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Abstract. The Column-U pdating method has proved to be a very efficient tech-
nique for solving nonlinear systems of equations. ln this paper, we prove new 
convergence results that tend to explain the numerical behavior of the algorithm. 
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Resumo: O método de Atualização de Coluna tem-se mostrado uma técnica 
muito eficiente para resolver sistemas não lineares. Neste artigo, provamos novos 
resultados de convergência que visam explicar o comportamento uumérico do al-
goritmo. 
Palavras chave: Sistemas não lineares, métodos quase-Newton , método de At-
ualização de Coluna. 

1.- Introduction 

We consider the problem of solving 

F(x) = O (1.1) 

where F : ]Rn --+ ]Rn is differentiable. The Newton method, given by the iteration 

(1.2) 

(•) This work was supported by FAPESP (Projeto Temático 90-3724-6) . 
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is the most popular techníque for solving (1.1 ). See Ortega and Rheinboldt [1970], 
Dennis and Schnabel [1983], Schwetlick [1978], Ostrowski [1973}, etc .. When the 
derivatives of F are not available, or when the cost of solving the linear system 
associated with (1.2) is prohibitive, the more general iteration 

(1.3) 

is used, where Bk is an approximation of the Jacobian which only uses available 
information. ln general, the resolution of the system associated with {1.3) is less 
expensive than (1.2) due to suitable updating procedures. The methods based 
on {1.3) are called quasi-Newton methods. See Dennis and Moré [1977}, Dennis 
and Schnabel [1983]. 

The best known class of quasi-Newton methods is the class of Least Change 
Secant Update (LCSU) algorithms {Dennis and Schnabel [1979, 1983]). For this 
class of methods, under suitable assumptions, Q-superlinear convergence can be 
proved, provided that x0 and B0 are good approximations of the solution x. and 
the Jacobian F'(x,.) respectively. See Dennis and Walker [1981], Martínez [1990, 
1992a]. 

However, some authors have introduced quasi-Newton methods that don't 
belong to the LCSU family, but seem to be useful in practice. See Gomes-
Ruggiero, Martínez and Moretti [1992]. This is the case of the Column-Updating 
Method, studied in this paper. See Martínez [1984a], Gomes-Ruggiero and 
Martínez [1992]. ln the Column-Updating Method Bk+i is obtained from Bk 

by changing only one suitable column so that a "secant" equation is satisfied. 
The numerical results obtained with this method both in small and large systems 
of equations are very good, but the theoretical convergence results are weak. 

ln this paper, we try to fill the gap between theory and practice, in rela-
tion to the Column-Updating Method. Briefly speaking, we prove that, under 
classical assumptions, linear convergence implies R-superlinear convergence (Sec-
tion 2) and that for a restarted version of the algorithm (not necessarily Newton 
restarts) local, linear anel, thus, R-superlinear convergence takes place (Section 
3). Moreover, we prove in Section 4 that stronger results are true in the two-
dimensional case. 

ln the proofs of Section 2 we made a strong utilization of the results of 
Gay [1979] concerning finite convergence of rank-one secant methods for linear 
systems, ln the proof of Theorem 2.1 we adopted the O(.) notation in order to 
simplify the exposition. A careful reader can easily verify that the constants in-
volved in the bounds are independent of k. Our experience in reading and wríting 
convergence pro~fs taught us that proofs where all the constants are exhaustively 
defi.ned are much more difficult to read and, many times, less convincing, than 
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those where the O(.) notation is used. 

2.- The general algorithm without restarts 

We will consider the problem of solving (1.1), where F: n e IR:1 -+ IR'., S1 
is an open and convex set and F E C 1 (S1). We denote J (x) the Jacobian matrix 
of F(x) . Let li· li be an arbitrary norm on IRn. We assume that there exists 
L > O, x. E n such that 

II J (x) - J (x.)11 Ll lx - x.11 (2.1) 

for all x E n. This implies (see Broyden, Dennis and Moré [1973]) that 

IIF(z) - F(x) - J (x .)(z - x)II Lllz - xl la(x , z) (2.2) 

for all x , z E n, where a(x, z) = max{ llx - x.1 1, llz - x.11 }. Moreover, we assume 
that F(x.) = O and J( x.) is nonsingular. 

Let us define the main algorithm considered in this section. This algorithm 
is a generalization of the Column-Updating method and, in fact , it also general-
izes the classical Broyden's [1965] method. 

Algorithm 2.1 

Let x0 E n, B0 an arbitrary nonsingular initial matrix, a E (O, l]. For all 
k = O, 1, 2, . .. such that F(xk) =/= O, perform the following steps. 

Step 1. Compute 

(2.3) 

(2.4) 

Step 2. Choose Uk E m n such that llukll = 1, 

(2.5) 

and 
(2.6) 
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Step 3. Define 

(2.7) 

Remarks 

ln the Column-Updating method we choose Uk as a canonical vector that 
satisfies ( 2. 5) . 

Applying the Sherman-Morrison-Woodbury formula (see Golub and Van 
Loan [1989, page 51]) we verify that Bk+I is nonsingular if (2.6) holds. ln this 
section we will assume that a choice of uk satisfying (2.5) and (2.6) is always 
possible. 

Assumption AI 

Let us assume that an infinite sequence generated by Algorithm 2.1 is well 
defined and that the following statements are true: 

a) lim xk = x* . 
k-+oo 

(2.8) 

b) There exists r E (O, 1) such that 

(2.9) 

for all k = O, 1,2, .... 

e) There exists !vf > O such that 

(2.10) 

for all k = O, 1, 2, .... 

Under Assumption Al we will prove now that the convergence 1s R-
superlinear. 

Theorem 2.1 

Consider Algorithm 2.1 and suppose that Assumption Al is satisfied. Then 

1. llxk+2n - x,.11 O 1111 ----- = . 
k-+O llxk - x.11 (2.11) 
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Proof. Suppose that (2.11) is not true. Then there exists I<i, an infinite subset 
of JN, e> O such that 

(2.12) 
for all k E I<1-

Let I<1 = { k1 , k2, ••• }, k1 < k2 < . ... We assume, without loss of generality, 
that ki+i > ki + 2n for ali i = 1, 2, 3, .... Define 

êk = llxk -x.11, k = 0,1,2, .... (2.13) 

By (2.5) and (2.9), we have that 

(2.14) 

for ali k = O, 1, 2, ... , where c1 = a-(1 - r). Moreover, by (2.9), (2.12) and (2.13), 

for ali k E I< 1 , f E {O, 1, ... , 2n}. 
For ali k E I<1 , we define xk,l , e= O, 1, ... , 2n, by: 

(d) B _ B A(xk,e+1 - x.)uf+e 
k,Hl - k,t + T ' 

Uk+(Sk,l 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

where A = J (x.) . Clearly, xk,e+1 will be well defined for all f_ = O, l, ... , 2n - 1 
if uI+esk,e =J O and B k,e is nonsingular. We will see that this is the case if k 
is large enough. More precisely, we will prove that, for large enough k E 1(1 , 

xk,1, xk,2 , ••• , xk,2n are well defined, Bk,I, Bk,2 , ... , Bk,2n -I are well defined and 
nonsingular, and 
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Let us proceed by induction on l. For l = O, (2.20)-(2.22) are trivial. Assume 
that (2.20)-(2.22) hold for some fixed l. Then, 

llxk+l+i - Xk,e+1I I = llxkH - B,;~l F(xk+t) - xk,l - Bj;)A(xk,e - x.) 11 

::; llxkH - Xk,tll + 11s;;itll llF(xk+t) - A(xk,l - x.)11 

+ IIB;;~e - s;.rn II A(xk,l - x .. )11-
But, by the inductive hypothesis and (2.2), 

(2.23) 

IIF(xk+t)-A(xk,e - x*)I I $ IIF(xkH)-A(xkH-x.)ll+I IAll llxkH-xk,e ll = O(ê~). 
(2.24) 

So, by (2.23), (2.24) a.nd the inductive hypothesis, 

llxkH+1 - xk,t+ill = O(et). 

By (2.25) and the inductive hypothesis we deduce that 

llskH - sk,t ll = O(êt). 
Now, by (2.14) and (2.26), 

luf+e sk,el - luf+esk+t + uf+t(sk,e - Sk+e)I 

> C1êk+e - O(ê!) 

> C1Cêk - o(ên C2êk > o 
if k is large enough, w here c2 = c1 c/2. 

By (2.27), Bk,l+l is well defined. So, by the inductive hypothesis, 

Now, 

IIB _ B < O( ) + 11F(xk+t+1) _ A(xk,t+1 - x.) li k,l+l kH+l - êk T T 
uk+l Sk+( uk+eSk,l 

II

F~Xk+t+d _ A(xk:;.+1 - Xx) II 
uk+l Sk+( uk+eSk,l 

$ li F(x k+e+1); A(xk,e+1 - x . ) li 
Uk+eSk+( 

+li A(xk+i1 - Xk,e+1) li 
Uk+tSk+( 
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By (2.2), (2.27) and (2.9), we have that 

li 
F(xk+t+1); A(xk,l+t - x,..) li 

Uk+lSk+t 

Mllxk+l+I - x.112 Mrl+1 O( ) $ ---'-'----~ $ --êk = êk · 
C2êk Ci 

(2.30) 

By (2.25) and (2.27), 

IIA(xk+il - xk,t+dl l $ IIAIIO(ef) = O(ek)-
ltLk+tSk+t l C2êk 

(2.31) 

By (2.26), (2.14) and (2.27), 

1 
1 _ 1 1· - lul+isk,l - Sk+t) 1 < O(llsk,l - Sk+dl) _ O(l) (2.32) 

T T - T T - 2 - • 
Uk+tSk+t Uk+tSk,l Uk+tSk+tUk+tSk,l C1C2êk 

Therefore, by (2.9) and (2.25 ), 

By (2.28), (2.30), (2.31) and (2.33) we have that 

IIBk,t+1 - Bk+t+ill = O(ek). (2.34) 

Since IIB;1 li is bounded, we obtain, using Banach's perturbation lemma (See 
Golub and Van Loan [1989, pp. 59-60]) that Bi)+i exists and 

(2.35) 

if k is large enough. 
Now, by Theorem 2.2 of Gay [1979], we have that Xk,ln = x. for all 

k E K 1 such that xk,2n is well defined. So, by (2.20) with f = 2n, we have 
that ek+2n = O(d) if k E K1 . This contradicts (2.15). 

Therefore, the set K1 cannot exist and, thus, (2.11) is proved. D 

Corollary 2.1 

If the hypotheses of Theorem 2.1 are satisfied then the convergence of xk to 
x,.. is R-superlinear. 
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Proof. We need to prove that 

See Ortega and Rheinboldt [1970, Section 9.2]. 
By Theorem 2.1 we have that 

lim 62n(p+l) = O. 
p--+oo é2np 

(2.36) 

(2.37) 

So, the sequence ,p = é2np converges Q-superlinearly to O. Therefore, 'YP converges 
R-superlinearly to O. So, 

Clearly, by (2.38), 

1• 1/p - o 
Im é2np - • 

p-..oo 

1. 1/2np Ü 
Im é2np = . p-..oo 

So, if 1 ::; f ::; 2n, we have, by (2.9) and (2.39), that 

1• l/(2np+l) < }' ( l/2np) 2np+t _ O 
llTI ê2np+l _ Im é2np - , p-..oo p-..oo 

2np 
smce --- --+ l. This completes the proof. 0 2np + f 

3 - The restarted algorithm 

(2.38) 

(2.39) 

ln this section we analyze a variation of Algorithm 2.1 that consists of comput-
ing xk+l and Bk+i as in Algorithm 2.1, except when k + 1 is a multiple of a fixed 
integer q. ln this case, we set Bk+i = C(xk+i), where C(x) is some approximation 
of J(x) for all x E n. Usually C(x) is the projection of J(x) on a suitable subspace, 
or it represents an incomplete factorization of J(x ). 

Algorithm 3.1 

Let Xo E n, Bo = C(xo), a E (O, l ], q a fixed integer. If F(x1.) =1- o, compute Sk 

and XJ.+ 1 as in Step 1 of Algorithm 2.1. If k + 1 is not a multiple of q, compute Uk 

and Bk+l performing steps 2 and 3 of Algorithm 2.1. If k + 1 is a multiple of q, set 

(3.1) 

8 



As in the case of Algorithm 2.1, the Column-Updating method corresponds to the 
following choice of uk: 

Uk = ejk 

where e;k is a canonical vector such that (2.5) holds. ln general, we choose 

jk = Argmax {lef skj , j = 1, .. . , n }. (3.2) 

Theorem 3.1 

Let r E (O, 1). There exist e:,8 > O such that, if llxo - x.11 :Sê and IIC(xk) -
J(x.)11 :S 8 for all k _ O(mod q) then the sequence generated by Algorithm 3.1 is 
well defined, converges to x. and satisfies 

llxA:+ 1 - x.11 :S rllxk - x.11 (3.3) 

for all k = O, 1, 2, .... Moreover, IIBA:11 and IIB;-111 are bounded. 

Proof. See the proof of Theorem 3.1 of Gomes-Ruggiero and Martínez (1992]. The 
adaptation to our case involves two differences: first, here we are dealing with the 
general form of u k while in that paper uk = eik· However , this difference does not 
influentiate the proof. Second, we are not assuming here that Bk = J(xk) when 
k is a multiple of q. For this reasou we only obtain (3.3) instead of Q-superlinear 
convergence.o 

By Theorem 3.1, we know that, under reasonable conditions, we can obtain lin-
ear convergence and boundedness of II Bklland II B;-1 li for Algorithm 3.1. Remember 
that this is not the case of the non-restarted Algorit hm 2.1, for which we don't have 
reasonable sufficient condit ions for linear convergence. 

Theorem 3.2 

Consider Algorithm 3.1, with q ?: 2n. Assume that a well defined infinite 
sequence is genera.ted, IIBkll and IIBk1 li are bounded and (3.3) holds. Then 

lim ll x ; q+2n - x.11 = O. (3.4) 
j-oo llxjq - x.11 

Moreover, the convergence of (xk) to x. is R- superlinear. 

Proof. For proving (3.4) proceed by cont radiction in the sarne way as we did in 
Theorem 2.1. The R - superlinear convergence follows as in Corollary 2.1.0 
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4 - The Column - Updating Method without restarts when n = 2 

ln this section we consider the particular implementation of Algorithm 2.1 that 
corresponds to the Column-Updating Method as given in Martínez [1984a] and 
Gomes-Ruggiero and Martínez [1992]. So, we choose 

(4.1) 

where 
(4.2) 

and { ei, ... , en} is the canonical basis of IR:' . We will prove that in the two-
dimensional case, with the choices (4.1) and (4.2), the assumption Al holds if x 0 

and B 0 are dose enough to x ,. and J (x.) respectively. This result is based essentially 
on the following "bouncled deterioration" property. 

Lemma 4.1 

Assume that n = 2. Consider Algorithm 2.1 with the choices (4.1) and (4.2). 
Suppose that x 0 , x1, ... , xk+l are well defined . Then 

L 
IIBk+1 - J (x . )1'1 :s; IIBk - J (x.)lh + 2 cr(xk, Xk+1)-

Proof. By (2.2), (2.4) and (2.7), we have that 

(Yk - Bksk)eJ' 
IIBk+1 - J (x.)lh = IIBk + T k - J (x.)lh 

eiksk 

Now, by (2.2) anel (4.2), 

li (Yk - J}x.)sk)ei Ih < 
eiksk 
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Moreover, 

(4.6) 

Now, by (4.1) and (4.2), if jk = 1 we have 

(4.7) 

If jk = 2, we have that 

(4.8) 

So, by (4.2), (4.7) and (4.8), 

(4.9) 

Thus, ( 4.3) follows from ( 4.4), ( 4.5), ( 4.6) and ( 4.9).o 

Theorem 4.1 

Let r E (O, 1 ), n = 2. There exist é, ô > O such that, if llxo - x.11 e, IIBo -
J(x.)11 5, the sequence generated by Algorithm 2.1 with the choices (4.1) - (4.2) 
is well defined, converges to x. and satisfies 

(4.10) 

for all k = O, 1, 2, .... Moreover, IIBkll and IIB,;1 11 are bounded and for any norm 
li· li, (2.11) holds and the convergence is R-superlinear. 

Proof. (4.10) and the boundedness of IIBkll, IIB;1 li follow from (4.3) and the general 
assumptions of section 2 using a classical inductive proof. See, for example, the proof 
of Theorem 3.2 of Broyden, Dennis and Moré (1973]. Therefore, by Theorem 2.1, 
(2.11) holds for li· Ih- Hence, (2.11) holds for any norm since superlinear convergence 
is norm-independent. Finally, the convergence is R-superlinear by Corollary 2.1.0 
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5 - Conclusions 

Since its introduction in 1984, the excellent numerical performance of the 
Column-Updating method (Martínez [1984 a,1984 b), Gomes-Ruggiero and Martínez 
(1992) , Martínez and Zambaldi [1991)) has been intriguing. ln fact, the method has 
shown to be comparable, and many times superior, to Broyden's method (Broyden 
(1965), Dennis and Schnabel [1983]) , not only in terms of global computational ef-
fort, but also in terms of robustness and number of iterations. However, it is clear 
that the general local convergence theories that guarantee local and superlinear con-
vergence of quasi-Newton methods (Dennis and Walker [1981), Martínez [1990,1992 
a, 1992 b]) are not applicable to the Column-U pdating method. Moreover, the con-
vergence properties that were proved in Martínez [1984a) and Gomes-Ruggiero and 
Martínez [1992] are the same (in fact , slightly weaker) as those that can be proved 
for the Modified Newton method, where the Jacobian approximation is not modified 
at all throughout the process. 

ln this paper we proved some theorems that tend to explain why the Column-
Updating Method is so good. Briefly speaking, we proved that : 
(a) If linear convergence is assumed, the convergence is R-superlinear. 
(b) If the method is restarted periodically ( not necessarily wi th true J acobians) we 
obtain local and R-superlinear convergence. 
(e) If n = 2, no restarts are necessary for proving local and R- superlinear conver-
gence. 

Of course, these results are still weaker than the properties that hold for Broy-
den's method and other Least-Change - Secant Update methods but, at least, are 
much stronger than the convergence properties of the l\fodified Newton method. 

Using the techniques introduced here, there sarne results can be proved for the 
Inverse-Column-Updating methocl introduced by Martínez and Zambaldi [1992]. 
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