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Resumo
Em campos vetoriais analíticos planares, uma singularidade monodrômica pode ser
distinguida entre um foco ou um centro por meio dos coeficientes de Lyapunov, que são
dados em termos dos coeficientes da série de potências do mapa de primeiro retorno
definido em torno da singularidade. Nesta tese, estamos interessados em um problema
análogo para singularidades tangenciais monodrômicas de campos vetoriais analíticos
por partes Z = (Z+, Z�), explorando os coeficientes de Lyapunov para singularidades
tangenciais monodrômicas em sistemas de Filippov e também explorando problemas
relacionados aos coeficientes de Lyapunov, como os problemas de isocronicidade e
ciclicidade.

Primeiro, demonstramos que o mapa de primeiro retorno, definido em uma vizinhança
de uma singularidade tangencial monodrômica, é analítico, o que permite a definição
dos coeficientes de Lyapunov. Em seguida, como consequência de uma propriedade ge-
ral para pares de involuções, obtemos que o índice do primeiro coeficiente de Lyapunov
não nulo é sempre par. Além disso, é obtida uma fórmula recursiva geral juntamente
com um algoritmo do Mathematica para calcular os coeficientes de Lyapunov. Como
aplicação dos coeficientes de Lyapunov, temos os problemas de isocronicidade e ciclici-
dade, que são problemas clássicos na teoria qualitativa de campos vetoriais planares. O
problema de ciclicidade consiste em estimar o número de ciclos limite que surgem de sin-
gularidades monodrômicas. Tradicionalmente, esta estimativa baseia-se nos coeficientes
de Lyapunov. No entanto, em sistemas não suaves, além dos ciclos limite que bifurcam
variando os coeficientes de Lyapunov, o número de ciclos limite pode aumentar em um
por meio do fenômeno de bifurcação conhecido como bifurcação pseudo-Hopf. Neste
estudo, vamos além da bifurcação pseudo-Hopf, demonstrando que a destruição de
(2k, 2k)-singularidades tangenciais monodrômicas gera pelo menos k ciclos limite em
torno de segmentos de deslize. O problema de isocronicidade consiste em caracterizar
se um centro é isócrono ou não, isto é, se todas as trajetórias em uma vizinhança do
centro têm o mesmo período. Este problema é geralmente investigado por meio da
chamada função período. Neste trabalho, exploramos o problema de isocronicidade
para centros tangenciais de campos vetoriais de Filippov planares. Ao calcular a função
período para campos vetoriais de Filippov planares em torno de centros tangenciais,
mostramos que tais centros nunca são isócronos.

Palavras-chave: Sistemas de Filippov, singularidades tangenciais, coeficientes de Lya-
punov, ciclos limite, isocronicidade.



Abstract
In planar analytic vector fields, a monodromic singularity can be distinguished between
a focus or a center by means of the Lyapunov coefficients, which are given in terms
of the power series coefficients of the first-return map defined around the singularity.
In this thesis, we are interested in an analogous problem for monodromic tangential
singularities of piecewise analytic vector fields Z = (Z+, Z�), exploring the Lyapunov
coefficients for monodromic tangential singularities in Filippov systems and also explor-
ing problems concerning the Lyapunov coefficients as the isochronicity and cyclicity
problems.

First, we prove that the first-return map, defined in a neighborhood of a monodromic
tangential singularity, is analytic, which allows the definition of the Lyapunov coeffi-
cients. Then, as a consequence of a general property for a pair of involutions, we obtain
that the index of the first non-vanishing Lyapunov coefficient is always even. In addi-
tion, a general recursive formula together with a Mathematica algorithm for computing
the Lyapunov coefficients is obtained. As an application of the Lyapunov coefficients,
we have the isochronicity and cyclicity problems, which are classical problems in the
qualitative theory of planar vector fields. The cyclicity problem consists in estimating
the number of limit cycles emanating from monodromic singularities. Traditionally, this
estimation relies on Lyapunov coefficients. However, in nonsmooth systems, besides
the limit cycles bifurcating by varying the Lyapunov coefficients, the number of limit
cycles can be increased by one via the bifurcation phenomenon, known as pseudo-Hopf
bifurcation. In this study, we push beyond the pseudo-Hopf bifurcation, demonstrating
that the destruction of (2k, 2k)-monodromic tangential singularities yields at least k limit
cycles surrounding sliding segments. The isochronicity problem consists of characteriz-
ing whether a center is isochronous or not, that is if all the trajectories in a neighborhood
of the center have the same period. This problem is usually investigated by means of
the so-called period function. In this work, we explore the isochronicity problem for
tangential centers of planar Filippov vector fields. By computing the period function for
planar Filippov vector fields around tangential centers, we show that such centers are
never isochronous.

Keywords: Filippov systems, tangential singularities, Lyapunov coefficients, limit cycles,
isochronicity.
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1 Introduction

Filippov vector fields are a class of dynamical systems that model a wide
range of real-world phenomena, particularly those with non-smooth behavior or dis-
continuities. These vector fields are named after the Russian mathematician Andrey
Filippov, who made significant contributions to the study of piecewise smooth dynami-
cal systems.

Filippov vector fields are defined differently within distinct regions, sepa-
rated by a discontinuity manifold. In this discontinuity manifold is where the dynamics
of the system can abruptly change, which introduces a complexity in the analysis of
these systems.

The study of Filippov vector fields is crucial in various fields, including con-
trol theory, robotics, ecological modeling, and celestial mechanics, where non-smooth
behaviors and abrupt transitions are prevalent. Understanding these vector fields often
involves techniques such as the Filippov solution concept, Poincaré maps, and the
analysis of sliding and switching dynamics. Filippov planar vector fields have various
applications in different fields. They are used to model and control systems with abrupt
transitions or non-smooth behavior.

In this thesis, we will explore results concerning the center, cyclicity, and
isochronicity problems in Filippov systems in the plane, that is, Filippov vector fields
defined in a two-dimensional space, where the discontinuity manifold, in this case, will
be a one-dimensional manifold.

The center-focus problem and the cyclicity problem stand as classical problems
in the qualitative theory of smooth planar vector fields, tracing back to the studies of
Poincaré and Lyapunov (see, for instance, (45)).

The center-focus problem, also known as the center problem consists in charac-
terizing whether a monodromic singularity of a planar vector field is a center or a focus.
A singularity is called a center, if in a small neighborhood around the singularity, all
orbits are closed. Conversely, it is called a stable (or unstable) focus if nearby orbits
spiral towards (or outwards from) the singularity. The center problem can be studied by
analyzing the first-return map defined in a section within the monodromic singularity.
Indeed, the monodromic singularity is a center if, and only if, the first-return map equals
the identity. In the case of an analytic vector field, both the first-return map and the
displacement function - defined as the difference between the first-return map and the
identity- are analytic. The coefficients of the power series expansion of the displacement
function around the singularity yield the so-called Lyapunov Coefficients, denoted as Vn’s.
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Hence, the monodromic singularity is a center if, and only if, Vn vanishes for all n P N.
This immediately provides sufficient conditions for a monodromic singularity to be a
focus. For polynomial vector fields, Poincaré and Lyapunov reduced the problem of
solving the infinite system of equations Vn = 0, n P N, to an equivalent problem of
finding a specific first integral for the vector field.

On the other hand, the cyclicity problem seeks to estimate the number of
limit cycles that can bifurcate from a monodromic singularity, a matter that can also
be studied by means of the Lyapunov coefficients. Further insights into the center and
cyclicity problems can be found in the referred book (45).

Differential equations with discontinuities represent a very important class
of dynamical systems due to their applications across various areas of applied science.
It is worth mentioning the classical book of Andronov (3) and, for more contemporary
perspectives, the books (20, 23, 30). Filippov, in his acclaimed book (25), provided a
rigorous mathematical formalization for non-smooth differential equations, now termed
Filippov systems. Researches into the center problem for non-smooth planar vector
fields were extended as well. For instance, Ples̆kan and Sibirskiĭ (referenced as (44))
considered the center-focus problem for monodromic singularities of focus-focus type of
piecewise analytic vector fields. Filippov, in Chapter 4 of his book (25), computed several
Lyapunov coefficients for a monodromic singularity of fold-fold type in piecewise
smooth vector fields. In (15), Coll et al. obtained the first seven Lyapunov constants for
monodromic singularities of focus-focus type within discontinuous Liénard differential
equations. Subsequently, in (19), using an algebraic approach introduced by Cima et
al. in (14), they derived general expressions for the Lyapunov constants concerning
monodromic singularities of the focus-focus type for some families of discontinuous
Liénard differential equations. The same authors in (18) addressed both the center
problem and cyclicity problems for monodromic singularities of focus-focus, fold-fold,
and focus-fold types, explicitly computing the first three Lyapunov coefficients for these
three types of singularities. In (27), Gasull and Torregrosa also addressed the center and
cyclicity problems for monodromic singularities of focus-focus type of several classes
of piecewise smooth systems. The generic unfolding of a monodromic singularity of
fold-fold type was explored in (29, 33) (see also (26) on this matter). Recent studies,
such as those cited in (6, 28), explored the problem of bifurcation of limit cycles from
monodromic singularities in discontinuous systems by means of Lyapunov coefficients.

In this introduction, we will explore the characteristics of Filippov systems in
the plane with a monodromic tangential singularity at the origin. Additionally, we will
introduce a canonical form for this type of singularity, which will be of major importance
for the results that will be presented later concerning the center, isochronicity, and
cyclicity problems.
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1.1 Filippov vector fields
The basic notions of smooth Dynamical Systems can be directly translated to

piecewise smooth systems, but they need to be reformulated. The first step to studying
non-smooth systems is to establish the notions of orbits and singularities.

Our main goal is to study planar vector fields, therefore we will discuss the
ideas of orbits and singularities in this context. The definitions with more details can be
found in (25).

Let Z+ and Z� be vector fields defined in an open and connected subset
U P R2. Without loss of generality, assume that 0 P U. Firstly, we introduce some
assumptions and fix some notations. Assume that the discontinuity manifold is always
an unidimensional differentiable manifold Σ that is given as Σ = h�1(0) X U, for
U � R2, where h is a function h P Cr (with r ¡ 0) that has 0 as a regular value. Then, the
curve Σ divides the set U into two open subsets

Σ+ = t(x, y) P U : h(x, y) ¡ 0u and Σ� = t(x, y) P U : h(x, y)   0u.

A Filippov system is the piecewise vector field defined as follow

Z(x, y) =

$&%Z+(x, y), if (x, y) P Σ+,

Z�(x, y), if (x, y) P Σ�,
(1.1)

where we will denote Z� = (X�, Y�) to indicate the components of the
vector field. We also assume that the vector fields are Ck, for k ¡ 1 in �Σ+ and �Σ�.

The notion of the local trajectories is the solutions of the following differential
inclusion

p P FZ(p) =
Z+(p) + Z�(p)

2
+ sign(h(p))

Z+(p)� Z�(p)
2

, (1.2)

where

sign(s) =

$'''&'''%
�1, if s   0,

[�1, 1], if s = 0,

1, if s ¡ 0.

This approach is referred to as Filippov’s convention. The vector field (1.1)
is designated as a Filippov system when it adheres to the Filippov’s convention. For
further insights into differential inclusions, see (25).

The literature offers comprehensive descriptions of solutions to the differ-
ential inclusion, along with a straightforward geometric interpretation. When dealing
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with points located in the regions Z+ and Z�, we will apply the standard dynamics rep-
resented by Z+ and Z�, respectively. To understand the behavior of the local trajectories
passing through a point p P Σ, we establish the following open regions on Σ:

• Crossing region: Σc = tp P Σ : Z+h(p) � Z�h(p) ¡ 0u, see Figure 1a,

• Sliding region: Σs = tp P Σ : Z+h(p)   0, Z�h(p) ¡ 0u, see Figure 1b,

• Escaping region: Σe = tp P Σ : Z+h(p) ¡ 0, Z�h(p)   0u, see Figure 1c,

where Z�h(p) = Z�(p)∇h(p) is the Lie derivative of f with respect to the
vector field Z� in p. These three regions are open relatively to the induced topology of
Σ and they can have several connected components.

Σc

(a) Crossing Region

Σs

(b) Sliding Region

Σe

(c) Escaping Region

Figure 1 – Filippov Systems

We define the orbit passing through a point p, located on Σc, Σs and Σe. In
Σc, where both vector fields Z+ and Z� point simultaneously to the same region, it is
sufficient to concatenate the trajectories of Z+ and Z� passing through p.

Now, considering a point p P Σs Y Σe, the vector fields point to opposite
directions, making it impossible to concatenate the trajectories. In this case, the trajec-
tory on either side of the discontinuity Σ that reach p can be smoothly connected to
trajectories following the sliding vector field Zs, which is the convex linear combination
of Z+ and Z� tangent to Σ, that is given by

Zs(p) =
1

Yh(p)� Xh(p)
FZ(p) =

1
Yh(p)� Xh(p)

(Yh(p)X(p)� Xh(p)Y(p)). (1.3)

In the context of Filippov theory, the concept of singular points also compre-
hends the tangential points denoted as Σt. These tangential points are formed by the
contact points between Z+ and Z� with Σ, that is,

Σt = tp P Σ : Z+h(p) � Z�h(p) = 0u,

where Fh(p) = x∇h(p), F(p)y denotes the Lie derivative of h at p in the direction of the
vector field F.
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By taking local coordinates, we may assume, without loss of generality, that
p = (0, 0) and also that h(x, y) = y. Therefore, denoting Z� = (X�(x, y), Y�(x, y)), the
Filippov vector field (1.1) writes as

Z(x, y) =

$&%(X+(x, y), Y+(x, y)), y ¡ 0,

(X�(x, y), Y�(x, y)), y   0.
(1.4)

1.2 The monodromic tangential singularities
Some tangential singularities give rise to local monodromic behavior. In

what follows, we shall introduce the concept of a (2k+, 2k�)-monodromic tangential
singularity for Filippov vector fields (39), that happens to be more degenerated than a
monodromic fold-fold singularity already considered in the research literature.

Firstly, we recall that p is a contact of multiplicity k (or order k� 1) between a
smooth vector field F and Σ if 0 is a root of multiplicity k of f (t) ..= h � φF(t, p), where
t ÞÑ φF(t, p) is the trajectory of F starting at p. Equivalently,

Fh(p) = F2h(p) = . . . = Fk�1h(p) = 0, and Fkh(p) � 0, (1.5)

where the higher Lie derivative Fnh(p) is recursively defined as Fnh(p) = F(Fn�1h)(p),
for n ¡ 1. In addition, when considering Filippov vector fields (1.4), an even multi-
plicity contact, say 2k, is called invisible for Z+ (resp. Z�) when (Z+)2kh(p)   0 (resp.
(Z�)2kh(p) ¡ 0). Otherwise, it is called visible.

0

(a) Invisible and visible

0

(b) Both visible

0

(c) Both invisible

Figure 2 – Singularities with even contact

In our particular case, our focus lies on monodromic singularities, and that
is why we are working with invisible contacts. For a monodromic singularity to exist,
it is essential not only that the singularities have an invisible contact, but also that the
trajectories behave in such a way that in a neighborhood of the origin the discontinuity
manifold has to be a crossing line. Keeping that into consideration, we proceed to define
our singularity as follows.
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Definition 1. A tangential singularity p P Σt of a Filippov vector field Z (1.4) is called a
(2k+, 2k�)-monodromic tangential singularity provided that p is simultaneously an invisible
2k+-multiplicity contact of Z+ with Σ and an invisible 2k�-multiplicity contact of Z� with Σ,
and Z has a first-return map defined on Σ around p.

Σ
0

Σ
0

Σ
0

Z+

Z�

Z+

Z�

ÝÑ

Figure 3 – Invisible 2k-multiplicity contact between Σ and the vector fields Z+ and Z�.
The concatenation of the orbits of Z+ and Z� through Σ allows the definition
of a first-return map. The origin is a (2k, 2k)-monodromic tangential singular-
ity of Z.

Computing the higher Lie derivatives (1.5) for Z�, we get

(Z�)nh(0, 0) = X�(0, 0)n�1Bn�1Y�

Bxn�1 (0, 0),

provided that (Z�)ih(0, 0) = 0 for i = 1, . . . , n� 1. Thus, by Definition 1, one can see
that the origin is a (2k+, 2k�)-monodromic tangential singularity for (1.4) provided that
the following three conditions are satisfied:

C1. X�(0, 0) � 0, Y�(0, 0) = 0,
BiY�

Bxi (0, 0) = 0 for i = 1, . . . , 2k� � 2,

and
B2k��1Y�

Bx2k��1
(0, 0) � 0;

C2. X+(0, 0)
B2k+�1Y+

Bx2k+�1
(0, 0)   0 and X�(0, 0)

B2k��1Y�

Bx2k��1
(0, 0) ¡ 0;

C3. X+(0, 0)X�(0, 0)   0.

Condition C1 imposes that the origin is a contact of multiplicity 2k+ (resp.
2k�) between Z+ (resp. Z�) and Σ. Condition C2 imposes that both contacts are invisible.
Finally, condition C3 imposes that the orientation of the orbits of Z+ and Z� around the
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origin agrees in such a way that the trajectories of both vector fields can be concatenated
at Σ in order to a first-return map be well defined around the origin. Denote

δ = sign(X+(0, 0)) = �sign(X�(0, 0)). (1.6)

Notice that Z is turning around the origin in the clockwise direction if δ ¡ 0, and in the
anticlockwise direction if δ   0.

1.3 Canonical form
In this section, we provide a simpler expression for Filippov vector fields

around a (2k+, 2k�)-monodromic tangential singularity. This canonical expression has
been introduced in (1) and it will be important for proving our main results and will be
used throughout this thesis. In what follows, for completeness, we briefly explain how
to obtain it.

Assuming that the Filippov vector field (1.4) has a (2k+, 2k�)-monodromic
tangential singularity at the origin (see conditions C1, C2, and C3 from Definition 1), we
have that X�(0, 0) � 0. Therefore, there exists a small neighborhood U of the origin such
that X�(x, y) � 0 for all (x, y) P U. Taking into account that |X�(x, y)| = �δX�(x, y),
for all (x, y) P U, a time rescaling can be performed in order to transform the Filippov
vector field (1.4) restricted to U into

(ẋ, ẏ) = Z̃(x, y) =

$&%(δ, η+(x, y)), y ¡ 0,

(�δ, η�(x, y)), y   0,

where

η+(x, y) = δ
Y+(x, y)
X+(x, y)

and η�(x, y) = �δ
Y�(x, y)
X�(x, y)

.

In addition, we can show that

(Z̃�)ih(0, 0) = 0 if, and only if, (Z�)ih(0, 0) = 0, for all i = 1, 2, . . . , 2k�, (1.7)

and

Z̃�h(x, 0) = η�(x, 0) and (Z̃�)ih(x, 0) =
Bi�1

Bxi�1 η�(0, 0), for all i = 1, . . . , 2k�. (1.8)

Since (Z�)ih(0, 0) = 0, for i = 1, 2, . . . , 2k� � 1, and (Z�)2k�h(0, 0) � 0, by combining
(1.7) and (1.8), we can expand η�(x, 0) around x = 0 as follows:

η�(x, 0) =
2k��1¸

i=0

1
i!
Biη�

Bxi (0, 0)xi + x2k� f�(x) = a�x2k��1 + x2k� f�(x),
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where, the functions f� are defined as

f�(x) =
�δY�(x, 0)� a�x2k��1X�(x, 0)

x2k�X�(x, 0)
, (1.9)

and the values a� as

a� =
1

(2k� � 1)!
B2k��1η�

Bx2k��1
(0, 0) =

�δ

(2k� � 1)!
B2k��1

Bx2k��1

(
Y�(x, 0)
X�(x, 0)

) �����
x=0

=
1

(2k� � 1)!|X�(0, 0)|
B2k��1Y�

Bx2k��1
(0, 0).

(1.10)

Considering

g�(x, y) =
�X�(x, 0)Y�(x, y)	 X�(x, y)Y�(x, 0)

yδX�(x, y)X�(x, 0)
, (1.11)

the function η�(x, y) writes as

η�(x, y) = a�x2k��1 + x2k� f�(x) + yg�(x, y).

Consequently, the Filippov vector field (1.4) on U is equivalent to

(ẋ, ẏ) =

$&%(δ, a+x2k+�1 + x2k+ f+(x) + yg+(x, y)), y ¡ 0,

(�δ, a�x2k��1 + x2k� f�(x) + yg�(x, y)), y   0.
(1.12)

1.4 Structure of the thesis and main results
In Chapter 2, we give our first main result Theorem 1, which gives us results

about the regularity of the half-return maps that define the first-return map. Employing
the regularity of the half-return maps, we define the Lyapunov coefficients for tangential
singularities. In Section 2.3, we present Theorem 2 which states that the first non-
vanishing Lyapunov coefficient for tangential singularity is always even, its proof
follows directly from Proposition 1. In Section 2.4, we give Theorem 3 and Proposition
2 which give us recursive formulae for the Lyapunov coefficients, and Proposition 2
which gives us the first four Lyapunov coefficients explicitly. In addition, in Section 2.5,
we provide an implemented list of Mathematica algorithms for computing the Lyapunov
coefficients.

In Chapter 3, Section 3.2, we give Theorems 5 and 6 that explore the cyclicity
problem for monodromic tangential singularities. Theorem 5 gives us results about
Hopf-like bifurcation, and Theorem 6 gives us results about Bautin-like bifurcations.
In Section 3.3, we give Propositions 3 and 4 which are a formalization of the pseudo-
Hopf bifurcation and a version of the pseudo-Hopf bifurcation for more degenerate
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singularities, respectively. In Section 3.4, we present Theorem 7 which pushes beyond
the pseudo-Hopf bifurcation bringing results of the appearance of limit cycles with the
destruction of more degenerate tangential singularities. The proof of Theorem 7 is done
through Subsections 3.4.1, 3.4.2 and 3.4.3. In addition, in Section 3.5, we give several
examples exploring the cyclicity problem using Theorems 5, 6, and 7.

In Chapter 4, Section 4.1, we give Lemma 1 which provides us the formula
for the period function for the canonical form for a system with a tangential singularity.
In Section 4.2, we present Theorem 8 which gives us the formula for the period function
for a general system with a tangential singularity. The proof of Theorem 8 is done in
Subsection 4.2.1. In Section 4.3, we give the formulae for computing the period constants.
In Section 4.4, we give Corollary 1 and Theorem 9 which give us the first period constants
and state that tangential centers are never isochronous and do not admit critical periods,
respectively.
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2 Lyapunov coefficients for tangential
singularities

The main results of this chapter are based on the paper (39). One of the
main goals of this chapter is to obtain the formulae for the Lyapunov coefficients for
monodromic tangential singularities of piecewise analytic vector fields Z = (Z+, Z�).
In order to do that, first we prove that the first-return map, defined in a neighborhood
of a monodromic tangential singularity, is analytic, which allows the definition of
the Lyapunov coefficients. Then, as a consequence of a general property for a pair of
involutions, we obtain that the index of the first non-vanishing Lyapunov coefficient
is always even. Then, we provide a recursive formula for the Lyapunov coefficients.
In addition, in Section 2.5 of this chapter, a Mathematica algorithm for computing the
Lyapunov coefficients is provided.

In (18), the authors studied the Lyapunov coefficients for parabolic-parabolic
points, which in light of Definition 1, correspond to the (2, 2)-monodromic tangential
singularities. In this chapter, our main goal consists of extending the previous results
for (2k+, 2k�)-monodromic tangential singularity. It is worth mentioning that in (18)
the Lyapunov coefficients were obtained by means of generalized polar coordinates
(see (7)). Here, motivated by Teixeira’s works (49, 50), we propose a different way of
obtaining it by considering auxiliary sections, which are transversal to both the flow
and the discontinuity manifold. This method allows us to provide a general recursive
formula for the Lyapunov coefficients.

2.1 Half-return maps and their regularity
Considering (1.4) with a (2k+, 2k�)-monodromic tangential singularity, we

have that the flows of Z+ and Z� restricted, respectively, to Σ+ = t(x, y) : y ¥ 0u and
Σ� = t(x, y) : y ¤ 0u define half-return maps φ+ and φ� on Σ around 0, which are
known to be involutions (38) satisfying φ+(0) = φ�(0) = 0, that is, φ+ � φ+(x) = x
and φ� � φ�(x) = x whenever they are defined (see Figure 4).

x1 φ+(x2) 0 φ+(x1)x2
Σ

Figure 4 – Illustration of the half-return map φ+.
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The main tool we shall employ to obtain the analyticity of the half-return
maps φ� is the generalized polar coordinate transformation (16, 34). This coordinate transfor-
mation was introduced by Lyapunov in (34) and was originally conceived for studying
degenerate singularities of vector fields. Afterward, this tool has shown to be very
useful in the study of degenerate singularities of smooth planar vector fields (see, for
instance, (8, 16, 24)).

In (18), Coll et al. employed the generalized polar coordinate transformation
to study several types of monodromic singularities of discontinuous piecewise ana-
lytic systems, one of them, the fold-fold type, coincides with our (2, 2)-monodromic
tangential singularity, according to Definition 1. For this case, they showed that, in the
transformed space S1 �R+, the monodromic singularity blows-up into t0u � S1, which
does not have singularities in the closure of the semi-plane of interest (see Figure 5). As
we shall see, this implies the analyticity of half-return maps around (2, 2)-monodromic
tangential singularities. The same result for (2, 2)-monodromic tangential singularities
can be obtained by using an analytic version of Vishik’s normal form (see (10)), however,
this does not work for more degenerate tangential singularities.

Our first main result states that such half-return maps are analytic provided
that the vector fields Z+ and Z� are analytic. In (18), the authors proved the analyticity
of the half-return maps blowing-up the origin (see Figure 5) by means of Generalized
Polar Coordinates (16, 34) assuming k� = 1. Here, we shall follow the ideas from (18) to
obtain the analyticity of half-return maps around (2k+, 2k�)-monodromic tangential
singularities, adapting their proof in order to obtain the analyticity for the general case.
In the proof, it will be clear that if we impose Z+ (resp. Z�) to be Cr, 1 ¤ r ¤ 8, instead
of analytic, then the half-return map φ+ (resp. φ�) would be Cr around x = 0.

Σ Σ
0 0

φ+(x0) φ+(x0)x0 x0

Figure 5 – Blow-up of Z+ at the monodromic tangential singularity. In the transformed
space S1 �R+, the monodromic singularity blows-up into t0u � S1, which
does not have singularities in the closure of the semi-plane of interest.

In order to present and prove our first main result, firstly we recall the
definition of generalized polar coordinates. For positive real numbers p and q, the
(R, θ, p, q)-generalized polar coordinates are given by(

x, y
)
=
(

RpCs(θ), RqSn(θ)
)
, (2.1)
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where R ¡ 0, θ P S1, and the function
(
Sn(θ), Cs(θ)

)
is the solution of the following

Cauchy problem: $&%Ċs = �Sn2p�1,

Ṡn = Cs2q�1,
Cs(0) = 2q

d
1
p

, Sn(0) = 0.

The functions Cs(θ) and Sn(θ) are also called (p, q)-trigonometric functions
(34). In (16), it is proven that the functions Cs(θ) and Sn(θ) are analytic, T-periodic with

T = 2p
�1
2q q

�1
2p

» 1

0
(1� s)

1�2p
2p s

1�2q
2q ds ¡ 0,

and satisfy the following properties:

• p(Cs(θ))2q + q(Sn(θ))2p = 1;

• Cs is an even function and Sn is an odd function;

• Cs(
T
2
� θ) = �Cs(θ) and Sn(

T
2
� θ) = Sn(θ).

Taking the above properties into account, one can see that

Cs(�T
4
) = Cs(

T
4
) = 0,

Cs(θ) ¡ 0, for θ P (�T
4

,
T
4
), and Cs(θ)   0, for θ P [�T

2
,�T

4
)Y (

T
4

,
T
2
],

Sn(
T
2
) = Sn(0) = Sn(

T
2
) = 0,

Sn(θ) ¡ 0, for θ P (0,
T
2
), and Sn(θ)   0, for θ P (�T

2
, 0).

(2.2)

Theorem 1. Consider the Filippov vector field (1.4) and suppose that the vector field Z+ (resp.
Z�) is analytic and has an invisible 2k+-multiplicity (resp. 2k�-multiplicity) contact at the
origin with Σ = t(x, 0) : x P Ru, for a positive integer k+ (resp. k�). Then, the half-return
map φ+ (resp. φ�) is analytic around x = 0.

Proof. We shall prove the analyticity of the φ+. The analyticity of φ� will follows
analogously.

Using the (R, θ, p, q)-generalized polar change of coordinates (2.1) for p = 1

and q = 2k+ and rescaling the time by taking τ =
t
R

, the vector field (1.12) restricted to
y ¥ 0 is transformed into (as shown in Figure 5)

(θ1, R1) = (F+(R, θ), G+(R, θ)), θ P [0,
T
2
] and R ¡ 0, (2.3)
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where

F+(R, θ) =a+Cs(θ)2k+ � 2δk+Sn(θ)

+ RCs(θ)
(

Sn(θ)g+
(

RCs(θ), R2k+Sn(θ)
)
+ Cs(θ)2k+ f+(RCs(θ))

)
,

G+(R, θ) =RCs(θ)2k+�1
(

δCs(θ)2k+ + aSn(θ)
)

+ R2Sn(θ)
(

Sn(θ)g+
(

RCs(θ), R2k+Sn(θ)
)
+ Cs(θ)2k+ f+(RCs(θ))

)
.

Notice that, for R = 0, F+(0, θ) = a+Cs2k+(θ) � 2δk+Sn(θ). Thus, since δa+   0,
and taking (2.2) into account, we conclude that any root of F+(0, θ) = 0 must satisfy

�T
2
  θ   0. Consequently, for R ¡ 0 sufficiently small, θ1 ¡ 0, for all θ P [0,

T
2
]. This

means that θ can be taken as the independent variable in (2.3). Indeed, denoting

H+(R, θ) =
G+(R, θ)

F+(R, θ)
,

the differential equation (2.3) writes

dR
dθ

= H+(R, θ), θ P [0,
T
2
] and R ¡ 0. (2.4)

Since H+(R, θ) is analytic in a neighborhood of t0u � [0,
T
2
], the differential (2.4) can be

analytically extended to R = 0. Accordingly, let r+(θ, x0) denote the solution of such an
extension satisfying r+(0, x0) = x0. From the above comments, we get that r+(θ, x0) is

analytic in a neighborhood of [0,
T
2
]�t0u. Finally, notice that φ+(x0) = r+(

T
2

, x0)Cs(
T
2
).

Therefore, we conclude that φ+(x0) is analytic in a neighborhood of x0 = 0, which
concludes the proof of Theorem 1 for the analytic case. The Cr case is analogous.

2.2 Displacement function and the Lyapunov coefficients
Here, in order to obtain the so-called Lyapunov coefficients, instead of working

with the first-return map, we consider the displacement function (see Figure 6)

0x
Σ

φ+(x)
φ�(x)

Ó

∆(x)

Figure 6 – Illustration of the displacement function ∆.
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∆(x) = δ(φ+(x)� φ�(x)). (2.5)

Assuming the analyticity of the vector fields Z+ and Z�, from Theorem 1
and taking into account that φ+ and φ� are involutions, we have

φ�(x) = �x + α�2 x2 + α�3 x3 + � � � = �x +
8̧

n=2

α�n xn. (2.6)

Thus,

∆(x) =
8̧

n=2

Vnxn, (2.7)

where Vn = δ(α+n � α�n ), for n ¥ 2. Notice that (1.4) has a center at the origin if, and
only if, the displacement function is identically zero, equivalently, Vn = 0, for all integer
n ¥ 2. Hence, if there exists n P N such as Vn � 0, then (1.4) has a focus at the origin.
In addition, if n0 is the first index such that Vn0 � 0, then the origin is asymptotically
stable (resp. unstable) provided that Vn0   0 (resp. Vn0 ¡ 0).

Accordingly, it is natural to introduce the following definition:

Definition 2. Fixing a system of the form (1.4) with a (2k+, 2k�)-monodromic tangential
singularity, we have:

• The coefficient Vn, n P N, in (2.7), is called the n-th Lyapunov coefficient.

• The origin is called a (2k+, 2k�)-tangential center provided that the displacement function
(2.5) is identically zero, otherwise the origin is called a (2k+, 2k�)-tangential focus.

2.3 First non-vanishing Lyapunov coefficient
For non-degenerate monodromic singularities of planar smooth vector fields,

the index of the first non-vanishing Lyapunov coefficient is always odd (see (45)). Here,
as a consequence of an involutive property of the half-return maps, our second main
result establishes that the index of the first non-vanishing Lyapunov coefficient of a
(2k+, 2k�)-monodromic tangential singularity is always even:

Theorem 2. Consider the Filippov vector field Z given by (1.4) and suppose that the vector fields
Z+ and Z� are analytic. Assume that Z has a (2k+, 2k�)-monodromic tangential singularity
at the origin, for positive integers k+ and k�. If Vn = 0, for all n = 2, . . . , 2ℓ, then V2ℓ+1 = 0.

Theorem 2 is a direct consequence of the following property of a pair of
involutions:



Chapter 2. Lyapunov coefficients for tangential singularities 25

Proposition 1. Let φ, ψ : I Ñ R be C2ℓ+1 involutions around 0. If φ(0) = ψ(0) and
φ(i)(0) = ψ(i)(0), for i = 1, 2 . . . , 2ℓ, then φ(2ℓ+1)(0) = ψ(2ℓ+1)(0).

For the proof of Proposition 1 and the next results we will use the concept of
partial Bell polynomials Bp,q and ordinary Bell polynomials B̂p,q.

Definition 3. The (exponential) partial Bell polynomials are the polynomial

Bp,q(x1, . . . , xp�q+1) =
¸ p!

b1! b2! � � � bp�q+1!

p�q+1¹
j=1

(
xj

j!

)bj

(2.8)

and the ordinary Bell polynomials (or complete) are

B̂p,q(x1, . . . , xp�q+1) =
¸ p!

b1! b2! � � � bp�q+1!

p�q+1¹
j=1

x
bj
j , (2.9)

where the summations are taken over all the (p � q + 1)-tuple of non-negative integers
(b1, b2, � � � , bp�q+1) satisfying b1 + 2b2 + � � �+ (p� q + 1)bp�q+1 = p, and b1 + b2 + � � �+
bp�q+1 = q.

Notice that

B̂p,q(x1, . . . , xp�q+1) =
q!
p!

Bp,q(1!x1, . . . , (p� q + 1)!xp�q+1).

It is worth mentioning that partial Bell polynomials are implemented in algebraic
manipulators as Mathematica and Maple.

We have the following relations for Bell polynomials (21):

(R1) Bp,q(0, 0, . . . , 0, xj, 0, . . . , 0) = 0, except Bpq,q =
(pq!)
q!(j!)k xk

j ,

(R2) Bn,n�a(x1, x2, . . . , xa+1) =
2a̧

j=a+1

(
n
j

)
Bj,j�a(0, x2, x3, . . . , xa+1).

Now we follow with the proof of Proposition 1.

Proof. In order to prove Proposition 1, first, we recall the useful Faà di Bruno’s Formula
for higher derivatives of a composite function (see (31))

dl

dαl g(h(α)) =
ļ

m=1

g(m)(h(α))Bl,m
(
h1(α), h2(α), . . . , h(l�m+1)(α)

)
, (2.10)

where Bl,m denotes the partial Bell polynomials as defined in (3).
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Since φ � φ(x) = x and ψ � ψ(x) = x, then φ1(0) = �1 and ψ1(0) = �1.

Now, applying Faà di Bruno’s Formula (2.10) for computing the n-th deriva-
tive of the composition φ � φ(x) = x, we get

ņ

i=1

φ(i)(0)Bn,i(φ1(0), φ2(0), . . . , φ(n�i+1)(0)) = 0, n ¥ 2. (2.11)

Denote

S(φ1(0), . . . , φ(n�1)(0)) := �
n�1̧

i=2

Bn,i(φ1(0), . . . , φ(n�i+1)(0)).

Thus, from (2.11), we have

φ1(0)Bn,1(φ1(0), . . . , φ(n)(0)) + φ(n)(0)Bn,n(�1) = �
n�1̧

i=2

Bn,i(φ1(0), . . . , φ(n�i+1)(0)),

which implies that

((�1)n � 1)φ(n)(0) = S(φ1(0), . . . , φ(n�1)(0)). (2.12)

Analogously, we obtain that

((�1)n � 1)ψ(n)(0) = S(ψ1(0), . . . , ψ(n�1)(0)). (2.13)

Now, assume that φ(i)(0) = ψ(i)(0) = αi, for i = 1, 2, . . . , 2ℓ. From (2.12) and
(2.13), taking n = 2ℓ+ 1, we get that

�2φ(2ℓ+1)(0) = S(φ1(0), . . . , φ(2ℓ)(0)) = S(α1, . . . , α2ℓ) = �2ψ(2ℓ+1)(0),

which concludes the proof.

Proof of Theorem 2. The proof of Theorem 2 follows directly from Proposition 1 by taking
φ = φ+ and ψ = φ�.

2.4 Formulae for the Lyapunov coefficients
Our third main result provides a recursive formula for computing the coeffi-

cients α+n and α�n of the series (2.6) of the half-return maps φ+ and φ� and, consequently,
the Lyapunov coefficients Vn’s (2.7).
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Theorem 3. Consider the Filippov vector field Z given by (1.4) and suppose that the vector fields
Z+ and Z� are analytic. Assume that Z has a (2k+, 2k�)-monodromic tangential singularity
at the origin, for positive integers k+ and k�. Then, the functions f� (1.9) and g� (1.11) are
analytic in a neighborhood of x = y = 0. Also, consider the sequence of functions y+i and y�i
defined, in a neighborhood of x = 0, recursively by

y�1 (x) =a�x2k��1 + x2k� f�(x),

y�i (x) =(�δ)i�1

(
a�

(2k� � 1)!
(2k� � i)!

x2k��i +
i�1̧

l=0

(
i� 1

l

)
(2k�)!

(2k� � l)!
x2k��l f�(i�1�l)

(x)

)

+
i�1̧

l=1

ļ

j=1

j
(

i� 1
l

)
(�δ)i�l�1Bl,j(y�1 (x), . . . , y�l�j+1(x))

B j+i�l�2g�

Bxi�l�1Byj�1 (x, 0), if 2 ¤ i ¤ 2k�,

y�i (x) =(�δ)i�1

((
i� 1
2k�

)
(2k�)! f�i�1�2k�

(x) +
2k��1¸

l=0

(
i� 1

l

)
(2k�)!

(2k� � l)!
x2k��l f�(i�l�1)

(x)

)

+
i�1̧

l=1

ļ

j=1

j
(

i� 1
l

)
(�δ)i�l�1Bl,j(y�1 (x), . . . , y�l�j+1(x))

B j+i�l�2g�

Bxi�l�1Byj�1 (x, 0), if i ¡ 2k�.

(2.14)

Then, the coefficients α�n of the series (2.6) of the half-return maps φ� are given recursively by$''&''%
α�1 = �1,

α�n =
p�n,k�(α

�
1 , α�2 , � � � α�n�1)� µ�n+2k��1

2k�µ�2k�
,

(2.15)

where
p�n,k�

(
α1, . . . , αn�1

)
= µ�2k� B̂n+2k��1,2k

(
α1, . . . , αn�1, 0

)
+

n+2k��1¸
i=2k�+1

µ�i B̂n+2k��1,i
(
α1, . . . , αn+2k��i

)
,

and

µ�i =
1
i!

i̧

j=1

(	δ)j
(

i
j

)
(y�j )

(i�j)(0). (2.16)

Proof. From here, in order to prove Theorem 3, we shall use some additional identi-
ties, namely the well-known General Leibniz Rule for higher derivatives of product of
functions

dl

dαl

(
g(α)h(α)

)
=

ļ

k=0

(
l
k

)
g(l�k)(α)h(k)(α); (2.17)

and the following Multinomial Formula.

The multinomial theorem is the generalization of the well known binomial
theorem for more than two variables and it describes how to expand a power of a sum
in terms of powers of the terms in that sum.

The multinomial theorem provides a formula, which is described as follow:
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(x1 + x2 + � � �+ xk)
n =

¸
n1,n2,...,nk¥0

n!
n1!n2! . . . nk

k¹
t=1

xnt
t , (2.18)

where n1 + n2 + � � �+ nk = n. The Multinomial Theorem can also be written in terms of
ordinary Bell polynomials as(

8̧

j=1

αjxj

)n

=
8̧

i=n

B̂i,n(α1, . . . , αi�n+1)xi, (2.19)

where B̂l,m denotes the ordinary Bell polynomials (2.9).

Denote by ϕ�(t, x0) = (x�(t, x0), y�(t, x0)) the solutions of

(ẋ, ẏ) = (�δ, a�x2k��1 + x2k� f�(x) + yg�(x, y)),

with initial condition ϕ�(0, x0) = (x�(0, x0), y�(0, x0)) = (x0, 0) P Σ. Notice that
x�(t, x0) = x0 � δt, so that x�(t, x0) = 0 if, and only if, t = 	δx0. Accordingly, we
define (see Figure 7)

µ�(x0) = y�(	δx0, x0). (2.20)

Σ
x00

µ+(x0)

Figure 7 – Map µ

As commented before, we compute the series of µ�(x0) around the origin:

µ�(x0) =
8̧

n=1

µ�n xn
0 ,

where

µ�n =
µ�

(n)(0)
n!

=
¸

i+j=n

(	δ)i
(

n
i

)Bny�(0, 0)

BtiBxj
0

=
1
n!

ņ

i=1

(	δ)i
(

n
i

) Bn�i

Bxn�i
0

(Biy�

Bti (0, 0)
)

.

In the last equality above, we are using that y�(0, x0) = 0 and, consequently,
Bny�

Bxn
0
(0, 0) =

0. Now, denoting y�i (x) =
Biy�

Bti (0, x), we get

µ�i =
1
i!

i̧

j=1

(	δ)j
(

i
j

)
(y�j )

(i�j)(0).



Chapter 2. Lyapunov coefficients for tangential singularities 29

Notice that this last expression coincides with the one presented in (2.16).

Suppose that Z� are analytic vector fields and assume that the piecewise
analytic Filippov vector field (1.4) has a (2k+, 2k�)-monodromic tangential singularity
at the origin, for positive integers k+ and k�. From the comments of Section 1.3, we
know that there exists a small neighborhood U � R2 of the origin such that (1.4) is
equivalent to the canonical form (1.12) through a time rescaling, where δ, a�, f�(x), and
g�(x, y) are given by (1.6), (1.10), and (1.9), respectively. In addition, since X�(x, y) � 0,
for all (x, y) P U, we get that the functions f� and g� are analytic in a neighborhood of
x = y = 0.

Now, working out the identity µ�(x0) = µ�(φ�(x0)), we obtain

8̧

n=1

µ�n xn
0 =

8̧

n=1

µ�n (
8̧

j=1

α�j xj
0)

n

=
8̧

n=1

µ�n

8̧

i=n

B̂i,n(α
�
1 , . . . , α�i�n+1)xi

0

=
8̧

n=1

8̧

i=n

µ�n B̂i,n(α
�
1 , . . . , α�i�n+1)xi

0.

(2.21)

In the second equality above, we are using the multinomial formula (2.19).

First, we claim that (2.14) provides a recursive formula for y�i (x).

Claim 3.1. The functions y�i (x), for i = 1, 2, . . . , are defined recursively by (2.14).

Proof of Claim 3.1. First of all, notice that the derivative of the second component of the
solution is equal to the second component of the vector field in the cannonical form (1.12), so

By�

Bt
(t, x) =η�(x� δt, y�(t, x))

=a�(x� δt)2k��1 + (x� δt)2k� f�(x� δt) + y�(t, x)g�(x� δt, y�(t, x)).

Then,

y�1 (x) =
By�

Bt
(0, x) = a�x2k��1 + x2k� f�(x),

which coincides with the initial condition for i = 1 of the recursive formula (2.14).

Now, denoting

g�i (x) =
1

(i� 1)!
Bi�1

Byi�1 g�(x, 0), (2.22)

we get that

yg�(x, y) =
8̧

m=1

ymg�m(x).
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Thus, for i ¥ 2,

Biy�

Bti (t, x) =
Bi�1

Bti�1

(
a�(x� δt)2k�+1 + (x� δt)2k� f�(x� δt) +

8̧

j=1

yj(t, x)g�j (x� δt)
)

=a�
Bi�1

Bti�1 (x� δt)2k�+1 +
Bi�1

Bti�1

(
(x� δt)2k� f�(x� δt)

)
+
Bi�1

Bti�1

( 8̧

j=1

yj(t, x)g�j (x� δt)
)

.

Clearly,

Bi�1

Bti�1 (x� δt)2k�+1

�����
t=0

=

$'&'%(�δ)i�1 (2k� � 1)!
(2k� � i)!

x2k�i, if i ¤ 2k�,

0, if i ¡ 2k�.
(2.23)

Now, using the Leibniz general rule (2.17), we get that

Bi�1

Bti�1

(
(x� δt)2k� f�(x� δt)

)�����
t=0

=$'''''&'''''%
(�δ)i�1

i�1̧

l=0

(
i� 1

l

)
(2k�)!

(2k� � l)!
x2k��l f�(i�1�l)

(x), if i ¤ 2k�,

(�δ)i�1
2k��1¸

l=0

(
i� 1

l

)
(2k�)!

(2k� � l)!
x2k��l f�(i�l�1)

(x), if i ¡ 2k�.

(2.24)

and
Bi�1

Bti�1

( 8̧

j=1

(y�(t, x))jg�j (x� δt)
)�����

t=0

=

8̧

j=1

i�1̧

l=0

(
i� 1

l

)
(�δ)i�l�1 Bl

Btl

(
y�(t, x)j)�����

t=0

g�j
(i�l�1)

(x).

(2.25)

In addition, denoting Pj(y) = yj, we get from the Faà di Bruno’s Formula (2.10) that

Bl

Btl (y
�(t, x)j)

�����
t=0

=
Bl

Btl Pj(y�(t, x))

�����
t=0

=
ļ

m=1

P(m)
j (0)Bl,m(y�1 (x), . . . , y�l�m+1(x))

=

$'&'%
0, if l   j,

j!Bl,j(y�1 (x), . . . , y�l�j+1(x)), if l ¥ j.
(2.26)
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Therefore, substituting (2.26) into (2.25), and taking (2.22) into account, we obtain

Bi�1

Bti�1

( 8̧

j=1

(y�(t, x))jg�j (x� δt)
)�����

t=0

=
8̧

j=1

i�1̧

l=j

(
i� 1

l

)
(�δ)i�l�1 j!Bl,j(y�1 (x), . . . , y�l�j+1(x))

1
(j� 1)!

B j+i�l�2g�

Bxi�l�1Byj�1 (x, 0)

=
i�1̧

l=1

ļ

j=1

j
(

i� 1
l

)
(�δ)i�l�1Bl,j(y�1 (x), . . . , y�l�j+1(x))

B j+i�l�2g�

Bxi�l�1Byj�1 (x, 0).

(2.27)

Finally, putting (2.23), (2.24), and (2.27) together we get the recursive formula
(2.14) for y�i (x), i ¥ 2, which concludes the proof of Claim 3.1.

We also claim that the coefficients µ�i vanish for i ¤ 2k� � 1.

Claim 3.2. The value µi vanishes for i = 1, . . . , 2k� � 1.

Proof of Claim 3.2. First of all, we proceed by induction in order to prove that

y�i (x) = x2k��iR�i (x) for i ¤ 2k�, (2.28)

where R�i (x) is a smooth function. For i = 1, (2.28) holds. Indeed,

y�1 (x) = a�x2k��1 + x2k� f�(x) = x2k��1(a� + x f�(x)).

Now, let i ¤ 2k�. Recall that, from (2.14),

y�i (x) =a�(�δ)i�1 (2k� � 1)!
(2k� � i)!

x2k�i +
i�1̧

l=0

(
i� 1

l

)
(2k�)!

(2k� � l)!
x2k��l f�(i�1�l)

(x)

+
i�1̧

l=1

ļ

j=1

j
(

i� 1
l

)
(�δ)i�l�1Bl,j(y�1 (x), . . . , y�l�j+1(x))

B j+i�l�2g�

Bxi�l�1Byj�1 (x, 0).

Suppose that (2.28) holds for all s ¤ i� 1, that is, y�s (x) = x2k��sRs(x). Then, taking into
account that Bl,j is a homogeneous polynomial of degree j with l � j + 1 variables, we have that

i�1̧

l=1

ļ

j=1

j
(

s� 1
l

)
(�δ)s�l�1Bl,j(y�1 (x), . . . , y�l�j+1(x))

B j+i�l�2g�

Bxi�l�1Byj�1 (x, 0) = x2k��i+1T(x),

where T is a smooth function. Then,

y�i (x) = a�(�δ)i�1 (2k� � 1)!
(2k� � i)!

x2k��i

+
i�1̧

l=0

(
i� 1

l

)
(2k�)!

(2k� � l)!
x2k��l f�(i�1�l)

(x) + x2k��i+1T(x)

= x2k��iR�i (x),
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which implies that (2.28) holds for all i ¤ 2k�.

From (2.16) and (2.28), we conclude that

µ�i =
1
i!

i̧

j=1

(�δ)j
(

i
j

)Bi�jy�j
Bxi�1 (0) =

1
i!

i̧

j=1

(�δ)j
(

i
j

) Bi�j

Bxi�1

(
x2k��jRj(x)

) ����
x=0

= 0,

for i ¤ 2k� � 1, which proves Claim 3.2.

By comparing the coefficients of xi
0 in both sides of equality (2.21) and taking

Claim 3.2 into account, we conclude that

µ�i =
i̧

j=2k�
µ�j B̂i,j(α

�
1 , . . . , α�i�j+1), i ¥ 2k�.

Doing some computations, we have that

µ�i =µ�2k� B̂i,2k�(α
�
1 , . . . , α�i�2k�+1) +

i̧

j=2k�+1

µ�j B̂i,j(α
�
1 , . . . , α�i�j+1)

=µ�2k� B̂i,2k�(α
�
1 , . . . , α�i�2k� , 0) + µ�2k�α�1

2k��1
α�i�2k�+12k�

+
i̧

j=2k�+1

µ�j B̂i,n(α
�
1 , . . . , α�i�j+1).

(2.29)

Therefore, isolating α�i�2k�+1 in (2.29), we get

α�i�2k�+1 =

µ�i � µ2k� B̂i,2k�
(
α�1 , . . . , α�i�2k� , 0

)� i̧

j=2k�+1

µjB̂i,j
(
α�1 , . . . , α�i�j+1

)
α�1

2k��12k�µ2k�
. (2.30)

Finally, taking into account that α�1 = �1 and doing a change of the index in (2.30), we
obtain the recurrence (2.15) for α�i . This concludes the proof of Theorem 3.

In Section 2.5, we present Mathematica’s codes that offer straightforward
algorithms for computing all the Lyapunov coefficients when k is known. Code 1
represents the recursive formulae for y�i (2.14), Code 2 represents the formulae for the
values µ�i (2.16) and Code 3 represents the recursive formulae for the coefficients α�

(2.15).

In the following proposition, applying Theorem 3, we compute α�n , for n =

1, 2, 3, 4, for a general (2k+, 2k�)-monodromic tangential singularity. Recall that the i-th
Lyapunov coefficient is given by Vn = δ(α+n � α�n ).
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Proposition 2. Assume that the Filippov vector field (1.4) has a (2k+, 2k�)-monodromic
tangential singularity at the origin, for positive integers k+ and k�, and denote

f�(x) =
8̧

i=0

f�i xi and g�(x, y) =
8̧

i=0

8̧

j=0

g�i,j xiyj.

Then, the first four coefficients α�n ’s of the series (2.6) of the half-return maps φ�

are given by

α�1 =� 1, α�2 =
�2 f0 � 2δag0,0

2ak + a
, α�3 = �(α�2 )2,

α�4 =
4(k(2k + 3) + 7)(� f0 � δag0,0)

3

3a3(2k + 1)3

	 12δa( f0 	 δag0,0)
(
a
(

g1,0 	 δg0,0
2)+ 2 f0g0,0 	 2δ f1

)
3a3(8k + 4)

� 4δa2 (a (2g2,0 + g0,0
3)+ 6g0,0 f1 + 3 f0g1,0 	 3δ

(
ag1,0g0,0 + f0g0,0

2 + 2 f2
))

3a3(8k + 12)
+ ξk,

where ξ1 = �4ag0,1

15
and ξk = 0 for k ¡ 1. For the sake of simplicity, in the above expressions

we are dropping the sign � from a�, k�, f�i , and g�i,j.

Proof. We start this proof by computing the coefficients α�n , n = 1, 2, 3, 4, for k� = 1:

α�1 =� 1, α�2 =
�2 f0 � δ2g0,0

3a
, α�3 = �α�2

2,

α�4 =
1

135a3

(
80 f 3

0 + (	δ)150a f 2
0 g0,0 + 132a2 f0g2

0,0 + (	δ)44a3g3
0,0

� 90a f0 f1 � δ36a2g0,0 f1 + 54a2 f2 + 36a4g0,1 � δ18a2 f0g1,0

� 18a3g0,0g1,0 + (	δ)18a3g2,0

)
.

(2.31)

From now on, we shall consider k ¥ 2. In order to compute the remaining
coefficients, the following partial Bell polynomials (Definition 3) are needed:

Bn,n(x1) =(x1)
n,

Bn,n�1(x1, x2) =

(
n
2

)
(x1)

n�2x2,

Bn,n�2(x1, x2, x3) =

(
n
3

)
(x1)

n�3x3 + 3
(

n
4

)
(x1)

n�4(x2)
2,

Bn,n�3(x1, x2, x3, x4) =

(
n
4

)
(x1)

n�4x4 + 10
(

n
5

)
(x1)

n�5x2x3 + 15
(

n
6

)
(x1)

n�6x3
2.

(2.32)
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Now, developing the recursive formula given by (2.15) for αi and using (2.32),
we get that

α�1 =� 1, α�2 =
�µ�2k+1

k�µ�2k
, α�3 = �α�2

2,

α�4 =
(7 + k(3 + 2k))µ�2k+1

3 � 6k(1 + k)µ�2 kµ�2k+1µ�2k+2 + 6k2µ�2k
2
µ�2k+3

6k3µ�2k
3 .

(2.33)

From (2.33), we have to compute µ�2k, µ�2k+1, µ�2k+2, and µ�2k+3. Recall that we are denoting

f�(x) =
8̧

i=0

f�i xi and g�(x, y) =
8̧

i=0

8̧

j=0

g�i,j xiyj.

Throughout the proof, we shall also drop the sign � from k�, a�, f�i , and g�i,j.

Computation of µ�2k. From (2.16), we have that

µ�2k =
1

(2k)!

2ķ

j=1

(	δ)j
(

2k
j

)
(y�j )

(2k�j)(0). (2.34)

Taking (2.14) into account, it follows that

(y�j )
(2k�j)(0) = (�δ)j�1a(2k� 1)!. (2.35)

Then, substituting (2.35) in (2.34), we obtain

µ�2k =
1

(2k)!

2ķ

j=1

(	δ)j
(

2k
j

)
(	δ)j�1a(2k� 1)! =

(	δ)a
2k

. (2.36)

Computation of µ�2k+1. From (2.16), we have that

µ�2k+1 =
1

(2k + 1)!

2k+1̧

j=1

(	δ)j
(

2k + 1
j

)
(y�j )

(2k+1�j)(0). (2.37)

Taking (2.14) into account, it follows that

(y�j )
(2k+1�j)(0) =

$&%(2k)! f0, if j = 1,

(�δ)j�1(2k)! f0 + (�δ)ja(2k� 1)!g0,0, if 2 ¤ j ¤ 2k + 1.
(2.38)

Although formula (2.14) distinguishes the cases j   2k + 1 and j = 2k + 1, when
developing this formula we see that these cases can be put together as (2.38). Now,
substituting (2.38) into (2.37), we obtain

µ�2k+1 =
1

(2k + 1)!

(
(	δ)

(
2k + 1

1

)
(2k)! f0 +

2k+1̧

j=2

(	δ)j
(

2k + 1
j

)(
(�δ)j�1(2k)! f0

+ (�δ)ja(2k� 1)!g0,0
))

=
(	δ) f0 + ag0,0

2k + 1
.

(2.39)
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Computation of µ�2k+2. From (2.16), we have that

µ�2k+2 =
1

(2k + 2)!

2k+2̧

j=1

(	δ)j
(

2k + 2
j

)
(y�j )

(2k+2�j)(0). (2.40)

Taking (2.14) into account, it follows that

(y�1 )
(2k+1)(0) =(2k + 1)! f1,

(y�2 )
(2k)(0) =(�δ)

( (2k)!
(2k� 1)!

2 f1 + 2 f1

)
+ 2
(

f0g0,0 + ag1,0

)
,

(y�j )
(2k+2�j)(0) =

2k + 2� j
2!

(
(�δ)j�1

( (2k)!
(2k + 1� j)!

2 f1

+

(
j� 1
j� 2

)
(2k)!

(2k + 2� i)!
2 f1

)
+ 2
((

(�δ)j�2 (2k)!
(2k + 2� j)!

f0

+ a(�δ)j�3 (2k� 1)!
(2k + 2� j)!

g0,0
)

g0,0

+ a(�δ)j�2 (2k� 1)!
(2k + 1� j)!

g1,0

)
+
(
2a
(

j� 1
j� 2

)
(�δ)j�4 (2k� 1)!

(2k + 2� j)!
g1,0
))

, if 3 ¤ j ¤ 2k,

(y�2k+1)
1(0) =(2k)! f1 +

(2k)!
(2k� 1)!

(2k)! f1 +
(
(�δ)(2k)! f0

+ a(2k� 1)!g0,0
)

g0,0

+ (�δ)a(2k� 1)!g1,0 +

(
2k

2k� 1

)
(�δ)a�(2k� 1)!g1,0,

y�2k+2(0) =
(

2k + 1
2k

)
(2k)!(�δ) f1 +

(
(2k)! f1 + (�δ)a(2k� 1)!g0,0

)
g0,0

+

(
2k + 1

2k

)
a(2k� 1)!g1,0.

(2.41)

Substituting (2.41) in (2.40) and proceeding with algebraic manipulations, we obtain

µ�2k+2 =
2 f0g0,0 + (	δ)ag2

0,0 + 2(	δ) f1 + ag1,0

4k + 4
. (2.42)

Computation of µ�2k+3. From (2.16), we have that

µ�2k+3 =
1

(2k + 3)!

2k+3̧

j=1

(	δ)j
(

2k + 3
j

)
(y�j )

(2k+3�j)(0). (2.43)
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Taking (2.14) into account, it follows that

(y�1 )
(2k+2)(0) =(2k + 2)! f2,

(y�2 )
(2k+1)(0) =(�δ)(2k + 1)!

(
2k f2 + 12 f2

)
+ (y�1 )

(2k+1)(0)g0,0

+ 2(y�1 )
(2k)(0)g1,0 + 2(y�1 )

(2k�1)(0)g2,0,

(y�3 )
(2k)(0) =

(2k)!
3!
( (2k)!
(2k� 2!)

6 f2 + 3
(2k)!

(2k� 1)!
12 f2 + 12 f2

)
+ (y�2 )

(2k)(0)g0,0

+ 2(y�2 )
(2k�1)(0)g1,0 + 2(y�2 )

(2k�2)(0)g2,0

+ 3(�δ)
(
(y�1 )

(2k)(0)g1,0 + 2(y�1 )
(2k�1)(0)g2,0

)
,

(y�j )
(2k+3�j)(0) =

(2k + 3� j)!
3!

(
(�δ)j�1

( (2k)!
(2k + 1� j)!

6 f2 +

(
j� 1
j� 2

)
(2k)!

(2k + 2� i)!
12 f2

+

(
j� 1
j� 3

)
(2k� 1)!

(2k + 3� j)!
12 f2

))
+ (y�j�1)

(2k+3�j)(0)g0,0

+ 2(y�j�1)
(2k+2�j)(0)g1,0 + 2(y�j�1)

(2k+1�j)(0)g2,0

+

(
j� 1
j� 2

)
(�δ)

(
(y�j�2)

(2k+3�j)(0)g1,0 + 2(y�j�2)
(2k+2�j)(0)g2,0

)
+ 2
(

j� 1
j� 3

)
(y�j�3)

(2k+3�j)(0)g2,0, if 4 ¤ j ¤ 2k,

(y�2k+1)
2(0) =(2k)!2 f2 +

(
2k

2k� 1

)
(2k)!4 f2 +

(
2k

2k� 2

)
(2k)!

2!
4 f2

+ (y�2k)
2
(0)g0,0 + 2(y�2k)

1
(0)g1,0 + 2y�2k(0)g2,0

+ 2
(

2k
2k� 1

)
(�δ)

(( (2k)!
2!

f0 + a(�δ)
(2k� 1)!

2!
g0,0
)

g1,0

+ 2a(2k� 1)!g2,0

)
+ 4
(

2k
2k� 2

)
(�δ)a

(2k� 1)!
2!

g2,0,

(y�2k+2)
1(0) =

(
2k + 1

2k

)
(2k)!(�δ)2 f2 + (�δ)

(
2k + 1
2k� 1

)
(2k)!2 f2

+
(
(2k)! f1 +

(
2k

2k� 1

)
(2k)! f1 +

(
(�δ)(2k)! f0 + a(2k� 1)!g0,0

)
g0,0

+ (�δ)a(2k� 1)!g1,0 +

(
2k

2k� 1

)
(2k� 1)!g1,0

)
g0,0

+
(
(2k)! f0 + (�δ)a(2k� 1)!g0,0

)
g1,0

+

(
2k + 1

2k

)
(�δ)

((
(�δ)(2k)! f0 + a(2k� 1)!g0,0

)
g1,0

+ 2(�δ)a(2k� 1)!g2,0

)
+ 2
(

2k + 1
2k� 1

)
a(2k� 1)!g2,0,
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(y�2k+3)
1(0) =

(
2k + 2

2k

)
(2k)!2 f2 +

((
2k + 1

2k

)
(2k)!(�δ) f1

+
(
(2k)! f0 + a(�δ)(2k� 1)!g0,0

)
g0,0 +

(
2k + 1

2k

)
a(2k� 1)!g1,0

)
g0,0

+

(
2k + 2
2k + 1

)
(�δ)

(
(2k)! f0 + (�δ)a(2k� 1)!g0,0

)
g1,0

+ 2
(

2k + 2
2k

)
(�δ)a(2k� 1)!g2,0.

Notice that, at this point, the computations start to become more cumbersome.
Also, in the formulae above, there are some values of y(j)

i (0) which are not explicitly

computed. However, except for (y�j�1)
(2k+1�j)(0) = a(�δ)j�2 (2k� 1)!

(2k + 1� j)!
, the others

can be computed by using the formulae (2.35), (2.38), and (2.41). Then, substituting all
these values into (2.43) and proceeding with algebraic manipulations, we obtain

µ�2k+3 =
1

6(3 + 3k)

(
6g0,0 f1 + 6(	δ) f2 + 3 f0

(
(	δ)g2

0,0 + g1,0
)

+a
(

g3
0,0 + 3(	δ)g0,0g1,0 + 2g2,0

))
.

(2.44)

Finally, substituting (2.36), (2.39), (2.42), and (2.44) into (2.33) and proceeding
with algebraic manipulations, we conclude that

α�1 =� 1, α�2 =
�2 f0 � 2δag0,0

2ak + a
, α�3 = �(α�2 )2,

α�4 =
4(k(2k + 3) + 7)(� f0 � δag0,0)

3

3a3(2k + 1)3

	 12δa( f0 	 δag0,0)
(
a
(

g1,0 	 δg0,0
2)+ 2 f0g0,0 	 2δ f1

)
3a3(8k + 4)

� 4δa2 (a (2g2,0 + g0,0
3)+ 6g0,0 f1 + 3 f0g1,0 	 3δ

(
ag1,0g0,0 + f0g0,0

2 + 2 f2
))

3a3(8k + 12)
,

(2.45)
for k ¥ 2. This proof follows by comparing expressions (2.31) and (2.45) with the ones
provided in the statement of Proposition 2.

2.5 List of source codes
In this section, based on Theorem 3, we present an implemented Mathematica

algorithm for computing the coefficients α+n and α�n of the series (2.6) of the half-return
maps φ+ and φ� and, consequently, the Lyapunov coefficients Vn’s.

In what follows, we are denoting k+ = kp, k� = kn, a+ = ap , a� = an,
µ+ = µp, and µ� = µn. In addition, yp0[i] and yp1[i] denote y+i , respectively, for i ¤ 2k+
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and for i ¡ 2k+. Analogously, yn0[i] and yn1[i] denote y�i , respectively, for i ¤ 2k� and
for i ¡ 2k�.

In order to run the codes for computing the first N Lyapunov coefficients,
we have to specify the values for kp, kn, δ, and imax=N.

Source code 1 – Mathematica’s algorithm for computing y�i (2.14).

1 yp0 [1] = ap x^(2 kp - 1) + x^(2 kp) fp[x]
2 yp0[i_] := δ^(i -1) (ap (2 kp - 1) !/(2 kp - i

)! x^(2 kp - i) + Sum[ Binomial [i - 1, l]
(2 kp)!/(2 kp - l)! x^(2 kp - l) D[fp[x],
{x, i - 1 - l}], {l, 0, i - 1}]) + Sum[Sum
[j Binomial [i - 1, l] δ^(i - l - 1) BellY[
l, j,Yp[l - j + 1, x]] (D[D[gp[x, y], {y,
j - 1}], {x, i - 1 - l}] /. y -> 0), {j,
1, l}], {l, 1, i - 1}]

3 yp1[i_] := δ^(i - 1) ( Binomial [i - 1, 2 kp]
(2 kp)! D[fp[x], {x, i - 1 - 2 kp}] + Sum[
Binomial [i - 1, l] (2 kp)!/(2 kp - l)! x
^(2 kp - l) D[fp[x], {x, i - 1 - l}], {l,
0, 2 kp - 1}]) + Sum[Sum[j Binomial [i - 1,

l] δ^(i - l - 1) BellY[l, j, Yp[l - j +
1,x]] (D[D[gp[x, y], {y, j - 1}], {x, i -1

- l}] /. y -> 0), {j,1, l}], {l, 1, i -
1}]

4 Yp [1] = {yp0 [1]};
5 For[i = 2, i <= 2 kp , i++, Yp[i] = Join[Yp[i

- 1],{ yp0[i]}];]
6 For[i = 2 kp + 1, i <= 2 kp + imax , i++, Yp[i

] = Join[Yp[i - 1], {yp1[i]}];]
7 For[i = 1, i <= 2 kp + imax , i++, yp[i] = Yp

[2 kp + imax ][[i]]]
8 yn0 [1] = an x^(2 kn - 1) + x^(2 kn) fn[x]
9 yn0[i_] := (-δ)^(i - 1) (an (2 kn - 1) !/(2 kn

- i)! x^(2 kn - i) + Sum[ Binomial [i - 1,
l] (2 kn)!/(2 kn - l)! x^(2 kn - l) D[fn[x
], {x, i - 1 - l}], {l, 0, i - 1}]) + Sum[
Sum[j Binomial [i - 1, l] (-δ)^(i - 1 - l)
BellY[l, j, Yn[l - j + 1,x]] (D[D[gn[x, y
], {y, j - 1}], {x, i - 1 - l}] /. y -> 0)
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, {j,1, l}], {l, 1, i - 1}]
10 yn1[i_] := (-δ)^(i -1) ( Binomial [i - 1, 2 kn]

(2 kn)! D[fn[x], {x, i - 1 - 2 kn}] + Sum
[ Binomial [i - 1, l] (2 kn)!/(2 kn - l)! x
^(2 kn - l) D[fn[x], {x, i - 1 - l}], {l,
0, 2 kn - 1}]) + Sum[Sum[j Binomial [i - 1,

l] (-δ)^(i - 1 - l) BellY[l, j,Yn[l - j +
1, x]] (D[D[gn[x, y], {y, j - 1}], {x, i

- 1 - l}] /. y -> 0), {j, 1, l}], {l, 1, i
- 1}]

11 Yn [1] = {yn0[1, x]};
12 For[i = 2, i <= 2 kn , i++, Yn[i] = Join[Yn[i

- 1], {yn0[i]}];]
13 For[i = 2 kn + 1, i <= 2 kn + imax , i++, Yn[i

] = Join[Yn[i - 1], {yn1[i]}];]
14 For[i = 1, i <= 2 kn+ imax , i++, yn[i] = Yn[2

kn + imax ][[i]]]

Source code 2 – Mathematica’s algorithm for computing µ�n (2.16).

1 µp[n_] := 1/n! Sum[(-δ)^j Binomial [n, j] D[yp
[j, x], {x, n - j}] /. x -> 0, {j, 1, n}]

2 µn[n_] := 1/n! Sum[δ^j Binomial [n, j] D[yn[j,
x], {x, n - j}] /.x -> 0, {j, 1, n}]

Source code 3 – Mathematica’s algorithm for computing α�n and Vn(2.15).

1 αp[1] = -1;
2 Ap [1] = {αp[1]};
3 For[n = 2, n <= imax , n++, αp[n] = Factor [(µp

[2 kp] (2 kp)!/(n + 2 kp - 1)! BellY[n + 2
kp - 1, 2 kp , Join[Ap[n - 1], {0}]] + Sum

[µp[i] i!/(n + 2 kp - 1)! BellY[n + 2 kp -
1, i, Ap[n + 2 kp - i]], {i, 2 kp + 1, n

+ 2 kp - 1}] - µp[ n + 2 kp - 1]) /(2 kp µp
[2 kp])]; Ap[n] = Join[Ap[n - 1], {n! αp[n
]}];]

4 αn[1] = -1;
5 An [1] = {αn[1]};
6 For[n = 2, n <= imax , n++, αn[n] = Factor [(µn

[2 kn] (2 kn)!/(n + 2 kn - 1)! BellY[n + 2
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kn - 1, 2 kn , Join[An[n - 1], {0}]] + Sum
[µn[i] i!/(n + 2 kn - 1)! BellY[n + 2 kn -

1, i, An[n + 2 kn - i]], {i, 2 kn + 1, n
+ 2 kn - 1}] - µn[n + 2 kn - 1]) /(2 kn µn
[2 kn])]; An[n] = Join[An[n - 1], {n! αn[n
]}];]

7 For[n = 1, n <= imax , j++, V[n] = δ(αp[n] - αn
[n]);]
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3 The cyclicity problem for monodromic
tangential singularities

The cyclicity problem in the context of vector fields is a critical topic in
mathematics and physics, particularly within the realm of differential equations and
dynamical systems. This problem arises when one seeks to comprehend the presence of
periodic orbits, or closed trajectories within vector fields. This chapter is based on the
papers (39, 41), we will explore the cyclicity problem using the Lyapunov coefficients
from Chapter 2 and we will show results with a standard view of bifurcation of limit
cycles and also present an alternative look considering a pseudo-Hopf bifurcation.

It is well known that Lyapunov coefficients can be used to study the appear-
ance of small amplitude limit cycles in smooth and non-smooth vector fields around
weak foci (see, for instance, (45) for smooth vector fields and (18, 27, 28) for non-smooth
vector fields). In this section, we apply classical ideas to study the appearance of limit
cycles around monodromic tangential singularities. We start by providing Hopf and
Bautin-like bifurcation theorems for monodromic tangential singularities.

3.1 Malgrange preparation theorem
A fundamental tool for studying the cyclicity problem is the Malgrange

preparation theorem. The Malgrange preparation theorem is a counterpart version to
the Weierstrass preparation theorem in the realm of smooth functions, initially proposed
by René Thom and later proved by B. Malgrange (37). In (37), we can find an algebraic
version of the theorem with a perspective of modules over rings of smooth, real-valued
germs. To elaborate, we consider a manifold X, with p P X. Denote C8p (X) as the ring of
real-valued germs of smooth functions at p on X. Let Mp(X) denote the unique maximal
ideal of C8p (X), characterized by germs which vanish at p. Let A be a C8p -module, and
let f : X Ñ Y be a smooth function between manifolds and consider q = f (p). Through
composition on the right, f induces a ring homomorphism f � : C8q (Y) Ñ C8p (X).
Thus, A can be seen as a C8q (Y)-module. Shortly, the Malgrange preparation theorem
concludes that if A is a finitely-generated C8p (X)-module, then A is a finitely-generated
C8q (Y)-module if and only if A/Mq(Y)A is a finite-dimensional real vector space.

Here, instead of working with the algebraic version, we will present a version
for C8 functions (37).
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Theorem 4 ((37)). Let f (t, x) be a C8 function of t P R and x P Rn near (0, 0) satisfying

f (0, 0) = 0,
B f
Bt

(0, 0) = 0,
B2 f
Bt2 (0, 0) = 0, . . . ,

Bk�1 f
Btk�1 (0, 0) = 0,

Bk f
Btk (0, 0) � 0.

Then, there exists a factorization

f (t, x) = c(t, x)(tk + ak�1(x)tk � 1 + � � �+ a1(x)t + a0(x))

where aj and c are C8 functions near 0 and (0, 0) respectively, c(0, 0) � 0 and aj(0) = 0.

3.2 Hopf and Bautin-like bifurcations
This section is based on the paper (39). It is worth noticing that in the litera-

ture, the Hopf bifurcation, also known as the Poincaré-Andronov-Hopf bifurcation (2)
refers to the appearance of a limit cycle from an equilibrium as a parameter crosses a
critical value. The next theorem we will present is a Hopf-like bifurcation result that
shows us the local birth of a limit cycle from a 1-parameter family in the context of
Filippov systems with a (2k+, 2k�)-monodromic tangential singularity.

Theorem 5. Let k+ and k� be positive integers and let Zλ be an 1-parameter family of Filippov
vector fields (1.4) having a (2k+, 2k�)-monodromic tangential singularity at the origin for all
λ in an interval I. Let V2(λ) and V4(λ) be, respectively, the second and the forth Lyapunov
coefficients. Assume that, for some λ0 P I, V2(λ0) = 0, d := V1

2(λ0) � 0, and ℓ := V4(λ0) � 0.
Then, there exists a neighborhood J � I of λ0 such that, for all λ P J satisfying dℓ(λ� λ0)   0,
the Filippov vector field Zλ admits a hyperbolic limit cycle in a

a
|λ� λ0|-neighborhood of the

origin. In addition, such a limit cycle is asymptotically stable (resp. unstable) provided that
ℓ   0 (resp. ℓ ¡ 0).

Proof. Let Zλ be a 1-parameter family of Filippov vector fields (1.4) having a (2k+, 2k�)-
monodromic tangential singularity at the origin for all λ in an interval I. Let V2(λ),
V3(λ), and V4(λ) be, respectively, the second, the third, and the forth Lyapunov coeffi-
cients. Accordingly, the displacement function of Zλ around the origin writes

∆(x; λ) = V2(λ)x2 + V3(λ)x3 + V4(λ)x4 + O(x5) = x2Γ(x; λ) (3.1)

where

Γ(x; λ) = V2(λ) + V3(λ)x + V4(λ)x2 + O(x3). (3.2)

By hypothesis, there exists λ0 P I such that V2(λ0) = 0, V1
2(λ0) = d � 0, and

V4(λ0) = ℓ � 0. Thus,

Γ(0; λ0) = V2(λ0) = 0,
B2Γ
Bx2 (0; λ0) = 2V4(λ0) � 0,
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and, from Theorem 2,
BΓ
Bx

(0; λ0) = V3(λ0) = 0.

Therefore, as a consequence of the Malgrange Preparation Theorem there exists a small
neighborhood W � R2 of (0, λ0) and smooth functions c(x; λ), a0(λ), and a1(λ) such
that c(x, λ) � 0 and

Γ(x; λ) = c(x, λ)(x2 + a1(λ)x + a0(λ)), (3.3)

for every (x, λ) P W.

From (3.2) and (3.3) we obtain that

a0(λ) =
V2(λ)

c(0, λ)
and a1(λ) =

V3(λ)� Bxc(0, λ)a0(λ)

c(0, λ)
.

Consequently, a0(λ0) = a1(λ0) = 0. In addition, one can see that

c(0, λ0) = V4(λ0) = ℓ and a10(λ0) =
V1

2(λ0)

c(0, λ0)
=

d
ℓ

.

Now, taking the hypothesis dℓ(λ � λ0)   0 into account, we can easily
compute the unique positive root of (3.3) in W as

x� =
�a1(λ) +

a
a1(λ)2 � 4a0(λ)

2
=

d
�V1

2(λ0)(λ� λ0)

V4(λ0)
+O(λ� λ0)

=

c
�d(λ� λ0)

ℓ
+O(λ� λ0).

Thus, there exists a unique limit cycle bifurcating from the origin, which intersects
the discontinuity manifold for x ¡ 0 at (x�(λ), 0), which lies

a
|λ� λ0|-close to the

origin. Moreover, the stability of such a limit cycle coincides with the stability of the
monodromic singularity at the origin for λ = λ0, i.e., it is asymptotically stable (resp.
unstable) provided that ℓ   0 (resp. ℓ ¡ 0). This information could also be obtained by
computing the derivative of (3.1) at x = x�.

In the literature, the Bautin bifurcation is described as a generalized Hopf
bifurcation (4). The next result is a generalization of Theorem 5, showcasing the birth
of multiple limit cycles from a n-parameter family. Hence, this result can be seen as a
Bautin-like bifurcation.

Theorem 6. Let k+ and k� be positive integers and let ZΛ be an n-parameter family of Filippov
vector fields (1.4) having a (2k+, 2k�)-monodromic tangential singularity at the origin for every
Λ in an open set U � Rn. Let V2i(Λ) be the 2i�th Lyapunov coefficient, for i = 1, 2 . . . , n + 1,
and denote Vn = (V2, V4, . . . , V2n) : U Ñ Rn. Assume that, for some Λ0 P U, Vn(Λ0) = 0,
det(DVn(Λ0)) � 0, and V2n+2(Λ0) � 0. Then, there exists an open set W � U such that ZΛ

has n hyperbolic limit cycles for every Λ P W. In addition, all the limit cycles converge to the
origin as Λ goes to Λ0.
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Proof. Let ZΛ be an n-parameter family of Filippov vector fields (1.4) having a (2k+, 2k�)-
monodromic tangential singularity at the origin for every Λ in an open set U � Rn.
Let Vi(Λ) be the i�th Lyapunov coefficient, for i = 1, 2 . . . , 2n + 2. Accordingly, the
displacement function of Zλ around the origin writes

∆(x; Λ) =
2n+2¸
i=2

Vi(Λ)xi + O(x2n+3) = x2Γ(x; Λ),

where

Γ(x; Λ) =
2n+2¸
i=2

Vi(Λ)xi�2 + O(x2n+1). (3.4)

Notice that
BiΓ
Bxi (0; Λ) = i!Vi+2(Λ), for i = 0, . . . , 2n.

By hypothesis, there exists Λ0 P U such that Vn(Λ0) = 0, det(DVn(Λ0)) � 0,
and V2n+2(Λ0) � 0, where Vn = (V2, V4, . . . , V2n) : U Ñ Rn. Thus,

B2iΓ
Bx2i (0; Λ0) = 0, for i = 1, . . . , n� 1, and

B2nΓ
Bx2n (0; Λ0) = (2n)!V2n+2(Λ0) � 0.

In addition, from Theorem 2,

B2i+1Γ
Bx2i+1 (0; Λ0) = 0, for i = 1, . . . , n� 1.

Therefore, as a consequence of the Malgrange Preparation Theorem (see (37)), there
exists a small neighborhood W � R�Rn of (0, Λ0) and smooth functions c(x; Λ), and
ai(Λ), for i = 0, . . . , 2n� 1, such that c(x, Λ) � 0 and

Γ(x; Λ) =c(x, Λ)(x2n + a2n�1(Λ)x2n�1 + � � �+ a1(Λ)x + a0(Λ)), (3.5)

for all (x, Λ) P W.

From (3.4) and (3.5), we have that

i!Vi+2(Λ) =
BiΓ
Bxi (0; Λ) =

i̧

j=0

(
i
j

)
Bi�jc(0, Λ)j!aj(Λ).

Hence, denoting A(Λ) =
(

a0(Λ), . . . , a2n�1(Λ)
)

and V(Λ) =
(

2!V2(Λ), . . . , (2n �
1)!V2(Λ)

)
, we see that

M(Λ)A(Λ) = V(Λ),

where M(Λ) is a lower triangular matrix with every entry in the diagonal given by
c(0, Λ). Therefore, M(Λ) is invertible for all Λ in a small neighborhood of Λ0 and

A(Λ) = M(Λ)�1V(Λ).
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Consequently, A(Λ0) = (0, . . . , 0) and DA(Λ0) = M�1(Λ0)DV(Λ0). Thus, since by
hypothesis DVn(Λ0) is invertible, we conclude that DV(Λ0) and, consequently, DA(Λ0)

are full rank matrices, that is, rank(DV(Λ0)) = rank(DA(Λ0)) = n.

Now, for (x, Λ) P W, denote

P(x, Λ) =
Γ(x; Λ)

c(x, Λ)
= x2n + a2n�1(Λ)x2n�1 + � � �+ a1(Λ)x + a0(Λ).

Let xi, i = 1, 2, . . . , n, be distinct n positive values and ε ¡ 0. In what follows, we will
conclude the proof of Theorem 6 by showing that for ε ¡ 0 sufficiently small there exists
Λ�(ε) sufficiently close to Λ0 such that

P(εxi, Λ�(ε)) = 0, for i = 1, 2, . . . , n.

This will imply that ZΛ�(ε) has n limit cycles bifurcating from the origin for ε ¡ 0
sufficiently small.

First, consider the system of equations

P(εxi, Λ) = 0, for i = 1, 2, . . . , n, (3.6)

which is equivalent to
N(ε)A(Λ) = b(ε), (3.7)

where

N(ε) =


1 εx1 . . . (εx1)

2n�1

1 εx2 . . . (εx2)
2n�1

...
... . . . ...

1 εxn . . . (εxn)
2n�1

 and b(ε) = �


(εx1)

2n

(εx2)
2n

...
(εxn)

2n

 .

Notice that the matrix N(ε) is composed by two blocks, N(ε) =
(

T(ε) S(ε)
)

, where
T(ε) and S(ε) are square matrices given by

T(ε) =


1 εx1 . . . (εx1)

n�1

1 εx2 . . . (εx2)
n�1

...
... . . . ...

1 εxn . . . (εxn)
n�1

 and S(ε) =


(εx1)

n . . . (εx1)
2n�1

(εx1)
n . . . (εx2)

2n�1

... . . . ...
(εx1)

n . . . (εxn)
2n�1

 .

Notice that the matrix T(ε) is a matrix of type

V = V(Λ) =


x1 x2

1 . . . xn
1

x2 x2
2 . . . xn

2
...

...
xn x2

n . . . xn
n

 , (3.8)
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with entries Vi,j = xj
i , for Λ = (x1, x2, . . . , xn). This type of matrix is of special impor-

tance, and it is called the Vandermonde’s matrix (32). A Vandermonde matrix is a matrix
with the terms of a geometric progression in each row.

The determinant of the Vandermonde’s matrix (3.8) (see (32)) is

det(V(Λ)) =
¹

1¤j¤n

xj
¹

1¤i j¤n

(xj � xi). (3.9)

Since T(ε) is a Vandermonde Matrix (3.8), from (3.9) we know that

det(T(ε)) = εn
¹

1¤i j¤n

(xj � xi)

and, therefore, invertible for ε � 0. Thus, consider the smooth matrix-valued functionsrN(ε) = T(ε)�1N(ε) and b̃(ε) = T(ε)�1b(ε) which, because of the factor εn in both S(ε)
and b(ε), can be smoothly extended for ε = 0 as rN(0) =

(
In 0n

)
and b̃(0) = 0. Now,

define the function F : Rn �R Ñ Rn as

F(Λ, ε) = rN(ε)A(Λ)� b̃(Λ).

Clearly, the systems of equations (3.6) and (3.7) are equivalent to F(Λ, ε) = 0. Notice that
F(Λ0, 0) = 0 and, since rN(0) and DA(Λ0) are full rank matrices, we conclude that the

square matrix
BF
BΛ

(Λ0, 0) = rN(0)DA(Λ0) has full rank and, therefore, is non-singular.
Then, from the implicit function theorem, we obtain for ε ¡ 0 sufficiently small a smooth
function Λ�(ε) such that Λ(0) = Λ0 and F(Λ�(ε), ε) = 0 for ε ¡ 0 sufficiently small.
This concludes the proof of Theorem 6.

3.3 The pseudo-Hopf bifurcation
This section is based on the preprint (41). In the nonsmooth context, besides

the limit cycles bifurcating by varying the Lyapunov coefficients, monodromic sin-
gularities lying on the switching curve can always be split apart generating, under
suitable conditions, a sliding region and an extra limit cycle surrounding it (see Figure
8). This last bifurcation phenomenon is called pseudo-Hopf bifurcation and it was first
reported by Filippov in his book (25) (see item b of page 241, see also the paper (47),
which provides 20 geometric mechanisms by which limit cycles are created locally in
planar piecewise smooth vector fields). This bifurcation phenomenon has been used to
investigate the cyclicity of monodromic singularities in Filippov vector fields, which
allows to increase in the obtained lower bounds for the cyclicity at least by one (see, for
instance, (22, 28, 39)).

As said before, the pseudo-Hopf bifurcation is a useful method to increase
by one the number of limit cycles when investigating the cyclicity of monodromic
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singularities in Σ of the Filippov vector field (1.4) (see, for instance, (22, 28)). In what
follows we present the formal statement of the pseudo-Hopf bifurcation in the case of
the so-called invisible two-fold singularity which, in our terminology, corresponds to
a (2, 2)-monodromic tangential singularity. Such a bifurcation phenomenon is briefly
commented on in (39, Remark 1), and here we first present a formalization of this
phenomenon for a (2, 2)-monodromic tangential singularity.

Proposition 3. Assume that the Filippov vector field Z, given by (1.4), has a (2, 2)-monodromic
tangential singularity at the origin with non-vanishing second Lyapunov coefficient V2. Consider
the 1-parameter family of Filippov vector fields

Zb(x, y) =

$&%Z+(x� b, y), y ¡ 0,

Z�(x, y), y   0.
(3.10)

Then, given a neighborhood U � R2 of (0, 0), there exists a neighborhood I � R of 0 such that
the following statements hold for all b P I:

• If sign(b) = �sign(δV2), then Zb has a hyperbolic limit cycle in U surrounding a sliding
segment (see Figure 8). In addition, the hyperbolic limit cycle is stable (resp. unstable)
provided that V2   0 (resp. V2 ¡ 0).

• If sign(b) = sign(δV2), then Zb does not have limit cycles in U.

b   0 b = 0 b ¡ 0

Σ Σ Σ

Figure 8 – In this figure, the origin is a repelling two-fold singularity of Z0 which
undergoes a pseudo-Hopf bifurcation as b varies. For b � 0 the two-fold
singularity is split into two regular-fold singularities and between them a
sliding segment is created, which is repelling for b   0 and attracting for
b ¡ 0. In the last case, an attracting hyperbolic limit cycle surrounding the
attracting sliding segment is created. The red segment on Σ represents the
sliding region.

The following proposition is an original and more general version of Propo-
sition 3 that establishes the bifurcation of a hyperbolic limit cycle from a (2k+, 2k�)-
monodromic tangential singularities provided that some Lyapunov coefficient does not
vanish. We prove a degenerate version of the pseudo-Hopf bifurcation for (2k+, 2k�)-
monodromic tangential singularities, which is characterized by the birth of a hyperbolic
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limit cycle when a sliding segment is created provided that there exists a first non-
vanishing Lyapunov coefficient V2ℓ (recall from Theorem 2 that the first non-vanishing
Lyapunov coefficient is always even). However, we have noticed that in the literature a
proof for this result is only given for k+ = k� = ℓ = 1, which is precisely the statement
of Proposition 3.

Proposition 4. Assume that the Filippov vector field Z, given by (1.4), has a (2k+, 2k�)-
monodromic tangential singularity at the origin. Let V2ℓ be its first non-vanishing Lyapunov
coefficient. Consider the 1-parameter family of Filippov vector fields

Zb(x, y) =

$&%Z+(x� b, y), y ¡ 0,

Z�(x, y), y   0.

Then, given a neighborhood U � R2 of (0, 0), there exists a neighborhood I � R of 0 such that
the following statements hold for every b P I:

• If sign(b) = �sign(δV2ℓ), then Zb has a hyperbolic limit cycle in U surrounding a
sliding segment. In addition, the hyperbolic limit cycle is stable (resp. unstable) provided
that V2ℓ   0 (resp. V2ℓ ¡ 0).

• If sign(b) = sign(δV2ℓ), then Zb does not have limit cycles in U.

Proof. First, let ∆0(x) be the displacement function of Z defined in a neighborhood of
x = 0. From (2.7), we know that

∆0(x) = V2ℓx2ℓ +O(x2ℓ+1).

Now, recall that ∆(x; b) := δ(φ+
b (x)� φ�(x)) (see (2.5)), where φ+

b and φ�

are the half-return maps of Z+(x� b, y) and Z�(x, y) associated with Σ. It is easy to see
that if φ+ is the half-return map of Z+(x, y), then φ+

b (x) = φ+(x � b) + b. Therefore,
taking into account that (φ+)1(0) = �1, we get

∆(x; b) = δ(φ+
b (x)� φ�(x))

= ∆0(x) + 2δb + bO(x) + O(b2)

= V2ℓxℓ + 2δb + O(x2ℓ+1) + bO(x) + O(b2).

Notice that solutions of

∆b(x) = 0, x ¡ |b|, (3.11)

correspond to crossing periodic solutions of Zb. In addition, simple solutions of (3.11)
correspond to hyperbolic limit cycles of Zb.
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Denote r∆(y; β) :=
∆(βy; µβ2ℓ)

β2ℓ , (3.12)

where µ = �sign(δV2ℓ). Notice that

r∆(y; β) =
V2ℓβ2ℓy2ℓ + 2δµβ2ℓ + O(β2ℓ+1y2ℓ+1) + µβ2ℓO(βy)

β2ℓ

=V2ℓy2ℓ + 2δµ + O(βy2ℓ+1) + O(βy)

=V2ℓy2ℓ + 2δµ + O(β).

(3.13)

Then, for

y0 = 2ℓ

d���� 2δ

V2ℓ

����, (3.14)

we have

r∆(y0, 0) = 0 and
Br∆
By

(y0, 0) = �2ℓV2ℓ

(
2ℓ

d���� 2δ

V2ℓ

����
)2ℓ�1

� 0.

Then, from the Implicit Function Theorem, there exists y(β) such that y(0) = y0 andr∆(y(β); β) = 0, for all β in a neighborhood of 0.

Therefore, from (3.12), ∆(βy(β); µβ2ℓ) = β2ℓr∆(y(β); β) = 0. Then, by taking
β = 2ℓ

a
µb, we have that x(b) = 2ℓ

a
µb y( 2ℓ

a
µb) is a solution of ∆(x; b) = 0, for µb ¡ 0,

that is, sign(b) = sign(µ) = �sign(δV2ℓ). In this case, x(b) = 2ℓ
a

µb y0 +O(b) with
y0 � 0 give in (3.14) and, therefore, x(b) ¡ |b|, for |b| � 0 sufficiently small. Hence x(b)
corresponds to a crossing periodic solution of Zb.

In addition, from (3.13),

1

b
2ℓ�1

2ℓ

B∆
Bx

(x(b); b) =
2ℓV2ℓ

(
2ℓ
a

µby( 2ℓ
a

µb)
)2ℓ�1

+ O(x2ℓ) + bO(1) + O(b2)

b
2ℓ�1

2ℓ

=2ℓV2ℓO(b
2ℓ�1

2ℓ ) + O(b) � 0.

(3.15)

Therefore, the periodic solution associated to x(b) is actually a limit cycle which is
contained in U for |b| small enough.

Finally, from (3.15), sign
(B∆
Bx

(x(b); b)
)

= sign(V2ℓ), then the hyperbolic

limit cycle is stable (resp. unstable) provided that V2ℓ   0 (resp. V2ℓ ¡ 0), which finishes
the proof.

3.4 Insights beyond the pseudo-Hopf bifurcation
Our third major result is based on the preprint (41). This result enhances

Proposition 3 by demonstrating that at least k limit cycles bifurcate from a (2k, 2k)-
monodromic tangential singularity when it is destroyed by considering a perturbation
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that adds some “missing” lower degree terms to Z. This implies a cyclicity of at least
k for such singularities. Consequently, any number of limit cycles obtained without
destroying the monodromic singularity (for instance, by varying the Lyapunov coeffi-
cients) can be increased at least by k.

In what follows, the concept of norm of a polynomial refers to the conventional
notion, that is, the norm of the parameter-vector that defines it.

Theorem 7. Let k be a positive integer. Assume that the Filippov vector field Z, given by
(1.4), has a (2k, 2k)-monodromic tangential singularity at the origin with non-vanishing second
Lyapunov coefficient V2. Then, given λ ¡ 0 and a neighborhood U � R2 of (0, 0), there exist
polynomials P+ and P�, with degree 2k� 2 and norm less than λ, and a neighborhood I � R

of 0 such that, for every b P I satisfying sign(b) = �sign(δV2), the Filippov vector field

rZb(x, y) =

$'&'%
rZ+(x + b, y), y ¡ 0,

rZ�(x, y), y   0,
with rZ�(x, y) =

(
X�(x, y)

Y�(x, y) + X�(x, y)P�(x)

)
,

(3.16)
has k hyperbolic limit cycles inside U such that each one of these limit cycles surrounds a single
sliding segment (see Figure 9). In addition, the hyperbolic limit cycles are stable (resp. unstable)
provided that V2   0 (resp. V2 ¡ 0).

Remark 1. In Theorem 7, notice that the perturbation terms rP+(x, y) := X+(x, y)P+(x, y)
and rP�(x, y) := X�(x, y)P�(x, y) adds some “missing” lower degree terms to Y�. Indeed,
suppose that X� and Y� are polynomial vector fields. Since the origin is a (2k, 2k)-monodromic
tangential singularity, one can see that deg(Y�) ¥ (2k� 1)deg(X�). Therefore, deg(rP�) =
(2k� 2)deg(X�)   deg(Y�). In other words, the perturbation rP� adds to the polynomial
Y� the monomials of degree strictly lower than the degree of Y�.

The role of the perturbation terms, rP+(x, y) and rP�(x, y), consists in destroying
the (2k, 2k)-monodromic tangential singularity of Z at the origin and unfold from it 2k � 1
two-fold singularities for rZ0(x, y). Among those singularities, k of them are (2, 2)-monodromic
tangential singularities, from which limit cycles are created via pseudo-Hopf bifurcation forrZb(x, y), with b P I satisfying sign(b) = �sign(δV2) (see Figure 9).
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(0, 0)
Σ

Ó
Z

rZb

εa1 εa2 εa2k�3 εa2k�2

εa1 + b
0

b εa2 + b εa2k�3 + b εa2k�2 + b
Σ/� � �/

Figure 9 – Illustration of k limit cycles unfolding from a (2k+, 2k�)-monodromic tangen-
tial singularity and surrounding k sliding segments predicted by Theorem
7. Continuous and dashed segments on Σ represent sliding and crossing
regions, respectively.

The proof of Theorem 7 will be done through a series of steps and it is
going to be concluded in Section 3.4.3. The idea is to construct polynomials P+

Λ and P�Λ
that unfold from the origin 2k� 1 two-fold singularities of which k of them are (2, 2)-
monodromic tangential singularities with non-vanishing second Lyapunov coefficients.
Then, the proof will follow by applying Proposition 3 which ensures the creation of
a hyperbolic limit cycle surrounding a sliding segment from each one of the (2, 2)-
monodromic tangential singularities when they are destroyed.

We start by considering the following (2k� 2)-parameter family of perturba-
tions of Z:

ZΛ(x, y) =

$'''''''&'''''''%

Z+
Λ (x, y) =

 X+(x, y)

Y+
Λ (x, y)

 , y ¡ 0,

Z�Λ(x, y) =

 X�(x, y)

Y�
Λ (x, y)

 , y   0,

(3.17)



Chapter 3. The cyclicity problem for monodromic tangential singularities 52

where
Y�

Λ (x, y) = Y�(x, y) + X�(x, y)P�Λ (x), (3.18)

P+
Λ and P�Λ are continuous (2k� 2)-parameter families of polynomials of degree 2k� 2

satisfying P+
0 = P�0 = 0 with Λ P L and

L = t(a1, . . . , an) P Rn; ai � 0 @i and ai � aj @ i � ju. (3.19)

In Subsection 3.4.1, under the hypotheses of Theorem 7, we construct the
perturbation polynomials P+

Λ and P�Λ so that the origin and the points (εai, 0), i P
t1, 2, . . . , 2k� 2u, are contact points between Σ and the vector fields Z+

εΛ and Z�εΛ, for
ε ¡ 0 sufficiently small. In Subsection 3.4.2, we show that all these contact points have
multiplicity two (see Proposition 5) and that, in addition, k of these contact points are
actually (2, 2)-monodromic tangential singularities of ZεΛ with non-vanishing second
Lyapunov coefficient (see Proposition 6). Finally, in Subsection 3.4.3, we conclude that,
by considering an additional perturbation, each one of these (2, 2)-monodromic tangen-
tial singularities undergoes a pseudo-Hopf bifurcation, which creates k hyperbolic limit
cycle surrounding sliding segments.

3.4.1 Construction of the perturbation terms

Here, given Λ = (a1, . . . , a2k�2) P L, we shall construct polynomials P+
Λ and

P�Λ such that

Y+
εΛ(εai, 0) = 0 and Y�

εΛ(εai, 0) = 0 for i P t1, . . . , 2k� 2u. (3.20)

The coefficient ε will be chosen later on small enough.

Assuming that the Filippov vector field (1.4) has a (2k, 2k)-monodromic
tangential singularity at the origin (see conditions C1, C2, and C3 from Definition 1),
we have that X�(0, 0) � 0. Therefore, there exists a small neighborhood U of the origin
such that X�(x, y) � 0, for all (x, y) P U. By following (39, Section 2), condition C1
implies that

Y�(x, y)
|X�(x, y)| = �δ

(
a�x2k�1 + x2k f�(x) + yg�(x, y)

)
, (x, y) P U, (3.21)

where the values a� and the functions f�(x) and g�(x, y) are given by (1.10) and (1.9),
respectively. Therefore, by taking into account the expression for Y�

Λ given by (3.18), the
identities in (3.20) are equivalent to

P�εΛ(εai) = 	δε2k�1(a�a2k�1
i + εa2k

i f�(εai)), i P t1, . . . , 2k� 2u, (3.22)

which is an interpolation problem that can be investigated with the help of a Vander-
monde matrix (32). Indeed, by denoting

ξ�i (ε) := 	δε2k�1(a�a2k�1
i + εa2k

i f�(εai)) (3.23)
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and considering P�Λ (x) =
2k�2̧

j=1

c�j (Λ)xj, the identity (3.22) becomes

H(Λ, ε)
(

c�1 (ε Λ) . . . c�2k�2(ε Λ)
)T

=
(

ξ�1 (ε) . . . ξ�2k�2(ε)
)T

,

where H(Λ, ε) is the following matrix:

H(Λ, ε) =


εa1 . . . ε2k�2a2k�2

1
...

...
εa2k�2 . . . ε2k�2a2k�2

2k�2,

 . (3.24)

Notice that the matrix (3.24) is a matrix of type

V = V(Λ) =


x1 x2

1 . . . xn
1

x2 x2
2 . . . xn

2
...

...
xn x2

n . . . xn
n

 , (3.25)

with entries Vi,j = xj
i , for Λ = (x1, x2, . . . , xn), which is a Vandermonde’s matrix (32).

The determinant of the Vandermonde’s matrix (3.25) (see (32)) is

det(V(Λ)) =
¹

1¤j¤n

xj
¹

1¤i j¤n

(xj � xi). (3.26)

From (3.26) we know that the determinant of the matrix (3.25) is non-zero if
and only if all xi are distinct. So, if xi are all distinct, we have that the Vandermonde’s
matrix is invertible and its inverse is given by V(Λ)�1 = (bij)n (see (32)), where

bij =

( °
1¤m1 ��� mn�i¤n

m1,...,mn�i�j

(�1)i�1xm1 . . . xmn�i

xj
±

1¤m¤n
m�j

(xm � xj)

)
. (3.27)

The sum in the numerator looks complicated, but it is just the coefficient of
xj�1 in the polynomial

(x1 � x) . . . (xn � x)
xi � x

.

Hence, the matrix (3.24) is invertible provided that ai � aj, for i � j, being
ensured by the fact that Λ P L. Then,(

c�1 (εΛ) . . . c�2k�2(εΛ)
)T

= [H(Λ, ε)]�1
(

ξ�1 (ε) . . . ξ�2k�2(ε)
)T

. (3.28)
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Taking into account the inverse of the Vandermond matrix (3.27) and (3.24), we have
[H(Λ, ε)]�1 = [bij]2k�2 where

bij =

( °
1¤m1 ��� mn�i¤n

m1,...,mn�i�j

(�1)j�1ε2k�2�iam1 . . . amn�i

εaj
±

1¤m¤n
m�j

(εam � εaj)

)

= ε�i

( °
1¤m1 ��� mn�i¤n

m1,...,mn�i�j

(�1)j�1am1 . . . amn�i

aj
±

1¤m¤n
m�j

(am � aj)

)
.

This means that the ith row of [H(Λ, ε)]�1 has order ε�i. Thus, from (3.23) and (3.28),
c�i (εΛ) = ε2k�1�iC�j (Λ, ε), where Cj is a smooth function, and so

P�εΛ(x) =
2k�2̧

j=1

ε2k�1�jC�j (Λ, ε)xj. (3.29)

Notice that the norm of the polynomial P�εΛ(x) goes to zero as ε Ñ 0.

3.4.2 Monodromic tangential singularities appearing in the unfolding

In what follows, we are going to show that, for Λ P L, the Filippov vector
field ZεΛ, given by (3.17), has k (2, 2)-monodromic tangential singularities with non-
vanishing second Lyapunov coefficient.

First, in the next result, we will see that, for ε ¡ 0 sufficiently small, the origin
and the points (0, εai), i P t1, . . . , 2k� 2u, are contact points of multiplicity 2 between
Σ and the vector fields Z+

εΛ and Z�εΛ of which k of them are invisible. For the sake of
simplicity, we will denote a0 = 0.

Proposition 5. Let ε ¡ 0, a0 = 0, and Λ = (a1, . . . , a2k�2) P L, with L given by (3.19).
Consider the vector fields Z+

εΛ and Z�εΛ provided by (3.17). Then, for ε ¡ 0 sufficiently small,
the points (0, εai), i P t0, . . . , 2k� 2u, are contact points of multiplicity 2 between Σ and the
vector fields Z+

εΛ and Z�εΛ. In addition, if a1   0   a2   � � �   a2k�2, these contact points are
invisible for i P t1u Y t2, 4, . . . , 2k� 2u (see Figure 10).

Proof. First of all, notice that the construction of the polynomials P�Λ implies that the
points (εai, 0), for i P t0, . . . , 2k� 2u, are contact points between Σ and the vector fields
Z+

εΛ and Z�εΛ. Indeed, the identities (3.20) implies that Y�
εΛ(εai, 0) = 0 and, in addition,

X�
εΛ(εai, 0) = X�(0, 0) + O(ε) which, by condition C1, is non-vanishing for ε ¡ 0

sufficiently small.
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Now, in order to see that these contact points have multiplicity 2, consider
the function h�(x, ε) = Y�

εΛ(x, 0). Notice that, condition C1 implies that

h�(0, 0) = 0,
Bih�

Bxi (0, 0) = 0, for i P t1, . . . , 2k� 2u, and
B2k�1h�

Bx2k�1 (0, 0) � 0.

Thus, by Malgrange Preparation Theorem 4, there exists a neighborhood V of (x, ε) =

(0, 0) such that h�|V(x, ε) = A�(x, ε)B�ε (x), where A(x, ε) ¡ 0 for (x, ε) P V and

B�ε (x) = �δa�x2k�1 + ℓ�2k�2(ε)x2k�2 + � � �+ ℓ�1 (ε)x + ℓ�0 (ε).

Notice that Y�
εΛ(εai, 0) = 0 implies that B�ε (εai) = 0, for all i P t0, . . . , 2k � 2u. Since

B�ε is a polynomial in x of degree 2k � 1, we conclude that those roots are simple
provided that ai � aj, for all i � j in t0, . . . , 2k� 2u, which is ensured by the fact that
Λ = (a1, . . . , a2k�2) P L (see (3.19)). Hence,

BY�
εΛ
Bx

(εai, 0) = A�(εai, ε)(B�ε )
1(εai) � 0, (3.30)

implying that the contact points (εai, 0), for i P t0, . . . , 2k� 2u, have multiplicity 2.

Finally, since B�ε has odd degree, its derivative at its smallest root has the
same sign as the leading coefficient �δa�. Thus, by assuming that a1   0   a2   a3  
� � �   a2k�2 and taking into account that sign(�δa�) = 	1 (see (1.10) and C2), it follows
that sign((B�ε )

1(εa1)) = 	1 and, since the derivative at the roots has alternate signs,
sign((B+

ε )
1(εa2j)) = 	1 for j = 1, . . . k� 1. Taking (3.30) into account, we conclude that

the contact points (εai, 0), for i P t1u Y t2, 4, . . . , 2k � 1u, are invisible for both vector
fields Z+

εΛ and Z�εΛ.The remaining contact points are visible (see Figure 10).

Z+
εΛ

Z�εΛ

εa1 0 εa2 . . . εa2k�3 εa2k�2

Figure 10 – Illustration of the contact points of multiplicity 2 between Σ and the vector
fields Z+

εΛ and Z�εΛ for Λ = (a1, . . . , a2k�2) P L with the configuration
a1   0   a2   a3   � � �   a2k�2. They alternate between invisible and
visible contact points.
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Proposition 5 implies that, for Λ P L and ε ¡ 0 sufficiently small, the points
(0, εai), for i P t1u Y t2, 4, . . . , 2k� 1u, are (2, 2)-monodromic tangential singularities of
the Filippov vector field ZεΛ given by (3.17). In what follows, we are going to compute
the second Lyapunov coefficient for each one of these singularities.

Proposition 6. Let ε ¡ 0 and Λ = (a1, . . . , a2k�2) P L, with L given by (3.19), satisfying
a1   0   a2   a3   � � �   a2k�2. Consider the Filippov vector field ZεΛ provided in (3.17).
Then, for each i P t1u Y t2, 4, . . . , 2k� 2u and ε ¡ 0 sufficiently small, the second Lyapunov
coefficient V2,i(ε) associated with the (2, 2)-monodromic tangential singularity (εai, 0) satisfies

V2,i(ε) =
2k + 1

3
V2 +O(ε). (3.31)

Proof. We start by fixing an index i P t1u Y t2, 4, . . . , 2k� 2u and translating the point
(εai, 0) to the origin by means of the change of coordinates u = x� εai. Thus, the vector
field ZεΛ, given by (3.17), becomes

rZε(u, y) =

$'''''''&'''''''%

 rX+
ε (u, y),rY+
ε (u, y)

 , y ¡ 0,

 rX�
ε (u, y),rY�
ε (u, y)

 , y   0,

(3.32)

whererX�
ε (u, y) = X�(u+ εai, y) and rY�

ε (u, y) = Y�(u+ εai, y) + X�(u+ εai, y)P�εΛ(u+ εai).

From Proposition 2, we have that the second Lyapunov coefficient for a Filippov vector
field with a (2k+, 2k�)�monodromic tangential singularity is given by

V2 = δ(α+2 � α�2 ), where α�2 =
�2 f�0 � 2δa�g�0,0

a�(2k� + 1)
. (3.33)

Hence, the 2nd Lyapunov coefficient for the singularity at the origin of (3.32)
is given by (3.33) as

V2,i(ε) = δ(α+2,i(ε)� α�2,i(ε)), α�2,i(ε) =
�2 f̃�0,ε � 2δã�ε g̃�0,0,ε

3ã�ε
, (3.34)

where δ = sign(X+
ε (0, 0)) = sign(X+(0, 0)), for ε ¡ 0 sufficiently small,

ã�ε =
1

|rX�
ε (0, 0)|

BrY�
ε

Bu
(0, 0), f̃�0,ε = f̃�ε (0), and g̃�0,0,ε = g̃�ε (0, 0),

with

f̃�ε (u) =
�δrY�

ε (u, 0)� ã�ε u rX�
ε (u, 0)

u2 rX�
ε (u, 0)

and

g̃�ε (u, y) =
�rX�

ε (u, 0)rY�
ε (u, y)	 rX�

ε (u, y)rY�
ε (u, 0)

yδ rX�
ε (u, y) rX�

ε (u, 0)
.
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Using that (see (3.21))

Y�(x, y) = �δX�(x, y)
(

a�x2k�1 + x2k f�(x) + yg�(x, y)
)

, (x, y) P U,

we compute

ã�ε = �δ(P�εΛ)
1(εai) + ε2k�2(2k� 1)a�a2k�2

i + 2ε2k�1ka2k�1
i f�(εai)

+ε2ka2k
i ( f�)1(aiε),

f̃�0,ε =
�δ(P�εΛ)

2(εai)

2
+ ε2k�3a�(k� 1)(2k� 1)a2k�3

i + ε2k�2k(2k� 1)a2k�2
i f�(aiε)

+2ε2k�1ka2k�1
i ( f�)1(aiε) + ε2k a2k

i ( f�)2(aiε)

2
,

g̃�0,0,ε = g�(εai, 0).
(3.35)

From (3.29), we have that

(P�εΛ)
1(εai) =

2k�2̧

j=1

jaj�1
i ε2k�2C�j (Λ, ε) and (P�εΛ)

2(εai) =
2k�2̧

j=2

j(j� 1)aj�2
i ε2k�3C�j (Λ, ε).

Thus, by denoting

s�1 =
2k�2̧

j=1

jaj�1
i C�j (Λ, 0),

s�2 =
2k�2̧

j=1

jaj�1
i

BC�j
Bε

(Λ, 0),

s�3 =
2k�2̧

j=2

j(j� 1)aj�2
i C�j (Λ, 0),

s�4 =
2k�2̧

j=2

j(j� 1)aj�2
i

BC�j
Bε

(Λ, 0),

(3.36)

we get that

P1Λ(εai) = ε2k�2s�1 + ε2k�1s�2 + O(ε2k) and P
2

Λ(εai) = ε2k�3s�3 + ε2k�2s�4 + O(ε2k�1).
(3.37)
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Substituting (3.37) into (3.35) we obtain

ã�ε =ε2k�2
(
(2k� 1)a�a2k�2

i � δs�1
)

+ ε2k�1
(

2ka2k�1
i f�(εai)� δs�2

)
+O(ε2k),

f̃�0,ε =ε2k�3

(
a�(k� 1)(2k� 1)a2k�3

i � δs�3
2

)

+ ε2k�2

(
k(2k� 1)a2k�2

i f�(aiε)�
δs�4

2

)
+O(ε2k�1),

g̃�0,0,ε =g�(εai, 0).

(3.38)

From here, in order to compute V2,i(ε), we proceed with the following steps.
Firstly, we substitute the expressions in (3.38) into the formula (3.34) to get

α�2,i(ε) =
	δa3

i s�3 � (2k� 2)(2k� 1)a�a2k
i

ε
(

3(2k� 1)a�a2k+1
i � 3δa3

i s�1
)
+ ε2

(
6k f�0 a2k+2

i � 3δa3
i s�2
)
+O(ε3)

+
ε
(
(2g�0,0s�1 	 δs�4 )a3

i � (4k� 2)( f�0 k	 δa�g�0,0)a2k+1
i

)
+O(ε2)

ε
(

3(2k� 1)a�a2k+1
i � 3δa3

i s�1
)
+ ε2

(
6k f�0 a2k+2

i � 3δa3
i s�2
)
+O(ε3)

= ε�1	δa3
i s�3 � (2k� 2)(2k� 1)a�a2k

i

3a�(2k� 1)a2k+1
i � 3δa3

i s�1
+ A�

i +O(ε).

The expression of A�
i is a little cumbersome, so we shall omit it here. Secondly, taking

into account the definition of the coefficients of the polynomials P�Λ in (3.28) and
expression (3.23), we get the following identities

s�1 = � a�

a+
s+1 , s�2 = � f�0

f+0
s+2 , s�3 = � a�

a+
s+3 , and s�4 = � f�0

f+0
s+4 ,

which imply that the coefficients of ε�1 in the expansions above for α+2,i(ε) and α�2,i(ε)

coincide. Thus, from (3.34), we have that

V2,i(ε) = δ(A+
i � A�

i ) +O(ε),

implying that V2,i(ε) is continuous at ε = 0. Moreover, the identities above allow to get
rid of the terms s�1 , s�2 , s�3 , and s�4 in A�

i .

Before concluding our result, we require additional identities, as provided
by the following claim.

Claim 7.1. Consider the values defined in (3.36). Then, the following identities hold:

s�2 =
f�0
a�
[
(ai � α)s�1 	 δa�a2k�1

i 	 δ(2k� 1)a�αa2k�2
i

]
,

s�4 =
f�0
a�
[
(ai � α)s�3 + 2s�1 	 δ(2k� 2)(2k� 1)a�αa2k�3

i

]
,

(3.39)
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where

α = �
2k�2̧

j=1

aj. (3.40)

Proof of Claim 7.1. Firstly, from (3.29), we have

P�Λ (εai)

ε2k�1 =
2k�2̧

j=1

C�j (Λ, ε)aj
i .

Thus, from (3.22), the following identity holds for all ε ¡ 0 sufficiently small:

2k�2̧

j=1

C�j (Λ, ε)aj
i = 	δa2k�1

i (a� + aiε f�(εai)). (3.41)

Now, define the polynomial

T�Λ (x) =
2k�2̧

j=1

C�j (Λ, 0)xj � δa�x2k�1. (3.42)

Notice that deg(T�Λ ) = 2k� 1 and, by taking ε = 0 in (3.41), we get

T�Λ (0) = 0 and T�Λ (ai) = 0, for i P t1, . . . , 2k� 2u.

Thus, the polynomial T�Λ can be factorized as follows:

T�Λ (x) = �δa�x(x� a1)(x� a2) . . . (x� a2k�2). (3.43)

Also, define the polynomial

U�
Λ(x) =

2k�2̧

j=1

BC�j
Bε

(Λ, 0)xj � δ f�0 x2k. (3.44)

Notice that deg(U�
Λ) = 2k and, by taking the derivative of (3.41) at ε = 0, we get

U�
Λ(0) = 0, U�

Λ(ai) = 0, for i P t1, 2, . . . , 2k� 2u.

Thus, the polynomial U�
Λ can be factorized as follows:

U�
Λ(x) = �δ f�0 x(x� α�)(x� a1)(x� a2) . . . (x� a2k�2), (3.45)

where α� is, a priori, an unknown root of U�
Λ . Nevertheless, since the coefficient of the monomial

x2k�1 of U�
Λ is zero, we know that the sum of its roots must vanish, which provides that

α+ = α� = α, where α is given in (3.40).

From the equations (3.43) and (3.45), we have

U�
Λ(x) =

f�0
a�

(x� α)T�Λ (x)



Chapter 3. The cyclicity problem for monodromic tangential singularities 60

and, therefore, from (3.42) and (3.44), we get the following recursive identities:

BC�1
Bε

(Λ, 0) = � f�0
a�

αC�1 (Λ, 0),

BC�j
Bε

(Λ, 0) =
f�0
a�

(Cj�1(Λ, 0)� αCj(Λ, 0)), 2 ¤ j ¤ 2k� 2,

C�2k�2(Λ, 0) = �δa�α.

(3.46)

For the sake of simplicity, in what follows, we denote C�i = C�i (Λ, 0). By using
(3.36), (3.46), and (3.41), we obtain s2 as follows:

s�2 =
BC�1
Bε

(Λ, 0) +
2k�2̧

j=2

aj�1
i j

BC�j
Bε

(Λ, 0)

=
f�0
a�

�αC�1 � α
2k�2̧

j=2

aj�1
i jC�j +

2k�2̧

j=2

aj�1
i jC�j�1


=

f�0
a�

�αs�1 +
2k�2̧

j=2

aj�1
i jC�j�1


=

f�0
a�

�αs�1 +
2k�3̧

j=1

aj
i(j + 1)C�j


=

f�0
a�

�αs�1 +
2k�2̧

j=1

aj
i(j + 1)C�j � a2k�2

i (2k� 1)C�2k�2


=

f�0
a�

�αs�1 +
2k�2̧

j=1

aj
i jC

�
j +

2k�2̧

j=1

aj
iC
�
j � a2k�2

i (2k� 1)C�2k�2


=

f�0
a�
[
�αs�1 + ais�1 	 δa�a2k�1

i 	 δ(2k� 1)a�αa2k�2
i

]
.

Hence, we conclude that the first identity of (3.39) holds.
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Analogously, by using (3.36) and (3.46), we compute s�4 as follows:

s�4 =
f�0
a�

2k�2̧

j=2

aj�2
i j(j� 1)C�j�1 � α

2k�2̧

j=2

aj�2
i j(j� 1)C�j


=

f�0
a�

2k�2̧

j=2

aj�2
i j(j� 1)C�j�1 � αs�3


=

f�0
a�

2k�3̧

j=1

aj�1
i (j + 1)jC�j � αs�3


=

f�0
a�

2k�2̧

j=1

aj�1
i (j + 1)jC�j � a2k�3

i (2k� 1)(2k� 2)C�2k�2 � αs�3


=

f�0
a�

2k�2̧

j=1

aj�1
i (j + 1)jC�j 	 δ(2k� 1)(2k� 2)a�αa2k�3

i � αs�3

 .

(3.47)

Finally, notice that

2k�2̧

j=1

aj�1
i (j + 1)jC�j =

2k�2̧

j=1

aj�1
i (j� 1)jC�j + 2

2k�2̧

j=1

aj�1
i jC�j = ais�3 + 2s�1 . (3.48)

Hence, the second identity of (3.39) follows by putting (3.47) and (3.48) together.

Therefore, by using the identities

s+2 =
f+0
a+
[
(ai � α)s+1 � δa+a2k�1

i � δ(2k� 1)a+αa2k�2
i

]
and

s+4 =
f+0
a+
[
(ai � α)s+3 + 2s+1 � δ(2k� 2)(2k� 1)a+αa2k�3

i

]
,

(3.49)

provided by Claim 7.1, and taking into account that δ2n = 1 and δ2n+1 = δ for any
integer n, we obtain

V2,i(ε) =
2
3

(
a+g+0,0 � δ f+0

a+
+

a�g�0,0 + δ f�0
a�

)
+O(ε) =

2k + 1
3

V2 +O(ε),

which concludes this proof.

3.4.3 Concluding the appearance of the limit cycles

This section is devoted to conclude the proof of Theorem 7. Consider the
Filippov vector field ZεΛ, given by (3.17), and let U � R2 be a neighborhood of (0, 0)
and λ ¡ 0.

From Propositions 5 and 6, we can fix Λ = (a1, . . . , a2k�2) P L, with a1  
0   a2   . . . a2k�2, such that, for ε ¡ 0 sufficiently small, the Filippov vector field
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ZεΛ has k (2, 2)-monodromic tangential singularities, namely, the points (εai, 0) for
i P t1u Y t2, 4, . . . , 2k� 2u. Moreover, the second Lyapunov coefficients of each one of
these singularities writes like (3.31) and, therefore, for ε ¡ 0 sufficiently small, they
are all non-vanishing and have the same sign as V2. Thus, we fix ε� ¡ 0 such that
the norms of the polynomials P+

ε�Λ and P�ε�Λ are smaller than λ, (ε�ai, 0) P U and
sign(V2,i(ε

�)) = sign(V2) for i P t1u Y t2, 4, . . . , 2k� 2u.
Now, denote P+(x) = P+

ε�Λ and P�(x) = P�ε�Λ and consider the one-parameter
family of Filippov vector fields rZb(x, y), given by (3.16). For each i P t1uY t2, 4, . . . , 2k�
2u, consider the translated Filippov vector field Zi

b(u, x) = rZb(u + ε�ai, y). We notice
that Zi

b writes like (3.10) and satisfies all the hypotheses of Proposition 3. Thus, given
a neighborhood Ui � R2 of the origin satisfying Ui + (ε�ai, 0) � U, there exists an
interval Ii � R containing 0 such that, for every b P Ii satisfying sign(b) = �sign(δV2),
the Filippov vector field Zi

b has a hyperbolic limit cycle inside U surrounding a slid-
ing segment. In addition, the hyperbolic limit cycle is stable (resp. unstable) provided
that V2   0 (resp. V2 ¡ 0). Since the neighborhoods Ui, i P t1u Y t2, 4, . . . , 2k� 2u, can
be arbitrarily chosen, we can impose that (Ui + ε�ai)X (Uj + ε�aj) = H, for i � j in
t1u Y t2, 4, . . . , 2k� 2u.

Hence, by taking I = I1 X (I2 X I4 X � � � X I2k�2), which is an interval contain-
ing the origin, we conclude that, for each i P t1u Y t2, 4, . . . , 2k� 2u and for every b P I
satisfying sign(b) = �sign(δV2), the Filippov vector rZb(x, y) has a limit cycle contained
in Ui + (ε�ai, 0) � U surrounding an sliding segment.

3.5 Examples
In this section, we will exhibit several examples that meet the conditions of

the theorems discussed in this chapter.

Example 1. Let k+ and k� be positive integers, λ P R, and consider the following 1-parameter
family of Filippov vector fields:

Zλ(x, y) =

$&%
(

1,�x2k+�1(λ x + 1)
)

, y ¡ 0,(
� 1, x2k��1(x� 1)

)
, y   0.

(3.50)

Notice that the origin is a (2k+, 2k�)-monodromic tangential singularity for every
λ P R. From Proposition 2, we compute

V2(λ) = � 2
1 + 2k+

λ +
2

1 + 2k�
and

V4(λ) = �4(7 + k+(3 + 2k+))λ3

3(1 + 2k+)3 λ3 � 4(7 + k�(3 + 2k�))
3(1 + 2k�)3 .
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Thus, for λ0 =
1 + 2k+

1 + 2K�
, we have

V2(λ0) = 0, d = V1
2(λ0) = � 2

1 + 2k+
  0, and ℓ = V4(λ0) = �8(7 + k+(3 + 2k�))

3(1 + 2k�)3   0.

Since sign(ℓ) = �1, Theorem 5 implies that the Filippov vector field (3.50) admits an asymp-
totically stable hyperbolic limit cycle for every λ sufficiently close to λ0. Such a limit cycle
converges to the origin as λ goes to λ0.

The obtained hyperbolic limit cycle coexists with the monodromic tangential singu-
larity. In other words, the limit cycle was obtained without destroying the singularity. Therefore,
by performing the small perturbations of Proposition 3

Zλ,b(x, y) =

$&%Z+
λ (x� b, y), y ¡ 0,

Z�λ (x, y), y   0,

one can see that Zλ,b and ZΛ,b undergo a pseudo-Hopf bifurcation at b = 0, which creates a
sliding segment and an additional hyperbolic limit cycle (see Figure 8), increasing for 6 the
number of limit cycles.

Example 2. Let Λ = (λ1, λ2, . . . , λ5) P R5 and consider the following 5-parameter family of
Filippov vector fields:

ZΛ(x, y) =

$&%
(

1,�x + λ1x2 + λ2xy + λ3y2
)

, y ¡ 0,(
� 1,�x + x2 + λ4xy + λ5y2

)
, y   0.

(3.51)

Notice that the origin is a (2, 2)-monodromic tangential singularity for every Λ P
R5. From Theorem 3, we compute V5 = (V2(Λ), V4(Λ), . . . , V10(Λ)) and V12(Λ). Thus, for

Λ0 =
(

1,
5(�1 +

?
109)

2
,�5(�7 +

?
109)

4
,

5(1 +
?

109)
2

,
5(7 +

?
109)

4

)
,

we have

V5(Λ0) = 0, det(DV5(Λ0)) =
1520768

74263959
, and V12(Λ0) =

20030
?

109
9009

.

Therefore, from Theorem 6, there exists an open set W � R5 such that the Filippov vector
field (3.51), ZΛ, has 5 hyperbolic limit cycles for every Λ P W. In addition, all the limit cycles
converge to the origin as Λ goes to Λ0.

The obtained hyperbolic limit cycle coexists with the monodromic tangential singu-
larity. In other words, the limit cycle was obtained without destroying the singularity. Therefore,
by performing the small perturbations of Proposition 3

ZΛ,b(x, y) =

$&%Z+
Λ (x� b, y), y ¡ 0,

Z�Λ(x, y), y   0,
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one can see that Zλ,b and ZΛ,b undergo a pseudo-Hopf bifurcation at b = 0, which creates a
sliding segment and an additional hyperbolic limit cycle (see Figure 8), increasing for 2 the
number of limit cycles.

Example 3. Let k be a positive integer, λ P R, and consider the following 1-parameter family of
Filippov vector fields:

Zλ(x, y) =

$&%
(

1, x2k�1(λ x� 1) + y
)

, y ¡ 0,(
� 1, x2k�1(x� 1)

)
, y   0,

(3.52)

Notice that the origin is a (2k, 2k)-monodromic tangential singularity for every
λ P R.

From Proposition 2, we compute

V2(λ) =
2λ

1 + 2k
and

V4(λ) =
1

3(3 + 2k)(1 + 2k)3

(
� 4(2 + k)(1 + 2k)2 + 12(19 + 14k)λ+

6(3 + 2k)(13 + 2k)λ2 + 4(3 + 2k)(7 + k(3 + 2k))λ3
)

.

Thus, for λ0 = 0, we have

V2(λ0) = 0, d = V1
2(λ0) =

2
1 + 2k

¡ 0, and ℓ = V4(λ0) =
�4(2 + k)

9 + 12k(2 + k)
  0.

Theorem 5 implies that the Filippov vector field (3.52) admits an asymptotically stable hyperbolic
limit cycle for every λ ¡ λ0 sufficiently close to λ0. Such a limit cycle converges to the origin as
λ goes to λ0.

Knowing that

V2 =
2λ

1 + 2k
.

Now, let λ ¡ 0 be fixed such that (3.52) has an asymptotically stable hyperbolic limit cycle.
Applying Theorem 7, we conclude that the Filippov system (3.52) can be perturbed within the
space of polynomial Filippov systems of degree 2k� 1 in such a way that k extra unstable limit
cycles emerge from the origin. More specifically, given λ ¡ 0 and a neighborhood U � R2 of
(0, 0), there exist polynomials P+ and P�, with degree 2k � 2 and norm less than λ, and a
neighborhood I � R of 0 such that, for every b P I satisfying sign(b) = �sign(η), i.e. b   0,
the Filippov system

rZ(x, y) =

$&%
(

1, (x + b)2k�1(λ (x + b)� 1) + y + P+(x + b)
)

, y ¡ 0,(
� 1, x2k�1(x� 1)� P�(x)

)
, y   0,

has an asymptotically stable limit cycle and k unstable hyperbolic limit cycles. These k limit
cycles are inside U.
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4 Period constants for tangential singularities,
isochronicity, and criticality

In planar vector fields, the isochronicity problem concerns about distinguishing
whether a center is isochronous or not. Recall that a center of a planar vector field
is called isochronous if the period function T : S Ñ R is constant. The period function
is defined in a Poincaré section S transverse to the period annulus and corresponds
to the period of the trajectory starting at a point in S. In other words, a center is
isochronous provided that every trajectory in a neighborhood of it has the same period.
The isochronicity problem goes back to C. Huygens with his studies on the pendu-
lum clock that oscillates isochronously (5). For smooth planar vector fields, Poincaré
and Lyapunov showed that the isochronicity of a center is directly connected with its
linearizability (45). Their discovery has driven the subsequent studies on the isochronic-
ity problem, which has attracted considerable attention ever since (see, for instance,
(11, 43, 46, 48)).

More recently, the isochronicity problem has also been considered for planar
non-smooth vector fields of type

Z(x, y) =

$&%Z+(x, y), h(x, y) ¡ 0,

Z�(x, y), h(x, y)   0,
(4.1)

where h : R2 Ñ R is a smooth function having 0 as a regular value, Z� are smooth vector
fields, and Σ = h�1(0) is the discontinuity manifold, that is, we are considering Filippov
systems, as defined in Section 1.1. Regarding the existence of isochronous centers in
Filippov vector fields, conditions on a family of piecewise quadratic systems were
provided in (17) to ensure that the origin is an isochronous center. Equally important,
one can find results about the non-existence of isochronous centers, for instance, in (36),
where it was shown that the origin of the non-smooth oscillator ẍ + g(x) sign ẋ + x = 0
is never an isochronous center for any analytic function g satisfying g(0) = g1(0) = 0.
Finally, in (9), conditions were obtained for piecewise linear vector fields to have an
isochronous center at infinity. The papers above, but the last one, investigated the
isochronicity problem around a focus-focus center.

Another problem related to the isochronicity problem is the criticality problem,
which has been gaining attention over the last decades. The criticality problem was
introduced by Chicone and Jacobs (13) and it explores the presence of oscillations
or critical points of the period function, also known as a critical period. A critical period
is defined as a critical point of the period function, that is, a point p ¡ 0 satisfying
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T1(p) = 0. In addition, it is called simple provided that T2(p) � 0. The number of critical
periods and the number of simple critical periods give, respectively, an upper and
a lower bound for the number of oscillations of the period function. Analogously to
the center and cyclicity problems, the isochronicity and criticality problems share a
strong similarity, in this case, the period constants play the same role as the Lyapunov
coefficients. For some examples of works about the criticality problem for some families
see (35, 42).

In Chapter 2 we obtained a general recursive formula for the Lyapunov
coefficients, which control whether a monodromic singularity is a center or a focus. Here,
using the tools given in Chapter 2, we study the period function and the isochronicity
problem for planar Filippov vector fields around tangential centers.

This chapter is based on the paper (40) and we will present a formula for the
period function and also a way to compute the period constants for the system (4.1). Finally,
we will show that in Filippov vector fields, isochronous tangential centers cannot exist,
that is, considering tangential centers in Filippov vector fields those centers are always
not isochronous.

To construct the period function of planar Filippov vector fields around
tangential centers, firstly we suppose that the Filippov vector field (4.1) has a (2k+, 2k�)-
tangential center at p P Σ. Recall from Definition 2 that a (2k+, 2k�)-monodromic
tangential singularity of a planar Filippov vector field is called (2k+, 2k�)-tangential
center provided that it has a neighborhood of where the first return map is the identity.
Also, we recall that, without loss of generality, by taking local coordinates, we can
consider p = (0, 0) and h(x, y) = y, therefore we will consider the system (4.1) as

Z(x, y) =

$&%(X+(x, y), Y+(x, y)), y ¡ 0,

(X�(x, y), Y�(x, y)), y   0.
(4.2)

4.1 Period function for the canonical form
The period function is a mathematical function that associates a period with

each point in the phase space of the system (see Figure 11). The period function describes
the periodic behavior of trajectories in the vector field, specifically in cases where the
system has closed orbits or periodic solutions.
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0
Σ

x0

T(x0)

Figure 11 – (2k+, 2k�)-tangential center and the period function.

In Section 2.4, the formulae obtained for the Lyapunov coefficients for a
(2k+, 2k�)-monodromic tangential singularity were obtained based on the canonical
form developed in Section 1.3. Therefore, to compute the period function for (4.2) with a
(2k+, k�)-monodromic tangential singularity, we will first compute the period function
for the canonical form.

As commented in Section 1.3, assuming that the Filippov vector field (4.2)
has a (2k+, 2k�)-tangential center at the origin (see conditions C1, C2, and C3 from
Definition 1), there exists a small neighborhood U of the origin such that X�(x, y) � 0,
for all (x, y) P U. Taking into account that |X�(x, y)| = �δX�(x, y), for all (x, y) P U,
the canonical form is obtained via a time-reparametrization that transforms the Filippov
vector field (4.2) restricted to U into

rZ(x, y) =

$&%rZ+(x, y) = (δ, η+(x, y)), y ¡ 0,rZ�(x, y) = (�δ, η�(x, y)), y   0,
(4.3)

where

η+(x, y) = δ
Y+(x, y)
X+(x, y)

, η�(x, y) = �δ
Y�(x, y)
X�(x, y)

,

and
δ = sign(X+(0, 0)) = �sign(X�(0, 0)). (4.4)

Notice that rZ�(x, y) =
Z�(x, y)
|X�(x, y)| (4.5)

and that δ ¡ 0 (resp. δ   0) implies that the flow of Z turns around the origin in the
clockwise (resp. anti-clockwise) direction.

It is worth mentioning that the time-reparametrization above was the first
step in (38) for obtaining a canonical form for Filippov vector fields around a (2k+, 2k�)-
monodromic tangential singularity.

The following lemma provides us with the period function for the canonical
form (4.3).
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Lemma 1. Assume that the Filippov vector field (4.2) has a (2k+, 2k�)-tangential center at
the origin and let φ be the associated half-return map. Then, the period function of its time-
reparametrization (4.3) is given by rT(x) = 2(x� φ(x)).

Proof. In order to compute the period function of (4.3), we shall consider the half-period
functions rT+ and rT� defined, respectively, as the flight-times taken for the trajectories
of rZ+ and rZ�, starting at (x, 0) P ΣXU, for x ¥ 0, to reach Σ again. Accordingly, for
x ¥ 0 small, the period function rT of (4.3) is defined as rT(x) = δ(rT�(x) � rT+(x)).
Notice that rT(x) ¥ 0. Indeed, for δ ¡ 0 (resp. δ   0) one has that the flow of Z
turns around the origin in the clockwise (resp. anti-clockwise) direction and, therefore,rT+(x) ¤ 0 ¤ rT�(x) (resp. rT�(x) ¤ 0 ¤ rT+(x)) for all x ¥ 0 such that (x, 0) P ΣXU.

Now, the trajectories of rZ� with initial condition (x, 0) P ΣXU are given by

γ�(t, x) = (x� δt, y�(t, x)), (4.6)

where t ÞÑ y�(t, x) is the solution of the initial value problem

dy
dt

= η�(x, y), y(0) = 0. (4.7)

Consider the transversal sections ΣK+ = t(x, y) P U : x = 0, y ¡ 0u and
ΣK� = t(x, y) P U : x = 0, y   0u (see Fig. 12). It is clear that the flight-times taken for
the trajectories of Z+, starting at the points (x, 0) and (φ(x), 0), to reach the section
ΣK+ are given by t+1 = �δx and t+2 = �δφ(x), respectively. Analogously, the flight-
times taken for the trajectories of Z�, starting at the points (x, 0) and at (φ(x), 0), to
reach the section ΣK� are given by t�1 = δx and t�2 = δφ(x), respectively. Therefore,
the half-period functions are given by rT�(x) = t�1 � t�2 = �δ(φ(x)� x), which yieldsrT(x) = δ(rT�(x)� rT+(x)) = 2(x� φ(x)).
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Σ

ΣK+

ΣK�

φ(x) x

t+1 = �δxt+2 = �δφ(x)

t�2 = δφ(x) t�1 = δx

Figure 12 – Transversal sections ΣK� and ΣK+ and the flight-times taken for the trajectories
of rZ+ and rZ�, starting at the points (x, 0) and (φ(x), 0), to reach ΣK� and
ΣK+, respectively.

4.2 Period function for tangential centers
The next result provides an expression for the period function of the Filippov

vector field (4.1) around the tangential center at the origin in terms of the half-return
map φ and the functions y�.

Theorem 8. Assume that the Filippov vector field (4.1) has a (2k+, 2k�)-tangential center at
the origin and let φ be the associated half-return map. Then, the period function is given by

T(x) = δ(T�(x)� T+(x)), (4.8)

where

T�(x) = (φ(x)� x)
» 1

0

1
X�
(

x + (φ(x)� x)t, y�(�δ(φ(x)� x)t, x)
) dt. (4.9)

In the proof of Theorem 8, we shall see that T�(x)T+(x) ¤ 0 and that the
constant δ corrects the sign of T�(x)� T+(x) in such way that T(x) ¥ 0.

To establish Theorem 8, we begin by presenting some essential preliminary
results.

The proof of Theorem 8 is based on a time-reparametrization of Filippov
vector fields around a (2k+, 2k�)-monodromic tangential singularity, for which the
period function can be easily computed. Thus, the following result will be of major
importance for recovering the period function of the original Filippov vector field:

Proposition 7 ((12, Proposition 1.14)). Let U P Rn be an open set, F : U Ñ Rn a smooth
vector field, and g : U Ñ R a positive smooth function. Consider the following differential
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equations
ẋ = F(x) (4.10)

and
ẋ = g(x)F(x). (4.11)

If J � R is an open interval containing the origin and γ : J Ñ Rn is a solution of the differential
equation (4.10) with γ(0) = x0 P U, then the function B : J Ñ R given by

B(t) =
» t

0

1
g(γ(s))

ds

is invertible on its range K � R. If ρ : K Ñ J denotes the inverse of B, then the identity

ρ1(t) = g(γ(ρ(t)))

holds for all t P K and the function σ : K Ñ Rn given by σ(t) = γ(ρ(t)) is the solution of the
differential equation (4.11) with initial condition σ(0) = x0.

4.2.1 Establishing the period function

This section is dedicated to the proof of Theorem 8.

Now, Lemma 1 can be applied together with Proposition 7 in order to com-
pute the period function of the Filippov vector field (4.2) by assuming that it has a
(2k+, 2k�)-tangential center.

Analogously to the proof of Lemma 1, the period function T of (4.2) is given
by

T(x) = δ(T�(x)� T+(x)) ¥ 0,

where T� are the half-period functions of Z�.

From (4.5), Z�|U = g�(x, y)rZ�, where g�(x, y) = |X�(x, y)| = �δX�(x, y).
Hence, if σ�(t, x) denotes the trajectory of Z� with initial condition (x, 0) P ΣXU, then,
from Proposition 7,

σ�(t, x) = γ�(ρ�x (t), x), (4.12)

where γ�(t, x), given by (4.6), is the trajectory of rZ� with initial condition (x, 0) P ΣXU,
ρ�x = (B�x )

�1, and

B�x (τ) =
» τ

0

1
g�(γ�(s, x))

ds =
» τ

0

�δ

X�(x� δs, y�(s, x))
ds.

Thus, from (4.12),

γ�(ρ�x (T
�(x)), x) = σ�(T�(x), x) P ΣXU.
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Consequently, from the characterization of the half-period functions rT� of the cannoni-
cal system (4.3), we have that

ρ�x (T
�(x)) = rT�(x) = �δ(φ(x)� x),

which implies that
T�(x) = B�x (�δ(φ(x)� x)).

Hence,

T�(x) =
» �δ(φ(x)�x)

0

�δ

X�(x� δs, y�(s, x))
ds.

We conclude this proof by performing the change of variables s = �δ(φ(x)�
x)t in the integrals above, which yields

T�(x) = (φ(x)� x)
» 1

0

1
X�(x + (φ(x)� x)t, y�(�δ(φ(x)� x)t, x))

dt.

4.3 Period constants
This section provides the formulae for the computation of the period con-

stants.

From Theorem 1 we know that the half-return map φ is analytic in a neigh-
borhood of x = 0 provided that Z+ and Z� are analytic in a neighborhood of the
origin. Therefore, one can easily see that the period function T(x) given by Theorem 8
is also analytic in a neighborhood of x = 0 provided that Z+ and Z� are analytic in a
neighborhood of the origin. In this case, the period constants pTi, i P N, are defined as the
coefficients of the power series of T(x) around x = 0, that is,

T(x) =
8̧

i=0

pTixi. (4.13)

Notice that, from (4.13) and (4.8),

pTi =
1
i!

T(i)(0) =
1
i!

δ
(
(T�)(i)(0)� (T+)(i)(0)

)
.

In addition, from (4.9),

(T�)(i)(0) =
» 1

0

Bi

Bxi

(
φ(x)� x

X�(x + (φ(x)� x)t, y�(�δ(φ(x)� x)t, x))

) �����
x=0

ds.

Thus, in order to compute pTi, it only remains to know how to compute the
higher derivatives of the functions x ÞÑ y�(�δ(φ(x)� x)t, x)) and φ(x) at x = 0. This
has been done in Section 2.4.
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Let

y�(t, x) =
8̧

i=1

y�i (x)
i!

ti (4.14)

and

φ(x) = �x +
8̧

n=2

αnxn. (4.15)

Recall that φ1(0) = �1.

The coefficient functions yi of the series (4.14) are given by (2.14) of Theorem
3.

4.4 Tangential centers: Non-isochronicity and non-existence of crit-
ical periods

The isochronicity problem in dynamical systems examines whether the orbits
of a system take the same time to complete, regardless of their starting point. For
Filippov systems, as described in (4.1), it is equivalent to say that the orbits starting at
the discontinuity manifold Σ take the same amount of time to return to Σ.

The criticality problem is a problem, related to the isochronicity problem,
deals with the bifurcation of critical periods in perturbed centers.

As a consequence of Theorem 8 we have the following corollary:

Corollary 1. Assume that Filippov vector field (4.1) has a (2k+, 2k�)-tangential center at the
origin and let T(x) be the period function given by (4.8). Then,

pT0 := T(0) = 0 and pT1 := T1(0) = 2δ
(X�(0, 0)� X+(0, 0)

X+(0, 0)X�(0, 0)

)
¡ 0.

Clearly, an isochronous center must satisfy pT0 � 0 and pTi = 0, for all
i P Nzt0u. Accordingly, it follows from Corollary 1, as well as from (4.8) and (4.9),
along with the observation that φ1(0) = �1 and taking into account condition C3 (see
Definition 1) and identity (4.4) that a (2k+, 2k�)-tangential center of a planar Filippov
vector field is not isochronous. Also as a consequence of Corollary 1, a perturbed tangen-
tial center does not admit critical periods in a neighborhood of x = 0, because in order to
a (2k+, 2k�)-tangential center to have critical periods we need that pT1 := T1(0) = 0 and,
also from Corollary 1 we have that pT1 := T1(0) � 0 for a (2k+, 2k�)-tangential center
and, therefore, the period function does not oscillate in this neighborhood. Consequently,
we arrive at the following theorem.

Theorem 9. A (2k+, 2k�)-tangential center of a planar Filippov vector field is not isochronous
and does not admit critical periods in a neighborhood of x = 0.
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Final considerations

In this thesis, we essentially consider the cyclicity and isochronicity problems
for monodromic tangential singularities. To address these problems, after giving some
properties and results about the half return maps we provided recursive formulae for
computing the Lyapunov coefficients for monodromic tangential singularities, which
we consider a significant result for exploring the cyclicity problem and other related
problems. Using these recursive formulae, we also present, through some cumbersome
computation, a proposition with the first four coefficients of the half-return maps,
thereby explicitly establishing the first four Lyapunov coefficients for any given system,
simplifying their computation.

Our studies have led us to employ various techniques from the qualitative
theory of ordinary differential equations, such as generalized blow-up, canonical form,
and the Malgrange preparation theorem.

We also implemented the algorithm for computing the Lyapunov coefficients
in the algebra system MATHEMATICA being an useful opportunity to explore results
related to the cyclicity problem and we believe that there is still a lot to be done in this
area.

Regarding the cyclicity problem for monodromic tangential singularities, we
believe there is still much to explore, such as searching for lower bounds for the num-
ber of limit cycles in certain families of planar systems with monodromic tangential
singularities, similar to the study of the cyclicity problem in the regular discontinuous
case. This work can be done using the formulae for the Lyapunov coefficients provided
in this thesis. We intend to investigate these lower bounds for some polynomial families
with monodromic tangential singularities, utilizing our formulae.

In Chapter 3, besides classical cyclicity results for monodromic tangential
singularities, we also provide a different perspective on the pseudo-Hopf bifurcation,
demonstrating that for a more degenerate singularity, a (2k, 2k)-monodromic tangential
singularity, the pseudo-Hopf bifurcation leads to the appearance of additional k limit
cycles. We plan to investigate if these findings hold true when considering a (2k, 2k)-
monodromic tangential singularity with l limit cycles, proving then the appearance of
k � l limit cycles.

In Chapter 4, we address period constants for tangential singularities, explor-
ing the isochronicity and criticality problems. We concluded that isochronous tangential
centers do not exist for planar systems with monodromic tangential singularities, and
hence neither do critical periods. Despite this, we believe there is room for further
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investigation, for instance, when considering a mix of an invisible contact at the origin
for Z+ and a center or focus for Z�.
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