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§1. Introductioo 

Let X be a compact Hausdorff space and let (E, li· IIE) be a real normed space. 
The space C(X; E) of aJl continuous functions from X into E is equipped with the 
supremum norm 

llfll = sup{ll/(x)IIE ; x E X} . 
Our objective is to establish couvergence results T,J - f for sequences of linear 

operators Tn: C(X; E) - C(X; E) and a.lso derive estimates on the rate of conver-
gence of Tnf - f, similar to those valid in the case E = R and Tn is positive. Our 
results generalize tho e obtained by M.Weba (10, 11, 12) for stochastic processes, 
i.e., the case E = Lp(H, E, r ), 1 p < oo, where (O, E, r) is a probability space. 
Our monotonica.lly regular operators defined below (see Definition 6) sha.re features 
of the stochastically simple operators defined by Weba. a.nd our regular operators 
(see (7) and (8)). For them the usual Bohma.n-Korovkin type re ults are true and 
estima.tes ca.n be obtained . 11 the operators T: C(X; E) - C(X; E) of the type 

(T'f,x) = L.:C.Pk(x)f(t,:), x E X, 
kEJ 

where J is a finite set, tk E X , and '{)k O, are monotonically regular in our sense. 
This includes the Bernste.in operators and the Hermite-Fejér operators, besides many 
others. 

We use the notation g @ v, where g belongs to C( X; JR) and v E E, to denote the 
function t 1-+ g(t)v, t E X. But, according to standard convention, C(X; JR) ® E 
denotes the vector sub. pac<> of C(X; E) generated by ali such mappings g ® v. If 
/ E C(X; E), then 11/IIE denotes the function t 1-+ 11/(t)IIE- Clearly, IIJIIE belongs 
to C(X; R). If U is a bounded linear operator on the normed space E, i.e., an 
element of .C.(E), we denote its value on v E E by (U, v) , and its operator norrn by 
IIUII= 

IIUI I = sup{ll{U, v)IIEi llvllE 1}. 
If for every x E X, the operator U(x) belongs to .C.(E) and f E C(X;E), then, for 
every t E X, we rnay apply U(x) to f(t) E E and 

ll(U(x),J(t)}IIE IIU(x)ll • llf(t)IIE-

Deflnition I. A linear operator 8 on C(X; JR) is called positive (or monotone) 
if J O implies SJ O. 

Deflnition 2. Let S be a linear operator on C(X; E). We say that a linear opera.tor 
T on C(X; E) is dominated by S if, for every f E C(X; E) and x E X, we have 
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(*) ll(T f, x)IIE S (S(llfllE), x). 
Definition 3. Let (X, d) be a compact metric space, and let S be a linear operator 
on C(X; E). Define two functions os and /3s on X by 

os(x) = (S(p!),x) 
/3s(x) = (S(pz),x) 

for ali x E X, where p:r:(t) = d(x, t), for all t E X. 
Notice tha.t when S( e0 ) = e0, where eo( t) = 1 for àl1 t E X, the positivity of S 

will imply (S(f)P S S(/2), for all t E C(X; R). Applying this to Pz one ohtains 

[/3s(x))2 S os(x) 

for ali x E X. 

Remark. If Sisa. linear operator on C(X; JR) and S{e0 ) = e0 , where e0 (t) = 1 for 
ali t E X, then S(f) = / for all constant functions f in C(X; JR). We say in this 
case that S preserves the constants. Similarly, if T is a linear operator on C( X; E) 
and T f = f, for a.ll constant functions f E C(X; E) , then we say that T preserves 
the constants. 

§2. Quantitative Estimates For Continuous Functions 

Lema 1. Let (X,d) be a compact metric space, and let f E C(X;E). For each 
e > O, there is some constant I< > O such that 

11/(t) - f(x)IIE <e+ K[d{x,t))2 

for every pair, t and x , of elements o/ X. 

Proo(: We omit the easy proof. D 

Theorem 1. Let (X, d) be a compact metric space. Let {Sn}n~J be a sequence 
o/ positive linear opemtors on C(X; Ui.), wíth Sn(e0 ) = e0 , for each n 1, and 
osn ( x) -+ O uniformly on x E X. For each n 1, let T,.,_ be a linear operator on 
C(X; E) which is dominated by S,.,_ and assume that each Tn preserves the constants. 
Then Tnf-+ f, for each J E C(X; E). 

Proof. Let e > O be given. By Lemma 1, there is /( > O such tha.t 

11/(t) - /(x)IIE S + K[d(x,t))1 
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for all t,x E X. Consider the function g = f- f(.x). Then 

ê 
llg(t)IIE :5 2 · eo(t) + K P!(t), 

for a.11 t E X. Since each Sn in positive, we get 

because Sn(e0 ) = e0 . By Definition 2 we get 

Choose now n0 so that n no implies os,..(x) < e/2K, for all x E X, and notice 
that (Tng, X) = (Tnf, x) - /( x ). Then 

!l(Tn/,x) - /(x)IIE < é, 

holds for all x E X and n n0 . D 

Let H be a real Hilbert space with scalar product {u, v), for u, v E H, and let X 
be a compact subset of H. Define the following functions: 

(i) <,O:i:(t) = {t, x) 
(ii) <p(t) = (t, t} 

for all t E H, where x is some fixed element in H. Notice that, in this case, 

P!(t) {d(x, t)}2 = {x - t, x - t) = 
- (x 1 x)eo(t) - 2<,ex(t) + c.p(t) 

for every t E H. Let {S .. }n>l be a sequence of positive linear operators on C(X; JR). 
The sequence { exs" }n~t satisfies 

if we assume that Sn( eo) = c0 . 

Corollary 1. Let X be a compact subset of some 1-eal Hilbert space H. Let {Sn}n>l 
be a sequence of positive linear operators on C(X; .IR} such that 
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(1) Sn(eo) = eo; 
(2) (Sn(C,O:i:),x)-+ c,o(x), uniformly on x E X; 
{3) Sn(c,o)-+ c,o. 

Let {Tn}n~t, be a sequence o/ linear operators on C(X; E). Assume that each 
Tn preserves the constants and is dominated by Sn. Then Tnf -+ J, for each 
/ E C(X;E). 

Proof. We have seen that 

By (2) and (3), it follows that a 8 )x)-+ O, uniformly on x E X. It remains to apply 
Theorem 1. O 

Let us now give the analogues of the quantitative estimates obtained by Shisha 
and Mond [9) for positive linear operators on C(X; IR). 

First recall that, when (X,d) is a compact metric space, every / E C(X;E) is 
uniformly continuous and its modulus of continuity is defined by 

w(f; 6) = sup{ll/(s) - /(t)IIEi d(s, t) 6} 

for each 8 > O. Notice that w(.f; <5) is monotonically increasing, i.e., 61 :5 82 implies 
w(f; 61) :5 w(f; h2). Moreover, w(f; h) -+ O as ô-+ O. 

Proposition 1. Let X be a compact and convex subset of some normed space G. 
Then 

w(f; .-\8) :5 (1 + >-.)w(f; 8) 

for every f E C{X; E) and À 2: O, 8 2: O. 

Proof. We omit the sta11dard proof. o 

Lemma 2. Let X be compact ,md convex subset of some normed space G. Let 
/ E C(X; E) and 6 > O be given . Then 

1 
llf(t) - f(x)IIE :5 (1 + f,2 • llt - xll~)w(f; 8) 

for every pair, t and x, of elements of X. 
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Proof. If 6 S llt - xlla, then 

II/(t) - f(x)IIE < w(f; llt - xlla) 
1 < (1 + 6 · llt - xlla)w(f; 6) 
1 

S (1 +@ • llt - xll~)w(f; 6). 

If llt - xlla S h, then 

1 
llf(t) - f(x )IIE S w(J; 6) S (1 + 62 • llt - xlli)w(J; 6). 

o 

Theorem 2. Let X be a compact and convex subset o/ some normed space G. Let S 
be a positive linear operator on C(X; E) such that S(e0) = e0 and let T be a linear 
operator on C(X;E), which pn~serves the constants, and is dominated by S. Then 

1 ll(T f, x) - f(x)IIE S [l + @ • as(x)) • w(J; h), 

for every f E C(X;E),8 > O and x E X. 

Proof. Let f E C(X ; E) , h > O aud x E X be given. By Lemma 2, we have 

1 llf(t) - f(x)IIE :5: [1 +@ • llt - xll~)w(f;6) 

for all t E X. Consider the function g = f - v, where v = f(x). Let Pz(t) = 
llt - xlla, t E X. Then 

1 
llg(t)IIE [eo(t) + fil • P!(t)]w(f; h) 

for all t E X. By monotonícíty of S and the fact that S(e0 ) = e0 , we get 

(1) (S'(ll9IIE) , .r ) :5: (1 + ~as(x)) • w(f; 8). 

Now Tis dominated by S and therefore, by relation (*) of Definition 2, 

(2) ll(Tg,x)IIE :5: (S(IIYIIE),x) 
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for ali x E X. On the other hand, Tg = Tf - Tv = Tf - v, and so (Tg,x) = 
(Tf,x)- f(x). Hence by (1) and (2) above, we get 

1 
ll(T J, x) - J(x)IIE 5 {l + 62 • as(x)) • w(/; 5). 

o 

Theorem 3. Let X be as in Theorem 2, and let {Sn}n;:;:1 be a sequence o/ positíve 
linear operators on C(X; IR) , such that Sn(eo) = eo, for each n 1. Let {Tn}n>t be 
a sequence of linear operators on C(X; E) such that each Tn preserves the constants 
and is dominated by Sn. Suppose that 

asJx) 5 cp(x)n-/3, x E X , 

holds, for each n 1, and /01 · some cp E C(X; IR) and some (3 > O. Then 

ll(Tn.f, :1:) - f(x)IIE 5 [1 + cp(x))w(J; n - 1312 ) 

holds, for each n 1, for eve1·y J E C(X;E) and x E X . 

Proof. Make 5 = n-/312 in Theorem 2, applied to each pair Sn and Tn. 

Corollary 2. Let {Tn}n;:;: 1 be as in Theorem 9. Then 

111~! - /li 5 [1 + ll'PII]. w(/; n- fJ/2) 

holds for every n 1 and f E C(X; E). 

Proof. Take supremum on both sides of the estimate obta.ined in Theorem 3. D 

§3. Examples 

Let us give examples of operators satisfying the hypothesis of Theorems 1, 2 and 
3. ln our first example, let X = [O, 1] C JR. For each n 1, the nth Bernstein 
operator Bn on C([0, 1); TR) is defined by 

(Bng,x) = t (;)xk{l - xf-kg(~) 

for each g E C((0, 1]; JR,) and x E [O, 1). lt is clear tha.t Bn is a positive linear 
opera.tor, and since 

t (:)xk(l - xr-A: = 1, 
k::::O 
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for every x E [O, 11, it follows that Bn(e0 ) = e0 , where e0(t) = 1, for all t E [O, l]. 
Consider now the corresponding nth Bernstein operator Tn on C(X; E), defined 
analogously as 

for each / E C([O, 1]; E) and x E [O, 1]. Now Tn preserves the constants and 

ll(T./,x)lle S t. (~)x•(t - x)"-•11/(~)lle 
= (Bn(II/IIE),x) 

holds for every x E (O, 1] . Hence Tn is dominated by Bn-
The classical estimates for the Bernstein operators on C([O, 1]; R) give 

1 
asn(x) = (Bn(P!),x) = x(l - x) • -

n 

since p!(t) = (t - x)2, for a.ll t E [O, l]. Hence the following estimates hold for the 
Bernstein operators Tn on C([O, 1 ]; E): 

ll(Tnf,x) - f(x)IIE $ [l + x(l - x))w(f;u-112) 

for each x E [O, 1] and so 

IITnf - /li $ ~w(/; n-112) 

for ali n 1, since x(l - x) $ 1/4 holds for ali x E [O, 1). 
To generalize this example, let X be a compact Hausdorff space. Let J be a 

finite set, and for each k E J, let t1,; E X and ~A: E C(X; C(E)) be given. Define an 
operator T: C(X;E)-+ C(X;E) by setting 

(1) (Tf,x) = E(~k(x),J(tA:)) 
kEJ 

for every / E C(X; E) and x E X . Then T is dominated by the linear operator 
S: C(X; R)-+ C(X; .IR), where 

(2) (Sg, x) = E ','k(x)g(tk) 
kEJ 

for every g E C(X; JR) and x E X, and <p1c E C(X; E) is the function 

'Pk(x) = ll•1c(x)ll,x E X. 
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Since 'Pk O, the linear operator S is positive and 

ll(T /, x)IIE < L ll(•A:(x), /(t,:))IIE 
lcEJ 

< L ll•1i(x)ll • llf(t1t)IIE 
A:EJ 

- (S(11/IIE),z), 

for all z E X, the operator T is indeed dominated by $. lf we assume that 

(3) L ll•A:(x)II = 1, x E X, 
A:EJ 

holds true, then Se.o = e0 , where e0(t) = 1, for ai] t E X. Now, if we also assume 
that 
(4) L c)A:(x) = idE, x E X, 

kEJ 

holds true, then T preserves the constants. For example, let VJA: E C(X; R) be a 
non-negative continuous function, and let 

(c)A:(x),v) = VJA:(x)v 

for every v E E. Then E C(X;.C(E)), and cpa,(x) = = t/>1t(z) and 
therefore 
(5) E 1P1t(x) = 1, z E X, 

implies both (3) and (4). Such operators are called of interpolation type. Clearly, the 
Bernstein operators are examples of such operators. Notice that, for ea.ch x E X, 
where (X,d) is a compact metric space, 

o:s(x) = E'Pk(x) • p!(tk) 
kEJ 

E 'Pk(x)(d(x, t1c)) 2• 
1:EJ 

When X a compa.ct subset of some normed spa.ce G, then 

os(x) = L cp4,(x) • lltA: - xllb, x E X. 
A:eJ 

lf we have a sequence of such opera.tors, then 

o:s,.(x) = L Cf)A:,n(x) • lltA:,n - xlli, X E X, 
A:EJ(n) 
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where, for each k E J(n),t1c,n E X and Cf'k,n E C(X;R) with Cf'k,n O. By Theorem 
1, as"(x)--+ O, uniformly on x E X, impües T,J--+ J for each / E C(Xi E). When 
X is also convex, then we may apply Theorem 3 to obtain estima.tes on the rate of 
convergence of ll(Tnf, x) - f(x)IIE-+ O in terms of the modulus of continuity of J. 
For example, suppose X is the standard m-simplex 

m 
X={(x1, ... ,xm)EDr; Exi~l, Xi~o, i=l, ... ,m}. 

i=1 

The n th Bernstein opel'ator B" on the simplex X is a.n Õperator of interpolation type 
defined as follows. Let J(n) be the finite set of ali m-tuples of non-nega.tive integers 
k = (k1, ... , km) such that k1 + ... +km n. Now if k E J(n), the point 

k (k1 km.) --- - -tk,n - - , • • ·, . n n n 
belongs to X. The functions cpk,n are defined as follows 

l"• .• (x) = (:)x'(l - jxl)•-1•1 

( n) n! 
k = (ki)!(k2)!. .. (km)!(n - lkl)! 

lkl = k1 + k2 + • • • + km 
lxl =Xi+ X2 + ... + Xm. 

Then (eee Ditzian [5], p. 297), 

(i} L 'Pk,n(x) = l, 
kEJ(n) 

(ii) L li~ - xll2cpk,n(x) = !_ Êxi(l - Xi), 
.kEJ(n} n n i=l 

the norm in (ii) being the Eudidean norm on Ir'. Hence, if we define 

(1',J,x) = L 'Pk,n(x)J(~) 
A:EJ(n) 

then, by Theorem 3, we get 

[ 1 1 m ] ll(Tnf,x) -f(x)I IE $ l +@ ·;; ~xi(l - xi) w(/;6) 
i=l 
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and 

ll(Tnf,x)- f(x)IIE :5 (1 + f:xi(l - xi)]w(/;n-112), 
•=1 

IITnf - /li :5 ( 1 + : )w(f; n-112 ). 

To give further examples, let us consider the case of integral operators. Assume 
that E is a Banach space, and let µ be a positive Radon mea.sure on the compact 
metric space (X,d) and let Kn : X x X-+ IR be a positive continuous function such 
that 

fx I<n(x, t)µ(dt) = 1, for all x E X. 

Define a positive linear operator Sn on C(X; IR) by setting 

(Sng, x) = l I<n(x, t)g(t)µ(dt). 

Then Sn is a positive linear operator such tha.t Sn( e0 ) = e0 • By means of the 
Bochner integral, define a linear operator Tn on C(X; E) by setting 

(Tnf, X) = l Kn(x, t)J(t)µ(dt), 

for every J E C(X; E). By the properties of the Bochner integral, we ha.ve 

ll(Tn/,x)IIE < l Kn(x,t)llf(t)IIE • µ(dt) 

- (Sn(IIJIIE),x) 

for every x E X. Hence (*) of Definition 2 is satisfied and Tn is dominated by Sn. 
ln this case 

§4. Quantitative estimates for differentiable functions 

If n is an open subset of some normed space G, then C1(íl; E) denotes the set 
of all functions f : n -+ E which are continuously differentiable on n. This means 
that for each x E n, the derivativeof f a.t the point x, written DJ(x), exista and the 
ma.pping x E n 1-+ Df(x) is continuous. Reca.ll that DJ(x) is a continuous linear 
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mapping of G into E, i.e. Df(x) E l.(G,E), and IIDJ(x)II denotes its normas an 
opera.tor: 

IIDJ(x)II = sup ll(DJ(x),v}IIE• 
IMla~l 

We shall need the Mean Value Theorem for such mappings. It states that 

llf(t) - f(x)IIE $ llt - xllo • sup{IID/(v)ll;v E J} 

where J is the segment joining the two points x and t, i.e., J = { v E G; v = 
,\t + (1 - ,\)x,O $ ,\ $ l}. (See Theorem (8.5.4) of Dieudonné (4].) 

Theorem 4. Let X, S and T be as in Theorem !!. Let íl be an open subset o/ G 
containing X and let f E C1(íl; E). Then 

1 
ll(T/,x)- f(x)IIE $ IID/(x)II • fJs(x) + [fJs(x) + t)'.s(x)]w(DJ,«5), 

for every x E X and ô > O. 

Proof. Since ll(T/,x) - /(x)IIE $ (S(II/ - /(x)IIE),x), it suffices to estima.te 
(S(llf - f(x)IIE), x). Now, for each t E X, 

(1) 11/(t) - /(x)IIE $ ll(D f(x ), t - x)lle + 11/(t) - /(x) - (D f(x), t - x)IIE• 

Consider the mapping g(t) = {D/(x),t - x}, t E X. We have llg(t)IIE < 
IID/(x)ll • llt - xlla, for all t E X. The positivity of S implies 

(2) (S(ll9IIE), x) $ IID f (x )li • /3s(x ). 

Consider the mapping h(t) = f(t) - f(x)- (DJ(x),t- x), t E X. We have by the 
Mean Value Theorem 

llh(t)IIE $ llt - xlla • sup IIDJ(v) - Df(x)II, 
vEJ 

where J C X is the segment joining the two vectors t and x in X. For every v E J 
we obtain 

IIDJ(v) - Df(x)II $ w(Df; llv - xlla) 

$ w(D f; llt - xlla) [ 1 + 1 llt - xllo]w(D J; 6), 
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for any c5 > O. Hence 

li/ (t) - f(x) - g(t)lls [11t - xllG + 111t - xlli ]w(D f; c5), 

and therefore 

1 (3) (S(llf - f(x) - glls),x) [,8s(x) + 6os(x)]w(D/;c5). 

From (1), {2) and (3) we- get 

1 
(S(llf-/(x)IIE),x) IID/(x)II • /Js(x) + [,8s(x) + sºs(x)]w{D/;c5). 

o 

Deflnition 4. Let S be a linear operator on C(X; IR), and let T be a linear operator 
on C(X; E). Let cp E E· be a continuous linear fuoctional. We say that T and S 
are cp-commutative if 

(cp,(Tg,x)) = (S(cpog),x) 
for every x E X and g E C(X; E). When T and S are cp-commutative for every 
cp E E*, then we say tbat T and S are E* -commutative. Wheo S is positive, thi• 
implies that Tis dominated by S. 

Theorem 5. Let X, S and T be as in Theorem 2. Assume that 
{i) T and S are E* -commutative, 
{ii} St/J = 1P, for every t/; E G•. 

Let O be an open subset of G containing X and let f E C1(0; E). Then 

1 
ll(TJ,x) - /(x)IIE [/Js(x) + sºs(x)]w(DJ;c5) 

for every x E X and every ô > O. 

Proof. For every t and :r of X we may write 

J(t)- f(x) = (DJ(x),t - x) + (/(t)- t(x)- (Df(x),t - x)]. 

Let cp E E*, ll'PII 1 be given. Consider the mapping t/; = cp o [D/(x)). Then 
t/J E G•, since Df(x) E C,(G, E). Let g = '1/J- '1/J(x) = '1/J- t/;(x)e0 , where e0(t) = 1 
for all t E X. By (ii), and S(e0 ) = e0 , we get 

(Sg,x) = (St/J,x) - '1/J(x) = '1/J(x) - '1/J(x) = O. 
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Let h = r.p o f E C(X; IR). Then 

(Sh,x) - h(x) - (S(h - h(x) - g),x) 
= (S(h - h(x) - TjJ + 1J,(x)), x). 

Now 

l(Sh,x) - h(x)I = IS(h - h(x) - VJ + i/J(x)), x)I 
:5 (S(lh - h(x) - t/J-+ 1/J(x)I), x), 

since S is a positive linear operator. For every t E X we ohtain 

lh(t) - h(x) - ip(t) + ip(x)I = jtp(J(t) - f(x) - (Df(x),t - x))I 
$ IIJ(t)-f(x) - (Df(x),t - x)IIE $ llt - xl)a.supllD/(v)- D/(x)II, 

vej 

where J C X is the segment joining the two vectors t and x in X . For every tJ E J 
we have 

IIDJ(v) - D/(x)II < w(Df; llv - xlla) :5 w(Df; llt - xlla) 

< ( l + illt - xlla )w(D f; 6) 

for any 6 > O. Hence, for all t E X we can conclude 

lh(t)- h(x) - tJ,(t) + t/J(x)I :5 [llt - xlla + 111t - xlli]w(Df; 6). 

Therefore, 

l (S(lh - h(x) - VJ + tJ,(x)l) , x) :5 [/Js(x) + 6.cws(x)]w(DJ; 6) 

and so 
l(Sh ,x) - h(x)I < [/Js(x) + }as(x)]w(Df;8). 

Since h = v, o/, we bave by (i), 

and therefore 

(Sh, x) - h(x) - (S(v, o J), x) - ({'(i(x)) 
- (r.p,(Tf,x)-f(x)) 

1 
l(cp,(TJ,x)- /(x))I :5 [/Js(x) + 6os(x)}w(DJ;6) 
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for ali <(J E E•, ll<(JII 1. By the Hahn-Banach Theorern, it follows tha.t 

1 
ll(Tf,x)-f(x)IIE [.Bs(x) + 6'l'.s(x)]w(D/;;«5). 

Remark. Both the operators of interpola.tion type a.nd the integral operators satisfy 
the hypothesis (i) of Theorern 5. Indeed, if x E X and 

(Tf,x) = L<(Jk(x)f(t1c) 
kEJ 

and <p E E•, then 

(<(J,(TJ,x)) - L<(Jk(x)(<(J,f(t1.)) 
keJ 

= E <(Jk(x)(<p o f)(tk) 
kEJ 

- (S(<(Jo/),x), 

for every / E C(X; E). On the other ha.nd, if 

(T.f, x) = fx K(x, t)f(t)µ(dt) 

then, by the properties of the Bochner integral 

(<f', (T f, x)) = (<f', i K(x, t)f(t)µ(dt)) 

= fx K(x, t)(<p, /(t))µ(dt) 

= (S(<pof),x). 

Hence T and S are E* -cornmutative. 
Let us now consider hypotbesis (ii) of Theorem 5. For the operators of interpo-

la.tion type it mea.ns that 
L<f'1c(x)tJ,(tk) = tJ,(x) 
kEJ 

for every x E X and tJ, E G•. This is the case with the Bernstein opera.tora on 
C([O, 1]; E), since in this case each tJ, E G• is of the form 

tt,(t) = at,t E E 
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for some a E JR, and if we set e1(t) = t for every t E JR, it is known that Bne1 = e1 

(see, e.g. Lorentz (6)). The sarne is true for the Bernstein operators on C(X; E), 
where X is the standard simplex on Rm. Indeed, it is known that 

where 1r; is the j-th projection of Em onto E. (See Ditzian (5].) Now each t/J E 
( R7' )* is of the form 

m m 

t/;(t) = L a;t; = L apr;(t), 
i=l j=l 

for ali t E JRm. Hence Bn t/J = t/J for ali linear mappings t/J : /Rm -+ JR. 
For the integral operators, hypothesis (ii) of Theorem 5 means tha.t 

fx I((x,t)l/)(t)µ(dt) = t/J(x) 

for ali x E X and ,/J E G•. For example, if X e R, we must have 

fx l((x, t)tdt = x 

for a.li x E X, or L K(x, t)(t - .r)dt = O. 

Theorem 6. Let X be a compact and convex subset of some normed space G, and 
let {Sn}n~l and {Tn}n~l be as in Theo,-em 9. Assume that, for each n 1, 
(i) Tn and Sn are E* -commutative, 
(ii) Sn ,p = ,p, J or eve 1-y t/J E G*, 
(iii) asn (x) A(x )n- 20-, .Bsn (x) B(x )n-ª, holds for every x E X and n 1, and 

for some functions A, BE C(X; IR) and for some o> O. 
Then 

ll(Tnf, ,e) - f(x)IIE [A(x) + B(x)]n-()w(Df; n-ª) 

holds for every x E X and n 2: 1, and for every f E C1(0; E), where n is some 
open subset of G containing X. 

Proof. Make h = n-0 in Theorem 5, applied to each pair Sn and Tn, n 1. e 

Corollary 3. For the Bernstein operators on C([O, 1]; E) we have 
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for every f E 0 1(0; E),and x E [O, 11, where O is some open subset of R containing 
[O, 1). Consequently, 

Proof. We know that (.8B"(x))2 ªB"(x), so .8B .. (x) (aB .. (x))1/2 = 
(x(l - x))l/2.n-1/2_ a 

Corollary 4. For the Bernstein operators on C(X; E), where X is the standard 
m-simplex on IR"", we ha've --

for every f E 0 1(0; E) and x E X, where íl is some open subset of IR"" containing 
X. Consequently, 

Proof. As in Corollary 3 we have 

Remark. Notice that in the proof of Theorem 4 we get the estimate (2), which 
involves f3s(x) = (S(px), x ), where Px(t) = llt - xlla for ali t E X. When X C E, 
sometimes a better estimate can be obtained, since in this case Px(t) = lt - xi and 
if we denote by e1 the identify function on IR, then Px( t) = le1 ( t - x) 1 and 

For example, if S is the n th Hermite-Fejér operator Hn on C([-1, l};lR), defined as 

( 2k - 1 ) where t1e n = cos --1r , k = 1, 2, ... , n, are the zeros of Tn, the Chebyshev 
' 2n 

polynomial of degree n 
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Tn(x) = cos(n are cos x) 

for x E (-1, 1]. We have, by De Vore (3, pg. 43], 

{1) 

wherea.s 

(2) 
and so (1) is a better estimate for n 4. 
Hence the better estimate for the sequence of Hermite-Fejér operators Hn on 
C([-1, 1]; E), is as follows: 

ll(Hnf , x) - f(x)IIE 2n-1ITn(x)l,IID.f(x)II+ 

+[ITn(x)I + 1Tn(x)l2]n-112 .w(Df;n-112 ). o 

§5. Korovkin Systems 

Definition 5. Let A be a class of linear operators on C(X; E). A subset K of 
C(X; E) is called a Korovkin system for A if, for every uniformly equicontinuous 
sequence {Tn}n;?:l of linear operators Tn E A the following holds: 

(*) Tng - g for all g E K , impliec, Tnf - f for ali .f E C(X; E) . 

When E = lR and A is the cla.ss of all positive linear operators on C(X; JR) we 
obtain the usual definition of Korovkin systems in C{X; JR). 

Deflnition 6. Let S be a linear operator on C(X; IR,) . A linear operator T on 
C(X; E) is said to be S-regular if 

(**) T(g © v) = S(g) @v, for ali g E C(X; IR,) and v E E. 

We say that 

(a) Tis regular, if it is S-regular for some linear operator S on C(X; E); 
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(b) Tis monotonicaJly regular, if it is S-regula.r for some positive linear opera.tor 
S on C(X;R). 

Remark. If T is monotonically regular, then it is S-regular for some positive 
linear operator S, and T and S are c,o-commutative for each c,o E E•. Hence T is 
domina.ted by S. 

For exa.mple, all operators of interpolation type and all Bochner integral opera.tora 
defined in §3 a.re monotonically regular. 

Theorem 7. Let /( C C (X; E) be a non-empty subset such that for some continu-
ous linear functional c,o E E•, the set K ( c,o) = { c,o o g; g E K} is a K orovkin system 
for positive linear operators on C(X; E.). Then /( is a Korovkin system for linear 
operators on C(X; E) which are monotonically regular . 

Proof. Let {Tn}n~l be a uniformly equicontinuous sequence of monotonically reg-
ular linear operators on C(X; E) . By Definition 6, for eac-h n 1, there is a 
positive linear operator Sn on C(X; E.) such that Tn(h ® u) = Sn(h) ® u, for ali 
h E C(X;R.) and u E E, and moreover {c,o,(Tnf,x)} = (Sn(c,oo/),x), forevery 
x E X and f E C(X; E). It is easy to see that {Sn}n~l is then a uniformly equicon-
tinuous sequence. Assume that Tng -+ g for every g E K. Let h = c,o o g, for 
g E K. Then (Sn(h), x) = (Sn(C,O o g), x) = {c,o, (Tng, x)) for every x E X. Now 
(Tng, x) --+ g(x), uniformly on x E X. Hence (Sn(h), x) -+ h(x), uniformly on 
x E X. Since K(c,o) is a Korovkin system for positive linear operators on C(X; E.), 
we conclude that Snh -+ h, for ali h E C(X; R). Let f E C(X; E) ande > O be 
given. By uniform equicontinuity of {Tn}n>i, there exists fJ > O, which we may 
assume to satisfy fJ < e/3, such that ll/1 - /211 < .i implies IITn/1 -Tn/211 < e/3, for 
ft,/2 E C(X;E). Since C(X;JR) ®Eis uniformly dense in C(X;E), there exists 
h E C(X; R) ® E such that li/ - hll < ô. Suppose h is of the form 

i=l 

where g, E C(X;JR) and vi E E,i = 1,2, ... ,m. Since Sn(gi)--+ 9i for each 
i = 1, 2, ... , m, it follows that 

m m 

Tn(h) = L Sn(9i) ® Vj -+ L 9i ® Vj = h. 
i=l 

Hence, for some n0 we have I ITn( h )-hll < e/3, for all n n0. Notice that 11/-hll < 
.i implies IITn(/) - Tn(h)II < ê/3 for all n. Therefore 

IITn(/) - fll ::; IITn(J) - Tn(h)II + IITn(h) - hll + llh - /li< ê 
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for all n n0 . This ends the proof that Tnf -+ /, for ali / E C(X; E) and so K 
is a Korovkin system for the class of all monotonically regular linear operators on 
C(X;E). a 

As a corollary we obtain the following generalization of a result of M. Weba. (See 
Theorem 3.2, [10)) 

Theorem 8. Let K C C(X; E) be a subset containing a constant Junction 
Vo E E, v0 -:f. O. Let cp E E* be such that cp(v0 ) ...:.. 1. Assume that, for each 
t0 E X there exísts g in lhe linear span o/ K such that cp o g O and <p(g(t)) = O if, 
and only i/, t = t0 . Then K is a I<orovkin system for linear operators on C(X; E) 
which are monotonically regular. 

Proof. Let K(<,t.>) = {cpog;g E/(}. Let H be the linear span of /((<p) in C{X;R). 
Then H is poínt sepa.rating an<l contains the constant function 1. The hypothesis 
made implies that each t0 E X belongs to the Choquet boundary 8HX. Hence 
X= ÔHX and so K(cp) is a Korovkin system in C(X; TR) for positive linear opera.-
tors. (See [1] or [2].) It. rema.ins to apply Theorem 7. 0 

Theorem 9. Let /( C C(X; IR,) be a /\'orovkin system for positive linear operators 
on C(X; .ll) and let vo E E, v0 #- O. Then {g ® v0 ;g E K} is a I<orovkin system for 
the class of ali monotonically regular linear operators on C(X; E). 

Proof. Choose cp E E* such that ip( v0 ) = 1. Then { <p o (g ® v0); g E K} = K, and 
therefore we may apply Theorem 7 to conclude that {g ® v0 ; g E K} is a Korovkin 
system for the class of all monotonically regular linear operators on C(X; E). 0 
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