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It is human to feel imperfect. That was what you wanted, above all else: to be human.
And now that is what you are. The imperfections - the weaknesses - the imprecisions -

they are the very things which define humans as human. And which drive them to
transcend their own failings.

— Isaac Asimov



Abstract

Speech-driven facial animation, a technique employing speech signals as input,
aims to generate realistic and expressive talking head animations. Despite advancements
in talking head synthesis methods, challenges persist in terms of achieving precise control,
robust generalization, and adaptability to various scenarios and speaker characteristics.
Additionally, the majority of existing approaches are primarily tailored for a restricted
range of languages, with English being the predominant focus. This work introduces a novel
two-stage framework for talking head generation, combining the strengths of Transformers
and Generative Adversarial Networks (GANs). In the first stage, the transformer-based
model extracts rich contextual information from the audio speech input, generating facial
landmarks. In the second stage, we employ a GAN-based framework to translate the
facial representations into photorealistic video frames. This framework is designed to be
language-agnostic. The proof-of-concept model was trained using a Brazilian Portuguese
audiovisual dataset, illustrating its initial application. The work is based on the hypothesis
that similar effectiveness can be achieved for other languages when trained with respective
language-specific datasets. This framework separates the modeling of dynamic shape
variations from the realistic appearance, partially addressing the challenge of generalization.
Moreover, it becomes possible to assign multiple appearances to the same speaker by
adjusting the trained weights of the second stage. Objective metrics were used to evaluate
the synthesized facial speech, showing that it closely matches the ground-truth landmarks.
The results from generalization tests highlight the framework’s potential for wide-ranging
applications in creating talking head videos. By demonstrating an adept ability to
generalize across languages, genders, and speech speeds, the framework sets a promising
precedent for future advancements in the field. This paves the way for developing more
flexible and efficient systems for synthesizing talking head videos.

Keywords: talking head, image-based animation, speech-driven



Resumo

A animação facial orientada por fala, uma técnica que emprega sinais de fala como
entrada, tem como objetivo gerar animações realistas e expressivas de cabeças falantes.
Apesar dos avanços nos métodos de síntese de falantes, persistem desafios em termos de
obtenção de controle preciso, generalização robusta e adaptabilidade a vários cenários e
características do locutor. Além disso, a maioria das abordagens existentes são implemen-
tadas para uma gama restrita de idiomas, sendo o inglês o idioma predominante. Este
trabalho apresenta uma nova estrutura de dois estágios para a geração de animações facias
2D, combinando os pontos fortes das arquiteturas Transformers e das Redes Adversariais
Generativas (em inglês, Generative Adversarial Networks, ou GANs). No primeiro estágio,
o modelo baseado Transformer extrai informações contextuais ricas da entrada de fala
de áudio, sintetizando pontos de referência faciais. Na segunda etapa, emprega-se uma
modelagem baseada em GAN para traduzir as representações faciais em quadros de vídeo
fotorrealistas. Esta estrutura separa a modelagem de variações dinâmicas de forma da
aparência realista, abordando parcialmente o desafio da generalização. Além disso, torna-se
possível atribuir múltiplas aparências ao mesmo alto-falante ajustando os pesos treinados
do segundo estágio. Métricas objetivas foram usadas para avaliar a fala facial sintetizada,
mostrando que elas se aproximas das métricas de vídeos reais gravados. Esta estrutura
foi projetada para ser independente de linguagem. O modelo de prova de conceito foi
treinado usando um conjunto de dados audiovisuais do português brasileiro, ilustrando
sua aplicação inicial. O trabalho é baseado na hipótese de que este trabalho semelhante
introduz uma nova estrutura de dois estágios para geração de falantes, e a eficácia pode
ser alcançada para outras linguagens quando treinada com os respectivos conjuntos de
dados específicos da linguagem. Os resultados dos testes de generalização destacam o
potencial do abordagem proposta para aplicações abrangentes na criação de vídeos. Ao
demonstrar uma capacidade hábil de generalizar entre idiomas, géneros e velocidades de
fala, a estrutura estabelece um precedente promissor para avanços futuros neste campo.
Isso abre caminho para o desenvolvimento de sistemas mais flexíveis e eficientes para
sintetizar vídeos de animações faciais 2D.

Palavras-chave: animação facial 2D, animação baseada em imagem, orientada
por fala.
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Chapter 1

Introduction

The continuous evolution of human-machine interfaces is rapidly driving us
towards more natural and intuitive ways of interacting with computational devices. Re-
markable progress in artificial intelligence, including natural language processing, visual
computing, and speech processing, along with new interaction scenarios like smart homes,
autonomous vehicles, and the metaverse, is fueling the creation of advanced virtual assis-
tants. These assistants can conduct natural conversations in various contexts, offering a
more intuitive user experience (DIEDERICH et al., 2022; PUSHPAKUMAR et al., 2023).

In Computer Graphics, “talking heads” are animated virtual human heads that
mimic human speech, facial expressions, and lip movements (MATTHEYSES; VERHELST,
2015). They can have a wide range of applications across various fields. In education,
they may serve as virtual assistants that enhance learning by adding visual engagement
to spoken content. They can improve accessibility in communication for those with
limited reading or writing skills, aiding people who are illiterate or less familiar with
technology by breaking down information into simple, interactive explanations. In the
entertainment sector, talking heads create dynamic, interactive virtual characters, offering
a more personalized and immersive experience for users (WANG et al., 2022).

However, the challenge of creating videorealistic facial animations, so realistic
they could be mistaken for real video footage, underscores the complexity of human
visual speech processing — a research frontier yet to be fully explored. Bridging the gap
between synthesized and authentic human expressions and natural movements remains a
persistent goal in this rapidly advancing field. This chapter starts by outlining the problems
associated with synthesizing speech-driven talking heads, including the motivations behind
this work and its challenges. We then discuss our approach, research question, and this
study’s primary goals and contributions. Lastly, we outline the text structure, providing a
roadmap for the reader to navigate the nuances of our work.
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1.1 Problem Definition

In speech-driven facial animation, making realistic and expressive talking heads
using speech signals as the primary input presents a multifaceted set of challenges.

Human speech perception is complex and naturally bimodal, as evidenced, for
example, by the well-known McGurk effect established several decades ago (MCGURK,
1976). It highlights that human speech perception relies not solely on auditory information
but also significantly on visual cues, such as lip movements. When there is a discrepancy
between what we hear (auditory information) and what we see (visual information), it can
confuse or reduce the intelligibility of speech, which is why synchronizing the audio with
the corresponding lip movements in videos is crucial. Discrepancies like this are especially
noticeable in poorly dubbed movies or video calls with latency issues.

Despite significant advancements in synthesizing talking heads, the pursuit of
achieving meticulous control, robust generalization across diverse scenarios, and adaptabil-
ity to the unique characteristics of different speakers remains filled with challenges. In other
words, we may be managing to drag ourselves out of the uncanny valley1. Still, experiments
such as the revival of internationally known Brazilian singer Elis Regina in a Volkswagen
Kombi advertisement aired in Brazil in 2023, “sing” us that there is still a challenging road
ahead (Figure 1.1). The core issue lies in capturing the nuanced interplay between speech
and facial movements, which varies significantly across languages and individual speakers.
This variability demands a model capable of understanding and replicating the subtle
dynamics and texture that define realistic and natural-looking facial animations. The
quest for a solution to overcome these barriers drives the need for innovative approaches
that leverage the latest advancements in machine learning techniques.

1.2 Motivation

The fusion of human communication nuances with technological interfaces has
always been a frontier of digital innovation, particularly in the domain of speech-driven
facial animation. As digital interactions evolve to be more immersive, realistic talking
head animations capable of mimicking human-like expressions offer enhanced affinity in
interactions (SEYMOUR et al., 2021). This demand is not just driven by the entertainment
industry but also by applications in virtual reality, telepresence, language learning platforms,
and assistive technologies, underscoring the versatility and societal impact of advancements
in this field (ZHEN et al., 2023).

1The term “uncanny valley” was coined by Masahiro Mori, in 1970 (MORI et al., 2012). Based on
informal observations, Mori claimed that human affinity for robots and toys increases as realism increases.
However, when a robot or toy resembles and imitates a real human being but falls short of perfection, the
human observer feels disgusted. The term is also adopted to refer to avatars, animations, and synthetic
videos.
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Figure 1.1: Uncanny Valley example. Frames from a Brazilian advertisement employing
facial animation techniques to replicate the renowned singer Elis Regina. The frames do
not exhibit natural textures. Despite its quality, this advertisement generated significant
controversy due to the use of artificial intelligence techniques to simulate the iconic singer,
who has already passed away. Extracted from (VOLKSWAGEN, 2023).

This research is motivated by the limitations of existing speech-driven facial
animation methods, particularly their lack of language diversity. The prominence of English
in existing models marginalizes non-English speakers and limits the animations’ culture.
Brazilian Portuguese, the sixth most spoken language globally, represents a significant
linguistic demographic currently underserved in the realm of talking head animations. By
focusing on this language, our work seeks to contribute to a more inclusive and diverse
technological landscape (PORTUGUESA, 2024).

Moreover, our framework utilizes advanced machine learning techniques, specifi-
cally Transformers and Generative Adversarial Networks (GANs), aligning with the core
principles of MultiModal Large Language Models (MM-LLMs) (ZHANG et al., 2024). This
integration is essential for addressing the fundamental MM-LLMs challenge of effectively
connecting models across different modalities—such as speech and video in our case—to
enable collaborative inference. By efficiently combining audio inputs with visual outputs,
our framework enhances the precision and adaptability of talking head synthesis and
exemplifies the MM-LLMs approach to achieving robust generalization across different
speaker characteristics.

1.3 Challenges

This research addresses the significant challenges in creating realistic and expres-
sive talking head animations from speech signals, highlighting the complexity of blending
linguistic details with visual elements. The key challenges addressed in this work are as
follows:

• Speech to Facial Landmarks: Developing a model capable of capturing the
intricate relationship between speech and facial movements by synthesizing facial
landmarks that maintain temporal coherence.
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• Realism and Expressiveness: Finding a balance between technical accuracy in
lip synchronization and facial movements and the expressiveness inherent in natural
human interactions.

• Performance Evaluation: Establishing objective metrics for comparing synthesized
facial speech to ground-truth videos is vital to accurately measure the model’s success.

1.4 Our Approach

When analyzing the deep learning methods of talking head generation, it is
possible to observe two overall framework architectures employed in the synthesis process:
end-to-end (one-stage) or two-stage (see Chapter 4).

In this work, we adopt a two-stage framework, more precisely, a novel speech-
driven two-stage framework with the Brazilian Portuguese language as a case study. This
proposed framework leverages the contextual processing abilities of Transformers to map
raw audio to facial representations, combined with the generative power of GANs to
transform these representations into photorealistic video frames, which is illustrated in
Figure 1.2.

Figure 1.2: Framework Overview. The Transformer-based model captures a sequence
of dynamic facial shapes from the raw audio. These facial shapes are transformed into
realistic video frames by a GAN-based model.

The two-stage approach — separating the modeling of dynamic facial shape
variations from the generation of realistic appearances — proposes a promising avenue
towards enhancing the adaptability and generalization of talking head synthesis. Therefore,
the practical realization of this potential framework and its empirical validation through
objective metrics and real-world applicability forms the core problem our research seeks to
solve.

The first stage is an audio-to-face representation, for which we employed the
FaceFormer model implementation (FAN et al., 2022). The second stage is a neural
renderer, the vid2vid model implementation, which converts face representations into
realistic visual-speech frames (WANG et al., 2018).

FaceFormer modeling approach adopts a Transformer encoder-decoder architec-
ture to process raw audio data and produce a sequence of animated Three-Dimensional
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(3D) face meshes (VASWANI et al., 2017; FAN et al., 2022). In our model modification, we
changed the motion encoder dimensions to allow FaceFormer to produce Two-Dimensional
(2D) landmarks with dimensions of 68 × 2. This generation depends on the audio’s
contextual information and the sequence of previously predicted facial landmarks.

1.5 Research Questions

We have formulated a series of questions to encapsulate the motivation behind
our research and outline the intended approach for achieving our goals in this dissertation.

• Considering that the FaceFormer model was originally designed to synthesize 3D

meshes, our central research question is: How does FaceFormer model perform
in translating speech audio signals to realistic dynamic behavior of 2D
facial landmarks?

• Can our framework synthesize high-quality talking heads with the available
dataset volume?

• How far can our framework generalize to other speech agents and styles?

1.6 Objectives

This research aims to advance the field of speech-driven facial animation by
developing a novel framework that addresses the challenges of realism, expressiveness, and
generalization, with Brazilian Portuguese as study case. To achieve this aim, the study is
guided by the following specific objectives:

• To explore advanced neural techniques for facial landmark synthesis from
speech: Investigate and implement cutting-edge neural network approaches to
effectively capture and convert complex speech audio signals into dynamic facial
expressions. This objective focuses on advancing the state-of-the-art in sequence-to-
sequence speech processing techniques.

• To generate adaptable and photorealistic talking head animations: Develop
and utilize neural architectures, potentially incorporating elements like Genera-
tive Adversarial Networks, to transform synthesized facial expressions into lifelike
and adaptable video sequences. This involves refining the technology to support
customization and versatility in visual outputs.

• To assess and framework through rigorous evaluation: Implement a robust
evaluation strategy using a blend of objective metrics to quantify the performance and
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generalization capabilities of the developed framework. This will facilitate continuous
improvements and ensure the effectiveness of the framework in synthesizing realistic
talk show videos.

• To explore the model generalization across different speakers: Explore the
framework capacity to generalize across different speakers.

1.7 Contributions

The main contributions of this work are:

• Novel Framework for Speech-Driven Facial Animation: We have devel-
oped an innovative two-stage framework that uniquely integrates the capabilities
of Transformer-based models and GANs. In the first stage, Transformer models are
employed to meticulously extract facial landmarks from speech, capturing subtle
expressions and nuances. The second stage utilizes GAN-based models to transform
these landmarks into dynamic and photorealistic facial animations.

In our refined approach, we adjust the output of the FaceFormer model, which
originally generates a comprehensive face mesh consisting of five thousand 3D points.
While this level of detail provides high fidelity, it comes with significant drawbacks:
capturing such a detailed 3D mesh requires specialized equipment and extensive time
commitments from actors, making the process expensive and logistically complex.
Instead, we simplify this output to focus on 68 critical 2D facial landmarks. This
transformation significantly streamlines the process by reducing the complexity
and computational demand. To achieve this, we employ a specialized method that
efficiently extracts these key landmarks from the photorealistic 2D images. This
method involves identifying and isolating essential points that represent core facial
features—such as the eyes, nose, mouth, and jawline—effectively capturing the
expressive elements of the face with far fewer data points. This not only makes the
process more efficient but also tailors the output to better suit real-world applications
where simplicity and speed are valued alongside accuracy.

The capacity of the FaceFormer to accurately isolate facial landmarks is essential
not only for synthesing realistic facial animations but also offers significant value
for broader applications through its adaptability and reusability. For instance, the
output of the FaceFormer can be repurposed beyond digital animation to enhance
interactions in robotic environments. Robots equipped with the capability to interpret
and replicate human facial expressions can utilize the 2D landmarks generated by
the FaceFormer.
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• Language Diversity and Method Generalization: Our framework advances
language diversity in talking head synthesis by effectively incorporating the diverse
viseme set from CH-Unicamp dataset, which captures a wide range of phonetic
nuances, to synthesizes a Brazilian Portuguese talking head. This methodological
foundation is not only applicable to Brazilian Portuguese but also engineered to be
replicated across any language that shares a similar diversity in viseme represen-
tation. By providing a reproducible recipe in our open-source code, we facilitate
the adaptation of our framework to additional languages, broadening its utility and
enhancing its linguistic versatility.

• Open-Source Code and Demo Videos: As part of our commitment to trans-
parency and community engagement, we have made the source code and demo videos
publicly available. This not only facilitates reproducibility and further research
but also emphasizes our dedication to open science. The code can be viewed at
<ai-unicamp.github.io/2StageTalkingHead>.

This work also resulted in the following publication:

• Brayan Bernardo and Paula Costa. 2024. A Speech-Driven Talking Head based
on a Two-Stage Generative Framework. In Proceedings of the 16th International
Conference on Computational Processing of Portuguese, pages 580–586, Santiago
de Compostela, Galicia/Spain. Association for Computational Linguistics (ACL)
(BERNARDO; COSTA, 2024).

1.8 Applications

The development of speech-driven talking heads holds a significant potential for
a wide range of applications. By providing a more natural and engaging way to interact
with machines, these technologies can transform user experiences across various fields.
This section explores the practical applications of speech-driven talking heads, illustrating
the broad impact of this research.

• Customer Service Automation One of the most immediate applications of
talking heads is in the field of customer service. Virtual customer service agents
can utilize talking head technology to provide users with a more personable and
engaging interaction. This can significantly enhance user satisfaction and efficiency
in resolving queries, especially in scenarios where visual and emotional engagement
plays a crucial role in communication. As virtual assistants in smart homes and
offices, talking heads can manage daily tasks and provide reminders or entertainment,
all while maintaining a visually engaging and interactive presence that enhances

https://ai-unicamp.github.io/2StageTalkingHead/
ai-unicamp.github.io/2StageTalkingHead
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user experience. In sales, talking heads can be used for outreach by simulating
real-life sales pitches and presentations. They provide a consistent and engaging
representation of sales personnel, potentially increasing customer engagement and
conversion rates.

• Healthcare Communication In healthcare, talking heads can be employed to
simplify complex medical instructions or provide personalized patient support. By
delivering information in a visually engaging and empathetic manner, these systems
can improve patient understanding and compliance with medical guidelines, especially
for those with reading difficulties or cognitive impairments. In elderly care, talking
heads can provide personalized care by interacting with patients or the elderly
in a compassionate and engaging manner. They can offer companionship, health
reminders, and assist in daily routines.

• Educational Tools Talking heads can serve as personalized teaching assistants,
offering one-on-one support to students. They can adapt to individual learning
speeds and styles, providing explanations, feedback, and encouragement in a more
interactive way. This can be particularly beneficial in language learning, where the
accurate lip synchronization of talking heads can aid in better pronunciation and
comprehension.

• Entertainment and Media Production Talking heads technology enhances the
entertainment industry by enabling the creation of virtual celebrities and digital
avatars that interact in real-time with audiences, hosting shows and performing
at virtual concerts. This dynamic interaction boosts fan engagement and opens
new possibilities for content delivery. In interactive media, talking heads serve as
narrative drivers or hosts, adapting content to user interactions for a more personal-
ized experience. In gaming, they enhance character development and interaction,
providing more realistic and emotionally engaging characters that react to player
decisions and progress, thereby improving immersion and gameplay experience.

• Virtual Reality Environments Virtual reality environments, designed to provide
the most immersive experiences, can significantly benefit from the incorporation
of talking heads. These avatars can act as guides, instructors, or companions in
VR settings, enhancing the realism of virtual interactions. For example, in a VR
educational program, a talking head could simulate a historical figure, providing
first-person narratives and reacting to a learner’s questions. This not only makes
the educational content more engaging but also allows for a form of interaction that
is closer to real-life conversations.

• Training and Coaching Tools Talking heads can assist in interview preparation
by simulating various interview scenarios. They can provide feedback on responses,
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body language, and speech, helping candidates practice and improve their interview
techniques in a controlled environment. Talking heads can guide employees through
new software, company policies, or training materials for corporate training and
enablement, making the learning process more interactive and engaging. In executive
coaching, talking heads can offer personalized advice and coaching, allowing for
flexible scheduling and privacy, which are crucial for busy professionals.

• Language and Cultural Preservation Finally, talking heads can play a significant
role in language and cultural preservation. By creating virtual avatars that speak less
dominant languages, these technologies can help in teaching and preserving cultural
heritage, making language learning accessible and engaging for new generations.

1.9 Organization

The text is organized as follows. Chapter 2 introduces core concepts about
Transformers and GAN and discusses the current state of the art in talking head generation
systems. This discussion focuses on deep learning approaches, particularly speech-driven
two-stage architectures that utilize landmarks as intermediary representations. Chapter 3
details the resources and tools necessary for building our framework, including the dataset,
landmark extraction method, objective evaluation methods, and computational resources.
Chapter 4 presents the speech-driven, two-stage, landmark-based talking head generation
framework proposed in this work. Chapter 5 presents the results obtained, including an
ablation study, an exploratory study, and discussions. Chapter 6 offers some final remarks
and directions for future work.
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Chapter 2

Basic Concepts and Related Works

This chapter provides an overview of the main model architectures used in this
work and reviews the state of the art in talking head generation systems, focusing on deep
learning methods based on speech-driven two-stage architectures. Section 2.1 explains the
basic concepts of the Transformer model. Section 2.2 introduces GAN. Section 2.3 provides
a historical perspective, introducing the talking head’s appearance, control mechanisms,
and learning process developed in this work. Section 2.4 delves into further aspects of
this work and describes state-of-the-art works related to the current work, summarizing
state-of-the-art methods in terms of the model used, objective evaluation methods, and
the datasets employed. Finally, in Section 2.5, we discuss how the current work relates to
and contributes to existing approaches.

2.1 Transformers

Transformer architectures have significantly impacted the field of deep learning
since their introduction by Vaswani et al. (2017). This innovative architecture has
established new benchmarks in processing sequential data, especially in Natural language
processing (NLP) tasks (LIN et al., 2022). Unlike earlier models that predominantly used
recurrent or convolutional layers, Transformers rely on attention mechanisms (BAHDANAU
et al., 2016). This approach has resulted in substantial enhancements in performance and
training efficiency.

2.1.1 Encoder and Decoder

The standard Transformer model features an encoder-decoder structure designed
to handle a wide range of sequence-to-sequence tasks, where the objective is to transform
an input sequence into an output sequence.

The encoder maps a sequence of symbol representations expressed as X =
(x1, ..., xn), where n denotes the sequence length, into a series of continuous representations,
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which are represented as Z = (z1, ..., zn). In this phase, the encoder captures and encodes
the contextual information present in the input sequence. Upon receiving the continuous
representations Z, the decoder generates the output sequence denoted as Y = (y1, ..., yn),
symbol by symbol. A distinctive feature of the model during this phase is its autoregressive
property. At each step of generating the output sequence, the decoder considers the
continuous representations Z from the encoder and the symbols it has already generated.
The autoregressive characteristic of the decoder ensures that each symbol in the output
sequence is generated with a comprehensive understanding of the preceding elements,
thereby maintaining consistency and context relevance in the output. Both the encoder
and decoder utilize multiple layers, each consisting of self-attention mechanisms and
feed-forward neural networks, to process the data.

2.1.2 Scaled Dot-Product Attention

The attention mechanism allows a neural network to focus on different parts of
the input sequence when performing a task, akin to how humans pay attention to specific
parts of an input when comprehending or responding. It helps the model to weigh and use
the most relevant parts of the input data for making predictions or generating outputs.
The Transformer attention mechanism is built by two components: the Scaled Dot-Product
Attention and the Multi-Head Attention.

To understand the Scaled Dot-Product component, consider an input word
sequence encoded into a set of vectors, typically through an embedding layer, as X =
x1, ..., xn. For each word, three vectors are generated: a Query vector Q, a Key vector K,
and a Value vector V . These vectors are produced by multiplying the word’s embedding
by respective matrices that are trained during the learning process, as illustrated below:

Q = XW Q, K = XW K , V = XW V .

An attention score is computed for each Query-Key pair. This score determines
how much focus the output element should put on each input part. The score is derived by
taking the dot product of the query vector with the key vector of the respective word being
scored. The scores are divided by the square root of the key vectors’ dimension, which
helps achieve more stable gradients. The results are passed through a softmax operation,
determining how much each word will be expressed at the respective position. Finally,
each value vector V is multiplied by the softmax scores, and then these weighted value
vectors are summed up, producing the output of the self-attention layer. The process is
shown visually in Figure 2.1 and described mathematically as:

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V. (2.1)
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The self-attention layers in the decoder operate with a key difference compared
to those in the encoder. To preserve the autoregressive property, they are restricted to
only considering preceding elements in the output sequence. This restriction is achieved by
masking subsequent positions with a value close to negative infinity, effectively excluding
them from consideration during the softmax operation in the self-attention computation.
Meanwhile, the “Encoder-Decoder Attention” layer functions as usual, with the unique
aspect being that it generates its Queries matrix from the preceding layer while receiving
the Keys and Values matrices from the final output of the encoder’s layers.

Figure 2.1: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention. Source:
Images extracted from (VASWANI et al., 2017)

2.1.3 Multi-Head Attention

The Attention Mechanism operates through h parallel heads, each employing
distinct sets of Query/Key/Values weights. The different matrices give to attention layer
multiple representation subspaces, also it expands the model’s capacity to focus on different
positions. The dimensions of the matrices are reduced according to the number of heads,
dmodel/h, ensuring that the computational cost remains comparable to that of a single-head
attention with full dimensionality. Finally, the outputs of each self-attention head are
concatenated and then multiplied by an additional weights matrix WO. Figure 2.1 visually
illustrates this process, which is defined mathematically as:

MultiHead(Q, K, V ) = Concat(head1, . . . , headh)W O

where headi = Attention(QW Q
i , KW K

i , V W V
i ).
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2.1.4 Positional Encoding

It is worth mentioning the Positional Encoding (PE) mechanism. In this work,
the PE will be adapted to improve the positional information for speech synthesis (Section
4.3.2).

Unlike recurrent neural networks, Transformers process input sequences in parallel,
which leads to the loss of positional information. PEs reintroduce this information, allowing
the model to consider the position of each element in the sequence. PEs is added to the
input embeddings before feeding them into the Transformer model. This addition enables
the model to preserve the order of the sequence throughout the network and learn temporal
or sequential relationships between the elements of the input sequence.

PE(pos, 2i) = sin
(

pos

100002i/d

)
PE(pos, 2i + 1) = cos

(
pos

100002i/d

) (2.2)

where pos is the word position, i represents the dimension index and d the embedding
dimension. The variable i varies from 0 to d−1. The sinusoidal functions alternate between
sine for even indices and cosine for odd indices. By using this scheme, each dimension
of the PE vector gets a unique sinusoidal wave based on its index i. This ensures that
the Transformer model can distinguish different positions in the sequence and dimensions
within the embeddings.

2.2 Generative Adversarial Networks

Upon their introduction, Generative Adversarial Networks GANs represented a
significant advancement in generative modeling and machine learning. Initially introduced
by Goodfellow et al. (2020), GANs are designed to map a specific distribution and generate
new data with similar characteristics. A GAN comprises two neural networks, the generator
and the discriminator, which are trained simultaneously through adversarial processes.
The generator aims to produce data that is indistinguishable from real data, while the
discriminator attempts to differentiate between the generator’s fake data and true data.
In this work, we utilize a GAN-based network to map the distribution of realistic speech
video frames.

2.2.1 Generator

The generator network is responsible for creating data that mimics the real-world
distribution. This data can be images, audio, text, or another data form. The generator in
a GAN, typically structured as a deep neural network, is designed to create a probability
distribution pg over data x. This distribution is not explicitly provided in the form of
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pg; rather, it is defined implicitly through the generation of samples. Given a noise
vector z, the generator G outputs a sample G(z), designed to resemble real data x from
the distribution pdata. The noise vector z comes from a predefined noise distribution pz,
typically Gaussian or uniform. The collection of all samples G(z), created as z, is varied
and represents the generated data distribution pg. This is the distribution that G learns
to approximate pdata. The training process aims to make pg converge to pdata so that
the generated samples become indistinguishable from actual data. Mathematically, the
generator’s operation is defined by the transformation:

x̂ = G(z; θg), z ∼ pz(z),

where θg symbolizes the generator’s learnable parameters. The ultimate aim for G is to
closely approximate the authentic data distribution pdata(x) such that the discriminator
cannot reliably distinguish between true and synthesized samples.

2.2.2 Discriminator

The discriminator D operates as a binary classification neural network that
discerns the probability that a sample originates from the actual data rather than the
synthetic data. Essentially, it acts as the adversary that the generator competes against.
For each sample x, the discriminator outputs a probabilistic value D(x; θd), reflecting
the likelihood that x is a genuine sample from the dataset, where θd represents the
discriminator’s parameters. The discriminator is optimized to identify both real and
synthetic data accurately.

2.2.3 Adversarial Training

The training process in GANs is central to their functionality; it involves a game-
theoretic scenario where the discriminator tries to maximize the probability of classifying
the data correctly, and the generator aims to minimize this probability. This process
continues until the generator produces outputs that are, in theory, indistinguishable from
the real data.

The discriminator’s goal is to accurately distinguish real data from fake data
generated by the generator. It aims to maximize the probability that the generator seeks to
minimize, effectively working to reduce the combined error on both real and fake data. The
generator wants to maximize the probability that the discriminator incorrectly classifies its
output. Considering both networks within the GAN framework, the general loss function
is represented by:

min
G

max
D

Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))]. (2.3)
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The training process of GANs is an iterative and competitive optimization that
alternates between improving D and G. The discriminator is trained by feeding it batches
of real data and batches of fake data generated by the generator. The discriminator adjusts
its parameters to improve its classification accuracy. Once the discriminator is updated,
it’s the generator’s turn. Here, the generator produces new data that aims to be classified
as real by the discriminator. The generator then updates its parameters based on how
well it tricks the discriminator. It essentially tries to increase the probability that the
discriminator is making a mistake on its data.

2.2.4 Conditional Generation

The introduction of random noise as input in traditional GANs can yield impressive
results in terms of generating new data. However, this approach cannot precisely control
the generated output’s characteristics. Addressing this limitation, Mirza e Osindero
(2014) introduced an innovative method using segmentation maps as inputs in the GAN

framework. The architecture of Conditional GAN (CGAN) involves both the generator
and discriminator networks receiving additional input in the form of labels or other data,
influencing the generation process. The primary advantage of segmentation maps is the
added control level over the generated output. This control manifests in the network’s
ability to produce results that are realistic and accurately aligned with the input maps.
The work presented in this document will guide the generation of realistic speech video
frames based on simple facial landmarks.

Since their introduction in 2014 Goodfellow et al. (2020), GANs have experienced
significant advancements, revolutionizing the fields of artificial intelligence and machine
learning. Notable developments include the emergence of Deep Convolutional GANs
(DCGANs) and PatchGAN for improved stability, image quality and generation efficiency
(RADFORD et al., 2016; ISOLA et al., 2017). Innovations like Wasserstein GAN (WGAN)
and gradient penalty methods have resolved initial challenges such as training instability and
mode collapse. Continual advancements and a strong emphasis on ethical considerations,
particularly in addressing issues like deepfakes, place GANs at the forefront of AI research,
continually expanding the capabilities of generative modeling (GUI et al., 2023a).
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2.3 Talking Heads: A Historical Perspective

The synthesis of talking heads has evolved into a strong field of research since the
pioneering work of Parke (1972). Beyond achieving photorealistic representations of the
human face, advancements in speech-synchronized facial animation demand meticulous
attention to diverse aspects. This includes precise lip synchronization with speech audio,
faithful reproduction of speech articulatory movements specific to a target language, and
coarticulation patterns that describe the dynamic interactions between these articulatory
movements in the context of a connected speech. Additionally, these aspects extend to
non-verbal signs, such as speech prosody, involving intonational head movements, and
physiological factors like eye blinking.

When analyzing the history of different approaches do facial animation synthesis,
it is possible to identify multiple classification dimensions. For example, considering the
output facial appearance, talking heads can be broadly classified based on their facial
appearance into two categories: 2D (image-based) and 3D (3D animations) (WANG et
al., 2022; ZHEN et al., 2023). While 3D animations offer explicit controllable spatial
information, they typically require specialized equipment, making data collection more
complex and time-consuming. On the other hand, 2D models can be easily built from
videos, making them more accessible and applicable. Furthermore, they can achieve a
high level of photorealism due to their image-based properties. However, 2D models lack
depth information relying on limited labeled image datasets, which can be challenging to
capture the full range of facial movements. This work focuses on 2D synthesis methods.

Numerous approaches have emerged over the years to synthesize talking heads,
initially emphasizing text-based visual speech modeling, followed by speech-driven, video-
driven, and hybrid approaches (MATTHEYSES; VERHELST, 2015). This work focuses
on speech-driven methods. Speech-driven visual speech synthesis involves generating a
new visual speech signal based on an input auditory speech signal. These speech-driven
systems predict the desired facial expressions by analyzing features extracted from the
auditory input signal. The pioneering work of Bregler et al. (1997) introduced the Video
Rewrite method, which involves editing the mouth movements of an existing video to
match new speech. Video Rewrite generates new videos through two steps: analysis of
a training database and synthesis of new visual speech. In the analysis stage, Video
Rewrite automatically segments the audio track of the training database into phonemes.
In the synthesis stage, the speech input is also segmented, and the method selects the
mouth images in the database that most closely match the target phonemes. The resulting
sequence of mouth images is integrated into the existing video.

Classifying visual speech models according to their synthesis strategy is also pos-
sible. Historically, facial animation approaches can be categorized into three main groups:
Rule-based systems, Concatenative systems, and Statistical prediction (MATTHEYSES;
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Figure 2.2: Overview of analysis and synthesis stage of Video Rewrite method. On the left
is the analysis stage. It uses the audio track to segment the video into phonemes. On the
right is the synthesis stage. It segments new audio and uses it to select phonemes from
the video model. Source: Images extracted from (BREGLER et al., 1997)

VERHELST, 2015).
Rule-based visual speech synthesis approaches employ predefined rules to an-

ticipate output speech properties. This method, often called keyframe-based synthesis,
directly predicts a few frames of the output video signal, typically positioned at the
midpoint of each phoneme or viseme. Then, interpolation methods between predicted
keyframes are used to ensure smooth and duration-synchronized visual speech signals,
aiming to simulate visual coarticulation effects for realism. Various techniques have been
employed for keyframe interpolation, such as morphing techniques with Scott et al. (1994),
optical flow by Ezzat e Poggio (2000), and Radial Basis Functions by Noh e Neumann
(2000).

Bregler et al. (1997), for instance, represented a Concatenative system. For this
synthesis method, a speech synthesizer necessitates a database containing original speech
recordings from a single speaker. When generating new speech, the system searches this
database for segments that partially match the target phoneme sequence. These selected
segments are then concatenated to produce the final synthetic speech signal.

However, despite the historical significance of rule-based and concatenative
systems in facial animation, recent years have seen a dominance of statistical prediction
approaches. This shift is attributed to advancements in deep learning methods and the
availability of increased computational resources, leading to the emergence of a specific
branch of deep neural-based methods. The text will continue focusing on statistical
prediction.

2.3.1 Statistical prediction-based synthesis

Statistical prediction-based synthesis adopts machine learning techniques to build
a mathematical model by analyzing a training dataset. This involves a training phase
where the model establishes connections between observed features of original speech and
the corresponding visual speech sequences. Following training, the model can predict visual
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speech sequences based on unseen speech input. This approach combines the benefits of
rule-based and concatenative synthesis by reusing observed articulations without explicit
modeling, maintaining a small data footprint, and not storing original speech data post-
training. However, a drawback is the need to parameterize the original speech data for
model training, leading to the synthetic speech signal being regenerated from predicted
parameter values, potentially resulting in degraded signal quality.

Brand (1999) suggested transferring visual speech modeling from a collected
corpus to static images or photographs. This methodology employs recorded video as
training data to construct a finite-state machine. Each state in the machine has an output
probability distribution over facial configurations and their corresponding acoustic features.
Coarticulation is modeled through a Hidden Markov Model (HMM) to predict facial
configuration sequences. Cosker et al. (2004) investigated the correlation among speech,
articulatory movements, and non-verbal signaling by combining visual parameters from
an active appearance model with speech signal parameters represented by the standard
Mel-Frequency Cepstral Coefficients (MFCC) (ABDUL; AL-TALABANI, 2022). These
parameters are then used to train an HMM speech-driven synthesis model.

Figure 2.3: Overview of Voice Puppetry method. On the left, Schematic of the training,
remapping, analysis, and synthesis steps. On the right, reuse the facial HMM’s internal
state machine in constructing the vocal HMM. Source: Images extracted from (BRAND,
1999)

HMM were the predominant approach for statistical synthesis. However, a sig-
nificant advancement emerged when Fan et al. (2015) demonstrated the superiority of
deep bidirectional Long Short-Term Memory (LSTM) networks over HMM-based methods.
This work showcased the effectiveness of leveraging deep learning techniques, specifically
bidirectional LSTM, in surpassing the performance of traditional HMM-based approaches in
the domain of statistical synthesis. The problem is similar to the HMM synthesis case. In
this context, the deep bidirectional LSTM is employed to model the trajectory of visual
attributes. The “bidirectional” aspect indicates that the networks can acquire knowledge
from the preceding context and subsequent context. This nuance holds particular im-
portance in the visual modeling of coarticulation, given that the phonemes that follow it
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impact the articulatory configuration of a specific phoneme. They also emphasize that,
when compared to HMM synthesis, the training procedure for a recurrent LSTM network
incurs a notably increased computational cost. Nevertheless, as the succeeding sections
reveal advancements in deep learning models, this challenge will be addressed, leading to
a surpassing of HMM in the domain of visual animation synthesis.

At the same time, another revolutionary class of networks emerged to address
generative modeling tasks. GAN, a class of deep learning models introduced by Goodfellow et
al. (2020), offer unique capabilities for generating realistic and expressive facial animations
synchronized with speech signals. The adversarial training process pushes the generator
to improve its ability to produce visually convincing speech-related facial movements,
such as lip synchronization, facial expressions, and coarticulation effects. The adversarial
training enables GAN to capture the subtle nuances and dynamic aspects of visual speech,
enhancing the realism and naturalness of the synthesized content. Moreover, GANs can
be integrated into the visual speech synthesis pipeline, for instance, they can be used to
refine and enhance the visual quality of the output generated by other components of the
system, such as LSTM-based models. This combination of LSTM networks for capturing
temporal dependencies and GANs for high-fidelity visual generation creates a powerful
synergy in the field of visual speech synthesis.

Deep learning research is advancing with new architectures that challenge tradi-
tional models. LSTM are being surpassed by Transformers (LIN et al., 2022; VASWANI et
al., 2017). Unlike LSTM, which processes data sequentially, Transformers can handle entire
data sequences in parallel. This capability accelerates training and captures long-range
dependencies in the data more effectively. The self-attention mechanism weights the
importance of different parts of the input data, regardless of their position. Additionally,
Transformers scale more efficiently with volume data, thanks to their ability to manage
larger context windows and their effectiveness in leveraging large-scale datasets, as demon-
strated by models like GPT and BERT. Furthermore, Transformers are inherently more
adaptable to a variety of tasks beyond text processing, such as image recognition and
time-series analysis, making them a versatile tool in the AI toolkit.

In generative modeling, the dominance of GANs is contested by emerging models.
Diffusion models have rapidly gained traction, celebrated for their ability to generate high-
quality images while avoiding the training stability issues commonly associated with GANs,
such as mode collapse (CROITORU et al., 2023). These models operate through a process
that gradually adds noise to data and then learns to reverse this noise addition to generate
coherent outputs. Their success is highlighted in various applications, from creating
detailed artworks to synthesizing realistic textures. Meanwhile, Variational Autoencoders
(VAEs) continues to offer significant value, particularly in terms of controllability and
interpretability of the generated images, by modeling the latent space through a normal
distribution (KINGMA et al., 2019). Although they may not achieve the crisp detail of
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GAN-generated images, their strength lies in their ability to manipulate and understand
the underlying factors of variations in data (GUI et al., 2023b).

Some works were developed employing Brazilian Portuguese as a case study. In
this context, it is notable to cite De Martino et al. (2006), where a 3D rule-based talking
head generator combines a non-linear transition function strategy with the identification
of visemes that are dependent on phonetic context. This approach defines a viseme
not just as the visual representation of a single speech segment but also considers the
sequence that includes the visemes before and after it. In Martino (2013), this idea is
adapted to a 2D model, using Radial Basis Functions for smoother transitions between
facial expressions. Subsequently, enhancing this approach, (COSTA, 2015) incorporated
expressive speech face modeling based on the Ortony, Clore, and Collins (OCC) model of
emotions. This work is also notable by the construct of the CH-Unicamp dataset, which
is employed in the present work. More recently, Jesus Filho (2021) proposed a facial
animation synthesis system leveraging Hidden Markov Models, with context-dependent
phonemes and audio as inputs, producing facial 2D landmarks as outputs. Additionally,
Reis (2020) suggested modifications to a GAN-based model to achieve expressive synthesis,
utilizing facial 2D landmarks as inputs and generating photorealistic images as outputs.
The current work aims to build upon these foundational studies to advance a Brazilian
Portuguese speech-driven photorealistic talking head generation system.

The rapid advancement of deep learning technology has provided technical
support and promoted the robust development of talking-head video generation methods.
In summary, the recent surge in deep learning technologies, including advancements in
architectures, generative models, computational resources, and dataset availability, has
catalyzed the creation of sophisticated and realistic talking-head video generation methods.
Among these advancements, MM-LLMs stand out by integrating capabilities from various
domains, such as natural language processing and computer vision, to foster seamless
intermodal interactions (ZHANG et al., 2024). The integration of generative models
with MM-LLMs represents an exciting frontier. MM-LLMs, which excel in handling and
synthesizing information across different modalities, can be enhanced by generative models’
capabilities in generating visually compelling outputs from textual or auditory inputs.
This synergy could lead to more sophisticated systems capable of tasks such as generating
video from text descriptions or improving the realism and detail of visual content produced
in response to multimodal prompts. This integration allows for more effective synthesis of
talking-head videos that are not only realistic but also capable of adapting to a wide range
of linguistic inputs and visual contexts, thus pushing the boundaries of what is achievable
in automated video content generation.
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2.4 Deep Facial Animation Synthesis

When analyzing the deep learning methods of talking head generation, it’s
possible to observe two overall framework architectures employed in the synthesis process:
end-to-end (one-stage) or two-stage. End-to-end approaches aim for a direct mapping
from audio to video frames. Speech2Vid was one of the initial projects investigating a
single-step approach using four subnetworks. It includes an audio encoder that extracts
features from the audio, an identity encoder that identifies features from a reference image,
and an image decoder that creates images by combining speech and identity features.
These subnetworks work together like Autoencoder (AE), trained with L1 reconstruction
loss. Additionally, it uses a pre-trained deblurring Convolutional Neural Network (CNN) as
a post-process to enhance the quality of the images. Inspired by the Neural Radiance Field
(NeRF) breakthrough, Guo et al. (2021) introduced the Audio-Driven Neural Radiance Field
(AD-NeRF) for Talking Head generation. AD-NeRF uses audio features from DeepSpeech
as a condition, learning to transform these audio features into dynamic neural radiance
fields for creating talking face visuals. Unlike other models, AD-NeRF captures both the
head and upper body by learning two separate neural radiance fields, providing a more
comprehensive approach to video speech generation.

Two-stage architectures for video generation from audio typically follow a dual-
step process: first, converting audio input into facial parameters, and second, transforming
these parameters into video frames (SHENG et al., 2024). This approach, which will
be the focus of our discussion, involves first understanding how audio cues are mapped
onto facial movements and expressions and then how these facial parameters are used to
generate corresponding video frames. The upcoming sections will delve into the details of
this method and highlight various studies that have successfully utilized this technique.

Figure 2.4: Overview of Two-Stage Landmark-Based Methods: Initially, the audio-to-
landmark network maps the raw audio to a sequence of corresponding facial landmarks.
Subsequently, the landmark-to-image network renders each facial landmark into a photore-
alistic video frame.
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2.4.1 Two-Stage Methods

Based on the data type of the facial parameters, two-stage methods in talking
head synthesis can be categorized into Landmark-based, Coefficient-based, or Vertex-based
methods:

• Landmark-based methods in talking head generation involve using facial landmarks
as a key component in synthesizing realistic and expressive facial animations. Facial
landmarks are specific points on the face that correspond to distinct features, such
as the corners of the eyes, the tip of the nose, and the corners of the mouth.
These methods leverage these landmarks’ spatial information to drive the animation
synthesis process. This work specifically concentrates on two-stage landmark-based
methods.

• Coefficient-based methods typically involve representing facial expressions or features
using a set of coefficients. These coefficients serve as numerical values that capture
the characteristics of facial movements or expressions. The idea is to encode the
essential information about facial dynamics into a compact set of coefficients, which
can then be used to drive the animation synthesis process.

• Vertex-based methods in the context of computer graphics generally refer to tech-
niques that operate on the vertices (corners or points) of a 3D model. In the realm of
talking head generation, this could involve manipulating the positions of vertices in
a 3D facial mesh to create facial animations. Vertex-based methods allow for detailed
control over facial expressions, capturing fine-grained movements at the level of
individual vertices. They can be employed in the synthesis of both 2D and 3D talking
head animations. The complexity of managing a large number of vertices in a facial
mesh can pose computational challenges. Achieving natural-looking animations may
require sophisticated algorithms to ensure smooth transitions between expressions
(SHENG et al., 2024).

The strategy of first mapping audio to high-level structures, such as facial
landmarks, before generating video frames conditioned on these landmarks can prevent the
capture of false correlations between audiovisual signals unrelated to the speech content
(CHEN et al., 2019). Moreover, employing independent models facilitates the transfer of
lip movements from other speakers to different specific target identities (JALALIFAR et al.,
2018). Additionally, employing facial landmarks improves interpretability, as they directly
correlate with observable facial features, thereby facilitating intuitive comprehension and
manipulation of aspects like eye blinking and head movement (SINHA et al., 2020; LU et
al., 2021).
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2.4.2 Two-Stage Landmark-Based Methods

This section aims to define the state of the art of two-stage landmark-based
talking head synthesis methods. The first column of Table 2.1 highlights the most relevant
papers we review in this section. In the remaining columns, we summarize some aspects
of their synthesis approaches that are going to be discussed, such as target identity, face
region, head motion, and eye blinking.

Table 2.1: Summary of synthesized talking head target aspects presented in Sections 2.4.2
"S" stands for Specific-person. "A" stands for Arbitrary.

Reference Target
Identity Face Region Head Motion Blink eyes

Suwajanakorn et al. (2017) S Mouth X X
Jalalifar et al. (2018) S Mouth
Chen et al. (2019) A Face
Sinha et al. (2020) A Face X
Das et al. (2020) A Face X
Zhou et al. (2020) A Face X

Lu et al. (2021) S Face/
Upper Body X

Zheng et al. (2021) A Face
Yu et al. (2022) S Lip/Jaw
Zhong et al. (2023) A Lip/Jaw
This work S Face X

The pioneering work of Suwajanakorn et al. (2017) mapped the speech audio
and mouth shape representation through a time-delay LSTM, matching it with a specific
set of 18 landmark points outlining the contours of both the outer and inner lips. The
audio input is represented by audio features extracted using standard MFCC. A three-step
pipeline from the mouth landmark is employed to render realistic speech texture. First,
a frame selection algorithm was employed to identify and process target video frames
that closely matched the landmark, integrating them with a teeth proxy derived from the
target video to synthesize a highly detailed mouth region. Secondly, even though the goal
is to synthesize just the mouth area and reuse the rest, it was noted that if Obama pauses
his speech and the head keeps moving, it looks unnatural. To address this, a dynamic
programming algorithm was implemented to synchronize audio with visual pauses, avoiding
head movements during periods of silence. Finally, a jaw correction method was devised
for frame composition to adjust the new motion, and a Laplacian pyramids technique was
applied to blend all the last steps. While this approach produces convincing videos with
accurate lip synchronization, it requires a substantial 17 hours of Obama speech video
training, a considerable duration when compared to other works utilizing HMM.

Jalalifar et al. (2018) introduced the LSTM + CGAN architecture, where audio
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MFCC features are input into a bidirectional LSTM, followed by two hidden layers to map
8 points lip landmarks. These landmarks are then used as input to condition the CGAN

for synthesizing realistic frames. The author emphasizes that the two stages are nearly
independent, allowing the transfer of lip movements from other speakers. A simple affine
transformation is sufficient to align the source and target facial landmarks. Even though
it was designed without specific attention to teeth details, CGAN demonstrated promising
results with a simpler pipeline. The study utilized two hours of Obama speech videos to
achieve the desired quality.

Chen et al. (2019) introduced a novel LSTM + Convolutional-Recurrent Neural
Network (RNN) structure, with a specific emphasis on the correlation between adjacent
frames during the rendering stage. The facial landmarks map 68 facial points, adding
more facial detail points such as eyes, nose, and jaw. Given the emerging topic of attention
mechanism (GUO et al., 2022), Chen incorporated it into the network to enhance robustness
against visual variations and noisy audio conditions. Pixel jittering may not be apparent in
single-image generation, but it becomes a significant issue for video generation, given that
humans are sensitive to any temporal discontinuities. This issue was addressed with two
components. A proposed novel dynamically adjustable pixel-wise loss with an attention
mechanism; and a regression discriminator based on the perceptual loss (JOHNSON et al.,
2016). The framework models were trained separately on the GRID dataset (COOKE et
al., 2006), comprising 1000 short videos spoken by 33 different speakers, totaling 27 hours.
The method effectively learns facial movement representations and synthesizes a talking
head based on an audio speech and a single face source image.

Facial landmarks for different subjects contain individual-specific facial attributes,
such as distinct face structures, sizes, shapes, and diverse head positions. Speech-driven
lip movements for a given audio segment are independent of these variations. To ensure
landmark prediction invariance to these factors, Sinha et al. (2020) proposed a novel three-
step landmark prediction method. Instead of using audio MFCC features, DeepSpeech
features are introduced (HANNUN et al., 2014) to guarantee robustness due to the different
audio sources, accents, and noise. Firstly, a convolutional encoder-decoder architecture with
temporal loss is trained to map canonical 68-point facial landmarks from the DeepSpeech
features. Secondly, eye blinks are imposed on the facial landmarks to add realism. An
LSTM learns to predict the eye landmarks from a noise vector. Finally, the canonical facial
landmarks with blinking eyes are retargeted to the person-specific facial landmarks. To
achieve realistic image rendering, Least Squares Generative Adversarial Network (LSGAN)
is employed to generate facial texture from person-specific facial landmarks, incorporating
an attention mechanism to preserve identity-related texture. The model is trained on the
GRID and TCD-TIMIT datasets (HARTE; GILLEN, 2015). TCD-TIMIT, comprising 62
speakers, contains much more phonetic variability than the GRID dataset.

Following the same three-step pipeline idea of (SINHA et al., 2020), Das et
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al. (2020) employed a GAN to map facial landmarks from DeepSpeech features. The
model-agnostic meta-learning (MAML) approach (FINN et al., 2017) is then utilized to
train the rendering GAN, enabling rapid adaptation to an unknown face at inference time
using only a few images. Compared with transfer learning, fine-tuning the meta-learned
network requires a significantly smaller requirement than fine-tuning based on transfer
learning. The model is trained on the TCD-TIMIT dataset.

In the pursuit of a more realistic talking head, Zhou et al. (2020) are concerned
about facial expressions and head motions. AutoVC (QIAN et al., 2019), a voice style
transfer algorithm, is employed to learn disentangled speech content and identity features.
The predicted facial landmarks are derived from the combination of landmarks from two
models. The first, a content animation component, utilizes an LSTM-based encoder to map
the voice conversation features to facial landmarks with a neutral style. The second, a
speaker-aware component, captures more specific features not so related to oral speech as
facial expressions and head motion. They observed that generating cohesive head motions
and facial expressions necessitates capturing longer temporal dependencies than the speech
content animation module. So, a LSTM-based encoder followed by a self-attention network
is adopted to compute the face landmarks. To translate the facial landmarks into realistic
images, it was employed a U-Net architecture (RONNEBERGER et al., 2015). The
landmarks generator components were separately trained with different datasets focusing
on your specific goals. The content animation component train is conducted on the VCTK
corpus (VEAUX et al., 2016), which includes 109 English speakers with various accents.
For the speaker-aware component, to learn head motion and facial expressions, and for
the rendering model, the VoxCeleb2 dataset (CHUNG et al., 2018) was selected due to
the variety of speakers.

Similar to (ZHOU et al., 2020), Lu et al. (2021) also extracted audio features
and processes them with two modules in parallel to obtain separate features for mouth
and head/upper-body motion. The first stage involves an Autoregressive predictive coding
(APC) network (CHUNG; GLASS, 2020), which extracts deep audio features and utilizes
a manifold projection to map these features to the target person’s speech space. In the
second stage, mouth and head features are learned independently using a time-delay LSTM

and a multi-dimensional Gaussian inspired by (OORD et al., 2016). These features are
then combined to synthesize facial and upper-body landmarks. In the final stage, the
landmarks and a candidate image set are inputted into a U-Net architecture training in
a GAN style to generate photorealistic renderings. For training, different datasets are
employed for each model. To train the APC was used the Mandarin Chinese part of
the Common Voice dataset (ARDILA et al., 2020), the authors observe that the system
continues to perform effectively in other languages, attributed to the model’s ability to
learn high-level and semantic information. To train the landmark generator, 30 minutes
of Obama’s speech were used, and for the rendering network, 3 minutes of the specific
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target person were used. The authors emphasize that this work is the first capable of live
generation. The entire system operates with an inference time of approximately 27.4 ms,
achieving over 30 Frames per Second (FPS) with a latency of 300 ms.

Zheng et al. (2021) proposed a talking face generation approach incorporating
word semantic supervision and cross-modal temporal synchronization for landmark learning.
A word detector is trained to identify a word based on sequential landmarks and employed
as a classification loss. This ensures that the predicted landmarks closely reflect the
content of the corresponding audio words. To address temporal consistency, a cross-modal
synchronization, inspired by the concept in (BELGHAZI et al., 2018), is implemented
to enforce coherence between adjacent audio segments, helping in the smooth transition
of landmarks. To synthesize realistic frames, a GAN is used with a U-Net serving as
the generator and a reconstruction loss to optimize it. It is trained on the LRW dataset
(CHUNG; ZISSERMAN, 2017) to demonstrate the model generalization and then evaluated
using the GRID dataset.

Yu et al. (2022) presented a novel landmark prediction model, Multiple Synergy
Network (MSN), aimed at enhancing the accuracy of landmark prediction by integrating
multimodal inputs (audio and text) and considering jaw movements to ensure synergy
between articulators, specifically lips and jaw. MFCC and corresponding text inputs are
fed into their respective encoders, constructed using a Temporal Convolutional Network
(TCN) (BAI et al., 2018). In contrast to traditional recurrent architectures like LSTM, TCN

demonstrates significantly longer memory when processing sequential data. The encoder
outputs are then input into a multilayered bidirectional Gated Recurrent Unit (GRU)
network for mouth-jaw landmark prediction (CHO et al., 2014). A GAN-based model is
proposed for the video synthesis stage with a generator and two discriminators. Adopting
a coarse-to-fine-grained style, the generator utilizes an encoder-decoder with residual
blocks to generate the hallucinated target frame. Simultaneously, another encoder-decoder
with self-attention modules employs FlowNet2 to predict optical flow (ILG et al., 2017).
The outputs from these processes are merged to produce the final frame. The model is
trained on 1 hour of Obama speech videos and to test generalization, it was employed
the FaceForensics(RöSSLER et al., 2018). It’s worth mentioning that this model can
generalize to other targets if its dataset is available.

To address the generic person target problem, Zhong et al. (2023) proposed a
transformer-based landmark generator and a two-module GAN with Spatially-adaptive
normalization (SPADE) layers to modulate the encoded features. The transformer-based
generator utilizes MFCC audio features, reference landmarks, and pose prior landmarks as
input to predict lip and jaw landmarks. These predicted landmarks are then combined
with pose prior landmarks to generate the target landmarks. The GAN-based renderer
incorporates alignment and translate modules. The alignment module takes multiple
reference images and their landmarks as input to obtain motion fields. These motion fields
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are then used to warp the reference images and their features to the target head pose
and expression. The translation module, assisted by MFCC features, warped images, and
features from the alignment module, translates the predicted landmarks to generate the
target face image. The model is trained on LRS2 dataset (CHUNG et al., 2017) em tested
on LRS3 dataset (CHUNG; ZISSERMAN, 2017) to evaluate the generalization.

Although not based on landmarks, the work of Fan et al. (2022) is noteworthy.
FaceFormer is a transformer-based model dedicated to creating a sequence of animated
3D face meshes from speech audio, utilizing a vertex-based approach. It employs wav2vec
2.0 for speech feature extraction and introduces a transformer decoder with biased self-
attention layers to convert these features into a sequence of face meshes.

2.4.3 First-Stage Models

Considering the works discussed in the previous section, Table 2.2 summarizes
the details of the first stage model, which involves audio-to-landmark translation.

Table 2.2: Summary of first stage framework aspects presented in Sections 2.4.2. "Reg"
stands for regularization. "Adv" stands for adversarial. "Rec" stands for reconstruction.
"NLL" stands for Negative Log-likelihood. "GL" stands for Graph Laplace.

Reference Speech
Feature

Feature to
Landmark Landmark Loss

Suwajanakorn et al. (2017) MFCC LSTM [18,2] L2
Jalalifar et al. (2018) MFCC LSTM [8,2] L2
Chen et al. (2019) MFCC LSTM [68,2] L2
Sinha et al. (2020) DeepSpeech AE/CNN [68,2] L2,Reg,MMD
Das et al. (2020) DeepSpeech GAN/CNN [68,2] L2,Reg,Adv,MMD
Zhou et al. (2020) AutoVC GAN/Att-LSTM [68,2] L2,GL,Adv
Lu et al. (2021) APC LSTM/MGauss [73,3] L1,L2,NLL
Zheng et al. (2021) MFCC LSTM [68,2] Rec,C,Reg
Yu et al. (2022) MFCC TCN-GRU [33,2] RMSE
Zhong et al. (2023) MFCC Transformer-Enc [33,2] L1,Reg
This work wave2vec2.0 Transformer [68,2] GAN

The table is organized into four columns detailing the distinctive components of
each framework:

• Speech Feature: This column lists the audio feature extraction techniques. Most
studies employ MFCC, which is a traditional signal processing method providing
a static representation of the spectral features of sound. The calculation involves
breaking the audio signal into short frames and applying a sequential mathematical
pipeline that includes applying the Fourier transform, mapping the powers of the
spectrum obtained to the Mel scale, and then computing the log of the powers and
the discrete cosine transform. Two studies have applied DeepSpeech, which uses
deep learning techniques to convert spoken language into text. One work has used
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AutoVC, a deep learning-based method focused on transforming the speaker identity
in audio signals, emphasizing voice conversion. Finally, another has employed APC,
focusing on learning representations from audio data in an unsupervised manner by
predicting future audio samples to understand temporal structures within the data.

• Feature to Landmark: This column details the computational models and archi-
tectures used to process speech features and produce corresponding landmarks. The
LSTM network, a type of recurrent neural network, features in numerous studies, high-
lighting its suitability for sequential data. Other architectures include GANs, favored
for generating highly realistic landmarks, and Transformers, known for their efficient
training and nuanced context capture via self-attention mechanisms. Additionally,
various combinations of AEs are employed for dimensional reduction and denoising,
CNNs for feature extraction and local pattern recognition, and attention mechanisms
to focus on pertinent features, thereby enhancing contextual understanding.

• Landmark: This column indicates the number of landmarks or key points used to
animate the talking head, which varies across studies. The landmarks are typically
represented in pairs, with the first number representing the count of landmarks and
the second the dimensionality of the landmark space.

• Loss: The last column specifies the loss functions used to train the models, which
are critical for guiding the learning process toward accurate landmark generation.
Common loss functions include L1 and L2 norms, which measure prediction errors,
Regularization Loss, where L1 or L2 is used not only on the current target but on the
past synthesized data, and more specialized losses like Maximum Mean Discrepancy
(MMD), a difference between features, Adversarial Loss, from the adversarial training
process, Reconstruction Loss, which compares the original image to the reconstructed
image, Root Mean Squared Error (RMSE), measures the average deviation, among
others (GRETTON et al., 2012). For more details about the loss function, please
refer to Terven et al. (2023).

2.4.4 Second-Stage Models

Table 2.3 summarizes the second stage model details, focusing on landmark-to-
image rendering, as related to the works discussed in Section 2.4.2.

Due to the predominance of GANs, the table is organized based on the following
aspects:

• Generator: This column describes the computational models and architectures that
generate synthetic realistic images according to the corresponding landmarks. process
the speech features and generate corresponding landmarks. GANs are commonly
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Table 2.3: Summary of second stage framework aspects presented in Sections 2.4.2. "C"
stands for classification. "Adv" stands for adversarial. "RD" stands for regression-based
discriminator. "LS" stands for least squares. "PG" stands for PatchGAN. "Reg" stands for
regularization. "P" stands for perceptual. "Rec" stands for reconstruction. "FM" stands
for feature matching. "W" stands for warped.
Reference Generator Discriminator Loss Funciton
Suwajanakorn et al. (2017) Statistical pipeline - -
Jalalifar et al. (2018) GAN/CNN C Adv
Chen et al. (2019) GAN/CNN-glsRNN C,RD Pixel-wise,Adv
Sinha et al. (2020) GAN/Att PG Pixel Intensity,LS,Reg
Das et al. (2020) GAN/Att C Rec,Adv,P
Zhou et al. (2020) U-Net - L1,P
Lu et al. (2021) U-Net/GAN PG Adv,Color,P,FM
Zheng et al. (2021) U-Net/GAN C L1,Adv
Yu et al. (2022) U-Net/GAN PG Adv,Image,Video,Flow,P
Zhong et al. (2023) SPADE/AE - P,Rec,Style,FM,W
This work GAN PG

employed in landmark-to-image models. The evolution of generator models in this
context has progressed from simple CNNs to more sophisticated architectures that
can incorporate U-Net structures, an architecture known for its effectiveness in image
segmentation tasks, and attention mechanisms, which focus on specific areas of the
image for better detail generation, optical flow, which is used to capture the motion
between consecutive frames of a video, and SPADE layers, to modulate the synthesis
process with semantic information of the scene.

• Discriminator: This column details the discriminators utilized to assess the synthe-
sized data generated by the generator model. Consolidated in the field, PatchGAN
discriminators are tailored to evaluate local patches within an image, providing a
more detailed and fine-grained assessment than conventional discriminators. Typi-
cally, two types of discriminators are employed with this technique: a classifier to
analyze the authenticity of the image and a video discriminator used on the latest
synthesized images to ensure temporal coherence.

• Loss: Many loss functions have been employed to achieve realistic facial synthesis.
These include Perceptual Loss, which measures the perceptual similarity between
generated and real images, Reconstruction Loss, aimed at reproducing the input
faithfully, Style Loss, focusing on capturing artistic style, Matching Features to ensure
consistency in feature representation, Adversarial Loss for enhancing realism through
the adversarial training process, Pixel-size Loss for preserving spatial dimensions,
Pixel Intensity Loss for maintaining accurate color representation, among others.
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2.4.5 Evaluation

Chen et al. (2020), in an extensive review of the literature on quantitative metrics
of talking-head generative models, reveals four essential characteristics that high-quality
synthesized talking-head videos should possess: Visual Quality, Identity Preservation,
Lip Synchronization, and Natural and Spontaneous Motion. Table 2.4 encapsulates a
synthesis of objective evaluation methods utilized in the studies discussed in Section 2.4.2,
categorized according to these modalities.

Table 2.4: Summary of objective evaluation methods presented in Section 2.4.2

Reference Visual
Quality

Identity
Preservation

Audio-visual
Synchronization

Natural
Motion

Suwajanakorn et al. (2017) - - -
Jalalifar et al. (2018) - - -
Chen et al. (2019) PSNR,SSIM LMD

Sinha et al. (2020) PSNR,SSIM
CPBD LMD EAR

Das et al. (2020) PSNR,SSIM
CPBD

FaceNet,
ACD LMD,AVo,AVc EAR

Zhou et al. (2020) LMD D-L,D-V,
D-Rot/Pos

Lu et al. (2021) PSNR,SSIM
LPIPS

D-L,D-V,
D-Rot/Pos

Zheng et al. (2021) PSNR,SSIM LMD
Yu et al. (2022) PSNR,SSIM LMD

Zhong et al. (2023) PSNR,SSIM,
FID,LPIPS CSIM LMD

This work SSIM,FID,
LPIPS LMD EAR

• Visual Quality: Unlike still image synthesis, video generation demands seamless
transitions between frames to avoid any perception of inconsistency, such as temporal
discontinuities and subtle distortions, which viewers can readily detect. For evalua-
tion, the following metrics are used: Peak Signal-to-Noise Ratio (PSNR), quantifying
the ratio of signal power to noise; Structural Similarity Index (SSIM), evaluating
structural similarities between generated and real images; Circular Pattern-Based
Deviation (CPBD), assessing circular patterns in images; Learned Perceptual Image
Patch Similarity (LPIPS), capturing perceptual differences; and Fréchet Inception
Distance (FID).

• Identity Preservation: The synthesized video must maintain the individual’s
identity, as viewers are particularly attuned to changes in perceived identity. For
evaluation, the following metrics are used: Cosine Similarity (CSIM), comparing



47

identity vectors extracted by a face recognition network; Average Color Difference
(ACD), quantifying color disparities; and similarity between FaceNet features for
reference identity image and the predicted frames.

• Audio-visual Synchronization: A significant challenge in talking-head generation
lies in ensuring that the visual dynamics, including facial and lip movements, are
in sync with the audio modality, such as speech or corresponding landmarks, given
that viewers are sensitive to even minor discrepancies between facial movements and
the accompanying audio. For evaluation, the following metrics are used: Landmark
Distance (LMD), measuring the distance between predicted and ground truth facial
landmarks; and AV Offset and AV confidence produced by Syncnet, a deep learning
model designed to asses audio-visual synchronization (CHUNG; ZISSERMAN, 2016).

• Natural Motion: In natural speech, individuals exhibit involuntary movements like
head nods, blinks, or various facial expressions, conveying non-verbal information
that is critical for listeners to understand the spoken content fully. For evaluation,
the following metrics are used: Head motion is evaluated using D-L (Landmark
Distance), D-V (Landmark Velocity Difference), and D-Rot/Pos (Head Rotation and
Position Difference). Eye blinking is assessed using Average Blink Duration (ABD),
calculated by the number of consecutive frames from the start to the end of a blink,
and this is compared with a dataset of natural human blinks.

These diverse metrics reflect a comprehensive approach to objectively evaluating
the performance of talking head generation models across various dimensions.

2.4.6 Datasets

Tables 2.2 and 2.6 present a summary of the datasets used related to works
discussed in Section 2.4.2

Research in talking head generation increasingly relies on expansive datasets
for model training and evaluation. The scope and complexity of these datasets have
multiplied significantly. For instance, the number of subjects and the total duration
of recordings in the LRS2 and LRS3 datasets have increased by orders of magnitude
compared to the GRID dataset, including many accents and linguistic subtleties across
different speakers. Moreover, there has been a shift from datasets comprising speech
videos recorded in controlled indoor environments to datasets that include any form of
talking head speech sourced from television or online platforms. This expansion has
introduced a rich diversity in content features, such as varied lighting conditions and
camera angles. These advancements contribute substantially to enhancing the model’s
capabilities, enabling them to produce high-fidelity and contextually relevant animated
sequences adaptable to a wide variety of scenarios and speaker profiles.
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Table 2.5: Summary of the datasets employed on the works discussed in Section 2.4.2.

Reference Name
Suwajanakorn et al. (2017) 17hrs Obama speech
Jalalifar et al. (2018) 2hrs Obama speech
Chen et al. (2019) GRID,LRW
Sinha et al. (2020) GRID,TCD-TIMIT
Das et al. (2020) TCD-TIMIT

Zhou et al. (2020) VCTK,6hrs Obama speech,VoxCeleb2
Lu et al. (2021) Mandarin Common Voice, 20m Obama speech
Zheng et al. (2021) GRID,LRW
Yu et al. (2022) 1h Trump/Obama speech,FaceForensics
Zhong et al. (2023) LRS2,LRS3
This work CH-Unicamp

Table 2.6: Dataset details.

Year Name Lang. Hrs Subj. Env. Description
2006 GRID EN 27.5 33 Lab High-quality video recordings of spoken sentences.
2015 TCD-

TIMIT
EN 11.1 62 Lab Speakers reading sentences from two camera an-

gles.
2015 CH-

Unicamp
PT-
BR

0.25 1 Lab An actress performed everyday dialogues.

2017 LRW EN 173 1k+ Wild Variations of words spoken by numerous speakers.
2017 VCTK EN 44 109 Lab Speech data uttered by English speakers with

various accents.
2018 LRS2 EN 224 500+ Wild Spoken sentences from BBC television.
2018 LRS3 EN 438 5k+ Wild Spoken sentences from TED and TEDx videos.
2018 VoxCeleb2 EN 2.4k 6k+ Wild Utterances of celebrities from YouTube videos.
2019 FaceForensics EN 5.7 1k Wild Youtube videos manipulated with face manipula-

tion methods.
2020 Common

Voice
EN 26 889 Lab Volunteers who record sample sentences with a

microphone and review recordings of other users.
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2.5 Concluding Remarks

In the previous sections, we followed the historical perspective, understood the
main concepts of talking head generation methods, saw examples of landmark-based
methods, and finally analyzed these works by detailing aspects such as the first and
second-stage architectures, objective metrics applied to evaluate, and datasets employed to
train and validate the models. Now, we discuss these aspects and present our methodology
choices for the work detailed in this document.

First Stage

Deep learning-based speech feature extraction techniques have emerged as com-
pelling alternatives to traditional MFCC, eliminating the need for handcrafted features and
providing more flexibility and adaptability in various audio processing applications.

The predominant choice of LSTM models in landmark synthesis has given way to
a range of advanced deep-learning techniques. Contemporary methods like CNNs, GANs,
TCN, and Transformer-based models have proven highly effective in discerning the complex
relationships between input features and corresponding facial landmarks.

The representation of facial landmarks has evolved over time, transitioning from
an initial mapping of lips using 18 points to a more comprehensive and widely adopted
standard of 68 mapping points on the facial frame. Increasing the number of landmark
points in facial mapping significantly contributes to the quality of synthesized talking head
videos, enhancing the realism and expressiveness of the generated animations.

Moreover, facial landmark synthesis methods have expanded their range of loss
functions, incorporating diverse measures. This diversified approach reflects a nuanced
understanding of challenges in landmark synthesis, leveraging specific functions to address
temporal dependencies, distribution matching, input reproduction, prevention of overfitting,
realism enhancement, and accuracy assessment between predicted and ground truth
landmarks.

We have selected the implementation of the FaceFormer as our primary stage
architecture (FAN et al., 2022). Drawing inspiration from Sinha et al. (2020), Zhou et al.
(2020), we recognize that a non-MFCC approach for speech feature extraction can enhance
robustness. FaceFormer employs wav2vec2.0, which utilizes TCN and the Transformer
encoder to extract deep features (BAEVSKI et al., 2020). To transform these speech
features into landmarks, the adapted FaceFormer Transformer-based decoder provides
significant advantages over LSTM. These include the capability to handle long-range
dependencies, the incorporation of PE, the use of attention mechanisms, and ease of
training (ISLAM et al., 2024).
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Second Stage

Integrating new mechanisms into GANs collectively enhances their performance
and versatility, generating high-quality and realistic outputs. The strategy of evaluating
local patches using PatchGAN has shown significant results. Additionally, the video
discriminator taking in count the past frames assess temporal coherence. Adopting
various loss functions underscores the multifaceted nature of facial realism, necessitating a
comprehensive and tailored approach to address different image aspects.

Taking inspiration from (YU et al., 2022), this work will employs a GAN framework
equipped with optical flow and PatchGAN image and video discriminators to translate
landmarks into high-quality, realistic images while maintaining temporal coherence. The
vid2vid implementation includes all these features (WANG et al., 2018).

Evaluation and Dataset

A relevant aspect of the reviewed works is how they were evaluated. Objective
metrics are evolving from pixel-based functions to deep feature-based functions, aiming for
an assessment closer to human perception. In addition, other aspects of natural motion
are evaluated, such as head movements and eye blinking.

In evaluating image quality, this study utilizes SSIM, a traditional metric, and
modern deep-feature-based metrics, namely LPIPS and FID. Lip synchronization is assessed
using the established LMD metric. While other measures like Av and LSRD (Lip Synchro-
nization Relative Distance), proposed by Chen et al. (2020), provide a more perceptual
analysis of lip synchronization from the images, these deep learning methods are tailored
for English-speaking videos. Adapting them for Portuguese videos would require additional
efforts to retrain the models. The eye blinking frequency will be used as the metric to assess
natural and spontaneous motion. However, the head motion will not be evaluated due to
the limited expressive movements in the dataset used. Finally, the criterion of Identity
Preservation will not be part of our evaluation as our model focuses on synthesizing a
specific individual.

Despite the extensive hours, varied subjects, and uncontrolled "wild" conditions, a
common limitation of the datasets reviewed is their exclusive focus on English. This study
centers on the Portuguese language and will employ the CH-Unicamp dataset tailored to
this linguistic context.
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Chapter 3

Materials and Methods

This chapter details the necessary resources for building our framework, including
the dataset, computational resources, landmark extractor, and evaluation methods.

3.1 Dataset

The proposed method is trained on a subset of videos from CH-Unicamp, a
Brazilian Portuguese dataset featuring expressive speech (COSTA, 2015). Our research
group built this dataset in the context of previous works, attending to all the ethical
requirements for research in Brazil. High-quality recordings, diversity of visemes, and
emotional features characterize it.

The video clips were recorded under controlled conditions to facilitate synchro-
nized audio and video capture. An actress performed various scripts, depicting everyday
dialogues and encompassing all phonemes of the Brazilian Portuguese language. The
actress first enunciated the text during the recording sessions with a neutral expression.
Then, she performed the text according to a specified emotional state, following some
guidelines inspired by the Ortony, Clore and Collins (OCC) model of emotions.

In this work, we aimed to validate the methodology on neutral videos, which
are more straightforward, before enhancing it to include emotional conditioning, thereby
enabling the use of the entire expressive dataset. The training dataset we used contains
124 video clips, while the validation and test datasets contain 13 video clips each. The
total duration of all videos is approximately 15 minutes, averaging around 7 seconds per
clip. The video and audio were recorded using an HD 1920×1080 pixels, NTSC 29.97 FPS
digital video camera.
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Figure 3.1: Example of video frames from the dataset.

3.2 Objective Evaluation Methods

A set of popular objective methods in the computer vision area were employed to
evaluate our results’ quality objectively. While having limitations, objective metrics provide
consistent, reproducible, and quantifiable results. This quantification allows researchers
to assess improvements or declines in performance in a standardized manner, facilitating
benchmarking and comparisons between different models or approaches over time.

3.2.1 Eye Blink

As discussed in Section 2.4.5, eye blinks represent a natural and spontaneous
facial motion that is important for achieving realistic talking heads. To determine the
occurrence of eye blinks, Cech e Soukupova (2016) introduced a blink detector based on
the Eye Aspect Ratio (EAR). Given facial landmarks (we extracted using Face Alignment
Network (FAN)), the EAR is calculated for each frame based on the distance between the
upper and lower eye landmarks. The average human blink rate is 0.4 blinks per second,
so a number close to this is considered good (DAS et al., 2020). The EAR calculus is
illustrated by Figure 5.1 and defined as:

EAR = ∥p2 − p6∥ + ∥p3 − p5∥
∥p1 − p4∥

.

(a) (b)

Figure 3.2: On the left, landmarks are used for EAR calculation. On the right, a chart
shows the EAR score over the video frames. The space between the green and red dots
indicates the occurrence of a blink. The blue dot represents the blinking eye threshold.
Extracted from (CECH; SOUKUPOVA, 2016)

After computing the EAR to all frames, the approach counts the blinks by
detecting deep drops in the EAR; see Figure 5.1. To detect significant drops, two constants
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are defined: the blinking eye threshold, set at 0.6, which indicates a blink, and the blinking
duration, set at six frames, which determines the number of consecutive frames for which
the EAR must fall below the threshold. These values were established after extensive
testing to ensure optimal performance.

3.2.2 Structural Similarity Index Measure

The SSIM is based on the premise that the human visual system is highly adapted
for extracting structural information from a visual scene. Thus, a measure of structural
similarity should provide a good approximation of perceived image quality (WANG et al.,
2004). Unlike traditional metrics such as Mean Squared Error (MSE) or PSNR, which assess
absolute errors, SSIM undertakes a comprehensive analysis of two images by evaluating
their luminance similarity, contrast similarity, and structural similarity within their local
neighborhoods, see Figure 3.3. By analyzing the local variations and spatial dependencies
within these neighborhoods, SSIM produces a score that ranges from 0 to 1, with 1 indicating
perfect similarity. The calculation involves analyzing various windows within an image,
with the final score being the average across all these windows.

Figure 3.3: SSIM comparison. The method is employed on an image with different types
of distortions. (a) Original image; (b) Contrast stretched image, SSIM = 0.9168; (c)
Mean-shifted image, SSIM = 0.9900; (d)JPEG compressed image, SSIM = 0.6949; (e)
Blurred image, SSIM = 0.7052; (f) Salt-pepper impulsive noise-contaminated image, SSIM
= 0.7748. Extracted from (WANG et al., 2004)
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3.2.3 Fréchet Inception Distance

The FID is a widely used evaluation metric for assessing the quality and diversity
of generated images (HEUSEL et al., 2017). FID is designed to capture the similarity
between the distribution of generated images and the distribution of actual images, marking
an improvement over the Inception score, see Figure 3.4. While the Inception score uses a
classifier network to evaluate the quality and diversity of images by outputting a score,
FID calculates the distance between feature embeddings extracted from real and generated
images by a pre-trained Inception network. This captures their high-level semantic
information. FID compares the multivariate Gaussian distributions of these embeddings by
computing the Fréchet distance, offering a quantitative measure of the discrepancy between
the distributions. A lower FID score indicates better image quality and diversity, reflecting
a closer resemblance between the distributions of generated and authentic images.

Figure 3.4: FID disturbance comparison. (a) Gaussian noise; (b) Gaussian blur; (c)
Implanted black rectangles; (d) Swirled images; (e) salt and pepper noise; (f) CelebA
dataset contaminated by ImageNet images. FID scores increase as the level of disturbance
grows. Extracted from (HEUSEL et al., 2017)

3.2.4 Learned Perceptual Image Patch Similarity

LPIPS, similar to FID, evaluates the quality of images using feature representations
based on deep learning models (ZHANG et al., 2018). Unlike FID, which compares
distributions, LPIPS evaluates the perceptual similarity between two images by computing
the cosine distance from their respective feature representations (Figure 3.5). This metric
focuses on patches of images rather than the entire image, assessing local similarities and
integrating them to yield an overall perceptual similarity score. A higher score indicates
more significant dissimilarity, while a lower score signifies higher similarity.
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Figure 3.5: Objective metrics comparison on human perceptual. The traditional metrics
(L2/PSNR, SSIM, FSIM) do not align with human judgments. However, random deep
networks with different supervision types are more effective at capturing human-like
perceptual similarities in images. Extracted from (ZHANG et al., 2018)

3.2.5 Landmark Distance

To evaluate the accuracy of generated lip landmarks, Chen et al. (2018) computed
the average Euclidean distance between each corresponding ground truth and generated
landmark point. The LMD is defined as:

LMD = 1
T

× 1
P

T∑
t=1

P∑
p=1

∥LRt,p − LFt,p∥2 ,

where T represents the quantity of video frames, and P denotes the total number of
landmark points in each frame.

Lower LMD values indicate higher accuracy, reflecting a closer match between
generated and actual facial landmarks.

3.3 Computational Resources

Tables 3.2 and 3.1 summarize the most important software and hardware specifi-
cations employed in each framework stage. This information is crucial to replicate the
experiment. All stages were executed on a Linux server.

Table 3.1: Hardware Specifications used from the Artificial Intelligence Lab (Recod.ai).

Stage Processor RAM Memory Graphics card
First Intel i7-5820K, 3.30GHz 32GB NVIDIA RTX A6000, 48GB

Second Intel Xeon 5218R, 2.10GHz 32GB NVIDIA TITAN X, 12GB

3.4 Concluding Remarks

This chapter outlines the resources and tools applied for training and validating
our framework. It includes the video dataset employed for model training, the CH-
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Table 3.2: Software Specifications.

Resource First Stage Second Stage
Python (<https://www.python.org/>) 3.7 3.5
Pytorch (<https://pytorch.org/>) 1.9 0.4.0
Torchvision (<https://pytorch.org/vision/stable/index.html>) 0.10 0.2.1
CUDA (<https://developer.nvidia.com/cuda-toolkit>) 11.1 9.0
cuDNN (<https://developer.nvidia.com/cudnn>) - 7.1.2

Unicamp, which contains 15 minutes of daily Portuguese speech covering most of the
main phonemes/visemes; the landmark extraction method, an enhanced state-of-the-art
approach; computational resources, including the mainly computational software libraries
and hardware specifications; and the most commonly used objective evaluation methods in
the literature, employed to derive evaluation metrics. The next chapter presents the whole
pipeline for synthesizing talking head animations from speech and details the framework’s
architectural model.

https://www.python.org/
https://pytorch.org/
https://pytorch.org/vision/stable/index.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn
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Chapter 4

Two-Stage Talking Head Generator
Framework

This chapter presents the whole methodology of training a speech-driven, two-
stage, landmark-based model capable of synthesizing a realistic talking head. It integrates
different technologies (Transformer and GAN), leveraging the strengths of both to address
the challenges in talking head generation. Additionally, the Transformer model FaceFormer,
employed in this work, was originally built to generate 3D meshes. We adapted the first
layer dimension to synthesize 2D landmarks. Figure 4.1 overviews the training pipeline.

The model employs raw audio and video frames sourced from the CH-Unicamp
database. The processing of audio and images is detailed in Section 4.1. This framework
is structured in a two-stage style. Section 4.3 describes the first stage of the framework,
where the objective is to map raw audio to facial landmarks. Section 4.4 then delineates
the second stage, mapping these landmarks to realistic video frames. Sections 4.5 and 4.6
cover experiment details, including training and inference information. Lastly, Section 4.7
presents the concluding remarks of the chapter.

4.1 Data Preprocessing

This work uses raw audio as input and a sequence of facial 2D landmarks as an
intermediary representation. This sequence is the output of the first stage framework,
which is a Transformer-based model and serves as the input for the second stage, a
GAN-based model.

The audios are extracted from the dataset videos and reduced to 16kHz due to a
pre-trained model used in this work, the wave2vec 2.0 (GROSMAN, 2021).

Accurate facial keypoint detection is crucial for obtaining favorable outcomes in
this work, as these keypoints are utilized to create the target output for the first-stage
model and the input for the second-stage model. The task of recognizing facial keypoints
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Figure 4.1: Training overview process with respective text sections.

is well acknowledged, and conventional software packages produce remarkable outcomes.
Reis (2020) tested different approaches to identifying facial keypoints in the same dataset
of this work, DLIB (KING, 2009) and FAN (BULAT; TZIMIROPOULOS, 2017b), more
details in Section 4.2. The DLIB approach did not identify keypoints when the actress
performed small, natural facial rotations while speaking. In contrast, the FAN approach
achieves better results even in minor facial rotations. Therefore, this work uses the FAN

approach to obtain the facial keypoints. Figure 4.2 exhibits the keypoints extracted.
To build the 2D landmark facial representations, first, frames were extracted from

all videos at 30 FPS, followed by a center crop and downsampling process, resulting in a
resolution of 256x256 pixels. The images were reduced due to the computational resources
required to train the second stage model, the vid2vid model. Finally, the FAN is employed
to extract the facial keypoints. A 2D facial landmark vector with dimensions (68 × 2) is
obtained for each realistic video frame.
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Figure 4.2: Example of keypoint extraction. On the left side, a video frame with overwritten
keypoints. On the right side, the key points are grouped by colored lines indicating each
facial region. Red eyebrows, yellow eyes, green nose, black lips, and blue chin.

4.2 Facial Landmark Extractor Method

We use the FAN to extract facial landmarks (BULAT; TZIMIROPOULOS, 2017b).
Reis (2020) tested different approaches to identifying facial keypoints and chose FAN

because it achieves better results even in minor facial rotations. FAN is based on a stack
of four Hourglass (HG) networks, a state-of-the-art architecture for human pose estimation
(NEWELL et al., 2016).

Unlike HG, which uses ResNet as a bottleneck block, FAN employs a new ad-
vanced residual block (HE et al., 2016). Bulat e Tzimiropoulos (2017a) proposed a novel
hierarchical, parallel, and multi-scale residual architecture that significantly outperforms
the standard residual block from ResNet. This approach increases the receptive field size,
improves gradient flow, and is specifically designed to have a similar number of parameters
as the original bottleneck. FAN was trained on 300W-LP, a very large facial landmark
dataset containing 2D and 3D landmarks, and evaluated on other 2D and 3D datasets
(approximately 230,000 images) (ZHU et al., 2015).

4.3 First Stage: Audio to Landmarks

To map the landmarks from audio, we use the FaceFormer model implementa-
tion (FAN et al., 2022). FaceFormer is based on the full encoder-decoder Transformer
architecture.

FaceFormer delves deeper into the temporal dynamics of speech. Through a series
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Figure 4.3: The Face Alignment Network (FAN) is designed as a stack of four HourGlass
(HG) networks. Each rectangle is replaced by the new advanced residual block (shown on
the right in the image). Extracted from (BULAT; TZIMIROPOULOS, 2017b)

of self-attention mechanisms and encoder-decoder structures, it outputs a detailed face
representation in the form of facial landmarks. These landmarks encapsulate the essential
movements and expressions that are synchronous with the spoken content, forming a
robust foundation for the subsequent rendering stage.

The effectiveness of the FaceFormer is rooted in its Transformer-based design,
which allows for processing long-range dependencies in speech patterns, a critical factor
in maintaining the natural flow of expressions in generated talking heads. Furthermore,
the model’s ability to learn from vast amounts of data ensures that the synthesized
facial representations are accurate and diverse, accommodating a wide range of speech
articulations.

Therefore, following the encoder-decoder Transformer architecture, FaceFormer
is presented in two steps: the encoder, which extracts features from the audio, and the
decoder, which maps the speech features to a sequence of facial landmarks.

4.3.1 Extracting Features from Speech Audio

Instead of the common adoption of MFCC features, FaceFormer adapts as an
audio feature extractor the self-supervised pre-trained speech model, wav2vec 2.0, see
Figure 4.4.

wav2vec 2.0 can be described by three components:

• Temporal Convolutional Layers. The encoder’s architecture comprises multiple
blocks of TCNs, succeeded by layer normalization and the Gaussian Error Linear Unit
(GELU) activation function. Before inputting into the encoder, the raw waveform is
standardized to have a zero mean and unit variance.

• Context Network. A Transformer encoder with a series of multi-head self-attention
and feed-forward layers that transform the audio feature vectors from TCN layers
into enriched speech representations. Rather than utilizing fixed positional em-
beddings that provide absolute positional information, the model incorporates a
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one-dimensional convolutional layer that functions as a relative positional embedding,
capturing the position of each element in relation to others within the sequence.

• Quantization Module. The features from the TCN layer are discretized, in parallel
to the Context Network process, to a finite set of speech unit representations through
product quantization and the Gumbel softmax function. Product quantization
involves the selection of quantized representations from an array of codebooks,
followed by their concatenation. The Gumbel softmax function facilitates the
selection of discrete entries from these codebooks, allowing full differentiability and,
consequently, backpropagation.

Figure 4.4: wav2vec 2.0 adapted to crossmodal compatibility.

The model is pre-trained in a self-supervised manner on unlabeled speech data to
learn representations of discrete speech units. The pre-training strategy is similar to the
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masked language modeling used in Bidirectional Encoder Representations for Transformers
(BERT) (DEVLIN et al., 2018). It involves masking a portion of the feature encoder outputs,
which are then passed through the context network and replaced with a pre-trained feature
vector. The loss function is composed of a contrastive loss which aims to identify the true
quantized latent speech representation for a masked time step within a set of distractors.
A diversity loss is also introduced to promote equitable utilization of all values from the
codebooks. After pre-training, the model is fine-tuned with labeled data for the desired
task by adding a randomly initialized linear projection on top of the context network.

Linear Interpolation for Crossmodal Compability

Audio and video components typically operate at different frequencies. Audio
data often has a higher sampling rate than video data’s frame rate. This discrepancy
presents a challenge when trying to synchronize the two modalities. The Multi-Head
Attention mechanism in the Transformer’s decoder is designed to draw information from
the encoder’s output and align it with the input sequence to the decoder for each timestep.
This means aligning speech features with corresponding video frames representing the
respective facial movements. If the dimensions of the speech features do not align with the
motion frequency of the video frames, the model may struggle to synchronize the audio
with the appropriate video frames accurately.

Fan et al. (2022) adapted wav2vec 2.0 by incorporating a linear interpolation on
the TCN output layer to align the dimensionality of the speech features with the number of
video frames. The output from wav2vec 2.0 is then utilized with the target facial landmark
frames in the decoder’s Multi-Head Attention through matrix multiplication. For this
multiplication to be valid, the dimensions must be compatible. Section 4.3.2 will provide
a detailed discussion on this topic. Given that the target video is captured at a frequency
of fv (e.g., fv = 30 FPS) and the audio at a frequency of fa (e.g., fa = 44Hz), the length
of features output from the linear interpolation is kT , where T represents the video frame
size, and k is determined as ⌈fv/fa⌉, a alignment constant. Consequently, the decoder
Cross-Modal Multi-Head Attention can align the speech and motion modalities (Section
4.3.2). In this work k = ⌈30

16⌉ = 1
To adapt to our context, a fine-tuned wav2vec 2.0 based on the Brazilian Por-

tuguese language is used (GROSMAN, 2021).

4.3.2 From Audio Speech Features to Facial Landmarks

The FaceFormer Transformer-based decoder learns to transform the speech
features Z in a predicted facial landmarks Ŷ sequence. In an autoregressive manner,
the decoder predicts the next facial landmark frame based on all previously predicted
frames, and the encoder’s output speech features Z. Fan et al. (2022) enhanced the classic
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Transformer decoder to generalize for longer input sequences and handle different data
modalities.

To improve the model’s generalization ability for longer audio sequences, Fan et al.
(2022), inspired by Attention with Linear Biases (ALiBi), enhanced the classic Transformer
decoder by adding a temporal bias to the query-key attention score and designed a periodic
positional encoding strategy (PRESS et al., 2021). To align the different data modalities,
they design the biased cross-modal Multi-Head Attention, see Figure 4.5. Additionally,
originally FaceFormer was built to generate 3D meshes, then to synthesize 2D landmarks,
we change the first input layer dimension, the Motion Encoder, to (68 × 2).

Figure 4.5: Transformer decoder adapted to long sequences.
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Periodic Positional Encoding

In the context of natural language processing, ALiBi analyzed the Transformer’s
ability to extrapolate, that is, generate sequences in inference time longer than those
used during training. The findings indicate that adding a bias to the attention scores in
the query-key mechanism can be more efficient than employing conventional positional
embeddings. This approach is advantageous regarding reduced memory usage, increased
speed, and improved extrapolation ability. Inspired by this, Fan et al. (2022) attempted to
apply the same mechanism to synthesizing 3D facial meshes. However, this was observed to
lead to static facial expressions during inference. The ALiBi’s mechanism fails to incorporate
position information into the input representation, which is crucial to capturing the subtle
variations in motion across sequential facial frames. To address this issue, Fan et al. (2022)
reintroduced the sinusoidal positional embeddings (see Section 2.1.4) but adapted them to
be periodic by adding a modulo operation to the positional object t:

PPEt,2i = sin
(

(t mod p)
100002i/d

)
PPEt,2i+1 = cos

(
(t mod p)
100002i/d

)

The proposed Periodic Positional Encoding (PPE) strategy, which recurrently
injects position information within each period p, demonstrated greater efficiency than
assigning a unique position identifier for each token in the sequence.

Biased Causal Multi-Head Self-Attention

The ALiBi strategy, which substitutes the positional embedding with the bias
in the attention scores, was inefficient for synthesizing facial mesh. However, Fan et al.
(2022) adapted it to their work by making it periodic, similar to the PPE. To learn the
dependencies between each frame in the context of the past facial frames sequence, a
weighted contextual representation is calculated by adding a temporal bias to the scaled
dot-product attention:

Att
(
QF , KF , V F , BF

)
= softmax

(
QF (KF )T

√
dk

+ BF

)
V F ,

where QF , KF , V F are the respective input linear projections of Query/Key/Value from
the Masked Multi-Head Attention, and BF is the temporal bias.

The main idea is to introduce a bias proportional to the distance of the target
prediction. Unlike the original approach, this bias decreases with each p frame. In practice,
BF is a matrix where the upper triangle contains negative infinity to prevent future frames
from influencing the prediction, and the lower triangle represents the temporal bias. This
ensures that the closest facial frames have a greater impact on the target prediction:
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BF
(i,j) =


(i−j)

p
, if j ≤ i,

−∞, otherwise.

where i and j are the indices of BF .

Biased Cross-Modal Multi-Head Attention

As discussed in Section 4.3.1, the Transformer decoder must process speech
features and the previously predicted facial landmarks. The Biased Cross-Modal Multi-
Head Attention aims to combine the different modalities by adding an alignment bias BA

to the query-key attention score. The alignment bias BA is defined as:

BA
(i,j) =

0, if ki ≤ j < k(i + 1)

−∞, otherwise

where i and j are the indices of BA and k the alignment constant.
Given the speech feature ZkT output from the wave2vec 2.0 and FkT , the output

of the Biased Causal Multi-Head Attention, which encoded the predicted face motions.
Both ZkT and FkT serve as input to the Biased Cross-Modal Multi-Head Attention, where
the speech feature ZkT passes through Key and Value W matrices to be transformed
into the Key KA and Value V A vectors, while the FkT is converted into the Query QF̂

vector, see Section 2.1.2. Consequently, the attention layer computation considers only
the features from ZkT and FkT that are related to the target predicted token, aligning the
speech features and the face motions. The Biased Cross-Modal Multi-Head Attention is
defined as:

Att(QA, KA, V A, BA) = softmax
QF̂ (KA)T

√
dk

+ BA

V A

Ultimately, the predicted target face landmark ŷ is obtained through a linear
transformation that projects the Biased cross-modal output into the landmark dimension
(68 × 2).

Learning Objective

The decoder repeats the process to predict the next facial landmark ŷ in an
autoregressive manner until the end of the video sequence. In this moment, the model is
trained by minimizing the MSE between the predicted outputs Ŷ = (ŷ1, ..., ŷkT ) and the
ground truth landmarks Y = (y1, ..., ykT ):

LMSE =
T∑

t=1

V∑
v=1

∥ŷt,v − yt,v∥2
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4.4 Second Stage: Facial Landmarks To Facial Image

Following the successful transformation of audio input into a detailed facial
representation via the FaceFormer model, the next step in synthesizing a talking head
is to render these facial landmarks into realistic video frames. To map the landmarks to
realistic images, we use the vid2vid model implementation (WANG et al., 2018). vid2vid
is a general video-to-video synthesis framework based on CGAN and introduces a new
spatio-temporal learning objective. The primary objective of vid2vid is to achieve high
realism in the synthesized video frames. This entails capturing the fine details and nuances
of facial expressions and ensuring that these expressions are in perfect sync with the audio
input. The realism extends to the seamless transition of facial movements across frames,
maintaining consistency and fluidity that mirrors natural human expressions.

One of the key challenges in video synthesis is maintaining temporal coherence
across frames. vid2vid addresses this through sophisticated temporal modeling, ensuring
that each generated frame is consistent with its predecessors, thereby avoiding jitter and
unnatural movements. Wang et al. (2018) incorporated optical flow, specifically using
FlowNet2, to achieve temporal consistency in video synthesis. Optical flow refers to the
pattern of apparent motion of objects in a visual scene, as observed from a viewpoint.
In the context of video, it represents the motion between two consecutive frames. For
realistic video synthesis, it’s crucial to maintain continuity and smoothness between frames.
Optical flow provides the motion vectors that describe how each pixel in one frame moves
to the next. This information is vital for ensuring that subsequent frames in a generated
video are coherent and temporally consistent.

Therefore, the GAN-based framework utilizes different generators and discrimina-
tors, supported by FlowNet2, in conjunction with a spatio-temporal adversarial objective,
to achieve highly realistic and temporally coherent frames.

4.4.1 Generator

The vid2vid network is a CGAN framework for video-to-video synthesis, where a
source sequence of frames S is mapped to a corresponding sequence of real video frames
X. The objective is to learn a mapping function G that can convert S to X̂ such that the
conditional distribution of X̂ given S matches the real conditional distribution of frames:

p(x̂T
1 |sT

1 ) ≈ p(xT
1 |sT

1 )

This is formulated as a minimax optimization problem with the generator G

mapping the input sequence to the output frame sequence, trained according to the
adversarial loss Equation 4.1.

The conditional distribution p(x̂|s) is simplified through a Markov assumption
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to a product factorized:

p(x̂T
1 |sT

1 ) =
T∏

t=1
p(x̂t|x̂t−1

t−L, st−1
t−L)

Wang et al. (2018) assumes that the video frames can be generated sequentially,
in which the generation of the current frame only depends on the current source frame
st, the past L source frames (st−1, ..., stL) and the past L generated frames (x̂t−1, ..., x̂tL).
A feed-forward network G is trained to capture the conditional distribution p(x̂|s) and
outputs the next frame, which is obtained recursively. Wang et al. (2018) experiments
suggest L = 2 as the best trade-off between quality and computational resources.

Figure 4.6: Sequential Generator Overview.

The Generator G is structured in a coarse-to-fine style by breaking down the
generation process into hierarchical stages of refinements (see Figure 4.6). Video signals
have a significant amount of repetitive information in successive frames. By understanding
the optical flow, which is the pattern of apparent motion between frames, it is possible
to predict the subsequent frame by adjusting the current one. This prediction method
is generally accurate, except in obscured or not visible areas. Accordingly, this idea,
the Generator G, is designed in three steps: firstly, it synthesizes the next frame in a
hallucinatory manner; secondly, it estimates the optical flow; and finally, it combines the
outcomes of the previous steps to synthesize the final predicted frame. Both the first
and second steps consider the background information through a mask. This process is
outlined in the subsequent equation:

G(x̂t−1
t−L, st

t−L) = (1 − m̂t) ⊙ ŵt−1(x̂t−1) + m̂t ⊙ ĥt, (4.1)

where ht is the hallucinated image; wt−1 is the estimated optical flow; mt repre-
sents an occlusion mask employed to manage background information. Both h, w, and m

are computed by residual networks. All network outputs are based on the input source
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images s and previously synthesized images x̂.

4.4.2 Discriminators

Two types of discriminators are designed: Conditional Image Discriminator (DI)
and Conditional Video Discriminator (DV ) (see Figure 4.7). These discriminators are
based on PatchGAN architecture. Unlike a traditional discriminator that classifies an
entire image as real or fake, PatchGAN focuses on smaller patches of an image. Each
patch is independently assessed, and the discriminator’s outputs are averaged to decide
the image’s authenticity. PatchGAN effectively captures and critiques the finer textures
and details of images by concentrating on small areas. This local perspective allows it to
enforce high-frequency correctness, ensuring the generated images are texturally realistic.
PatchGAN discriminators generally have fewer parameters than those assessing the entire
image. This efficiency makes them faster and less resource-intensive, facilitating their use
in applications where detail and speed are crucial.

Figure 4.7: Image and Video Discriminators.

DI aims to ensure that each generated output frame resembles the expected real
frame. The discriminator output should be true for a very similar output or false for a fake
output. Wang et al. (2018) enhances the PatchGAN architecture to multiple discriminators
of different scales, this means that the image is processed by discriminators that look at
patches of different sizes (ISOLA et al., 2017). By using multiple scales, the GAN can more
accurately assess the realism of images at various levels of detail, from coarse structures
to fine textures. The generator receives richer feedback on different aspects of the image
quality, which can guide it in producing more convincing outputs across resolutions.

DV is designed to ensure that consecutive generated output frames follow the
temporal dynamics considering the optical flow. This approach enables the discriminator
to examine the temporal dynamics of the video and efficiently penalize unnatural or sudden
changes within the sequence of frames. This discriminator also implements multi-scale as
DI to different image patch sizes. Other multi-scale techniques are employed but with
a focus on the temporal aspect. At the most detailed level, the discriminator analyzes
a sequence of K directly following frames from the original series. Moving to a broader
scale, the discriminators skip K − 1 intermediate frames, still considering a total of K
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frames in this new sequence. The authors find that this helps to ensure both short-term
and long-term consistency.

4.4.3 Learning Objective

To train the Generator G, the following learning objective function is minimized:

min
G

(
max

DI

LI(G, DI) + max
DV

LV (G, DV )
)

+ λW LW (G),

where LI is the adversarial loss related to the conditional image discriminator DI , LV is
the adversarial loss on K frames related to the conditional video discriminator DV , and
LW is the flow estimation loss.

The LI loss is given by:

LI = E(xT
1 ,sT

1 )[log DI(xi, si)] + E(xT
1 ,sT

1 )[log(1 − DI(x̂i, si))].

The LV loss is computed recursively for all K frames:

LV = E(xT
1 ,sT

1 )[log DI(xi, si)] + E(xT
1 ,sT

1 )[log(1 − DI(x̂i, si))].

The LW loss is the sum of the differences between the ground truth and predicted
optical flow and the ground truth and predicted final frame. The loss is given by:

LW = 1
T − 1

T −1∑
t=1

(∥w̃t − wt∥1 + ∥w̃t(xt) − xt+1∥1) .

4.5 Training

The models were separately trained with the Adam optimizer using a fixed
learning rate of 10−4 to FaceFormer and 2.10−4 to vid2vid. Both models with batch size set
to 1. FaceFormer model were trained for 2560 epochs with the facial landmarks extracted
by FAN. The encoder parameters were initialized and fixed with the pre-trained wav2vec
2.0 weights (GROSMAN, 2021). vid2vid was trained for 120 epochs with both realistic
and 2D-facial landmarks video frames.

The FaceFormer network consumed around 13 GB of video memory in the
training process. The training stage took approximately one week until epoch 2560 in
this configuration. The vid2vid network consumed around 11 GB of video memory and
required approximately two weeks to complete the training process until epoch 120.
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4.6 Inference

Similar to the training process, inference is performed in two steps. Figure 4.8
shows the framework during the inference mode. In the initial step, the FaceFormer
encoder takes the raw audio X as input and produces the speech features Z. Subsequently,
the FaceFormer decoder autoregressively generates the 2D-landmark sequence. In the
second step, for each 2D landmark, the vid2vid model generates a photorealistic frame.
The FaceFormer model requires approximately 3.5 ms to synthesize each facial landmark,
and a 9-second video takes approximately 1.8 s to process. Similarly, the vid2vid model
takes about 4 ms to synthesize each realistic frame, with a 9-second video requiring around
2 s to complete.

Figure 4.8: Framework overview during the inference stage.

The chosen synthesis approach initially involves selecting the optimal epoch of
the vid2vid model while using ground truth 2D landmarks as input. Subsequently, we
initiate the process of synthesizing 2D landmarks with FaceFormer model and assess its
performance in conjunction with vid2vid.

4.7 Concluding Remarks

The current chapter describes the development of our talking head generation
framework based on a two-stage landmark design. This approach is elaborated from
dataset preprocessing through to the training and synthesis processes. The framework is
capable of synthesizing talking head videos from raw audio.

The audio and video frames were preprocessed to fit our context. We downsampled
the audio frequency for input into a pre-trained wave2vec 2.0 model, which extracts features
from the audio. The video frames’ resolution was reduced to decrease computational
resource consumption, as our rendering network, vid2vid, requires significant resources to
synthesize realistic video frames.

Our framework applies the models proposed by Fan et al. (2022) and Wang et al.
(2018) and proposes a new methodology to synthesize videorealistic image-based talking
heads from speech. We adapted FaceFormer to synthesize 2D landmarks from Portuguese
audio by using a wave2vec model fine-tuned on the Portuguese language and adjusted
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the dimensionality of the input and output decoder layers to generate 2D landmarks of
dimensions (68 × 2). The vid2vid network, leveraging optical flow and PatchGAN for
enhanced quality and temporal coherence, is used to render the 2D landmarks into realistic
video frames.

The next chapter will present our results. Initially, we apply objective metrics to
evaluate image quality and natural spontaneous motion. Subsequently, an ablation study
is conducted to understand some framework components better. Finally, we undertake an
exploratory test to synthesize talking heads with audio from outside our dataset. This
chapter helps us to answer our research questions proposed in Section ??.
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Chapter 5

Results

As our framework employs a two-stage synthesis design, the outputs of both the
first and second stages are evaluated using objective metrics. Following the characteristics
described in Section 2.4.5 by Chen et al. (2020), we assess our results’ image quality, audio
synchronization, and natural spontaneous motion. Given that the framework is trained
to synthesize a specific individual, we do not evaluate identity preservation. Section 5.1
assesses spontaneous motion by examining blinking eyes in the 2D facial landmarks using
the EAR. Section 5.2 evaluates the quality of the synthesized realistic image frames by
employing metrics such as SSIM, FID, and LPIPS. An ablation study is performed in Section
5.3, analyzing the impacts of modifications proposed by FAN et al. to the transformer
decoder on landmark synthesis. We utilize the LMD metric to assess audio synchronization
on the landmarks, focusing on lip landmarks. Finally, Section 5.4 presents a generalization
test of our framework by synthesizing talking heads with random speech audios outside
of our dataset. This test evaluates the framework’s potential for generalization across
different speakers. Examples of animations synthesized using our method can be seen at
<ai-unicamp.github.io/2StageTalkingHead>.

The experiment adopted a k-fold cross-validation approach, with k = 4 and each
subset comprising 13 test samples. This method partitioned the data into ‘k’ subsets,
systematically using one subset for testing and the remaining data for training in each
iteration. The choice of k-fold cross-validation was especially pertinent given the small
dataset size, as it allowed for a more robust and thorough evaluation of the model’s
performance and generalizability across various data subsets. The results presented in
this section showcase the aggregate outputs from the k-fold cross-validation iterations,
specifically capturing the mean (µ) and standard deviation (σ) of the objective evaluation
metrics across different epochs. Each epoch’s mean score is computed from all 13 test
samples within a single iteration. Subsequently, these scores’ means and standard deviations
are calculated across all iterations for each epoch.

https://ai-unicamp.github.io/2StageTalkingHead/
ai-unicamp.github.io/2StageTalkingHead
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5.1 Facial Landmarks

We assess spontaneous natural motion on facial landmarks by evaluating the
blinking eyes with Eye Aspect Ratio (EAR) (see Figure 5.1).

In the eye blink detection method evaluation, we selected a random k-fold test
dataset containing 13 samples. These samples were manually annotated of eye blink
occurrence to serve as a benchmark for assessing the detection method performance.
Testing the detection method on this dataset yielded an accuracy of 67%. While indicative
of the method’s potential, this also underscores the challenges inherent in eye blink detection.
We believe that the image’s low resolution could negatively impact the landmark extractor
method precision, where nuances in eye landmarks become critical for accurate blink
detection.

Figure 5.1: Video frame examples and their respective landmarks. The image on the left
is an example of an open eye, and the image on the right is an example of a closed eye.

Table 5.1 presents the average number of eye blinks per video for the method
applied to both ground truth and synthesized landmarks. The results confirm prelimi-
nary observations that FaceFormer struggles to capture temporal eye accurately blinks
representation. This insight is crucial, highlighting a specific area where the method’s
performance could be enhanced.

Table 5.1: Blink detection method score. It was computed using both ground truth and
synthesized 2D landmarks. The method is employed to count the eye blinks.

Synthesized Ground Truth
Average Eye Blink

per video
0 4

5.2 Realistic Images

To conduct the experiments on the second-stage output, the realistic frame
images, we fixed the model checkpoints of the second-stage (vid2vid), and we varied its
inputs (landmarks) to assess if FaceFormer training is capable of learning efficient shape
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representations of facial dynamics driven by audio. Finally, we completely removed the
first stage of our pipeline and compared previous results with synthesized animation frames
driven by 2D landmarks obtained from ground truth videos. Figure 5.2 displays examples
of ground truth and synthesized frames.

Figure 5.2: Video frame examples and their corresponding synthesized frames. The top
row consists of ground truth images, while the bottom contains synthesized images.

Well-established methods in the field of computer vision were employed to evaluate
the quality of the synthesized animation frames. These include the Structural Similarity
Index (SSIM), Frechet Inception Distance (FID), and Learned Perceptual Image Patch
(LPIPS) (details in Section 3.2).

Table 5.2: Objective scores were computed using synthesized and ground-truth 2D land-
marks as input to the second stage of our pipeline. The arrows up indicate that higher
is better, while the arrows down indicate that lower is better. We see that FaceFormer
training successfully learns facial shape dynamics. With 2560 training epochs, we get
landmark representations that result in scores close to those obtained by ground-truth
representations. "Ep" stands for epochs. "GT" stands for Ground Truth.

Ep FID ↓ LPIPS ↓ SSIM ↑
µ ±σ µ ±σ µ ±σ

160 31.1 1.6 0.0576 0.0005 0.317 0.002
320 28.5 0.73 0.0567 0.0004 0.320 0.002
640 27.3 0.35 0.0561 0.0004 0.324 0.002
1280 26.8 0.12 0.0554 0.0003 0.328 0.001
2560 26.6 0.09 0.0552 0.0001 0.330 0.001
GT 25.4 0.07 0.0450 0.0001 0.390 0.001

The initial rows of Table 5.2 display a consistent decrease in FID and LPIPS
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scores over epochs, signifying an enhancement in image quality. Also, it demonstrates a
corresponding increase in SSIM score over the epochs, further confirming improved image
quality. These metrics collectively exhibit a positive trend, implying the potential for even
better results with extended training. Figure 5.3 graphically displays the average score
metrics over the epochs.

The final row of Table 5.2 presents the scores obtained when ground-truth
landmarks are input to the second stage. Although using ground truth landmarks yields
better photorealism in animations, the scores are comparatively close to those obtained
using the fully synthetic pipeline.

(a) FID ↓ (b) LPIPS ↓

(c) SSIM ↑

Figure 5.3: Objective metrics score over the FaceFormer training epochs, the score refer
to the mean of k-fold experiments, with k = 4 and each fold containing thirteen samples.
Objective Metrics: (a) FID score, indicating the distance between distributions of generated
and real images; (b) LPIPS score, reflecting perceptual similarity to human judgment; and
(c) SSIM score, measuring the similarity between generated images and ground truth.

The graphs clearly show a tendency for further improvement if the model is
trained over 2500 epochs. However, it is unclear what the benefits of perceptual evaluation
would be while raising the training in 1000 epochs means training for more than 3 days.
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5.3 Ablation Study

We conduct an ablation study on the first-stage decoder to analyze the impact
of each component on landmark synthesis. Each test is designed to isolate and evaluate
the significance of specific architectural elements. We utilized a k-fold test dataset and
trained the model with various modifications. The components and the respective tests
are outlined below, with justifications for each choice:

• Periodic Positional Embedding (PPE): In the Transformer architecture, PPE is added
to the input embeddings at the initial stage to provide the model with information
about the order or position of tokens in the sequence

1. Removing PPE from the pipeline. Removing PPE helps determine if the model
can still effectively synthesize accurate landmarks without recurrent positional
information.

2. Replacing PPE with the original Positional Embedding (PE). By removing the
periodic aspect, we assess whether the periodicity in positional embeddings is
crucial for the model’s performance (see Equation 2.2). The original PE is described
in the subsequent equation:

PE(pos, 2i) = sin
(

pos

100002i/d

)
PE(pos, 2i + 1) = cos

(
pos

100002i/d

) (5.1)

• Temporal Bias: The Temporal Bias BT is employed in the first Multi-Head Attention
layer of the Transformer decoder as illustrated in the following equation:

Att
(
QF , KF , V F , BT

)
= softmax

(
QF (KF )T

√
dk

+ BT

)
V F .

1. Removing temporal bias weights. This test assigns equal weight to all past pre-
dicted landmarks, allowing us to understand the importance of weighting past
frames differently for the prediction of current frames. The following matrix BT 1

exemplifies it:

BT 1 =



0 −∞ −∞ −∞ −∞
0 0 −∞ −∞ −∞
0 0 0 −∞ −∞
0 0 0 0 −∞
0 0 0 0 0


2. Implementing the original ALiBi without periodicity. By removing the periodic

aspect, we assess if periodic temporal bias is more effective for synthesizing facial
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landmarks than the traditional ALiBi method (see Section 4.3.2). The following
matrix BT 2 exemplifies it:

BT 2 =



0 −∞ −∞ −∞ −∞
−1 0 −∞ −∞ −∞
−2 −1 0 −∞ −∞
−3 −2 −1 0 −∞
−4 −3 −2 −1 0


• Alignment Bias: The Alignment Bias BA is applied in the second Multi-Head Attention

layer of the Transformer decoder, as depicted in the equation below:

Att
(
QF , KF , V F , BA

)
= softmax

(
QF (KF )T

√
dk

+ BA

)
V F .

1. Adding one more past feature to the Alignment Bias mask. This test evaluates the
effect of including additional past features in the alignment process, determining
if more past information improves the alignment of audio features with facial
landmarks. The following matrix BA1 exemplifies it:

BA1 =



0 −∞ −∞ −∞ −∞
0 0 −∞ −∞ −∞

−∞ 0 0 −∞ −∞
−∞ −∞ 0 0 −∞
−∞ −∞ −∞ 0 0


2. Adding ten more past features to the Alignment Bias mask. By significantly

increasing the number of past features considered, we assess the impact of extensive
past information on the alignment and overall performance.

To evaluate, we apply objective metrics to both the facial landmarks and the
synthesized realistic frames. We employ LMD to evaluate the FaceFormer decoder output,
the facial landmarks. Due to limitations in computer resources, we do not apply visual
objective metrics on the Alignment Bias experiment (details in Section 5.3.2).

5.3.1 Periodic Positional Embedding and Temporal Bias

Figure 5.4 displays the LMD applied to lip landmarks over the epochs for the
tests conducted on the PPE and Temporal Bias components. Compared with the complete
FaceFormer decoder, modifications to the Temporal Bias have a more significant impact
on LMD. It is observable that removing the weights from the Temporal Bias was the
modification that most increased the LMD error. Additionally, using PEs without the
periodic aspect and completely removing it has the same impact as the epochs increase.
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Figure 5.4: LMD of lip landmarks of each component experiment over the FaceFormer
training epochs.

(a) FID ↓ (b) LPIPS ↓

(c) SSIM ↑

Figure 5.5: Visual objective metrics score of each component experiment over the Face-
Former training epochs. Objective Metrics: (a) FID score, (b) LPIPS score, and (c) SSIM
score.
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Figure 5.5 presents the scores from objective visual metrics. Following LMD,
Temporal Bias shows a more significant impact. The greatest impact occurs when we
employ the second test with the original ALiBi implementation (see Section 4.3.2).

5.3.2 Alignment Bias

We found that increased computational resources were needed when conducting
the tests to evaluate the Alignment Bias. Adding one more context feature increased
the training epoch time from 2 minutes to 15 minutes. When adding ten more, the time
increased to almost 2 hours. Given this limitation, we trained the model for fewer epochs.
Figure 5.6 displays the LMD scores over 360 epochs. The test of Alignment Bias with ten
more context features was trained for only 160 epochs due to the increased time required.
It is observable that with just one additional context, the score is below the complete
framework results but closer, and with ten more context features, the LMD presents the
worst score among the ablation tests. Given the time required to add more context features,
it is not worth adding more.

Figure 5.6: LMD of lip landmarks over the epochs with all ablation study components.

With 360 epochs, the framework cannot synthesize sufficiently accurate lip
landmarks to perform lip synchronization even when complete. Therefore, we did not
perform the objective visual metrics on the Alignment Bias test videos.

5.4 Exploratory Test

We conducted an exploratory approach to assess our model’s ability to handle
audio inputs from sources outside our dataset. The capability to effectively process and
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synthesize talking head videos from unfamiliar audio sources indicates the framework’s ro-
bustness and potential applicability in real-world scenarios. Additionally, these exploratory
tests helped identify limitations and areas for improvement in our system’s design and
training process.

A diverse selection of audio samples from external sources was compiled for the
exploratory tests. These samples were deliberately chosen to cover a broad spectrum of
characteristics not present in the training dataset, including variations in language, gender,
and speech speed. The videos can be viewed at

• Language: In the exploratory tests, the framework showed some potential in process-
ing languages that were not part of its original training dataset. This potential was
observed in the framework’s use of visemes representations of phonemes—originally
learned from Portuguese samples, which seemed to assist in creating talking head
videos in English with a reasonable level of lip synchronization.

• Gender: Although our training used only a female voice, there were indications
that the framework could also handle male voices. These initial results hint that
the first-stage encoder output, the wav2vec2.0 speech features, possess an element
of gender neutrality, potentially allowing the framework to supply various genders
despite not being explicitly trained on a diverse set of voices.

• Speed: Our framework displayed some promising tendencies in handling different
speech speeds, as observed in videos where speech starts at a normal pace and ends
with words pronounced more slowly, emphasizing each syllable. The system seemed
to adapt the facial landmarks correspondingly, aiming for synchronization with the
audio pace. Additionally, in videos with periods of silence, the framework accurately
simulated the talking head closing its mouth, mirroring natural speech pauses.

These preliminary findings indicate a potential synergy in our setup between
the wav2vec2.0 model and the FaceFormer decoder. Together, they appeared to handle
variations in languages, genders, and speech speeds to a certain degree, suggesting a
capability of speech generalization for synthesizing talking head videos with a level of
realism. However, further perceptual testing may be necessary to ensure our observations.

5.5 Concluding Remarks

The objective metrics results indicate that the synthesized facial landmarks score
closely to the ground truth ones (see Section 5.2). One can see good lip synchronization
with photorealistic texture by observing the generated talking head videos from the test
dataset. However, despite these positive outcomes, it was observed that the talking heads
do not blink (see Section 5.1).
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Our Ablation Study on the FaceFormer decoder components shows that the
Temporal Bias test most significantly increased the error in the synthesized facial landmarks
(see Section 5.3). Despite the lower scores, the differences in the generated videos are
subtle, with the ablation study videos maintaining good lip synchronization, similar to
those produced by the complete framework. FAN et al. argued that these modifications
were essential for synthesizing 3D meshes (five thousand 3D points), but our findings
suggest that for synthesizing simple 2D landmarks (sixty-eight 2D points), they may not be
so important. To confirm our findings, perceptual tests are necessary to determine which
modules do not significantly impact subjective human assessment, potentially simplifying
the architecture. Additionally, the perceptual test is crucial for delving deeper into our
exploratory tests to assess the model’s generalization capacity (see Section 5.4).

In the upcoming chapter, we’ll summarize our findings and discuss research
question conclusions and future directions. This final chapter aims to highlight key insights
and chart a path forward, suggesting opportunities for advancing this field.
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Chapter 6

Conclusions

To the best of our knowledge, our work builds the first two-stage speech-driven
neural deep learning-based 2D talking head for Brazilian Portuguese. This approach
focuses on the realistic synthesis of speech articulatory movements and facial appearance.

In Chapter 2, we started by introducing GAN and Transformer, the two based-
architectures employed in this work. We then provide a brief historical overview of talking
head synthesis, focusing on two-stage landmark-based approaches. We summarize the
works reviewed, detailing aspects such as the first and second-stage architectures, objective
evaluation metrics, and datasets used for training and validation. Additionally, we present
some examples of Brazilian Portuguese talking heads. Finally, we discuss how our work
aligns with the reviewed literature.

Building a photorealistic, speech-driven talking head is a challenging task that
involves a complex engineering process. Chapter 3 outlined the dataset used to train
our framework, the computational resources, the landmark extraction method, and the
objective evaluation methods used to assess our results. In Chapter 4, we presented
the methodology for constructing our framework. This includes the data preprocessing,
detailing the models used (FaceFormer and vid2vid), and describing the training and
inference processes.

Chapter 5 presents our results. First, we employed objective metrics (with
methods such as SSIM, FID, and LPIPS) to evaluate the image quality of our synthesized
talking head by applying our test dataset. Then, we employed an ablation study to try to
understand the impact of each FaceFormer component. Finally, we explored the model’s
capacity to generalize to input audio inputs from sources outside our dataset. After
conducting these experiments, we were able to answer the research questions proposed in
Chapter 1:

• Considering that the FaceFormer model was originally designed to synthesize 3D

meshes, our central research question is: How does FaceFormer model perform
in translating speech audio signals to realistic dynamic behavior of 2D
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facial landmarks?

The outcomes of our objective tests suggest that FaceFormer has been successfully
adapted to synthesize 2D landmarks. We used FaceFormer to create 2D landmarks
and input them into the vid2vid model to synthesize realistic talking head frames.
Simultaneously, we input ground truth 2D landmarks into vid2vid and compared the
results. The final row of Table 5.2 presents the scores. Although using ground truth
landmarks results in better photorealism in animations, the scores are relatively
close.

• Can our framework synthesize high-quality talking heads with the available
dataset volume?

This model was exclusively trained on a modest-sized dataset, just 15 minutes,
consisting of Portuguese audio at a standard speech speed. Despite the Table
5.2 results, the synthesized talking head videos generated from the test dataset
demonstrate good lip synchronization with words not seen in the training dataset.

• How far can our framework generalize to other speech agents and styles?

We explore the model by testing it with audio outside our dataset; the model indicates
the potential to handle variations in speech speed, gender, and other languages.
Although the model suggests this potential, perceptual testing is needed to confirm
our observations.

Despite the advancements, one notable limitation was observed: the models did
not simulate eye blinking. However, when we used ground truth landmarks as input for the
rendering second stage, the model was able to produce blinking eyes. Specifically, the first
stage model struggled to capture the temporal dynamics of eye blinking. This suggests
that while vid2vid2 model can effectively render eye movements when given accurate
landmarks, there is a gap in FaceFormer ability to learn and predict the natural blinking
motion autonomously in the initial landmark detection phase. These results affirm the
significance of well-defined facial landmarks and showcase the model’s adaptability and
potential for broader applications beyond its initial training constraints.

Even though advancements in rendering realistic features and expressions through
algorithms and neural networks, the uncanny valley remains a critical boundary between
the synthetic and the real. This psychological phenomenon, where the near-realistic repre-
sentations of humans evoke feelings of strangeness, may highlight a possible fundamental
limit to how human-like our creations can truly become. As we push the boundaries of
what machines can achieve, reflecting on the uncanny valley forces us to consider the
possibility that there might always be a gap between artificial creations and human au-
thenticity. This introspection not only shapes our technological pursuits but also deepens
our understanding of human perception and our intrinsic responses to replicas of ourselves.
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6.1 Future Work

While this study marks a significant step forward in synthesizing talking head
videos, it also opens several avenues for future research. First, exploring the integration
of emotion and gesture synthesis could further enhance the realism and expressiveness
of the talking heads, making them more relatable and engaging for users. Extending
the framework to include a wider range of languages and dialects would reinforce its
universality and accessibility. Another promising direction is optimizing the framework
for real-time applications, such as live broadcasting or interactive virtual assistants. This
would necessitate advancements in computational efficiency without compromising the
quality of the output. Additionally, addressing the challenge of non-blinking in talking
heads is crucial. Implementing a blink synthesis solution could improve the naturalism of
facial animations, making the characters seem more alive.

In addition, while recognizing the valuable insights offered by objective metrics
like SSIM, LPIPS, and FID in quantifying visual fidelity, we acknowledge their limitations
in comprehensively evaluating the quality of synthesized talking heads. These metrics can
be good at capturing pixel-level similarity, but the human perception of facial animation
extends far beyond mere visual sharpness. Videorealism, for instance, encompasses
subtleties in lighting, skin texture, and hair dynamics that defy reduction to single
numerical scores. Therefore, we plan to complement objective metrics with subjective
evaluation by human observers. Additionally, the results from the Ablation study suggest
that some FaceFormer decoder components may not be crucial for synthesizing simple
2D landmarks. Subjective evaluation can help confirm our findings and determine which
modules do not significantly impact subjective human assessment, potentially simplifying
the architecture.

Lastly, ethical considerations and the potential to misuse talking head technologies
call for research into safeguards and ethical guidelines. This includes developing methods
to detect and flag synthetic video content to prevent misinformation and protect individual
rights.
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