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§1. Introduction

Let X be a compact Hausdorff space and let (E,||- ||g) be a real normed space.
The space C(X; E) of all continuous functions from X into E is equipped with the
supremum norm

I1f1] = sup{lif(2)lle : = € X}.

Our objective is to establish convergence results T, f — f for sequences of linear
operators T, : C(X; E) — C(X; E) and also derive estimates on the rate of conver-
gence of T, f — f, similar to those valid in the case E = R and T, is positive. Our
results generalize those obtained by M.Weba [10, 11, 12] for stochastic processes,
i.e., the case £ = L,(f2,X,7), 1 < p < oo, where (12, X,7) is a probability space.
Our monotonically regular operators defined below (see Definition 6) share features
of the stochastically simple operators defined by Weba and our regular operators
(see [7] and [8]). For them the usual Bohman-Korovkin type results are true and
estimates can be obtained. All the operators T : C(X; E) — C(X; E) of the type

(Tf,z) =3 eulz)f(te), =€ X,
k€J
where J is a finite set, ¢, € X, and ¢, > 0, are monotonically regular in our sense.
This includes the Bernstein operators and the Hermite-Fejér operators, besides many
others.

We use the notation g ® v, where g belongs to C(X; IR) and v € E, to denote the
function t — g(t)v, t € X. But, according to standard convention, C(X;R) ® E
denotes the vector subspace of C'(X; E) generated by all such mappings ¢ ® v. If
f € C(X;E), then ||f||g denotes the function t v ||f(t)||g. Clearly, ||f||g belongs
to C(X;R). If U is a bounded linear operator on the normed space E, i.e., an
element of L(E), we denote its value on v € E by (U, v), and its operator norm by
il :

UI| = sup{||{U, v)|l&; llvlle < 1}
If for every z € X, the operator U(z) belongs to L(E) and f € C(X; E), then, for
every t € X, we may apply U(z) to f(t) € E and

KU (), F(OMe < WU @) - 1LF (@)l

Definition 1. A linear operator S on C(X; RR) is called positive (or monotone)
if f> 0 implies Sf > 0.

Definition 2. Let S be a linear operator on C(X; IR). We say that a linear operator
T on C(X; FE) is dominated by S if, for every f € C(X; E) and z € X, we have



(*) (Tf,)lle < (S(1fllg), 2)-

Definition 3. Let (X, d) be a compact metric space, and let S be a linear operator
on C(X;IR). Define two functions as and s on X by

as(z) = (S(p), )
Bs(z) = (5(pz), 2)

for all z € X, where p,(t) = d(z,t), for all t € X.
Notice that when S(eg) = eo, where eg(t) = 1 for all t € X, the positivity of S
will imply [S(f)]? < S(f?), for all t € C(X; R). Applying this to p, one obtains

[Bs(2)]* < as(z)
for all z € X.
Remark. If S is a linear operator on C(X; IR) and S(eg) = eo, where ey(t) = 1 for
all t € X, then S(f) = f for all constant functions f in C(X;IR). We say in this

case that S preserves the constants. Similarly, if T is a linear operator on C(X; E)

and T'f = f, for all constant functions f € C(X; E), then we say that T preserves
the constants.

§2. Quantitative Estimates For Continuous Functions

Lema 1. Let (X,d) be a compact metric space, and let f € C(X;E). For each
€ > 0, there is some constant K > 0 such that

I7(t) = f(@)lle < € + K[d(z,1))?
for every pair, t and z, of elements of X.

Proof: We omit the easy proof. u}

Theorem 1. Let (X,d) be a compact metric space. Let {Sn}n>1 be a sequence
of positive linear operators on C(X;R), with S,(ey) = e, for each n > 1, and
ag, (z) — 0 uniformly on x € X. For each n > 1, let T,, be a linear operator on
C(X; E) which is dominated by S, and assume that each T, preserves the constants.
Then T.f — f, for each f € C(X; E).

Proof. Let ¢ > 0 be given. By Lemma 1, there is K > 0 such that
€
1£(t) - f(2)lls < 5 + Kld(=, 1))’
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for all t,z € X. Consider the function g = f — f(z). Then
lg(®)lle < 3 - eolt) + Kp3(2),
for all t € X. Since each S, in positive, we get
(Sa(llglle), 2) € 5 + K - as, (),
because S,(eg) = €p. By Definition 2 we get
(Tug,2)lls < 5 + K - as, ().

Choose now ng so that n > ng implies ag,(z) < ¢/2K, for all z € X, and notice
that (Tng,z) = (Tnf,z) — f(z). Then

”(Tnfyx) oy f(z)"E <g§g,

holds for all z € X and n > ny. 0

Let H be a real Hilbert space with scalar product (u,v), for u,v € H, and let X
be a compact subset of H. Define the following functions:

(i) p=(t) = (t,)
(ii) p(t) = (t,1)

for all t € H, where z is some fixed element in H. Notice that, in this case,

pa(t) = [z, )P =(z-t,z-1t)=
= (z,z)eo(t) — 2¢:(t) + (1)

for every t € H. Let {S, },>1 be a sequence of positive linear operators on C'(X; IR).
The sequence {ag, },.>1 satisfies

as, (z) = p(x) — 2(Sn(@2), 2) + (Su(p), ),

if we assume that S,(eg) = €.

Corollary 1. Let X be a compact subset of some real Hilbert space H. Let {Sp}n>1
be a sequence of positive linear operators on C(X; IR) such that



(1) Sa(eo) = eq;
(2) (Sa(pz),z) — ¢(z), uniformly on z € X;
(3) Sale) — .

Let {T,}n>1, be a sequence of linear operators on C(X; E). Assume that each
T, preserves the constants and is dominated by S,. Then T,f — f, for each
feC(X;E).

Proof. We have seen that

as,(z) = ¢(z) = 2(S(¢z), 2) + (Sa(#), 2)-

By (2) and (3), it follows that ag,(z) — 0, uniformly on z € X. It remains to apply
Theorem 1. m}

Let us now give the analogues of the quantitative estimates obtained by Shisha
and Mond [9] for positive linear operators on C(X; RR).

First recall that, when (X,d) is a compact metric space, every f € C(X; E) is
uniformly continuous and its modulus of continuity is defined by

w(f;6) = sup{||f(s) — f(t)llg; d(s,t) <6}

for each § > 0. Notice that w(f;8) is monotonically increasing, i.e., §; < 6; implies
w(f;61) < w(f;8,). Moreover, w(f;6) — 0as § — 0.

Proposition 1. Let X be a compact and conver subset of some normed space G.
Then

w(f;A8) < (1+ A)w(f;96)
for every f € C(X;E) and A >0, § > 0.

Proof. We omit the standard proof. 0

Lemma 2. Let X be compact and convex subset of some normed space G. Let
f€C(X;E) and 6 > 0 be given. Then

1F(6) = F()lls < (1 + g5 - 1lt = 2lB)(£;6)

for every pair, t and z, of elements of X.



Proof. If é§ < ||t — z||g, then

1f(t) — f(@)lle £ w(fillt—zlle)
1
< (143l - 2llol(f;8)
1
< (14 g5 - It = 2lig)e(f; 8).
If ||t - z||g < 6, then
‘ 1
If(t) ~ f(@)lle < w(f;8) < (1 + 55 - It~ z||g)w(f; ).
0
Theorem 2. Let X be a compact and convez subset of some normed space G. Let S

be a positive linear operator on C(X; IR) such that S(eg) = eg and let T be a linear
operator on C(X; E), which preserves the constants, and is dominated by S. Then

Tf2) ~ f@)ls < 1+ 5 - as(@)] - w(f;8),
for every f € C(X; E),6 >0 and z € X.

Proof. Let f € C(X;E),6 >0 and = € X be given. By Lemma 2, we have

10— f@)le < [+ 55 - It = allEl(f;)

for all t € X. Consider the function g = f — v, where v = f(z). Let p.(t) =
It — z||lg,t € X. Then

o)l < eo®) + 55 AEONLS36)

for all t € X. By monotonicity of S and the fact that S(eo) = e, we get

1
(1) (S(lglle),2) < [1 + gas(@)] - w(f:9).
Now T is dominated by S and therefore, by relation (*) of Definition 2,

(2) (Tg, 2)lle < (S(llglle), =)



for all z € X. On the other hand, Tg = Tf — Tv = Tf — v, and so (Tg,z) =
(Tf,z) — f(z). Hence by (1) and (2) above, we get
1
I(Tf,2) ~ f@)lls < 1+ 5 - as(z)] - w(;8).
0O
Theorem 8. Let X be as in Theorem 2, and let {S,}.>1 be a sequence of positive
linear operators on C(X; IR), such that S,(eo) = €, for each n > 1. Let {T,}n>1 be

a sequence of linear operators on C(X; E) such that each T, preserves the constants
and is dominated by S,. Suppose that

as,(z) < p(z)n”’, 7€ X,
holds, for each n > 1, and for some ¢ € C(X; IR) and some > 0. Then
(Tf,2) = f(2)lle < [+ @(@)w(f;n77)
holds, for each n > 1, for every f € C(X;E) and x € X.

Proof. Make § = n~?/? in Theorem 2, applied to each pair S, and T,. (m]

Corollary 2. Let {T,}.> be as in Theorem 3. Then

ITuf = SIS [+ llell) - w(f;n )
holds for everyn > 1 and f € C(X; E).

Proof. Take supremum on both sides of the estimate obtained in Theorem 3. DO

§3. Examples

Let us give examples of operators satisfying the hypothesis of Theorems 1, 2 and
3. In our first example, let X = [0,1] C IR. For each n > 1, the n'* Bernstein
operator B, on C([0,1]; IR) is defined by

= E ()=o)

k=0

for each g € C([0,1];IR) and z € [0,1]. It is clear that B, is a positive linear
operator, and since

n

) o7 (Z)x"(l —zt =1,

k=0



for every z € [0, 1], it follows that B,(eo) = €o, where ey(t) = 1, for all ¢t € [0, 1].
Consider now the corresponding n'* Bernstein operator T, on C(X;E), defined

analogously as
(Tfy2)= 3 (',:)z"(l 2y (5)

k=0
for each f € C([0,1]; E) and z € [0,1]. Now T}, preserves the constants and

sl < 3 (3)at -2 (5 e

k=0

= (Bu(llfll£), %)

holds for every z € [0, 1]. Hence T,, is dominated by B,,.
The classical estimates for the Bernstein operators on C([0, 1]; IR) give

s, (2) = (Bu(p),2) = 2(1 = 2) - -

since p2(t) = (t — z)?, for all t € [0,1]. Hence the following estimates hold for the
Bernstein operators T,, on C([0,1]; E):

(Tuf,2) = f(2)lle < 1+ 2(1 = 2)|w(f;n7'?)
for each z € [0,1] and so

ITof — FIl < 2w(f;n~12)

for all n > 1, since z(1 — z) < 1/4 holds for all z € [0, 1].
To generalize this example, let X be a compact Hausdorff space. Let J be a

finite set, and for each k € J, let t, € X and @, € C(X; L(E)) be given. Define an
operator T : C(X; E) — C(X; E) by setting

(1) (Tf,2) = 3 (®i(2), f(ts))

keJ

for every f € C(X;E) and x € X. Then T is dominated by the linear operator
S:C(X;R) — C(X; R), where

(2) (Sg,z) = Y pr(z)g(ts)
keJ
for every g € C(X; R) and z € X, and ¢, € C(X; IR) is the function
ex(z) = ||®k(2)l], z € X.
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Since ¢ > 0, the linear operator S is positive and

(TF2)lle < gll(h(ﬂr),f(tt))lls
< 2@l - 1S (t)lle
keJ

(S(1Ale), =),
for all z € X, the operator 7' is indeed dominated by S. If we assume that

() el =1, z€X,
ke

holds true, then Seq = ey, where eo(t) = 1, for all ¢ € X. Now, if we also assume
that

(4) Y &i(z) = idg, z € X,
keJ

holds true, then T preserves the constants. For example, let ¥, € C(X;R) be a
non-negative continuous function, and let

(®r(z),v) = Yu(z)v
for every v € E. Then @, € C(X;L(E)), and pi(z) = ||®(z)]] = ¥u(z) and

therefore
(5) Y. h(z)=1, z€X,

keJ

implies both (3) and (4). Such operators are called of interpolation type. Clearly, the
Bernstein operators are examples of such operators. Notice that, for each z € X,
where (X, d) is a compact metric space,

as(z) = Y oil(z)-pd(ts)
keJ

2 eu(z)ld(z, b))’
ke

When X a compact subset of some normed space G, then
as(z) = Y (=) It — 2llg, =€ X.

keJ

If we have a sequence of such operators, then

asn(x) e Z ‘ka“(x) g ”tko" =5 z"%' z e X’
keJ(n)



where, for each k € J(n),t, € X and @i, € C(X;IR) with @i, > 0. By Theorem
1, as,(z) — 0, uniformly on z € X, implies T,,f — f for each f € C(X; E). When
X is also convex, then we may apply Theorem 3 to obtain estimates on the rate of
convergence of ||(Tnf,z) — f(z)||e — 0 in terms of the modulus of continuity of f.
For example, suppose X is the standard m-simplex

X=ils,. . 0e¢HRY Zz.-s L 220 t=1,...,m).
=1

The n'* Bernstein operator B,, on the simplex X is an operator of interpolation type
defined as follows. Let J(n) be the finite set of all m-tuples of non-negative integers
k = (ky,...,kn) such that ky + ... + k,, < n. Now if k € J(n), the point

tk',,::ﬁ: (ﬁ ,Eﬂl)

n’ n
belongs to X. The functions ¢y, are defined as follows

Prn(z) = (',:)z"(l o

where z* = z}* . 25 . ... . zf» and

n n!
(k) = (k) (k)T (k) 1(m — [}
|k|=kl+k3+...+km
lz| =z 4234 ... + Tp.

Then (see Ditzian [5], p. 297),

(i) z ‘Pk,n(z) o 2 l,

keJ(n)

” k -

(i) X = = zlPeralz) = =) =1 - 2:),
keJin) ™ n =t

the norm in (ii) being the Euclidean norm on JR™. Hence, if we define

k
(T"f,l') ey ke;(n) vk.n(z)f(;)
then, by Theorem 3, we get
Tty ) = F@lls < [1 4 55 = Pt = 2)]w(f:8)

=1



and

Tty ) = F(@)ls < [1+ 3 2101 — 2]l fin ),

i=1

ITf = 1l (1+ T Jtfin~1).

To give further examples, let us consider the case of integral operators. Assume
that E is a Banach space, and let u be a positive Radon measure on the compact

metric space (X,d) and let K, : X x X — IR be a positive continuous function such
that

Jx Kn(z,t)p(dt) = 1, for all z € X.
Define a positive linear operator S, on C(X; IR) by setting

(Sug.2) = [ Kula,ig(t)u(dt).

Then S, is a positive linear operator such that S,(e)) = e,. By means of the
Bochner integral, define a linear operator T, on C(X; E) by setting

(Tufo) = [ Kala,O)f(t)n(dt),

for every f € C(X; E). By the properties of the Bochner integral, we have

TSl < [ Kala,OIF@Ie - u(d)
= (Sa(llflle).)

for every z € X. Hence (*) of Definition 2 is satisfied and T, is dominated by S,.
In this case

as,(z) = [ Ka(a,)ld(@,0)u(dt), @€ X.

§4. Quantitative estimates for differentiable functions

If Q is an open subset of some normed space G, then C'(f); E) denotes the set
of all functions f : @ — E which are continuously differentiable on Q. This means
that for each = € (1, the derivative of f at the point z, written D f(z), exists and the
mapping ¢ €  — D f(z) is continuous. Recall that Df(z) is a continuous linear
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mapping of G into E, i.e. Df(z) € L(G,E), and ||Df(z)|| denotes its norm as an
operator:

IDf(z)l| = sup |(Df(z),v)|le-
lvlle<1
We shall need the Mean Value Theorem for such mappings. It states that

I1f(@) = f(@)lle < ||t — 2|l - sup{[|Df(v)||;v € J}

where J is the segment joining the two points z and t, ie, J = {v € G; v =
At+ (1 —=X)z,0 < )X <1}. (See Theorem (8.5.4) of Dieudonné [4].)

Theorem 4. Let X, S and T be as in Theorem 2. Let §) be an open subset of G
containing X and let f € C'(Q; E). Then

(T f,z) - f(2)lle < |IDf()]] - Bs(z) + [Bs(x) + %as(r)]w(Df,«f),

for every z € X and § > 0.

Proof. Since ||(Tf,z) — f(z)lle < (S(||f = f(2)||g),z), it suffices to estimate
(S(If = f(2)||g), z). Now, for each t € X,

(1) @) = f@)le < (Df(z),t - 2)le + |If(2) - f(z) - (Df(x),t - z)]|&-

Consider the mapping g¢(t) = (Df(z),t —z), t € X. We have ||g(t)||g <
[|1Df(z)|]- ||t — z||g, for all t € X. The positivity of S implies

2)  (S(llglle),z) < [1Df(=)]] - Bs(z).

Consider the mapping A(t) = f(t) — f(z) — (Df(z),t — z), t € X. We have by the
Mean Value Theorem

lIA(®)lle < It - zllg - s 1D f(v) ~ Df(=)ll,

where J C X is the segment joining the two vectors t and z in X. For every v € J
we obtain

IDS(2) = D@ < (DS o~ 2lle)
< (DSt - 2lla) < [1 + It - allo]w(D;8),
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for any § > 0. Hence

1£8) = £(2) ~ o(0)ls < [l = 2lla + FlIt - 2llB]w(DF;8),

and therefore

(3) (SUIf - £(z) - olle), ) < [Bs(z) + gas(@)(DS; ).
From (1), (2) and (3) we get :

(S(If - F@)lle), =) < 1D ()| Bs(z) + [Bs(a) + zas(@)l DS 8).
(W]

Definition 4. Let S be a linear operator on C(X; IR), and let T' be a linear operator
on C(X;E). Let ¢ € E* be a continuous linear functional. We say that T and S
are o-commutative if

(¢, (Tg,z)) = (S(pog),2)

for every 2 € X and g € C(X;E). When T and S are p-commutative for every
¢ € E*, then we say that 7" and S are E*-commutative. When S is positive, this
implies that T" is dominated by S.

Theorem 5. Let X,S and T be as in Theorem 2. Assume that
(i) T and S are E*-commutative,

(i1) Sy = o, for every ¢ € G*.
Let Q be an open subset of G containing X and let f € C'(Q; E). Then

1
(Tf,2) ~ f(2)lle < [Bs(2) + sas(z)l(Df;6)
for every x € X and every 6 > 0.
Proof. For every t and « of X we may write

f(t) = f(z) = (Df(z),t — =) + [f(t) - t(z) — (Df(z),t — z)].

Let ¢ € E*,||l¢|| < 1 be given. Consider the mapping ¥ = ¢ o [Df(z)]. Then
¥ € G*, since Df(z) € L(G,E). Let g = ¥ — ¢(z) = ¢ — (z)eg, where eo(t) =1
for all t € X. By (ii), and S(ep) = €g, we get

(Sg,2) = (S¢,2) — ¥(z) = Y(a) - P(z) = 0.

12



Let h=¢po f € C(X;IR). Then

(Sh,l‘) Y h(:l:) - (S(h 52 h(z) 37 g)sz)
= (S(h - h(z) - ¢ + ¢¥(z)),2).
Now
|(Sh,z) — h(z)| = |S(h - h(z) - ¥ + ¥(z)),z)|
< (S(Ih = k(z) - ¥-+ ¥(2)]), 7),

since S is a positive linear operator. For every t € X we obtain

h(t) — h(z) — ¥(t) + ¥(2)| = l@(f(t) - f(z) - (Df(2),t - z))|
<) = f(z) = (Df(2),t - z)l||le < ||t - zlla-svlels?llDf(v) - Df(2)ll,

where J C X is the segment joining the two vectors t and z in X. For every v € J
we have

IDf(v) = Df(2)ll < w(Df;llv - zlle) < w(Df; ||t - zllg)
< (143l = alle)w(DS;8)

for any § > 0. Hence, for all t € X we can conclude

Ih(6) = h(2) = 9(t) + $(@)] < [llt = 2l + 5llt ~ 2l1E]w(DS:).

Therefore,

(S(Ih = h(z) = ¥ + $(@)]),2) < [Bs(2) + 5 as(@)w(DS; 8
and so 1
(Sh2) ~ h(@)| < [Bs(e) + gas(@)w(DS;8).
Since h = @ o f, we have by (i),

(Sh,z) - h(z) = (S(pof),z)-e(f(z))

(?a (vaz) i f(m))

and therefore

[0, (T1,2) ~ f@)] < [B5(a) + zas(@)le(Df; 8

13



for all ¢ € E*,||¢|| < 1. By the Hahn-Banach Theorem, it follows that

ITf,2) ~ F@le < [Bs(z) + gas(z)l(DF;6).

Remark. Both the operators of interpolation type and the integral operators satisfy
the hypothesis (i) of Theorem 5. Indeed, if z € X and

(Tf,z)= 3 eu(@)f(t)

keJ

and ¢ € E*, then

(@, (Tf,2)) = Y eul@)e, f(te))

keJ

= Y ()@ o f)(t)
keJ

= (S(pof) ),
for every f € C(X; E). On the other hand, if

(Tf,2) = [ K(@,0)f(t)n(dt)

then, by the properties of the Bochner integral

(o (Th2) = (o, [ K(zO)f(0)u(dt)
= [ K@), f(t))u(d)
= (Stpof)a)

Hence T and S are E*-commutative.
Let us now consider hypothesis (ii) of Theorem 5. For the operators of interpo-

lation type it means that
Y er(@)p(te) = ¥(z)
keJ

for every z € X and ¥ € G*. This is the case with the Bernstein operators on
C([0,1]; IR), since in this case each i € G* is of the form

Y(t)=at,t€ R

14



for some a € IR, and if we set e,(t) =t for every t € IR, it is known that B,e; = ¢;
(see, e.g. Lorentz [6]). The same is true for the Bernstein operators on C(X; IR),
where X is the standard simplex on IR™. Indeed, it is known that

Byx;=%; (j=1,...,m),

where 7; is the j-th projection of IR™ onto IR. (See Ditzian [5].) Now each 3 €
(IR™)* is of the form

Y(t) = ‘Z: a;t; = i a;m;(t),

=1 =1
for all t € IR™. Hence B,y = v for all linear mappings ¢ : R™ — IR.
For the integral operators, hypothesis (ii) of Theorem 5 means that

/. K@ tu(d) = v()

for all z € X and ¥ € G*. For example, if X C IR, we must have

/)(I\(z,t)tdt: ”

for all z € X, or
/x K(z,t)(t — z)dt = 0. .

Theorem 6. Let X be a compact and conver subset of some normed space G, and

let {Sn}n>1 and {Ty}n>1 be as in Theorem 3. Assume that, for each n > 1,

(1) T, and S, are E*-commutative,

(i) Spp = ¥, for every v € G*,

(i) as,(z) < A(z)n~?*, Bs,(z) < B(z)n™*, holds for every x € X and n > 1, and
for some functions A, B € C(X;IR) and for some a > 0.

Then

(Twf,2) ~ f(2)lle < [A(z) + B(z)ln"w(Df;n™°)

holds for every z € X and n > 1, and for every f € C'(N; E), where Q) is some
open subset of G containing X.

Proof. Make § = n~ in Theorem 5, applied to each pair S, and T,,,n 2 1. g
Corollary 3. For the Bernstein operators on C([0,1]; E) we have
N(Baf,z) = f(2)lle < [(2(1 - 2))"? + 2(1 - 2)]n~"2(D f;n~1/?)
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for every f € C'(Q; E),and z € [0, 1], where Q is some open subset of R containing
[0,1]. Consequently,

1B.f ~ fII < 3n~"(Df,n "),

Proof. We know that (8, (z))? < as,(z), so Bg.(z) < (ap,(z))/? =
(z(1 = z))/2.n"12, 4

Corollary 4. For the Bernstein operators on C(X; E), where X is the standard
m-simplez on IR™, we have

- =) " -

i=1 i=1

for every f € CY(; E) and z € X, where Q) is some open subset of IR™ containing
X. Consequently,

|B.f - fll £ [(lz—)m + %]n—llzw(Df,n—lh)_

Proof. As in Corollary 3 we have

/2
fou(a) < (em (@) < (z a1 = 20) - o

j=}

Remark. Notice that in the proof of Theorem 4 we get the estimate (2), which
involves fs(z) = (S(p:), ), where p,(t) = ||t — z||¢ for all t € X. When X C R,
sometimes a better estimate can be obtained, since in this case p,(t) = |t — z| and
if we denote by e; the identify function on IR, then p.(t) = |e,(t — z)| and

|(Ser, z) — 2| < (Sps, z) = Bs(x).
For example, if S is the n* Hermite-Fejér operator H, on C([—1,1]; IR), defined as

2(1 il [ ) )] F(thm),

2k —1
where t, = cos( k2n w),k = 1,2,...,n, are the zeros of T,, the Chebyshev
polynomial of degree n
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Tn(z) = cos(n arc cos )

for z € [-1,1]. We have, by De Vore (3, pg. 43],

(1) |(Hper,z) — 2| < 2"-1|Tn(m)|
whereas
(2) B (z) = (Ha(ps),2) < (am,(2))'/? < n7'/2 | Ty (2)|

and so (1) is a better estimate for n > 4.

Hence the better estimate for the sequence of Hermite-Fejér operators H, on
C([-1,1]; E), is as follows:

(H,f, ) — f(2)|le < 207" | Tu(2)]||DF(2)]]+
H|Tu(@)| + | Tu(@) P02 (D f;n71?). o

§5. Korovkin Systems

Definition 5. Let A be a class of linear operators on C(X; E). A subset K of
C(X; E) is called a Korovkin system for A if, for every uniformly equicontinuous
sequence {7} },5 of linear operators T, € A the following holds:

(¥) Tng — gforallg € K, implies T,,f — f for all f € C(X;E).

When E = IR and A is the class of all positive linear operators on C(X;IR) we
obtain the usual definition of Korovkin systems in C(X; RR).

Definition 6. Let S be a linear operator on C(X;IR). A linear operator T on
C(X; E) is said to be S-regular if

(#x) T(¢g®v)= S(9)®v, for all g € C(X;IR) and v € E.

We say that

(a) T is regular, if it is S-regular for some linear operator S on C(X; R);
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(b) T is monotonically regular, if it is S-regular for some positive linear operator
S on C(X; R).

Remark. If T is monotonically regular, then it is S-regular for some positive
linear operator S, and T' and S are ¢-commutative for each ¢ € E*. Hence T is
dominated by S.

For example, all operators of interpolation type and all Bochner integral operators
defined in §3 are monotonically regular.

Theorem 7. Let K C C(X; E) be a non-empty subset such that for some continu-
ous linear functional ¢ € E*, the set K(¢) = {¢0g;9 € K} is a Korovkin system
for positive linear operators on C(X;IR). Then K is a Korovkin system for linear
operators on C(X; E) which are monotonically regular .

Proof. Let {T,}.>, be a uniformly equicontinuous sequence of monotonically reg-
ular linear operators on C(X; FE) . By Definition 6, for each n > 1, there is a
positive linear operator S, on C(X;R) such that T,(h ® u) = S,(h) ® u, for all
h € C(X;R) and u € E, and moreover (¢, (T,f,z)) = (Sa(p o f),z), for every
z € X and f € C(X; E). It is easy to see that {S,}n>1 is then a uniformly equicon-
tinuous sequence. Assume that T,g — ¢ for every ¢ € K. Let h = ¢ o g, for
g € K. Then (Sn(h),z) = (Su(¢ 0 g),z) = (p,(Tng,z)) for every z € X. Now
(T.g9,2) — g(z), uniformly on z € X. Hence (S,(h),z) — h(z), uniformly on
z € X. Since K(y) is a Korovkin system for positive linear operators on C(X; IR),
we conclude that S,h — h, for all h € C(X;R). Let f € C(X;E) and € > 0 be
given. By uniform equicontinuity of {T,}.>1, there exists § > 0, which we may
assume to satisfy § < €/3, such that ||f, — f2|| < § implies ||T fi — Tnf2|| < €/3, for
fi, fa € C(X; E). Since C(X; R) ® E is uniformly dense in C(X; E), there exists
h € C(X; R) ® E such that ||f — k|| < é. Suppose h is of the form

h=Yg®v
i=1

where g; € C(X;R) and v; € E,i = 1,2,...,m. Since S,(¢;) — g; for each
i1=1,2,...,m, it follows that

Tn(h) = isn(g;) ®U" — ig, ® v; = h

i=1 t=1
Hence, for some ny we have ||T,,(h)—h|| < /3, for all n > ng. Notice that ||f—h|| <
§ implies ||T(f) — Tw(h)|| < £/3 for all n. Therefore

WTa(f) = Il S WTa(f) = Ta(B)| + [ITu(h) = All + {12 - fll < €
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for all n > ngy. This ends the proof that T,,f — f, for all f € C(X;FE) and so K
is a Korovkin system for the class of all monotonically regular linear operators on

C(X;E). o

As a corollary we obtain the following generalization of a result of M. Weba. (See
Theorem 3.2, [10])

Theorem 8. Let K C C(X;E) be a subset containing a constant function
vo € E,v, # 0. Let ¢ € E* be such that p(vo) = 1. Assume that, for each
to € X there ezists g in the linear span of K such that pog > 0 and ¢(g(t)) = 0 if,
and only if, t = to. Then K is a Korovkin system for linear operators on C(X; E)
which are monotonically regular.

Proof. Let K(¢) = {¢0g;9 € K}. Let H be the linear span of K(¢) in C(X; IR).
Then H is point separating and contains the constant function 1. The hypothesis
made implies that each ¢, € X belongs to the Choquet boundary dyX. Hence
X = 0y X and so K(p) is a Korovkin system in C(X; IR) for positive linear opera-
tors. (See (1] or [2].) It remains to apply Theorem 7. ¢

Theorem 9. Let K C C(X; IR) be a Korovkin system for positive linear operators
on C(X;IR) and let vy € E,vg # 0. Then {g ® vo; g € K} is a Korovkin system for
the class of all monotonically regular linear operators on C(X; E).

Proof. Choose ¢ € E* such that ¢(ve) = 1. Then {po (g @ v);9 € K} = K, and
therefore we may apply Theorem 7 to conclude that {g ® vo; g € K} is a Korovkin
system for the class of all monotonically regular linear operators on C(X; E). o
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