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Abstract. The main aim of this paper is to classify some singularitíes 
which generically occur in two-parameter families of sliding vector fields . 

1980 Mathematics Subject Classification. Primary 58Fl4; Sec-
ondary 34C35. 

0- lntroductíon 
The main aim of this paper is to study a cla'ls of codimension two sin-

gularities of the so called Sliding Vector Fields (SVF). Such systems emerge 
from ordinary differential equations 011 R 3 with discontinuous righ-hand side 
(see for instance [F] and [U]). In our approach we assume that these disconti-
nuities occur on the 2-sphere M = S 2 and the rnles for defining the solution 
orbits of such ODE are ma.de via the Filippov's convention (see [F]). ln [T3] 
all the codimension one singularities were analysed and we refer to it for the 
necessary background. ln this work a singularity analysis of generic codimen-
sion two bifurcation diagrams is performed by giving a complete topological 
study of its phase portrait as well as the respective normal forms. 

The paper is structured as follows. ln Section 1 we give some preliminaries 
and definitions and establish the notation. Section 2 conta.ins the statement 
of the main result. ln Sections 3, 4, 5 and 6 we discuss each one of the 
codimension two singularity, derive its normal forms and prepare the way for 
the proof of the main result. Finally, in Section 7 we prove the main theorem 
of the paper. 
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1- Preliminaries 
Let p E M and f : (R 3 , M) ---+ (R, O) be a C00 representation of M at p, 

with df(p)-/:- O. So lVI is the separating boundary of the regions A1+ = {/ > 
O} and M_ = {f < O}. 

Denote by '.=:'. the set of all germs iu p of c r vector fields on R 3 , p endowed 
with the C'" topology with r big enough for our purposes. 

Let Gr be the set of all germs in p of vector fields Z on R 3 defined by: 

X(q), if q E M+ 

Y(q), i f q E M_ 

where X, Y are in '.=:'" and on M the solution curves of Z obbey the Filip-
pov's rules. 

\Ve use the notation Z = (X, Y) for an element of Gr. 
The Sliding Region ( denoted by R( X, Y)) is the region in M w here both 

vector fields X and Y, point toward M; in this case the solution of Z through 
points of M follow the orbit of the (sliding) vector field F = F(X, Y). This 
vector field is tangent to M and is defined at q E M by the vector F(q) = m-
q, such that m is the point where the segment joining ( q+X ( q)) and ( q+Y( q)) 
is tangent to M. Observe that if X( q) and Y( q) are linearly dependent then q 
is a criticai point of F. We call F = F(X, Y) the Sliding Vector Field (SVF) 
associated to (X,Y). Moreover, the boundary of R(X, Y) (âR(X, Y)) can be 
non smooth, dueto the existence of corners on it (see [T2]). It must be said 
that, a simple calculation shows that F = F(X, Y) can be srnoothly extended 
beyond the boundary of SR and each corner of F(X,Y) is a criticai point of 
this vector field. ln this way each corner is a well distinguished singularity of 
the SVF. Our main interest is to classify a class of two para.meter families of 
local SVF on M which present such singulatities. We mention that, there are 
generically so many topological types (at least 12) of them and we concentra.te 
in this work, the attention to those ones we think are the most important. 
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We remark that, for Z = (X, Y) in Gr we have: 
a) The set ôR(X, Y) is chara.cteri~ed by the points in M where X or Y is 

tangent to the surface. We denote by Sx (resp.Sy) the set (in M) where X 
(resp. Y) is tangent to M. Generically Sx and Sy are union of circles. So, 
ôR(X, Y) is the union of parts of Sx and Sy; 

b) Throughout the paper, we consider coordinates ( x,y,z) around a point 
p E âR(X, Y) such that f : R3

, M - R, O is given by f(x, y, z) = z. So, 
F = F(X, Y) is expressed by: 

F = (F F ) = (X1Ya - X3}í, X2Ya - X3 Y2) 
1

' 
2 (Y3 - Xa) 

with X= (X1 ,X2,X3) and Y = (Yí , Y2 , Y3); 
c) ln the above coordinates, t he set R(X,Y) is defined by {X3 < O, Y3 > 

O} . 
1.1.Definition. Let Z0 = (X0, Y0) and Z = (X, Y) be in Gr and 

p E Cl(R(X0, Y0). We say that Z0 is Cº M-equivalent to Z at p if there 
is a neighborhood U of p in M, such that F(X0 , Y0 ) lu is Cº equivalent to 
F(X, Y) lu-

Let X E ::::r and p E N/. 
1.2.Definition. We say that p is an M-singular point (resp. M-regular 

point) of X if X f(p ) = O (resp. X f(p ) -:/ O). 
1.3.Definition. We say that p is a fold (resp. cusp) singularity of X if 

Xf(p) = O and X 2 f(p) =/: O (resp. Xf(p) = X 2 f (p) = O and { df(p) , dX f(p), dX2 f(p)} 
are linearly independent ). 

The cusp points are isolated points located at extremes of the curves of 
fold points. 

For any g : M - R denote by H9 the hamiltonian field associated to the 
mappmg. 

A singularity p E M of F = F(X, Y) is classified by the following list: 
1) p E Int(R(X, Y )) and it is a criticai point of F; 2) pisa tangency point 
between ôR(X, Y ) and F; 3) pisa comer of ôR(X, Y). 

We <leal in this work, just with the last case. Roughly speaking , this case 
corresponds generically to stndy a singularity of the vector field, restrict to 
a "quadrant" in the plane determined by S x and Sy. 

The classification of the singularities of a SVF, F(X,Y), is based mainly on 
the relative positions of the following tree objects: X, Y and M. So the codi-
mension two singularities under consideration will be defined by conditions 
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on X, Y and a C 00 representation of M at p, which we choose f(x, y, z) = z 
for suitable coordinates. For Z = (X, Y) in Gr and p in M, we define: 

t1 We say that pisa t1 - singularity of F(X,Y) if: i) pisa fold point of X 
and Y; ii) The contact between Sx and Sv at_p is cubic. We impose the 
following extra conditions: iii) (XY(f )Y X (f) )(p) i- (Y X(f)X X(f))(p) 
and iv) (YX(J)(p) i- YY(f))(p). Let E2,1 be the set of ali vector field 
in Gr having p as a t1-singularity. 

t2 We say that p is a trsingularity of F(X,Y) if: i) p is a fold point 
of X; ii) p is a cusp point of Y; iii) the contact between Sx and 
Sy at p is quadratic. We impose the following extra conditions: iii) 
HHx1Yf(p) =/ O, XYJ(p) =/ O, Y XJ(p ) =/= Oand (YXJ(p)+XYJ(p)) # 
O. As above consider the set E2,2. 

t3 We say that p is a t3-singularity of F(X,Y) if: i) p is a cusp point 
of X and Y; ii) S x and Sy are in general position at p. We impose 
rhe following extra condi tions: iii) XY f(p) =/ O, Y X f(p) i- O and 
(Y X f + XY f)(p) i- O. As above we consider the set E2,3 . 

t4 We say that p is a t4-singulatity of F(X,Y) if: i) Y(p) = O; ii) p is 
a fold point of X; iii) Sx and Sy are in general position at p. We 
impose the following extra generic condit ions: iv) Hxy 1X f(p) i, O and 
Hn,1Xf(p) =/ O; v) p is hyperbolic critica! point of Y, with distinct 
eigenvalues and with the corresponding eigenspaces transverse to M at 
p. So we have the set E2,4 . 

It should be mention that , all the above definitions do not depend on the 
particular representation f of M, at p. 

ln this paper, we refer to a ti-singularity as a codimension two singularity, 
for some i=l,2,3,4. 

2-Statement of the main result 
Theorem: 
a) The set E2 = U!=1 (E2,i) is a cr- 3 codimension 2 submanifold of Gr; 
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b) Let ZOl,/3 be a 2-parameter family of vector fields in Gr, (r > 3) for 
which the following properties hold: _i ) the map (p, o., /3) -+ ZOl,/3(P) is trans-
verse to the variety R3 x :E2 at (p, O, O); ii) The point p is a codimension 2 
singularity of Z0 ,0 . Then, all topological types of ZOl,/3 are classified and the 
respective normal forms are exhibited. 

3- The ti-singularity 
3.1. Proposition. Let Zo E Gr and p0 E M. Assume that p0 is a t 1 -

singularity of Z0. Then there exist neighborhoods U of Z0 in Gr, V of p0 in 
M and a cr- 3 mapping h: U, Z0 -+ R 2 , O such that: i) dh(Z0) is surjective; 
ii) h(Z) = O if and only if Z has a t1-singularity p(Z) in V; iii) there is a. 
codimension one variety 1:1 in R 2 , O which describes the bifurcation set of 
Gr nearby Zo-

Proof-
Let Zo = (Xo, Yo)-
We choose coordinates (x,y,z) around p0 = O, such that 
f(x,y,z) = z, X 0 = (X1 ,X2 ,X3), Yo = (Yí, Y2 , Y;) , 
with Xof(x, y, O) = X3(x, y, O) = y and Yof(x , y, O) = y - x 3 . 

This implies tha.t (XJJ) (x, y, O) = X2(x, y, O), 
(YJ f)(x, y , O) = Yí(x , y, O)+ 3x2Y1 (x, y , O), 
X 2(0) = b i- O and Y2 (0) = d#- O. 
Call X1 (O) = a and Y1 (O) = e. 
We may select neighborhood U of Z0 in Gr and cr funct ions </>, p : U x J -+ 

Ry = </>(Z,x) and y = p(Z,x), which are solutions of Xf = O and Yf = O 
respectively, with J = (-é, é) and Z = (X, Y) in U. 

Define the mapping T(Z,x) = </>(Z,x) - p(Z,x). 
It satisfies T(Z(o,o) = t(Z0 ,0) = :;(Z0 ,0) = O and 

ff3T 
ax3 (Zo, O) i- O(say > O). 

Let x = 17(Z) be the solution of 

82T 

ax2 = o. 
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Define the mapping h: U-. R 2 by h = (h1 , h2) where h1 (Z) = r(1J(Z), Z) 
and h2 (Z) =t(11(Z) , Z). 

Observe that: 
i)h(Z) = O if aud only if Z E E2,1 (this means that the point P(Z) = 77(Z) 

is a t1-singula.rity of Z in a small neighborhood of .O in M); 
ii) dh(Zo) is surjective. 

a. 

The last assertion can be checked by taking the following family in U: 
Za,/J = (Xa,/3, Y0 ,p) with Zo,o = Zo and such that: 
X 0 ,13 = Xo and 
Ya,/3 = (Y1, Y2, y - (x3 + O'.X + /3)). 
Wehave-r(x,a, 18) = x3 +ax+,B, 11(a, ,B) = O, r(O,a,/3) = /3, ~;(o,a,/3) = 

Now parts i) and ii) of the proposition become immediate. 
We now proceed the proof o part iii). We have that: 
a) if h2(Z) = O then ;: (x , Z) = O if and only if x = 11(Z); 
b) if h2(Z) > O then a:(x,Z) > O for every x in J; 
e) if h2(Z) < O then there are associated with Z, two points in J, 171 = 

771 ( Z) and ''12 = 172( Z ), satisfying 11i < 71( Z ) < 772 ~: ( 771, Z) = ~: ( 772, Z) = O, 
~:;(111,Z) < O and ~!:(172,Z) > O; 

d) the correspondence Z-. 1J;(Z) is cr-3, i=l,2; 
e) each 17,(Z) converges to 77(Z) in the class C 1; 
f) (-r(111(Z)))2 + (r(r12(Z)))2 e/ O. 
Consider the open set in Gr given by U1 = {Z; h2(Z) < O} and the real 

function g defi.ned in U1 by: 
g(Z) = 91(Z)g2(Z) where g; = r(17;(Z), Z) with i = 1, 2. 
Observe now, that Z has a codimension one singularity in a neighborhood 

of p0 in M ( which is given by either r1i or 172) if and only if g(Z) = O. 
Moreover, the bifurcation set in U is described by Cz{g-1 (0)}. 

This finishes the proof of the proposition. 
3.2. Corollary. E2,1 is a c,·-3 codimension two submanifold of Gr. 
3.3. Remark. Following the general form of the family Z0 ,13, given 

l l 

above, we deduce that r7i(o:,/3) = (-;) 2 , ry2(a,/3) = -(-;) 2 , and the bifur-
cation set of the family is characterised by o:3 = ,82 ( see Fig. l). 

3.4. Remark.In the coordinates given above, the general form of the 
Sliding Vector field F0 = F(X0 , Y0 ) (associated with Z0) is the following: 
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Figure 1: Bifurcation diagramm of a t 1-singularity 

Fo(x , y , O) = ((a - c)y - ax3
, (b- d)y - bx3 ) + o[(x, y)]3 

3.5. Corollary. Let Zo: ,f3 be a 2-parameter family of vector fields in 
ar for which the following properties hold: i) Zo,o has a t 1 - singularity p0 in 
V; ii) the mapping: ( a, /3 ) --, Zo: ,{3 is transverse to E2 ,1 at (O, O). Then the 
normal form of the corresponding Sliding Vector Field is: 

Fa,f3(x , y) = ((a - c)y-ax 3 -a(ax+ f3) , (b-d)y-bx3 -b(a x +f3)) where 
X o:,f3(x , y , O) = (a,b, y - x3), Ya,.a(x , y, O) = (c,d,y - x3 - ax - (3) with 

b =/ O, e =/ O, a =/ e and b # d . 
3 .6. Remark. ln the above coordinates, we have the following expres-

s10ns: 
XoXof(O) = b, XoYof(O) = a, YoXof(O) = e and róYóf(O ) = d. 
Moreover, Po is a saddle node of Fo,o and the center manifold of it is 

expressed by y = Ax3 + h.o.t(higher arder terms) where 
A _ {ad- cb) 

- b-d • 
The unfolding of a ti- singulari ty is ilustrated in Fig.2. We mention that, 

depending on the position of the center manifold (with respect to the SR of 
Z0 ) we get different phase portraits of the vector field. We observe that the 
corresponding SR is given by {x < O} and {y > x3 + ax + (3}. 
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Figure 1 

Figure 2: U nfolding of a t 1 -singularity 

4-The t2-singularity 
4.1. Proposition. Let Zo E Gr and p0 E M. Then Proposition 3.1 

holds if p0 is a trsingularity of Z0 . 

Proof. 
Let Zo = (Xo, Yo)-
Choose coordinates (x,y,z) such that Xo = (Xi, X 2, X 3 ), Y0 = (X1 , X 2, X3 ), 

Xof(x,y,O) = X3(x,y,O) = y and 
Yof(x, y, O) = Y;(x, y , O) = y - x2 . So from the hypotheses we get 

XoXof(O) = X2(0) = bo =J O, 

YoYof(x, y, O)= Y2(x, y, O), 

Yí.(0) = O and Y2(0) = O. 
Let 

and 
Y2(x, y, O) = b1x + b2y + ol(x, y )12. 

It follows that: i) b1 =J O, provided that Det{ df(O), dY0 f)(O), dY0Y0 f(O)} 
is non zero; ii) a1 =J O, provided that H Hx01Yof(O) =J O. Denote X 1 (0) = a0 , 

As before, for Z = (X, Y) assume that the singular sets of X and Y are 
given by Sx = {y = ,Q'>(x)} and Sy = {y = p(x)} respectively and define the 
mappmg 

T(x, Z) = </>(x) - p(x) 
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with x being in small interval around O and Z being in a neighborhood U of 
Z0 in Gr. 

We have 
âr 

r(O, Zo) = âx (O, Zo) = O 

and 
ÔT 
âx2 (O, Zo) i- O 

(say > O). 
First of all, let x = 17(Z) be the solution of ~;(x, Z) = O. So: 
i) if r(77(Z), Z) = O then for every xi- O, we have r(x , Z) > O. 
ii) if r(17(Z), Z) < Othen there exist, associated to Z, two points x1 -

7]1(Z) and X2 = 172(Z) with Xi < 77(Z) < X2, 17(x1, Z) = 77(x2, Z) = O, 
~(x1 , Z) < O and (x2, Z) > O. Moreover the correspondence {Z --t xi} is 
smooth for i = 1, 2. 

iii) if r(17(Z) , Z) > O then for every x, we have that r(x, Z) > O. 
Now, it is clear that there exists a smooth funct ion 

P: u-v 

(V being a neighborhood of p0 in M) where for each Z = (X, Y) in U, P(Z) 
is the cusp point of Y in V. 

Finally, on defines the desired cr-3 mapping 

h : U, z0-R2 , O, 

h = (h1,h2 ) by h1(Z) = r(77(Z),Z) and h2(Z) = Hx1Yf(P(Z)). 
We now proceed the characterization of the bifurcation set around Z0 in 

ar. 
We have, 
a) h(Z) = O if and only if r(77(Z) , Z) = O and Hx 1 Yf(P(Z) = O. The last 

inequality implies that P(Z) = 17(Z); the first one says that the curves Sx 
and Sy have a quadratic contact at (77(Z), Z)) . This means that h(Z) = O if 
and only if Z has a trsingularity in V. 

b) If r(71(Z ), Z) < O then there are two possibilities: bi- x1 =/ P(Z) and 
x2 i- P(Z); br either x1 = P(Z) or x2 = P(Z). ln the first case, Z has just 
codimension zero singularity in V; in the second case, Z has a codimension 
one singularity in V (see T3). 
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e) if h1 ( Z) = O and h2( Z) =/- O then 77( Z) is a codimension one singularity 
of Z. 

Define now the family 

in Gr by 
Xa,/3 = Xo + (O, O, y + ax + {3) 

and 

ln these coordinates we have 

and 
h2(a,{3) = a+ h.o.t 

. Moreover, the cusp associated with the family is P(a,(3) = (0,0). 
From the above expression of h = (h1 , h2), it is easy to show that dh(Z0) 

is surjective. 
This finishes the proof of Proposition 4.1. 
4.2. Corollary. E2,2 is a cr- 3 codimension two submanifold of G' •. 
4.3. Remark. The general form of the SVF, F0 = F(X0 , Y0 ), is given 

by : 

(higher order terms). The singularity of this vector field is a saddle node in 
such a way the center manifold of it is expressed by the function 

; depending on the position ( with respect to the singular set of Z0) of this 
rnanifold, we get different phase portraits for the vector field. The corre-
sponding SR is giving by y < O and y > x2. 
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Figure 3: Bifurcation diagramm of a t 2-singularity 

4.4. Corollary. Let Zo,{3 be a 2-parameter family of vector fields in Gr 
for which the following proprt ies hold : i) Zo,o has a t2-singularity p0 in V; ii) 
the mapping: (01 /3) - Z0 ,13 is transverse to E2,2 at (0,0). Then the normal 
form of the corresponding SVF is: 

, with b0 =/:- O, a1 =/:- O and b1 =/:- O. l\Ioreover, the singular set of this family is 
expressed by (J( o 2 - 4/3) = O. 

4.5. Remark. ln addition to the above corollary we get that 
i) if o 2 = 4/3 then F0 ,13 has two singularities in V: a criticai point which is 

a codimension one singularity and a cusp point which is a codimension zero 
singularíty. This implies that Z0 ,13 is in :E1 . 

ii) if o 2 > 4/3 then the corresponding vector field has two critical poínt, 
both codimension zero singularit ies. Then Z0 ,13 is not in E1 . 

iii) if o 2 < 4/3 then the vector fiel d has no crtical point in V; this implies 
that Zo,/3 does not belong to :E1 . 
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Figure 4 : Unfolding of a trsingularity 

5-The trsingularity 
5.1. Propositiou. Let Z0 E Gr. Then Propositíon 3.1 holds if p0 is a 

t3-singularity of Z0 . 

Proof. 
Let Z0 = (Xo, Y0 ). As above, consider the neighborhoods U and V in Gr 

and M respectively. 
We choose coordinates (x,y,z) around p0 = O such that X 0 f(x, y, O) = x 

and Yof(x, y, O) = y where Xo = (Xi, X2, X3) and Yó = (Yi, Y2, Y3). This 
implies that 

X 0YOJ(O) = X2(0), róXof(O) = Y1(0) 
XoXof(x, y, O) = X1 (x, y, O) and YoYof(x, y, O) = Y2(x, y, O). 
Call X1(x,y,0) = a1 x+biy+h.o.t and Y2(x,y,0) = a2 x+b2y+h.o.t. So, 

b1 =/ O and a2 =J O providecl that { df, dXof, dXoXof} and { df, dYof, dYoYof} 
, are LI (at O) respectively. 

Call Yi(O) = a and X2(0) = b. 
As Yi = YoXof and X2 = X0 Yof (at Po), we get from the hypotheses that 

a =/ O, b =f. O and a + b =/- O. 
As in Proposition 3.1, for each Z = (X, Y) E U assume that the singular 

sets of of X and Y are the graphs of y = <P( x ) and y = p( x) respectively. ln 
the sarne way denote by c(X) and c(Y) the cusp points of X and Y contained 
in V, respectively. Observe that, c(X) (resp. C(Y)) is expressed by XXJ = O 
(resp. YY J = O). 

Therequiredmapping h = (h1 , h2 ): U -t V is defined by h1 = XXJ(P(Z)) 
and h2 = YYJ(P(Z)) where P(Z) is expressed by the solution of (</J(x)-
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p(x)) = O. 
Call by E; the variety in U characterised by the identities P(Z) = c(X) 

or P(Z) = c(Y) which are expressed by the equation h1h2 = O. It is clear 
that this variety lies in the bifurcation set of Gr. 

Consider the family in a,·, Zcx ,/3 given by: 

Xc,,f3 = Xo + (a, O, O) 
and 

Y~.,e = Yo + (O, ,8, O) 

We have that: 
i) h1 (a ,/3) =o+ a 1x + b1y + h.o.t; 
ii) h2(a, /3) = (3 + a2x + b2y + h.o.t; 
iii) P( a,í3) = (O, O; 
iv) The cusp points are given by 

and 

o: 
c(a) = (O, - (-))+ h.o.t 

b1 

c(/3) = ( - ( f ), O))+ h.o.t . 
ª2 

Let us fix attention on the bifurcation set E1 . We have to distinguish the 
following subcase: 

"Distinguished saddle": p0 is a saddle point of t he associated SVF F0 in 
such a way that , both inva.ria.nt ma.nifolds of dF0(0) meet the correspondent 
sliding region ( we mention that, these inva.riant set s are tangent to S Xo and 
Sy0 ; see Remark 5.3 below). 

ln this particu lar case, there exists a codimension one manifold r of Gr 
contained in the open set U+ = {Z: h1(Z) > Oandh2 (Z) > O} such tha.t : 

for Z= (X,Y) in r we have that c(X) anel c(Y) are in t he boundary of 
R(X,Y), the invariant rnanifolds of P (Z) are off R(X,Y) (in a very small neigh-
borhood of the point) and t he trajectories of the associated SVF, F(X,Y), 
passing t hrough c(X) anel c(Y) coincide. Moreover E2 ,3 E Cl{f}; this sit-
uation is similar to tha.t one in [Tl ) where a trajectory of a vector field is 
tangent to the boundary of a manifold at two distinct points. This situation 
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has a further discussion in Remark 5.5 below and it is illustrated in Figure 
7. It follows that , E1 = E~ U r. 

ln all other cases, we have E1 = E~. 
The conclusion of the proposition is immediate. 
5.2. Corollary. I:2 ,3 is a c,·-3 codimension two submanifold of Gr. 
5.3. Remark. The general form of the SVF associated to Z0 is 

The eigenvalues of dF0(0) are -a. and b. Moreover the invariant manifolds 
associated to these values are expressed by 

and 

b1 2 x = (- )y + h.o.t 
a 

ª2 2 y = ( b )x + h.o.t 

(see Fig. 6). We have the following result . 
5.4. Corollary. The point p0 is a hyperbolic criticai point of the vector 

field F0 , with real and distinct eivenvalues and having the associated invariant 
manifolds tangent to the curves {X0 .f = O} and {Yóf = O} ; moreover these 
contact are quadratic. 

5.5 Remark. From 5.3, we have the following normal form of the SVF, 
associated to Za,13: 

, with a f:. O, b f:. O, a f:. b, a2 # O and b1 f:. O. Depending on the nature of 
the critica! point (sad<lle or uode) of F0 and on the relat ive position of the 
asociated invariant ma.nifolds we get different unfoldings of Fc, ,iJ• If a = O 
and (3 f:. O then F~./3 ha.s one inva.riant manifold tangent to {X cr,/3Í = O} 
and the other is tra.usver:;e to { Yc,,iJ}. ln the last case , the vector field has 
another singularity (which is of codirnension O) defined by the cusp point on 
{Xcr,f3f = O}. T he case a =J O and f3 = O is similar. When the codimension 
two singularity is a distinguished sadclle a straighforward computation shows 
that the variety r is expressed by /3 = (::b) + hot with a < O . ln 
ali cases, the corresponding SR is giving by x < O and y > O. 

14 



! 1 ( e) 

Figure 6: Unfolding of a t3-singularitv 
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Figure 7: 
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Unfolding of a t3-singularity ( distinguished saddle case) 
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6- The t4-singularity 
6.1. Proposition. Let Z0 E cr. Then Proposition 3.1 holds ií p0 is a 

t4-singularity of Z0 . 

Proof. 
As before, let Z0 = (X0 , }ó) be in cr and (x , y, z) be coordinates around 

Po in R3 such that: 
Xof(x, y, O) = X3 = x and Yof(x, y, O)= Y3(x, y, O) = y. 
It follows, from the <lefinition, that 
XoXof(O) = X1(ü) =a-/- O, XoYof(O) = X2(0) = b-/- O and HxvxXf(O) = 

âf;(O) = a1 -/- O and Hyy 1 X f (O) = a2 =/:- O. 
Denote Y1(x, y, O)= a1x + b1y + h.o.t and Y2 (x, y, O)= a2x + b2y + h.o.t. 
As above, let U and V be neighborhoods of Z0 and p0 respectiveiy. 
Define the Cr mapping q: U, Zo ---+ R 3 , Po where q(Z) = (q1(Z), q2(Z), q3 (Z)) 

is the criticai point of Y nearby p0 in R3 , with Z=(X,Y). 
Denote by P(Z) the poi11t in V, which is the intersection between Sx and 

Sv , for each Z=(X,Y) in U. 
From [ST], it follows that there is, associated to Z=(X,Y), a point c(Z) = 

(c1 (Z),c2(Z)) in V such that: 
i) if q3(Z) = O then c(Z) = q(Z); 
ii) if q3-/- O then c(Z) is a cusp point of Y; 
iii) all points in Sy, clifferent from c(Z), are fold points of Y; 
iv) the correspouclence Z---+ c(Z) is c•·-2 . 

The required mapping h = (h1 , h2) is defined by 
h1(Z) = YY JIS\-·(P(Z)), and h2(Z) = YX JISv(P(Z)) with Z= (X,Y). 
Observe that: 
a) h1 ( Z) = O if and only if P( Z) = e( Z) : in our coordinates t his means 

that the second component of Y at P(Z) is zero; 
b) the identity h2(Z) = O says that the first cornponent of Y at P(Z) is 

zero. 
e) so h(Z) = O if and only if P(Z) is a criticai point of Y; 
d)the variety ~ 1 in this case is described by the union of t he following 

sets: h1 (Z) = O and g(Z) = O where 

g(Z) = (Y XJISy )(c(Z)) 
with c(Z) in the boundary of the siiding region . This means that either P(Z) 
is a cusp point of Y or c(Z) is a criticai point (in Cl{SR}) of Y but different 
from P(Z). 
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It remains to prove the surjectivity of dh(Z0 ). Take the farnily Zo,,/3 in ar 

such that: i) Xo,,/3 = X 0 ; 

ii) Ya ,/3 = Yo + ( a, ,8, O). 
We can check that: P( a, /3) = (O, O), 
Ya,/3Xa,f3f(x , y, O) = Yi + ( a, O, O), 
Yo,,f3Ycr,f3f(x,y,0) = Y2 + (0,/3,0) and 
c(a , /3) = (-(;~-),O)+ h.o.t; this point belongs to the boundary of the 

correspondent SR provided that its first component is non positive. 
Furthermore, h1 (a, (3) = ,B + h .o. t , 
h2 (a,(3) =a+ h.o.t 
g(a, (3) = ( .Q.) - (--ª--) + h.o.t. 

<11 <12 

From this, we deduce that dh(Z0 ) is surjective and a straighforward cal-
culation shows that the bifurcation set of the family is described by /3(a2a -
a 1/3) + h.o.t = O for sgn( ai)a < O. 

The proof of thP proposition is now immediate. 
6.2. Corollary. B2 _4 is a cr- 3 codimension two submanifold of ar. 
6.3. Remark The general form of the SYF, F0 = F (X 0 , Y0 ) (following 

the proof of 6.1) is: 

Fo(x, y , O)= (-ay + a1x 2 + b1xy, -by + a2x2 + b2xy ) + h.o.t 

The eigenvalues of dF0(0 ) are 7]1 = O and 7]2 = - b and the respective 
eigenspaces are expressed by y = O and y = -(!)x. So the singularity in 
question is a sadclle node in which the associated center manifold is tangent 
( quadratic contact) to Sy . Depencling on t he position of this manifold we 
have different phase portra.its of the vector field. Observe that the corre-
sponding SR is given by {x < O}and{y > O} 

6.4. Corollary. Let Za,/3 be a 2-parameter family of vector fields in ar 
for which the following properties hold: i) Zo,o has a t4-singularity ; ii) the 
rnappmg 

: ( a, /3) -+ Zo,,IJ 

is transverse to E2,4 at (0,0). Then the normal form of the corresponding 
SVF is: 

Fa,13(x, y) = (-ay - ax - x(x + b1y), by - f3x - x (x + b2y)) 
, with a -/:- O, b -/:- O and a -/:- -b. 

17 



Figure 8: Bifurcation diagrnmm of a t4-singularity 

I 1 (~) 

--,,-.:;::------.~----,. ,s )( 

~]:::J:1:':~1:m: ---1,,~-I-.... 1 '--~-) -.. ~/=r s X 

V ::;;:> {/SR 
S y 

Figure 9: Unfolding of a t 4-singularity 

6.5. R emark. In addition to the above corollary we mention that, the 
bifurcation set of this family is given by /3( a - /3) = O with a < O. If /3 = O 
, then the origin is a hyperbolic critical point of F 0 ,f3 having one eigenspace 
tangent to Sy<>,/3 ' If o = /3 then the origin is a fold point of X 0 ,f3 and a 
fold point of Y.:v,f3 (co<limension zero singularity); moreover, there is another 
singularity, represented by c0 ,f3 , which is a critical point of the vector field 
Fo,f3 on SY"', /3 (codimension one singularity). (see Figures 8 and 9). 

18 



7- Proof of Theorern 
Part a) of the theorem follows from 3.2, 4.2, 5.2 and 6.2 and Part b) 

follows from 3.1, 3.5, 4.1, 4.4, 5.1, 5.4, 6.1 and 6.4. 
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