐴 −∑ (𝑄𝑖𝑗 sin 𝛼𝑖𝑗 −
𝑀𝑔𝑗

𝑑𝑒
𝜆𝑖𝑗 sin 𝛼𝑖𝑗  )

𝑍

𝑗=1
 = 0 (8) 

being 𝐹𝐴 the trust load on the bearing center. 

These relations result in the load distribution and the displacement on each contact being 

an initial guess in the approximation for the EHD lubrication. 

3.2 Elastohydrodynamic Lubrication Contact Model 

The lubricant primary function is to reduce friction by avoiding direct metal-to-metal 

contact, decreasing the risk of wear and corrosion, and therefore prolonging the bearing life. 

The bearing lubricated contact model must represent not only the heat dissipative component, 

and viscous damping, but also the oil film thickness, its influence on the bearing load 

distribution and its vibration response.  

The ball bearing with dry contact model is usually represented by Equation (1), the lubricant 

effect can be roughly approximated by adding preload to simulate the oil film and simply 

estimating the dissipative force with proportional damping . Although more realistic than just 

assuming Hertzian contact, these models neglect the complexity of the oil film dynamic 

behavior.  

The interaction among oil film and bearing surfaces cannot be represented only by 

hydrodynamic lubrication, since this theory omits the deformation of the bodies in contact with 

the lubrication. High levels of pressure in small or nonconforming geometry areas in the contact 

lead to Elastohydrodynamic (EHD) lubrication. In a ball bearing, the EHD theory grasps the 

dynamic behavior of the full film lubricant with the rolling elements and raceway deformation. 

This theory incorporates the Reynolds equation with the lubricant viscosity-pressure and 

density-pressure relations, and the elastic deformation in the contact area under pressure. The 

system of equations integrates both the equation of motion and the static equilibrium of each 

rolling element.  
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In Nonato and Cavalca (2014), the solution for the EHD lubricated contact is used to obtain 

the response to a static load and transient of an initial perturbation. ‘The initial estimate in the 

EHD integration assumes load and displacement distribution as dry contact, as presented in 

(Radaelli, 2010), adimensionalized as Moes parameters, as described in Venner and Lubrecht 

(2000). The numerical method to solve the EHD contact is the multilevel finite difference 

integration, solving the following system of equations, (Nonato, 2011):  

• Reynolds equation is a particular case of the Navier-Stokes Equation constraining 

the differential pressure as positive in the oil film under EHD regime: 

𝜕

𝜕𝑥
(
𝜌ℎ3

12𝜇

𝜕𝑝

𝜕𝑥
 ) +

𝜕

𝜕𝑦
(
𝜌ℎ3

12𝜇

𝜕𝑝

𝜕𝑦
 ) − 𝑢𝑚

𝜕𝜌ℎ

𝜕𝑥
− 
𝜕𝜌ℎ

𝜕𝑡
= 0 (9) 

where 𝑝 is the contact pressure, ℎ is fluid film thickness, 𝜇 is the lubricant viscosity, 

𝜌 is the lubricant density and 𝑢𝑚is the surfaces relative velocity.  

• The elastic deformation in the contact as a function of the pressure distribution.  

• Viscosity-pressure relation.  

• Density-pressure relation. 

• Forces equilibrium across the contact area, considering the pressure distribution.  

Considering the static equilibrium of forces, the system integration gives the displacement 

due to static load in each contact. With the transient response, displacements, velocity, and 

dynamic load are obtained. This process of integration is computationally expensive. To be 

suitable for application in complex systems, a reduced contact model of EHD response 

represents the nonlinear restoring contact force for the bearing characterization. 

The contact between the paired surfaces (ball-to-inner race and ball-to-outer race) is 

assumed to be continuously lubricated with oil, resulting in an elastohydrodynamic (EHD) 

contact model. The reduced model for EHD contact force is given by the equation proposed in 

Nonato and Cavalca (2014). 

   

(𝑄𝑠𝑡𝑎𝑡𝑖𝑐𝑗)𝑖,𝑜
= 𝐾(𝛿𝑗)𝑖,𝑜

𝑑
+ Δ𝐹 (10) 
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where 𝐾, 𝑑 and  Δ𝐹 are the equivalent parameters for stiffness, displacement exponent and 

offset force, respectively, representing the load, 𝑄𝑠𝑡𝑎𝑡𝑖𝑐𝑗 , in each element and each contact with 

the inner and outer raceways. 

The Levenberg Marquardt optimization is applied to find these parameters for the 

distribution of restitutive forces and static displacements from the EHD simulations. The 

dissipative force and velocities are derived from the transient perturbation method and the 

damping parameter, 𝐷, results from the linear least mean square optimization, where the 

𝑄𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑗  stands for the dynamic load and �̇�𝑗 is the velocity of the 𝑗𝑡ℎ element. 

(𝑄𝑗)𝑖,𝑜 = 𝐾(𝛿𝑗)𝑖,𝑜
𝑑
+ Δ𝐹 + 𝐷(𝛿�̇�)𝑖,𝑜   (11)    

To obtain the total equivalent parameters of the bearing, it is necessary to decompose the 

restitutive and dissipative forces of each contact in the axial and radial directions, represented 

by the subscripts A and R, respectively: 

(𝑄𝐴𝑗)𝑖,𝑜 = (𝑄𝑗)𝑖,𝑜 sin(𝛼𝑗)𝑖,𝑜 (12) 

(𝑄𝑅𝑗)𝑖,𝑜 = (𝑄𝑗)𝑖,𝑜 cos(𝛼𝑗)𝑖,𝑜 (13) 

With decomposed loads into radial and axial directions, the total displacement can be found 

as the sum of internal and external displacements: 

(𝛿𝑗)𝐴,𝑅 = (𝛿𝑖𝑗)𝐴,𝑅 + (𝛿𝑜𝑗)𝐴,𝑅 (14)    

Up to this point, the model comprehends parameters for 𝐾, 𝑑 and Δ𝐹 in radial and axial 

directions, after carrying on the optimization separately for both directions. As the damping 

parameter, 𝐷, is considered linear and the same for both directions: 

𝑄𝐴𝑗  =  𝐾𝐴𝛿𝐴𝑗
𝑑𝐴  +  𝛥𝐹𝐴 + 𝐷�̇�𝐴𝑗 (15) 

𝑄𝑅𝑗  =  𝐾𝑅𝛿𝑅𝑗
𝑑𝑅  +  𝛥𝐹𝑅  + 𝐷�̇�𝑅𝑗   (16) 

This model characterizes parameters for angular contact REB. Nevertheless, the angular 

contact, alfa, in the following equations, is zero, as the fault bearings data available is from 
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radial REB. The dynamic response of the ball bearing is found through the numerical 

integration of equations of motion system. The center of the inner ring displacement, relative 

to the outer ring, which represents all the movement on the bearing node, is denoted by 𝛿𝑟, and 

its components in the 𝑥-𝑦 plane are, 𝛿𝑟𝑥 and 𝛿𝑟𝑦. This displacement can be read in the radial 

direction, for each ball it can be written based on the angular position, the azimuth angle, 𝜑𝑗 , of 

the j-th ball. 

𝛿𝑗 = 𝛿𝑟𝑥 sin 𝜑𝑗 + 𝛿𝑟𝑦 cos 𝜑𝑗 + 𝐶𝑟 + 𝐶𝑑𝛽 (17) 

the 𝐶𝑟 represents the radial clearance, 𝐶𝑑 is the fault or defect maximum depth, 𝛽 is the fault 

operator that defines whether or not the element is passing through the fault. The azimuth 

position, 𝜑𝑗 , depends on the nominal cage rotational speed, 𝜔𝑐, equivalent to the center of the 

sphere orbit 

𝜔𝑐 =
Ω

2
(1 −

𝑑𝑒
𝑑𝑝
cos 𝛼) 

(18) 

𝜑𝑗 = remainder (
𝜔𝑐𝑡

𝑍
(𝑗 − 1), 2𝜋) 

(19) 

Ω is the inner ring rotational speed, considering the outer ring fixed, 𝑑𝑒 and 𝑑𝑝, are the ball and 

pitch diameter, respectively, and 𝛼 is the contact angle. the function remainder (u, v) gives the 

remainder after the division of u by v. 

Deriving the ball radial displacement, Equation (17), to obtain the radial velocity of the 

𝑗𝑡ℎball, 𝛿�̇�, where the �̇�𝑟𝑥 and �̇�𝑟𝑦 are the components of the velocity of the center of bearing 

inner ring. 

𝛿�̇� = �̇�𝑟𝑥 sin 𝜑𝑗 + �̇�𝑟𝑦 cos𝜑𝑗 + 𝜔𝑐(𝛿𝑟𝑥 cos𝜑𝑗 − 𝛿𝑟𝑦 sin𝜑𝑗) + 𝐶𝑑�̇� (20) 

the �̇� is the operator 𝛽 time derivative, representing the velocity of the ball going into and out 

of the spall and it represents the fault excitation on this element.  

To complete the displacement and velocity of each element, it is necessary to cover the 

influence of the spall on each REB component. Three different types of faults are considered in 

this model, inner race, outer race, and ball element fault. In these cases, the fault is characterized 
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as a discontinuity of a depth 𝐶𝑑 at the initial angular position 𝜃𝑑0, along an angular span 

of Δ𝜃𝑑 .The subscript 𝑑 denotes the fault-related parameters. 

Outer race fault 

In this case, each sphere, during a complete cycle around the bearing center, will lose 

contact with the surface once into the spall. Therefore, in a complete shaft rotation, the spall is 

hit by the exact number of spheres, 𝑍, in the bearing. As a result, the characteristic frequency 

of this type of defect is the Ball Passing Frequency in the Outer ring (BPFO): 

𝐵𝑃𝐹𝑂 =
𝑍𝜔𝑐
2𝜋

= 𝑍
Ω

4𝜋
(1 −

𝑑𝑒
𝑑𝑝
cos 𝛼) (21) 

 

 

 
Figure 4. Outer race fault.  

Figure 4 represents the RE passing by a spall in the outer race, with Δ𝜃𝑑 as the angular fault 

span. The expression for the displacement due to the fault,  𝛿𝑑𝑗 , depends on the 𝛽 operator, 

which defines whether the element is passing by the fault or not. When the spall is incipient, 𝛽 

is closed to a step function, since the RE rapidly passes through the discontinuity. As the fault 

increases, a smoother function is proposed to represent the spall path. 

𝛽 = {
𝑓(𝜑𝑗), 𝜃𝑑0 < 𝜑𝑗 < 𝜃𝑑𝑓 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (22) 

 In Equation (22), 𝜃𝑑0 and 𝜃𝑑𝑓 are, respectively, the initial, subscript 0, and final, subscript 𝑓,  

angular position of the spall, with: 
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𝜃𝑑𝑓 = 𝜃𝑑0 + Δ𝜃𝑑 (23) 

The function 𝑓(𝜑𝑗) defines the smooth profile of the RE pathway throughout the spall 

region. This function must represent the RE exiting the of spall mirroring the spall entering, In 

addition, 𝑓(𝜑𝑗) must start and end in zero, the normal path, as well as having its maximum 

depth in the half of the way. The angular displacement of the RE relative to spall entry is 𝜑𝑗 −

𝜃𝑑0, hence the profile can be written as a function of the RE angular position, 𝜑𝑗, shifted by 

𝜃𝑑0 and expanded in terms of  
𝜋

Δ𝜃𝑑
 .  

𝑓(𝜑𝑗) = 1 − |cos
𝜋(𝜑𝑗 − 𝜃𝑑0)

Δ𝜃𝑑
| (24) 

In the same way, the velocity operator is given by �̇�, that imposes velocity to the RE in the 

radial direction, and is given by: 

�̇� =
𝑑𝛽

𝑑𝑡
= {

𝑓̇(𝜑𝑗),  𝜃𝑑0 < 𝜑𝑗 < 𝜃𝑑0 + Δ𝜃𝑑
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (25) 

�̇�(𝜑𝑗) = sign (cos
𝜋(𝜑𝑗 − 𝜃𝑑0)

Δ𝜃𝑑
)
𝜋

Δ𝜃𝑑
𝜔𝑐 sin

𝜋(𝜑𝑗 − 𝜃𝑑0)

Δ𝜃𝑑
 (26) 

The 𝑓(𝜑𝑗) contains an absolute value function and, although the ordinary derivative does 

not exist at the turning point, its symmetric derivative is zero (THOMSON, 1994). This 

assumption represents the behavior of the RE when reaching the lowest point and momentarily 

stopping when forced to change direction and exit the fault. This is expressed by the function 

sign(∙).  

This behavior is modeled as an excitation of forced displacement and velocity on the 

element. This is exemplified in Figure 5 (a), where the dashed green line is the step function 

usually applied, and the cyan line is the smooth 𝛽 function. Figure 5 (b) represents the velocity 

excitation of the fault corresponding to �̇�, and the discontinuity is a result of the change in the 

path orientation when the ball achieves the bottom of the fault. 
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Figure 5. Damage profile (a) displacement and (b) velocity. 

If the ball loses contact with the inner race, as a consequence of the spall depth, it will no 

longer participate in the dynamic load distribution until leaving the spall. In that case, the 

discontinuity of �̇� and the cusp in the 𝛽 would not be accounted. Otherwise, if the fault is not 

deep enough compared to its length and the ball hits the bottom, the discontinuity would act as 

a result of this impact. If the fault depth happens to be greater than the inner race radial 

displacement, the element will lose contact and no longer participating in the load distribution, 

as exemplified in Figure 6.  

 
Figure 6. Unloaded rolling element when passing through the spall. 

In this case, Figure 6, there is a transient when the RE restores contact with the inner race, 

as if a spring damper is added in parallel with the other REs, altering the load distribution once 

again.  

Inner race fault 

For the inner race, the fault behavior is similar to the outer race, except that the spall rotates 

along the inner race and the shaft, leading to a different response and characteristic frequency. 
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The spall rotates in the same orientation as the elements do. The relative angular velocity 

between spall and elements is the difference between the shaft rotational velocity, Ω, and the 

cage velocity, 𝜔𝑐.  

Considering the number of times the fault collides with an RE, the frequency is multiplied 

by the number of RE in the bearing, 𝑍, resulting on the Ball Passing Frequency in the Inner ring 

(BPFI), as represented in Figure 7. 

 
Figure 7. Inner race fault. 

Therefore, the BPFI, is the characteristic frequency related to this defect.  

𝐵𝑃𝐹𝐼 =
𝑍(Ω − 𝜔𝑐)

2𝜋
= 𝑍

Ω

4𝜋
(1 +

𝑑𝑒
𝑑𝑝
cos 𝛼) (27)   

The representation of the spall in the inner race is very similar to the outer race, except for 

the spall angular position. As the inner race rotates along with the shaft, with rotating speed Ω, 

the spall angular position rotates along with it.  

𝜃𝑑0 = remainder (Ω𝑡, 2𝜋) (28) 

𝜃𝑑𝑓 = remainder (Ω𝑡 + Δ𝜃𝑑 , 2𝜋) (29) 

Equations(22), ((22) and (25) are applicable in the same way as in the outer race fault, and the 

function of the profile derivative in the fault region is given by:  
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𝑓̇(𝜑𝑗) = sign(cos
𝜋(𝜑𝑗 − 𝜃𝑑0)

Δ𝜃𝑑
)
𝜋(𝜔𝑐 − Ω)

Δ𝜃𝑑
sin

𝜋(𝜑𝑗 − 𝜃𝑑0)

Δ𝜃𝑑
 (30) 

An observable effect is the variation of intensity in the spall and RE collision, when the 

spall goes through the load zone, the bearing reaction force is more responsive to the 

discontinuity. Thus, this fault results in a modulation by system rotational frequency.  

Ball fault 

The spherical rolling elements motion defines the radial displacement and velocity 

bearings, representing the inner and outer race relative movement, 𝛿𝑟 and �̇�𝑟. The elements that 

orbiting around the bearing center are assumed to have the same frequency as the cage, 𝜔𝑐, 

besides their spin rotations. The last one is responsible for characterizing the fault in the rolling 

element (RE) surface.  

A spall in the RE surface spins around its rotational axis, hitting both races in every 

complete spin, leading to a higher impact when going through the load zone, resulting in a 

characteristic frequency two times the spin, and modulated by the cage frequency. 

  

a b 
Figure 8. Ball fault going through (a) the outer race and (b) the inner race.  

To obtain the spin rotation, it is considered that there is no slippage in the contact point in 

both races. To determine the ball-races dynamic contact, the reference frame revolves around 

the bearing center, as represented in Figure 8.   
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𝜔𝑠𝑝𝑖𝑛 = 𝜔𝑐 (
𝑑𝑝

𝑑𝑒
− cos 𝛼) =

Ω

2

𝑑𝑝

𝑑𝑒
(1 − (

𝑑𝑒
𝑑𝑝
cos 𝛼)

2

) (31) 

The position of the spall in the sphere surface is a time-function and depends on the initial 

position of the spall, 𝜃𝑑0. The spin angle, 𝜃𝑠, is considered negative, since it spins in the opposite 

direction as the cage and inner race.  

𝜃𝑠 = −𝜔𝑠𝑝𝑖𝑛𝑡 + 𝜃𝑑0 (32)   

Since the spall angular span, Δ𝜃𝑑, is determined in terms of the ball dimension, it depends 

on what race the spall is in contact with. If it is passing through the inner race, Δ𝜃𝑑𝑖, and if the 

span is in the outer race, Δ𝜃𝑑𝑜, in the spin frame of reference, shown in Figure 9: 

 
Figure 9. Detail on of the ball fault angular span. 

Δ𝜃𝑑𝑖 = Δ𝜃𝑑
𝑑𝑒
𝑑𝑖

 (33) 

Δ𝜃𝑑𝑜 = Δ𝜃𝑑
𝑑𝑒
𝑑𝑜

 (34) 

In this way, it is possible to establish the depth of the spall in contact with the inner race, 

𝐶𝑑𝑏𝑖, and the depth in contact with the outer race, 𝐶𝑑𝑏𝑜. Due to differences in the curvature in 

the inner race, the interaction with the spall is longer and deeper than in the outer race. 

𝛽 = {
1, 0 < 𝜃𝑠  <  Δ𝜃𝑑𝑜  and 𝑗 = 𝑘

𝐶𝑑𝑏𝑖/𝐶𝑑𝑏𝑜, 𝜋 < 𝜃𝑠  < 𝜋 + Δ𝜃𝑑𝑖   and 𝑗 = 𝑘
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (35) 

with  𝑘 being the damaged rolling element.   

Maximum possible fault depth 
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The depth of the spall is constrained by the extension of its angular span and the bearing 

geometry, and the value measured is only valid as maximum. The fault extension, Δ𝑠, is 

determined based on the location of the fault, where k is the index for the location of the fault, 

inner race fault (𝑖), outer race (𝑜) or element fault (𝑒), hence the Δ𝜃𝑑 relative to that surface. 

Δ𝑠k = rk sin Δ𝜃𝑑 ≅ rk Δ𝜃𝑑 (36) 

 

 

(a) 

 

(b) 

Figure 10. (a) Dimension of effective fault depth (b) surface detail.  

Figure 10 represents the curvatures of the contact between the ball and the outer race. The 

depth relative to each fault location can be achieved as 𝐶𝑑𝑖 is the maximum depth reached in 

the inner race; 𝐶𝑑𝑒 is the maximum contact loss in the rolling element contact along the spall, 

𝐶𝑑𝑜 is the maximum depth in the outer race.  

𝐶𝑑𝑖k = 𝑟𝑖 −√𝑟𝑖2 − Δ𝑠k
2 (37) 

𝐶𝑑𝑒k = 𝑟𝑒 −√𝑟𝑒2 − Δ𝑠k
2 (38) 

𝐶𝑑𝑜k = 𝑟𝑜 −√𝑟𝑜2 − Δ𝑠k
2 (39) 
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The maximum depth possible, given the geometry restriction is the minimum between real 

depth and geometry, differs from the inner race and outer race by the differences in curvature. 

For outer race fault the depth 𝐶𝑑 is the minimum between the difference 𝐶𝑑𝑒𝑜 − 𝐶𝑑𝑜𝑜 and the 

real measured depth, 𝐶𝑑𝑟𝑒𝑎𝑙  

𝐶𝑑 = min(𝐶𝑑𝑒𝑜 − 𝐶𝑑𝑜𝑜 , 𝐶𝑑𝑟𝑒𝑎𝑙 ) 
(40) 

For inner race fault, due to the curvatures being in opposite position, the total depth is a 

sum of both curvatures, 𝐶𝑑𝑒𝑖 + 𝐶𝑑𝑖𝑖. 

𝐶𝑑 = min(𝐶𝑑𝑒𝑖 + 𝐶𝑑𝑖𝑖, 𝐶𝑑𝑟𝑒𝑎𝑙 ) 
(41) 

If the fault is located in the rolling element, the standard value for the maximum depth is 

the fault in contact with the outer race, and the equation is similar to Equation  (40).    

𝐶𝑑 = 𝐶𝑑𝑏𝑜 = min(𝐶𝑑𝑒𝑒 − 𝐶𝑑𝑜𝑒 , 𝐶𝑑𝑟𝑒𝑎𝑙 ) 
(42) 

And if it is contact with the inner race the maximum depth is defined as: 

𝐶𝑑𝑏𝑖 = min(𝐶𝑑𝑒𝑒+ 𝐶𝑑𝑖𝑒 , 𝐶𝑑𝑟𝑒𝑎𝑙 ) 
(43) 

 

Bearing reaction forces 

Each RE displacement and velocity, Equations (17) and (20), are restrained to positive 

values only, as a consequence of two assumptions. First, the REs inertia is neglected and the 

REs are modeled by a damper-spring system connecting the inner and outer race, by a non-

linear reaction force, as in Equation (16). Second, these REs are not coupled to any of the 

raceway surfaces, so the REs represent a spring damper that only pushes but does not pull. 

Therefore, it is only relevant to the system the displacement, 𝛿𝑅𝑗, when the RE is compressed, 

and the velocity, �̇�𝑅𝑗, when the inner and outer races are approaching one another. 

𝛿𝑅𝑗 = max(𝛿𝑗, 0) (44) 

�̇�𝑅𝑗 = max(𝛿�̇�, 0) (45) 
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The total reaction force is the sum of the reactions of all the elements, from 1 to Z. The 

total reaction on the center of the bearing is represented as 𝑓𝑏𝑥 and 𝑓𝑏𝑦, for the radial directions, 

by applying Equation (16) on each RE, and then adding their projection in x and y directions, 

respectively.  

𝑓𝑏𝑥 =  ∑𝑄𝑅𝑗 cos𝜑𝑗  

𝑍

𝑗=1

 (46) 

𝑓𝑏𝑦 =  ∑𝑄𝑅𝑗 sin𝜑𝑗  

𝑍

𝑗=1

 (47) 

The total reaction forces of the bearings are then added to the rotor system of equations in 

the respective bearings nodes. The model and degrees of freedom depend on the rotor-bearing- 

configuration and the location of the acquisition sensors. 

3.3 Signal Analysis 

Vibration can be considered a failure criterion since it hinders the normal operation of the 

rotating system. Rolling bearings are subject to surface fatigue failure due to the small contact 

area that occurs between the rolling element and the inner and outer races, but just the natural 

movement of the bearing can generate vibrations and noise when subjected to high rotations.  

The nature of the bearing cyclical movement influences the rotor signal, in that way, the 

BPFO modulates the signal, as can be observed in Figure 11, triggered by variations in the 

elements position during movement when the bearing configuration changes. 
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Figure 11. Stiffness variation during a BPFO period. 

In addition to this intrinsic condition, there are ideally periodic excitations arising from 

faults in the internal surfaces. This signal cannot be fully represented by Fourier analysis, 

directly from the time sequence. The modulation of the rotor signal by the cyclical behavior of 

bearing, as well as periodic impacts from faults, can be characterized as multiplications rather 

than a sum of harmonics, with frequencies expressed as multiple combinations. It can be stated 

that, in the initial stages, those faults generate a train of impulses in time that excites the system, 

this is represented by the function 𝛽, adjusting the fault depth contribution in the total 

displacement along with the fault angular position. 

There are two scenarios, one is the signal modulation by the variant compliance of the 

bearing, it is indeed a signal multiplication, as exemplified in Figure 11. Another case is the 

presence of fault that expresses itself in the signal as the sum of periodically spaced impulses, 

the period of this occurrence is related to the fault frequencies we aim to identify. 

Fourier analysis consists of decomposing a signal as a sum of harmonics with amplitudes 

and phase constant throughout the signal interval. In unconforming bearings, the impulse train 
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produced by the fault leads to instant variations of amplitude and frequency, once the system 

convolution to the fault input will lead to a transient attenuation back to the prior condition. 

This cyclic fault impact appears as a modulation of the original signal. One of the main 

techniques to detect fault frequencies is envelope analysis, especially through Hilbert 

Transform (HT).  

The HT returns the original time series analytic function. Analytical functions are defined 

as differentiable complex functions whose derivatives are also complex. However, to be valid, 

the limits of both sides approaching zero must converge to the same solution. Therefore, the 

function must satisfy the Cauchy Theorem, that is, for the complex number 𝑧 = 𝑥 + i𝑦 there is 

the correspondent analytical function ℎ(𝑧), and, for the function ℎ′(𝑧) exists and be complex, 

the following relation must be true (WARD BROWN; CHURCHILL, 1996)  

ℎ(𝑧) =  𝑢(𝑥, 𝑦) + i𝑣(𝑥, 𝑦) (48) 

Cauchy Theorem states that: 

𝜕𝑢(𝑥, 𝑦)

𝜕𝑥
=
𝜕𝑣(𝑥, 𝑦)

𝜕𝑦
 and 

𝜕𝑢(𝑥, 𝑦)

𝜕𝑦
= −

𝜕𝑣(𝑥, 𝑦)

𝜕𝑥
 (49) 

The condition that satisfies Equation (48) is that both real and imaginary parts of ℎ(𝑧) are 

harmonic functions(OPPENHEIM; SCHAFER, 2010). Another conclusion that can be drawn 

from this observation, is that the real and imaginary parts of ℎ(𝑧) must be an even and an odd 

function, respectively, comparable to Euler equations, where the cosine and sine fulfill this 

premise. 

The Fourier transform of a real signal is the real part of a Fourier transform of a complex 

signal, which is essentially an even function. In this way, to reconstruct the complex signal that 

satisfies an analytical function condition, it is only necessary to know its real part.  

𝑥𝑅[𝑘] = Re(𝑥[𝑘]) ↔ 𝑋𝑅[𝑛] = Re(𝑋[𝑛]) (50)   

Since any signal can be decomposed in even and odd signals, and in case the signal 𝑥[𝑘] 

be causal, that is 𝑥[𝑘] = 0 for 𝑘 < 0, it can be reconstructed only knowing its even component.  

𝑥[𝑘] = 𝑥𝑒𝑣𝑒𝑛[𝑘] + 𝑥[𝑘] (51) 
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𝑥𝑒𝑣𝑒𝑛[𝑘] =
𝑥[𝑘] + 𝑥[−𝑘]

2
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Let 𝑋[𝑛] be the FFT of signal 𝑥[𝑘] with length 𝐿. The analytical signal is obtained by the 

inverse FFT of the 𝐻[𝑛], obtained by multiplying the first half of the 𝑋[𝑛] by 2, the second by 

zero, and the overlap points, by one, that is, 𝑛 equals to 1 and L/2. (OPPENHEIM; SCHAFER, 

2010) 

𝐻[𝑛] = {

0,          if  𝐿/2 + 2 ≤ 𝑛 ≤ 𝐿    

2𝑋[𝑛],         if  2 ≤ 𝑛 ≤ 𝐿/2                    

𝑋[𝑛],         if 𝑛 = 1, 𝐿/2 + 1               
 (53) 

 

 
Figure 12. Real and analytical spectrum. 

Figure 12 shows the decomposition of a signal into odd and even components, by separating 

the spectrum into real and imaginary parts. Figure 13 exemplifies a vibration signal and the 

correspondent envelope containing characteristic frequencies, after performing the HT. The 

envelope spectrum (ES) is obtained by the Fourier transform of the analytical signal magnitude. 
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Figure 13 Comparing signal and envelope time amplitude and spectrum.  

It is possible to filter the vibration to extract frequency contents where the envelope is more 

noticeable. One way of doing is by performing a fast kurtogram (FK) (RANDALL; ANTONI, 

2011) using filter banks to separate the combination of carrier frequency and bandwidth to 

estimate the sharpness of the impulses. For each frequency band, the kurtosis is computed and 

the one with the higher value is associated with more information about failure. One drawback 

to filtering the optimum band is FK sensitivity to large random impulses or other components 

with cyclical excitation. Those factors can suppress the fault information, leading to improper 

frequency range selection.  

3.4 Machine Learning 

The fault identification technique to be tested in this research relies on Machine Learning 

(ML). The machine learning process starts selecting the samples for the problem. The source 

of the samples will dictate the generalization of the final model. The samples must be fully 

separated in training and test sets. In this stage, any information on the test set must be kept 

aside to avoid data leakage, that is, the use of any information from the test set for training the 

model. This means the process of transformation, averaging, filtering should consider the 

training parameters only. 
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Three different tests are performed, the first one aims to reproduce the work (LESSMEIER 

et al., 2016)but with the feature encoder proposed in this work using a similar division of nested 

cross-validation per groups method, the second one is training and validating the model only 

with simulated fault signals and one real health bearing dataset. The model is tested with all of 

Paderborn real fault data sets. The last test is a combination of the previous ones, and consists 

of evaluating real faults data set augmentation with simulated fault samples.  

The samples are divided into training and test sets, and the training samples are divided 

once again into training and testing sets in an inner loop, for the hyperparameters tuning, 

performed by the optimization. Henceforth, the inner loop training set division will be referred 

to as inner training and validation sets.  

3.4.1 Nested cross-validation – Real data 

This section aims to compare the outcome of this work feature extraction and selection 

model with the same group-folded nested cross-validations in (LESSMEIER et al., 2016)Each 

sample is generated from a unique time signal and grouped by each real bearing test rig run. 

Cross-validation is performed in two steps to define the best parameters and evaluate the model, 

as represented in Figure 14. In each outer loop fold two groups are separated as the test set and 

three for the training set. Inside the inner loop, two groups are kept for inner training and one 

for validation. 

 

Figure 14. Nested cross-validation example. 

Each group contains an equal number of samples for each label, one healthy bearing, and 

two bearings with real faults, one with inner race and the other with outer race fault. The 

group 1 group 2 group 3 group 4 group 5

test test training training training group 1 group 2 group 3 group 4 group 5

test training test training training

test training training test training group 3 group 4 group 5

validation training training

training validation training

training training training test test

training training validation

...

Outer

Loop

Inner Loop

Test Training

Fold 1

Real measured data set



56 

bearings damages were caused by an accelerated life technique described in (LESSMEIER et 

al., 2016) The number of samples in each class is balanced, so the algorithm does not favor one 

class over the others. Samples of the same bearing are not shared between groups, to avoid 

unrelated to fault pattern recognition. In the inner loop, the same separation in groups is done 

to prevent overfitting.  

Two additional tests are carried out, one training with four groups is testing with just one, 

to see how each group responds individually to a large number, and variety, of training samples. 

The other test is how the model behaves when there is just one group of samples available for 

training the model. 

3.4.2 Training set with simulated faults 

To successfully model fault identification, enough data is required, especially from diverse 

groups, which implies different operational conditions or setups. This is difficult to obtain from 

real data, specifically for various types and sizes of faults.  

To build a comprehensive data set, it is possible to manufacture artificially damaged 

bearings, which would also be expensive and time-consuming, or even unachievable for most 

in-site machines. A solution proposed in this research is to simulate bearing response in the 

presence of fault, in as many configurations as intended for training the model with a 

combination of simulated fault signals and healthy measured signals.  

 
Figure 15. Cross-validation with simulated fault bearings signals.  

Figure 15 shows the cross-validation with the simulated fault data set, divided into two 

groups, with differences in fault size to emulate distinct groups of bearings, the groups also 

have individual noise levels and unbalanced excitation. Each training group contains one 
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healthy bearing dataset withdrawn from the test set. These healthy bearing signals are 

additionally applied to add current noise to the simulated signals dataset. All group samples 

used in the training set are kept completely apart from the test set.  

3.4.3 Training data augmentation using simulated faults 

This section proposes combining the same simulated data set from section 3.4.2 in addition 

to one group from the data set of section 3.4.1, in a nested cross-validation where only the real 

fault data is used for the test. The method is described in Figure 16, the simulated training set 

is never part of the test set, but in the training set all three groups are used for inner training and 

validation.  

 

Figure 16. Train-validation-test nested cross-validation with simulated data. 

This test aims to evaluate how a simulated data set can improve an ML model that already 

contains real measured samples but with low variability. This result will be compared with the 

model trained with just one group of samples.  

3.5 Support Vector Machine 

There are several algorithms available to build a classification model. However, for this 

work, a support vector machine is selected based on its known robustness, interpretability of 

results, and foundation in algebra and optimization theory. These characteristics are desirable 

to evaluate the feature extraction method. 

group 1 group 2 group 3 group 4 group 5 Simul. 1 Simul. 2

training test test test test training training group 2 group 3 group 4 group 5 group 1 Simul. 1 Simul. 2

test training test test test training training

test test training test test training training group 1 Simul. 1 Simul. 2

test test test training test training training validation training training

test test test test training training training training validation training

training training validation

Outer

Loop

Inner Loop

Real measured data set

Test Training

Fold 1

Simulated data set
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Support vector machine is a well-known method for supervised machine learning. 

Developed (VAPNIK, 1995), it consists of solving a non-linear optimization problem of the 

convex objective function Φ: 

{
 
 

 
 min

𝑤,𝑏,𝜉
Φ =

1

2
𝑤𝑇𝑤 + 𝐶∑𝜉𝑖

𝑁

𝑖=1

 

subject to (𝑤𝑇𝜙(𝑥𝑖) + 𝑏)d𝑖 ≥ 1 − 𝜉𝑖
𝜉𝑖 ≥ 0

𝑖 = 1,2, … , 𝑁

 (54) 

where 𝜉𝑖 is a variable for outlier control, 𝐶 is a hyperparameter that penalizes those outliers, 𝑏 

is the function bias, while d𝑖 ∈ {−1,1}
𝑁 determines the boundary side of the hyperplane, and 

w is the weight vector. The sample on or within the margins is defined as the 𝑖𝑡ℎ support vector, 

𝑥𝑖, although what is actually considered is the function 𝜙(𝑥𝑖) that maps the support vectors in 

a feature space (FS). 

 

Figure 17. Two-class SVM hyperplane separation. 

Figure 17 illustrates how the method separates the data into specific classes by maximizing 

the margin distance between the adjacent vectors in each class, denominating then support 

vectors. In the optimization process, they consist of non-trivial solutions and, most of the time, 

incur a penalty when a sample is misclassified or within the margin boundary. The data fully 

inside the margin, namely, everything but the support vectors, can fluctuate under the condition 

of not surpassing the decision boundaries, in a way the result is independent of this remaining 

data (BISHOP, 2006) 
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Figure 18. Visualization of two class set separations in feature space. 

Figure 18 demonstrates when two different classes cannot be fully separated by a 

hyperplane and the solution is mapping the constraints, 𝑥𝑖, in a higher dimension FS, 𝜙(𝑥𝑖), of 

unknown order. For the optimization, it is only necessary to know the scalar product of the 

mapping function 𝜙(𝑥𝑖) and the result in the input space is a Kernel function, K(𝑥𝑖 , 𝑥𝑗), 

conditioned to satisfy Mercer's Theorem(CORTES; VAPNIK, 1995).  

The optimization solves the dual problem to the primal problem in the Equation (54) and 

the constraints have their inner product replaced by the kernel function, K(𝑥𝑖 , 𝑥𝑗) =

𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗) and Κ𝑖𝑗 = d𝑖d𝑗K(𝑥𝑖 , 𝑥𝑗) the 𝜎 are the dual coefficients, upper-bounded by the 

penalty hyperparameter 𝐶.   

{
 
 

 
 min

𝜎

1

2
𝜎𝑇Κ𝜎 + 𝜖𝑇𝜎 

subject to d𝑇𝜎 = 0          
             0 ≤ 𝜎 ≤ 𝐶

                  𝑖, 𝑗 = 1,2, … ,𝑁

 (55) 

where 𝜖 is a vector of ones.  

In the case of separable classes by the hyperplane in the input space, the Kernel is the inner 

product of the support vectors, as the features space and the input space are the same. For all 

other cases, the Kernel function must be selected to capture the non-linear relationships of the 

data and to establish clear decision boundaries. Two categories of function are tested for this 

problem, the radial basis function (RBS) and the polynomial function. The RBS is a Gaussian-

shaped function, in which the parameter 𝛾 defines the wideness of the function.  
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𝐾𝑅𝐵𝐹(𝑢, 𝑣) = 𝑒−𝛾 ‖𝑢−𝑣‖
2  (56) 

and the polynomial kernel function, which also depends on the 𝛾, in addition to the degree 

parameter, 𝑑, and 𝑟, the linear coefficient.  

K𝑃𝑂𝐿𝑌(𝑢, 𝑣) = (𝛾〈𝑢, 𝑣〉 + 𝑟)
𝑑 (57) 

The type of function as well as its associated hyperparameters, namely 𝛾, 𝑑, 𝑟 and the 

penalty for outliers 𝐶, must be optimized with the problem feature parameters to obtain a model 

specifically designed for fault classification.  

3.6 Feature extraction 

Several available publications employ features that are kept dimensionalized, applicable 

for only specific operation conditions in which the ML model was trained. In some of them, the 

model was trained and tested by samples of the same time signal and the final model is quite 

specific, leading to the accuracy biased toward optimism (RAUBER et al., 2021). Fault 

simulation to construct training features is proposed in this work to solve these shortcomings, 

which usually result from a lack of training data with variability.  

The vibration responses are used as the training set. At this point, it is necessary to 

determine how broad or specific the model should be, it is a tradeoff, which can compromise 

the accuracy of the classification. To fully separate the influence of the fault from other 

components present in the signal can be challenging, as the amplitudes are sensitive to factors 

such as load, speed, presence of imbalance, misaligns, and even temperature. As a consequence, 

adimensional features bring less information about fault if we are under a restricted scenario 

but generalize better for a variety of operational conditions.  

Although statistical parameters are extensively applied to identify damage in a REB, its 

meaning is not restricted to it. Other types of fault or abnormal operational conditions, such as 

unbalanced rotation, misalignments, temperature differences, unsuitable lubricant viscosity, or 

insufficient supply of it, can significantly change the statistics. The presence of damage in other 

components, such as gear or pumps, can also be reflected in the REB data. For that reason, the 

approach chosen here to train the ML model is the envelope spectrum encoded to each feature 
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representing an order band and its value is the adimensionalized amplitude, ranging from 0 to 

1, that represents the influence of that particular band in the signal.  

The model is conceived to be independent of the amplitude magnitude and the operational 

speed, thus the data is adimensionalized in both directions, amplitude and frequency. The 

frequencies are divided by the nominal rotating speed velocity, Ω, in the way the amplitudes, 

𝑋, are a function of the order, 𝑓𝑜𝑟𝑑, not the frequency, 𝑓. For each signal 𝑋(𝑓), the sample 

process is:  

𝑓𝑜𝑟𝑑 =
2𝜋𝑓

Ω
 (58)    

�̅�(𝑓𝑜𝑟𝑑) =
𝑋(𝑓𝑜𝑟𝑑) − min𝑋(𝑓𝑜𝑟𝑑)

max𝑋(𝑓𝑜𝑟𝑑)
 (59) 

The encoder takes three parameters: Δ𝑓𝑛ℎ that indicates the feature order frequency span, 

𝑁 is the number of features, and ℴ, that indicates the percentage of overlap between features. 

These parameters are optimized along with the estimator hyperparameters. The process consists 

of taking the adimensionalized ES for each sample, �̅�(𝑓𝑜𝑟𝑑), and reduce it to 𝑁 number of 

features. It is accomplished by selecting the maximum adimensional amplitude in a fixed 

interval defined by Δ𝑓𝑛ℎ. Thus, it results in the final features 𝑆(𝒻) to be used to construct the 

model, each of those being related to a central frequency order 𝒻[𝑛]. 

𝑆[𝑛] = max �̅�[𝑖𝑛: 𝑖𝑛 + Δ𝑖] (60) 

𝒻[𝑛] =
𝑓𝑜𝑟𝑑[𝑖𝑛] + 𝑓𝑜𝑟𝑑[𝑖𝑛 + Δ𝑖]

2
 (61) 

where the subscript 𝑛 = 1,2, … ,𝑁 and 𝑖 is the index of ES, 𝑖𝑛 is the index of the beginning of 

the interval and it depends on Δ𝑖, the number of points within the interval and on the intervals 

overlap, ℴ.  

𝑖𝑛 = 𝑖0 +  𝑛 ∙ round(Δ𝑖(1 − ℴ)) (62) 

Δ𝑖 = round (
Δ𝑓𝑛ℎ

𝑓𝑜𝑟𝑑[2]  − 𝑓𝑜𝑟𝑑[1]
) (63) 
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 The quality and quantity of information passed on by the encoded features, 𝑆, are 

associated with an appropriate definition of 𝑁, Δ𝑓𝑛ℎ and ℴ values and that should be done 

specifically for each set of training dataset and model. 

There are many methods for hyperparameter tuning as grid search, exhaustive search, 

random search, or optimization methods. The aim is to test several parameter combinations to 

choose the one that leads to a better score in accuracy. This work applies Bayesian optimization 

to select the best set of parameters. 

Considering a constant inner-training and validation data set, the pipeline classification 

outcome can be implemented as only a function of their hyperparameters, having as a target the 

accuracy error to be minimized. This Black Box problem falls into the category of a 

multidimensional function, which is expensive to evaluate, with unknown closed forms and 

gradients. Bayesian optimization is chosen for its time efficiency in this type of 

problem(BROCHU; CORA; DE FREITAS, 2010). This optimization involves minimizing the 

errors of predicted results, using an acquisition probabilistic function applied to select the next 

set of variables to evaluate the error. The acquisition function is approximated by a Gaussian 

process, and in this case, it selects one of the strategies at each iteration, lower confidence 

bound, probability of improvement, or expected improvement. This algorithm also balances 

exploration versus exploitation, explores other ranges of the variables when the variance is high, 

and exploits the given region, otherwise (HEAD et al., 2020). 

As part of the optimization, the parameters that shape the features are defined 

simultaneously with the estimator and the combination of all parameters results in a unique 

model. The constraints of the feature parameters guarantee both the algorithm behavior and the 

physical meaning. The overlap, ℴ, should be less than 50%, otherwise it would overlap with 

more than one feature. The Δ𝑓𝑛ℎ must be between the cage order and 1, that is the rotational 

frequency, to not uphold many peaks and turn the feature dimensions too generalized. The total 

length of the encoded signal is defined by the number of features, 𝑁, which interferes with how 

many harmonics the code can capture and, consequently, defines the dimension of the data.  

Figure 19 shows the same signal encoded with different values of frequency order span 

Δ𝑓𝑛ℎ. The signal, represented in black, is the acceleration envelope scaled by the maximum 

amplitude and displayed against the frequency order. The number of features, 𝑁, is fixed, and 
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the overlap, ℴ, is zero. In this way, the smaller the parameter Δ𝑓𝑛ℎ, the greater is the distinction 

between peaks, while with the same number of features 𝑁, higher values of Δ𝑓𝑛ℎ can highlight 

the highest peaks and cover a wider range of frequency order.  

 
 Figure 19. Encoded features with different 𝛥𝑓𝑛ℎ. 

The overlap or distance, ℴ, from one feature to the next one, is a percentage of the Δ𝑓𝑛ℎ,. 

This application needs to be carefully evaluated since for negative values it distances one 

feature from the other and can result in a leakage of a significant peak. On the other hand, as 

close as it gets to 50% positive, the smoother it turns and two different features could bring the 

same information, as displayed in Figure 20. 

 
Figure 20. Encoded features variation with overlap.  
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The last demonstration is on the number of features versus the length of the signal. As 

illustrated in Figure 20, it must be noted that missing information can lead to imprecise results, 

but repetitive features can be misleading as well. This parameter should carefully be defined, 

to not miss any significant peak.  

  
Figure 21. Encoded features with different overlaps and N. 

Figure 21 shows the same configuration of Δ𝑓𝑛ℎ and ℴ, but instead of fixing the number of 

features 𝑁, the frequency order cut off, 𝒻𝑐𝑢𝑡, were fixed in 4.2 and 𝑁 was varied according to 

the relation: 

𝑁 =
𝒻𝑐𝑢𝑡 − ℴΔ𝑓𝑛ℎ

Δ𝑓𝑛ℎ(1 − ℴ)
 (64) 

The complete procedure is presented in the flowchart in Figure 22 presents the process for 

fault classification based on a model trained with simulated data and tested with experimental 

signals unseen by the model until tested. The Measured REB health signals are divided, one 

bearing data set goes to the Simulated data set, while the other five bearings are part of the real 

Measured data set. The Parameters search space refers to the SVM hyperparameters, as 𝐶, 𝛾 

and 𝑑, and the encoder 𝑁, Δ𝑓𝑛ℎ and ℴ.  

The Optimization referenced in Figure 22  is a Bayesian optimization that applies Gaussian 

processes to decide the next point to evaluate the function (GARDNER et al., 2014). The Black 

Box is the function to be optimized and its variables are model hyperparameters. The function 

is called in a predefined N number of times. The target function value is the mean error across 
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all the inner-train-validation K-folds. The number of K-folds is the combination of all the 

groups in the training set, leaving one out, as the validation set, and training the model with the 

remainder groups.  

Inside the Black Box function, the Pipeline is called to be trained and validated on each 

fold. The Pipeline object is an algorithm chaining, it sequentially processes the steps of the 

features encoder, feature scaling, and estimator training or testing. This simplifies the 

deployment of the ML model and guarantees the validation and test sets pass through the same 

procedures, with the same parameters, as the model was trained. In this configuration, the 

encoders and SVM hyperparameters are simultaneously optimized, assuming that the best 

estimator parameters are not the same for different combinations of features of the same dataset.  
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Figure 22. Flowchart for training with simulated faults. 
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Simulation dataset 

To create the data set for this problem, a numerical integration is carried out several times, 

varying some operational conditions. One way to generate the data would be creating 

combinations for static load, rotational speed, unbalanced force, and even diametral clearance 

combined with fault conditions of depth and width.  

The bearing-system model can represent the machine dynamic behavior. However, the 

information in a real signal is quite more complex, and noisier, it may be influenced by the data 

acquisition instruments or other electrical components, as in the case of the Paderborn dataset. 

(LESSMEIER et al., 2016) 

One possibility is training the model with simulated and real data faults, but this requires 

the problem of having real data faults correctly labeled. If only real data from health bearings 

are available, one solution is to mix the signals from the fault simulation with the real bearing 

response.  

It is assumed that the electrical signal does not directly interfere with the system response, 

only influencing the data acquisition. The concept is to add the health signal as if it is essentially 

noise and electrical signal contamination. The intention of adding the signals in the frequency 

domain is to avoid amplitude distortion from different phases and estimate the fraction to be 

considered in the final signal.  

The proposed method takes place before the HT, which is performed in each sample, the 

process only incorporates the FFT of a real health signal in the same operational condition and 

the ratio of their root mean square is used to define the balance of both signals amplitudes. The 

processes are exemplified in the Figure 23 flowchart.  

Another randomly generated parameter is the proportion between the RMS of the two 

signals being mixed. In this way, it is possible to generate different modulation amplitude 

combinations from the healthy contaminated signal and fault characteristics frequencies. This 

procedure aims to balance the peaks from both spectrums in a way that one does not overcome 

the other if there are noise differences in the time domain. It also prevents distortion in 

amplitudes, as a consequence of phase in the rotational frequency. 
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Figure 23. Flowchart of mixing signals. 
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4 DESCRIPTION OF EXPERIMENTAL DATA 

In this chapter validation of the REB fault model is performed using the test bench model 

from Sawalhi (2007). The REB reaction force, including EHD contact and fault profile 

described in Chapter 3, is incorporated into the original system equations. The time response is 

obtained through numerical integration and compared with the original work. 

Following the validation of the fault-bearing model, the Paderborn test bench parameters 

are estimated for a four degrees of freedom system, to include the validated fault REB model. 

This simulation model is employed to create a dataset to train a machine learning algorithm to 

identify the health status of measured signals.  

Additionally, given the challenges of representing a real-time signal, it is proposed to add 

the measured healthy data to the simulated fault result, considering only modulation influence 

from outer sources would be distinguishable in the envelope spectrum. 

4.1 Experimental Test Rig: Randall 

The validation of the bearing fault identification module demands other simulations and 

experiment results of a well-known and explored test rig. In this chapter, Sawalhi and Randall 

(2008) test rig model is employed replacing the existing REB model and parameters by EHD 

reduced force and localized faults.  

The system of equations is based on the Sawalhi PhD thesis and is presented in Appendix 

A. The test rig scheme shows four REB in a gearbox pedestal. The sensor for data acquisition 

is on the upper side of the pedestal. The representation of the test rig is presented in Figure 24.  
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Figure 24. Schematic representation of the Sawalhi and Randall (2008) test rig. 

To represent the gear in the system, the stiffness coefficient is interpolated from the data 

present in the work of Endo (2005), taking into account the variation with the angular 

displacement and teeth contact. The error and noise are also considered to determine the 

reaction force connecting both sides of the system. 

4.2 Experimental Test Rig: Paderborn 

Paderborn University dataset on ball bearings is one of the most extensive collections of 

vibration data designed for fault identification. The collection consists of data from 32 groups, 

including 6 undamaged bearings and 26 bearings with internal surface damages, divided into 

12 artificially generated and 14 with accelerated-life-induced faults. Each group corresponds to 

a specific bearing, according to Table 1 

Table 1 Paderborn Dataset REB description. 

 

Each group of bearings contains 4 distinct operation conditions with 20 samples each, all 

of them running for 4 seconds of vibration data, that is, every bearing group have 80 samples 

but only with 4 variations. The operational conditions are presented in Table 2.  

Prefix Status Accelerated life time Artificially damaged bearings

K0 Health 
K001, K002, K003, K004, K005, and 

K006

KA Outer race fault KA04, KA15, KA16, KA22, and KA30
KA01, KA03, KA05, KA06, KA07, 

KA08, and KA09

KI Inner race fault
KI04, KI14, KI16, KI17, KI18, and  

KI21
KI01, KI03, KI05, KI07, and KI08

KB Inner and outer race fault KB23, KB24, KB27
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Table 2 Data set operational conditions. 

 

4.3 Numerical Simulation: Data Generator  

The Paderborn University laboratory Kat (Konstruktions- und Antriebstechnik) test bench 

model used here is designed to be representative of the main dynamic behaviors without lead 

to excessive computational time, for that, only 4 degrees of freedom, 2 for the shaft and 2 for 

the REB inside housing are considered. The information used to build the model are given in 

the images and descriptions in Lessmeier et al. (2014). The model for the bearings reaction 

force added to the rotor system considers the following assumptions: 

• The inner race rotates at the shaft constant speed.  

• RE always remain in contact with the races, excepting in case of passing by a spall 

deeper than the displacement.  

• All translational motions are in-plane  

• The balls and cage are assumed with negligible masses,  

• The motion occurs in y-x plane and rotations are about z-axis.  

Figure 25 shows the model for the inner housing set up. The coupling between shaft and 

inner housing is given by the reduced order model for the bearing reaction force, 𝑓𝑏𝑥 and 𝑓𝑏𝑦, 

given by Equations (46) and (47), as a function of each element 𝑗 displacement, 𝛿𝑗, velocity, �̇�𝑗 

and angular position 𝜑𝑗, given by Equations (17), (20) and (19) respectively. 

Condition Rotation [RPM] Static load [N] Torque load [Nm]

0 1500 1000 0.7

1 900 1000 0.7

2 1500 1000 0.1

3 1500 400 0.7
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Figure 25. REB test bench model for Paderborn Kat dataset. 

The inner housing has mass 𝑚ℎ, stiffness coefficient, 𝐾ℎ and damping coefficient 𝐷ℎ . The 

sensor is located in the housing, so the signal is in the 𝑥ℎ direction, the same as the experimental 

test rig. The shaft has a lumped mass of 𝑚𝑠 and the bearing is represented as a system of springs 

and dampers located in the balls contact.  

The parameters 𝐾𝑠 and 𝐷𝑠 are the shaft stiffness and damping coefficients, the shaft passes 

across the REB inner ring, being isolated by the couplings and self-aligning REB. These forces 

restrict the inner part of the bearing, so it does not run loose, once the static force is applied to 

the outer ring.  

𝛅𝑅 is the radial displacement of the center of the shaft relative to the outer ring, fixed in the 

housing, as described in Lessmeier et al. (2014). The components of the displacement and 

velocity in x and y direction are applied in the Equations (17) and (20) and given by : 

𝛿𝑟𝑥 = 𝑥𝑠 − 𝑥ℎ  and 𝛿𝑟𝑦 = 𝑦𝑠 − 𝑦ℎ (65) 

�̇�𝑟𝑥 = �̇�𝑠 − �̇�ℎ  and �̇�𝑟𝑦 = �̇�𝑠 − �̇�ℎ (66) 

The complete system of equation has four degrees of freedom is given by:  

𝑚ℎ�̈�ℎ + 𝐷ℎ�̇�ℎ + 𝐾ℎ𝑥ℎ = 𝑓𝑏𝑥(𝑥𝑠, 𝑥ℎ, �̇�𝑠, �̇�ℎ, 𝑡) + 𝐹𝑠𝑡𝑎𝑡𝑖𝑐 (67) 
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𝑚ℎ�̈�ℎ + 𝐷ℎ�̇�ℎ +𝐾ℎ𝑦ℎ = 𝑓𝑏𝑦(𝑥𝑠, 𝑥ℎ, �̇�𝑠, �̇�ℎ, 𝑡) 

𝑚𝑠�̈�𝑠 + 𝐷𝑠�̇�𝑠 + 𝐾𝑠𝑥𝑠 = −𝑓𝑏𝑥(𝑥𝑠, 𝑥ℎ, �̇�𝑠, �̇�ℎ, 𝑡) + 𝐹𝑚𝑒 cosΩ𝑡 

𝑚𝑠�̈�𝑠 + 𝐷𝑠�̇�𝑠 + 𝐾𝑠𝑦𝑠 = −𝑓𝑏𝑦(𝑥𝑠, 𝑥ℎ , �̇�𝑠, �̇�ℎ, 𝑡) + 𝐹𝑚𝑒 sinΩ𝑡 

the unbalanced force, 𝐹𝑚𝑒 , that may occur simultaneously with the bearing, has the modulus 

𝐹𝑚𝑒 = 𝑚𝑒𝜀Ω
2, being the residual mass, 𝑚𝑒,  and eccentricity radius of 𝜀, transmitted to the 

center of the shaft and Ω, the rotational speed. The static force, 𝐹𝑠𝑡𝑎𝑡𝑖𝑐 , is applied to the outer 

race throughout a screw tightened between the inner and outer housing box. 

The parameters to model these products were determined based on the information given 

by the original work and data extracted from the time signals. The definition of the bearing 

parameters is based on the geometrical and operation conditions, considering the lubricated 

EHD regime. The rolling bearing is not completely isolated from other components and the 

sensor is located on the housing, hence the vibration is assessed throughout the inner housing, 

so its influence has to be taken into consideration. The list of components and the assumptions 

on their influence on the signal follows:  

• Shaft – connecting the inner race of the test bearing to the self-aligned ball bearings, 

with stiffness 𝐾𝑠, transmitting only a residual unbalanced force. 

• Internal housing, has mass 𝑚ℎ and connects the outer ring of the test bearing to the 

outer housing with stiffness coefficient 𝐾ℎ 

• External housing is considered fixed.  

• Self-aligned ball bearings are considered fixed. 

• Spherical bearing is considered part of the inner housing.   

• Internal oil supply: the test bearing is immersed in oil retained by mechanical seals 

inside the inner housing. It is represented by a damping coefficient 𝐷𝑠.   

• Test bearing connects the shaft to the inner housing through the nonlinear reaction 

force.  

• Frequency inverter has its signal added to the simulations as background noise.  

The main idea is to identify the most influential parts of the mechanical system to 

implement a simple mathematical model. A lumped parameters system with only two degrees 
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of freedom, representing the vertical direction, is applied to identify the most influential 

parameters: 

[
𝑚ℎ 0
0 𝑚𝑠

] {
�̈�ℎ
�̈�𝑠
} + [

𝐷ℎ +𝐷𝑏𝑙 −𝐷𝑏𝑙
−𝐷𝑏𝑙 𝐷𝑠 +𝐷𝑏𝑙

] {
�̇�ℎ
�̇�𝑠
} + [

𝐾ℎ + 𝐾𝑏𝑙 −𝐾𝑏𝑙
−𝐾𝑏𝑙 𝐾𝑠 + 𝐾𝑏𝑙

] {
𝑥ℎ
𝑥𝑠
} = {

𝐹𝑠𝑡𝑎𝑡𝑖𝑐
𝐹𝑚𝑒 cosΩ𝑡

} (68)   

𝐾𝑏𝑙 is the linearized bearing stiffness, only used to estimate the system critical frequencies:  

𝐐𝑠𝑡𝑎𝑡𝑖𝑐 = 𝐾𝑏𝑙𝛅𝑅 (69) 

𝐾𝑏𝑙 = 𝑄𝑠𝑡𝑎𝑡𝑖𝑐 (
𝐾Γ𝑑

𝑄𝑠𝑡𝑎𝑡𝑖𝑐 − Δ𝐹Γ
)

1
𝑑

 (70)   

given that 𝑄𝑗 = 𝑄𝑠𝑡𝑎𝑡𝑖𝑐 cos𝜓𝑗 , is the projection of the load on the radial direction to each rolling 

element. Then, Γ and Γd are a consequence of the cos𝜑𝑗 summation in the load zone. If the 

diametral clearance, 𝐶𝑟 , is null, then only the elements with the azimuth position 𝜑𝑗 ∈ [−
𝜋

2
,
𝜋

2
], 

should be considered (HARRIS, 1991).  

Γ =∑ 𝜚𝑗 cos𝜑𝑗
𝑍

𝑗=1
 (71) 

Γ𝑑 =∑ 𝜚𝑗 cos
𝑑+1𝜑𝑗

𝑍

𝑗=1
 (72) 

the binary variable 𝜚𝑗 is zero if 𝜑𝑗 lays outside the load zone, and 𝜚𝑗 is one, otherwise.  

For this initial study, only the hertz model represents a dry contact, to first establish the 

load acting in the bearing. Shaft mass, 𝑚𝑠, and internal housing mass, 𝑚ℎ, are estimated based 

on the inner ring dimension and the drawing present in Lessmeier et al. (2014). 

The system data with random faults were used as an effort to obtain a broad-spectrum 

excitation, allowing to visualize the critical frequencies of the system. The system parameters 

were defined based on the PSD (Power spectrum density) and Fourier transform. The 

approximated locations of the critical frequencies were identified as 𝑓𝑛1  and 𝑓𝑛2. The 

approximation for 𝐾ℎ and 𝐾𝑠 is: 
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𝐾ℎ + 𝐾𝑏𝑙
𝑚ℎ

≅ (2𝜋𝑓1)
2
→ 𝐾ℎ ≅ 𝑚ℎ(2𝜋𝑓𝑛1)

2
− 𝐾𝑏𝑙 (73)   

𝐾𝑠 +𝐾𝑏𝑙
𝑚𝑠

≅ (2𝜋𝑓𝑛2)
2
→ 𝐾𝑠 ≅ 𝑚𝑠(2𝜋𝑓𝑛2)

2
− 𝐾𝑏𝑙 (74) 

Although the real values of 𝐾𝑠 and 𝐾ℎ cannot be determined, Equations (73) and (74)  

reduce the system to two uncoupled spring-mass system, which can provide an estimative for 

these parameters magnitude. There are numerous of data on these tests, and it is not realistic to 

use them all since an amount of suitable data is not usually available. So only the vibration 

signal of a healthy bearing is used to build the test bench model.  
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5 RESULTS AND DISCUSSION  

5.1 Bearing model validation 

As previously stated, the validation of the bearing model is done using the bench model 

from Sawalhi, 2008, and the bearing reaction force, with EHD contact and fault profile 

described in Chapter 3, is inserted into the system equations. The time response is obtained 

through numerical integration.  

Figure 26 considers an EHD lubrication for a rotation speed of 600 rpm and load of 560 N 

for a two-row auto-compensating ball bearing with pitch diameter of 38.5 mm and 7.12 mm 

ball diameter. The parameters for the reduced order force are obtained by the EHD simulations 

described in the section 3.2. The equivalent stiffness coefficient is 𝐾 =  6.02 × 109N/m𝑑, the 

exponent of the RE displacement, 𝑑 =  1.48, the residual force, Δ𝐹 = 1.83 𝑁 and damping 

coefficient is 𝐷 =  16.13 N. s. 

 
Figure 26. Time response (a) outer race fault and (b) health REB. 

The main vibration source in the acceleration signal comes from the gearbox, modulated 

by the 32-tooth period. Figure 26 (a) shows the fault bearing signal and the exact moment the 
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ball passes through the fault, by displaying the smooth 𝛽 profile by the red-dashed-line. As 𝛽 

ranges from 0 to 1, the example is scaled from 10:1. The spall has a 2º angular span, which is 

0.8 mm width, with a maximum depth of 19 𝜇m. Comparing both signals, with and without 

the fault, in Figure 26 (a) and (b), the fault does not significantly change the time signal, which 

is dominated by the gear modulation. 

Figure 27 (a) and (b) shows respectively the Power Spectral Density (PSD) for the 

simulation and measured signals from (SAWALHI, N.; RANDALL, 2008b) and can be 

compared with the PSD in Figure 27 (c), illustrating the EHD simulated signals. I was applied 

the Welch method, 50% overlap, with 512 points and Hanning windowing. The signal used is 

the acceleration of the sprung mass on the OR fault bearing casing, representing the sensor 

reading point, added by pink noise with signal to noise ratio (SNR) of 20 dB. 

  
Figure 27. PSD comparing Health and Damaged signal of REB : (a) simulated, (b) experimental from 

(SAWALHI, N.; RANDALL, 2008b) and (c) simulated with the  EHD simulations and smooth fault 

function.  
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The first peak at 320 Hz is the teeth frequency for the rotational frequency of 10 Hz. 

Therefore, the gear response dominates the PSD below 6 kHz, and the major difference due to 

the fault can be seen around the spring-mass critical frequency, near 15kHz. This is similar to 

a transducer natural frequency on the HFFT analysis. The signal is obtained by the variable of 

this degree of freedom and its high natural frequency region is excited by the fault.   

To access the envelope spectrum with the most information about the OR fault, the fast 

kurtogram is applied to identify the carrier frequency and frequency resolution with higher 

values of kurtosis, indicating the presence of sharp peaks in the signal. This is characteristic of 

early-stage faults.  

 
Figure 28. Outer race fault (a) Fast Kurtogram and (b) filtered envelope. 

The optimum carrier frequency is similar to the one in the PSD, 15.75 kHz, and the signal 

is filtered in a resolution of 1 kHz. The peaks in the filtered envelope spectrum, seen in Figure 

28 (b), are spaced by the BPFO frequency of 49Hz, and its multiple frequencies. This indicates 

the impact on the OR fault, excited the spring mass, causing a transient that enables the 

identification, namely, the gear modulation is not as important in higher frequencies.  

The fault in the inner race has the same length, 0.8 mm, with a maximum depth of 27 𝜇m. 

Figure 29 shows the time signal with (a) and without (b) fault on the inner race. As this model 

contemplates the slippage between the inner race and the cage, it results in a relative velocity 

between the RE and the inner race, oscillating around the nominal 𝜔𝑐. This effect can be 

observed in the forced path dashed line, in Figure 29 (a), when exiting the fault, the RE 

oscillates before returning to the normal path. The slippage effect is also considered in the outer 

race fault, however as the fault spall is stationary, it does not affect the 𝛽 function.  
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Figure 29. Time response (a) inner race fault and (b) health REB. 

Figure 30 (c) suggests that the most effective frequency band to filter the signal, is the one 

centered at 15 kHz with a bandwidth of 6 kHz. In Figure 30 (d), the envelope spectrum shows 

the BPFI of 71 Hz, with side bands of the 10 Hz, the rotational frequency. This can be compared 

with the FK and filtered envelope spectrum from the experimental data presented in 

(SAWALHI, N.; RANDALL, 2008b). 
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Figure 30. Inner race fault (a) Fast Kurtogram and (b) filtered envelope for the experimental 

measured signal from (SAWALHI, N.; RANDALL, 2008b).(c) Fast Kurtogram and (b) filtered 

envelope for the EHD simulation.  

The fault in the rolling element was also simulated and the FK and envelope are presented 

in Figure 32 (a) and (b), respectively. The fault is an engraved rectangle, with 3.6 mm width 

and 0.5 mm depth. The included angles in the spherical element are represented by Figure 31 , 

60° and 8°, so the last will determine the angular span of the fault in contact with the inner race, 

1.8º, and a depth of 7.3 𝜇m, and the angular span with the outer race, 1.2°, with a depth of 10.5 

𝜇m. 

 
Figure 31. Spall in the spherical rolling element with 60° inclusion angle in view a and 8° inclusion 

angle in view b. 
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The spin frequency of 26 Hz and its multiples appear in the envelope spectrum with 4 Hz 

side bands, cage rotational frequency, which also is the first amplitude in the envelope 

spectrum. The 2xBPF which is 52 Hz, appears with similar amplitude since the RE hits both 

races one each complete spin.  

 
 Figure 32. Ball fault (a) Fast Kurtogram and (b) filtered envelope. 

5.2 Paderborn Model  

As the published works on the Paderborn test bench, did not include a numerical model, or 

any model analyses or parameters, one has to be made to incorporate the model of the REB 

validated in the previous section. The simulated Paderborn model parameters, time, and 

frequency response will be presented, as well as a detailed examination of the internal REB 

contacts passing through a fault.  

The construction of the Paderborn test bench model is based on the information provided 

by (LESSMEIER et al.,2014; 2016) and the data on the vibration signals. Two health REB 

signals were investigated to estimate the modal parameters of this system. The PSDs for 

bearings K001 and K003 are displayed in Figure 33. Those are composed of two noisy signals 

with the envelope spectrum displaying only the current electrical frequencies. The white noise 

can excite a broad band in the system and allows the identification of the main characteristic 

frequencies of the system.  
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Figure 33. a1) PSD for 20 samples of all four conditions of the REB K001 and a2) is the envelope 

spectrum for condition 0; b1) is the PSD for 20 samples of all four conditions of the REB K003 and 

b2) is the envelope spectrum for condition 0.  

The system is intended to have only two DOFs in each direction, so the frequencies of 1.38 

kHz and 3.3 kHz were selected. The behavior around them is similar in both REB, where 

condition 3 has a slightly lower frequency, about 7%, as the system is subjected to a lighter 

load, and condition 1 has the smallest amplitudes, as the excitation from the residual unbalanced 

mass is proportional to the squared rotational frequency, and condition 0 and 2 are practically 

the same.  

Applying Equation (70) with to REB dry contact parameters, the linearized stiffness is 

𝐾𝑏𝑙 =  4.25 × 10
7 N/m. The mass in the bearing node, 𝑚𝑠, is 0.32 kg and the mass in the 

housing node is, 𝑚ℎ = 3.2 kg. These estimates are based on the REB 6203 dimensions and the 

inner housing section view presented in the schematic figure (LESSMEIER et al., 2014).  

The stiffness between the outer housing and the bearing external ring is approximated to  

𝐾ℎ = 1.9 × 10
8
 N/m. The first frequency estimate of the inner housing is given by Equation 



83 

(73), and the second frequency employed in Equation (74), gives an estimative of the shaft 

stiffness of 𝐾𝑠 = 1 × 108 N/m.  

The linearized frequency response, Figure 34, provides a model to adjust the damping 

coefficients, 𝐷ℎ = 2500 N.s/m and 𝐷𝑠 = 800 N.s/m. This is the base to determine the modal 

parameters of the system. The first critical frequency is 1314 Hz, with a damping factor of 

4.9%, and the second is 3490 Hz with 5.7% damping factor.  

 
Figure 34. Linearized frequency response due to unbalance in the bearing node.  

With the system parameters defined, the operation conditions of rotational speed and static 

load are used to characterize the reduced force parameters. Figure 35 (a) shows the reaction 

force for conditions 0 and 2, 1500 RPM and 94 N, (b) for condition 900 RPM with 94 N, and 

(c) for condition 1500 RPM with 30 N.  

 
Figure 35. Simulated Reaction force in the bearing center with zero clearance in all conditions a) 

conditions 0 and 2, b) condition 1, and c) condition 3. 
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In Table 3, the reduced force parameters are presented for the data set operation conditions. 

Conditions 0 and 2 only differ in torque, which is not a variable in this model, being regarded 

as the same. 

Table 3 EHD reduced model force parameters. 

Conditions 𝑲 𝒅 𝚫𝑭 𝑫 

0 and 2 5.46 × 109 N/m1.46 1.46 2.90 N 22.0 N.s/m 

1 6.20 × 109 N/m1.48 1.48 2.11 N 14.2 N.s/m 

3 3.14 × 109 N/m1.42 1.42 2.41 N 26.3 N.s/m 

Figure 36 shows the details of the relative displacement and velocity of one RE throughout 

a spall passage. The forced paths are represented by the dashed lines, imposed by the fault 

model. In both cases, negative values of displacement and velocity are not accepted and are 

assumed to be null.  

 
Figure 36. Displacement and velocity of the RE passing through a spall. 

For that reason, the intensity in which the RE is drawn to the fault is a function of the 

maximum depth that must be constrained by the fault geometry, or even it can be set to less if 

the fault is shallow. This factor is one of the uncertainties used to create a diversified dataset.  
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Figure 37 presents two severity cases in response to an outer race fault. Both cases are 

accomplished on the operation condition 0, namely, 25 Hz and 1 kN in the inner housing, null 

clearance, and an unbalance of 10-5 kg.m². There are two fault severities: cases (a), (c), (e) and 

(g) regard a fault angular span of 9° and depth of 25 µm, only 10% of its maximum constraint. 

Meanwhile, in Figure 37 (b), (d), (f) and (h), the spall is only 1° angular span and 2.9 µm deep, 

which in this case is the maximum depth constrain. The lines of  f1x, f2x and f3x represent the 

x-component of the reaction force of the three consecutive RE always passing through the spall 

in the static force direction, added up to the reaction force in the REB center, fx. The sinusoidal 

wave pattern of the REs displacement and force is an outcome of the orbital projection into the 

vertical direction. If the RE is unloaded the displacement is null, which can be seen in the 

unloaded zone and deep spalls. 

The forced displacement imposed by the spall causes momentaneous unloading in the RE 

when passing through it. Figure 37 (a) clearly shows the RE complete loss of contact with the 

inner race. Consequently, this RE contact is not compressed anymore, being necessary that the 

adjacent REs take the extra load, increasing their displacements and reaction forces, although 

not enough to avoid its effect on the center of REB, as Figure 37 (b). As the fault area is narrow 

enough the RE passage can be seen as an impulse. 

The difference in the spectrum is a well-known occurrence, namely, the incipient faults 

excite higher frequencies, while extensive faults have a spectrum with large amplitudes in lower 

frequencies (RANDALL; ANTONI, 2011) 
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Figure 37. Bearing response of outer race fault in condiction-0 under two cases of severity, (a) and 

(b) are displacements of three RE and the central node of the bearing; (c) and (d) are the reaction 

forces; (e)-(h) refers to the inner housing signal, being (e) and (f) the acceleration spectrum and (g) 

and (h)  the envelope spectrum. 
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 Figure 38. Reaction force of the REB center (fx) and the reaction forces of the RE (fjx) in the x-

direction in the occurrence of inner race fault. 

Figure 38 signal is modulated by the rotational frequency. There is a difference between 

positions and encounters of the RE and inner race. Therefore, each time the damage passes 

through the load zone the impact happens in a slightly different position, represented by regions 

I, II and III. The complete turn of the inner race takes 0.04s for a 25Hz rotational frequency, 

and the peak has just one major transient. 

 
Figure 39. Envelope spectrum of the vibration signal of inner race fault simulation. 

The envelope spectrum of the case displayed in Figure 38 is presented in Figure 39, where 

the first and highest peak is the rotational frequency of 25 Hz, and its harmonics are combined 

with the BPFI of 123 Hz.  

5.3 Paderborn Data set 
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In this section, a brief signal analysis of the measured vibration from Paderborn data set 

is carried out. The intention is to clarify the influence of external signals and evaluate if methods 

such as fast kurtogram are of use for these specific cases. 

The main challenge in the identification of these bearings is the electrical current. The 

inverter with 16 kHz switching frequency appears strongly on the undamaged bearings. This 

signal is modulated by the current frequency and added to the bearing signal. These amplitudes 

do not cause visible transients and can get in the way of identifying frequencies of interest. This 

can be the case when using automated tools to detect and filter high kurtosis regions to improve 

the amplitudes for envelope analysis. In a close look, the sharp shape of impulses of early-stage 

damages and the inverter can be similar.  

Analyzing the envelope spectrum from the undamaged bearings, it is clear the modulating 

frequencies, unrelated to the rotational speeds take over the response. As the samples of the 

envelope spectrum for 900 rpm rotation, the peaks on 52.5Hz and 100 Hz with sidebands of 

5.25 are similar to those on the samples running at 1500 rpm. This is influenced by another 

source independent of the bearing rotational elements, probably from the electrical influence. 

As mentioned by the authors (LESSMEIER et al., 2016), frequency inverter was deliberately 

left unfiltered to resemble an industrial application challenge.  

 

Figure 40. Envelope spectrum of samples (a) N09_M07_F10_K002_1 e (b) N15_M07_F04_K002_20. 

The frequency inverter has a switching frequency of 16 kHz, and it is modulated by the 

electric current frequency of 50 Hz. Therefore, harmonics of the current frequencies appear at 

the beginning of the envelope spectrum, as can be seen in Figure 40.  
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The amplitude of modulation in the health bearing can be lower than in the BPFO and BPFI 

signals, depending on the experiment conditions and the type and extension of the damage. 

Filtering the signal by the frequency band with higher kurtosis, as in section 4.1, to find the 

optimum resolution to identify the fault characteristic frequencies can result in selecting the 

regions where the current frequency is dominant.  

Figure 41 shows the Fast Kurtogram of sample 1, case 0, bearing KA04. The frequency 

band with higher values of kurtosis is the carrier frequency 26.7 kHz, with a bandpass of 10.7 

kHz. The resultant filtered envelope shows the electrical frequency of 51.25 Hz and its 

multiples.  

 
Figure 41. FK and envelope spectrum filtered in the indicated frequency band for sample 

N15_M07_F10_KA04_1. 

While just applying the Hilbert transform without filtering, for the same sample, the result 

is the BPFO of 76.25 Hz and its multiples being the most prominent amplitudes envelope 

spectrum. The electrical current frequency (fe) of 52.51 Hz after filtering is considerably lower, 

as shown in Figure 42. 

 
Figure 42. Envelope spectrum of sample N15_M07_F10_KA04_1 without filtering.  
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In this case, the leading problem is the influence of the inverter in the readings, adding 

noise to it, increasing its amplitude. The challenge of creating representative signals is training 

the model to distinguish health operation even with the possible interference of other 

components and contamination of the signal. 

 

5.4 Nested cross-validation – Real data 

The replication of the identification with the same samples, in a combination of training 

with three bearings sets and testing two, gives 10 train-test groups, as shown in Table 4. For 

each run, the train set was cross-validated using a Bayes Optimization, to select the best 

parameters for the model, by applying the feature selection of the encoder and optimizing its 

parameters simultaneously with the SVM. 

Table 4. Data set used in the nested cross-validation. 

 

 The bounds for the optimization are Δ𝑓𝑛ℎ between 0.35 and 0.80, the number of features 

N are set to be between 50 and 100, SVM hyperparameter  𝛾 is between 0.01 and 0.6, and C 

between 1 and 8. It uses the kernel poly of degree 6 with independent coefficient 𝑟 = 1.5.  Table 

5 presents the scores and hyperparameters tunned for each fold.  

Group Healthy Outer race damage Inner race damage

0 K001 KA04 KI04

1 K002 KA15 KI14

2 K003 KA16 KI16

3 K004 KA22 KI18

4 K005 KA30 KI21
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Table 5. Nested cross validation result and Hyperparameter of each fold 

 

 The influence of size and variability of the training set on the accuracy can be demonstrated 

by the slightly higher mean value of accuracy in the train-validation score, 80.6 %, versus 

79.2% in the test score. The great difference indeed is in the variability of the test set accuracy, 

which characterizes the influence of the training data in the final result, as well as the data being 

tested.  

When groups 1, 3 and 4 are the majority in the training set, the validation score is from 10 

to 20% lower than the test score, folds 1, 2, 3 and 7. However, training with sets 2, 3, and 0 and 

testing with 1 and 4, leads to a test accuracy of 53.3%, significantly lower than the second-last 

accuracy, 71.5%, and the mean accuracy values for validation and test. The confusion matrix 

for all the 10 folds is presented in Figure 43. 

Validation Test Training Test Δfnh N C γ

0 83.3 79.2 [2 3 4] [0 1] 0.44 100 8.00 0.60

1 79.2 95.2 [1 3 4] [0 2] 0.44 50 1.00 0.60

2 81.0 90.0 [1 2 4] [0 3] 0.47 50 8.00 0.60

3 78.3 86.3 [1 2 3] [0 4] 0.49 50 1.00 0.60

4 76.3 77.1 [0 3 4] [1 2] 0.45 100 1.00 0.39

5 85.7 67.9 [0 2 4] [1 3] 0.46 50 1.00 0.50

6 91.5 53.3 [0 2 3] [1 4] 0.78 50 4.06 0.60

7 78.2 87.9 [0 1 4] [2 3] 0.48 88 6.70 0.60

8 67.1 71.5 [0 1 3] [2 4] 0.73 100 8.00 0.39

9 84.9 83.1 [0 1 2] [3 4] 0.47 94 1.12 0.38

Mean 80.6 79.2 - - - - - -

Encode SVC
Fold

Accuracy [%] Groups
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Figure 43. Confusion matrix of the nested cross-validation. 

To assess the behavior of each bearing group individually, Figure 44 demonstrates each 

fold of the cross-validation when the model is trained with just one group of 240 samples, to 

identify the role of each group in the outcome. The internal cross-validations, to optimize the 

hyperparameters, were divided into four groups based on the operational conditions, to avoid 

patter memorization. 

 
Figure 44. Training with just one group, optimizing with cross validation dividing in groups per 

condition. 
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Figure 45. Training with four groups and testing with just one. 

Figure 45 shows the opposite of Figure 44. The model is trained with four groups and tested 

with just one. The average test accuracy of the one group trained is 59.6 %, while, testing with 

just one group led to an average of 76.8% accuracy, near the condition in Table 5Erro! Fonte 

de referência não encontrada., 79.15 %, but smaller. This can be due to the natural variation 

expected in the process, the outcome of a model depends on more variables than just the sample 

size.  

5.5 Training set with simulated faults 

The model used here was designed to train and extract features simultaneously, extending 

the effort to avoid under or overfitting to this usually pre-processing phase. To target these 

issues, the simulated training set was built in groups with non-intersection characteristics such 

as the extent and depth of the spall, as well as uncertainties unrelated to the faulty, such as noise 

nature and level, small fluctuations in the rotational speed and the unbalanced force, and 

clearance or interference in the in REB assembly. 

A biased model, intolerant to noise, could be brought by a training set with low or 

meaningless variations or could be a product of an optimization that learned specificities of the 

models, memorizing patterns poorly correlated to the fault itself. Dividing the simulation data 

set into groups enables the corrected pattern identification. Otherwise, the optimization can 

rapidly converge to 100% accuracy in the inner loop, when the inner training and validation set 
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have pairs of similar samples that converge to the right label, independent of the 

hyperparameters selection, and the final model would be underfitted.  

Table 6. Dataset construction based on simulation. 

 

Table 6 shows the dataset generated with three samples for each simulation, randomly 

variating the added white noise level around the -5 dB and 0 dB of signal-to-noise ratio (SNR), 

It is necessary to keep the SNR low, once the fault amplitude is practically the only source of 

excitation in acceleration signal.  

The test data set is similar to that applied in the previous chapter in Table 4. The health 

bearing K001 is substituted by K006 since K001 is going to be part of the training set, as 

presented in Table 7. 

Table 7. Test data set for the model trained with simulated damages.  

 

The optimization was carried out with 20 points, and the best parameter were Δ𝑓𝑛ℎ = 0.48, 

𝑁 =  44, with an overlap, ℴ = −1.0 for the encoder. The best parameters for the SVM were a 

group me [kg.m] real signal ratio angular span [º] max depth ratio 
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Group Healthy Outer race damage Inner race damage

0 K006 KA04 KI04

1 K002 KA15 KI14

2 K003 KA16 KI16

3 K004 KA22 KI18

4 K005 KA30 KI21
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polynomial kernel, degree 5 with the independent coefficients 𝑟 = 1.05, C = 4.40 and 𝛾 =

 0.04. The validation score, inner test, is 92.4 % accuracy.  

  
Figure 46. Confusion matrix, training with simulated and testing with real data. 

Figure 46 shows the confusion matrix for a model trained with simulated fault signals only 

and tested with all samples, as referenced in Table 7, resulting in an accuracy of 76% for the 

totality of 1200 samples. An accuracy of 97% is expected for health label, once the training set 

uses real data for undamaged training, this can also cause the precision to be 73% and 27% of 

the health labeled samples were in fact damaged ones. The misleading prediction of the real 

data can be explained due to other characteristics that are more prominent than the fault itself. 

The outer race fault has the lowest accuracy, only 45%, and the highest precision close to 

100%. The model is good in representing and differentiating the OR fault but is not enough 

comprehensive to represent all possible outer race faults. 35% of those samples were classified 

as IR fault, which is acceptable but not ideal, once the location of the fault is relevant 

information.  
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Figure 47. Prediction per condition - confusion matrices.  

The predictions for the same trained model of Figure 46 are now presented in Figure 47 

divided by operational conditions. While the samples with 1500 RPM, conditions 0, 2 and 3, 

achieve accuracy around 80%. with the misclassified cases mostly ORF and mainly mistaken 

as IRF. The confusion matrix for the predictions for the 900 RPM, condition 1, shows not only 

a poor outcome of 60% accuracy but also a 60% misclassification of damaged bearings as 

health.  

In Figure 48, the model train and test used conditions 0 and 1 individually. In both cases, 

there are no significant changes in the accuracy. It can be concluded that is a valid option to 

train only one model with more than one condition, in similar proportions. The poor 

identification in the 900 RPM can be attributed to lower amplitudes, as it was observed even in 

health bearing, in Figure 33. It may lead to fault signals in lower velocities approaching a health 

case result.  
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Figure 48. Training and testing the conditions separately.  

 Figure 49 shows the confusion matrix of a model trained and tested only with 1500 RPM 

samples, but with two load conditions, 1000N and 400N, respectively, conditions 0, 2 and 3 in 

Table 2. The total accuracy with the training data set is 82%, and again the health and the IRF 

samples scored practically 100% of the ORF and 47%.  

 
Figure 49. Confusion Matrix of identification of model 1500 RPM.  

Table 8 shows the details of the identification of the confusion matrix of Figure 49, the 

level of the damage is described accordingly in the files of the profile of rolling bearing damage, 

as the length and description, are provided together with the respective data.  
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Table 8. Description of tested damaged rolling elements bearings.  

 

The accuracy per condition is considerably homogeneous, namely, condition 0 with 82%, 

condition 2 with 85%, and 3 with 80 %. Conditions 0 and 2 are almost the same, considering 

the torque is the only difference. 

The superiority in the inner race fault identification can be attributed to some factors: the 

inner race fault produces more intense impacts once the geometry of opposite curvatures leads 

to a deeper and faster passage over the spall. The system rotational frequency is modulated by 

its fault, independent of the unbalanced level. And the majority of the inner race faults are 

already higher level.  

All IR fault bearings were 100% correctly identified, as the bearing KA04, with OR fault, 

and the health bearing, except K005, was 95% correctly identified. The misclassified bearings 

are presented in Table 9.  

Table 9. Misclassified bearings descriptions and identification. 

 

From the five OR fault datasets evaluated, two were properly identified, KA04 and KA16, 

the last with 93% accuracy. The three faults KA15, KA22 and KA30 were poorly scored. All 

REB Accuracy Level Length Damage description

KA04 1.00 1    2 mm Single point pitting 

KA15 0.00 1  <1 mm Single particle-caused indentation

KA16 0.93 2    3 mm 2 pitting damages, with 2 mm and 3 mm length

KA22 0.00 1  <2 mm Single point pitting 

KA30 0.43 1  <1 mm Distributed and random particle-caused indentations

KI04 1.00 1    2 mm Multiple damage: pitting and particle-caused indentations.

KI14 1.00 1    1 mm Multiple damage, pitting and particle-caused indentations.

KI16 1.00 3   6 mm Single point pitting 

KI18 1.00 2 2.5 mm Single point pitting 

KI21 1.00 1   1 mm Single point pitting 

HB OR IR

KA15 0.00 0.63 0.00 0.37 1 <1 mm Single particle-caused indentation

KA16 0.93 0.02 0.93 0.05 2    3 mm  Pitting: 2 mm and 3 mm length

KA22 0.00 0.03 0.00 0.97 1 <2 mm Single point pitting 

KA30 0.43 0.03 0.43 0.53 1 <1 mm Distributed particle-caused indentations

K005 0.95 0.95 0.05 0.00 0 - -

Description REB Accuracy
Identified as

Level Length
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of those REB are level 1 damage and have distinguished fault characteristics. Among those 

three REB, KA30 had the best score, it had 96% of samples corrected were identified as a 

damaged bearing. Even though the type of the fault could not be effectively predicted, it scored 

close to a dummy classifier, with 50% each.  

The problematic results come from KA22 and KA15 bearings, being not a single sample 

corrected classified. However, in distinct ways, KA15 had 63% of samples identified as healthy, 

the other 37% as IR fault, while KA22 had nearly all samples, 97%, misclassified as IR fault. 

And, although, KA22 is at the boundary of level 1 fault and described just as KA04, that last 

scored 100%. One consideration to be taken into account is the source misclassifying these 

bearings is beyond the fault size only.  

Data from KA22 and KA15 bearings are challenging to identify by analyzing the signal 

manually, as spotted in Figure 50. The frequencies that can be identified are the electric current 

and its multiples, and multiples of 144 Hz, which does not correspond to none of the critical 

frequencies expected from the bearing 6203. The signal in Figure 50 is from KA22 bearing, 

sample 1 in condition 0, in which the shaft natural frequency is 24.9 Hz. The multiple 

frequencies of 144.5 Hz, an unknown source, correspond to the highest amplitudes in the 

complete frequency band. In addition, in this spectrum, the BPFO of 76.5 Hz, does not even 

point out, nor its multiple frequencies.  

 
Figure 50. Envelope of sample N15_M07_F10_KA22_1.  

The identification relies on frequency patterns of the same bearing type and geometry, it 

can deal with other frequency amplitudes, as long as some of the fault characteristic frequencies 
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arise in the signal, and this does not occur in KA22 bearing data. The other two unsuccessful 

identifications are samples from bearings KA15 and KA30. In Figure 51 (a) from bearing 

KA15, the BPFO is present, although incipient compared to the other frequencies, and in Figure 

51 (b) for bearing KA30, the BPFO is more evident, although still less than the other 

frequencies. In those two bearings, the type of fault is particle-indentation, with smoother fault 

edges, which do not excite the system as strongly as pitting/spalling fault. 

 
Figure 51. Envelope spectrum from (a) N15_M07_F10_KA15_1 and (b) sample 

N15_M07_F10_KA30_1. 

While the unidentified frequency of 144 Hz and multiples can be spotted in different 

signals, as in Figure 51 (a) and (b), and most likely yielded by other components of the system, 

the multiples of this frequency are more evident than any other in KA22, Figure 50.  

Another concern is the system rotational frequency, 𝑓𝑛, in KA22 and KA15. The rotational 

frequency should not be a factor that modulates the REB signal in case of an outer race fault. 

This behavior suggests other abnormal conditions, such as an inadvertently inner race fault, or 

an inadequacy in the assembly, which was not all deflected by the self-aligned ball bearing into 

the outer housing, as in the test bearing description by Lessmeier et al. (2014).  

5.6 Data augmentation using simulated faults 

This section accesses the improvement of the model by adding simulated signals to the data 

set, in the way that the model is trained by one group of real data set, one on each fold of the 

nested cross-validation. This model scored 80%, 79%, and 81% per conditions 0, 2 and 3, 
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respectively, and 65% for condition 1, trained with 592 simulation samples, 296 IR and 296 

OR, a total of 832, and 960 tested. 

Table 10. Augmentation nested cross-validation. 

 

In Table 10 the results are presented with the validation scores at the optimized parameters, 

and how the characteristics of each data set affect the choice of the encoder parameters. Folds 

2 and 4 have narrow Δ𝑓𝑛ℎ after the optimization, for having more severe faults in the training 

set the main frequencies amplitude are more prominent than other peaks, reaching higher 

validation scores, only achieving 0.66 accuracy of the test set.  

Table 11 shows the prediction for each bearing group being tested versus the model tested 

with simulated faults and one bearing group. The total accuracy remains 76% between training 

the model with only simulated faults and the training the model with the same simulated data 

set in addition to one group of real data. 

An evident enhancement in the overall accuracy of a model trained with only one group of 

real faults, as presented in Figure 44, improved from 0.59 to 0.76 in the mean accuracy. The 

result is particularly improved when training with KA22 or KA15, this can be credited to the 

similarity between those bearings signals, expanding the detection for this case. This is 

represented in Figure 52, compering the evolution of the overall accuracy by augmentating the 

training data set with the simulated fault data.  

 

Fold
Validation 

Score 

Test

 Score

Real training 

set added
     N  C   

0 0.86 0.80 K005 KA30 KI21 -0.92 0.48 56 2.06 5E-03

1 0.85 0.87 K004 KA22 KI18 -0.95 0.49 60 2.00 5E-02

2 0.97 0.66 K003 KA16 KI16 -0.67 0.35 45 5.00 1E-03

3 0.84 0.83 K002 KA15 KI14 -0.88 0.45 53 4.98 3E-01

4 0.95 0.66 K006 KA04 KI04 -0.71 0.36 74 4.69 9E-02

Δ𝑓𝑛ℎ  ℴ
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Table 11. Individualized score per bearing group with mixed simulation and real fault nested 

validation 

 

 
Figure 52. Comparison between the overall result in two cases: training with just one group of real 

fault and training with the same group adding the simulation data set. 

 

 

REB

     train

     

test             

0 1 2 3 4
Score per 

REB tested

Score per 

group 

tested

K006 - 0.95 0.96 1.00 0.99 0.98

KA04 - 0.99 0.99 0.99 0.99 0.99

KI04 - 0.75 0.93 0.75 0.75 0.79

K002 0.71 - 0.95 0.66 0.79 0.78

KA15 0.00 - 0.00 0.76 0.18 0.23

KI14 0.91 - 0.93 0.75 0.76 0.84

K003 0.99 1.00 - 1.00 1.00 1.00

KA16 1.00 1.00 - 0.99 0.86 0.96

KI16 1.00 1.00 - 1.00 1.00 1.00

K004 0.71 0.78 0.54 - 1.00 0.76

KA22 0.00 0.79 0.00 - 0.26 0.26

KI18 1.00 1.00 1.00 - 1.00 1.00

K005 0.71 0.36 0.76 0.91 - 0.69

KA30 0.00 0.40 0.04 0.84 - 0.32

KI21 0.84 0.96 0.88 0.74 - 0.85

0.66 0.83 0.66 0.87 0.80 0.76 0.76

3 0.67

4 0.62

Score REB 

training 

0 0.92

1 0.62

2 0.99

1.00

0.00

 . 
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5.7 Learning curve and convergence  

The definition of the size of the training set depends on how broad it is intended to be the 

testing. If the application conditions are known, it is necessary to consider variations in radial 

clearance, temperature, and spall dimensions. 

The maximum and minimum values are defined based on the extreme conditions assumed 

to occur, and the points and combinations in between depend on the evaluation of the learning 

curve. This relates to the amount of training data necessary to obtain the optimum result, given 

the same conditions, and up to what point the model accuracy saturates if it continuously 

increases in complexity as the number of samples. 

 Observing the learning curve for this case, clearly after 400 samples, the variability of the 

testing data set does not depend on the number of training samples. On the other hand, the 

validation score rapidly converges to 100%. For that reason, training for hyperparameters 

tunning was done by dividing the training set into two groups with differences in fault severity 

and other operational conditions as shown in Table 7. 

  
Figure 53. Learning curve. 
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Figure 54. Error convergence per call of the optimization function on the training-validation data set. 

Another variable in the optimization is the number of points it needs to explore to find the 

optimal solution. Taking as an example, the optimizations of the model tested in the confusion 

matrix of Figure 46, the Bayesian optimization rapidly converges to one minimal region up to 

20 function calls, as shown in Figure 54, and the error of 0.072 is practically constant above 10 

calls. The values of 20 exploitation points for simulation intended to avoid overfitting the 

model, which could occur if the accuracy of the training/validation set were close to 100%.  
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6 Conclusions  

The purpose of this work is to explore the possibility of creating a training data set with 

fault simulation that is capable of training a machine learning model for the identification and 

classification of real measured rolling element bearing fault signals. The feature selection 

method that encodes and scales the envelope signal throughout optimization was demonstrated 

to be a promising tool for fault classification. This work approach explored the build of the 

training set data, and presented a new way set of feature selection beyond statistical moments, 

by introducing the idea of encoding, to be interpreted by ML algorithms.  

The fault REB model showed a coherent response compared to the literature of the work of 

Sawalhi and Randall (2011). The same model generates the data set of the Paderborn test bench 

to train the SVM algorithm with satisfactory results in identifying faults with different profiles, 

such as debris indentation and pitting, but also multiple faults in the same bearing surface.  

The results have demonstrated that is not only possible to identify the REB condition with 

76% accuracy in this dataset, but also improve from 59 % to 79% the outcome when the training 

set is composed of just one bearing and is augmented by simulated data. This could improve 

health monitoring of machines that are not simple to disassemble and do not have a history of 

measured faults.  

It is clear from the results, that the rotating speed significantly alters the amount of 

information on the health condition passed by the envelope signal and, therefore, the quality of 

the training set and the possibility of fault identification. The test set of 1500 RPM had 82% of 

its samples correctly identified. Of those, health and inner race fault samples, had almost 100% 

accuracy, and the outer race fault samples scored around 47%. The explanation may be a 

consequence of weaker impacts of outer race fault in combination with other abnormal 

operation conditions and can be even considered the presence of other undetected faults, as one 

of the bearings had been misclassified as inner race fault by 97%.  

Another keen factor in the identification is the electrical current influence in the Paderborn 

data set. It is caused by the frequency inverter and defied the possibility of automatized filtration 

or band demodulation. For that reason, the choice of applying the Hilbert transform to the whole 
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band spectrum produced better results. Another solution presented was adding the health signals 

with meanly this electrical frequency influence to bring the simulation signal closer to the 

measured fault, and it turned out to be a reasonable solution to build the training set.  

The methodology and conclusions from this thesis contribute to future research and 

application of simulation data sets to build machine learning models. It presents all the steps 

for developing the numerical simulations of a real system, characterizing the ball bearings 

reduced EHD force model, introducing fault as imposed displacement and velocity smooth 

functions. As well as incorporate these simulated signals with a proposed encoded method for 

extracting and selecting features, altogether with the SVM algorithm optimization. The final 

solution is a machine learning model able to identify and classify the health status of damaged 

rolling bearings.   
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APPENDIX A 

The equations adapted from Sawalhi's thesis and Sawalhi and Randall (2008) represent 

the system with gear and four double-row ball bearings. The system has torsional vibration 

and translational vibration only inside the gearbox,  

being the extremities isolated by flexible coupling. 

 
Figure 55 Scheme of the Sawalhi and Randall (2008) test rig with the angular coordinates. 

𝑚𝑝𝑙�̈�𝑝𝑙 + 𝑐𝑝𝑙�̇�𝑝𝑙 + 𝑘𝑝𝑙𝑥𝑝𝑙 = 𝑓𝑏𝑥𝑙 (A1.1) 

𝑚𝑝𝑙�̈�𝑝𝑙 + 𝑐𝑝𝑙�̇�𝑝𝑙  +  𝑐𝑟𝑙(�̇�𝑝𝑙  −  �̇�𝑏𝑙) + 𝑘𝑝𝑙𝑦𝑝𝑙  +  𝑘𝑟𝑙(𝑦𝑝𝑙  −  𝑦𝑏𝑙) =  𝑓𝑏𝑦𝑙 (A1.2) 

𝑚𝑠𝑙�̈�𝑠𝑙 + 𝑘𝑠𝑙(𝑥𝑠𝑙 − 𝑥𝑔𝑝𝑙) = −𝑓𝑏𝑥𝑙 (A1.3) 

𝑚𝑠𝑙�̈�𝑠𝑙 + 𝑘𝑠𝑙(𝑦𝑠𝑙 − 𝑦𝑔𝑝𝑙) = −𝑓𝑏𝑦𝑙 (A1.4) 

𝑚𝑟𝑙�̈�𝑏𝑙 − 𝑘𝑟𝑙(𝑦𝑝𝑙  −  𝑦𝑏𝑙) − 𝑐𝑟𝑙(�̇�𝑝𝑙  −  �̇�𝑏𝑙) = 0 (A1.5) 

 Equations A1.1 to A1.5 represent the system of shaft-bearing-pedestal-mass. The subscript 

𝑙 goes from 1 to 4, represent the four bearings and bearings assembly. The functions 𝑓𝑏𝑥 and 

𝑓𝑏𝑦 are the equations for the bearing reaction forces. 

Rotational degrees of freedom:  

The flywheel: 
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𝐽𝑓1�̈�𝑓1 + 𝑐𝑓1(�̇�𝑓1 − �̇�𝑠1) + 𝑘𝑓1(𝜃𝑓1  − 𝜃𝑠1) = 𝑇𝑖 (A1.6) 

Shaft 1 (Bearing1 – pinion): 

𝐽𝑠1�̈�𝑠1 − 𝑐𝑓1(�̇�𝑓1 − �̇�𝑠1) − 𝑘𝑓1(𝜃𝑓1  − 𝜃𝑠1) + 𝑘𝑡𝑠1(𝜃𝑠1  − 𝜃𝑔𝑝1) + 𝑐𝑓1(�̇�𝑠1  − �̇�𝑔𝑝1)  =  0 (A1.7) 

Pinion theta - 3  

𝐽𝑔𝑝1�̈�𝑔𝑝1 − 𝑐𝑓1(�̇�𝑠1  − �̇�𝑔𝑝1)+ 𝑘𝑡𝑠2(𝜃𝑔𝑝1  − 𝜃𝑠2) − 𝑘𝑡𝑠1(𝜃𝑠1  − 𝜃𝑔𝑝1)+ 𝑘𝑚𝑚(𝑡)𝑟𝑔𝑝1𝛿𝑒  + 𝑐𝑚𝑚𝑟𝑔𝑝1�̇�𝑒

= 0 
(A1.8) 

Shaft 2 (Bearing 2 – encoder 1):  

𝐽𝑠2�̈�𝑠2 + 𝑐𝑒𝑐1(�̇�𝑠2  − �̇�𝑒𝑐1)− 𝑘𝑡𝑠2(𝜃𝑔𝑝1  −  𝜃𝑠2) + 𝑘𝑒𝑐1(𝜃𝑠2  − 𝜃𝑒𝑐1) = 0 (A1.9) 

Shaft 2 (Bearing 2 - pinion): 

𝐽𝑔𝑝2�̈�𝑔𝑝2 + 𝑘𝑡𝑠3(𝜃𝑔𝑝2  − 𝜃𝑠3) − 𝑘𝑡𝑠4(𝜃𝑔𝑝2  − 𝜃𝑠4)+ 𝑘𝑚𝑚(𝑡)𝑟𝑔𝑝2𝛿𝑒  + 𝑐𝑚𝑚𝑟𝑔𝑝2�̇�𝑒 = 0 (A1.10) 

Encoder 1: 

𝐽𝑒𝑐1�̈�𝑒𝑐1 − 𝑐𝑒𝑐1(�̇�𝑠2  − �̇�𝑒𝑐1)− 𝑘𝑒𝑐1(𝜃𝑠2  − 𝜃𝑒𝑐1) = 0 (A1.11) 

Shaft 3 (Bearing 3 - gear): 

𝐽𝑠2�̈�𝑠3 + 𝑐𝑒𝑐2(�̇�𝑠3 − �̇�𝑒𝑐2)+ 𝑘𝑒𝑐2(𝜃𝑠3 − 𝜃𝑒𝑐2)− 𝑘𝑡𝑠3(𝜃𝑔𝑝2  − 𝜃𝑠3) = 0 (A1.12) 

Encoder 2: 

𝐽𝑒𝑐2�̈�𝑒𝑐2 − 𝑐𝑒𝑐2(�̇�𝑠3  − �̇�𝑒𝑐2)− 𝑘𝑒𝑐2(𝜃𝑠3  − 𝜃𝑒𝑐2) = 0 (A1.13) 

Shaft 4 (Bearing 4 - gear): 

𝐽𝑠4�̈�𝑠4 + 𝑐𝑓2(�̇�𝑠4 − �̇�𝑓2) + 𝑘𝑓2(𝜃𝑠4  − 𝜃𝑓2) + 𝑘𝑡𝑠4(𝜃𝑔𝑝2  −  𝜃𝑠4) = 0 (A1.6) 

Flywheel 2: 

𝐽𝑓2�̈�𝑓2 − 𝑐𝑓2(�̇�𝑠4 − �̇�𝑓2) − 𝑘𝑓2(𝜃𝑠4  − 𝜃𝑓2) = 𝑇𝑜 (A1.14) 

Translational degrees of freedom:  
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Pinion x: 

𝑚𝑔𝑝1�̈�𝑔𝑝1 + 𝑘𝑠1(𝑥𝑔𝑝1  −  𝑥𝑠1)+ 𝑘𝑠2(𝑥𝑔𝑝1  −  𝑥𝑠2) = 0 (A1.15) 

Pinion y: 

𝑚𝑔𝑝1�̈�𝑔𝑝1 + 𝑘𝑠1(𝑦𝑔𝑝1  − 𝑦𝑠1)+ 𝑘𝑠2(𝑦𝑔𝑝1  − 𝑦𝑠2)+ 𝑘𝑚𝑚(𝑡)𝛿𝑒  + 𝑐𝑚𝑚�̇�𝑒 = 0 (A1.16) 

Gear x: 

𝑚𝑔𝑝2�̈�𝑔𝑝2 + 𝑘𝑠3(𝑥𝑔𝑝2  −  𝑥𝑠3)+ 𝑘𝑠3(𝑥𝑔𝑝2  −  𝑥𝑠3) = 0 (A1.17) 

 Pinion y: 

𝑚𝑔𝑝2�̈�𝑔𝑝2 + 𝑘𝑠3(𝑦𝑔𝑝2  − 𝑦𝑠3)+ 𝑘𝑠4(𝑦𝑔𝑝2  − 𝑦𝑠4)+ 𝑘𝑚𝑚(𝑡)𝛿𝑒  + 𝑐𝑚𝑚�̇�𝑒 = 0 (A1.18) 

The gear-pinion relative displacement, 𝛿𝑒 and velocity, �̇�𝑒, result from each shaft 

independent movement and the error, 𝑒𝑡. The cyclic stiffness throughout the contact line, 

𝑘𝑚𝑚(𝑡), is withdraw from Endo (2005) for a torque of 50 Nm and interpolated for the teeth 

length.  

𝛿𝑒 = 𝑟𝑔𝑝1𝜃𝑔𝑝1 − 𝑟𝑔𝑝2𝜃𝑔𝑝2 − 𝑦𝑔𝑝1 + 𝑦𝑔𝑝2 − 𝑒𝑡 

(A1.19) 

�̇�𝑒 = 𝑟𝑔𝑝1�̇�𝑔𝑝1 − 𝑟𝑔𝑝2�̇�𝑔𝑝2 − �̇�𝑔𝑝1 + �̇�𝑔𝑝2 

The error, 𝑒𝑡, is present due to run-out and th  toothp ofil  imp  f  tions and un   tainti s 

and is given by (Endo, 2005):  

𝑒𝑡 = 𝑒𝑟𝑢𝑛𝑜𝑢𝑡 + 𝑒𝑡𝑜𝑜𝑡ℎ + 0.2randn(𝑡)  

(A1.20) 𝑒𝑟𝑢𝑛𝑜𝑢𝑡 = 3 × 10
−5 sinΩ𝑡 

𝑒𝑡𝑜𝑜𝑡ℎ = 1.2 × 10
−5 sinNΩ𝑡 

The gear number of teeth is N and rand(t) gives a random distributing number at each 

instant.  

The model also includes a slippage in the REB cage. To keep tracking of this new variant 

and be able to reproduce the exact same positions, it was added a DOF, related to the tested 

bearing cage angular position, 𝜑𝑐, obtained from the numeric integration.   
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𝑑𝜑𝑐
𝑑𝑡

= 𝜔𝑐 +𝜔𝑠𝑙𝑖𝑝 (A1.21) 

and the slip velocity, 𝜔𝑠𝑙𝑖𝑝, between 1% and 2% of the cage velocity, is randomly generated 

during the integration.  


