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1. Introduction 

Many inverse problems begin with a mathematical model that is a linear Fredholm 
integral equation of the first kind. After discretization, the problem reduces to solve a 
system of linear algebraic equations of the form 

Ax = b, (1) 

where A is a real m x n matrix, b the m-vector of observations and x an n-vector to 
be determined. Unfortunately (1) is usually very ill-posed and small perturbations in b 
generate large errors in the solution, even if we consider minimurn-norrn solutions in the 
least squares sense. The standard way to obtain sta.ble solutions is to modify the problem 
substituting (1) by the Tikhonov regularization [l]. That is the solution is obtained by 
minimizing the functional 

(2) 

where the second term in (2) represents some "a priori" inforrnation about the problern. 
L is usually a deriva.tive operator imposing some smoothing constraints on the solution, 
a a positive regularization pararneter controlling the amount of smoothing and xº an 
estimate of x. 11 • 11 denotes the square norm in IR:'. 

Another way to solve (1) is to apply an iterative rnethod to the normal equations 

A'Ax = A'b. (3) 

A tipical algorithm for solving (3) is the generalized Landweber-Fridman iteration [2] 
given by 

k = O, 1, 2, .. . (4) 

where D = F(AtA) and F is a polynomial or rational function with the property O < 
,\F(,\) < 2 for O < .À < 1. At the beginning of the process, the accuracy of the iterates 
improves, but after some time a deteriorating effect shows up due to ill-conditioning. A 
stable solution can be found by using an appropriate stopping rule that chooses an itera.te 
x" before this effect comes up. This procedure, known as truncated iteration, establishes 
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a balance between accuracy (to what extend (1) is satisfied) and smoothing requirements 
similar to those represented by the first and second terms in (2) respectively. 

Recently [3], H. Fleming established an equivalence between the two types of methods 
if A is a full rank matrix. ln [3] is proven that every direct regularization method of a 
very general type for the solution of (1) is equivalent to a truncated iterative method and 
viceversa. This is done considering separa.tely the overdetermined ( rank A = n < m) 
a.nd the underdetermined ( rank A = n > m) cases. ln this paper we extend these results 
to incomplete rank matrices. Our approach uses a specia.lly derived formula for general 
iterative methods that allows a simpler and unified proof. Moreover, our proof is valid 
for methods more general than (4). 

ln the next section we gi ve some preliminary results for general linear itera.tive meth-
ods that include the formula just mentioned. Section 3 contains our main equivalence 
results. 

2. Preliminary Results 

We consider now iterative methods of the form 

(5) 

where G is an n x n matrix and f is a vector in JRn. It is clear that if { xk} converges to 
x*, this limit point solves the system 

(J - G)x = f. (6) 

Recall that a matrix G is said to be convergent if lim Gk exists and this limit exists 
k-oo 

if and only if the following conditions are verified (see [4]): 

( a) The spectral radi us of G is less or equal to one. 

(b) If ,\ is an eigenvalue of G such that I..\I = 1, then À = 1 and all the elementary 
divisors that correspond to À are linear, i.e., À has no principal vectors. 
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The next Theorem describes the iterates generated by (5). 

Theorem 1. Let G be an n X n convergent matrix. Then 

mn = N(I - G) ffi R(I - G) , (7) 

where N(I-G) and R(J - G) denote the kernel and range of J-G respectively. Moreover, 
the following expression holds: 

(8) 

where J1 , x~ E N(I-G) and h, X2 E 'R(J-G) are such that J = fi + Í2 , x0 = x~+xg, 

and G2 = cl . 
"R(I-G) 

Proof. Using (5), xk can be written as 

k-1 
xk = Gk x 0 + L Gj f . 

j=O 
(9) 

Let W be the subspace generated by the principal vector and eigenvectors associated 
to the eigenvalues of G different from one. Clearly 

(10) 

Let xi, f1 E N(J - G) and x2 , f2 E W be such that x0 = x~ + xg and J = f1 + !2. 
Defining G2 = c\w and applying (9) we obtain that 

k-I 
k o kj' G~k o G~j1• 

X = X1 + 1 + 2X2 + L.., 2 2 • (11) 
j =O 

Taking into account that Ô2 doesn't have one as eigenvalue and that W is (J-G)-invariant, 
then, J - G2 has an inverse and 

(12) 
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Therefore, using (11) and (12), we get that 

(13) 

It remains to be proved that W = 'R(I - G). To do this, we'll use equation (13). 
If f E W, then f 1 = O and ihf' sequence {xk} is convergent, therefore (6) is solvable and 
f E 'R(J - G) (this is a consequence of (13) and the fact that the eigenvalues of G2 are 
less than one in modulus, but, can be deduced also from known results [5]). On the other 
hand, if f E R(/ - G) we call take x0 = x•, a solution of (6). The resulting sequence is 
convergent because G is a convergent matrix and, by equation (13), f 1 must be zero; so 
fEW. 

We immediately conclucle that G2 = G2 = GI and the result follows. 
'R(/-G) 

Consider now tbe rE->gularized problem 

111i11imize IIAx - blli + llx - ali~ , (14) 

where P E Rmxm anel Q E !U"xn are symmetric positive matrices, a is a vector in JRn 

and the norms are definecl by 
(15) 

(the sarne for Q). Let us al~o consider a convergent iterative method of the forrn 

(16) 

where M is a non-singular matrix. Using the notation of the previous section G = 
1- MAtp- 1 A. 

Lemma 2. The solution :r"' of the problem (14) always exists anel can be written as 

(17) 

where 

and (M At p-1 Ah = M Atp-1 AI . 
'R(MA 1P- 1 A) 
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Proof. Using standard calculations, it is easy to see that 

(18) 

By Theorem 1, (M AtP-1A)2 has an inverse and by adding and substracting (J + 
Q~t.p-1 At1(M At p-1 A)21 M AtP-1b in (18) we obtain 

We know that the system 

(20) 

has a solution; so, applying M in both sides of (20) we deduce that M AtP-1 b E 
'R(M Atp-1 A) and using this fact we get that 

(21) 

Substituting M by Q in (21) (we can do it because they are nonsingular), (21) implies 
that 

QAtP-1b = (QAtp-l A)(M Atp-l A);-1 M AtP-1b. (22) 

From (22) we get that 

(23) 

Substituting in (19) , the result follows. 

3. Equivalence of solutions. 

We present in this section the main equivalence results of this paper. 

Theorem 3. Every regularized solution of the system (1) has an equivalent truncated 
iterative solution of the form (16); i.e., given the matrices P and Q in (14) anda positive 
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ateger ko there exists a matrix M such.that xlco given by (16) solves (14). 

'roof. Being Q and A' p-1 A symmetric and Q-1 positive definite, we can simultaneously 
iagonalize them; i.e., there exists a nonsingular matrix X such that 

t -1 • ( 1 1 ) X Q X = d1ag - , ... , -
ql qn 

nd 
X' At p-1 AX = diag(p1, ... ,p,J , 

rith qi > O and Pi O for i = 1, ... , n. (See [6), section 8.6). Consequently 

}iven a. truncation index k0, let 

~here 

M = X diag(.-\1, ... , -"n)X' = X DX' 

{ 
;[l - (1 + Piqi)-1/lco] , if Pi =/= O , 

.,\i = 
O , otherwise. 

Jsing (26), (27) a.nd (28) we get that 

- {X diag(l - ÀiPi)x-1 }kº = 

- Xdiag(l - ÀiPi)lco x-1 = 

X diag(l + Piqir1 x-1 = 

- (I + QAtp-1 Atl . 
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Now 
f - l\ll AtP- 1 A = X diag(l + Piqitlfko x-1 j 

therefore, M given by (27) defines a method (16) that is convergent. 
It remains to be proved that xkº = x* the solution of problem {14). By Lemma 2 

the expression (17) is valid. If we set x0 = a and we apply (29), it follows that 

(30) 

(31) 

because x~ E .N(M Atp-1 A)= .N(A). Thus, by Theorem 1, x* = xk. • 
We now state and prove the converse of Theorem 3. 

Theorem 4. Every trnncated-iterative solution of the form (16), where M is a symmetric 
positive definite matrix, is the solution of a regularized problem of the form (14); i.e., for 
every k and matrices M and P, there exists a matrix Q such that xk in (16) solves {14). 

Proof. Being M-1 and Atp-1 A symmetric and M-1 positive definite, we can simulta-
neoulsy diagonalize them; i.e., there exists a nonsingular matrix Y such that 

(32) 

and 
Y\At p-1 A)Y = diag( a1, ... , an) , (33) 

with ai O and mi > O for i = 1, ... , n. 

Define 
(34) 

where 
..!.[(l - a ·m ·)-k - l] ª' 1 1 , 

(35) 
otherwise. 
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Using {32), (33), (34) and {35) we get that 

{36) 

The method (16) is convergent, then, it must be 1 - aimi < 1, if ai 1- O, for i = 1, ... , n, 
implying that µ, > O. Hence, Q is positive definite. We can apply Theorem 1 and (36) to 
obtain 

(37) 

But x? E N(A), then 
(38) 

lf we set a = xº, and using Lemma 2, x" = x•. 

• 
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