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ABSTRACT

The Clifford bundle approach to the geometry of a Riemann-Cartan-Weyl space developed
in a previous paper suggests by itself to interpret Einstein’s gravitational theory as a field
theory in the sense of Faraday, i.e., with the gravitational field living in Minkowski spacetime.
Here we present such a theory. For the variables playing the role of the gravitational field
the lagrangiam density is of the Yang-Mills type with gauge fixing and auto interaction terms.
A brief comparison of our theory with some others field theories of the gravitational field in
Minkowski spacetime is given. Some misconceptions and misanderstandings are clarified.
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1. INTRODUCTION

Einstein’s gravitational theory (General Relativity) is one of the most beautiful physi-
cal theories(! Yet, many physicists are not happy with one or another aspect of the theory.
Weinbergl?], e.g., is of the oppinion that the geometrical interpretation of the theory in terms of
a Lorentzian spacetimel®450] is a coincidence and a physical interpretation for the gravitational
field in the sense of Faraday, i.e., with the gravitational field living and interacting with the other
physical fields in Minkowski spacetime is desirable. One of the main criticisms to the geometrical
interpretation comes from Logunov and collaborators!™®]. In particular, in the geometrical inter-
pretation there are no genuine conservation laws for energy-momentum and angular momentum
in general. This point is indeed a crucial one and deserves a critical consideration by people sup-
porting the geometrical interpretation. In their book “General Relativity for Mathematicians”,
Sachs and Wul®¥ said: “It is a shame to loose the special relativistic total energy conservation
laws in General Relativity. Many of the attempts to resurrect it are quite interesting, many are
simply garbage” (see, e.g., ref.) for a mathemathicaly clear presentation of the reason for the
non existence of conservation laws in the sense of special relativity in Einstein’s gravitational
theory).

These considerations among many others equally important inspired several physicists to
build up a consistent theory of the gravitational field in flat Minkowski spacetime see, e.g.,[10-21]
besides(™®].

In this paper we present our approach to the subject which is possible due to the Clifford
bundle formulation to the geometry of a Riemann-Cartan-Weyl space (RCW$) developed inl?%
(hereafter called I).

To start we recall that, as it is well known, in General Relativity every gravitational field
which is a solution of Einstein equations is modelled by a Lorentz spacetimel345€l je. a quadru-
ple (M,g,7,,V) where M = (M, g,7,) is a Lorentzian manifold, i.e., M is a Hausdorff, para-
compact, C°°, connected four dimensional manifold oriented by r, (the volume element 4 form)
and time oriented. The tensor field g € T¢M is a Lorenttz metric of signature (1,3) and V
is its Levi-Civita connection. The pair (T, M,g.),2 € M, is isomorphic to IR the so called
Minkowski vector spacel*l, which is not to be confounded with the Minkowski spacetime, i.e.,
the particular Lorentzian spacetime represented by the quadruple (M = R*,y, 7, ﬁ) where
n is a Lorentzian metric, D is its Levi-Civita connection such that Dy = o0, T[D] = 0 and
R[D] = 0, with T and R being respectively the torsion and curvature tensors. We denote by
IMI = (R*,n,7,) the Minkowski manifold and by T'(IR*) and T=(IR*) respectively the tangent
and the cotangent bundles of the Minkowski manifold.

The strategy for the present paper is then as follows. Using the Clifford bundle approach to
the geometry of a RCWS developed in I we first formulate in section 2 Einstein’s theory in the
Clifford bundle C¢(M)[= C¢(M, g~ 1)] thereby identifying the set of linearly independent 1-form
fields (6#),u = 0,1,2,3, 6 € sec A}(M) C secC{(M) as the natural variables playing the role
of the gravitational field in the formalism. We give the field equations satisfied by the (#*) (that
are equivalent to Einstein equations). The field equations for the (6#) [eq.(6)] are non linear
wave equations. We give also an equivalent form of the field equations [eq.(14)] and discuss its
meaning.

In section 3 we introduce the Lagrangian density that gives eq.(6) through the action



principle. This Lagrangian L'%} turns to be of the Yang Mills type for the (#*), with a gauge fixing
term plus an autointeraction term. 52) turns out to be equivalent to the first order Lagrangian
density first introduced by Einstein®®l and well discussed in, e.g., ref.24. In our formalism £(§)

is a functional of 6* and 6" and so it is intrinsic covariant. The action [ Lg) is then by a well
known result(?”] invariant under the diffeomorphisms of the so called manifold mapping groups
(general covariance). L‘fé} possess also the restrict, homogeneous and orthocronous Lorentz
group £i as a local gauge group, but ours is not a gauge theory of the £T+ group.

The functional form of Eg) does not involves anymore the geometrical concepts of a con-
nection V and the associated Riemann and/or Ricci tensors, but includes the concept of the
Lorentzian metric g through the Clifford inner product in eq.(21) or through the Hodge dual in
eq.(24). This suggests the following. Take M = IR? in M and consider the Minkowski man-
ifold MI = (IR%,7,7,) and the Minkowski spacetime (IR*,7,7,, D). Next recall the discussion
of section 3.1.c of I where it is shown that in the Clifford bundle Cé(IMI) (with IMI = M) we
can introduce through the theory of the symmetyric automorphims of a linear space infinitely
many non degenerated symmetric bilinear forms fields on the metrical manifold (IR*,n). If we
interpret g € sec 7§ IR* as a fixed nondegenerated positivel™) symmetric bilinear form field on
IMI then we have a chance to formulate Einstein’s theory in flat Minkowski spacetime.

In section 4 we present then the gravitational theory as a field theory in the sense of
Faraday. We show that E(f%) interpreted as a Lagrangian density in Minkowski spacetime has
the Poincaré group P = EL ¢ T as invariance group in the usual sense of field theory and E L’,(lé)
is also generally covariant. Besides, Eg) possess also ﬂl_ as a local gauge group and possess
T* (the translation group in fR*) as a local gauge group in the sense of gauge theory in flat
spacetimel?®=271, This last statement can be proved directly using the results oft?”, which are
valid only after we identify the correct “Hodge dual operator” to be used in ES). In®7 the
Lagrangian is constructed with the flat spacetime Hodge dual operator and thus the theory
there presented is not equivalent to Einstein’s theory.

Finally in section 5 we present our conclusion together with a brief comparison of our theory
with other flat spacetime formulations of the gravitational theory.

2. EINSTEIN EQUATIONS IN THE CLIFFORD BUNDLE C/(M)

Let M = (M,g,7,) be a Lorentzian manifold and {M ,4,7g, V) a Lorentzian spacetime
modelling the gavitational field ¢ in Einstein’s theory. Let C{(M)[= C{(M, g 1)] be the Clifford
bundle of M [section 3 of I]. Let {#*) € sec(T"M) C secC{(M) be an arbitrary moving frame of
T M, dual to the frame (e,) of TM. Then, g = g,,0* 6" € sec TH(M) and g~ = ¢"e, Re, €
sec TZ(M) with g#%g,, = 64 Taking into account the fact that our goal is to give a flat
spacetime formulation of Einstein’s theory and taking into account the results of section 3.1.c.
of I we denote the Clifford product in C£(M) by V and the inner product by . The 8* satisfy

OV OV =2g" e = g (1)

(*) for the reason for the use of the term positive see section 2.1.c of I.



Consider now Einstein equations written in local coordinates (z#) for U C M and referred to
the basis {e, @ 6"} of T} (M),

1 1,
Rl — —2-1?,5,‘} = T# or i =0 56{f’1" (2)
where T} are the components of the energy momentum tensor of matter and 7" = T} its trace.
Multiplying both members of eq.(2) by 8 we get

RH - %RB“ =T o RE=TY- g . (3)

Recalling eq.(109) of I we see that R* = (8 A 8)6* are the Ricci 1 form fields 8 A & being the
Ricci operator and @ is the fundamental Dirac operator acting on section of C&(M). T* = THe”
are said to be the energy momentum 1-form fields. Also recalling eq.(114) of I we see that
Oé* = R* — RH“ = (*, where O is the Einstein operator and G* are said to be the Einstein
1-form ﬁelds e, G* = GBY. Then eqgs.(3) can be written

m

Do =T*  (a) or (3/\3)9“:'['“:_%9“ (b). (4)

Now, the Ricci operator (& A @) can be written in terms of the D’Almbertian operator 8 » 8
[eq. 105 of I] and other combinations of the Dirac operator as

OND=-B°8+8:0¢ +ddA (5)

and eq.(4b) can be written
(030 +ON(D-0*)+ D (BNO*)=T" - éw# &= *xG* = xT* . (6)

Eq.(6) represents a wave equation for the (6*) and it suggests us to take the {#*) as the basic
variables representing the gravitational field. Observe that eq.(6) is an intrinsic equation written
for sections of the Clifford bundle C¢(M) and (8#) does not need to be a coordinate basis. When
9 = @ Az* = de* and in the gauge § o 4 = —§0* = 0 (6 being the Hodge codifferential) eq.(6)
reduces to

(808)0" = ~T* + - '19# (1)

and taking into account eq.(105) of I we see that in this case (3 - 8)8* = g"‘ﬁV V6*, and
the name wave equation for eq.(6) is well justified. Observe aiso that 9. §* <— £ g""B =
0(Ve,8” = — L% 0*) which means that the coordinates are harmounic.

Taking 1nto account that {##) is an arbitrary moving frame of 7} we choose hereafter
without loss of generality the orthonormal basis of T*M, (¢#). Then ¢ = 3, 9* @ ¥* ,g7! =
n"e, @ ey, N = diag(l,—-1,-1,-1) = 9*¥ and

AV Y + I VIR =2 e Y = P, (8)



If wf = L{, 9% are the connection 1-form fields and if (¥,) is the reciprocal basis (¥#) i.e.,
¥ o 9, = §% then Cartan’s structure equations [eq.(42) of 1] are

dd* + w2 A9% =0 or d¥, ~wi AN, =0 (a)
p ©
dwg+wﬁ/\u’3:(2§ (b)

where d = 8A is the exterior part of the Dirac fundamental operator and Q2 are the curvature

2-forms [eq.(38) of I}, i.e., 2 = IR “ 9% A 9P, R,’, ;5 being the components of the Riemann
tensor of V.

We can now write Einstein equations in another suggestive form

Proposition. The Einstein 1-forms G* = Od9* = R* — L R9* can be written as

*G? =d*G° + t° (10)
where
—1 e 1 ox B a
* G :EL-.JO,'@/\*(’!? AG” AD7) (11)
1
* 147 = —5wap A [ A+(9% A P AD7) 4+ Wl A X9 A Vg A D7) (12)

Proof: Taking into account eq.(113) of I namely
2xG" =x0° = O Adgd, %0
we get
2xG° = Qua Ax(9" AP A D) (13)
where we used eqs.(20) of L.

Now, using Cartan’s structure equations we can write of eq.(13) as 2% G7 = Qa5 A (¥ A
PPAD7) = dwgp A (D% A 9P AD7) + wap Awh Ax(9% ADP A7), But, dwag Ax(395 A 9P AD7) =
dlwag Ax(9% AP A7)+ wop Adx (95 AP AD7)] = dlwag A (9% ADP AD7) = o AwS AX(DP A
98 A ¥7) — wap A wg A*(9 AP A7) — wag Aw§ A%(97 A 92 A 97) where we used that

AT ADT = —wE APPADTTA LAY — Wl AP AL AR AP

dx B AL AP = G AXDPP AT A LAY =Wl AT AL A AP
It follows that

2xG° = dlwag A*(9* AP A7)
— W AT AX(I* AP AIT) + B AR NI A DY)

With the result of the above proposition we can write Einstein equations as

dx G ++t° = —xT° (14)



a form that appears in*3l. From this equation it follows the following “conservation law”,
d(xT7 +%t”) =0 (15)

and {7 can be thought as the energy momentum 1-forms of the gravitational field. However we
must take care here since the gravitational field (¥#) is living in a general Lorentzian spacetime
where there are no genuine conservation laws in general 39 and also % is not uniquely defined
and in general 1° = 59* is such that t,, is not symmetric [** Observe that since [(f,) € sec TM
is the dual frame of (¥#)] then fy € secT'M is a reference frame field in M if and fp is geodesicld]
i.e., Dg9° = 0 and 9° A d99® = 0, then we can alaways put ¢° = 0 along a geodesic line that is
an integral line of f, {equivalence principle) and thus gravitational energy has no localization in

Einstein theory despite the beautiful “conservation equation” [eq.(15)] found above. We come
back to this point in section 5.

3. THE LAGRANGIAN DENSITY

We want now a Lagrangian density that yields eq.(6) [or eq.(14)] for (9*) €
sec(T*M) C secC{(M) taken as basic variables representing the gravitational field and where
PV P 9" VI* = 20", Since eq.(6) [or eq.(14)] is equivalent to xG* = «T*, the Lagrangian
density we are looking for (call it ﬁg)) must differs from the Einstein-Hilbert Lagrangian

It
Lg= ERTQ (16)
by almost an exact differential. Moreover E(El.] must depends on 9* and & A 9# = d¥* in such a
way that the action results invariant for the diffeomorphisms of the so called manifold mapping
groupl1®1 (general covariance).
Taking into accout that,
1

o _1‘ o —_1
5 *(6% 2 90) = 5 x[(09°) 9, =~z R,

and by using eqs.(20) and eq.(112) of I we get
1
Lp= 59“,,/\*(19“/\19“) (17)

That eq.(17) is indeed correct can be seen trivially, since 2Q,5 A x(9% A 9°) = (8 A 9%) A
*lyg = =9 A *(19‘3 o Qap) = — * [9%o (19‘3 o Qup)] = — % [9%e (%ngwﬂﬁ o (94 AW =
= % [9% ¢ (3Rpagu (149" — ™ 9")] = — % [0% o (~Ra)] = R

As can be easily checked using Cartan’s second structure equation [eq.(9b)] we can obtain
Einstein’s free field equations xG, = 0 by varying [ Lg with respect to #* and w,,. To obtain
*G# = xT* we need to use the total Lagrangian

Ci; =Lg+ ﬁiﬁ‘, £Bt — @ AT, (18)



where the T, as in eq.(3) are the energy-momentum 1-forms of matter.

Our goal is to write L as a functional of 9# and d¥*. This can be done once we take into
account the following formula for the connection 1-forms w,, which are trivially proved (using
the formalism of I) by inverting Cartan’s structure equation. We have

P = (DA I (B AP+ (9o (3 - (D A D,))]

1
= 5[19" o ¥ — 9% o d¥ + (9" o (0¥ o di,))9] (19)
This last equation shows explicitly that within C£(M) the connection 1-forms are given in terms
of internal products of 9# and d¥”, thereby implying that the concept of the non-flat connection

V can be expurgate from the formalism of the gravitation theory. Indeed, the Lagrangian density
given by eq.(17) will be shown now to be written

1
Le=LY - 5dl9* A +(d9,)] (20)
where
O lTﬁauﬁﬁu(,. Awb) 1
E T 737 Wapihldg (21.a)

1 :
= =3 e 9 {[%(190 s di — D5 o dDy + (o » (95 = d9°))0,] A
1
A [5(19,3 o d’ — 97 o dig + (9 o (97 = d¥7))V,]} (21.b)
Indeed, since 2Q,5 A x(9* A 9#) = — % [9% o (9P o Q,53)] we have,

B o (97 2 Q) = 9% o (97 o dwyg) + 9% o (97 o (wep Awh) (22)

and

30 (0 0 (Wap Awh) = %o [(8° o )y — (9% » )]
= (9% o wap )9 ) = (9 = W)(0® o i)
= NI, — 10l (23)

We can easily verify that the dual of the first term in eq.(20) is the exact differential —%d['ﬂ“ A

*(dd,)] and eq.(20) is proved. We immediately recognize ﬁg} as the first order lagrangian first
introduced by Einstein??. Here in the form of eq.(21) we see that Cg) is intrinsic covariant
since it involves only the internal products of #* and d9*. In this way according to a well known
result[?%] the action J Eg) is manifestely invariant under the action of the manifold mapping

group of M. [ L:g) also has as it is clear the restrict orthocrounous Lorentz group [.',I,_ as a
local gauge invariant group. This happens since (i) all sections of the Clifford bundle transforms
in the same way®¥ under the action of Spin +(1,3), the structural group of the bundle, e.g.,
¥(z) — R(z)9(z)R*(z), dI*(z)— R(z)d6"(z)R*(z), with R(z)R*(z) = R*(z)R(z) =



1, R(z) € Spin(1,3), V& € M; (ii) R(z) = F®) with F(a) € sec AX(M) C C€(M) and (iii)
Lagrangian £ are 4-forms and then commutes with 2-forms, i.e., R(z)LR*(z) = L.
With some algebraic manipulation ﬁ%} can be written in the following suggestive form

£ = %‘w A xd,, - -;—d* 9 A x(dxD,) + i—(dﬂ“ A9,) A x(dB, A D) (24)
which appears in [*8]. The first term in eq.(24) is of the Yang-Mills type. The second term will
be called the “gauge fixing” term, since it can be written as -—%619” A %69, and recalling that
09* = 0 is equivalent to the harmonic gauge. The third term is the autointeration term.

Writting Lg = LZE,;) — 97 A %I, we can obtain Einstein equations in the form of eq.(14) by
varying [ Lg with respect to (97) and (d9*).

In resume, having arrived at Eg) written as a functional of 97 and d¥” we succeeded to
expurgate from Einstein’s theory the concept of nonflat connection V and the associated ge-
ometrical objects {(Riemann tensor, Ricci tensor, etc). However, the Lagrangian density E%)
written as in eq.(24) makes use of the Hodge dual * associated with g. To formulate the theory

in Minkowski spacetime we must expurgate g from the theory. This will be done in the next
section.

4. THE GRAVITATIONAL FIELD IN MINKOWSKI SPACETIME

To achieve our main objective of obtaining a gravitational field theory in the sense
of Faraday and yet equivalent to Einstein theory, we need to express ﬂg} in C£(IMI') where
MI = {IR* n,™,) is the Minkowski manifold. This can be done once we remember that g can be
represented in C£(IM) by the field of linear transformations h=1/2 (taking M = IR*) as discussed
in section 3.1 of I. We have

aef=g"a, B)=h"(a) hTHB) = a-h7(B) (25)

where h™1/2 : T*IR* — T*IR* is the square toot of A~ : T=IR* — T*IR* (T*IR* C CE(IMI)) the
field of linear tranformations which induces g~?.

Eq. 25 shows explicitly that g~ 1(8#,6*) can be expressed in terms of the internal product
associated to n (the metric of the Minkowski spacetime) in C{(IM). To fix the ideas, observe
that from Eq. 25 we can define the fields (), p = 0,1,2,3, a* € sec(T*IR?*) C sec(C¢(IM)) by

a* = h~1(6") = (h")%8" = hi¢". (26)
Then,
g L(9*,8") = a* - a¥ = ¥ = y(a*, ). (27)

It follows that the (a*) are 7-orthonormal and satisfy the defining property of the Clifford algebra
IRy 3 a*a” 4 aa* = 29", Vo € IRY. Tt is important to observe that in general the a* are not
exact differentials and in the basis {(a*) of T*IR* the expression of g is

g = gaﬁaa & afj’ Yo = TI;Wh‘;hEa (28)



where h# = (h=1)4.
We observe also that due to the existence in the Minkowski spacetime of the metrical field
1 and the field of symmetric automorphisms g, we have two star operators * and . The relation
between these operators is:
* = Ah * Ah—] y (29)
where Aj-: is defined in Eq.(3) of I once we put ¢'/2 = h~1,
With Eq. 29 we can write, if we want, the Lagrangian L'.(bl) in terms of the usual Hodge star

operator of the Minkowski spacetime, but this results in an odd expression which adds nothing
new to the theory.

To continue, we proceed as follows. We interpret the (V#) as physical fields living in
Minkowski spacetime, i.e., ¥ € secC{(IM), and thereby we interpret ﬁ%) [Eq. 21.b or Eq. 24]

as the Lagrangian density for these fields in Minkowski spacetime, even if it is not written with
the standard star operator *.

The resulting equations of motion for the ¥* fields are, of course, Eqs. 6 or 14. In order
to express Eq. 6 in terms of the fundamental Dirac operator @ = #*De_ and the Hodge star
operator %, we observe that it holds the following identity, which is proved in[2%):

(BAB)w = (BAB)D + g7 Joow,b°, (30)

where w € sec(T*M) C C£(IM) is an arbitrary 1-form field on M and & = A~%(w). Using this
relation, Eq. 6 is written as:

(BAB)? = —J° 4+ T* - %T&", (31)

where J? = g7 Joo 8% and J,, is defined in Eq.(95) of L.
By its turn, Eq. 14 can be written in Minkowski spacetime as:

dx G5+ +t5, = =T, (32)
where
*gﬁ’v{ = A\h * .\h—aga
G = ApxAyat® (33)
*Thy = ApxApaT7
and
Ap* Ap-iG® = %w,ﬂ, AAp* Ay—1(8* AB” A6°) (34)
1
Ap Ayt = ~ 5% A [wf; ANAp* Ap—1 (8" ANBY AN OP) +
+ WAL Ap-r (64 NG A 9“)] , (35)

where the w,,, are given by Eq. 19, but they are not more connection 1-forms. Eq. 32 express the
conservation law of energy and momentum for the gravitational plus matter fields in Minkowski



spacetime. Since i}, is expressed as the combinations of the internal product of 9, and dé,,
it is gauge invariant under Spin,(1,3) in our theory. Thus this equation does not suffer the
problems!?®! associated with analogous equation d(xT — %) = 0 interpreted as an eguation
valid in a general Lorentzian spacetime (M, g, 7,4, V) in Einstein’s theory.

5. CONCLUSIONS

As we said the introduction, there are several attempts to formulate the gravitational
theory as a field theory (in the sense of Faraday) in Minkowski spacetime. In particular, we said
that Weinbergl?! is of the opinion that the geometrical interpretation in terms of a Lorentzian
spacetime is a coincidence. We found above how the “coincidence” comes up. We said also in the
introduction that one of the main criticisms to the geometrical theory comes from Logunov and
collaborators(7, 8] and has to do with the fact that in particular, in the geometrical theory there
are no genuine conservation laws for energy-momentuin and angular momentum in general. In
our theory we have a natural conservation law for energy and momentum of the gravitational
plus matter fields that follows directly from eq.(32).

In his field theory of gravitation (RTG) Logunov(™! fixes the gauge by writting
Du(v/=g¢") = 0 where /—g¢** = /=yv*v + J/=7¢**,¥** are the components of the
Minkowski metric and ¢/ are the components of the gravitational field. The gauge fixing equa-
tion is then interpreted as one of the field equations necessary to eliminate the spins 0’ and 1
from the tensor field ¢**. According to Logunov this gauge makes it possible for RTG to predict
without ambiguity gravitational phenomena like the “radar echo time-delay experiment.” Also
according to Logunov, RTG with the gauge fixing condition prohibits the existence of black-
holes. We shall discuss these points in another paper. Here we obtained the conditions for
Einstein’s gravitational theory to be equivalent to a field theory in flat Minkowski spacetime
without fixing any gauge a priori. We must emphasize here that the arena of physical phenom-
ena in our theory is Minkowski spacetime (IR*,n, m, 13) The Lorentzian manifold (IR*, g, ,, V)
of our gravitational theory is an effective curved space of field origin. Then it must have a
topology compatible with IR*, being non sequitur Grischuk’sf% statement that in RTG it is
possible to have a closed world (this puts a new restriction for the Weinberg’s “coincidence”).
A very simple interpretation of how measurements done by standard clocks and standard rods
in a gravitational field give the effective nonflat Lorentzian manifold is given by Schwinger.!3!

We must say that our L',(P}) suggests the interpretation of the gravitational field as a gauge
field. Moving espressed the Lagrangian of all theory in flat Minkowski spacetime, then the
arguments of?™] can be easily used to show that our Lagrangian has indeed T* as a gauge group.
From our approach this seems natural, since the effective metric g is generated for strains in
the cosmic lattice (¢*) as we have seen in section 2.l.c of I. Thus our presentation justifies
Pommaret’s?®3 criticism to the usual presentation of General Relativity as a gauge theory of the
Lorentz group (rotations) that is associated with energy-momentum tensor (that results in all
field theories as coming from the translation group). We discuss further this point, as well as
models of Einstein’s theory in our formulation, in another publication. We would like to call the
reader’s attention to the fact that recently it has been showed that Maxwell and Dirac fields can
be represented as sections of the Clifford bundle over Minkowski spacetime (see, e.g.,[%=3¢]), It
is interesting that this is also the case for the gravitational field. Obviously, the representation

10



of these different fields as objects of the same mathematical nature is the preliminary condition
for any attempt to construct an unified field theory.

To end, we must recall here that there have been some applications of Clifford algebras

in General Relativity, as, e.g., in®"~4% However those presentations are not equivalent to the
ours.
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