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ABSTRACT 

The Clifford bundle approach to the geometry of a Riemann-Cartan-Weyl space developed 
in a previous paper suggests by itself to interpret Einstein's gravitational theory as a field 
theory in the sense of Faraday, i.e., with the gravitational field living in Minkowski spacetime. 
Here we present such a theory. For the variables playing the role of the gravitational field 
the lagrangiam density is of the Yang-Mills type with gauge fixing and auto interaction terms. 
A brief comparison of our theory with some others field theories of the gravitational field in 
Minkowski spacetime is given. Some misconceptions and misa.nderstandings are clarified. 
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1. INTRODUCTION 

Einstein's gravitational theory ( General Relativity) is one of the most beautiful physi-
cal theoriesl1l Yet, many physicists are not happy with one or another aspect of the theory. 
Weinberg121, e.g. , is of the oppinion that the geometrical interpretation of the theory in terms of 
a Lorentzian spacetimel3 ,4 ,5,6l is a coincidence anda physical interpretation for the gravitational 
field in the sense of Faraday, i.e., with the gravitational field living and interacting with the other 
physical fields in Minkowski spacetime is desirable. One of the main criticisms to the geometrical 
interpretation comes from Logunov and collaboratorsl7,s]_ ln particular, in the geometrical inter-
pretation there are no genuine conservation laws for energy-momentum and angular momentum 
in general. This point is indeed a crucial one and deserves a criticai consideration by people sup-
porting the geometrical interpretation. ln their book 'General Relativity for Mathematicians", 
Sachs and Wul3l said: "It is a shame to loose the special relativistic total energy conservation 
laws in General Relativity. Many of the attempts to resurrect it are quite interesting, many are 
simply garbage" (see, e.g. , ref. [9) for a mathemathicaly clear presentation of the reason for the 
non existence of conservation laws in the sense of special relativity in Einstein's gravitational 
theory). 

These considerations among many others equally important inspired several physicists to 
build up a consistent theory of the gravitational fiel d in flat Minkowski spacetime see, e.g.,110- 211 
besidesl7 ,s]. 

ln this paper we present our approach to the subject which is possible due to the Clifford 
bundle formulation to the geometry of a Riemann-Cartan-Weyl space (RCWS) developed inl221 
(hereafter called I). 

To start we recall that, as it is well known, in General Relativity every gravitational field 
which is a solution of Einstein equations is modelled by a Lorentz spacetimel3 ,4 ,5 ,6l, i.e., a quadru-
ple (M,g, r9 , v') where ."'1 = (M,g, r9 ) is a LorentziaJ1 1nanifold, i.e., M is a Hausdorff, para-
compact, C 00

, connected four dimensional manifold oriented by r9 ( the volume element 4 form) 
and time oriented. The tensor field g E TJ M is a. Lorenttz metrir of signature (1,3) and v' 
is its Levi-Civita connertion. The pair (TxM,gx),:1: E M, is isomorphic to JR.1•3 the so called 
Minkowski vector space[4] , which is not to be confoun<led with the Minkowski spacetime, i.e., 
the particular Lorentzian spacetime represented by the quadruple (M = IR.4 , 'T/, r.,, D) where 
'T/ is a Lorentzian metric, D is its Levi-Civita connection such that DrJ = O, T[D] = O and 
R[D] = O, with T and R being respectively the torsi'on and curvature tensors . We denote by 
IMl = (JR4 , n,, r.,) the Minkowski manifold and by T (JR.4 ) and T·(JR4 ) respectively the tangent 
and the cotangent bundles of the Minkowski manifold. 

The strategy for the presem paper is then as follows. Using the Clifford bundle approach to 
the geometry of a RCWS <leveloped in I we first formulate in section 2 Einstein's theory in the 
Clifford bundle Cf(J\,1)[= Cf(M,g- 1)] thereby identifying the set of linearly independent 1-form 
fields (0µ),µ = O, 1,2,3, ()µ E secA1(M) C secCl(M) as t he natural variables playing the role 
of the gravitational field in the formalism. We give the field equations satisfied by the (8µ) (that 
are equivalent to Einstein equations). The field equations for the (8µ) [eq.(6)] are non linear 
wave equations. We givP also au equivalent form of the field equations [eq.(14)] and discuss its 
meaning. 

ln section 3 we intro<luce the Lagrangian density that gives eq.(6) through the action 
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principle. This Lagrangian ,C~) turns to be of the Yang Mills type for the ((JI-'), with a gauge fixing 
term plus an autointeraction term. L'.~) turns out to be equivalent to the first order Lagrangian 
density first introduced by Einstein[23J and well discussed in, e.g., ref.l24l. ln our formalism ,C~) 

is a functional of (}11 a.nd d()µ· and so it is intrinsic covariant. The action J ,C~) is then by a well 
known resu1t[25J inva.riant under the diffeomorphisms of the so called manifold mapping groups 
(general covariance). ,C~) possess also the restrict., hornogeneous and orthocronous Lorentz 
group .ct as a local gauge group, but ours is not a gauge theory of the ,Cl group. 

The functional form of e~) does not involves anymore the geometrical concepts of a con-
nection v' and the associated Riemann and/or Ricci tensors, but includes the concept of the 
Lorentzian metric g through the Clifford inner product in eq.(21) or through the Hodge dual in 
eq.(24) . This suggests the following. Take M = IR4 in M and consider the Minkowski man-
ifold IMI = (JR4, 17, rr,} and the Minkowski spacetime (JR", 17, rr,, D}. Next recall the discussion 
of section 3.1.c of J where it is shown tha.t in the Clifford bundle ce(JMI) (with IMJ = M) we 
can introduce through t he theory of the symmetyric automorphims of a linear space infinitely 
many non degenerated symmetric bilinear forms fields on the metrical manifold (JR4 , 17). If we 
interpret g E sec 15 IR4 as a fixed nondegenerated positive!·) symmetric bilinear form field on 
IMI then we have a chance to formula.te Einstein 's theory in fla.t tviinkowski spacetime. 

ln section 4 we present then the gravita.tional theory as a field theory in the sense of 
Faraday. We show that [~) interpreted as a La.grangia.n density in Minkowski spacetime has 
the Poincaré group P = ,C: 09 T 4 as invariance group in the usual sense of field theory and J [~) 
is also generally cova.ria.nt. Besides, L'.~) possess also .Cl as a local gauge group and possess 
T 4 (the translation group in JR4

) as a local gauge group in the sense of gauge theory in flat 
spacetime[25 - 27

J_ This la.st st.atement can be proved directly using the results ofl27l, which are 
valid only after we identify the correct "Hodge dual operator" to be used in .C~) . 1n[27J the 
Lagrangian is constructed with the flat spa.cetime Hodge dual operator and thus the theory 
there presented is not equiva.lent to Einstein's theory. 

Finally in section 5 we present our conclusion together with a brief comparison of our theory 
with other fla.t spa.cetime formulations of the gravita.tiona.l theory. 

2. EINSTEIN EQUATIONS IN THE CLIFFORD BUNDLE Cl(M) 

Let M == (M,g , r9 ) be a Lorentzian manifold anel (M,g,T9 ,v') a Lorentzian spacetime 
modelling the gavita.tional field g in Einstei n's theory. Let CC(M)[= Ce(M,g-1)] be the Clifford 
bundle of M [section 3 ofl]. Let (01'} E sec(T· M) C scc Cf( M) be an arbitrary moving frame of 
T*M, dual to the frame (e1,} ofTM. Then, g = g1,,,81' (") 0" E serTJ(M) and g-1 = giweµ ®e,, E 
secTJ(M) with gµ0t90tv = bt. Taking into account the fact tha.t our goal is to give a flat 
spacetime formulation of Einstein's theory and taking into account the results of section 3.1.c. 
of I we denote the Clifford product in Cl(M) by V and the inner product by • . The ()µ satisfy 

(1) 
(•) for the reason for the use of the term positive see section 2.1.c of 1. 
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Consider now Einstein e4.uations written in local coordinates (xlL) for U e M and referred to 
the basis { e IL © 011 } of Tf ( M), 

or (2) 

where T/)' are the components of the energy momentum tensor of matter and T = Tf: its trace. 
Multiplying both members of eq.(2) by 0 11 we get 

or (3) 

Recalling eq.(109) of I we see that Rµ. = (ÍJ /\ ÍJ)B,., are the Ricci l form fields ã /\ 8 being the 
Ricci operator and ã is the fundamental Dirac operator acting on section of Cf(M). TIL = TfB11 
are said to be the energy momeutum 1-form fields. Also recalling eq.(114) of I we see that 

= Rµ - ½ RB1' = Gµ., w here D is the Einstein o per ator and Gµ. are sai d to be the Einstein 
1-form :fields, i.e., GIL = G~B11 • Then eqs.(3) can be written 

( a ) or (b) . (4) 

Now, the Ricci operator (ã /\ á ) can be written in terms of the D'Almbertian operator 8 ° 8 
[eq. 105 of I] and other combinations of the Dirac operator as 

(5) 

and eq.(4b) can be written 

Eq.(6) represents a wave equation for the (Bµ.) an<l it suggest:; us to take the (0µ.) as the basic 
variables representing the gravitational field . Observe tha.t eq.(6) is a11 intrinsic equation written 
for sections of the Cliffor<l bundle Cl(M ) and (Bµ.) does not need to be a coordinate basis. When 
0µ. = 8 /\ xµ. = dxµ a.nd ill the gauge ã O 0µ = -/JBµ. = O ( b being the Hodge codifferential) eq.(6) 
reduces to 

(7) 

and taking into a.ccount eq.(105) of I we see that in this case (à O ÍJ )0µ. = gº/3'10 ,''v{J(),,., and 
the name wave equation for eq.(6) is well justified. Observe a.lso that ô O ()JJ. -ç:::::::> L~{Jgo:{J = 
O ("ve,,.011 = -L~o:0º) which means that the coordinates are harrnonic. 

Taking ínto a.ccouut that (B,.,) is an arbitrary moving frame of r· M we choose hereafter 
without loss of generality the orthonormal basis of T* Aí, (iJµ). Then g = TJ1L11 'l?JJ. © '1? 11 , g-1 = 
if'11e,,. ® e11 , 7J1L11 = diag(l , - 1, - 1, - 1) = TJµ.11 a.nd 

(8) 
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If wt = L~v'l9ª are the connection 1-form fields and if ('190 ) is the reciprocal basis (191-'} i.e., 
191-' 0 rJv = 8t then Cartan's structure equations [eq.(42) of I] are 

d,,JP + w~ /\ 19u = O or (a.) 
(9) 

(b) 

where d= 8/\ is the exterior part of the Dirac fundamental operator and n~ are the curvature 
2-forms [eq.(38) of I], i.e., n~ = ½ R,,, Paf3'19°' /\ ,&f3 , R,_. Po,f3 being the components of the Riemann 
tensor of V. 

We can now write Einstein equations in another suggestive form 

Proposition. The Einstein 1-forms G,.. = = R,.. - ½R{)I-' can be written as 

* Gª = d* Çª + *tª 

where 

(10) 

1 
* -ltu = - 2wo,f3 /\ [w; /\ *( '19°' /\ 19f3 /\ '1911

) + w~ /\ *( '19°' /\ '19{3 /\ '19ª) (12) 

Proof: Taking into account eq.(113) of I namely 

we get 

(13) 

where we used eqs.(20) of 1. 
Now, using Cartan's structure equations we can write of eq.(13) as 2*Gª = nafJ /\ *('19°' /\ 

19f3 /\ '19ª) = dwo,{3 /\ *('19°' /\ ,Of3 /\ '19ª ) + Wo,p /\w; /\ *(19°' /\ ,Of3 /\ ,ou). But, dwo,{3 /\ *('19°' /\ 19/3 /\ '!?ª) = 
d[wo,13 /\ *( 19°' /\ {)f3 /\ {}ª) + Wo,(J /\ d* ( {}°' /\ '1?/3 /\ 79ª)] = d [wo,13 /\ *( {)°' /\ í)f3 /\ {}ª) - Wo,f3 /\ w~ /\ *( 'l?P /\ 
,of3 /\ {)ª) - Wo,f3 /\ w: /\ *( {)°' /\ {)P /\ ,ou) - Wo,f3 /\ w; /\ *( ,,JCY /\ ,of3 /\ {)P) w here we used that 

d't9°'1 Â . • • Â ,,J°'r = -w;l Â {)P /\ '19°'2 /\ ... /\ {)°'r _ _ .. _ wt /\ {)°'1 Â ... /\ rJ°'r-1 /\ í)f3 

d* {)ª1 /\ ... Â {)ª r = -w;;i /\ *{)/3P /\ ,,Jª2 /\ ... /\ í}ºr _ ... _ w~r /\ *{)ª1 /\ . • • /\ ,,Jªr-1 /\ {)f3 • 

It follows that 

d[waf3 /\ *( {)ª /\ '1913 /\ '19ª)] 
Wa/3 /\ [w; /\ *( 79ª /\ {)/3 /\ 79ª) + w~ /\ *( í}ª /\ í} /3 /\ f)ª) 

With the result of the above proposition we can write Einstein equations as 

{14) 
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a. form that appears inl28l. From this equation it follows the following "conservation law", 

(15) 

a.nd tu can be thought as the energy momentum 1-forms of the gravitational field. However we 
must take care here since the gravitational field (19µ) is living in a general Lorentzian spa.cetime 
where there are no genuine conservation laws in general (3 •9) and also *tu is not uniquely defined 
and in general te, = t~ {)1' is sucl1 that tµ,v is not symmetric l28l Observe that since [(!,...) E sec T M 
is the dual frame of ( {)µ·)] then lo E sec T M is a reference frame fiel d in M if and / 0 is geodesic[4] 

i.e. , D Jo t?º = O and t?º /\ dt?º = O, then we can alaways put tu = O along a geodesic line that is 
an integral line of lo ( equiva.lence principie) and thus gravita.tional energy ha.s no localization in 
Einstein theory despite the beautiful "conservation equation" [eq.(15)] found above. We come 
back to this point in section 5. 

3. THE LAGRANGIAN DENSITY 

We want now a Lagrangian density that yields eq.(6) [or eq.(14)] for (t?,...) E 
sec(T* M) C secCl(M) taken as basic variables representing the gravitational field and where 
t?,,. V t?v + .iv V {)/J. = 2rfv. Since eq.(6) [or eq.(14)] is equivalent to *Gµ = *T,.,., the Lagrangian 
density we are looking for ( call it .C~)) must differs from the Einstein-Hilbert Lagrangian 

(16) 

by almost an exact differential. Moreover .e~> must depends on {)/J. and i:J /\ {)µ = dr)µ, in such a 
way that the action results invariant for the diffeomorphisms of the so called manifold ma.pping 
groupl13,141 (general covariance). 

Taking into accout that, 

! * (Gu "19u) = ! * 0 19c,] = _!Rr9 2 2 2 

and by using eqs.(20) and eq.(112) of I we get 

LE = !n,.,.v /\ *(-i?µ, /\ {)v) 
2 (17) 

That eq.(17) is indeed correct can be seen trivially, since 200 t3 /\ *( 19° /\ 1913) = ( 19°' /\ {}/3) /\ 
*ºa/3 = -rJ°' /\ *(rJt3 o n a/3) = - * [rJº o (rJf3 o n o,{3)] = - * [rJº o ( ½Raf3µ,i,{}/3 o (rJµ /\ rJV)] = 
- * [19º 0 (½R/30,µv(r/µ{)µ - 1/11 -i?µ)] = - * [rJ°' 0 (-Ro)] = *R 

As can be easily checked using Cartan's second structure equation [eq.(9b )] we can obtain 
Einstein's free field equations *Gu = O by varying J .CE with respect to r)/J. and w,.,,. To obtain 
*Gµ, = *Tµ we need to use the total Lagrangian 

rt _ r + r int 
1-.,E- 1-.,E 1-.,E, (18) 
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where the Tu as in eq.(3) are the energy-momentum 1-forms of matter. 
Our goal is to write LE as a functional of {)ll and d{)µ,. This can be done once we take into 

account the following formula for the connection 1-forms Wµ,v which are trivially proved (using 
the formalism of I) by inverting Carta.n's structure equation. We have 

i [ {)V o ( iJ A {}I') - {}/J. o ( ã A {)1') + ( {}1

' o ( {)V o ( ã A {) (7) )){}11

] 

![{)v o d{)/J. - {)1' o d{)v + ( {)1' o ( {)v o d{)u )){)uj 
2 (19) 

This last equation shows explicitly that within Cl(M) the connection 1-forms are given in terms 
of internai products of {),. and d{)v, thereby implying that the concept of the non-flat connection 
"v can be expurgate from the formalism of the gravitation theory. Indeed, the Lagrangian density 
given by eq.(17) will be shown now to be written 

(20) 

where 

1 - 2r9{) 0 º -,Jf3 º (wap /\ w~) (21.a) 

= _!r9{)0 
o ,,Jf3 ° {[!({)0 ° d{}[J - {){3 ° d{)0 + ({} 0 o ( {)[3 o d{)u))-8u] A 2 2 

1 /\ [2({){3 o d,,JP - {)P o d{){J + ({)[3 o ({)P O d-8,r )){}u ]} (21.b) 

Indeed, since 2n0f3 A*({}ª /\ r)f3) = - * [-,Jº 0 ( r)f3 ° n 013 )] we have, 

{)º º (íJf3 º n a-13) = {}º º (íJf3 º dwa,13) + {)º º ({){3 º (wa,p /\w~) (22) 

and 

{)º º [( {){3 º Wap )w~ - ( {}º 0 w:;)w0 13] 

( {}º o Wa,p )( {)(Y o w:;) - ( {)P o w:; )( {)º o Wa,p) 

r/3\L;.pL:{3 - L:PL~13) (23) 

We can easily verify that the dual of the first term in eq.(20) is t he exact differential -½d[{),./\ 
*(d{),.)] and eq.(20) is proved. We immediately recognize [~) as the first order lagrangia.n first 
introduced by Einstein[23l_ Here in the form of eq.(21) we see that [~) is intrinsic covariant 
since it involves only the internai products of {)µ and d{),._ ln this way according to a. well known 
resultf25l the action J [~ ) is manifestely invariant under the action of the manifold mapping 
group of M. J [~) also has as it is clear the restrict orthocrounous Lorentz group ct as a 
local gauge invariant group. This happens since (i) all sections of the Clifford bundle transforms 
in the sarne way[34] under thP action of Spin+{l , 3), the structural group of the bundle, e.g., 
{)µ(x) t--t R(x){),.(x )R+(x), d{),.(x ) 1--+ R(x )d0,.(x)R+(x), with R(x)R+(x) = R+(x)R(x) = 
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1, R(x) E Spin+(l,3), V x EM; (ii) R(x) = eF(x ) with F(x) E secA2(M) C Cf(M) and (iii) 
Lagrangian ,C are 4-forms a.nd then commutes with 2-forms, i.e., R(x )[R+(x) = t:,. 

With some algebraic manipulation ,e~) ca.n be written in the following suggestive form 

(1) 1 1 1 
[,E = - 2d{P" A *dr)µ, - 2d * ,aµ, A *(d* t?µ,) + 4(diW A t?µ,) A * (d{)II A t?") (24) 

which appears in [2sJ. The first term in eq.(24) is of the Ya.ng-Mills type. The second term will 
be called the "gauge fixing" tenn, since it can be written as - ½61?µ A *ô'!?µ, a.nd recalling that 
8'1?µ, = O is equivalent to the ha.rmonic ga.uge. The third term is the a.ut ointeration term. 

Writting Ca = [,~) - ,&u A *Tu we ca.n obta.in Einstein equations in the form of eq.(14) by 
varying J Ca with respect to (-&u) a.nd (d-&µ,). 

ln resume, having a.rrived at e,~) written as a functiona.l of {)u a.nd d-&11 we succeeded to 
expurgate from Einstein 's theory the concept of nonflat connectiou 'V and the associa.ted ge-
ometrical objects (Riemann tensor, Ricci tensor, etc) . However, the La.gra.ngian density e,~) 
written as in eq.(24) makes use of the Hodge dual* associated with g. To formula.te the theory 
in Minkowski spacetime we must expurga.te g from the theory. This will be done in the next 
section. 

4. THE GRAVITATIONAL FIELD IN MINKOWSKI SPACETIME 

To achieve our main objective of obtaining a gravitational field theory in the sense 
of Faraday and yet equiva.lent to Einstein theory, we need to express [,~ ) in Cf(JMI) where 
lMl = (JR4, 77, r'l) is the Minkowski manifold. This can be dane once we remember tha.t g can be 
represented in Cf(IM) by the field of linear transformations h- 1/ 2 (taking M = JR4) as discussed 
in section 3.1 of 1. We have 

(25) 

where h- 1/ 2 : T• JR4 -----, T* IR4 is the square root of h- 1 : T w IR4 -----, T * IR4 (T* IR4 C Cf(JMI)) the 
field of linear tranfonuations which induces 9-1 . 

Eq. 25 shows explicitly that g- 1 (0µ ,0") can be expressed in terms of the internal product 
a.ssocia.ted to ri (the metric of the Minkowski spacetime) in Ci(JM) . To fix the ideas, observe 
that from Eq. 25 we can define the fields (aµ) ,µ= O, 1, 2, 3, aµ, E sec(T* JR4) e sec(Cf(JM)) by 

(26) 

Then, 
(27) 

lt follows that the {é') are 77-orthonorma.l and sa.tis(y the defining property of the Clifford algebra 
IR1,3: aµa" + a"aµ, = 21tv , Vx E fil4. lt is important to observe tha.t in general the aµ, are not 
exact differentials and ín the basis (a1') of T* m,4 t he expression of g is 

(28) 
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where h~ = (h-1 )~. 
We observe also that due to the existence in the Minkowski spacetime of the metrical field 

1J and the field of symmetric automorphisms g, we have two star operators * and *· The relation 
between these operators is: 

(29) 

where Ah-1 is defined in Eq.(3) of I once we put <f>112 = h- 1 . 

With Eq. 29 we can write, if we want, the Lagrangian [.~) in terms of the usual Hodge star 
operator of the Minkowski spacetime, but this results in an odd expression which adds nothing 
new to the theory. 

To continue, we proceed as follows. We interpret the (19µ) as physica.l fields living in 
Minkowski spacetime, i.e. , ,9µ E secCl(JM), and thereby we interpret L.:~) [Eq. 21.b or Eq. 24] 
as the Lagrangian density for these fields in Minkowski spacetime, even if it is not written with 
the standard star operator *. 

The resulting equations of motion for the {}µ fields are, of course, Eqs. 6 or 14. ln order 
to express Eq. 6 in terms of the fundamental Dirac operator ô = 0° De

0 
and the Hodge star 

operator *, we observe that it holds the following identity, which is proved in120l: 

(30) 

where w E sec(T* M) C Cl(JM ) is an arbitrary 1-form field on M and w = h-2(w). Using this 
relation, Eq. 6 is written as: 

where }P = gPª J 0 a0°' and J 0 ª is defined in Eq.(95) of I. 
By its tum, Eq. 14 can be written in Minkowski spacetime as: 

where 

and 

Ah* .\h-1 Çª 

Ah * Ah- 1 tª 

Âh * Ah-1 Tu 

Ah* Ah-1Çª iwµv /\Ah* Ah-1(0µ /\ 0" /\ 0ª) 

Ah* Ah-itª = -iwµ., /\ [w: /\Ah* Ah-1(0µ /\ 0" /\BP)+ 

+ w~/\Ah*Âh- 1(8µ/\()P 1\8ª)], 

(31) 

(32) 

(33) 

(34) 

(35) 

where the Wµv are given by Eq. 19, but they are not more connection 1-forms. Eq. 32 express the 
conservation law of energy and momentum for the gravitational plus matter fields in Minkowski 
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spacetime. Since tM is expressed as the combinatious of the iuternal product of 0,,. and dD,,., 
it is gauge invariant under Spin+(l,3) ín our theory. Thus this equation does not suft"er the 
problemsl28l associated with analogous equation d( *T" - *tu) = O interpreted as an equation 
valid in a general Lorentzian spacetime {M, g, T g , v') in Einstein's theory. 

5. CONCLUSIONS 

As we said the introduction, there are several attempts to formulate the gravitational 
theory as a field theory ( in the sense of Faraday) in Minkowski spacetime. ln particular, we sai d 
that Weinberg[2l is of the opinion that the geometrical interpretation in terms of a Lorentzian 
spacetime is a coincidence. We found above how the "coincidence" comes up. We said also in the 
introduction that one of the main criticisms to the geometrical theory comes from Logunov and 
collaborators(7, 8] and has to do with the fact that in particular, in the geometrical theory there 
are no genuine conservation laws for energy-momentum and a11gular momentum in general. ln 
our theory we have a natural conservation law for energy and momentum of the gravitational 
plus matter fields that follows directly from eq.(32 ). 

ln his field theory of gravitation (RTG) Logunovli,8] fixes the gauge by writting 
Dv(H9µ.z,) = O where Fggµ,z, = H,,,.v + H<P,,.v,,µ.v are the components of the 
Minkowski metric an<l </>~ a re the components of the gra.vitational field. The gauge fixing equa-
tion is then interpreted as one of the field equations necessary to eliminate the spins O' and 1 
from the tensor field rp1w. A,cording to Logunov t hi s gauge makes it possible for RTG to predict 
without ambiguity gravitational phenomena like the "radar echo time-delay experiment." Also 
according to Logunov, RTG wíth the gauge fi.xiug condition prohibits the existence of black-
holes. We shall discuss these points in another paper. Here we obtained the conditions for 
Einstein's gravitational theory to be equivalent to a field theory in flat Miukowski spacetime 
without fixing any gauge a priori. We must emphasize here that the arena of physical phenom-
ena in our theory is Minkowski spacetime {JR,4 , rJ, ri), D). The Lorentzia.n manifold (JR,4 ,g, r 9 , v') 
of our gravitational theory is an effective curved space of field origin. Then it must have a 
topology compatible with JR4, being non sequitur Grischuk's[3o] statement that in RTG it is 
possible to have a closed world (this puts a new restriction for the Weinberg's "coincidence"). 
A very simple interpretation of how measurements clone by standard clocks and standard rods 
in a gravitational field give the effective nonflat Lorentzian manifold is given by SchwingerJ31l 

We must say that our .C~) suggests the interpretation of the gravitational fi.eld as a gauge 
field. Moving espressed the Lagrangia.n of all theory in flat \ 1inkowski spacetime, then the 
arguments ofl27l can be ea.sily used to show t hat our Lagraugian lias indeed T 4 as a gauge group. 
Frorn our approach this seems natural, since the effecti ve rn etric g is generated for strains in 
the cosrnic lattice {aµ.) as we have seen in sectio11 2. l.c of I. Th us our presentation justifies 
Pommaret's[33l criticisrn to the usual presentation of Gen<'ral Helativity as a gauge theory of the 
Lorentz group (rota.tions) that is associated with energ_y-momentum tensor (that results in all 
field theories as coming from the translation group ). We <liscuss further this point, as well as 
models of Einstein 's theory in our formulation, in another pubiication. We would like to call the 
reader's attention to the fact that recently it has been showed that ?vl axwell and Dirac fields can 
be represented as sections of the Clifford bundle over Minkowski spacetime (see, e.g.,(34- 361). It 
is interesting that this is also the case for the gravitational field. Obviously, the representation 
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of these different fields as objects of the sarne mathematical nature is the preliminary condition 
for any attempt to construct an unified field theory. 

To end, we must recall here that there have been some applications of Clifford algebras 
in General Relativity, as, e.g., inl37- 4oJ. However those presentations are not equivalent to the 
ours. 
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and to CNPq for a research grant. 
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