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SOME APPLICATIONS OF THE GENERALIZED
KHINTCHINE’S INEQUALITY

Madrio C. Matos

ABSTRACT - The generalized Khintchine’s inequality is applied to the theory of
homogeneous polynomials between Banach spaces in order to prove some non-trivial
inclusions (e.g.: the Banach space of the n-homogeneous polynomials of r-dominated
type from a Banach space into a Hilbert spaces is continuously included in the Banach
space of the absolutely 2-summing polynomials for each r € (0, +00); the Banach spaces
of the 2-homogeneous complex polynomials of r-dominated type on Banach spaces are
isomorphic for r € [2,+00).)

The generalized Rademacher functions, introduced by Aron and Globevnik in [1]
were used in several applications by Aron, Lacruz, Ryan and Tonge in [2]. In this same
article the authors mention that standard type Khintchine inequalities can be obtained
with the generalized Rademacher functions replacing the Rademacher functions and
making an adaptation of the usual proof the classical inequality. However they do not
make any applications of it. In this paper we apply this inequality in order to obtain
results of the theory of polynomial mappings between Banach spaces.

The generalized Rademacher functions are described in the following way. For a
fixed natural number n > 2 we take the n-th roots of unity 1 = &, ae,...,a, consid-
ered in the order of their increasing arguments. The closed interval [0,1] is divided in
n intervals of equal length Iy, ..., 1, described in the order they appear from the left
to the right side of the original interval. We consider s; from [0,1] into @ given by
51(t) = a; if ¢ is in the interior of the interval I;,5=1,...,n and s;(t) = 1 if  is one
of the endpoints of the subintervals Iy,...,I,. f k€ IN,k > 1 and we suppose that
815.. ., 8k are defined, we construct s, in the following way: each interval I used in the
definition of s; is divided in n intervals I, ..., I, of equal length writen in the order
they appear on I from the left to the right side of it. Then we consider Sk+1 equal to
@; on the interior of I; and equal to 1 at the endpoints of I;,j = 1,...,n.

The following lemma appears in [2].



1. LEMMA - If (s;)2, are the generalized Rademacher functions associated to
n € IN,n > 2, then

1) fsk(t )| =1 for k€N and tel[0,1].
2)/ 8;(t)...8;.(t)dt = { g if Ju b

otherwise
(3) If j1 < ... < ji are natural numbers and o;(t) equal either to s;(2) or s;(2), then

i 1 if m; =0(modn
f 4h (t)ml < 05 (t)mkdt = { 4 .?=l.(-..,ic )
s}

0 otherwise.

This result plays an important role in the proof of the

2. GENERALIZED KHINTCHINE INEQUALITIES - Ifn € IN,n > 2 is
fixed and (s;)§2, are the generalized Rademacher functions associated to n, for every

p € (0,40c0) there are a(n,p) > 0 and B(n,p) > 0 such that for each m € IN and
a; €, 3=1,...,m

a(n,p)[g |ajlg] : < [_/: | ‘; aij(t)IPdt]i?
< ﬂ(n,p)[iwzr

7=1
In order to apply this result to the theory of polynomial mappings between Banach
spaces we fix notations and recall some concepts.
p("E; F') denotes the Banach space of all continuous n-homogeneous polynomials
from the complex Banach space E into the complex Banach space F under the norm

Pl = sup [|P(z)]| (VP € p("E; F)).

ll=ll<1

If p € (0,00) we denote by £2(E) the set of all sequences (z;)%2, of elements of E
such that

O

I(23)2a s = sup > lez l”] < 40,

By =1



Here By is the closed unit ball of E’ centered at the origin. If r € (0,+00) we consider
£,(F) as the set of all sequences (y;)%2, of elements of F such that

- 1
1@l = [Zlll] " < +oo.
1=1
IfPep("E;F), s,r€(0,+00)and ns > r, P is said to be absolutely (s;)-summing
if (P(z;))j2, € 4s(F) for each (z;)32, € £“(E). It can be proved that P is absolutely
(s;7)-summing if and only if there is C' > 0 such that for each m € IN and z; € E,
FE_ Y
IPENZ < Ol )
We denote by
NPl asigony = i(n)fC = n(li)nC

and by p%")("E; F') the vector space all absolutelly (s;r)-summing polynomials from
E into F. This space is complete s-normed by || ||ass:r) if s € [0,1] and a Banach
spage under || ||as (s:r) for s > 1. See [3] for the linear case and [4] for n > 2.

If ns = r it can be proved that P € p(E; F) is absolutely (8;7)-summing if and
only if there are D > 0 and a regular probability measure u on the Borel subsets of
Bpgr (with the weak star topology) (we denote this: u € W(Bg)) such that

1P@I<D[[ lo@due)| (%)
E!
for every x € E. In this case

nf D

Pllas(s:ry = min D = i
|| || ’( ! ) (*:} (-t)

is denoted by || P||4,-. This motivates the use of the name r-dominated for these polyno-

mials. We denote by p}("F; F) the vector space of all r-dominated polynomials from
E into F.

3. THEOREM - If F is a Hilbert space and r € (0,400), then pj(*E;F) C
P ("B F) 2" gl ("E; F) and

1Pllas2 2 | Pllas,(2.2) < (B(27;7))"|| Plla,r-



PROOF - Since for 0 < r; < r; < +o00 we have g} ("E; F) C p7?(*E;F) and
| Pllars < |P|lay, for each P r;-dominated, we can suppose r > 2n without loss of

generality.

We comnsider (s;)%,, the generalized Rademacher functions associated to 2n. If
P € py("E; F) we take p € W(Bg) corresponding to ||P|la, by (**) and consider
the continuous symmetric n-linear mapping T from E™ into F such that Pla) =

not.

T(z,...,x) B Tg" foreach z € E. Thusfor m € IN and z; € E,j = 1,...,m
we have:

2_IP@)? = 3 (T} /Ta})
4=1 j=1
Lemma1l ™ m
S T Y ¢ o PR I o/ T
Je=1 k=1
k=1,...n
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< 0P|, (B )Y (le(s)alle) dute)]
< WPl n] (1e)bes) - w

4. THEOREM - If p € [2,+c0) and r € (0,+00), then @;5("E;L,([a,b])) C
&P ("E; Ly([a; b])) and

1Pllas,i2) < (B(2n57))" 1Pl ar



for each P r-dominated.

PROOF - As we have done in the proof of 3 we can take r > pn without loss
generality. We consider the generalized Rademacher functions (s;)%2, associated to 2n
and, for P € pj("E; L,([a,b])) we take u € W(Bg) corresponding to ||P|a, by (**).
If T is the continuous symmetric n-linear mapping from E™ into L,([a,b]) such that
P(z) = Ta" for each ¢ € E, we can writeform € N and z; € E, j=1,...,m

ZquJ = [ Y 1PE)6)

=1

2z

<[ [i]P(xj)w)P]’de

Lem.mal
2L X T ) OT G 2O
k=1 =1
k=1,...m

)4

.]; 5 (8) -85, (050 D) 50, 0) ]

- ]U |P(ZSJ ]2dt] do
<[ /Ul(wésj(t)mj)ww)gde
= juPZsJ )2 |t

< WPy [ [, 1355 stoteane)]

< UPLF[f] [, 15 s0ste ) dutort]

< (Plar? [ (8n Y ot e )]
< (IParPBEm, AP (e )™

5. THEOREM - If n > 2,r € (0, +00), then p3("E;@) C 9(4*(*E;T) and

l|PIIas,(l;2) S (ﬁ(n? r))n”PHd.r

3



for every P r-dominated.

PROOF - Without loss of generality we may suppose r > n. For P € pl("E;CQ) we
consider p € W(Bg/) cooresponding to || Plla, by (**) and the continuous symmetric
n-linear mapping 7 from E™ into @ such that Tz™ = P(z) for every z € E. For
m€ IN,z; € E,j=1,...,m, a convenient choiceof \; €, |Aj|=1,7=1,...,m, and
(3k)5>, associated n, we write:

iwm =13 P(ys)

j=1

X T (@500 25)85 (@), ,sjn(t)dtl

< ”PHd,r_/(; U}; ’lz/\JSJ (=;)I" d#w-’] dt
< IIPIIae,TUU1 /BE lgl)\jsj(i)som)lfd#(sﬂ)di]%

1P| /B (B (Osles) Rl )]
1Pl (Bt ) ()P )"

[\

IA

6. COROLLARY - If r € [2,+20), then pj(2F;@) = ¢%(?E;T) and
IPllaz < 1Pllar < (B(n,7))*||Pllaz

for every P 2-dominated from F into (.

Since plV(ZE;@) = p2(2E;Q), 9, (2E;T) increases with r and Theorem 5 is true,
we have this corollary all right.
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