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1. INTRODUCTION 

The prediction of the appearance of structures by theories of the early universe based in 
the spontaneous symmetry breaking of some unifying group has produced a great interest 
because of the cosmological as well as astrophysical implications1 . ln particular, cosmic 
strings are produced in the breaking of an U(l) symmetry, and are good candidates to 
seed the formation of galaxies2. Cosmic walls are associated to the breaking of a discrete 
symmetry, and may decay later forming cosmic strings3 . 

Geometrically, cosmic strings and domain walls are characterized by spacetimes with 
metrics that have null Riemann-Christoffel curvature tensor everywhere except on the 
lines that represent the strings and on the planes of the walls1 . ln other words, they are 
characterized by curvature tensors that are proportional to distributions with support on 
the defects. If we consider that in the uni verse there are other kinds of topological defects, 
we can characterize them in the sarne way as we do for cosmic strings and domain walls, 
i.e., by spacetimes having null Riemann-Christoffel curvature tensors everywhere except 
on the defects4 . For a universe filled with usual matter and topological defects we shall 
have a curvature tensor that is not null even outside the defects . 

The construction of a theory of distributions in curved spacetimes with support on one 
and two dimensional submanifolds is rather problematic. Thus, in general, the mathemat-
ical description of point particles (monopoles) and strings evolving in curved spacetimes 
as distributions is not on solid ground. This point has recently been stressed by Geroch 
and Traschen5. On the other hand, distributions in curved spaces with support on three 
dimensional submanifolds (hypersurfaces) are well defined, and the application of them to 
General Relativity is dueto the pioneering work of Lichnerowicz6 . This theory has been 
used in the study of propagation of different shock waves in curved spacetimes6 •7 and in 
the study of singularities of other well known models of the Einstein equations8•9 . Re-
cently, we have studied thin shells interacting with surrounding gravitational and matter 
fields by using this theory1º·11 . Our starting point is the "generalized" Bianchi identities. 

The most used description of cosmic walls12 - 15 is based in lsrael's theory of thin shells 
of matter16 . This theory takes as departure point the study of the extrinsic geometry of 
the surfaces that describe the shells of matter via Gauss-Codazzi equations. ln principie, 
both approaches give the sarne results and are complementary9 . 

ln the present work we use Lichnerowicz theory of distributions to generate metrics that 
represent topological defects. This approach considers the metric that is discontinuous 
across the surface that represents the topological defect, but has discontinuous derivatives. 

ln Sec. 2, we present a summary of the Lichnerowicz theory of distribution in curved 
spaces6 . We follow closely a presenta.tion of Taub9 . Our studies are restricted to solutions 
of the Einstein equations that present pure topological defects . ln Sec. 3 we construct 
spacetimes that represent topological defects with spherical symmetry. Explicit examples 
of bubbles that satisfy a barotropic equation of state are given. The metric for a defect 
formed by severa! concentrical spherical surfaces is also given and studied. ln Secs. 4, 
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5 and 6 we present similar considerations for cylindrically, plane and axially symmetric 
topological defects. ln Sec. 7 we discuss the found results and study the possibility to 
have strings and monopoles as limiting cases of cylindrically and spherically symmetric 
thin shells. 

AH the notations and conventions to be used in this paper will closely follow the ones 
adapted in Refs. 10-11. S01 some of them will be used without any further explanations. 

2. DISTRIBUTION VALUED CURVATURE TENSOR 

We shall study spacetimes whose curvature tensors conta.in Dirac delta functions with 
supports on submanifolds. The Riemann-Christoffel curvature tensor is linear in the 
second deriva.tives of the metric tensor and quadratic in the first derivatives. Hence a. 
spacetime in which the first derivatives of the metric tensor have a finite jump across a 
submanifold will have Dirac delta functions with support on the submanifold appearing 
in the curvature tensor. The jump in the first deriva.tive will be described by a Heaviside 
function wh.ich will enter in the curvature tensor quadratically. Fortunately, the product of 
such distributions is quite tractable10. ln the present work we <leal with three dimensional 
submanifolds in which the previous described situation has a complete realization. For 
lower dimensional submanifolds this situation rnay not be so simpler. lndeed, for points 
and lines we may end up with situations in which no consistent definition of distribution 
valued curvature tensor exists. 

Following Lichuerowicz6 , we shall assume that there exists a hypersurface L in which 
the metric tensor has a discontinuos derivative. Let L be described by the equation 

cp(x) =O, (2.1) 

and the normal vector 
(2.2) 

We shall a-Ssume that the hypersurface L divides a region n of the spacetime into two 
parts n+ and n- where cp > O and cp < O, respectively. 

The tensor g will be assumed to be continuous across L, i.e., 

[91w] = O. 

ln the neighborhood of L we may write 

where a prime denotes the partia! derivative with respect to cp. 
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The discontinuities in the first derivative of the rnetric tensor is characterized by the 
tensor b,.w, defined via the relations9 

(2.5) 

Combining Eqs. (2.3) and (2.5) with the assumption that 9,w is at least c3 in regions O='=, 
we find that the Riemann tensor takes the form 

with 

1:,w = [r;µ] [r~J - [r;v)[r~µ]. 
(J denotes the Heaviside function, defined byt 

{ 
1, cp >O, 

0( cp) = i, cp = O , 
o, cp <o, 

a.nd (R:µJ± are the usual Riemman-Cristoffel tensor defined in n:. 
Hence, 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 
We shall generalize the Einstein equations by assuming that they involve distribution 

valued curvature and energy-momentum tensors. Thus we assume that the field equations 
are 

= Qµv 

= 6(<;>)0µ., + T,?v + 8(1 - O)Tµ.,, (2.11) 

where all the symbols have their usual meaning and T;, is the energy-momentum tensor 
in n±; 0,.., and T,.., are the stress-energy tensors associated with the hypersurface E-

t Note tha.t the definition of the Heaviside function adapted here is slightly different from tbe one 
used in Refs. 10-11. However, ali the following resulta are valid for both of them if wejust simply replace 
one by anotber . 
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The above equations are equivalent to 

(2.12a) 

(2.12b) 

(2.12c) 

Note that the la.st one of these equations in Eq. (2.11) appears as the tenns multiplied 
by the distribution 0(1 - O) that vanishes everywhere except on I:- Thus, for finite l,u, 
and Tµ" the contribution of these terms in Eq. (2.11) is identically zero in the sense of 
distributions. ln other words, finite lµ.v>.u and Tµ" do not contribute significantly to the 
curvature R,,.,,:,.(T and to the energy-momentum tensor Q,,.v, respectively. We shall refer to 
these tensors as residual parts of the curvature and energy-momentum tensor. 

As mentioned previously, our main purpose is to study topological defects, i.e., space-
times that have null Riemann-Christoffel tensor everywhere except on the defects. H we 
assume that the submanifold I: is associated to a topological defect we have that 

(2.13) 

Hence, in this case, Eq. (2.12b) are satisfied identically. 
To construct spacetimes that represent topological defects we may use Eq. (2.13) 

as starting point. Indeed, Eq. (2.13) are satisfied identically for spacetimes that are 
generated by coordinates transformations of the Minkowski metric 

(2.14) 

We shall assume that in the neighborhood of I: we have the coordinate transformation 

such that the metric 
âZ"' âZ" 

9013(x) = T/µ.v Ôxº âx/3 

be continuous across I:, which is provided by 

{2.15) 

{2.16) 

(2.17) 

(2.18) 

The tensors Hµ.vp<T and J11"P<T depend only on the direction f.º and on the tensor b,,." that 
describes the jump on the deriva.tive of the metric tensor. The coordinate transformation 
(2.15) must also be restricted by the condition that b,,.v be finite in order to have well 
defined tensor distributions. 
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The equations that govern the evolution of topological defects in a curved spacetime 
are Eqs. (2.12). ln principle, using these equations we can find the metric that describes, 
let say, a spherical topological defect evolving in a Friedman-Robertson-Walker (FRW) 
umverse. The evolution of a spherical domain wall in a fixed FRW metric is studied in 
Ref. 17. 

3. WALLS WITH SPHERICAL SYMMETRY 

ln this section we shall use the forrnalisrn descri bed in the preceding section to con-
struct solutions to the Einstein equations that represent spherically symmetric topological 
defects. There is a variety of known solutions to the Einstein equations that represents 
spherical surfaces (bubbles) evolving in different spaces, in general, however they are not 
pure topological defects13- 17. For instance, in the simplest bubble studied in Ref. 13 we 
have that the exterior space of the wall is represented by the Schwarzschild rnetric. ln 
consequence, this bubble does not classify as a pure topological defect. 

ln order to end up with a spacetime with spherical symmetry we shall perform in Eq. 
(2.14) the transformation of coordinates 

z± o T±(t, r, ip), 
z± 

1 = R±(t, r, ip)sin0cos</>, 
z: R±(t , r, ip)sin0sin</>, 
zt R± ( t , r, <p) cos 0, (3.1) 

where <p is a function of t and r; T and R are functions of the indicate arguments such 
that when <p = O we have 

1'±(t, 1·, O)= T(t, r), 

R±(t, r, O) = R(t, r). (3.2) 
The conditions to have a continuous rnetric across <p = O [Cf. Eqs. (2.17) and (2.18)) 

reduce, in this case, to 

and 

[T']8iT = [R18tR, 
[T'JatT = [R18rR, (3.3) 

{3.4) 
respectively. Note that Eq. (3.4) neerls vali d only on the surface <p = O. The relations 
(3.3) tell us that T = T(O') and R = R(O'), where O' is a function of t and r. Equation 
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(3.4) is fulfilled if we take 

and 

T+ = [U(u - <p) + V(u + <p)]/2, 

R+ = (M(u - <p) + N(u + <p)]/2, 

T_ = (U(u - <p) + V(u - <p)]/2, 

R_ = (M(u + <p) + N(u + <p)]/2, 

(3.5a) 

(3.5b) 

where U, V, M and N are arbitrary functions of the indicated arguments. for simplicity 
sake, in the following, we shall choose M and N such that M = U, and N = - V. Then, 
the metric that represents the spacetime with the singular surface <p = O is 

(3.6) 

where 

(3.7) 

the dots indicate derivations with respect to the arguments and V±= U(u=f <p), etc. The 
spacetime with the índex +( - ) represents the spacetime limited by the side <p > O( <p < O) 
of the surface <p = O. ln particular, we shall be interested in the surfaces described by 
<p = <p(r). For these particular cases it is convenient to set u = t and <p(r),r = f in Eq. 
(3.7). We get 

(3.8) 

while h± still takes the form given by Eq. (3.7). 
The different tensor::; associated with the surface ip = O can be easily computed. The 

normal to the surface is 
ç_x = {O, f, O, O), (3.9) 

where the tensor índices ()..=O, 1, 2, 3) refer to the coordinates { t, r, 0, </> }. From Eqs. 
(2.5), (3.8) and (3.9), we find • 

(3.10) 

where 

2(úii - úii), 
(U - V) (Ú + V). (3.11) 
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From Eqs. (3.9)-(3.11) and (2.8), we find that the non-vanishing components of the 
tensor JµvM are given by 

Jo202 = Jo303/ sin2 8 = W1 W2/(4F), 

J1212 = J1313/ sin2 8 = -J2[W1W2/(4F) - Wif(4h)], 
J2323 = -(W2 sin 8)2 /(4F), (3.12) 

Where the function F and h are the metric functions on the surface ({)=O. 
Similarly, the non null components of the tensor Hµv>.t1 are 

Ho101 = f2Wi/2, 
H1212 = H1313/ sin2 8 = - f 2W2/2. (3.13) 

From Eqs. (3.9)-(3.13) a.nd (2.12) we get that the energy-momentum tensor associated 
to the surface ({) = O is 

where 

0µ., = pUµUv - p(B,,Bv + f/>µ</>.,), 
Tµ 11 = e:U,,U11 - 1r1.R,,R11 - 1r(8µ8v + q>µ.</>11 ). 

Uµ, Rµ., 8µ, and </>µ. are the orthonormal vierbein 

U,, = ( ll, O, O, O), 
8µ = (O, O, -Jh, O) , 

And p, p, €, 1r 1. and 7r, are the scalars 

Rµ. = (O, - Jll, o, O), 
f/>µ = (O, O, O, - sin 8./h). 

p = 4(Ú + V)/[ÚV(U - V)], 

- __ 1 [2(ú + V) ü _ v] 
P - úv U - V + ú v ' 

€ = -1r = 

(3.14) 

(3.15) 
(3.16) 

(3.17) 

(3.18) 

(3.19) 

Note that Eq. (3.18) can also be obtained directly from Eq. (24) in Ref. 11, by noticing 
the difference in the definition of the normal vector Çµ-
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From Eqs. (3.15)-(3.17) we have that the density and the tensions associated to the 
spherical surface <p = O are 

p = pô('I/J) + v(l - v)t, 
P1. = 6(1 - 6)1r1., 

p = pô('I/J) + 6(1 - 6)1r. (3.20) 
The density p is formed by a Dirac delta type of distribution with support on the spherical 
surface and a part that vanishes everywhere except on <p = O. Since this last pa.rt has 
a vanishing integral it does not contributes to the associated mass of the spherical wa.11. 
ln principie, we can ignore this residual part. P1. and p represent the radial tension and 
the surface tension. As in the case of the density, the parts that appear in the tensions 
containing the distribution 0(1 - 0) can be ignored. Hence, we have only tensions that 
are parallel to the surface. 

To be more specific, let us consider the hypersurface defined by 
n 

cp= Il(r - ai) =0, (3.21) 
i=l 

where the non-negative constants will be chosen such that a 1 < a 2 < ... < ªn· Then, we 
have n n 

h(cp) = L h(r - ak)/1 Il(ak - a;)!. (3.22) 
k=l i,f:k 

It follows that the hypersurface defined by Eq. (3.21) represents n concentrical spheres 
of constant radii ai, 

The density and the tension now read 

n n 

p = LÍ1kô(r - ak), p = LPk.i(r - ak), (3.23a) 
k=l Ã:=l 

n n 

Pk = .ô/lIT(a,. - a ,)I , Pk = P!IIT(ak - a.)!. (3.23b) 
,f:k i# 

The functions p and p appearing in Eq. (3.23a) are the sarne functions as defined in Eq. 
(3.18). ln Eq. (3.23a) we have omitted the part containing the distribution 0, practice 
that we shall adopt from now on. Thus, the density and the tension given by Eq. (3.23a) 
have support on n concentrica.l spherical surfaces of radii a1, ... , ªn· Note that the actual 
values of these quantities on a given surface depend on the relative distances of the other 
spherical surfaces. The function J appearing in the metric now is 

n 

n Il(r - a,) 
!=E i=l (3.24) 

( r - ak) k=l 
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We shall study the particular cases of bubbles with "barotropic" equation of state 

p = "YP, 

where 11'1 :5 1. From Eq. (3.18) we get 

ú+v ü v 
2( 1 - 2,) U - V + ú - V = o. 

Assuming that V= V(U), then the above equation reduces to 

1 + V' V" 
2(1 - 21 ) U _ V - V' = O, 

where the primes aow indicate derivations with respect to U. 

A. Bubbles formed by Cosmic strings 

1 
When , = 2, from Eq. (3.27) we find 

V= AU + B, (A> O), 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

where A and B are integration constants. BubbJes with , = 1/2 have zero effective 
Newtonian mass, as cosmic strings. Thus, we can consider these bubbles as formed by 
cosmic strings. 

The combination of Eqs. (3.2), (3.5) and (3.28) yields 

(3.29) 

Where U0 = (1 - A)/(1 + A). It follows that ali the bubbles belonging to this ca.tegory 
move with a constant velocity V0 . Explicit examples of such bubbles are obtained by 
choosing the function U as 

(3.30) 
Where a and m are arbitrary constants. Then, from Eq. {3.8) we find that the non-
vanishing metric coefficiea ts now read 

F = H/ 12 = Aa2m2(t2 - cp2r-1' 

h = i[a(t - lcpl)m - Aa(t + lcplr - B]2. (3.31) 

Inserting Eqs. (3.28) and (3.30), on the otber hand, into Eq. (3.18), we obtain 

__ 2- _ 4(1 + A) 
p - p - Aamtm-l(a(l - A)tm - B] (3.32) 
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To study this class of solutions, it is suflicient to consider only the following represen-
tative cases. 

Case A-1): n = m =a= A= l, and B = -8/ p0 : ln this case we have 

(3.33) 

and 
p = po, ô(c.p) = ô(r - ro), (3.34) 

where r0 = a1 , and p0 is a positive constant. Therefore, this metric represents a static bub-
ble with center in the origim of the system of the coordinates, radius r 0 [in the Minkowski 
coordinates the radius is R = 4/ p0 , see Eq. (3.29)], and constant density p0 . 

Case A-2): m = a = A = 1, n = 1, and B = -8/ p0 . Then we find 

(3.35) 

and 
(3.36) 

Where rm = (a 2 + a 1 )/2. Thus, in the present case the metric (3.34) represents two 
concentrical static surfaces with equation of state p = p/2. 

Case A-3): n = 1, a= a- 1 , A= a/b, and B = O: Then, we find 

and 
- = 2- = 4ab(a + b)t1-2m e( ) = e( - ) p p m(b _ a) , u c.p u r r0 • (3.38) 

It follows that this solution represents a single bubble with its surface density given by 
Eq. (3.37), and moving with a constant velocity U0 = (b - a)/(a + b) in the Minkowski 
system of coordinates. 

B. Cosmic domain wall 

ln this subsection, we shall consider the cases where , = 1, i.e., bubbles with the 
equation of state of cosmic domain walls. For,= 1, Eq. (3.27) has the solution 

A 
V=--, u (3.39) 
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and the corresponding surface energy density and tension are 

- - 4U 
P = P = AÚ. 

lnserting Eq. (3.39) into Eqs. (3.2) and (3.5), on the other hand, we find 

R1 -T1 = A, 

(3.40) 

(3.41) 

which means that all the bubbles with 1 = 1 have radii which grow with constant ac• 
celerations. The simplest bubble with constant density p = p = p0 is obtained with the 
choice 

4 
U(t) = - Exp {p0 t/4}, A= (4/p0 )1. 

Po 
(3.42) 

Then, the corresponding metric takes the form 

ln Refs. 17 and 18 solutions representing membrances with the sarne equations oí state 
as cosmic domain walls were also studied. 

4. WALLS WITH CYLINDRICAL SYMMETRY 

Walls with cylindrical syrnmetry will be obtained in a similar way as that in the spher• 
ically symmetric case. We shall perform in Eq. (2.14) the transformation of coordinates, 

zt = T±(t, r, <p), 

Zf = R±(t, r, <p) cos </>, 
Z; = R±(t, r, <p)sin<f,, 
Z± -3 - z, (4.1) 

where <pisa function of t and r. Note that in this case r indicates a cylindrical coordinate. 
T and R are functions given by the relations (3.5). 

Thus, the metric that represents the spacetime with the singular surface <p = O is 

(4.2) 

where the functions p±, G±, H± , and h± are given by Eq. (3.7). 
As before, we shall be particularly interested in tbe surfaces described by Eq. (3.21), 

which now represents n concentrical cylinders of radii ai, centered on the z-axis. It is also 
convenient to set a = t and f = <f>,r in Eqs. ( 4.2) and (3. 7). Then, the metric coefficients 
reduce to the one given by Eq. (3.8). 

The normal vector to the hypersurface <p = O now takes exactly the form given by Eq. 
(3.9), but with the coordinates being numbered as {xµ} = {t, r, </>, z}, (µ=O, 1, 2, 3). 
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Following a similar procedure as we did in the last section,we find that the energy-
momentum tensor is given by 

(4.3) 

where Uµ, Rµ, <Pµ and Zµ form an orthonormal vierbein, defined by 

(4.4) 

a.nd p, 'í4, and Pz are the surface energy density and tensions, given, respectively, by 

p = 2(Ú + V)/(ÚV(U - V)], 

pq, = (ÜV - úV)/(ÚV)2 , 

(4.5) 

ln writing Eq. (4.3) we had omitted the residual part of the energy-momentum tensor, 
Tµ,,, for the sarne reasons as explained in the last section. ln this case we have that the 
tensions on the directions Ôz and Ô,p can be different. 

For the functions c.p defined by Eq. (3.21) we have that the density is given by Eq. 
(3.23) with the function p defined in Eq. ( 4.5). The tensions now read 

n n 

Pz = LPzkô(r - ak), P,J; = L Í4kô(1· - ak), ( 4.6a) 
k=l k=l 

n n 

Pzk = Pz/lIT(ak - ai)I, P,pk = pq,/IIT(a1c - a,)I. ( 4.6b) 
i# i# 

The functions Pz and Pcp appearing in Eq. ( 4.6a) are the sarne functions as defined in 
Eq. ( 4.5). The density, as welJ as the tensions, have support on n concentrical cilindrical 
surfaces of radii a1, ... , aw Again, as in the spherically symmetric case, we have that the 
actual values of these quantities on a given surface depend on the rela.tive distances of the 
other cylindrical surfaces. 

lf we consider Pz and pcp positive, in other words tensions, we have that Eq. ( 4.5) implies 
p Pz· Thus, unless pcp = O, we will have superluminal propagation of sound waves along 
the Ôz direction. When Pit> = O we have a cylindrical surface formed by cosmic strings 
aligned along the z-axis, with the equation of state Pz = p. If we allow negative values 
for Pz and P,t,, i.e., anisotropic pressures, we can have P,t, -:j:. O. But, thin shells of matter 
with pressure are in general unstable. 

Particular cases of shells of cosmic strings are obtained by considering the functions, 
U and V related by 

V= AU +B. (4.7) 
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Then, we have 
- - 2(1 + A) 
P = Pz = AÚ[(l - A)U - B]' P<t> = o. (4.s; 

lt can be shown that in the present case Eq. (3.29) still holds. That is, all the cylindrical 
walls formed by cosrnic strings aligned along the z-axis move with consta.nt velocities, sim-
ilar to spherically-syrnmetric bubbles formed by cosmic strings discussed in the proceeding 
section. 

Corresponding to the choice of the function U of Eq. (3.36), we find that the metric 
ta.kes the forrn 

while Eq. ( 4.8) becomes 

- - 2(1 + A) 
P = Pz = Aamtm-1[a(l - A)tm - B]' P<t> = o, (4.10) 

where <.p and J are given by Eqs. (3.24). 
When n = m = a = A, and B = -4/ p0 , Eq ( 4.9) reads 

d,i = dt2 - dr 2 - {Ir - rol - 2/ po)2dp2 - dz 2 , ( 4.11) 

and Eq. (4.10) simply gives p = Pz = p0 , and P<t> = O. Thus, it is concluded tha.t the 
metric ( 4.11) represen ts a static cylindrically-symmetric shell of cosmic strings, with its 
radius r 0 and constant energy density p0. 

When m =o= A= 1, m = 2, and B = -4/p0 , we find that Eqs. {4.9) and (4.10) 
give the following results 

a.nd 
p = Pz = Po [h(r - a1) + 8(r· - a2)], P,J, = O. (4.13) 

ª2 - ª1 

Obviously, this solution represe11ts two cylindrical walls of radii a1 and a2 , centered on 
the z-axis. 

When o= a-1 , A= a/b, 11 = l, a.nd B = O, we have 

m 2 1 
ds2 = ~[t2 -(r - ro) 2]m-l(dt2 -dr2 ) - 4[(t - Ir- rolr /a - (t + Ir - rolr /b]2d</,2 -dz", 

(4.14) 
~ ~ 2ab(a + b) 1_ 2m d ~ O 
P = Pz = m(b _ a) t , an P<t> = , ( 4.15) 
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which corresponds to C&!;e A-3) discussed in the last section, and representa a cylindrical 
thin wall moving with a constant velocity in the Minkowski system of coordinates. 

ln pa.rallel to sect. II, we cao also considet the choice of the function V and V related 
of each other by Eq. (3.38). Clearly, this corresponds to cylindrical shells with equation 
of state given by 

_ ,.. 2V - 2,.. ( ) 
p = p~ = AÚ, P~ = p. 4.16 

ln particular, corresponding to Eq. (3.41), we have 

(4.17) 

(4.18) 

which represents a single cylindrical shell with constant surface energy density and ten-
sions, and moving witb constant acceleration [Cf. Eq. (3.40)]. 

The relation of the solutions presented in this section with the metrics that represent 
single cosmic strings will be studied in the last section of this work. 

The generation of cylindricaJ shells of matter via principal sigma models can be found 
in Ref. 19. Multiple cylindrical walls can be a.ssociated to multiple soliton solutions. 

5. PLANE SYMMETRIC WALLS 

ln order to end up with a spacetime with plane symmetry we shall perform in Eq. 
{2.14) tbe transformation of coordina.tes 

Z* o - 2UT + (x2 + y2 + 1/4) exp(V±/2), 
Z* 1 = 2UT + (x2 + y2 - 1/4) exp(V±/2), 
Z* 2 - x exp(Vi:/2), 
Zf - y exp( V:/2), (5.1) 

where U-J:. , V± are defined as before, and u and '{) are function:; of t and z. Thus, the 
metric that represents tbe spacetime with the singular surface r; = O is 

{5.2) 

where 

and, a.s usual, the dots indicate derivation with respect to the argument. Note tb&t Eq. 
(5.2) is the metric studicd by T"ub~º in the coordinatei, q = q(t, z) and ip = ip(t, z). 
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As before, we shall be interested in the spacetimes with singular surfa.ces described by 
cp = ip(z). For these partical case it is also convenient to set u = t and ip(z),, = f in Eq. 
(5.3). Then Wf! ha.ve 

p± = Jl±//2 = Í':t:Ú:fexp(V±/2), G* = o, h,J; = exp(V±)- (5.4) 

It is easy to show that corresponding to Eq. (5.4) the energy-momentum tensor is 
given by 

Q,.v = 0,..,S(<p) = {pU"U., - p(X"X., + YµY.,)}6(<p), 
where Uµ, Zµ,, X,., and Yµ are the orthonormal vierbein, given by 

(5.5) 

(5.6) 

with the coordinates being numbered as { x"} = { t, z, x, y} , a.nd p and p a.re the surface 
energy density a.nd tensor given by 

2 -V/2 p - Úe ' 
-V/2 3 e . .. . .. . . 2 

íi - üiv'l [uv - vu + 2uv ]. (5.7) 

As before, we had omitted the residual part in writing Eq. (5.5). Corresponding to 
Eq. (3.21), we may choose the function <p as 

n 

'P = íl(z - ai), (5.8) 
i=l 

which obviously represents n parallel planes to the one with z = O, and intersecta the-
z-axis at z = {a,}. Then, the effective energy density and tension are given by 

n n 

p = L ,Ôkô(z - ak) , p = L p1,;6(z - a1;), (5.9) 
k=l k=l 

wbere p1c and p,. are the sarne functions as defined in Eq. (3.23b) but with p and p now 
given by Eq. (5.7). 

We shall study the particular cases of plane walls with ''barotropic" equation of sta.te 
(3.25). From Eq. (5.6) we get 

ü 3 . v ..,.. = ( - - 2,,) V + .-. 
U 2 V 

(5.10) 

Hence, 
(5.11) 
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where C1 is a.n integration constanL. The metric coefficients in this case rea.d 

F = C1 V(t + lcpl)V(t - l'Pl)exp{(V(t - l'PI) + V(t + lcpl)]/2 

+(l - 2,)V(t + lcpl)}i 
h = exp V(t - lcpl). (5.12) 

The usual cosmic domain waJl is obLained by choosing 1 = l. When <p = z, the above 
solutjons reduce to the ones first studied by lpser in Ref. 13. 

Inserting Eq. {5.11), on the other hand, into Eq. (5.7) we find 

p = "f-1 p = -3...- exp{2(, - l)V}. 
C1V 

(5.13) 

From the above equation we ca.u see tha.t plane walls with constant density are given by 

{ 

At + B, 

V(t) = l 

2(l-;) lnt + Vo, 

; = l, 

hl < 1, 
(5.14) 

where A, B and V0 are integration consta.nts. 
Vilenkin 's planar domain wall21 corresponds to 

A= Po/2, B = O, C1 = (2/ po)2
, <p = z. (5.15} 

The simplest case of multi walls is provided by two para.Hei walls loca.ted at z = h0 and 
z = -h0 , i.e., a1 = h0 and a2 = -h0 . For the case of domain walls we find 

The density and the pressure in this case are 

p = p = (po/2ho)lô(r - ho) + «5(r + ho)]. (5.17) 

This particular solution is studied in Ref. 22 wherein is derived using a slightly different 
method. 

For two planes with equa.tio11 of state p = "IP, hl < 1 ancl p = p0 we find that p is 
given by Eq. (5.17) and the metric functions are 

1 1 
F = (/3/ Po)[t + lipl)f 4,8 [t - l'Pl)J4,B -

1
, 

!/3 
h = [t - l'Pl)J2 1 
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where /J = 1/(1 -1), hl < 11 and r.p = z3 - hi. 
The usual domain wall solution is a.ssocia.Led to the kink solution of the >.<j,4 theory. 

In principie, multiwaJl solutions can be associa.ted with multikink solutions. The exa.ct 
relation between these solutions will be the matter of another paper. The evolution of the 
plane symmetric topologica.l defects in the Minkowski spacetime ca.n be found in R.ef. 13. 
By using the sarne method studied in the paper quoted in Ref. 4, the multiwa.11 solutions 
presented in this sedion can be genera.lized by the inclusion of multiple cosmic strings 
crossing the wa.11s. 

6. AXISYMMETRIC DISCS 

ln this section, let us tum to consider solutions which represent disca with axial sym-
metry. Following the sarne vein as we did in the proceeding sections, we first perform the 
coordinate transforma.tions 

zt - Jh± exp(P± /2) sinh t, zt = N exp(P± /2) cosh t, 
Z; - Jhf exp(-P* /2) cos </J, Zf = JÍÍ± exp(-P* /2) sin <P, (6.1) 

in Eq. (2.14), where h± a.nd p± are íunctions of z, r a.nd cp, with cp = cp(r, z). Then, it 
is easy to show that the metric takes the form 

where 

p± - ~[h-1 cosh P(h~r + 2h tanh Ph,f'P,r + h2 P,;)]±, 

G* - ~(h-1 cosh P(h,zh,r + h ta.nh P(h,rP,. + h,,P,r) + h2 P,r~.i]}±, 

H* = 1{ h-1 cosh P( h ~. + 2h tanh P h,.P,11 + h:J P,! )]='=. 

The conditions given by Eq. (2.18) now read 

{h'2 + h2 P'2 + 2h tanh Ph' P'] = O, 

Where a prime, as before, denotes the pa.rtial derivative with respect to r.p. 
One of the solutions of Eq. (6.4) is 

h - U(<1 - lipl) + V(<1 + lipl), 
p = M(t1 - lc,,I) + N(<1 + lc,ol), 
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(6.5) 



where u = o-(r, z), and U, \/, M and N a.re arbitrary functions, but when Eq. (2.17) is 
concerned, they must sa.tisfy the followmg equa.tion on the surfa.ce 'f' = O 

Obviously, to obtain exact solutions, we need first to solve the above equa.tion. However, 
because o{ its non-linearity, this is not an easy task. Therefore, we restrict ourselves only 
to consider some special cases. 

A. When U :;:: O = N 

When U =O= N, Eq. (6.6) has the solution 

V(o-) = exp[M(cr)}. (6.7) 

For the ca.ses where <1 = r and <p = <p(z), assumption that from now on we shall adapt, 
tbe metric takes the form of Eq. (6.2) with the metric coefficients given by 

F = !eM(r+l,pl) cosh M(r - jipl)[M2(r - lcpl) + M2(r + l'f'I) 
2 

+2 tanh M(r - lcpl)M(r - l<pl)M(r + l'f'I)], 
G = -teM(r+IIPIJ cosh M(r - jcpl)fl.M2(r - cp) - M2(r + <p)j, 

H = !eM(r+l<PI> cosh M(r - j<pl)f2!M2 (r - l<r>I) + M2(r + l'f'I) 
2 

-2 tanh M(r - j<pl)M(r - l'f'l).i\1(r + l1rl)], 
h = eM(r+lcpl), P = M(r - lcpl), / = t.{),a. (6.8) 

Then, the corresponding energy-momentum tenso1 is given by 

(6.9) 

where the surfa.ce energy density and tension are given by 

- - 2 p=pr = --. ' 
M 

(6.10) 

and the unity vectors U"' and Rµ are 

Vµ= eM6~, R,.. = MeM6!, (6.11) 

with the tensor índices O, 1, 2, 3 indica.ting the coordinates t, r, .i and q,. 
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If we clioose the functions M and 'P as 

2 n 
M(r) = --,·, <p = Il(z - a,}, 

Po i•l 
(6.12) 

we find 
d!l· = e--tr/Po[dt2 - (2/ Po)2dr2] - e-•l"PI/P0[d'{)2 + (2/ p0 ) 2 /2dz2J, (6.13) 

with p == Po and t5(ip) being given by Eq. (3.22) a.fter r is replaced by z. Thus, the above 
solution describes n pa.rallel discs with constant energy density and tensiona. 

Another choice of the function M is 

(6.14) 

Then, from Eq. (6.10) we find 
(6.15) 

It foUows that in this case the solution can be approximately considered as representing 
n parallel discs with finite radii. 

Instea.d of settíng U and N equal to zero, one can choose V = O :;;:: M. ln the latter 
case Eq. (6.6) ha.s the solution U(u) = eN(u)_ Then the corresponding energy-momentum 
tensor takes exactly the form as given by Eq. (6.9) with 

.... ,.. 2 NO • Nl 
P = Pr = N' U,, = e 6,,,, and R,, = Ne éµ. (6.16) 

B. When Exp(P) = (Q + JQ2 + h2}/h 

ln this case, it is easy to show that Eq. (6.6) reduces to 

Q!Q~ - f(ú - V)(ú + V) = o. (6.17) 

one of the solutions is gíveu by 

(6.18) 

Then, the corresponding metriç coefficients are given by 

F = i(Q2 + h2)-½ {(Ú(r - l<f'D + V(r + l<f'l)]2 + [Ú(r + jipl) - V(r - jcpl))2}, 

G::;;; -f (Q2 + /?)-½ {(ll2(r - 1') - Ú2(r + <p)J + [Íl2(r - <p) - V2(r + <p)J} > 

H = ~
2 

(Q2 + h2r½ {[Ú\r - lipl) - V(r + l<pl)]2 + 
+[Ú(r + l<f'I) + V(r - j<pl)f'}. (6.19) 
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And the cnergy-momcntum tensor reads 

(6.20) 

wbere 

Uµ - (Q+JQ2 +h2)½~, R"= (~:+v;2)½ó~, 

</>µ = h(Q+JQ2+h2r½r,!, (6.21) 

and 

P- _ 
2 

{CQ + 1Q2 + h2)(ú2 + v2)(uú + vv) h(Ú2 + inpJQ2 + h2 V' 
-2h(U2 + V2)(ÚV - VÜ)}, 

+ h'l · • 
Pr - . . (U - V), 

h(U2 + v2) 

p" - - . . 
2 

{h(Ú2 + V 2)(UÚ + VV) 
(U'l + V2)2JQ2 + h2(Q + JQ2 + h2) 

+2(Q + JQ2 + h2){U2 + V2 )(Ú\i - VÜ)} (6.22) 

H one chooses the functions U and V as 

U(r) = Ar, V(r) = Br, (6.23) 

where A and B are constants. Then, the metric takes the form 

with 

Ai= ( A
2

; B
2 

)½, h =(A+ B)r - (A - B)lc,,I, P = (A - B)r +(A+ B)lr,ol, (6.25) 

a.nd 

- 1 I 2) _ 2( A - B) A + B ( 
p = Ag(A + B) (A - B) + 2Ao, Pr = AJ(A + B)' P,; = - Aã((A _ B) + 2~]" 6.26) 

lt fol1ows that the metric (6.24) describes n parallel discs with non-vanishing tensions in 
the radial a.nd tangential directions. \Vhen n = 1, i.e., i.p = z - a1, the corresponding 
solution is the Lemos-Letelicr solution given in Ref. 23. ln fact. in the later cASe if we 
make the coordinate transformations r = p21r sin 2k0, and z = p211 cos 2k6, we sha.ll get 
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exactly the fo.rm given hy gq. (6) in the above cited paJ:>er. 

7. DISCUSSIONS 

ln the present work we hnve :;;t11died tbe gene-ration of metrics that represent topological 
defects with spherical1 cylindrirnl, plane and axial symmetries. Really, the spacetimes 
presented here are the simples1, albeit nontrivial, that can be obtained using the method 
presented in Sec. 2. 1n µrindple, t.he same method can be used for any symmetry, jn 
particular, for spacetimes singular on surfa.ces with toroidal and spheroidal symmetry 
that have as limits spacetimes that are singular on circular loops, and finít~ Iines and 
disks, respectively. Also, a few attempts to find a coordina.te transformation like Eq. 
(3.1) for toroida.l a.nd spheroidal symmetry wa.s unsuccessfully. We hope to come back 
to this subject in another time. Even mor.e, for each symmetry there exists more than 
one canonical form for the Hne element. ln the present work we have used the ones that 
privilege the characteristic coordina.tes associated to each symmetry. However, this is by 
no means to say that these coordinates are the most suitable ones for every case. As the 
matter of fact, to obtain the solution presented in Ref. 24, in addition to Eq. (4.1), one 
needs to ma.ke another simple coordinate transformation in the (r, q,) plane. 

Along this work we have studied the generation of metrics that descríbe topological 
defects without inquiriug too deeply a.bout the possible field theory that generates the 
defects. ln general, this is a very difficult a.nd unsolved problem. Moreover, for the 
most studied particular case of cosmic wall (Vilenkin's wal121) the complete solutíon to 
the Einstein equations coupled with the self-interacting >.<t,4 scalar field that gives as a. 
limiting case the domain wa.ll solution is an open problem. Progress in this direction has 
been recently reported25 . It should be noted tha.t Widrow26 has studied the problem by 
using sin-e-Gordon model. 

All the particular solutions presented in tbis work were found by assuming that the 
surface <.p = O ha.s no time dependence. Jf we assume explicit time dependence of <p- we 
ca.n describe oscillating spheres or cylinders. To be more precise let us consider in Eq. 
(3.21) tha.t a, are time dependent. This case is described by the general metric Eq. (3.6). 
We note that all the relations that are invariant are also valid in this case, e.g., Eqs. 
(3.18)-(3.21 ). The relations (3.12)-( 3.13), and (3.17) need to be changed; these "time 
dependent,. tensorial quantitie..s can be found from the '·static» ones with f = 1 by using 
a simple transformation of coordinatea. 

ln general, the residual pai t of thc energy-momentum tensor I,,v does not i:epresent a. 
physica.lly acceptable eoergy-momentum tensor. ln particular, for the usual doma.in wall 
given by Eq, (5.15) we find, 

{7.1) 

Thus, we have a very thín wall wíth a pressure along the tl·ansversal direction. 
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Infinite cylinders and sphereg ha.ve as limit casel:i infinite lines and points , respectively. 
We shall examine the possibility to represent cosmic strings and monopoles as limiting 
cases of our cylindrically a.nd i;pherically symmetric metrice. ln particular, in the 1imit 
r0 = O thc cylindrically symmet.ric metric ( 4.11) representa a cosmic string with 

p = Pa = Pob(r ). (7.2) 

It is interesting to note thal the metric 

(7.3) 

with O $ t < oo, O :5 r < oo, O $ <P < 21r, a.nd -oo < z < 001 also representa a. 
spacetime with a. deficit angle. 111 this direction, let us consider a circle of raàius R in a. 
plane with a deficit angle 6 an<l a circle oí radius R > a on the plane t = z = O of the 
spacetime decribed by Eq. (7 .3). If bolh circles are equal, 21r(R-o) = (21r-6)R, we have 
6 = 21fa/ R. Thus, Eq. (7.3) representa a spacetime with a deficit angle that dependa on 
the distance to the z-axis. The usual cosmic string is represented by a spacetime with a 
constant deficit angle. A cylindrica.l shell of strings that has as a. limiting case the metric 
of a usual cosmic strmg can be found in Ref. 24. 

A solution given by taking the limit r0 --+ O in Eq. (3.32) will represents a punctual 
topological defect that geometrically can be thought as a defecl of solid angle that depends 
on the radius. Recently, Barriola and Vilenkin27 studied the Einstein equation coupled to 
& )..tp:4 theory with an 0(3) interna} symmetry. They found a metric with a. defect of solid 
&ngle that is not a topological defect; it rather represents a cloud of ordered strings with 
spherical symmetry2ª. 

The description of punctual topological defects using the metrics of Sec.3 ha.ve the usual 
problems of the description of a punctual object in continuous mechanics. For instance, in 
this case the concept of tension does not make sense, i.e., the sarne type problems found 
in tbe classical models of electrons that goes back to Poincare proposal of models with 
non zero size for the electron29. 

Along this work we used extensively the algebraic manipulation program 
MUTENSOR30• 
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