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0— Introduction

The main aim of this paper is to study a class of codimension two sin-
gularities of the so called Sliding Vector Fields (SVF). Such systems emerge
from ordinary differential equations on R*® with discontinuous righ-hand side
(see for instance [F] and [U}). In our approach we assume that these disconti-
nuities occur on the 2-sphere M = 57 and the rules for defining the solution
orbits of such ODE are made via the Filippov’s convention (see [F]). In [T3]
all the codimension one singularities were analysed and we refer to it for the
necessary background. In this work a singularity analysis of generic codimen-
sion two bifurcation diagrams is performed by giving a complete topological
study of its phase portrait as well as the respective normal forms.

The paper is structured as follows. In Section 1 we give some preliminaries
and definitions and establish the notation. Section 2 contains the statement
of the main result. In Sections 3, 4, 5 and 6 we discuss each one of the
codimension two singularity, derive its normal forms and prepare the way for

the proof of the main result. Finally, in Section 7 we prove the main theorem
of the paper.
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1— Preliminaries

Let p€ M and f: (R3® M) — (R,0) be a C* representation of M at P,
with df (p) # 0. So M is the separating boundary of the regions M, = {f >
0} and M_ = {f < 0}.

Denote by =" the set of all germs in p of C'” vector fields on R®, p endowed
with the C" topology with r big enough for our purposes.

Let G" be the set of all germs in p of vector fields Z on R? defined by:

‘X’(q)v ?‘f qe “ﬁVI'i‘

Y(g), if g€ M.

where X, Y are in =" and on M the solution curves of Z obbey the Filip-
pov’s rules.

We use the notation Z = (X,Y) for an element of G”.

The Sliding Region (denoted by R(X,Y’)) is the region in M where both
vector fields X and Y, point toward M; in this case the solution of Z through
points of M follow the orbit of the (sliding) vector field F = F(X,Y). This
vector field is tangent to M and is defined at ¢ € M by the vector F(g) = m—
¢, such that m is the point where the segment joining (g+X(g)) and (¢+Y(g))
is tangent to M. Observe that if X(q) and Y(q) are linearly dependent, then q
is a critical point of F. We call F = F(X,Y’) the Sliding Vector Field (SVF)
associated to (X,Y). Moreover, the boundary of R(X,Y) (8R(X,Y)) can be
non smooth, due to the existence of corners on it (see [T2]). It must be said
that, a simple calculation shows that F = F(X,Y") can be smoothly extended
beyond the boundary of SR and each corner of F(X,Y) is a critical point of
this vector field. In this way each corner is a well distinguished singularity of
the SVF. Our main interest is to classify a class of two parameter families of
local SVF on M which present such singulatities. We mention that, there are
generically so many topological types (at least 12) of them and we concentrate
in this work, the attention to those ones we think are the most important.



We remark that, for Z = (X,Y) in G" we have:

a) The set dR(X,Y) is characterised by the points in M where X or Y is
tangent to the surface. We denote by Sx (resp.Sy) the set (in M) where X
(resp. Y) is tangent to M. Generically Sy and Sy are union of circles. So,
OR(X,Y) is the union of parts of Sx and Sy;

b) Throughout the paper, we consider coordinates (x,y,z) around a point
p € OR(X,Y) such that f : R, M — R,0 is given by f(z,y,2) = z. So,
F = F(X,Y) is expressed by:

X1 - XY, XoYs - X5Y,)
(¥s — X)

with X = (X1, Xa, X3) and ¥ = (Y5, Y, Y);

¢) In the above coordinates, the set R(X,Y) is defined by {X5 < 0,Ys >
0}.

1.1.Definition. Let Z, = (Xo,Y;) and Z = (X,Y) be in G" and
p € CU(R(X,,Yp). We say that Zy is C° M-equivalent to Z at p if there
is a neighborhood U of p in M, such that F(Xq,Ys) |v is C° equivalent to
F(X,Y) |v.

Let X € =" and p € M.

1.2.Definition. We say that p is an M-singular point (resp. M-regular
point) of X if X f(p) =0 (resp. Xf(p) # O).

1.3.Definition. We say that p is a fold (resp. cusp) singularity of X if

X f(p) = 0and X2f(p) # 0 (resp. X f(p) = X2f(p) = 0 and {df(p), dX f(p), dX2f(p)}
are linearly independent).

The cusp points are isolated points located at extremes of the curves of
fold points.

For any g : M — R denote by H, the hamiltonian field associated to the
mapping.

A singularity p € M of F' = F(X,Y) is classified by the following list:
1) p € Int(R(X,Y)) and it is a critical point of F; 2) p is a tangency point
between AR(X,Y) and F; 3) p is a corner of dR(X,Y).

We deal in this work, just with the last case. Roughly speaking , this case
corresponds generically to study a singularity of the vector field, restrict to
a "quadrant” in the plane determined by Sx and Sy.

The classification of the singularities of a SVF, F(X,Y), is based mainly on
the relative positions of the following tree objects: X, Y and M. So the codi-
mension two singularities under consideration will be defined by conditions

F= (F1, Fg) —_ (
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on X, Y and a ('™ representation of M at p, which we choose f(z,y,2) = z
for suitable coordinates. For Z = (X,Y) in G" and p in M, we define:

t; Wesay that p is a t;- singularity of F(X,Y) if: i) p is a fold point of X
and Y 11) The contact between Sx and Sy at. p is cubic. We impose the
following extra conditions: iii) (XY (f)Y X(f))(p) # (Y X(£)XX(f))(p)
and iv) (YX(f)(p) # YY(f))(p). Let £q, be the set of all vector field

in G" having p as a t;-singularity.

t2 We say that p is a {y-singularity of F(X,Y) if: i) p is a fold point
of X; ii) p is a cusp point of Y; iii) the contact between Sx and
Sy at p is quadratic. We impose the following extra conditions: iii)

HHyx Y f(p) # 0, XY f(p) # 0, Y X f(p) # 0 and (Y X f(p)+ XY f(p)) #

0. As above consider the set ¥, ,.

t3 We say that p is a tg-singularity of F(X,Y) if: i) p is a cusp point
of X and Y; ii) Sx and Sy are in general position at p. We impose
rhe following extra conditions: i) XY f(p) # 0, YXf(p) # 0 and
(YXf+XYf)(p) #0. As above we consider the set I, ;.

t4 We say that p is a ty-singulatity of F(X)Y) if: 1) Y(p) = 0; ii) p is
a fold point of X; iii) Sx and Sy are in general position at p. We
impose the following extra generic conditions: iv) Hyy ;X f(p) # 0 and
Hyy; X f(p) # 0, v) p is hyperbolic critical point of Y, with distinct
eigenvalues and with the corresponding eigenspaces transverse to M at
p. So we have the set ¥, 4.

It should be mention that, all the above definitions do not depend on the
particular representation f of M, at p.

In this paper, we refer to a ¢;-singularity as a codimension two singularity,
for some i=1,2 3 4.

2—Statement of the main result
Theorem:

a) The set £, = ;_,(5,,) is a C"~2 codimension 2 submanifold of G";



b) Let Z,p be a 2-parameter family of vector fields in G”, (r > 3) for
which the following properties hold: i) the map (p, e, 8) — Z, 5(p) is trans-
verse to the variety R® x 5 at (p,0,0); ii) The point p is a codimension 2

singularity of Zpo. Then, all topological types of Z, 3 are classified and the
respective normal forms are exhibited.

3—The t;-singularity

3.1. Proposition. Let Z; € G and pp € M. Assume that pg is a #;-
singularity of Zy. Then there exist neighborhoods U of Z; in G7, V of pp in
M and a C™ mapping h : U, Zs — RZ,0 such that: i) dh(Z,) is surjective;
ii) A(Z) = 0 if and only if Z has a ¢;-singularity p(Z) in V; iii) there is a
codimension one variety ©; in R%,0 which describes the bifurcation set of
G" nearby Z,.

Proof-

Let Zg = (Xo, }b)

We choose coordinates (x,y,z) around py = 0, such that

f(mTy)z) =z, XU = (‘X'111Y27X3)1 YCI = (E:YQ) Yzi):

with Xof(z,y,0) = Xa(z,y,0) = y and Y, f(z,y,0) = y — 5.

This implies that (X2 f)(z,y,0) = Xa(z,y, 0),

(Ifﬂzf)(m’ ¥, 0) = YQ(T, Y, 0) £ 3$2Y1[.'E, y,O),

X2(0) =b#0and Y,(0) =d #0.

Call X;(0) = a and Y;(0) = <.

We may select neighborhood U of Z in G™ and C” functions ¢, p : UxJ —
Ry=¢(Z z)and y = p(Z,z), which are solutions of Xf =0 and Yf =0
respectively, with J = (—¢,¢) and Z = (X,Y) in U.

Define the mapping 7(Z,z) = ¢(Z, z) — p(Z, z).

It satisfies 7(Z(00) = Z(Zo,0) = 25(Z,,0) = 0 and

Pr
m§w3(zo’0) # 0(say > 0).
Let z = n(Z) be the solution of
&r
g =



Define the mapping ~ : U — R%#by h = (hy, hy) where by (Z) = 7(9(2), Z)
and hy(Z2) =Z(9(2), 2).
Observe that:

i)h(Z) = 0 if and only if Z € ¥3,; (this means that the point P(Z) = n(Z)
is a ¢y-singularity of Z in a small neighborhood of 0 in M);

1) dh(Zg) is surjective.

The last assertion can be checked by taking the following family in U:

Zop = (Xag, Yo8) with Zog = Zg and such that:

Xap = Xo and

Yos = (W1, Ya,y — (2° 4 az + 8)).

We have 7(z, o, 3) = 2 +az+ 3, 9(e, ) =0, 7(0, 2, 8) = 3, %(0, a, ) =

Now parts i) and ii) of the proposition become immediate.

We now proceed the proof o part iii). We have that:

a) if hy(Z) = 0 then -gi:(,r.,Z) = 0 if and only if z = 5(Z);

b) if hy(Z) > 0 then 5Z(z,Z) > 0 for every x in J;

c) if h(Z) < 0 then there are associated with Z, two points in J, 7, =
m(Z) and ny = ny(Z), satistying ; < 9(2) <2 L(m, 2) = E(n2, 2) =0,
%:;%-(171,2) < 0 and gi—;(ng,Z) > 0;

d) the correspondence Z — n;(Z) is 772, i=1,%;

e) each n;(Z) converges to (Z) in the class C;

£) (r(m(2)))* + (r(n(2)))* # 0.

Consider the open set in G" given by Uy = {Z;h2(Z) < 0} and the real
function g defined in U; by:

9(Z) = ¢1(Z)g2(Z) where g; = 7(1:(Z), Z) with i = 1,2.

Observe now, that Z has a codimension one singularity in a neighborhood
of po in M ( which is given by either n; or n;) if and only if ¢g(Z) = 0.
Moreover, the bifurcation set in U is described by Cl{g™*(0)}.

This finishes the proof of the proposition.

3.2. Corollary. ¥, is a C"? codimension two submanifold of G".

3.3. Remark. Following the general form of the family Z, 3, given

1 1
above, we deduce that n(«, 8) = (F)?, n2(a, §) = —(3)?, and the bifur-
cation set of the family is characterised by o® = ? (see Fig.1).
3.4. Remark.In the coordinates given above, the general form of the

Sliding Vector field Fy = F( X, Yo) (associated with Zg) is the following:
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Figure 1: Bifurcation diagramm of a t;-singularity

Fo(z,y,0) = ((a — ¢)y — az®, (b — d)y — bz®) + o[(z,y)]°

3.5. Corollary. Let Z, ;3 be a 2-parameter family of vector fields in
G™ for which the following properties hold: i) Zy g has a ¢, —singularity po in
V; ii) the mapping: (a,3) — Z,z is transverse to £5; at (0,0). Then the
normal form of the corresponding Sliding Vector Field is:

Fop(z,y) = ((a—c)y—az® —a(az + B), (b— d)y — bz® — b(az + B)) where

Xop(2,y,0) = (a,b,y — 2%), ¥, 5(2,,0) = (c,d,y — 2® — ax — B) with
b#0,c#0,a#cand b#d.

3.6. Remark. In the above coordinates, we have the following expres-
sions: :

XoXof(0) = b, XoYaf(0) = a, YoXof(0) = c and Yo¥pf(0) = d.

Moreover, po is a saddle node of Fyo and the center manifold of it is
expressed by y = Az + h.o.t(higher order terms) where

A= led=d]

The unfolding of a ¢;-singularity is ilustrated in Fig.2. We mention that,
depending on the position of the center manifold (with respect to the SR of
Zy) we get different phase portraits of the vector field. We observe that the
corresponding SR is given by {z < 0} and {y > 2° + az + §}.
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Figure 2: Unfolding of a t,-singularity

4—The t;-singularity

4.1. Proposition. Let Z; € G" and py € M. Then Proposition 3.1
holds if pq is a ty-singularity of Z,.

Proof.

Let Zy = (X, Yo).

Choose coordinates (x,y,z) such that Xy = (X3, X5, X3), Yo = (X1, Xq, X3),
Xﬂf(mayao) = XS('Tsyv 0) ==Y and

Yof(z,y,0) = Y3(z,y,0) = y — z%. So from the hypotheses we get

XoXof(0) = X2(0) = by # 0,

Yo¥of(z,y,0) = Ya(z,y,0),
Y1(0) = 0 and Y3(0) = 0.
Let
Yi(e,y,0) = @@ + agy + of(z,y)|*
and
Ya(w,y,0) = biz + boy + 0| (z,y)|*.
It follows that: i) b # 0, provided that Det{df(0),dYf)(0),dYoYsf(0)}
is non zero; ii) a; # 0, provided that HHx,;Y,f(0) # 0. Denote X;(0) = aq,

As before, for Z = (X,Y’) assume that the singular sets of X and Y are
given by Sx = {y =«(z)} and Sy = {y = p(z)} respectively and define the
mapping

(2, 2) = 8(z) - plz)

oo



with x being in small interval around 0 and Z being in a neighborhood U of

ZD in Gr .

We have or
7(0, Zo) = 5—;(0, Zo)=0
and P
@(0, Zo) #0
(say > 0).

First of all, let z = 7(Z) be the solution of ZX(z,Z) = 0. So:

i) if 7(9(Z), Z) = 0 then for every z # 0, we have 7(z, Z) > 0.

i) if 7(n(Z),Z) < Othen there exist, associated to Z, two points z, =
m(Z) and z; = ny(Z) with z; < 9(Z) < zs, (21, 2) = y(z2,Z) = 0,
g;’f(ml, Z) < 0 and g;;l(.’liz, Z) > 0. Moreover the correspondence {Z — z;} is
smooth for i = 1,2.

iii) if 7(n(Z), Z) > 0 then for every x, we have that 7(z,Z) > 0.

Now, it is clear that there exists a smooth function

P.U-V

(V being a neighborhood of py in M) where for each Z = (X,Y) in U, P(Z)
is the cusp point of Y in V.
Finally, on defines the desired C"™® mapping

h:U, Z;—R2, 0,

h = (h1, ha) by hi(Z) = 7(9(Z), Z) and ho(Z) = Hx ;Y f(P(Z)).

We now proceed the characterization of the bifurcation set around Z; in
&

We have,

a) h(Z) =0ifand only if 7(n(Z), Z) = 0 and Hx;Y f(P(Z) = 0. The last
inequality implies that P(Z) = n(Z); the first one says that the curves Sy
and Sy have a quadratic contact at (7(Z), Z)). This means that A(Z) = 0 if
and only if Z has a t,-singularity in V.

b) If 7(7(Z), Z) < 0 then there are two possibilities: b;- z; # P(Z) and
&y # P(Z); by- either &y = P(Z) or z3 = P(Z). In the first case, Z has just
codimension zero singularity in V; in the second case, Z has a codimension
one singularity in V (see T3).



c) if hy(Z) = 0 and hy(Z) # 0 then 9(Z) is a codimension one singularity
of Z.

Define now the family

Za‘,l.? = (-‘Xcr,ﬁa Ycr,ﬁ)

in Gr by
Xop = Xo+(0,0,y + ax + B)
and
Ya,ﬁ = }/0
In these coordinates we have
2

hy(a,B) =8~ (E) + h.o.t

and
ho(a,8) = a+ h.ot

. Moreover, the cusp assoclated with the family is P(a, 8) = (0,0).

From the above expression of b = (hy, hy), it is easy to show that dh(Zo)
is surjective.

This finishes the proof of Proposition 4.1.

4.2. Corollary. ¥, is a O™ codimension two submanifold of G”.

4.3. Remark. The general form of the SVF, Fy = F(X,, Yp), is given
by :

Fo(z,9,0) = (aoly — 2°) — y(a1z + a2y), bo(y — 2%) — y(b1z + bpy)) + h.o.t

(higher order terms). The singularity of this vector field is a saddle node in
such a way the center manifold of it is expressed by the function
2 by 3
y=1z°+(+)2° + h.ot
bo

; depending on the position (with respect to the singular set of Zg) of this
manifold, we get different phase portraits for the vector field. The corre-
sponding SR is giving by y < 0 and y > z%.
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Figure 3: Bifurcation diagramm of a t5-singularity

4.4. Corollary. Let Z, 3 be a 2-parameter family of vector fields in G7
for which the following proprties hold : 1) Zy ¢ has a t,-singularity po in V; ii)
the mapping : (a, ) — Z, 3 is transverse to £y at (0,0). Then the normal
form of the corresponding SVF is:

Foplz,y) = (ao(y—2")—(a1z+a2y)(y+az+B8), bo(y—2*)— (hz+byy) (y +oz+P))

, with by # 0, @, # 0 and b; # 0. Moreover, the singular set of this family is
expressed by f(a? —43) = 0.

4.5. Remark. In addition to the above corollary we get that

i) if a® = 4 then F, 5 has two singularities in V: a critical point which is
a codimension one singularity and a cusp point which is a codimension zero
singularity. This implies that Z, 5 is in X,.

ii) if o® > 4 then the corresponding vector field has two critical point,
both codimension zero singularities. Then Z, g is not in X,.

iii) if @® < 4/ then the vector field has no crtical point in V; this implies
that Z, s does not belong to ¥, .

11



Figure 4: Unfolding of a ¢z-singularity

5—The ts-singularity

5.1. Proposition. Let Zy, € G". Then Proposition 3.1 holds if pp is a
ta-singularity of Zj.

Proof.

Let Zy = (Xo, Y5). As above, consider the neighborhoods U and V in G"
and M respectively.

We choose coordinates (x,y,z) around py = 0 such that Xof(z,y,0) ==z
and Y3 f(z,y,0) = y where Xo = (X, X5, X3) and Y5 = (¥3,Y3,Y5). This
implies that

XoYO0f(0) = X5(0), Yo.Xo f(0) = Y1(0)

XoXof(z,y,0) = Xi(z,y,0) and YoYof(z,y,0) = Ya(z,y,0).

Call X;(z,y,0) = a1z +byy+ h.ot and Y3(2,y,0) = agx 4+ by + h.o.t. So,
by # 0 and aq # 0 provided that {df,dX,f,dX,X,f} and {df,dY5f, dY,Yof}
, are LI (at 0) respectively.

Call ¥1(0) = a and X,(0) = b.

AsY; = Yo Xof and X, = XoYof (at po), we get from the hypotheses that
a#0,b#0and a+b#0.

As in Proposition 3.1, for each Z = (X,Y) € U assume that the singular
sets of of X and Y are the graphs of y = ¢(2) and y = p(a) respectively. In
the same way denote by ¢(X) and ¢(Y) the cusp points of X and Y contained
in V, respectively. Observe that, c¢(X) (resp. C(Y)) is expressed by XX f =0
(resp. YY f =0).

The required mapping A = (hy, hy) : U — V is defined by by = XX f(P(Z))
and hy = YY f(P(Z)) where P(Z) is expressed by the solution of (¢(z) —

12



p(z)) = 0.

Call by ¥ the variety in U characterised by the identities P(Z) = ¢(X)
or P(Z) = ¢(Y') which are expressed by the equation hhy, = 0. It is clear
that this variety lies in the bifurcation set of G".

Consider the family in G”, Z, 5 given by:

X5 =Xo-p-bes,0,0)
and
Y;x.ﬁ' = };1 + (OHB:O)

We have that:

i) hi(a,B) = a+ ayx + by + hoot;
i1} ho(a, B) = 3 + asx + bay + h.o.t;
i) Ple, B) = (0,0;

iv) The cusp points are given by
cfoe)i= —(—))+hot

and

e(A) = (—(£),0)) + ho.t.

Let us fix attention on the }nfurca.tlou set ¥;. We have to distinguish the
following subcase:

"Distinguished saddle”™: pq is a saddle point of the associated SVF Fp in
such a way that, both invariant manifolds of dF5(0) meet the correspondent
sliding region (we mention that, these invariant sets are tangent to Sx, and
Sy,; see Remark 5.3 below).

In this particular case, there exists a codimension one manifold ' of G”
contained in the open set Uy = {Z : hy(Z) > 0and hy(Z) > 0} such that :

for Z=(X,Y) in I' we have that ¢(X) and c(Y) are in the boundary of
R(X,Y), the invariant manifolds of P(Z) are off R(X,Y) (in a very small neigh-
borhood of the point) and the trajectories of the associated SVF, F(X,Y),
passing through ¢(X) and ¢(Y) coincide. Moreover £,5 € CI{T'}; this sit-
uation is similar to that one in [T1] where a trajectory of a vector field is
tangent to the boundary of a manifold at two distinct points. This situation

13



has a further discussion in Remark 5.5 below and it is illustrated in Figure
7. It follows that , ¥; = ¥ YT
In all other cases, we have ¥, = .
The conclusion of the proposition is immediate.
5.2. Corollary. ¥, 3 is a C"™3 codimension two submanifold of G".
5.3. Remark. The general form of the SVF associated to Z; is

Fo(z,y,0) = (ylarz + bry) — ax, by + z(azz + bay)) + h.o.t

The eigenvalues of d#((0) are -a and b. Moreover the invariant manifolds
associated to these values are expressed by
b
o == (—1)y2 + h.o.t
a
and a
T (-;-)12 + h.ot

(see Fig. 6). We have the following result.

5.4. Corollary. The point py is a hyperbolic critical point of the vector
field Fp, with real and distinct eivenvalues and having the associated invariant
manifolds tangent to the curves {Xgf = 0} and {¥5f = 0}; moreover these
contact are quadratic.

5.5 Remark. From 5.3, we have the following normal form of the SVF,
associated to Z, g

Fop(2,y,0) = (—ax + ay + y{arz + byy), B + by + x(asz + boy))

, with @ # 0, b5 0, a # b, uy # 0 and b, # 0. Depending on the nature of
the critical point (saddle or node) of Fy and on the relative position of the
asociated invariant manifolds we get different unfoldings of Fl, 5. f @ = 0
and f# # 0 then F, ; has one invariant manifold tangent to {X,sf = 0}
and the other is transverse to {Y, 3}. In the last case , the vector field has
another singularity (which is of codimension 0} defined by the cusp point on
{Xapf = 0}. The case o # 0 and = 0 is similar. When the codimension
two singularity 1s a distinguished saddle a straighforward computation shows
that the variety [ is expressed by f = (—9—2— + hot with a < 0. In

a+b)
all cases, the corresponding SR is giving by z < 0 and y > 0.
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Figure 5: Bifurcation diasram of a tg-singularity (distinguished saddle case)
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Figure 7: Unfolding of a t3-singularity (distvinguished saddle case)

15



8— The t;-singularity

8.1. Proposition. Let Z; € G". Then Proposition 3.1 holds if pg is a
t4-singularity of Z.

Proof.

As before, let Zy = (Xg, Yy) be in G" and (2,y, z) be coordinates around
po in R? such that:

Xof(z,y,0) = X3 =z and Yo f(z,y,0) = Ya(z,y,0) = y.

It follows, from the definition, that

~ XoXof(0) = Xi(0) = a # 0, Xo¥o f(0) = X3(0) = b# 0 and Hxyx X f(0) =

85(0) = ay # 0 and Hyy ;X f(0) = a3 # 0.

Denote Yi(z,y,0) = ¢y + byy + h.o.t and Y3(z,y,0) = asz + by + h.o.t.

As above, let U and V be neighborhoods of Zy and py respectively.

Define the C™ mapping ¢ : U, Zy — R®, pg where ¢(Z) = (¢1(Z), ¢2(2), ¢5(2))
is the critical point of Y nearby py in R*, with Z=(X,Y).

Denote by P(Z) the point in V, which is the intersection between Sx and
Sy , for each Z=(X)Y) in U.

From [ST], it follows that there is, associated to Z=(X,Y), a point ¢(Z) =
{e1(Z),¢2(Z)) in V such that:

i) if gs(Z) = 0 then ¢(Z) = ¢(Z);

i) if g3 # 0 then ¢(Z) is a cusp point of Y;

iii) all points in Sy, different from ¢(Z), are fold points of Y;

iv) the correspondence Z -+ ¢(Z) is C™72,

The required mapping h = (h), hy) is defined by

hi(Z) =YY fISy(P(Z)), and hy(Z) = Y X f|Syv(P(Z)) with Z=(X,Y).

Observe that:

a) hi(Z) = 0 if and only if P(Z) = ¢(Z) : in our coordinates this means
that the second component of Y at P(Z) is zero;

b) the identity h,(Z)} = 0 says that the first component of Y at P(Z) is
ZErO0.

¢c) so h(Z) = 0 if and ouly if P(Z) is a critical point of Y;

d)the variety ¥, in this case is described by the union of the following
sets: hy(Z) = 0 and g(Z) = 0 where

9(Z) = (Y X [f|5y)(c(Z))

with ¢(Z) in the boundary of the sliding region . This means that either P(Z)
is a cusp point of Y or ¢(Z) is a critical point (in CI{SR}) of Y but different
from P(Z).
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It remains to prove the surjectivity of dh(Z;). Take the family Z, 5 in G
such that: 1) X, 5 = Xo;

ii) Yap =Y + (o, 8,0).

We can check that: P(a, 3) = (0,0),

Ya,ﬁXG.ﬁf(xv Y, 0) =N+ (a'i 0‘0)7

Ypp¥asf(2,9,0) = Y; +(0,4,0) and

ca,B) = (—(;‘%),0) + h.o.t; this point belongs to the boundary of the
correspondent SR provided that its first component is non positive.

Furthermore, hy(e, 3) = B + h.o.t |

ha(e, B) = a+ h.ot

gl 8) = (£) - (£) + hot.

From this, we deduce that dh(Z,) is surjective and a straighforward cal-
culation shows that the bifurcation set of the family is described by 3(aa —
a18) + h.o.t =0 for sgn(a;)a < O.

The proof of the proposition is now immediate.

8.2. Corollary. ¥, is a C" codimension two submanifold of G".

6.3. Remark The general form of the SVF, F, = F(X,,Y;) (following
the proof of 6.1) is:

Fo(z,y,0) = (—ay + ay2* + byzy, —by + a,z® + byzy) + h.o.t

The eigenvalues of dFy(0) are 5, = 0 and 7, = —b and the respective
eigenspaces are expressed by y = 0 and y = —(E)r So the singularity in
question is a saddle node in which the associated center manifold is tangent
(quadratic contact) to Sy. Depending on the position of this manifold we
have different phase portraits of the vector field. Observe that the corre-
sponding SR is given by {x < 0}and{y > 0}

6.4. Corollary. Let Z, 5 be a 2-parameter family of vector fields in G”
for which the following properties hold: i) Zgo has a t4-singularity ; ii) the
mapping

e, 8) = Zop

is transverse to ¥,4 at (0,0). Then the normal form of the corresponding
SVF is:

Fap(e,y) = (~ay - az — o(z + by), by — Bz — 2(z + bay))
,witha# 0, 5# 0 and a # —b.

17



Sy

Figure 9: Unfolding of a t4-singularity

6.5. Remark. In addition to the above corollary we mention that, the
bifurcation set of this family is given by fla — 8) =0 witha < 0. If =0
, then the origin is a hyperbolic critical point of F, 5 having one eigenspace
tangent to Sy, ;. If @ = # then the origin is a fold point of X,z and a
fold point of Y, g (codimension zero singularity); moreover, there is another
singularity, represented by ¢, 3 , which is a critical point of the vector field
F,p on Sy, , (codimension one singularity). (see Figures 8 and 9).
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7— Proof of Theorem

Part a) of the theorem follows from 3.2, 4.2, 5.2 and 6.2 and Part b)
follows from 3.1, 3.5, 4.1, 4.4, 5.1, 5.4, 6.1 and 6.4.
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